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A space level light bulb theorem in all dimensions

Danica Kosanović and Peter Teichner

Abstract. Given a d -dimensional manifold M and a knotted sphere sWSk�1 ,! @M with 1 �
k � d , for which there exists a framed dual sphere GWSd�k ,! @M , we show that the space of
neat embeddings Dk ,!M with boundary s can be delooped by the space of neatly embedded
.k � 1/-disks, with a normal vector field, in the d -manifold obtained from M by attaching a
handle to G. This increase in codimension significantly simplifies the homotopy type of such
embedding spaces, and is of interest also in low-dimensional topology. In particular, we apply
the work of Dax to describe the first interesting homotopy group of these embedding spaces,
in degree d � 2k. In a separate paper we use this to give a complete isotopy classification of
2-disks in a 4-manifold with such a boundary dual.
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1. Introduction and survey of results

1.1. A space level light bulb theorem for arbitrary dimensions

For a d -dimensional manifoldM and an embedding sWSk�1 ,!@M , let Embs.Dk;M/

denote the space of neat embeddings of the k-disk into M that restrict to s on the
boundary. In this paper all manifolds are smooth, compact, connected, oriented, and
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have nonempty boundary, and all embeddings are smooth. A smooth mapKWX ! Y

of manifolds is neat if it is transverse to @Y and K�1.@Y / D @X .

For a setting with a (framed geometric) dual (in the boundary) we assume
that there exists an embedding GW Sd�k ,! @M with trivialized normal
bundle, such that s tG is a single positive point, and we fix such a framed
sphere G.

(1.1)

In this setting, we denote byMG the d -manifold obtained fromM by attaching to
@M a .d � kC 1/-handle along the framed sphereG. Then @MG is the surgery on @M
along G, and since s intersects G, we have s D u� [u0

uC for u0W Sk�2 ,! @MG ,
u�WDk�1 ,! @MG , and uCWDk�1 ,!MG neat, see Figure 1.2.
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Figure 1.2. Correspondence of neat k-disks in M with boundary s and half-disks in MG for
k D 1; 2, d D 3.

For K 2 Embs.Dk;M/ denote by �K an open tubular neighborhood. Then there
is a diffeomorphism M n �K Š MG , and hence the right-hand side does not depend
on G (nor its framing), and the left hand side is independent of K. This follows from
handle cancellation, see Lemma 2.1.

Any triple .M; s; G/ as above is obtained by starting with an arbitrary d -mani-
fold X and removing a tubular neighborhood of a neat embedding uWDk�1 ,! X

to obtain M . Then G is a meridian sphere to u, X is diffeomorphic to MG , and u
corresponds to uC. To obtain s we have to assume that u0 D @u is also the boundary
of an embedding u�WDk�1 ,! @X and finally, Embs.Dk; M/ is nonempty if and
only if u is isotopic to u� rel. u0. In this case, M is also a boundary connected sum
X\.Sd�k �Dk/, withG corresponding to Sd�k � ¹pº andK D ¹pº �Dk the chosen
embedding.

When k D 1 and d D 3 this is precisely the setting of the well-known “light bulb
trick” in knot theory, see for example [27, p. 257]. Namely, G is the “light bulb”
to which a “cable” D1 ,! M connects on one end, while the other end is fixed in
another component of @M , the “ceiling”, see the top left of Figure 1.2. The trick
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refers to the proof that such cables K are isotopic if and only if they are homotopic,
i.e. �0 Embs.D1; M/ D �1M . Indeed, a homotopy from one knotted K to another
can be turned into an isotopy using the swinging motion around the light bulb G. See
also Example 2.10.

Motivated by recent generalizations of the light bulb trick for 2-spheres in 4-
manifolds [8, 28], we prove the following theorem for disks in any dimensions 1 �
k � d , and in [24] use it to recover and generalize those results for k D 2; d D 4 (see
also [9] for partial results on 2-disks).

Theorem A. In the setting with a dual (1.1), any U 2 Embs.Dk;M/ leads to a fibra-
tion sequence

Embs.Dk;M/ �Embu0
.Dk�1;MG/ �k�1Sd�k;

fU ıev0

where fU.K/ is obtained by foliating Dk by a 1-parameter family of Dk�1 (rel. Sk�2),
applying �U and then K to it and getting a loop based at uC 2 Embu0

.Dk�1;MG/.

Here� denotes a based loop space, and a sequence of based maps F
i
�!E

p
�!B is

a fibration sequence if i factors through a weak homotopy equivalence to a homotopy
fiber of p. In particular, we get a long exact sequence on homotopy groups. For more
details on fU we refer to Remark 2.2, and for ıev0

to Remark 1.3.
In fact, Embs.Dk;M/ is a loop space in general, as we explain next.
Firstly, a result of Cerf shows that this space is weakly homotopy equivalent to its

subspace Embs".Dk;M/, consisting of those embeddings that agree with a fixed one
on an "-collar of the boundary @Dk (see Proposition 2.9). Secondly, if we extend the
foliation of Dk from Theorem A to a 1-parameter family of thickened disks Dk�1 �

Œ0; "�, then K 2 Embs".Dk;M/ gives a path in the space Emb"
u"

0
.Dk�1;MG/ of such

"-augmented .k � 1/-disks Dk�1 � Œ0; "� ,!MG . We can similarly use U to complete
this to a loop f"U.K/ based at u"C. Let us point out that the space Emb"

u"
0
.Dk�1;MG/

is homotopy equivalent to Emb"
u"

0

.Dk�1;MG/, the space of .k � 1/-disks equipped
with a normal vector field, see Proposition 5.1.

Theorem B (Space level light bulb theorem for disks). In the setting with a dual (1.1),
any basepoint U 2 Embs".Dk;M/ leads to a pair of inverse homotopy equivalences

f"UWEmbs".Dk;M/ �Emb"u"
0
.Dk�1;MG/ WaU;�

where f"U is the "-augmented foliation map, and for n � 0 the value of �naU on an
n-parameter family of isotopies S1 ! Emb"

u"
0
.Dk�1;MG/ is the n-parameter family

of k-disks obtained by applying the parametrized ambient isotopy extension theorem.
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Remark 1.3. Theorem A follows from Theorem B using Proposition 5.2, which says
that forgetting the "-augmentation is a fibration

ev0WEmb"u"
0
.Dk�1;MG/� Embu"

0
.Dk�1;MG/;

with fiber �k�1Sd�k measuring the normal derivative in the "-direction; then ıev0
in

Theorem A is the connecting map of this fibration. Here we again use Proposition 2.9
to replace Embu"

0
.Dk�1;MG/ by the equivalent Embu0

.Dk�1;MG/.

The main tool in these results, namely the translation to half-disks, is due to Jean
Cerf and appeared first in [4], republished as the appendix of his celebrated paper [5].
Cerf did not discuss the generality in which his method applies: he used it only for
M D Dk , see Example 2.13 below. Our Theorems A and B are general results that
use Cerf’s half-disk trick (and his parametrized ambient isotopy theorem) to arrive at
interesting consequences for neat disks. Budney and Gabai outlined the case M D
Sd�k �Dk in [1, v1:Lem. 3.4] and noted in [1, v1:Rem. 6.2] that this outline should
be generalizable. For a history of related results we refer to Section 2.3.

Mentioned half-disks are k-disks in MG that restrict to u"� on the "-collar of one
half of the boundary, and to u"C on the "-collar of the other half @CDk , see the third
column of Figure 1.2. This space is homotopy equivalent to Embs".Dk; M/, but is
also the fiber of a restriction map from the space of half-disks for which @CDk is
free to move in the interior of MG . The latter space is contractible, so the fiber is the
loop space on the base, implying Theorem B. The proof is in Section 3, and a detailed
outline in Section 2.1.

Remark 1.4. One might hope to use Theorem B repeatedly. However, the boundary
condition for .k � 1/-disks, u0W Sk�2 ,! MG , is null homotopic (that is, it bounds
u� � @MG), so cannot have a geometric dual.

Remark 1.5. The same method of proof applied to framed half-disks yields a homo-
topy equivalence

Embfr
s0.D

k;M/ ' �Embfr
u0

0
.Dk�1;MG/

between spaces of framed embeddings, i.e. embeddings equipped with a trivialization
of the normal bundle (and framed boundary conditions s0 respectively u00). Equiva-
lently, we can thicken the embeddings to obtain (cf. Proposition 5.1):

Emb�s.hd�k; X/ ' �Emb�u0
.hd�kC1; X/;

where hi D Di � Dd�i is a handle of index i and �s and �u0 are neighborhoods of
the attaching region.
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1.2. Applications of the work of Dax

The essence of Theorem B is that it increases the codimension for the embedding space
and thus simplifies the computation of its homotopy groups. In particular, using Hae-
fliger’s double-point elimination [14], Jean-Pierre Dax [6] computed the homotopy
groups �n Embs.Dk;M/ in the “metastable range”, i.e. in degrees n < 2d � 3k � 3,
beyond the stable range n < d � 2k � 1 where they are as for immersions (in turn
determined by Smale–Hirsch theory). But now in the setting with a dual, Theorem B
implies that the group

�nf"UW�n Embs".Dk;M/ �nC1 Emb"u"
0
.Dk�1;MG/ W�naUŠ

can be computed using Dax’s techniques for all n < 2d � 3k � 1 (equivalently,
nC 1 < 2d � 3.k � 1/ � 3). For example, when d � k � 2 the range of Dax is
empty, n < 1 � k, whereas we have n < 3 � k.

We remark that for kD d � 2 the Goodwillie–Weiss embedding tower [11], which
generalizes the work of Dax, converges for Embu0

.Dk�1;MG/, but it need not con-
verge for Embs.Dk;M/.

More precisely, Dax expresses the homotopy group

�n
�
Imm@.V;X/;Emb@.V;X/Iu

�
of neat immersions, relative to neat embeddings of an `-manifold V into a d -mani-
fold X (the boundary condition u0W @V ,! @X is omitted from the notation) as a
certain bordism group, recalled in Theorem 4.4. However, to compute this explicitly
requires more work, which to our knowledge has not been done prior to the present
paper. We identify this bordism group and the Dax invariant for n D d � 2` and V
simply connected, as an isomorphism

DaxW�d�2`
�

Imm@.V;X/;Emb@.V;X/Iu
� Š
�! ZŒ�1X��rel`;d (1.6)

where the group of relations rel`;d is trivial for ` D 1, and given by

hg � .�1/d�`g�1 W g 2 �1Xi

for ` � 2. The map Dax is the signed count of group elements at the double points
of an associated generic immersion Id�2` � V # Id�2` �X , see Theorem 4.14.
For d � 2` D 0 this resembles the result of Grant [13] that compares the invariant
of Hatcher and Quinn [18] (who study whether an immersion is regularly homo-
topic to an embedding for 2d � 3` � 3 � 0) to Wall’s self-intersection invariant, see
Remark 4.18.

We then specialize to V D D` and prove the following (restated as Theorem 4.3,
that includes d � 2` D 0).
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Theorem C. Let X be a d -manifold and consider the space Emb@.D`; X/ with a
basepoint u. Assume d � `C 3 and d � 2` � 1. Then the map

puW�n
�
Emb@.D`; X/; u

�
! �nC`X; pu.f / D .Et 7! �u [@ fEt /;

is an isomorphism for 0 � n � d � 2` � 2, and there is a short exact sequence of
groups (sets if d � 2` � 1 D 0):

ZŒ�1X n 1��rel`;d ˚ daxu.�d�`X/ �d�2`�1
�
Emb@.D`; X/; u

�
�d�`�1X:

@r

Dax
pu

The map daxuW�d�`M ! ZŒ�� whose image appears in the kernel of the exten-
sion is a restriction of the isomorphism Dax from (1.6). The realization map @r is an
explicit inverse of Dax, constructed in Section 4.1. The case ` D 1; d D 4 was also
studied by Gabai [9], see Remark 4.22. Some properties of these invariants in that
case can be found in [24], and for ` D 1 and d � 3 in [23].

Next, we extend this to "-augmented `-disks in Theorem 5.4, using some results
on homotopy groups of frame bundles, proven in Appendix B. In particular, when
d � ` is odd it turns out that

�d�2`�1
�
Emb"@".D`; X/; u"

�
Š Z � �d�2`�1

�
Emb@.D`; X/; u

�
;

so any Sd�2`�1-family of embedded `-disks in X has Z many "-augmentations (see
Remark 5.13). In Section 5.3 we combine the mentioned Theorem 5.4 for ` D k � 1
with Theorem B as follows.

Theorem D. Assume the setting with a dual (1.1), and let � WD �1M . Then there are
isomorphisms �nEmbs.Dk;M/Š �nCkM for n� d � 2k � 1, and if d � k ¤ 1;3; 7
a group extension:

ZŒ���relk�1;d ˚ dax".�d�kC1M/ �d�2k
�
Embs.Dk;M/;U

�
Zk;d ˚ �d�kM�ZŒ��G;

aU ı @r
"

Dax ı f"
U

�W;U ˚ .�U [ �/

where Zk;d WD Z for d � k even, Zk;d WD Z=2 for d � k odd, and

dax".�d�kC1M/ D h1i ˚ dax.�d�kC1M/

for d � k even or k D 2. The map on the right is on the class of

KWSd�2k ! Embs.Dk;M/

given as follows.
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(i) The map �U [ � assigns to K the homotopy class modulo ZŒ�� � G of the
sphere

�U [K 2 Map�
�
Sd�2k;Map�.S

k;M/
�
' Map�.S

d�k;M/;

obtained by gluing the oppositely oriented U with K along boundaries.

(ii) If d � k is even and d � k ¤ k, then �W;U.K/ is one half of e.�K; �U/,
the relative Euler number of the normal bundle of the immersion Id�2k � Dk #
Id�2k �M , given by .Et ; x/ 7! .Et ; KEt .x//, relative to the constant family U (they
agree on @.Id�2k �Dk/). Moreover, Zk;d D Z splits back.

(iii) If d � k D k D 2 or 4 or 8, then the relative Euler number e.�K; �U/ might
be odd, but we have

�W;U.K/ D
1

2

�
e.�K; �U/ �W.�U [K/

�
;

where the homomorphism W 2 Hom�.�kM;Z/ with W.G/ D 0 is an integral lift
of the spherical Stiefel–Whitney class ws

k
2 Hom�.�kM;Z=2/ given by ws

k
.a/ D

wk.a
�.TM// for aWSk !M .

We show that such a W always exists in Lemma B.16. We use Theorem D in [24]
to compute the set of path components �0 Embs.D2;M/ for d D 4, thus classifying
in the setting with a dual the set of isotopy classes of disks in a 4-manifold. Note that
this is precisely a case when 2d � 3k � 3 � n < 2d � 3k � 1.

Remark 1.7. It is an interesting problem to determine the equivalence class of the
extension in Theorem D. For d � k even we can divide out Z D Zk;d that splits off
and pick a set-theoretic section � of the quotient extension. If ? is the group structure
on

�d�2k Embs.Dk;M/ Š �d�2kC1 Emb"u"
0
.Dk�1;MG/;

then for ai 2 �d�kMG Š �d�kM=ZŒ��G the element �.a1/ ? �.a2/ ? �.a1C a2/�1

is in the kernel of �U [ �, and on this Dax ı f"U inverts aU ı @r
". Thus, the group

2-cocycle is given by

.a1; a2/ 7!Dax
�
�.a1/ ? �.a2/ ? �.a1 C a2/

�1
�

2 ZŒ�1M n 1��relk�1;d ˚ dax.�d�kC1M/:

We plan to study this in future work. Note that ? is the usual group structure for
d � 2k � 1, whereas for d D 2k it is an unexpected group structure on the set
�0 Embs.Dk; M/. For k D 2, d D 4, we compute the commutators of this group
in [24] and show that it is usually nonabelian.
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Remark 1.8. If in the setting with a duald � k C 3 and d � 2k � 1 hold, we can
apply Theorem C directly to obtain a description of �d�2k�1.Embs.Dk; M/;U/ as
an extension of �d�k�1M by a quotient of ZŒ�1X n 1�. However, Theorem D says
this quotient is trivial, and one can see why explicitly: we compute daxU.g � ŒG�/ D g

in Example 4.19.

2. Preliminaries

2.1. Outline

We outline the contents of the paper and the ideas of proofs of Theorems B and D.

2.1.1. Light bulb tricks. The first step in the proof of Theorem B is illustrated in
Figure 1.2: attaching a handle to G transforms a neat k-disk in M into a “half-disk”
Dk ,!MG , namely, a k-disk whose boundary @ Dk D Sk�1 D Dk�1

� [Dk�1
C has one

half u� D sjD� embedded in @MG and the other uC D sjDC neatly embedded inMG ,
with @u� D @uC. Half-disks are not smooth embeddings in the classical sense, but in
the sense of manifolds with corners, which we review in Section 2.2. Moreover, this
correspondence gives a homotopy equivalence

Embs".Dk;M/ ' Embs". Dk;MG/;

since removing a tubular neighborhood �uC turns half-disks back into neat disks; we
first ensure that half-disks intersect �uC only along the collar u"C. This is done in
Section 3.2.

Lemma 2.1. The existence of a disk UWDk ,! M ensures that the diffeomorphism
type ofMG is independent of the choice of a framing  ofG, and in fact, of the choice
of a dual G to s all together. Moreover, there is a diffeomorphism MG ŠM n �U.

Proof. First note thatM is obtained from the complementM n �U of an open tubular
neighborhood of U by attaching a .d � k/-handle with cocore U. As G is dual to @U
and has trivial normal bundle, the standard handle cancellation of this .d � k/- and
.d � k C 1/-handle pair gives a diffeomorphism

MG ŠM [.G; / h
d�kC1

Š .M n �U/ [ hd�k [ hd�kC1 ŠM n �U:

The second ingredient for Theorem B is Cerf–Palais “family version” of ambient
isotopy extension Theorem 2.8, saying that a map restricting embeddings to a fixed
submanifold is a locally trivial fibration. This is used in Section 3.1 as follows. Con-
sider the space EmbD"

�
. Dk; MG I U/ of half-disks that agree with our basepoint U

only on the collar D"
� of D� � @ Dk , while DC moves freely and neatly in MG .
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Then Embs". Dk; MG/ D Emb@ Dk . Dk; MG IU/ is by definition the fiber over u"C of
the restriction map evD"

C
. This gives rise to a fibration sequence

�Emb"u0
.Dk�1;MG/ Embs". Dk;MG/ EmbD"

�
. Dk;MG IU/

Emb"u0
.Dk�1;MG/;

aU

evD"
C

in which the total space EmbD"
�
. Dk; MG IU/ is contractible: in this space half-disks

are allowed to shrink arbitrarily close to their D"
�-collar, where they are fixed. This

implies that the connecting map aU is a homotopy equivalence with an explicit inv-
erse f"U (given in general by Lemma A.4); see also Example 2.3.

Remark 2.2. One can try to define the map

fUWEmbs.Dk;M/! �Embu0
.Dk�1;MG/

from Theorem A directly as follows. Consider the foliation of K 2 Embs.Dk; M/

by K.�; t /WDk�1 ,! M � MG , using a parametrization Dk Š Dk�1 � I; this is a
path from u� to uC, so to get a closed loop use the inverse of such a foliation of U.
However, u� is not neat so does not lie in the space Embu0

.Dk�1; MG/. One way
around this would be to enlarge this space to also include embeddings that lie in @MG ;
after all, they are limits of neat embeddings and we believe the homotopy type of the
space does not change.

We opted for a second way, making Embs.Dk; M/ smaller by considering its
homotopy equivalent (by Cerf’s Proposition 2.9) subspace Embs".Dk;M/. Then the
mentioned explicit inverse f"U induces the following fU WD ev0 ı f"U: pick a neat

zu�WD
k�1 ,! U

�
Sk�1 � Œ1 � "; 1�

�
that is close to u�, and define fU.K/ D f.�U/ � f.K/ as the path U.�;�t / from uC

to zu�, followed by K.�; t / from zu� back to uC.

Example 2.3. For k D 1, d D 3 think of  2�Emb";.D
0;MG/ as an isotopy of inter-

vals D0 � Œ0; "�. Extend this to an ambient isotopy ˆt of MG , so diffeomorphism ˆ1

takes u"C to itself. Then aU./ WDˆ1.U/ 2 Embs". D1;MG/ is the half-arc obtained by
dragging the endpoint of U along  , as in Figure 2.4. The homotopy inverse f"U of aU

glues the given embedded arcK to U along their boundaries and foliates the resulting
loop �U [K by small intervals D0 � Œ0; "�, to obtain f"U.K/ 2 �Emb";.D

0;MG/.

2.1.2. The Dax invariant. In Section 4 we discuss the work of Dax and prove The-
orem C. The goal is to compute the homotopy groups �n.Embu0

.Dk�1; MG/; uC/

for n � d � 2k, but we will work in a general setting, with no restrictions on MG
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g

u� uC

U

@M
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u� uC
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g

u�

aU./

@M

Figure 2.4. Moments t D 0, 0 < t < 1, t D 1 of an ambient isotopy ˆt defining aU./. A
neighborhood of the intersection U\  has to be “dragged along” all the way during the isotopy,
whereas a neighborhood of the undercrossing in  is dragged along only for a while.

and u0. Instead consider an arbitrary d -manifold X (with adjectives as in the first
paragraph of the paper), and write Emb@.D`; X/ and Imm@.D

`; X/ for the spaces of
neatly embedded and immersed disks with boundary u0WS`�1 ,! @X and based at an
arbitrary uWD` ,! X .

Remark 2.5. There is a homotopy equivalence

D.U/�1 �D.�/W Imm@".D1; X/! �V1.X/;

where V1.X/ is the unit sphere subbundle of the tangent bundle of X , a result due to
Smale [29]. This sends KWD1# X to the concatenation of the inverse of the path
D.U/ followed by the path D.K/, where D.�/ is the unit derivative of an immersed
arc, see also Section 4.2.1. Interestingly, the proof idea is essentially the same Cerf’s
trick outlined above, and the key ingredient is to show that the restriction map for
immersions is also a fibration. Note that �V1.X/ ' �Sd�1 ��X , see Lemma B.6.

Firstly, we will see that �n.Emb@.D`; X/; u/ Š �n.Imm@.D
`; X/; u/ Š �nC`X

for every n � d � 2` � 2 and that the inclusion induces a surjection

�d�2`�1
�
Emb@.D`; X/; u

�
� �d�2`�1

�
Imm@.D

`; X/; u
�
Š �d�`�1X:

We will compute its kernel in Section 4.2: it is the quotient of the relative homotopy
group, computed in Section 4.1 as

DaxW�d�2`
�
Imm@.D

`; X/;Emb@.D`; X/; u
� Š
�! ZŒ�1X��rel`;d

by the image of �d�2`.Imm@.D
`;X/;u/ŠZ=rel`;d ˚ �d�`X , as computed in Prop-

osition 4.29. Recall from (1.6) that rel`;d WD hg � .�1/d�`g�1 W g 2 �1Xi except that
rel1;d WD 0, and that the Dax invariant Dax.ŒH�/ of the relative homotopy class of

H W
�
Id�2`; @Id�2`

�
!
�
Imm@.D

`; X/;Emb@.D`; X/
�

is the signed count of double point loops of the track zH W Id�2` � D` ! Id�2` � X .
Note that when `D 1 we can use the natural orientation of D1 to order the two sheets
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intersecting at a double point, and hence lend in ZŒ�1X�. However, for ` � 2 we have
to mod out the ambiguous choice of sheets: the double point loop gets reversed and
the sign changes exactly if the reflection on Rd�` �Rd�` changes the orientation.

In Theorem 4.20 (in Section 4.1) we describe the inverse r of Dax, schematically
depicted in Figure 2.6. For g 2 �1X the class r.g/ is represented by the .d � 2`� 1/-
family of embedded disks that swing around a meridian sphere Sd�`�1 to u at a
point x, together with a path through immersed disks from this to the trivial family
using the meridian ball at x. In fact, discussion of Section 4.1 applies to any simply
connected manifold V in place of Dl .

u.�1/ u.C1/
Sd�l�1

x

g

r.g/

Figure 2.6. Samples r.g/t 2 Emb@.D`; X/ for several t 2 S1 and ` D 1; d D 4.

In Section 5.2 we show an analogous result for "-augmented arcs, see Theo-
rem 5.4. The proof uses our study of the augmentation map from Section 5.1 and
of frame bundles from Appendix B. This almost immediately proves Theorem D: it
just remains to see that �d�kMG is the quotient of �d�kM by the ZŒ�1M�-multiples
of G, and to determine the splitting �W;U as an Euler number, see Section 5.3.

2.2. Embeddings of manifolds with corners

Following Cerf [3], a d -dimensional manifold with corners is a topological d -mani-
foldX with boundary, together with (a maximal atlas of) charts around all x 2X with
domain Rd

.q/
WD Rq � Œ0;1/d�q for some 0 � q � d that send the origin E0 to x. One

requires that each transition map, initially defined only on an open subset of Rd
.q/

,
extends to a smooth map on an open subset of Rd . This gives a notion of smooth
maps Y ! X between manifolds with corners and a Whitney topology on the set
C1.Y;X/.

A component of X.q/ WD ¹x 2 X j x$ E0 2 Rd
.q/

in some chartº is called a q-face
of X ; it is a q-dimensional smooth manifold (without boundary), and the set X is a
disjoint union of its faces. The boundary @X is the union of codimension � 1 faces,
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and a corner of X is a face of codimension � 2 (e.g. one of the vertices in a square).
If q 2 ¹d � 1; dº we recover the usual structure on X of a smooth manifold with
boundary. The role of a collar of @X in X is in general played by Cerf’s “prismatic
neighbourhoods” (that restrict to collars of faces). Manifolds with corners are clearly
closed under cartesian product.

For a d -manifold with corners X a subset X 0 � X is a d 0-dimensional subman-
ifold for some 0 � d 0 � d if each point of X 0 admits a chart in X for which X 0

maps bijectively to some submodel Rd
0

.q0/
� Rd

.q/
. A submodel is given by choosing

0 � q0 � q, 0 � k � min¹q � q0; d 0 � q0º, and inserting d � d 0 many zeroes:

Rd
0

.q0/ 3 .x1; : : : ; xq0 ; y1; : : : ; yd 0�q0/

7! .x1; : : : ; xq0 ; y1; : : : ; yk; 0; : : : ; 0; ykC1; : : : ; yd 0�q0/ 2 Rd.q/:

These relative charts induce the structure of a d 0-manifold with corners on X 0. For
example, if X is a smooth manifold with boundary, then for the corners of X 0 of
codimension d 0 � q0 � 2, we have the following different cases, depending on the
value of q0 listed on the left:

d 0: For a top dimensional face F � X 0, we have either F � @X or F � X.d/ D
X n @X .

d 0 � 1: For a small neighborhood Vp � X 0 of p 2 X 0
.d 0�1/

, there are 3 possibilities:
either Vp � @X respectively Vp � X n @X as above, or .Vp; @Vp/ � .X; @X/
is a neat submanifold.

d 0 � 2: A small neighborhood Vp � X 0 of p 2 X 0
.d 0�2/

looks like a neighborhood of
E0 2 Rd

0�2 � Œ0;1/2, and there are 4 possibilities for Vp � X . The case

.x1; : : : ; xq0 ; y1; y2/ 7! .x1; : : : ; xq0 ; y1; 0; : : : ; 0; y2/

is the most interesting: exactly “one half” of @Vp , the one corresponding to
E0 � Œ0;1/ � ¹0º, lies in @X while the rest of Vp lies in X n @X .

Thus, a smooth submanifold with boundary is either neat or contained in the interior
of X , while the simplest next case is the local model listed last above, which we use
for half-disks X 0 D Dk , see Figure 3.1.

A smooth map f of manifolds with corners is an embedding, written f WY ,! X ,
if f .Y / is a submanifold of X whose induced corner structure makes f WY ! f .Y /

a diffeomorphism. An immersion of manifolds with corners is a smooth map that is
locally an embedding. Spaces of embeddings and immersions inherit the Whitney
C1-topology.

Definition 2.7. For yWY ,!X let Emb.Y;X Iy/� Emb.Y;X/ consist of embeddings
f W Y ,! X such that for each p 2 Y and each face FX � X , we have f .p/ 2 FX
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if and only if y.p/ 2 FX ; we say that y and f have the same “incidence rela-
tions” [3, p. 281].

Furthermore, for a closed subset Y 0 � Y , let

EmbY 0.Y;X Iy/ � Emb.Y;X Iy/

consist of those embeddings f that agree with y on Y 0, that is f jY 0 D yjY 0 . We say
that “y is the boundary condition along Y 0” (note that y at the same time determines
the incidence relations).

2.2.1. Restriction maps for embeddings. Consider compact manifolds with corners
and embeddings

Z0 Z Y X:

z
y

We say a subset Y 0 � Y is a local normal tube to Z � Y along Z0 if Y 0 \ Z D Z0

and there is a tubular neighborhood V � Y of Z in Y such that Y 0 \ V D pr�1.Z0/,
where pr WV ! Z is the projection.

Theorem 2.8. With the above notation, the following restriction maps are both locally
trivial:

(I) evZ W Emb.Y; X I y/ ! Emb.Z; X I z/ (see [3, Cor. 2, p. 294, with notation
E � H � F ]);

(II) evZ WEmbY 0.Y;X Iy/! EmbZ0.Z;X I z/ (see [3, Cor. 2, p. 298]).

Here a map pWE ! B is locally trivial if for each b 2 B there exists a neigh-
borhood x 2 V � B and a homeomorphism p�1.V / Š V � p�1.x/. Palais [26]
showed Theorem 2.8 (I) in the case when all manifolds have empty boundary and Y
is compact; Cerf extended this to manifolds with corners and quite general boundary
conditions as in Theorem 2.8 (II). We also record the following fact (see [3, Cor. 3,
p. 331; Prop. 9, p. 337]), which will be used to replace neat embeddings by those
fixed on a collar.

Proposition 2.9. In the same notation as above, if Z0 D Y 0 \ Z is the closure of a
codimension 1 face, then the inclusion EmbZ[Y 0.Y; X I y/ ,! EmbZ.Y; X I y/ is a
weak homotopy equivalence.

It is a standard fact that a locally trivial map over a paracompact base is a Hurewicz
fibration. One can show that EmbY 0.Y; X I y/ are metrizable, so they are paracom-
pact by Stone’s theorem, and Theorem 2.8 implies that the restriction maps evZ are
Hurewicz fibrations. To show metrizability one can argue as follows: embed X into
some Rn so that EmbY 0.Y;X Iy/ is a subspace of C1.Y;Rn/; the latter is metrizable
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by classical functional analysis, using that sup-norms on compact sets define a family
of seminorms such that

d.f; g/ D sup
n

supx j.f � g/
.n/.x/j

2n.1C supx j.f � g/.n/.x/j/

is a metric. In Appendix A we discuss some properties of fibrations and their connect-
ing maps, needed in the proof of Theorem 3.2. See also Remark 3.5.

2.3. History

Let us list some results and examples that precede Theorems A and B, as well as the
method of proof, and which can be recovered from them as special cases.

In [3] Cerf laid foundations of differential topology, discussing in details mani-
folds with corners, submanifolds, and spaces of embeddings. In [4] he surveyed these
results and presented the half-disk trick, proving that

Diff@.Dd / ' �Emb@.Dd�1;Dd /

and that homotopy groups of Emb@.Dd�1;Dd / inject into (the shifted) homotopy
groups of Emb"@.D

d�2;Dd /. In particular, Diff@.D2/ is contractible, reproving a the-
orem of Smale. This was later republished as the appendix of [5].

Gramain [12] used Cerf’s trick to extend this to a proof that the components of
Diff@.S/ are contractible for most compact surfaces S , reproving theorems of Earle,
Eells, and Schatz, by completely topological methods. Hatcher gave an exposition of
this proof in [17, App. B]. He also used it in [15, App.] when describing equivalent
forms of the Smale conjecture. Goodwillie in his thesis [10, pp. 7–8] used half-disks
to outline why the based loop space of the space of concordance embeddings of Dk�1

into X is homotopy equivalent to the space of concordance embeddings of Dk into
X [ hd�k.D M/. Budney and Gabai [1] used half-disks and global coordinates to
show statements equivalent to the case M D Sd�k � Dk of our Theorems A and B,
and remarked that this can be used to recover Gabai’s 4-dimensional light bulb theo-
rem, see [1, v1:Rem. 6.2]. Knudsen and Kupers [21, Sec. 6.2.4] consider an example
related both to the classical light bulb trick and Cerf’s half-disk trick. Finally, let us
also mention that Litherland [25] proved a light bulb theorem for S2’s in S2 � Sd�2.

Example 2.10. For k D 1 and d D 3 Theorem A indeed recovers the light bulb trick,

�0 Embs.D1;M/ Š �1M;

since Emb;.D0;MG/ DMG and �1�0S2 D 0. For example, we have

Embs.D1;D1
� S2/ ' �S2
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for the inclusion sW@D1 � ¹ptº ,! @D1 �S2 (since .D1 �S2/G ŠD3), so all arcs are
isotopic; however, note that �1�S1 D Z, so there is a nontrivial loop of arcs (given
by the swing around the dual, see Section 5.2.1). In fact, we more generally have
Embs.D1;M/ ' �S2 ��MG , see Example 2.11.

Example 2.11. For k D 1 and d � 2 the fibration splits by Lemma B.6, so we get a
homotopy equivalence

Embs.D1;M/
Š
�! �Sd�1 ��MG D �Sd�1 ��.M [Sd�1 Dd /:

Here a dual for the boundary condition means that the two points s.S0/ lie in distinct
components of @M , one of which is diffeomorphic to Sd�1, and along which a d -
handle is attached, giving MG WDM [Sd�1 Dd .

For dim.M/ D d D 2 it follows that the group Z � �1.M [S1 D2/ acts sim-
ply and transitively on the set �0 Embs.D1; M/ of connected components, that are
all contractible. The action of Z is by Dehn twists around one boundary component,
while �1.M [S1 D2/ acts by the “point-push” map, well known in the surface com-
munity, see [7]. For d � 3 we get such an action of �1.M/ on �0 Embs.D1;M/. For
all d � 4 the connected components have nontrivial higher homotopy groups.

Example 2.12. If 1 � k D d � 1, then Sd�k D S1, so for n > 0 (and nD 0 if d � 4)
Theorem A gives

�n Embs.Dd�1;M/ Š �nC1 Embu0
.Dd�2;M [S1 h2/:

In particular, this holds for M D S1 � Dd�1, s D p � @Dd�1, G D S1 � q, and
MG D M [S1 h2 D Dd . This case was discussed by Budney and Gabai [1], who
constructed for d D 4 and n D 0 an infinitely generated subgroup of this group.

Example 2.13. For 1 � k D d , any embedding .Dd ; @Dd / ,! .M; @M/ is a dif-
feomorphism, as we assumed for simplicity that M is connected. However, Theo-
rem A also applies to the disjoint union M D Dd tM 0 with any d -manifold M 0, for
s D @Dd andGWS0 ,! @M satisfyingG.�1/ 2 @Dd ,G.1/ 2 @M 0. Since Sd�k D S0

and MG WD .Dd tM 0/ [�G h
1 ŠM 0, we obtain

Diff@.Dd / Š Embs.Dd ;Dd
tM 0/ ' �Embu0

.Dd�1;M 0/:

For M 0 D Dd this is the result of Cerf [5, App.] that motivated our entire approach.

3. Spaces of disks and half-disks

In this section we work in arbitrary dimensions and prove Theorem B. Disks in M
with duals in @M are reduced to half-disks in X D MG in Section 3.2, while half-
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disks in X are described as loops in X of “"-augmented” disks of lower dimension in
Section 3.1. We first fix notation for the setting of half-disks.

Given an embedding UWD ,! X of compact manifolds with corners, and a closed
subset b � D, recall from Section 2.2 the space Embb.D;X IU/ consisting of those
embeddings KWD ,! X that have the same incidence relations (for faces in D;X )
as U, and that agree with U on b. We let U be its basepoint.

In particular, if D and X are manifolds with boundary, the incidence relation
U.D/ \ @X D U.@D/ together with the boundary condition s WD Ujb on b D @D

reproduces our space

Embs.D;X/ D Emb@D.D;X IU/

of neat embeddings (see the first paragraph of the paper). For such U we can expand
the boundary condition to a closed collar b WD .@D/ � Œ0; "� � D and define

Embs".D;X/ WD Emb.@D/�Œ0;"�.D;X IU/:

By Proposition 2.9 the inclusion Embs".D;X/ ,! Embs.D;X/ is a weak homotopy
equivalence.

We will need the next simplest case of manifolds with corners, that also have
codimension 2 faces. Namely, we now take the domain D to be

Dk WD ¹x 2 Rk W kxk � 1; x1 � 0º;

that is the west half of the unit k-dimensional disk, and consider subsets

D� WD ¹x 2 Dk W kxk D 1º and DC WD ¹x 2 Dk W x1 D 0º;

that are .k � 1/-dimensional disks with @ Dk D D� [DC and S0 WD D� \DC, which
is a .k � 2/-dimensional sphere. Then Dk is a k-manifold with corners with one k-
face VD

k
, two .k � 1/-faces VD˙ and one .k � 2/-face S0, the unique corner of Dk .

Moreover, consider subsets

D"
� WD ¹x 2 Dk W kxk � 1 � "º and D"

C WD ¹x 2 Dk W x1 � �"º

(shaded strips in Figure 3.1), both diffeomorphic to Dk�1 � Œ0; 1� and with

D"
� \D"

C Š S0 � Œ0; "�
2:

Denote @" Dk WD D"
� [D"

C (an example of Cerf’s prismatic collar).
Next, we fix a smooth manifold with boundary X and an embedding UW Dk ,! X

of manifolds with corners such that U maps VD
k

to the interior of X and the other
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incidence relations are determined by the restrictions of U to D˙ as follows (see Fig-
ure 3.1): the image of u� WD UjD� is contained in @X , while uC WD UjDC WDC ,! X

is a neat embedding, with u0 WD @.u�/ D @.uC/WS0 ,! @X .
Similarly, we write u"

˙
WD UjD"

˙
and u"0 WD UjD"

�\D"
C

, and identify their domains
with the corresponding products. Let us also still write s WD Uj@D and s" WD Uj@D" .

u0

u0

uC

u�

U

X
@X

Figure 3.1. A half-disk for k D 2, d D 3.

The elements of Cerf’s space Emb. Dk; X IU/ are called half-disks in X . We are
interested in its subspace Embs". Dk;X/ WD Emb@" Dk . Dk;X IU/ that by definition con-
sists of those half-disks KW Dk ,! X that agree with U on the prismatic collar @" Dk .
Equivalently,K is a topological embedding that agrees with U on @" Dk and restricts to
an (ordinary) smooth embedding on interiors VD

k
,! X n @X .

We saw in Proposition 2.9 that the space of neat disks

Embu0
.Dk�1; X/ D EmbS0

.DC; X IuC/

has a weakly equivalent subspace

Embu"
0
.Dk�1; X/ D EmbS0�Œ0;"�.DC; X IuC/

of disks fixed on a collar S0 � Œ0; "��DC. We will also need a space where each such
disk is augmented with “push-offs”, namely

Emb"u"
0
.Dk�1; X/ WD EmbD"

�\D"
C
.D"
C; X Iu

"
C/:

A point here is a topological embeddingKWDk�1 � Œ0; "� ,! X that restricts to u"0 on
.S0 � Œ0; "�/� Œ0; "� and to an (ordinary) smooth embedding VDk�1 � Œ0; "� ,!X n @X ;
we call K an “"-augmented” .k � 1/-disk.

3.1. From half-disks to loops of "-augmented disks

Our embedding spaces are always equipped with basepoints according to the conven-
tion above; in the next theorem these are respectively u"C and U. A proof of this result
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was essentially given in [5, App.], but we also identify the maps involved, needed for
future geometric applications, as in [24].

Theorem 3.2. For all k � 1 and d � 1, there are inverse homotopy equivalences

aUW�Emb"u"
0
.Dk�1; X/ Embs". Dk; X/ Wf"U;�

where aU is given on homotopy groups by the family ambient isotopy theorem, while f"U
maps a half-disk K to the loop of "-augmented .k � 1/-disks induced by appropriate
foliation of the sphere �U [K.

Proof. Consider the fibration sequence

Embs". Dk; X/ WD ev�1D"
C
.u"C/ EmbD"

�
. Dk; X IU/ Emb"u"

0
.Dk�1; X/;

evD"
C

where evD"
C

restricts KW Dk ,! X to the "-collar D"
C � Dk of the unconstrained half

of its boundary. This is a fibration by Cerf’s Theorem 2.8 (II) for Y 0 WDD"
� � Dk DW Y

and Z0 WD D"
� \D"

C � D"
C DW Z. We will show that its total space

E" WD EmbD"
�
. Dk; X IU/

admits an explicit contraction

RWE" � Œ0; 1�! E"; with R0 D constU, R1 D Id: (3.3)

Then Lemma A.4 implies that any connecting map

aUW�Emb"u"
0
.Dk�1; X/! Embs". Dk; X/

is a homotopy equivalence, and is by definition is given by lifting the loop in the base
space to a path in the total space and taking the endpoint. In our setting this amounts
to extending a loop ˇ of "-augmented .k � 1/-disks based at u"C to an isotopy of
half-disks starting with U and ending with the desired half-disk aU.ˇ/. By the same
lemma, the restriction

f"U.K/.t/ D evD"
C
ıRt .K/ D Rt .K/jD"

C

is a homotopy inverse to aU, and we will see below that it is indeed given by a folia-
tion, cf. Section 1.1.

To construct the retraction R we start with a path of re-embeddings 't W Dk ,! Dk ,
t 2 Œ"; 1�, such that

(1) '1 D Id Dand 't jD"=2
�
D Id

D"=2
�

for all t ,
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(2) '". Dk/ � D"
�,

(3) 't .D"
�/ � D"

� for all t .

It is not hard write down such an isotopy 't using radial coordinates, see Figure 3.4
for k D 2. Now consider the homotopy

E" � Œ"; 1�! E"=2 WD Emb
D"=2
�
. Dk; X IU/;

defined by K 7! K ı 't . By property (1) this indeed defines paths in the space E"=2

(E"�E"=2 is smaller as it has the stronger boundary condition), ending withK'1DK,
and starting with K'" D U'", using property (2) and that K 2 E".

S0

S0

'2=3D"
�

'2=3DC

S0

S0

'1=3D"=2
�

'1=3DC

S0

S0

'"D"=2
�

'"DC

Figure 3.4. The image of 't for t D 2=3; 1=3; ". Dashed strips show where 't is the identity;
they are always contained in the blue-colored strip D"

� � Dk . The black line is the image of
Dk�1 � ¹"º � D"

C
� Dk .

We next modify this homotopy to have image contained in the subspace E". We
fix an ambient isotopy ˆt WX

Š
�! X , t 2 Œ"; 1�, supported in a collar of @X , such

that ˆ1 D IdX and U ı 't jD"
�
D ˆ�1t ı UjD"

�
for t 2 Œ"; 1�. This can be constructed

explicitly in a collar @X � Œ0; "� ,! X (or extend the isotopy of half-disks U't by the
usual ambient isotopy theorem).

Then for t 2 Œ"; 1�, let
Rt .K/ WD ˆt ıK ı 't :

This defines a path fromR".K/Dˆ"K'" Dˆ"U'" toR1.K/D IdXKId DDK, and
now each half-disk Rt .K/ for t 2 Œ"; 1� is in E", i.e. it agrees with U on D"

�. Indeed,
by property (3) and K 2 E", we have K't jD"

�
D U't jD"

�
, so

Rt .K/jD"
�
WD ˆtK't jD"

�
D ˆtU't jD"

�
D UjD"

�

by construction of ˆ.
Finally, for t 2 Œ0; "�, we let Rt .K/ WD R1Ct�t=".U/. This goes from U to ˆ"U'",

so glues with the above Rt ; t 2 Œ"; 1� to a map RWE" � Œ0; 1� ! E" which is the
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desired contraction as in (3.3). Finally, the homotopy inverse to aU is defined by the
formula

f"U.K/.t/ D Rt .K/jD"
C
D

´
ˆ1Ct�t=" ı U ı '1Ct�t="jD"

C
; t 2 Œ0; "�;

ˆt ıK ı 't jD"
C
; t 2 Œ"; 1�:

that we call the foliation: outside of a fixed collar of X it agrees either with the "-
augmented arc U't jD"

C
or K't jD"

C
, and in the collar uses their modifications by ˆt ,

making “a turn” at zu"� WD ˆ"U'"jD"
C

.

Remark 3.5. Instead of constructing the connecting map a using Lemma A.4, one
can give the following argument that the spaces in Theorem 3.2 have isomorphic
homotopy groups. Using the adjunction

C1.S; C1.Y;X// D C1.S � Y;X/

for the Whitney topology, one defines smooth homotopy groups of Emb.Y; X/. They
turn out to be isomorphic to the usual homotopy groups by smooth approximation
results. Given a restriction map as at the beginning of the proof of Theorem 3.2, the
parametrized ambient isotopy theorem allows to lift smooth maps and as a conse-
quence gives a long exact sequence of smooth homotopy groups, where a smooth
version of the connecting map is an isomorphism. However, when we talk about our
homotopy equivalence at the level of spaces, this is not quite sufficient.

3.2. From neat disks to half-disks

Recall that the model half-disk Dk � Dk has boundary decomposed into two .k � 1/-
disks @ Dk D D� [S0

DC intersecting along the .k � 2/-sphere S0, the corner of Dk .
Also recall that UW Dk ,!X by definition restricts to a neat .k � 1/-disk uCWDC ,!X ,
while the image of D� is contained in @X . Using a Riemannian metric on X , we
extend uC to an embedding

V WDC �Dd�kC1
�" ,! X

onto a closed tubular neighborhood x�"uC. We may assume that the restriction

V jWDC � Œ0; "� Š D"
C ,! X

to the first normal vector agrees with our preferred "-augmentation u"C D UjD"
C

and
also, by decreasing " if necessary, that im.u"C/ D x�

"uC \ im.U/, i.e. the half-disk U
does not return to this neighborhood of uC. We can view V.DC �Dd�kC1

�"=2
/ as a

.d � k C 1/-handle attached to X n V.DC � Dd�kC1
<"=2

/ along V.DC � Sd�k
"=2

/, see
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Figure 3.6. Conversely, that complement is obtained from X by removing a .k � 1/-
handle with core uC.DC/, and is a smooth manifold with boundary only if we first
smoothen the corner V.S0 � Sd�k

"=2
/.

This is a standard procedure, used for example when attaching handles in the
smooth category. In our context it amounts to picking an open subset hC � x�"uC that
is the union of V.DC � VDd�kC1

�"=2
/ and a small set near the corner, so that X n hC is

a compact smooth manifold with boundary. We make such a choice once and for all
in DC �Dd�kC1

�" , and then let hC be its image inX under V , see Figure 3.7. Namely,
the constant radius "=2 along DC increases near S0 by a smooth function with fairly
obvious properties (ensuring that the stretching function � in the next proof is well
defined on all of hC).

u0

u0

uC

u�

U 0

u"
C

hC

X

@X

Figure 3.6. Removing a handle hC � X

turns the half-disk U in X into a neat disk U0

in X n hC.

S0

S0

DC

D0

D�

"

"=2

Figure 3.7. The model smoothening.

Now let D0 WD Dk n V �1.hC/ � Dk and fix a diffeomorphism Dk Š D0 that is
the identity near D"

� n D"
C. Then the restriction of U to D0 is a neat embedding

U0WD0 ,! X n hC, by our choice of ". This is an element in the space of neat embed-
dings

Embs"=2.D0; X n hC/ � Emb.Dk; X n hC/;

where the boundary condition is the remaining "=2-part of u"C in D0, as well as the
original u"� along u�. Note that we can reconstruct U from U0 as U D U0 [ u"C.

Lemma 3.8. The map � [ u"CWEmbs"=2.D0;X n hC/! Embs". Dk;X/ is a homotopy
equivalence.

Proof. The chosen boundary conditions s"=2 make this map well-defined. It is con-
tinuous with image E � Embs". Dk; X/ consisting of those half-disks that meet hC
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u�
uC

""=2
K

Figure 3.9. Stretch K towards the
dashed lines to avoid the smallest cen-
tral disk hC.

x

y

r

�.r; 1/

�.r; 1=2/

�.r; 0/ D Id

1
2
" 3

5
" 4

5
" "

1
2
"

3
5
"

4
5
"

"

Figure 3.10. Stretching functions �.r; t/W Œ0; "� !
Œ0; "� for fixed r < "=2 and three values of t 2 Œ0; 1�.

only along im.u"=2C /. In fact, it is a homeomorphism onto E whose inverse is given by
restricting embeddings from Dk to D0. It thus suffices to construct a homotopy inverse
from Embs". Dk; X/ back to this subspace E .

To this end, use the Riemannian metric on X to obtain the continuous map

r WEmbs". Dk; X/ �! .0; 3
5
"/

so that r.K/ gives the minimal distance of K.D0/ to K.DC/ D U.DC/. Possibly
shrinking " further, we may assume that the geodesic distance to U.DC/ on the sphere
bundle in �ıuC is ı for all ı < ". By compactness and the injectivity of K, r.K/ is
strictly positive as claimed and we now stretch it to 3

5
", in order to deform K until it

lies in E . We pick a smooth “stretching” function

� W .0; 1
2
"/ � Œ0; 1� � Œ0; "�! Œ0; "�

such that �.r; t; x/ D x whenever one of the following conditions is satisfied: t D 0
or x D 0 or x � 4

5
". Moreover, we require �.r; 1; r/ D 3

5
" for all r and that each

�.r; t;�/ is strictly increasing, see Figure 3.10.
If .x; v/ 2 Œ0; "�� Sd�k are polar coordinates, then we will refer to “stretching by

�.r; t/” as the self-diffeomorphism .x;v/ 7! .�.r; t; x/; v/ of Dd�kC1
�" , see Figure 3.9.

The same formula applies to disk bundles in vector bundles if we stretch in a constant
way along the base. Using the parametrization V , we can apply such diffeomorphisms
also to our tubular neighborhood x�"uC. The stretching near the smoothened corners
along S0 needs to be slightly modified but we leave this variation to the reader.
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We can then construct a homotopy

H WEmbs". Dk; X/ � Œ0; 1�! Embs". Dk; X/

with H0 D Id and im.H1/ � E , induced by a smooth family of diffeomorphisms
�r.K/;t WX ! X that are the identity outside �

4
5 "uC and on x�"uC they stretch by

�.r.K/; t/. More precisely, we define H.K; t/ to be the half-disk that equals K
on @" Dk but away from that collar is given by the composition �r.K/;t ıK.

The properties of the stretching function � show that eachHt sends E to itself and
that H1 is the required homotopy inverse. In fact, homotopies for both compositions
to the identity are constructed from Ht as follows: If j W E � Embs". Dk; X/ is the
inclusion then H1 ı j WE ! E is homotopic via Ht ı j to H0 ı j D IdE . Similarly,
j ıH1 D H1 ' H0 D Id.

3.2.1. The proof of Theorem B. We can now prove Theorem B. This is about the
space Embs".Dk; M/ of neat k-disks in a d -manifold M , that on a collar of the
boundary agree with a basepoint UWDk ,!M , such that s D @UWSk�1 ,! @M has a
framed geometric dual GWSd�k ,! @M (that is, the normal bundle �@M .G/ is trivial
and G t s D ¹pº). Then the theorem says

Embs".Dk;M/ ' �Emb"u0
.Dk�1;MG/;

where MG WDM [.G; / h, is obtained by attaching a .d � k C 1/-handle

h D Dd�kC1
�Dk�1

along any framing  W Sd�k � Dk�1 ,! �@M .G/ (this choice is inessential because
MG ŠM n �U, see Lemma 2.1).

Proof of Theorem B. Removing from MG an open "-neighborhood hC of the cocore
¹0º �Dk�1 of h gives M back because we are all together just attaching

Sd�k � Œ"; 1� �Dk�1

along Sd�k � ¹1º � Dk�1 ,! @M . Using this diffeomorphism MG n hC Š M and
Lemma 3.8, we have

Embs".Dk;M/ ' Embs".Dk;MG n hC/ ' Embs". Dk;MG/:

Applying Theorem 3.2 to X WDMG , and Proposition 2.9, we obtain

Embs". Dk;MG/ ' �Emb"u"
0
.Dk�1;MG/:

The final statement of Theorem B, identifying homotopy equivalences, follows from
Proposition 5.2.
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4. On homotopy groups of spaces of neat disks

In this section we apply Dax’s results to compute the first homotopy group of the
space of embedded disks differing from that of immersed disks. In the next section
we extend this to "-augmented disks.

In fact, in Section 4.1 we follow Dax and work more generally with V;X smooth
(oriented) manifolds with boundary, and V compact (but X not necessarily). We
consider the space Emb@.V; X/ (for V D Dk�1, this was previously denoted by
Embu0

.Dk�1; X/) of neat embeddings of V into X that are on the boundary given
by u0 WD uj@V , for a fixed “unknot” uWV ,! X ; note that no dual is assumed.

Remark 4.1. For our applications we will actually need the space Emb@".D`; X/

(for ` D k � 1, previously denoted Embu"
0
.Dk�1; X/), that consists of embeddings

D` ,! X that agree on S`�1 � Œ0; "� � D` with one such u" (previously denoted u"C).
However, Emb@".D`; X/ ' Emb@.D`; X/, see Proposition 2.9.

We study the homotopy groups of Emb@.V; X/ by comparing them to the space
Imm@.V;X/ of immersions V # X with the same boundary condition u0. Denoting
dimV D ` � d D dimX , and assuming d � 2` � 0 and d � `C 3, the Dax invariant
will be an isomorphism (bijection for d � 2` D 0 or 1):

DaxW�d�2`
�
Imm@.V;X/;Emb@.V;X/Iu

�
! ZŒ�1X��rel`;d

given on a relative homotopy class

F W
�
Id�2`; Id�2`�1 � ¹0º; @Id�2`�1 � I [ Id�2`�1 � ¹1º

�
!
�
Imm@.V;X/;Emb@.V;X/; u

�
as the count of double point loops of the associated track zF WId�2` � V ! Id�2` �X ,
see Theorem 4.14. The group of relations rel`;d is trivial for ` D 1, whereas for ` � 2
it is given by hg � .�1/d�`g�1 W g 2 �1Xi.

We will then concentrate on the case V D D` and study the connecting map

ıImmW�d�2` Imm@.D
`; X/! �d�2`

�
Imm@.D

`; X/;Emb@.D`; X/; u
�

(4.2)

in order to prove the following in Section 4.2.

Theorem 4.3. The inclusion iWEmb@.D`;X/ ,! Imm@.D
`;X/ is .d � 2`� 1/-conn-

ected. Assume d � `C 3. If d � 2`� 1 � 1 there is a short exact sequence of groups:

ZŒ�1X n 1��rel`;d ˚ daxu.�d�`X/ �d�2`�1
�
Emb@.D`; X/; u

�
�d�2`�1

�
Imm@.D

`; X/; u
�
;

@r

Dax
�d�`�1i
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where the homomorphism daxuW �d�`X ! ZŒ�1X n 1�=rel`;d is defined in (4.31)
below in terms of Dax ı ıImm. The dashed arrow Dax inverts on ker.�d�`�1i/ an
explicit realization map @r.

If d � 2` � 1 D 0, there is an analogous exact sequence of sets, with u omitted
and @r extending to an action on �0 Emb@.D`; X/. Finally, if d � 2` D 0, there is an
exact sequence of sets

�0 Emb@.D`; X/ �0 Imm@.D
`; X/ ZŒ�1X��rel`;d ;

�0i Dax ı ıImm

and Dax ı ıImm agrees with the Wall self-intersection invariant �` (see Remark 4.18).

This can be made more explicit by computing homotopy groups of Imm@.D
`; X/

using Smale–Hirsch immersion theory, see Corollary 4.27, which immediately gives
Theorem C. An analogue for "-augmented disks will be given as Theorem 5.4 in
Section 5.2, and its case ` D k � 1 and X DMG will be used to prove Theorem D in
Section 5.3.

The first sentence of Theorem 4.3 follows by general position. Namely, for a
family of immersed disks F.Et /WD` # X , Et 2 Sn, their double points correspond
to double points of the track zF WSn �D`! Sn �X , defined by .Et ; v/ 7! .Et ;F .Et /.v//.
The set of double points of zF has dimension nC d � 2.d � `/ D n � d C 2l . This
is negative if n < d � 2`, when a generic n-family is embedded, i.e. gives a class
in �n Emb@.D`; X/. If n < d � 2` � 1 then these lifts are also unique, by an analo-
gous argument with one more parameter, implying the injectivity on �n as well.

Thus, it remains to determine the kernel of �d�2`�1i. This amounts to comput-
ing the relative homotopy group in degree d � 2` and the image of the connecting
map ıImm.

4.1. The work of Dax: The relative homotopy group

4.1.1. The original formulation. As mentioned in the introduction (Section 1.2),
Dax computes the homotopy groups of immersions relative to embeddings in the
metastable range 0 � n � 2d � 3l � 3, in terms of certain bordism groups. His man-
ifolds are more general than considered so far in this paper: they can be disconnected
and nonorientable, and the target can be noncompact.

Theorem 4.4 ([6, p. 375]). Let V be a smooth, compact `-manifold with boundary,
X a smooth d -manifold with boundary, and uW V ,! X a smooth neat embedding.
If 1 � ` � d are such that d � 2` � 0, then for 0 � n � 2d � 3l � 3 there is an
explicit isomorphism (injection for n D 0):

ˇnW�n
�
Imm@.V;X/;Emb@.V;X/Iu

�
! �n�.d�2`/.CuI#u/:
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For n D 0 the relative homotopy group is understood as the set-theoretic quotient
of �0 Imm@.V;X/ by the image of �0Emb@.V;X/. Thus, ˇ0 is a complete obstruction
for an immersion to be regularly homotopic to an embedding; this was also studied
in [18] using similar techniques, see Remark 4.18.

As usual, the normal bordism group �i .Y I #/ of a space Y with a stable vector
bundle # over it, consists of bordism classes of tuples .D;bWD! Y;BWb�.#/! �D/

where D is an i -manifold with the stable normal bundle �D , b is a map, and B is a
bundle isomorphism. We do not recall here the definitions from [6, p. 338] of the
space Cu and the stable vector bundle #u over it, to save space as we do not need
them explicitly. We only point out the following three properties they have.

Firstly, there is a fibration sequence�X ! Cu
prW
���! W , whereW is a compacti-

fication (to a manifold with boundary) of the quotient of V 2 n�V , where V 2D V �V
and �V WD ¹.v; v/ 2 V 2º is the diagonal, by the involution .v; w/ 7! .w; v/. Thus,
the interior is the space of coinvariants, intW D .V 2 n�V /Z=2.

Secondly, the subspaceEg
u WD pr

�1
W .intW /� Cu can be described as the quotient

of the space

zEg
u WD

®
.v; w; �/ 2 .V 2 n�V / �Map

�
Œ�1; 1�; X

�
W �.�1/ D u.v/; �.1/ D u.w/

¯
by the free involution .v; w; �/ 7! .w; v; ��1/. We use notation Œv; w; �� 2 Eg

u . This
description follows from the definition of the bundle ! over W , implying it is trivial
over intW , see [6, p. 337].

Thirdly, the restricted bundle #ujEg
u

is obtained as the quotient of a bundle z#u
over zEg

u . Namely, for the stable normal bundle �V and the tangent bundle TX , let z#u
be the pullback of �2V ˚ TX under

.prV 2 ; prX /W zE
g
u ! V 2 �X; .v;w; �/ 7! .v; w; �.0//:

This map is equivariant for the involution that switches the two V factors and is iden-
tity on X , giving an involution on z#u, whose quotient is #ujEg

u
. The following is used

in the survey article [11] without proof (with Eg
u denoted by Eg.u; u/ there).

Lemma 4.5. The space Cu is homotopy equivalent to its subspace Eg
u . In particular,

�n�.d�2`/.CuI#u/ Š �n�.d�2`/.E
g
u I #ujEg

u
/:

Proof. As intW is the interior of the compact manifold W with boundary, the inclu-
sion i W intW ,! W is a homotopy equivalence. Thus, the pullback

i�.Cu/ D p
�1.intW /

is homotopy equivalent to Cu.
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Let us now translate the isomorphism ˇn from Theorem 4.4 to this simpler target
bordism group as

ˇ0nW�n
�
Imm@.V;X/;Emb@.V;X/Iu

� Š
�! �n�.d�2`/.E

g
u I #ujEg

u
/: (4.6)

We also need the following standard result; see for example [6, p. 335] (note that Dax
considers all maps rather than immersions, so has more conditions on perfect maps,
regarding singular points).

Lemma 4.7. Under assumptions of Theorem 4.4, a smooth map

F W
�
In; In�1 � ¹0º; @In�1 � I [ In�1 � ¹1º

�
!
�
Imm@.V;X/;Emb@.V;X/; u

�
can be approximated, relative to the boundary, by a perfect map, i.e. a smooth map F
whose track

zF W In � V ! In �X; .Et ; v/ 7!
�
Et ; F .Et /.v/

�
(4.8)

has no triple points, and double points are isolated and transverse. Equivalently, the
restricted square zF 2jW .In � V /2 n �In�V ! .In � X/2 is transverse to the diago-
nal �In�X .

For F a perfect map as in the lemma, let ˇ0nŒF � be the bordism class of the tuple
.�Dax; bDax;BDax/ defined as follows. Firstly, the double point preimage set is defined
as

z�Dax WD
�
zF 2j
��1

.�In�X / Š
®
.Et ; v; w/ 2 In � .V 2 n�V / W F.Et /.v/ D F.Et /.w/

¯
;

whereas �Dax is the quotient of z�Dax by the free involution interchanging the factors:

�Dax WD .z�Dax/Z=2 Š
®�
Et ; Œv; w�

�
2 In � intW W F.Et /.v/ D F.Et /.w/

¯
:

Note that
F W�Dax ,! X; F

�
Et ; Œv; w�

�
D F.Et /.v/ D F.Et /.w/;

embeds �Dax as the double point set, and we have a double cover qW z�Dax �! �Dax.
Next, bDaxW�Dax ! Eg

u is defined by

bDax
�
Et ; Œv; w�

�
D
�
v;w; � WD F

�
E1 � s.E1 � Et /

�
.v/js2Œ0;1� � F

�
E1 � s.E1 � Et /

�
.w/j�1s2Œ0;1�

�
: (4.9)

So � is a path in X from �.�1/ D F.E1/.v/ D u.v/ to �.0/ D F.Et /.v/ D F.Et /.w/

followed by a path to �.1/ D F.E1/.w/ D u.w/. Note that Dax takes relative classes
to instead be u on the 0-face In�1 � ¹0º, so has a slightly different formula for �.
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Finally,BDax is an isomorphism of the stable normal bundle ��Dax and b�Dax.#ujEg
u
/,

given as follows. Taking the pullback under qW z�Dax ! �Dax, we have

q���Dax Š �z�Dax
Š �.In�V /2 jz�Dax

˚ �z�Dax�.In�V /2

Šs �
2
V jz�Dax

˚
�
zF 2j
��
.��In�X�.In�X/2/: (4.10)

On the other hand,
q�b�Dax.#ujEg

u
/ Š zb�Dax.

z#u/

for the obvious double cover zbDaxW z�Dax ! zEg
u of bDax. Since

prX ı zbDax.Et ; v; w/ D F.Et /.v/ D pr1 ı zF
2
j.Et ; v; w/

and T .In �X/ Š ı�.���.In�X/2/, we have

zb�Dax

�
pr�X .TX/

�
Š
�
pr1 ı zF

2
j
��
.TX/

Šs

�
zF 2j
���
pr�1 .T .I

n
�X//

�
Š
�
zF 2j
��
.���.In�X/2/; (4.11)

Since z#u WD pr�V 2�
2
V ˚ pr

�
X .TX/ and zb�Dax.pr

�

V 2�
2
V / Š �

2
V jz�Dax

, we have a stable
isomorphism zBDax of q�b�Dax.#ujEg

u
/ and q���Dax . Moreover, this respects the involu-

tions, so gives the desired BDax. Thus, we have defined a bordism class

.�Dax; bDax; BDax/ 2 �n�.d�2`/.E
g
u I #ujEg

u
/:

4.1.2. The Dax bordism group for a simply connected source.

Proposition 4.12. Let V;X; u be as in the first sentence of Dax’s Theorem 4.4. Addi-
tionally assume that V and X are oriented, and that V is 1-connected. Then

�0.E
g
u I#ujEg

u
/ Š ZŒ�1X��rel`;d

with

rel`;d D

´
0 if ` D 1;

hg � .�1/d�`g�1 W g 2 �1Xi otherwise:

This identified the 0-th bordism group with the target of Wall’s self-intersection
invariants.

Proof. It is a standard fact that

�0.E
g
u I#ujEg

u
/ Š H0

�
Eg
u IZ.#ujEg

u
/
�
;

where Z.#ujEg
u
/ are the local coefficients induced by the orientation of the bundle, so

over the connected component c of Eg
u the coefficient group is Z or Z=2 depending

on whether #ujc is orientable or not.
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To compute the set �0Eg
u of components, we first find �i .V 2 n�V /Z=2 for i D

1; 2, using the exact sequence

�1.V
2
n�V / �1.V

2
n�V /Z=2 Z=2

�0.V
2
n�V / �0.V

2
n�V /Z=2:

For ` � 2, we have �0.V 2 n�V /Z=2 D �0.V 2 n�V / D 1. Since V is 1-connected,
from the fibration sequence V n pt ! V 2 n�V ! V we see that �1.V 2 n�V /D 1,
unless `D 1;2. For `D 1;2, the only examples are D1 and D2, for which .D1/2 n�D1

consists of two triangles that are permuted by the Z=2, so the quotient is a single
triangle. For ` D 2, �1..D2/2 n�D2/ is the pure braid group on two strands, which
is infinite cyclic and generated by a full twist. Similarly, �1..D2/2 n�D2/Z=2 is the
braid group on two strands which is again infinite cyclic, generated by a half twist.

Next, we claim that there is a fibration sequence

�X Eg
u .V 2 n�V /Z=2:
prV 2

(4.13)

Indeed, the fiber over Œv; w� 2 .V 2 n�V /Z=2 consists of paths � from u.v/ to u.w/
(or equivalently, from u.w/ to u.v/), so taking  2 �X to the path � D u.�v/ �  �
u.�w/

�1 gives a homotopy equivalence, for some fixed whiskers �v from v to eV 2 V
(alternatively, restrict Dax’s fibration prW WCu!W to intW D .V 2 n�V /Z=2). The
bottom of the induced long exact sequence of homotopy groups is:

�1.E
g
u ; c/ ¹1º or Z or Z=2 �1X �0E

g
u ;

for ` D 1 or ` D 2 or ` � 3 respectively, and a component c 2 �0Eg
u . A generator �

of Z=2 or Z sends g D Œ� 2 �1X to g�1: indeed, � is represented by the loop of two
points in V switching positions, so if the lifted path starts at�

v;w; u.�v/ �  � u.�w/
�1
�
2 Eg

u ;

then it ends at�
w; v; u.�w/ �  � u.�v/

�1
�
D
�
v;w; u.�v/ � 

�1
� u.�w/

�1
�
:

Thus,

�0E
g
u Š

8<:�1X; ` D 1;

�1X�g � g�1; ` � 2:

Moreover, � fixes an element g 2 �1X if and only if g D g�1. Thus, �1.Eg
u ; c/!

Z=2 or Z is surjective if and only if c corresponds to an order 2 element g (i.e. c D
Œv; w; u.�v/ �  � u.�w/

�1� for Œ� D g).
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Now, we claim that for c D Œg� 2 �0Eg
u the bundle #ujc is nonorientable if and

only if ` � 2, d � ` is odd and g2 D 1. Indeed, recall that #ujEg
u

is the quotient of

pr�
V 2.�V /˚ pr

�
X .TX/ Š pr

�

V 2.�
2
u/˚ pr

�
X .�X /

(using that �V Š �u ˚ �X and �X ˚ TX is trivial) by the involution swapping the
two V factors. AsX is orientable, it suffices to check if there is a loop in .V 2n�V /Z=2
that is orientation-reversing for the quotient of �2u, and lifts to Eg

u . We saw that
�1.V

2 n �V /Z=2 is Z or Z=2, and along the generating loop � the monodromy
is .�1/d�`, since .d � `/ is the rank of �u. By the previous paragraph, � lifts to
�1.E

g
u ; Œg�/ if and only if g2 D 1. Therefore, �0.Eg

u I#ujEg
u
/ is canonically isomor-

phic to8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

ZŒ��; ` D 1;

Z
�
��g � g�1

�
Š ZŒ���

hg D g�1i; ` � 2; d � ` even;

Z
h
¹g 2 � W g2 ¤ 1º�g � g�1

i
˚ Z=2

�
¹g 2 � W g2 D 1º

�
Š ZŒ���

hg D �g�1i; ` � 2; d � ` odd;

where � WD �1X . This was exactly denoted ZŒ�1X�=rel`;d in the statement, and fin-
ishes its proof.

4.1.3. The Dax invariant for a simply connected source. We next simplify the Dax
isomorphism ˇ0n from (4.6) for n D d � 2` using the description

�n�.d�2`/D0. zE
g
u I#ujEg

u
/ Š ZŒ�1X�=rel`;d

from the previous section. First note that for this to fall into the metastable range we
need to have 0 � d � 2` � 2d � 3l � 3, which says d � `C 3, and d � 2` � 0. For
`D 1 and d D 4 the following interpretation of Dax’s work was also studied and used
by Gabai in [9] (his spinning map is analogous to our @r, see Remark 4.22).

Theorem 4.14. Let V; X; u be as in the first sentence of Dax’s Theorem 4.4. Addi-
tionally assume that V andX are oriented, that V is 1-connected, and d � `C 3 and
d � 2` � 0. Under the isomorphism of Proposition 4.12, ˇ0

d�2`
is equivalent to the

isomorphism

DaxW�d�2`
�
Imm@.V;X/;Emb@.V;X/Iu

� Š
�! ZŒ�1X��rel`;d ;

DaxŒF � WD
kX
iD1

".Eti ;xi /
gxi
;
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which sends a perfect map F to the sum over all double points .Eti ; xi / of its track zF
from (4.8), of the associated signed loops ".Eti ;xi /

gxi
, where ".Eti ;xi /

2 ¹˙1º and gxi
2

�1X are defined below.

Firstly, for any v 2 V fix a whisker �vW Œ0; 1�! V from the basepoint e` 2 @V
to v. For example, for V D D` take the straight line �v.s/ D sv C .1 � s/e` from
e` D .�1; 0; : : : ; 0/ to v 2 @V . For `D 1, we simply have e` D �1 and �v D Œ�1; v�.

Secondly, the map zF has finitely many double points, all of the form .Eti ; xi / with
1 � i � k, for some Eti 2 Id�2 and xi WD F.Eti /.vi /D F.Eti /.wi / 2 X with vi ;wi 2 V .

Let us pick an order .vi ; wi /. In other words, for the immersed manifold F.Eti / we
choose “an order of the sheets” at the double point xi .

@X @X

F.Eti /

xi

e1

g

@X @X

F.Eti /�vi

F.Eti /
�1
�wi

e1
xi

g

Figure 4.15. The double point xi 2 X of the arc F.Eti / 2 Imm@.D1;X/ has the associated loop
gxi
D g.

Let ".Eti ;xi /
2 ¹˙1º be the relative orientation at .Eti ; xi /, obtained by comparing

orientations of the tangent space T.Eti ;xi /
.Id�2` �X/ and (in this order):

d zF
�
T.Eti ;vi /

.Id�2` � V /
�
˚ d zF

�
T.Eti ;wi /

.Id�2` � V /
�
: (4.16)

Again using the fact that we chose an order of sheets at xi , we define the group
element gxi

2 �1.X; u.e`// to be represented by the following loop based at u.e`/
(see Figure 4.15 for ` D 1):

xi
WD F.Eti /.�vi

/ � F.Eti /.�wi
/�1: (4.17)

Now note that if `D 1 the order vi < wi is canonical in the interval D1. On the other
hand, if ` � 2 and we switch the order, then the sign (4.16) changes by .�1/d�` and
the loop (4.17) becomes its inverse. But since gxi

� .�1/d�`g�1xi
2 rel`;d the class

Dax.F / is well defined.

Proof of Theorem 4.14. Since �Dax is 0-dimensional, the bordism class of

bDaxW�Dax ! Eg
u
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is by definition the sum of signed components of Eg
u containing bDax.�Dax/, with the

sign "Dax.Œv;w�; Et /DC1 if and only ifBDax is an orientation-preserving isomorphism

��Dax Š b
�
Dax.#ujEg

u
/:

Equivalently, this is the sum of signed components of zEg
u containing zbDax.z�Dax/,

modulo the involution. For .Et ; v; w/ 2 z�Dax the component of

zbDax.Et ; v; w/ D .v; w; �/

corresponds to the class Œu.�v/ � � � u.��1w /� 2 �1X (see (4.13)), with � as in (4.9).
We claim that this loop in X is based homotopic to the loop xi

from (4.17). Indeed,
Id�2` � V is simply connected, so the choice of whiskers is irrelevant: Dax chooses
to go in a direction tangent to Id�2`, while we opt for a direction tangent to V .

Finally, the sign of the component zbDax.Et ;v;w/ is positive if and only if zBDaxj.Et ;v;w/
preserves orientations. Tracing through isomorphisms (4.10) and (4.11) we see that
the source of the sign is the isomorphism

��Dax�.Id�2`�V /2 Š
�
zF 2j
��
.���.Id�2`�X/2/:

Equivalently, "Dax.Œv; w�; Et / D C1 if and only if d. zF 2j/ is orientation preserving at
.v; w; Et / if and only if the orientation of ���.Id�2`�X/2 agrees with that of

d zF 2j.v;w;Et/T .I
d�2`

� V /2 D
�
d zF j.Et ;v/

�
T .Id�2` � V /

�
; d zF j.Et ;w/

�
T .Id�2` � V /

��
:

This is precisely our definition of the sign "Et ;x in (4.16).

Remark 4.18. For d � 2` D 0, this should be compared to Grant’s result [13] that
the Wall invariant

�`W
�0 Imm@.V;X/��0 Emb@.V;X/!

ZŒ�1X��rel`;d
agrees with the Hatcher–Quinn invariant [18] for V simply connected (the latter is
defined for any V;X with 2d � 3` � 3 � 0). On one hand, �` is defined as the count
of signed double point loops, so it clearly agrees with Dax. On the other hand, one
can check that ˇ00 agrees with the Hatcher–Quinn invariant (in fact, for any V;X with
2d � 3` � 3 � 0).

Example 4.19. Let us compute the Dax invariant of the following class. Assume
UWDk ,!M has a boundary dual GWSd�k ,! @M and pick g 2 �1M . Push G into
the interior of M and foliate it by a .d � 2k/-family of k-spheres (see Figure 4.21),
then drag a piece of U around g and connect sum it into each of those k-spheres.
This defines a class in �d�2k.Imm@.D

k;X/;U/, which clearly lifts g � ŒG� 2 �d�kM .
When considered as a relative class �d�2k.Imm@.D

k;M/;Emb@.Dk;M/;U/, we can
compute its Dax invariant: we see a single double point, namely U\G0 D ¹ptº, with
the signed double point loop g.
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4.1.4. The realization map.

Theorem 4.20. Let V; X; u be as in the first sentence of Dax’s Theorem 4.4. Addi-
tionally assume that V and X are oriented. There is an explicit realization map

rWZŒ�1X��rel`;d ! �d�2`
�
Imm@.V;X/;Emb@.V;X/; u

�
:

If V is 1-connected, and d � `C 3 and d � 2` � 0, then r is the inverse of Dax given
in Theorem 4.14.

u.�1/ u.1/�.Sd�l�1/ x

r.g/t

g
�.˛N /

�.˛t /
u.�1/ u.1/

g

x

Figure 4.21. Left: The samples r.g/t 2 Emb@.D`; X/ for several t 2 I1, ` D 1; d D 4, with
r.g/0 D r.g/1 D u as the horizontal arc. Right: The double point loop gx D g is the dashed arc
followed by the solid red arc.

Proof. For g 2 �1X , we define

r.g/W
�
Id�2`�1 � I; Id�2`�1 � ¹0º; @Id�2`�1 � I [ Id�2`�1 � ¹1º

�
!
�
Imm@.V;X/;Emb@.V;X/; u

�
:

Firstly, define for Et 2 Id�2`�1 � ¹0º the embedded arcs @r.g/.Et / WD r.g/Et by dragging
a piece of u near u.e`/ along the group element g, then “swing a lasso” around a
meridian �.Sd�`�1/ at a point x 2 u near u.e`/, then drag back to u. More precisely,
we foliate Sd�`�1 by a .d � 2`� 1/-family of `-disks ˛Et WD

` ,! Sd�`�1 based at two
fixed points, see Figure 4.21. Use the pinch map Id�2`�1! I _ Sd�2`�1 and along I

apply the finger move to a small disk in u.V / following g, ending with the connect
sum of u with the `-disk �.˛N /. For Et 2 Sd�2`�1, connect sum with the disk �.˛Et /
instead.

For .Et ; s/ 2 Id�2`�1 � I, the paths of immersions r.g/Et ;sWV #X from r.g/Et ;0 D

r.g/Et back to r.g/Et ;1 D u are defined by similarly foliating by `-disks the meridian
ball z�.Bd�`/ bounded by �.Sd�`�1/.

Define r.�g/ analogously, but connecting into the meridian �.Sd�`�1/ from
“below”. Then extend r to ZŒ�1X� linearly: for d � 4 the target is an abelian group,
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but for `D 1, d D 4 we need to check that r.g/ and r.h/ commute. Namely, they can
be constructed using disjoint supports Ji and different meridian balls �i .B3/, so there
is a null homotopy I � I2 ! Imm@.D

1; X/ of their commutator, given at .t0; t1; t2/
by applying the map r.g/.t0; t1/ on J1 and r.h/.t0; t2/ on J2, and u otherwise.

Let us show that Dax ı r.g/ D g. In the family r.g/Et ;s all disks are embedded
except one, for which there is exactly one double point ¹xº D u \ z�.Bd�`/ and the
associated loop is precisely gx D g 2 �1X , see the right part of Figure 4.21. To deter-
mine the sign choose coordinates Rd D R2`C1 � Rd�2`�1 around x 2 X , so that
R2`C1 � ¹0º contains R` � ¹E0º � ¹0º as thew-sheet and ¹E0º �R` � ¹0º as the v-sheet
(for ` D 1 this is depicted in the figure). The derivative at v-sheet of r.g/ applied to
Id�2`�1 gives the positive basis of Id�2`�1 and the positive basis of Rd�2`�1, applied
to I it is the sum of the positive I direction and the upward pointing vector in our R2l -
chart, i.e. in ¹E0º � ¹E0º � R � R2`C1, while applied to D` it gives the positive basis
of ¹E0º �R` � ¹0º. At w-sheet we see the vector in the positive Id�2`�1-direction and
the positive basis of R` � ¹E0º � ¹0º. Comparing to the canonical basis of

Id�2`�1 � I �Rd�2`�1 �R2`C1 � Id�2`�1 � I �X;

we use 2.d � `� 1/ transpositions, so "xDC1. It is also clear that Dax ı r.�g/D�g.
Finally, we check that r.g/ D .�1/d�`r.g�1/ if ` � 2. Firstly, for any ` we can

perform a homotopy of r.g/ by making the first sheet stand still whereas the second
sheet moves, and then pushing the neighborhood of x back around g, so that the root
and the tip of the finger switch positions and the finger follows g�1. However, when
` � 2 the root of the finger can also be freely moved around D`, so that we obtain the
class .�1/d�`r.g�1/. Namely, the meridian sphere �.Sd�`�1/ to the second sheet
became the meridian sphere to the first sheet but with the sign .�1/d�`, since it got
inverted (cf. (anti)symmetry of the linking number). Thus, Dax ı r D IdZŒ�1X�=rel`;d

by construction.

Remark 4.22. This proves that Dax is surjective, without using Dax’s Theorem 4.4.
For `D 1;d D 4, Gabai proves in [9, Step 4] that Dax is injective also directly, avoiding
a parametrized double-point elimination argument of Dax. Namely, Gabai shows that
if zF has double points xi with signed loops "xi

gxi
then F is homotopic to r.r/,

r D
P
i "xi

gxi
. But if r D 0 2 ZŒ�1X�, then r.r/ is clearly null homotopic.

Remark 4.23. To show r ı Dax D Id one could instead of Dax’s theorem use the
fundamental theorem of embedding calculus [11], which implies that the evaluation
map ev2 from Emb@.D`;X/ to the second Taylor stage T2 is .2d � 3l � 3/-connected.
Since T1 ' Imm@.D

`; X/ and d � ` � 3, we have

�d�2`ev2W�d�2`
�
Imm@.D

`; X/;Emb@.D`; X/; u
� Š
�! �d�2`.T1; T2; u/:
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For example, for `D 1 the last group is isomorphic to ZŒ�1X� via an isomorphism �,
see e.g. [22]. Moreover, by a slight generalization of the results there, we have

� ı �d�3ev2 ı r D IdZŒ�1X�;

see [22, Rem. 1.10]. Thus, r is an isomorphism for ` D 1, so its unique left inverse
Dax is as well.

4.2. Proof of Theorem 4.3

4.2.1. On homotopy groups of spaces of immersions. For a Riemannian mani-
fold X , let V`.X/ denote the `-frame bundle of the tangent bundle TX , where an
`-frame is an ordered set of ` orthonormal vectors in TX . Recall that Imm@.D

`; X/

denotes the space of immersions D` # X that restrict to u0W S`�1 ,! @X on the
boundary S`�1 D @D` � D`. As in Proposition 2.9 this space is homotopy equivalent
to the subspace Imm@".D`; X/ of those immersions that restrict to a fixed embed-
ding u"0 of a collar @D` � Œ0; "� � D`.

Theorem 4.24 (Smale–Hirsch [19, 29]). Taking the unit derivatives in all ` tangent
directions at each point of D` gives a homotopy equivalence

D W Imm@".D`; X/! Map@
�
D`; V`.X/IDu

�
to the space of maps D`! V`.X/, that along @D` agree with the unit derivative of u.

We combine this with the following lemma.

Lemma 4.25. For a space Y let f WD` ! Y be a based map, f .e`/ D eY for base-
points e` 2 @D` and eY 2 Y . Then there are inverse homotopy equivalences (based
for f and �f [@ f )

�f [@ �WMap@.D
`; Y If / Map�.S

`; Y / DW �`Y Wf _ �;�

where �f [@ K glues two disks along the boundary, while

f _ S WD`
! D`

_ S` ! Y

is the wedge sum (pinch off a sphere from a neighborhood of the point opposite to the
basepoint e` 2 @D` in @D`).

Proof. For a homotopy from �f [@ .f _ �/ to Id�`Y , use the obvious null homotopy

�f [@ f ' consteY
:
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Similarly, for the homotopy from f _ .�f [@ �/ D .f _ �f / [@ � to the iden-
tity collapse the part f _ �f to eX : use the foliation �v � D` by the straight lines
from v 2 @D` to e` 2 @D`, and then for each v the obvious null homotopy of loop
f .�v/f .�v/

�1 through loops based at f .v/.

Corollary 4.26. There is a homotopy equivalence

Du.�/ WD �D.u/ [@ D.�/W Imm@".D`; X/
�
�! �`V`.X/:

Thus, by definition, Du sendsKWD`#X to the map Du.K/WS`! V`.X/ given
as follows: if x 2 S` is in the north hemisphere (canonically identified with D`), take
the unit derivative D.K/jx , and if x is in the south hemisphere (canonically identified
with oppositely oriented D`) take the unit derivative D.u/jx .

The homotopy equivalence Du induces isomorphisms

�n Imm@.D
`; X/

Š
�! �nC`V`.X/:

Using this and Proposition B.14 from Appendix B about homotopy groups of frame
bundles, we obtain the following corollary. Note that it implies that Theorem C indeed
follows from Theorem 4.3.

Corollary 4.27. Assume d � 2` � 0. The homomorphism

puW�n Imm@.D
`; X/! �nC`X;

given by the union of pu.f / D .Et 7! �u [@ fEt / and the canonical null homotopy of
�u[@ u on the boundary, is an isomorphism for all n � d � 2`� 1, and we have an
exact sequence

Z`;d �d�2` Imm@.D
`; X/ �d�`X;

pu (4.28)

where Z`;d WD Z=rel`;d is isomorphic to Z for l D 1 or d � ` even, and to Z=2 for
d � ` odd with ` � 2.

4.2.2. The connecting map. Recall the connecting map ıImm from (4.2), and con-
sider the composite

Z`;d �d�2`
�
Imm@.D

`; X/; u
�

�d�2`
�
Imm@.D

`; X/;Emb@.D`; X/; u
�

ZŒ�1X��rel`;d :

i� ıImm

Dax

Proposition 4.29. The above composite takes 1 2 Z`;d to the class of the unit 1 in
ZŒ�1X�=rel`;d .
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Proof. The map i� for any X factors through the one for X D Dd , so it suffices to
consider that case. Then both i� and Dax are isomorphisms with Z`;d D Z=rel`;d . By
definition, i�.1/ is the class of any map � WSd�2` ! Imm@.D

`;Dd /, whose Smale–
Hirsch derivative

Du ı � WS
d�2`

! �`V`.D
d / ' �`V`.d/

is a generator of �d�`V`.d/ Š Z`;d of the Stiefel manifold (see Corollary B.8).
Let us describe one such � . Firstly, for parameters .Et ; s/ 2 Id�2`�1 � I Š Dd�2`

of the upper hemisphere of Sd�2`, let �.Et ; s/ WD r.1/Et ;1�s be the time-reversed path
of immersed disks from the previous proof. Recall that this drags a piece of u to
the position ˛N , and then uses .`C 1/-disks foliating the meridian ball z�.Bd�`/ to
slide ˛N into an embedded `-disk r.1/Et � �.S

d�`�1/. For parameters in the lower
hemisphere of Sd�2`, we now describe how to undo disks r.1/Et by an isotopy, so it
will immediately follow that

Dax
�
i�.1/

�
D Dax

�
Œ� �
�
D Dax ı r.1/ D 1:

Observe that in the foliation of z�.Bd�`/ there is a unique .`C 1/-disk z�.B`C1x /

which contains x, the only double point in the homotopy. We can pick coordinates so
that the intersection of this disk with the “present” slice is a 2-disk

z�.B2x / D z�.B
`C1
x / \D3

� ¹E0º � Dd

with @z�.B2x / D ˛N [@ ˛S as on the left of Figure 4.30. In particular, r.1/Etx con-
tains ˛S .

u.�1/ u.1/

x
C
˛N

˛S u.�1/ u.1/

˛N

˛S

Figure 4.30. The present slice D3 � ¹0º � Dd contains an arc c � r.1/Etx
, and a 2-disk C �

z�.B`C1
x /. In the second picture c is isotoped so that now the subarc ˛S can be slid across C

without creating any double points.

Now, let us first isotope the arc r.1/Etx \D3 � ¹E0º as in Figure 4.30: we isotope the
front guiding arc and a part of u in r.1/Etx by “pulling them through” z�.B2x / (using the
rotation around the vertical axis). Note that in the new position ˛S can be slid to ˛N
across z�.B2x / without creating any double points, and that from there we have an
obvious isotopy to u – namely, “by pulling tight”. More generally, the desired isotopy



D. Kosanović and P. Teichner 836

from each r.1/Et \ D3 � ¹E0º to u consists of the same isotopy as in Figure 4.30, then
sliding across the corresponding 2-disk

z�.B`C1
Et

/ \D3
� ¹E0º � Dd

to get to position ˛N , and then pulling it tight.
Finally, we make this into an isotopy of the whole family r.1/Et . Firstly, we “taper

off” in the remaining d � 3 dimensions the isotopy of the guiding arc performed in
the present slice; this is a standard procedure using smooth bump functions. From
there, we simply use the isotopies across z�.B`C1

Et
/ as before.

4.2.3. Proof of Theorem 4.3. The last proposition implies 1 2 im.Dax ı ıImm/. We
can use any section of puW �d�2`.Imm@.D

`; X/; u/� �d�`X to define a group
homomorphism

daxuW�d�`X �d�2`
�
Imm@.D

`; X/; u
�

ZŒ�1X��h1; rel`;d i Š
ZŒ�1X n 1��rel`;d :

Dax ı ıImm
(4.31)

By construction the value daxu.Œf �/ is computed by lifting

f W .Id�`; @Id�`/! .X; u.�1//

to any family F W Id�2` ! Imm@.D
`; X/ (in this case the entire @Id�` goes to u),

calculating its Dax invariant

Dax.F / D n.f / � 1C daxu.f / 2 ZŒ�1X��rel`;d ;

and disregarding the trivial group elements n.f /.
Thus, im.Dax ı ıImm/ D h1; daxu.�d�`X/i, finishing the proof.

5. On homotopy groups of spaces of "-augmented disks, and of disks
with a dual

Recall that the space of "-augmented disks Emb"@".D`; X/ (previously denoted by
Emb"

u"
0
.Dk�1; X/ for ` D k � 1) consists of embeddings D` � Œ0; "� ,! X that agree

on �
S`�1 � Œ0; "�

�
� Œ0; "� � D`

� Œ0; "�

with one such u" (previously denoted u"C). In other words, their boundary condition is
u"0 WD u

"j.S`�1�Œ0;"�/�Œ0;"�. Note that whereas @" records, as before, a stronger bound-
ary condition ujS`�1�Œ0;"� along a collar of @D`, the superscript " reflects additional
structure, the "-augmentation.
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This additional structure has a fairly simple homotopy type that just reflects a
normal vector field along an `-disk. In other words, the fiber of the forgetful map

ev0WEmb"@".D`; X/! Emb@".D`; X/

agrees with the analogous fiber for immersions, or equivalently frame bundles, see
Section 5.1. Using this and results about frame bundles from Appendix B, in Sec-
tion 5.2 we extend Theorem C to the space Emb"@".D`; X/. Finally, in Section 5.3 we
combine this with our Space Level Light Bulb Theorem 3.2 to prove Theorem D.

5.1. Forgetting augmentations

Proposition 5.1. The space of "-augmented disks Emb"@".D`;X/ is homotopy equiva-
lent to the space Emb"

@".D`; X/ of neat embeddings D` ,!X equipped with a normal
vector field (a nonvanishing section of the normal bundle).

Proof. Firstly, we claim that there is a commutative diagram of fibration sequences

ev�10 .u/ Emb"@".D`; X/ Emb@".D`; X/

�@".S�u/ Emb"
@".D

`; X/ Emb@".D`; X/;

ev0

D"

pr"

where �@".S�u/ D .pr"/�1.u"/ is the space of those sections of the unit sphere
bundle S�u of the normal bundle of our basepoint uWD` ,! X that agree with the
basepoint u" WD D".u"/ on a collar of @D`. Indeed, both ev0 and pr" are fibrations
by Theorem 2.8 (II), and for a fixed Riemannian metric onX , the unit derivative along
D` � ¹0º in the direction of Œ0; "� is a map D" between total spaces. Once we show
that its restriction to fibers D"W ev�10 .u/! �@".S�u/ are homotopy equivalences, the
result will follow.

A homotopy inverse Expu of D" comes from identifying the total space of �u
with a tubular neighborhood of u via a scaled exponential map: for a unit normal
vector field � along u define

Expu.�/WD
`
� Œ0; "� ,! X

by
Expu.�/.v; s/ WD exp.s � �.v//:

Here we may assume by compactness of X that " is smaller than the injectivity radius
of the chosen metric. We have D" ı ExpuD Id by construction. To define a homotopy
from Expu ıD" to the identity in the space ev�10 .u/ we observe that by continuously
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scaling the parameter and using the exponential map, it suffices to construct such a
homotopy Kt for KWD` � Œ0; "� ,! �u. This is given by Kt .v; s/ WD 1

t
K.v; t � s/ for

t 2 Œ0; 1�, sinceK0 is indeed the usual description of the normal derivative ofK DK1
at .v; 0/.

Recall that V`.X/ denotes the `-frame bundle of the tangent bundle ofX , and that
the unit derivative defines a map DuWEmb@".D`;X/!�lVl.X/, see Corollary 4.26.
We similarly have a map

Du" WEmb"
@".D

`; X/! Map@
�
D`; V`C1.X/ID.u"/

�
! �`V`C1X;

which to a k-diskK with a normal vector field assigns Du".K/ WD�D.u"/[@D.K/,
where D.K/ is given by derivatives ofK at .v; 0/ in all ` tangent directions, followed
by the normal vector.

Proposition 5.2. There is a commutative diagram of fibration sequences

�`Sd�`�1 Emb"
@".D

`; X/ Emb@".D`; X/

�`Sd�`�1 �`V`C1.X/ �`V`.X/:

n pr"

Du" Du

i`C1 pr`C1

In particular, we can choose the connecting map ıev0
for the top fibration sequence

in the diagram of Proposition 5.2 to be the composite of �Du with the connecting
map ıpr`C1

for the bottom sequence.

Proof. A trivialization of the sphere bundle S�uŠD`�Sd�`�1 induces a homeomor-
phism h between the space �.S�u/ of all its sections and the space Map.D`;Sd�`�1/.
This identifies the basepoint u" D D".u"/ with some u0WD` ! Sd�`�1, so that the
subspace �@".S�u/ of sections that agree near boundary with u" is homotopy equiv-
alent to the subspace

@�1.@u0/ � Map.D`;Sd�`�1/;

the fiber over @u0 of the restriction map

@WMap.D`;Sd�`�1/! Map.S`�1;Sd�`�1/:

Moreover, we can identify this space @�1.@u0/ of maps rel. boundary with a .k � 1/-
fold loop space as in Lemma 4.25, to obtain the map

nW�`Sd�`�1 @�1.@u0/ �@".S�u/ ,! Emb"
@".D

`; X/;
u0 _ �
�

h
Š

which we use as the top left arrow in the diagram of the statement. For basepoints
at the bottom we use the images of u" and u under the vertical derivative maps.
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The square on the right clearly commutes: forgetting normal vector corresponds to
forgetting the last vector in an .`C 1/-frame. The square on the left also commutes,
since the map

S 7! �D.u"/ [@ D.h.u0 _ S// D D.�u"/ [@ D.u" [ h.S//

is homotopic to the inclusion S 7! i`C1.S/ of the fiber of pr`C1 over the basepoint
Du.u/ D �D.u/ [@ D.u/.

Remark 5.3. Combining Theorem B with Proposition 5.2 (for `D k � 1), we obtain
a proof of Theorem A: in the setting with a dual there is a fibration sequence

�kSd�k Embs.Dk;M/ �Emb@.Dk�1;MG/

�k�1Sd�k :

Exp ı aU fU WD ev0 ı f"
U

ıev0

In particular, fU is a homotopy equivalence if d D k or d D kC1 � 3. If d > 2k,
then �0fU is a bijection.

5.2. Homotopy groups of spaces of "-augmented disks

We have the following analogue of Theorem C for "-augmented disks. Note that we
assume d � 2` � 1 for simplicity and as the case d � 2` D 0 does not arise in Theo-
rem D.

Theorem 5.4. Assume 1 � ` � d � 3 and d � 2` � 1, and X is a d -manifold with
boundary, � WD �1X . For 1 � n � d � 2` � 2, there are isomorphisms

puW�n
�
Emb"@".D`; X/; u"

�
Š �nC`X;

and a short exact sequences of groups:

` D 1; ZŒ� n 1��daxu.�d�1X/

` � 2; d � ` odd; ZŒ� n 1��
hg C g�1i ˚ daxu.�d�`X/

` � 2; d � ` even; ZŒ���
hg � g�1i ˚ dax"u".�d�`X/

9>>>>=>>>>;
�d�2`�1

�
Emb"@".D`; X/; u"

�

d � ` odd; Z

d � ` ¤ 2; 4; 8 even; Z=2

³
˚ �d�`�1X:

@r"

.�W ıDu"/˚ pu
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Moreover, for d � ` odd,

.�; �d�2`�1ev0/W�d�2`�1 Emb"@".D`; X/ Š Z � �d�2`�1 Emb@.D`; X/

is an isomorphism, so any Sd�2`�1-family of embedded disks has Z many "-augment-
ations. On the other hand, in the even case, the number of augmentations is twice the
order of the element 1 in ZŒ��=dax"u".�d�`X/.

The homomorphisms dax"u" and �W will be defined in the course of the proof,
see (5.7). The map @r" is the family of disks @r with suitable "-augmentations; pu is
the same composite of a forgetful map and concatenation with �u as in (4.28).

To prove Theorem 5.4 we consider the diagram of fibration sequences from Propo-
sition 5.2. Taking the long exact sequences in homotopy groups of these fibrations
implies that Du" is .d � 2`/-connected (as is Du), so is Du" WD Du" ı D", and
gives the following commutative diagram (5.6) with exact rows and columns. We
abbreviate

Emb WD Emb@".D`; X/ and Emb" ' Emb"@".D`; X/;

and ıf is the connecting map for a fibration f . Recall the isomorphism

DaxW�d�2`
�
�`V`.X/;Emb

�
! ZŒ�1X�=rel`;d

and its inverse r from Section 4.1 (using that Imm@".D`; X/ ' �`V`.X/ by Corol-
lary 4.26). Thus, we need to compute �d�`�1V`C1.X/ and the kernel of the surjection
�d�2`�1Du" . To this end, we study homotopy groups of frame bundles, and in Propo-
sition B.14 show that for d � 2` � 1 > 0:

coker.ıpr`C1
/ Š Z`C1;d �d�`�1V`C1.X/

�d�`�1V`.X/ Š �d�`�1X;

i`C1

pr`C1
(5.5)

where Z`C1;d D Z if d � ` � 1 even (i.e. im.ıpr`C1
/ D 0), and Z`C1;d D Z=2 if

d � ` � 1 odd (im.ıpr`C1
/ D 2Z).

Moreover, there are splittings �W of �d�`�1i`C1 for every d � ` ¤ 2; 4; 8, see
Proposition B.14. Thus, in these cases we have the desired right-hand side in Theo-
rem 5.4:

�W ˚ �d�`�1pr`C1W�d�`�1V`C1.X/
Š
�! Z`C1;d ˚ �d�`�1X:
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�d�`S
d�`�1 �d�`V`C1.X/ �d�`V`.X/

0 �d�2`
�
�`V`C1.X/;Emb"

�
�d�2`

�
�`V`.X/;Emb

�

�d�2` Emb �d�`�1S
d�`�1 �d�2`�1 Emb" �d�2`�1 Emb

�d�`V`.X/ �d�`�1S
d�`�1 �d�`�1V`C1.X/ �d�`�1V`.X/

�d�`pr`C1

ıImm" ıImm

Š

@" @

ıev0

�d�2`Du

�d�2`�1Expu �d�2`�1ev0

�d�2`�1Du" �d�2`�1Du

ıpr`C1 �d�`�1i`C1 �d�`�1pr`C1

(5.6)
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Proof of Theorem 5.4. It remains to find ker.�d�2`�1Du"/, which is the quotient of
ZŒ�1X� by im.ıImm"/.

Assume first d � ` is odd, so d � ` � 1 is even. Since im.ıpr`C1
/ D 0 the map

�d�`pr`C1 is surjective. Looking at the top right of (5.6), it follows that

im.ıImm/ Š im.ıImm"/;

so �d�2`�1ev0 induces an isomorphism

.ev0/�W ker.�d�2`�1Du"/
Š
�! ker.�d�2`�1Du/:

The latter is isomorphic to ZŒ�1X n 1�=rel`;d ˚ daxu.�d�1X/ by Theorem C, so
we get the desired exact sequence in the theorem in this case. The maps are @r" WD
.ev0/�1� @r, and �W ı �d�2`�1Du" and pu ı �d�2`�1ev0.

Furthermore, in this case �d�2`�1Expu is injective (since �d�`�1i`C1 is), so
�W ıDu" is its left splitting. Therefore, we have the claimed isomorphism

.�W ıDu"/˚ �d�2`�1ev0W�d�2`�1 Emb"@.D
1; X/

Š
�! Z˚ �d�2`�1 Emb@.D1; X/:

Now assume d � ` is even, so d � ` � 1 is odd. Since

im.ıpr`C1
/ D 2Z and ker.ıpr`C1

/ D im.�d�`pr`C1/;

we have the following horizontal exact sequence

Z

im.�d�`pr`C1/ �d�`V`.X/ 2Z:

�d�`X

Š

p

ıpr`C1

�d�`pr`

The vertical sequence is just (5.5) with the index `C 1 replaced by ` (note Z`;d D Z

for d � ` even). This implies that p is an isomorphism, and we can define dax"u" as
the composite

dax"u" W�d�`X im.�d�`pr`C1/ � �d�`V`.X/ Š �d�2l.Imm@.D
`; X/; u/

ZŒ�1X�:

p�1

Dax ı ıImm

(5.7)
Cf. the definition of daxu in (4.31). Then by construction, we have

im.ıImm"/ D im.dax"u"/ � ZŒ�1X�:
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This gives the second claimed short exact sequence in the theorem, with the maps as
before.

Finally, note that in this case .ev0/�W ker.�d�2`�1Du"/� ker.�d�2`�1Du/ is
not an isomorphism in general, but has for the kernel the cyclic group generated by
the class of 1 2 ZŒ�1X� modulo dax"u".�d�1X/. Taking the kernels in the bottom
of (5.6), we get the exact sequence

ker.ev0/� ,! ker.�d�2`�1ev0/� Z=2;

so the cardinality of ker.�d�2`�1ev0/D Z= im.ıev0
/ – which is precisely the number

of augmentations of an arc u 2 �d�2`�1 Emb@.D`; X/ – is equal to two times the
mentioned order.

Remark 5.8. The map �d�2`�1.Expu/WZ! �d�2`�1 Emb"@".D`; X/ is on a gener-
ator given by “integrating” the .d � ` � 1/-family of unit normal vector fields to u,
given by its meridian �.Sd�`�1/ at a point p D uC.x/. See the proof of Proposi-
tion 5.2, Remark 5.13 and [24, Fig. 5.9].

5.2.1. The 3-dimensional case. We have so far considered d � 4. However, for
d D 3 we still have an exact sequence comparing embedded to immersed arcs, which
using Corollary 4.26 translates to:

�1
�
Imm@.D

1; X/; u
�
Š Z˚ �2X � rel

1 �0 Emb@.D1; X/

�0 Imm@.D
1; X/ Š �1X;

ıImm

�0i

where an element of the set � rel
1 WD �1.Imm@.D

1;X/;Emb@.D1;X/Iu/ is represented
by a knot together with a path to u through immersed arcs. Moreover, one still has a
well-defined surjection DaxW� rel

1 � ZŒ�1X�, with a set-theoretic section r, given by
doing crossing changes along group elements. In particular, we can define an invariant
of knots homotopic to u, namely

DaxuWK.X; u/ WD .�0i/�1Œu�� ZŒ�1X n 1��daxu.�2X/:

In [23] the first author shows that this is the universal Vassiliev invariant of type � 1
for knots in X .

When @u has a geometric dual, then �0iW�1.X [S2 D3/� �1X has trivial ker-
nel K.X I u/ D 0, see Example 2.11. Instead, there is a distinguished class uGtw 2
�1 Emb@.D1; X/, given by “swinging the lasso” around the parallel push-off of the
dual G into X .
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Now consider "-augmented arcs for d D 3 (equivalently, framed long knots).
From (5.6), we have an extension

Z=dax"u".�2X/ ,! .�0ev0/�1Œu�� Z=2;

with
Z=dax"u".�2X/ Š ker

�
�

rel;"
1 = im.ıImm"/� � rel

1 = im.ıImm/
�
;

is generated by the crossing change along 1 2 �1X , and Z=2 Š ker.�1pr2/ by (5.5).
Interestingly, there are now only two distinct cases for this extension, depending

on whether @u has a geometric dual or not: u has respectively either exactly two fram-
ings – that is, .�0ev0/�1Œu� Š Z=2, or countably many, .�0ev0/�1Œu� Š Z. The first
case is immediate from dax"u".G/D 1 as in Example 4.19. To see this more explicitly,
the mentioned loop uGtw can be extended to a path of "-augmented arcs, whose start
and end framings on u differ by 2, so ıev0

.uGtw/D 2. This is precisely the well-known
light bulb trick for framed knots! To prove that in cases without a dual there is Z many
framings, one approach would be to show that 1 2 ZŒ�1X�=dax"u".�2X/ has infinite
order; see [2] for another proof.

5.3. Homotopy groups of spaces of disks with a dual: Proof of Theorem D

We collect the results obtained so far in order to prove Theorem D, concerning the
space Embs.Dk;M/ of neat embeddings of the k-disk in a d -manifold M such that
d � k� 2, with the boundary condition sWSk�1 ,! @M , which has a framed geometric
dual GWSd�k�1 ,! @M .

Firstly, Theorem B gives for all n� 0 explicit “ambient isotopy” and “"-foliation”
isomorphisms

�nf"UW�n Embs.Dk;M/ �nC1
�
Emb"u"

0
.Dk�1;MG/; u

"
C

�
W�naUŠ

depending on the choice of a basepoint U2Embs.Dk;M/ (recallMG WDM[�Gh
d�1

and s D u� [ uC). Secondly, Theorem 5.4 gives for n � d � 2` � 2 isomorphisms

�n
�
Emb"u"

0
.D`; X/; u"

�
Š �nC1X

and an extension on �d�2`�1 by a quotient of ZŒ�1X�. Combining these two results
by putting X WDMG and u WD uC and ` D k � 1, we obtain isomorphisms

�n Embs.Dk;M/ Š �nC2MG
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for n � d � 2.k � 1/ � 3 D d � 2k � 1, and the extension:

k D 2; ZŒ� n 1��daxu.�d�1MG/

k � 3; d � k even; ZŒ� n 1��
hg C g�1i ˚ daxu.�d�kC1MG/

k � 3; d � k odd; ZŒ���
hg � g�1i ˚ dax"u".�d�kC1MG/

9>>>>=>>>>;
�d�2k

�
Embs.Dk;M/;U

�

d � k even; Z

d � k ¤ 1; 3; 7 odd; Z=2

³
˚ �d�kMG :

�d�2kaU ı @r
"

.�W ıDu" ˚ pu/ ı �d�2kf"
U

In Theorem D, we have such an extension (we stated that it exists for d � k ¤ 1; 3; 7
since then we do not have an explicit description of the quotient), but only in terms
of the original manifold M , so we now remove all appearances of MG . Moreover,
our uC is homotopic into @M in which case we simply write

dax WD daxuC and dax" WD dax"u"
C
:

Lemma 5.9. The inclusion M � MG induces isomorphisms �iM Š �iMG for all
0 � i � d � k � 1, a surjection �d�kC1M � �d�kC1MG , and a split short exact
sequence of ZŒ�1M�-modules

ZŒ�1M� �d�kM �d�kMG ;
�G

�rel
M
.U; �/

where �rel
M W�k.M; @M/ � �d�k.M/! ZŒ�1M� is the relative equivariant intersec-

tion form.

Proof. A .d � k C 1/-handle is homotopy equivalent to a .d � k C 1/-cell, so we
immediately get �iM Š �iMG below degree d � k. Moreover, the relative homotopy
group �d�kC1.MG ; M/ is the free ZŒ�1M�-module spanned by hd�kC1. Once we
show that homomorphism �rel

M .U; �/ is a splitting, the surjectivity on �d�kC1 will
follow from the long exact sequence of a pair. Indeed, since G is the geometric dual
for s D @U, we have �@M .s; G/ D 1, so a push-off of G intersects U in the interior
with �rel

M .U; G/ D 1.

Lemma 5.10. We have dax.�d�kC1MG/Ddax.�d�kC1M/ as subgroups of ZŒ�1M�.
Similarly for dax".
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Proof. We need to show that im.daxM / D im.daxMG
/ for the respective dax maps.

Since attaching a handle to @M does not influence the calculation of daxM .Œf �/ WD
Dax. zF /, the following diagram commutes:

�d�kC1M �d�kC1MG ZŒ�1M�:
p

daxM

daxMG

Indeed, if f WSd�kC1 !M is represented by a .d � 2k/-family F.Et /WDk�1#M ,
the same family also computes daxMG

.Œf �/. This immediately implies

im daxM � im daxMG
:

The other inclusion follows since p is surjective (by Lemma 5.9): if r D daxMG
.a/ for

a 2 �d�kC1M , then r D daxM .b/ for b D p.a/. The argument is the same for dax".

Proof of Theorem D. As a result of the last two lemmas, we may replace �d�kMG by
�d�kM=ZŒ�1M� � G, dax.�d�kC1MG/ by dax.�d�kC1M/, and dax".�d�kC1MG/

by dax".�d�kC1M/. It thus only remains to see that the maps are as claimed in The-
orem D, namely

.�W ıDu" ˚ puC/ ı �d�4f
"
U D �W;U ˚ .�U [ �/:

For KWSd�2k ! Embs.Dk;M/, the map

f"U.K/WS
d�2kC1

! Emb"u"
0
.Dk�1;MG/

maps Et ^ t 2 Sd�2k ^ S1 Š Sd�2kC1 to f"U.KEt /.t/, the time t of the foliation of
the sphere �U [KEt (use the canonical null homotopy of �U [ U to get the map on
the smash product). Then, puC.Œf

"
U.K/�/ is the homotopy class of the map that takes

Et 2 Sd�2kC1 to �uC [@ f"U.KEt /.t/ 2�MG (based at uC.eDk�1/), see the discussion
after Theorem 5.4. It is not hard to see that�uC is inessential, i.e. this is homotopic to

�U [KWSd�2k ! Map�.S
k;MG/;

so
.puC ı �d�2kf"U/.K/ D Œ�U [K�

modulo ZŒ�1M�G.
For d � k even, we next identify the composite

�W;U WD �W ı �d�2kC1Due
C
ı �d�2kf"U
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for the splitting �W W �d�kVk.MG/ ! Z constructed in Proposition B.12. Unless
d � k D k D 2; 4; 8, it was given by �W D ed

k
=2, where

edk
�
Œf �
�
D
˝
e
�
f �.TMG/d�k

�
; ŒSd�k�

˛
2 2Z

(see Definition B.1), while for d � k D k D 2; 4; 8, we also have the correction
term W Œf �. The following lemma then finishes the proof of Theorem D.

Remark 5.11. The homomorphism �d�2kaU ı @r
"
uC

can be made explicit: its value
on g 2 �1X is the family of k-disks in M obtained by applying to the half-disk U
in MG the ambient isotopy extended from the family @r"uC.g/. Alternatively, one can
guess a geometric candidate fg 2 �d�2k Embs.D2; M/ and check that its foliation
has the correct Dax invariant, that is, Dax ı f"U.fg/D g, so fg D �d�2kaU ı @r

"
uC
.g/.

The latter approach is carried through for k D 2; d D 4 in [24]. Moreover, in these
cases we also compute there the kernel and cokernel of

�U [ �W�d�2k Embs.Dk;M/! �d�kM:

Lemma 5.12. The number ed
k
ı Due

C
ı f"U.ŒK�/ 2 Z is equal to the relative Euler

number e.� zK; � zU/ of the normal bundle of the immersion

zKW Id�2k �Dk# Id�2k �M

given by .Et ; x/ 7! .Et ; KEt .x//, relative to the immersion zU corresponding to the con-
stant family U. In particular, the map

�d�2k
�
Embs.Dk;M/;U

�
! Z;

given by ŒK� 7! e.� zK; � zU/, is a homomorphism.

Proof. The normal bundle to zK consists of vectors .E0; vx/, where E0 2 TEt .I
d�2k/

and vx is a normal direction to KEt at x in M . We need to compute the Euler class
of the bundle f �.TMG/d�k over Sd�k , where

f D Du"
C

f"U.K/WS
d�k
! Vk.MG/:

This is obtained by gluing together two maps Id�k�1!�Vk.MG/, namely fK.Et /D
Du"
C

f".KEt / and the constant family f�U.Et / D Du"
C

f".�U/.

First observe we can disregard u"C as before, so that fK W Id�2k �Dk ! Vk.MG/

is at .Et ; x/ given by the derivative at x 2Dk of the embedded diskKEt inMG . Then the
bundle f �K .TMG/d�k is by definition given at a point .Et ; x/ as the subspace of TpMG ,
for p D KEt .x/, orthogonal to the derivative DxKEt , so belongs to the normal bundle
of KEt in MG . The same is true for the constant family Et 7! �U in place of K, and
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they agree on the boundary @.Id�2k � Dk/. Moreover, these normal bundles can be
taken in Id�2k �M instead. Thus, the Euler number of f �.TMG/d�k is precisely
the relative Euler number of the normal bundles to the immersions zK and zU.

Remark 5.13. For d � k even, we describe a map

UGtw WD aUExp.1/WSd�2k ! Embs.Dk;M/

that splits off the Z factor, �W;U.UGtw/D 1. Firstly, Exp.1/ is the .d � 2kC 1/-family
of augmentations of the .k � 1/-disk uC obtained by integrating the normal vector
field given by its meridian �.Sd�k�1/, see Remark 5.8. Applying the ambient isotopy
map aU to this gives a family

UGtw.Et / D aU
�
Exp.1/.Et ^ �/

�
;

supported in a neighborhood of U; for a fixed Et 2 Sd�2k the ambient isotopy pushes U
around �.Et ^�/, so UGtw is obtained by a “family interior twist” to U, plus tubing the
unique double point at p into G. See [24, Fig. 5.9] for the 2-disk UGtw when d D 4 (in
other dimensions this is one of the disks in the family UGtw ).

A. On Hurewicz fibrations

Recall that a map pWE ! B is a Hurewicz fibration if any homotopy lifting problem
as in

X � ¹0º E

X � Œ0; 1� B

H0

p

h

H (A.1)

has a solution H , a so-called “lift”. We will need some properties of such lifts.

Lemma A.2. Up to homotopy rel. X � ¹0º and over B , the lift H as in the dia-
gram (A.1) is uniquely determined by the initial conditions .h;H0/. As a consequence,
its restriction H1WX � ¹1º ! E is also unique up to homotopy.

Proof. If ƒk�1 � @�k is a .k � 1/-horn, i.e. it consists of all .k � 1/-faces of the
k-simplex, except for one, then a Hurewicz fibration also has the lifting property for
pairs .X � �k; X � ƒ/, by the fact that these are acyclic cofibrations in the model
structure on topological spaces for which the Hurewicz fibrations are the fibrations.
The case k D 1 is precisely the lifting problem (A.1), and we use the case k D 2 to
show the uniqueness of the lifted homotopy. Namely, suppose we have two lifts H
and H 0 in diagram (A.1). Since they agree on X � ¹0º, we can glue them together at
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the vertex v0 2 �2 to give a map X �ƒ1 ! E that lifts (the restriction of) the map
zhWX ��2! B that equals h on all rays from v0 to the opposite edge hv1; v2i � �2.
The lift X ��2! E is thus a homotopy from H to H 0 rel. X � ¹0º and over B .

In particular, consider in (A.1) the space X WD �B of loops based at b WD p.e/
for a basepoint e 2 E, and the initial conditions

H0 D consteWˇ 7! e and h D evW .ˇ; t/ 7! ˇ.t/:

Any lift �ev WDH W�B � Œ0;1�!E at time t D 1 takes values in the fiber F WDp�1.b/,
hence gives a so-called connecting map ı WD �ev1W�B ! F .

Corollary A.3. Up to homotopy, the map ıW�B ! F is independent of the choice
of a lift �ev and only depends on the Hurewicz fibration p and the basepoint e 2 E.
Moreover, it is natural: given two commuting squares on the right of the diagram

�B 0 F 0 E 0 B 0

�B F E B

ı0

�.gB/ gjF

p0

g gB

ı p

any choice of connecting maps ı; ı0 makes the square on the left commute up to homo-
topy.

Proof. The first part follows directly from Lemma A.2. The naturality follows from it
as well, this time applied to lifting gB ı ev0W�B 0 � Œ0;1�!B with the initial condition
g ı conste0 .

If B is well-based that above discussion holds in the based category; this is the
case for our spaces of embeddings as they are locally contractible. Then �B is well-
based at constb and there are based connecting maps ıW�B!F , inducing the bound-
ary maps in the long exact sequence of homotopy groups for the fibration p. In
particular, if E is contractible then any such ı is a weak homotopy equivalence. We
will also need the following strengthening, whose proof we did not find in the litera-
ture.

Lemma A.4. IfE is contractible, a connecting map ı is a homotopy equivalence with
homotopy inverse .p�R/jF WF ! �B given by x 7! .t 7! p ıRt .x//, where

RWE ! PeE WD ¹�W Œ0; 1�! E j �.0/ D eº

is a contraction of E with ev1 ıR D IdE .
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Proof. Consider the following diagram of two fibrations and a lifting problem on top:

�B � ¹1º PbB � ¹0º PbB � Œ0; 1�

F E B

�B PbB B:

ı conste ev�ev
p�RjF

p

p�R

ev1

(A.5)

As a map between contractible spaces, p�R WD .t 7! p ı Rt / is a homotopy equiv-
alence. Being over B (ev1p�R D p), this is also a fiber homotopy equivalence [16,
Sec. 4.H]. For the same reason, the restriction q WD �ev1WPbB ! E of the lift �ev is a
fiber homotopy equivalence over B . We claim that there is a homotopy p�R ı q ' Id
over B , so uniqueness of inverses will imply that p�R and q are inverse homotopy
equivalences, as well as the desired restrictions p�RjF to F � E and ı D qj�B

to �B � PbB .
To find the claimed homotopy we observe two solutions for the outer lifting prob-

lem on the right of (A.5) (for the fibration ev1). One lift is clearly p�R ı �ev. We define
the second by the formula

.ˇ; t/ 7!

 
s 7!

´
p ı �t .

s
1�t
/; s 2 Œ0; 1 � t �

ˇ.s � .1 � t //; s 2 Œ1 � t; 1�

!
;

where �t 2 �E for t 2 Œ0; 1� is a homotopy from �0 D R.e/ to �1 D conste , which
exists by the argument below. This is indeed another solution, since ev1 evaluates all
paths at s D 1, so it gives ˇ.t/ D ev.ˇ; t/, while restricting to t D 0 gives exactly
p�0 D pR.e/. The first lift at t D 1 is p�R ı q whereas the second is IdPbB , so the
uniqueness from Lemma A.2 gives the desired homotopy over B between them.

To find a homotopy �t from R.e/ 2 �E to conste rel. e, first observe that these
loops are homotopic (since E is contractible to e), and then by the usual argument
they are also based homotopic: free homotopy classes in a path-connected space are
in bijection with the conjugacy classes in the fundamental group, and for the unit this
consists of a single element.

B. On homotopy groups of frame bundles

In this appendix we collect some information needed for the results in the body of the
paper. For the convenience of the reader we include short arguments, some of which
may be new.
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B.1. Universal Euler classes of frame bundles

Fix integers 0 � ` � d , a topological space X , and a rank d vector bundle � on X
with inner product. Let fr`W V`.�/! X be the associated `-frame bundle, given by
orthonormal sequences .v1; : : : ; v`/ of vectors vi 2 �jx , x 2 X , meaning that vi are
pairwise orthogonal and have unit norm. The pullback bundle fr�` .�/ has ` canonical
sections, and we consider their orthogonal complement �d�`, which is a rank .d � `/
vector bundle on V`.�/. Note that V0.�/ D X and fr0 D Id.

We will not assume that � is orientable in this appendix, although this will be the
case in our applications. Recall that one can define the twisted Euler class of �d�`
as a class e.�d�`/ 2 Hd�`.V`.�/IZ

w/, where the coefficients are twisted by the first
Stiefel–Whitney class w WD w1.�d�`/.

Definition B.1. Define the map ed
`
W�d�`V`.�/! Z by the formula:

ed` .f / WD
˝
e.�d�`/; f�ŒS

d�`�
˛
D
˝
e
�
f �.�d�`/

�
; ŒSd�`�

˛
:

Note that the last expression shows that ed
`

is a group homomorphism.

Lemma B.2. For `� 1, let pr`WV`.�/! V`�1.�/ be the fibration that forgets the last
vector in an `-frame, and i`WSd�` ,!V`.�/ its fiber inclusion. Then ed

`
.i`/D�.S

d�`/,
the Euler characteristic of Sd�`.

Proof. The proof follows since i�
`
.�d�`/ Š TSd�`. Indeed, the fiber of �d�` over

.x; v1; : : : ; v`/ 2 V`.�/ is the orthogonal complement .v1; : : : ; v`/? � �x , so if v` D
u 2 S.U / for a fixed U WD .v1; : : : ; v`�1/? � �x , then the fiber is u? � U , so exactly
the tangent space to the .d � `/-sphere S.U / � U at u.

By induction and the long exact sequence of homotopy groups for the fibration
pr`C1WV`C1.�/! V`.�/, we get isomorphisms

�nV`.�/ �nX
fr`
Š

(B.3)

for all n � d � ` � 1, and an exact sequence in the first interesting case

�d�`V`.�/ �d�`�1S
d�`�1 �d�`�1V`C1.�/ �d�`�1X:

ıpr`C1 i`C1 fr`C1

Lemma B.4. For 0 � ` � d the connecting map ıpr`C1
of pr`C1 can be identified

with the homomorphism

ed` W�d�`V`.�/! Z Š �d�`�1S
d�`�1:
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Proof. Since the statement is inherited by pullbacks of vector bundles, it suffices to
check it for � D ”, the universal rank d bundle ” ! BOd over the Grassmannian
BOd of d -planes in R1. Then EOd WD Vd .”/ is a contractible, free Od -space, and
we have for 0 � ` � d homotopy equivalences

V`.”/ '
EOd�Od�` ' BOd�`:

The map pr`C1 is induced by the inclusion Od�`�1 ,! Od�` and we have a 5-term
fibration sequence, where the connecting map in question is induced by the action
map act on a basepoint in Sd�`�1:

Od�`�1 Od�` Sd�`�1 V`C1.”/ V`.”/:
act pr`C1

Recall that the Euler class is the unique (necessary and sufficient) obstruction for
finding a nonvanishing section in an rank n vector bundle over Sn, and �d�`�1Od�`
are isomorphism classes of such bundles for n D d � ` (via clutching). Then the
claim follows since �d�`�1.act/ is also the unique obstruction for such a section by
the exact sequence above.

As a consequence, for 0 � ` � d , we get an extension of groups

Z�im.ed` /
�d�`�1V`C1.�/ �d�`�1X

i`C1 fr`C1 (B.5)

and we determine the image of the homomorphism ed
`

next.
If d � ` is odd, then ed

`
D 0, because it is given by Euler classes of bundles

f �.�d�`/! Sd�` of rank d � `, for which fiberwise �Id is an orientation reversing
vector bundle isomorphism over Id on the base.

If `D 0 and d is even then im.ed
`
/D e.�/.�dX/ is simply the image of the Euler-

class e.�/ evaluated on �d .X/ under the Hurewicz map. Then any image is possible,
for example, take X D S2 and d D 2. Then e.�/ŒS2� 2 Z can be any integer n by
taking � to be the n-fold (complex) tensor product of the Hopf bundle. As a conse-
quence im.ed0 /D e.�/.�2S

2/D n �Z. Note that for higher genus surfacesX , we have
�2X D 0, and hence this image always vanishes. This example can be generalized as
follows.

Lemma B.6. Let X be a compact d -manifold.

• If X has nonempty boundary then ed0 D 0 and the sequence (B.5) splits for `D 0.
In fact, there are isomorphisms �nV1.�/ Š �nSd�1 ˚ �nX for all n � 1:

• If X is closed then e.TX/.�dX/ is nontrivial if and only if d is even and the uni-
versal cover of X is a rational homology d -sphere. More precisely, X is either
a simply connected Q-homology d -sphere (orientable) or a Q-homology ball
(nonorientable) with fundamental group Z=2.
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Proof. If X has nonempty boundary then Hd .X IZw/ D 0 and hence e.�/ D 0. This
means that we have a continuous section of V1.�/! X . As a consequence, the long
exact sequence of the fibration turns into (split) short exact sequences on homotopy
groups.

For closed X we consider the case � D TX . We may assume that d is even,
otherwise ed0 D 0. If † is a simply connected Q-homology sphere then the degree-1
map † ! Sd is a rational homotopy equivalence and hence �d .†/ ˝ Q Š Q. It
follows that there is a map Sd ! † of nonzero degree, and so e.T†/.�d†/ ¤ 0

since the Euler characteristic of† is 2. If X is covered by†, it therefore also satisfies
e.TX/.�dX/ ¤ 0.

Conversely, if this group is nontrivial then there is a map Sd ! X of nonzero
degree. Let † be the universal cover of X . Then this map lifts to a map Sd ! †

of nonzero degree (which implies that this is a finite cover). Then † must be a
Q-homology sphere, otherwise there would be a nontrivial rational cup product in
its top cohomology which contradicts that all cup products are trivial for Sd . This
also implies that the only free action on † can be by Z=2 and that the quotient is a
Q-homology ball.

Finally, we consider the case d � ` even with l � 1. We define the spherical
Stiefel–Whitney class

wsi .�/W�iX ! Z=2

as the evaluation of the i -th Stiefel–Whitney class wi .�/ 2 H i .X IZ=2/ on spherical
classes, namely those in the image of the Hurewicz homomorphism

hW�iX ! Hi .X IZ/:

Proposition B.7. For X; � and 1 � ` � d D dim.�/ as above, assume that d � ` is
even. Then ed

`
is either onto or has image 2 � Z. The latter happens if and only if the

spherical Stiefel–Whitney class ws
d�`

.�/W �d�`X ! Z=2 vanishes. This homomor-
phism can be nontrivial only for d � ` D 2, 4, or 8.

Proof. If d � ` is even and l � 1, then ed
`
.i`/D �.S

d�`/D 2 by Lemma B.2, so 2 �Z
is contained in the image of ed

`
. To decide whether this is the entire image, we only

need to understand the Euler class modulo 2. But then it equals the Stiefel–Whitney
class wd�`, which is a stable characteristic class, and hence we can evaluate it on �
rather than �d�`. This implies our claim regarding the spherical Stiefel–Whitney class.

Recall that Adams’ solution of the Hopf invariant 1 problem implies that rank n
vector bundles over Sn have even Euler class unless n D 2; 4; 8. The universal com-
plex, quaternion and octonian line bundles over the corresponding projective spaces
have Euler number 1, so for d � ` D 2; 4; 8 both cases can arise.
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For X D �, the frame bundle V`.�/ is just the Stiefel manifold V`.d/, whereas for
X D BOd and the universal rank d bundle � WD ” over it we have V`.”/ ' BOd�`
(see the proof of Lemma B.4). Therefore, in these cases we get back the following
results, the first of which is due to Stiefel [30], whereas the second can be found in
Kervaire’s paper [20].

Corollary B.8. If 1� k � d , the groups �nVk.d/ vanish for n� d � k � 1 and there
are isomorphisms

�d�kVk.d/ Š Zk;d WD

´
Z k D 1 or d � k even;

Z=2 otherwise;

generated by the fiber inclusion ik WSd�k ! Vk.d/.

Proof. For X D �, we have �nVk.d/ D 0 for n � d � k � 1 by (B.3), and

�d�kVk.d/ Š ker frk Š Z= im.edk�1/

by (B.5) for l C 1 D k. We saw after (B.5) that for d � k even this is infinite cyclic,
as well as for k D 1 since �dX D 0. For d � k odd, we trivially have ws

d�`
.�/ D 0,

so Proposition B.7 implies im.ed
k�1

/ D 2Z.

Corollary B.9. For m � 1 there are isomorphisms �nBOm�1 Š �nBOm for n �
m � 2, and a short exact sequence

m odd Z

m ¤ 2; 4; 8 even Z=2

m D 2; 4; 8 0

9>=>; �m�1BOm�1

8̂̂<̂
:̂

Z m � 1; 5 .mod 8/;

Z=2 m � 2; 3 .mod 8/;

0 m � 0; 4; 6; 7 .mod 8/:

Proof. The kernel was computed in Proposition B.7 form WD .d � `/. Just recall that
�mV`.”/ D �mBOm consists of isomorphism classes of all rank m vector bundles
over Sm, including those with Euler number 1. To compute the right-hand side, note
that by (B.5) the group �m�1BOm Š �m�1BO is in the stable range, so the result
follows from Bott periodicity.

B.2. Splittings for the first interesting homotopy groups

For X; � as above, let k WD `C 1 with 2 � k � d . If d � k is even (i.e. d � ` odd),
there is a group extension

Z �d�kVk.�/ �d�kX
ik frk (B.10)
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as we showed below (B.5). On the other hand, when d � k is odd, k � 2, d � k ¤
1; 3; 7, we know from Proposition B.7 that our extension is by Z=2:

Z=2 �d�kVk.�/ �d�kX:
ik frk (B.11)

We now ask in which circumstances these extensions split and how to construct such
splittings.

Proposition B.12. If 2 � k � d D dim.�/ with d � k even, splittings

�W�d�kVk.�/! Z

of the extension (B.10) are in bijection with integer liftsW W�d�kX !Z of the spher-
ical Stiefel–Whitney class

W  ! �W WD
1

2
.edk CW ı frk/:

Moreover, ws
d�k

.�/ can be nontrivial only for d � k D 2, 4, or 8, so apart from these
cases W D 0 gives the preferred splitting �0 D 1

2
ed
k

.

Proof. To show that the claimed formula for �W is a splitting, first note that the
division by 2 makes sense for any integer lift W of ws

d�k
.�/. Both summands are

homomorphisms and �W splits the inclusion ik because ed
k
.ik/ D 2 and frk.ik/ D 0.

Conversely, if � is any splitting, then .2� � ed
k
/.ik/ D 2 � 2 D 0, so 2� � ed

k
factors

through a homomorphism W�W�d�kX ! Z. This is an integer lift of ws
d�k

.�/.
Moreover, two splittings � differ by a unique homomorphism uW �d�kX ! Z

(composed with frk). Given one integer lift W of ws
d�k

.�/, we have a second lift
W C 2u, leading to another splitting �WC2u D �W C u ı frk . This shows the claimed
1-1 correspondence. The last claim follows from the solution of the Hopf invariant 1
problem as in Proposition B.7.

Proposition B.13. If 2 � k � d D dim.�/ with d � k ¤ 1; 3; 7 odd, then there is a
splitting �W�d�kVk.�/! Z=2 of (B.11) that only depends on the isomorphism class
of the vector bundle �d�k .

Proof. Note that for d � k odd, Euler numbers ed
k
D 0 are trivial, so the method

of the preceding proof does not construct splittings. However, Corollary B.9 gives
for d � k ¤ 1; 3; 7 odd a short exact sequence

Z=2 �d�kBOd�k �d�kBO D

´
Z=2 d � k � 1 .mod 8/;

0 d � k 6� 1 .mod 8/:
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Thus, in the case d � k 6� 1 .mod 8/, returning to X and comparing to the universal
bundle, we see that a splitting � arises by the formula

�.f / WD f �.�d�k/ 2 �d�kBOd�k Š Z=2:

On the other hand, if d � k � 1 .mod 8/ the displayed sequence splits,

�d�kBOd�k Š Z=2 � Z=2;

by Kervaire [20] (this is the entry r D �1 and m D 8s C 1 D d � k in his second
table, with s � 1, which is also our case since d � k ¤ 1). In particular, we get our
splitting that again only depends on the isomorphism class of �d�k ! Vk.X/ (but in
these cases we do not know an explicit formula).

B.3. Tangent bundles

We now improve the above results in the case � D TX is the tangent bundle of a
manifold. For d � k odd, this follows from (B.11), Proposition B.13 and Lemma B.15
below. For d � k even, this follows from (B.10), Proposition B.12 and Lemma B.16.
In Lemma B.6 we looked at k D 1.

Proposition B.14. For a compact d -manifoldX , let Vk.X/ WDVk.TX/ be its k-frame
bundle. For any 2 � k � d , except possibly for k D d � 1 � 3 or k D d � 3 � 5 or
k D d � 7 � 9, there is an extension

d � k even; Z

d � k odd; Z=2

µ
DW Zk;d �d�kVk.X/ �d�kX:

ik frk

These extensions split and for d � k even splittings are given by

�W D
1

2
.edk CW ı frk/;

where one can takeW D 0 unless d � k D 2; 4 or 8 and d � 2k. If d � k D 2; 4 or 8
and d D 2k an integral lift of ws

d�k
.TX/ exists and gives a desired W .

Lemma B.15. Assume k � 2 and d � k is odd. The homomorphism ed
k�1

.TX/ has
image 2 � Z unless k D d � 1 � 3 or k D d � 3 � 5 or k D d � 7 � 9.

Proof. By Proposition B.7 the image of ed
`
.�/ is 2 � Z if and only if the spheri-

cal Stiefel–Whitney class ws
d�`

.�/ vanishes, which is true unless d � ` D 2; 4; 8.
Thus, we just need to show that for � D TX , we additionally must have d � 2` with
` D k � 1 for ws

d�`
.TX/ not to vanish (since then d � k D 1; 3 or 7, and d � 2k � 2

gives k � d � k C 2 D 3; 5 or 9, respectively).
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If vj 2 H j .X IZ=2/ are the Wu classes of X and Sqi denotes Steenrod squares,
the Wu formula says

wd�`.TX/ D
X

iCjDd�`

Sqi .vj /:

Since the cohomology of Sd�` is concentrated in two dimensions, pulling back to
it kills all these summands, except possibly for Sq0.vd�`/ D vd�`. For any a 2
H `.X; @X IZ=2/, by the defining property,

hvd�` [ a; ŒX�i D hSq
d�`.a/; ŒX�i:

This vanishes on compact d -manifoldsX such that d > 2`, since Sqi is zero on coho-
mology classes in degrees < i . So wd�`.TX/ vanishes on spherical classes unless
d � 2`.

Lemma B.16. Assume k � 2 and d � k is even. The extension (B.10) for �d�kVk.X/
splits also in the cases d � k D 2; 4 or 8 if d � 2k.

Proof. The previous proof shows that ws
d�k

.TX/ vanishes unless d � 2k, so �W
with W D 0 is a splitting unless d � 2k. Thus, it remains to show that a lift W of
ws
d�k

.TX/ also exists in the middle-dimensional setting d D 2k with k D d � k D
2; 4 or 8. The following argument actually works for any k.

Consider the twisted intersection form of X , a bilinear pairing

h�;�iX WHk.X IZ/ �Hk.X IZ
w/! Z;

where the second term denotes coefficients twisted by w WD w1.TX/. The pairing is
given algebraically by Poincaré duality and cup products and geometrically by count-
ing transverse intersection points carefully with signs.

There are Hurewicz homomorphisms hW�kX !Hk.X IZ/ and their twisted part-
ners

hw W�kX Š �k zX
zh
�! Hk. zX IZ/ Š Hk

�
X IZŒ�1X�

� "w
�
��! Hk.X IZ

w/;

where "w WZŒ�1X� ! Zw is the �1X -linear map determined by "w.g/ WD w.g/ 2

¹˙1º for all g 2 �1X . In this middle dimension, any class a 2 �kX is represented by
a generic immersion AWSk# X and

hh.a/; hw.a/iX DW ha; aiX D 2hAiX C e.�A/;

where hAiX is the self-intersection number (the sum of signed double points of A)
and e.�A/ is the Euler number of the normal bundle �A ! Sk . The formula is proven
by intersecting A with a transverse push-off A" of A, and noting that intersection
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points in A t A" are either those where the normal vector vanishes, contributing
to e.�A/, or occur as a pair of points in a neighborhood of a self-intersection of A.

Using a�.TX/ Š TSk ˚ �A, we get

wsk.TX/.a/ D wk.a
�.TX//

D wk.TSk/C wk.�A/ � e.�A/ � ha; aiX .mod 2/: (B.17)

By definition,ws
k
.TX/ factors through the quotient �kX=ker.h/ and the twisted inter-

section form can also be restricted to a bilinear pairing on �kX=ker.h/�Hk.X IZw/.
Since it takes values in the torsion-free group Z, the formula (B.17) implies that
ws
k
.TX/ actually factors even further, namely through .�kX= ker.h//=torsion. By

compactness of X , we know that Hk.X IZ/ is finitely generated and so is its sub-
group im.h/Š �kX=ker.h/. Therefore, we have shown that ws

k
.TX/ factors through

a finitely generated torsion-free abelian group. As such groups are free, the required
integer liftW can be constructed by defining it on the free generators of this group.

We note that the 5-manifoldX D SU.3/=SO.3/ is simply connected, has �2X Š
Z=2with nontrivialws2.TX/. So there is no integer liftW and Lemmas B.15 and B.16
indeed fail for d D 5; k D 4 and d D 5; k D 3 (so d < 2k). As a consequence, our
assumptions are the best possible for d D 5.
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[22] D. Kosanović, A geometric approach to the embedding calculus knot invariants. PhD the-
sis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2020

[23] D. Kosanović, On homotopy groups of spaces of embeddings of an arc or a circle: The
Dax invariant. Trans. Amer. Math. Soc. 377 (2024), no. 2, 775–805 Zbl 1536.57035
MR 4688534
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