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1 Introduction

Alexandre-Théophile Vandermonde, a French musician and mathematician, was born in
Paris in 1735. His first love was music and he pursued a music career. He turned to math-

Die Formel für die Determinante der Vandermonde-Matrizen ist ein Klassiker der
linearen Algebra. Das Ergebnis hat zahlreiche Anwendungen in der Physik und in
der Mathematik. Es scheint jedoch keine Verallgemeinerung dieser Formel für die
Determinante der quadratischen Untermatrizen der Vandermonde-Matrix zu geben,
zumindest wurde dies vermutet. Aber auch hier gäbe es viele nützliche Anwendungen
für diese Determinanten. In der vorliegenden Arbeit wird nun ein kombinatorischer
Ansatz zur Berechnung dieser Determinanten vorgeschlagen. Dieser Ansatz führt zu
einer Vermutung über diese Determinanten im Allgemeinen. Um die Vermutung zu
untermauern, wird gezeigt, dass sie für den kleinsten nichttrivialen Fall von 3 � 3
Untermatrizen gilt. Die Autoren hoffen, dass andere dazu motiviert werden, den höher-
dimensionalen Fall zu betrachten, gegebenenfalls mit natürlichen Einschränkungen.
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ematics and worked with Bézout when he was 35 years old. He is remembered for his
contributions to the theory of determinants. A Vandermonde matrix, named after him, is
a matrix with the form 26664

1 x1 � � � xn�1
1

1 x2 � � � xn�1
2

:::
:::

:::
:::

1 xn � � � xn�1
n

37775:
The matrix is well known in linear algebra with various applications such as FFT in signal
processing, polynomial interpolations, having close relationship with Frobenius formula
in representation theory, etc. Finding a formula for the determinant of the Vandermonde
matrix is, with the right approach, easy. This formula is known to be

Q
1�i<j�n.xj � xi /,

which is a beautiful result with many applications in both physical and mathematical sci-
ences. There are also some generalizations of the Vandermonde matrix, of which the most
well known are 266664

x
k1
1 x

k2
1 � � � x

kn
1

x
k1
2 x

k2
2 � � � x

kn
2

:::
:::

:::
:::

x
k1
n x

k2
n � � � x

kn
n

377775;
where the ki ’s are integers satisfying 0 � k1 < � � � < kn. Computing the determinants of
this kind of generalized Vandermonde matrices is an elusive problem, and there seems to
be no generalizations of the above-mentioned formula for these determinants. However,
again, there are many useful applications of these determinants when they can be found.

In this paper, we give a way to compute the determinants of such 3 � 3 generalized
Vandermonde matrices. The solution involves a simplicial complex and suggests there
may be a combinatorial approach for finding the determinants of larger such matrices.
Indeed, our approach leads to a conjecture about these determinants in general. In support
of the conjecture, we prove that it holds true for the smallest nontrivial dimensional case,
that is, the 3 � 3 case. We hope others will be motivated to test the higher-dimensional
case, perhaps with natural restrictions. For further study, we refer the reader to the paper
of Kalman [3] which gives a clear introduction to the generalized Vandermonde matrices
and their applications. Also, the book of Horn and Johnson [2] is useful for a detailed
exposition of the theory of matrices.

2 A combinatorial viewpoint

In this section, we give a combinatorial way for computing the determinants of the 3 � 3
generalized Vandermonde matrices. In order to do this, we first prove a formula for the
determinants of such 3� 3matrices, which involves a homogeneous polynomial ˛.x;y;z/.
Using this homogeneous polynomial, we approach a combinatorial way for computing
the determinants of such 3 � 3 matrices. Finally, we give some questions and propose
a conjecture about higher dimensions, where our results prove the conjecture for dimension
three.
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2.1 A formulaic approach

In the sequel, our matrices only involve three variables, and thus, for simplicity, we call
these variables x, y and z. Therefore, given integers 1� n < p, our problem is to compute
the determinant of the matrix

V D

241 xn xp

1 yn yp

1 zn zp

35:
The following theorem leads to a combinatorial way for computing the determinant of

the 3 � 3 generalized Vandermonde matrix V . It is worthwhile to mention that, from now
on, the summations run over pairs or triples of nonnegative integers with some restrictions.

Theorem 2.1. The determinant of the 3 � 3 generalized Vandermonde matrix V is equal
to detV D .y � x/.z � y/.z � x/˛.x; y; z/, where

˛.x; y; z/ D
X

iCjCkDnCp�2
n�1�iCj <p�1�jCk

yjxizi .zk�i�1
C zk�i�2x C � � � C zxk�i�2

C xk�i�1/:

Proof. To begin, we subtract the second row of V from the third, and then the first from
the second. We get

detV D det

241 xn xp

0 yn � xn yp � xp

0 zn � yn zp � yp

35;
which, in turn, is equal to

detV D det
�
yn � xn yp � xp

zn � yn zp � yp

�
:

Recalling that n;p � 1, the elements of the first row in the above determinant are divisible
by y � x and those of the second by z � y. Factoring these out, we see that the determinant
of V is equal to

detV D .y � x/.z � y/ det

"P
iCjDn�1 x

iyj
P

iCjDp�1 x
iyjP

jCkDn�1 y
j zk

P
jCkDp�1 y

j zk

#
:

Note that the desired factor z � x in the statement of the theorem is missing. Before pro-
ceeding the proof of Theorem 2.1, we need the following lemma.

Lemma 2.2. For any integers n; p � 1, the following equality holds true:� X
iCjDn�1

xiyj
�� X

jCkDp�1

yj zk
�
D

X
iCjCkDnCp�2

iCj�n�1
jCk�p�1

xiyj zk :
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Proof. The terms of the product in the left-hand side of the above formula are of the form
xiyj1yj2zk with i C j1D n� 1 and j2C kD p � 1. Note that xiyj1yj2zk D xiyj1Cj2zk

and let j1 C j2 D j . Thus, we get xiyj zk , where

i C j C k D i C j1 C j2 C k D n � 1C p � 1 D nC p � 2

and where i C j � n� 1 since i C j � i C j1D n� 1, and similarly, where j C k�p� 1.
Conversely, given a term xiyj zk with i C j C k D nC p � 2 and with i C j � n� 1

and j C k � p � 1, note that we must have i � n� 1. For if i > n� 1, then since j C k �
p � 1, we get i C j C k > nC p � 2, while i C j C k D nC p � 2. Similarly, we must
have k � p � 1. Thus, since i � n � 1 and i C j � n � 1, there exists j1 � j such that
i C j1 D n � 1. Let j2 D j � j1. This implies that

i C j1 C j2 C k D i C j C k D nC p � 2 D n � 1C p � 1;

and thus, we get j2 C k D p � 1.
By the above observation, we see that we get a bijective correspondence between the

.i; j; k/ with i C j C k D nC p � 2, i C j � n � 1 and j C k � p � 1, and pairs of
pairs .i; j1/ and .j2; k/ such that i C j1 D n � 1 and j2 C k D p � 1. This says that we
can rewrite the product

�P
iCjDn�1 x

iyj
��P

jCkDp�1 y
j zk

�
asX

iCjCkDnCp�2
iCj�n�1
jCk�p�1

xiyj zk ;

which completes the proof of Lemma 2.2.

Now, we continue the proof of Theorem 2.1. By applying Lemma 2.2, we obtain

detV D .y � x/.z � y/
� X

iCjCkDnCp�2
iCj�n�1
jCk�p�1

xiyj zk
�

X
iCjCkDnCp�2

iCj�p�1
jCk�n�1

xiyj zk
�
:

We want to subtract off the common terms in the difference appearing in the above equal-
ity. Recalling that n < p, we see that these are the xiyj zk with i C j C k D nC p � 2,
i C j � p � 1 and j C k � p � 1. After subtracting the common terms and reversing the
order in which we write our inequalities, we obtain

detV D .y � x/.z � y/
� X

iCjCkDnCp�2
n�1�iCj <p�1�jCk

xiyj zk
�

X
iCjCkDnCp�2

n�1�jCk<p�1�iCj

xiyj zk
�
:

Note that if we have a term xiyj zk in the first sum of the difference appearing in the
above equality, then we have the term xkyj zi in the second sum. Thus, our difference can
be written as X

iCjCkDnCp�2
n�1�iCj <p�1�jCk

.xiyj zk
� xkyj zi /:
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Our inequalities i C j < p � 1 � j C k force the inequality k � i > 0. Thus, we may
write the general term of the latter sum as follows:

xiyj zk
� xkyj zi

D yj .xizk
� xkzi /

D yjxizi .zk�i
� xk�i /

D yjxizi .z � x/.zk�i�1
C zk�i�2x C � � � C zxk�i�2

C xk�i�1/:

We now have the missing factor z � x in each term, and thus, factoring it out, we see that
detV D .y � x/.z � y/.z � x/˛.x; y; z/, where ˛.x; y; z/ isX

iCjCkDnCp�2
n�1�iCj <p�1�jCk

yjxizi .zk�i�1
C zk�i�2x C � � � C zxk�i�2

C xk�i�1/:

This completes the proof of Theorem 2.1.

2.2 A combinatorial approach

We now give a combinatorial way for computing the determinant of the 3 � 3 gener-
alized Vandermonde matrix V . In order to do this, by Theorem 2.1, we need to focus
on ˛.x; y; z/, which is a homogeneous polynomial of degree n C p � 3. Suppose that
axiyj zk with a ¤ 0 is a term of ˛.x; y; z/. We substitute 1 for y in this term, and we
get axizk . Conversely, if axizk , a ¤ 0, is gotten in this manner, then we know j of
the term axiyj zk since i C j C k D nC p � 3. This means that if we find ˛.x; 1; z/,
then ˛.x; y; z/ is completely known, and so is detV . Thus, our purpose is indeed to give
a combinatorial way for finding ˛.x; 1; z/. In this direction, we consider

˛.x; y; z/ D
X

iCjCkDnCp�2
n�1�iCj <p�1�jCk

yj .zk�1xi
C � � � C zixk�1/;

and by substituting 1 for y, we get

˛.x; 1; z/ D
X

iCjCkDnCp�2
n�1�iCj <p�1�jCk

.zk�1xi
C � � � C zixk�1/:

We want to express our inequalities in i and k alone by using the equality i C j C k D
nC p � 2. To this end, consider n � 1 � i C j . This becomes n � 1 � nC p � 2 � k or
k � p � 1. In a similar manner, i C j < p � 1 becomes i C j < .i C j C k � nC 2/� 1
or n� 1 < k, and p � 1 � j C k becomes p � 1 � nC p � 2� i or i � n� 1. Thus, our
three inequalities are

i � n � 1 < k � p � 1:

Note that if i and k satisfy these latter inequalities, then

i C k � n � 1C p � 1 D nC p � 2:
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.0; n � 1/ .n � 1; n � 1/

.0; p � 2/ .n � 1; p � 2/

Figure 1. The rectangle regarding our indices

Thus, we obtain

˛.x; 1; z/ D
X

i�n�1<k�p�1

.zk�1xi
C � � � C zixk�1/:

Finally, by shifting the indices, we get

˛.x; 1; z/ D
X

i�n�1�k�p�2

.zkxi
C � � � C zixk/:

We are now in the position to think geometrically. From now on, the rectangles are
considered with boundary and interior. By considering the .i; k/-plane, our indices with

0 � i � n � 1 � k � p � 2

correspond to the points with integer coordinates in the rectangle appearing in Figure 1.
Note that this rectangle can be degenerate, that is, it can be a proper line segment (when
n � 1 D 0, p � 2 > 0 or p � 2 D n � 1, n � 1 > 0) or even a point (when n � 1 D
p � 2 D 0). We are interested in computing ˛.x; 1; z/, which is the sum of polynomials
zkxi C � � � C zixk , when the summation runs over all pairs .i; k/ in our rectangle. Given
integers s; t � 0, we let C.s; t/ be the coefficient of xszt in

˛.x; 1; z/ D
X

i�n�1�k�p�2

.zkxi
C � � � C zixk/:

Therefore, C.s; t/ is the number of .i; k/ in our rectangle such that xszt is one of the
terms of zkxi C � � � C zixk . Note that ˛.x; 1; z/ is completely determined by calculating
the coefficients C.s; t/. Thus, our purpose would be in fact to give a combinatorial way
for calculating each C.s; t/. In proceeding, we want to state this calculation in a geometric
fashion.

We need to introduce a notion that plays an important role for us. Let a, b, c and d
be nonnegative integers. Then, by the lattice segment Œ.a; b/; .c; d/�, we mean the set of
all points .s; t/ with integer coordinates on the line segment from .a; b/ to .c; d/. For
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example, the lattice segment Œ.3; 0/; .0; 0/� is as follows:

Œ.3; 0/; .0; 0/� D ¹.3; 0/; .2; 0/; .1; 0/; .0; 0/º:

For our purpose, that is, for calculating each C.s; t/, we will be interested in such
lattice segments having “slope” �1, and in particular, such lattice segments as

Œ.i; k/; .k; i/� D ¹.i; k/; .i C 1; k � 1/; : : : ; .k � 1; i C 1/; .k; i/º;

where i � k. (Note that .k; i/ is the reflection of .i; k/ through the line i D k.) By using
this lattice segment, we are led to a combinatorial way for computing C.s; t/ given above.
Indeed, C.s; t/ is equal to the number of lattice segments Œ.i; k/; .k; i/� with .i; k/ 2
Œ0; n� 1� � Œn� 1; p � 2� such that .s; t/ 2 Œ.i; k/; .k; i/�. It is worthwhile to mention that
this description of C.s; t/, together with noting that .s; t/ 2 Œ.i; k/; .k; i/� if and only if
.t; s/ 2 Œ.i; k/; .k; i/�, shows that C.s; t/ is symmetric in s and t , that is, C.s; t/D C.t; s/.

To illustrate, suppose that n� 1 D 2 and p � 2 D 5. We want to compute C.3; 3/. We
have .1; 5/ 2 Œ0; 2� � Œ2; 5� and

Œ.1; 5/; .5; 1/� D ¹.1; 5/; .2; 4/; .3; 3/; .4; 2/; .5; 1/º:

Thus, we get a contribution of one to C.3; 3/ using the point .1; 5/ in our rectangle. The
only other point in the rectangle which makes such a contribution is .2; 4/. Therefore,
C.3; 3/ D 2. Hence, 2 is the coefficient of x3z3 in ˛.x; 1; z/.

2.3 A ladder to the higher dimensions

We need to elaborate in order to think about the higher dimensions. Given 1 � n � p � 1,
we let R be the rectangle appearing in Figure 2. If we reflect R about the line i D k, then
we get the rectangle R0. If we combine R and R0, we get the two rectangles appearing in
Figure 3. If we add the two skew dashed line segments, we then get a hexagon H with
dashed boundary appearing in Figure 3. From now on, for simplicity, by a hexagon, we
mean the set of all points with integer coordinates in this hexagon. Thus, our hexagon H

.0; n � 1/ .n � 1; n � 1/

.0; p � 2/ .n � 1; p � 2/

R

Figure 2. The rectangle R
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R

R0

Figure 3. Combining the rectangles R and R0

Figure 4. One half of the curve C.s; t/ D 1

is indeed the union of all lattice segments Œ.i; k/; .k; i/� with .i; k/ 2 R, which, in turn, is
equal to the set of all .s; t/ with C.s; t/ � 1. But we are interested in exploring the set of
all .s; t/with C.s; t/D 1. It is not hard to see that, for all .s; t/ on the parts of the boundary
of H appearing in Figure 4, we have C.s; t/ D 1. Using the symmetry of C.s; t/, we get
C.s; t/ D 1 for all .s; t/ on the boundary of H . In fact, these are precisely all of the points
.s; t/ with C.s; t/ D 1. Therefore, if we think of C.s; t/ D 1 as a contour curve, we get
that this curve is precisely the boundary of H .

Now that we have indicated how we argue, we will give other results without formal
proofs. We recall that our purpose is to give a combinatorial description of ˛.x; y; z/, via
˛.x; 1; z/, that possibly has some extension to the higher dimensions. Let us first make
some comments about the rectangle R. By recalling the coordinates of R, we see that R is
a square if and only if .n � 1/ � 0 D .p � 2/ � .n � 1/, so if and only if p D 2n. Also,
note that R can be a degenerate rectangle, so a proper line segment (when n � 1 D 0,
p � 2 > 0 or p � 2D n� 1, n� 1 > 0) or a point (when n� 1D p � 2D 0). In this case,
H becomes a proper triangle (so here a degenerate hexagon) or a point.



A combinatorial approach for computing the determinants of the generalized Vandermonde matrices 145

We now consider the contour curve C.s; t/D 2. By sketchingH , we see that C.s; t/D
2 holds true for all .s; t/ which lie on the following lattice segments:

Œ.n � 1; 1/; .1; n � 1/�; Œ.1; n � 1/; .1; p � 3/�;

Œ.1; p � 3/; .n � 1; p � 3/�; Œ.n � 1; p � 3/; .p � 3; n � 1/�:

Now, by using the symmetry of C.s; t/, we can argue that the graph of C.s; t/D 2 consists
of these four lattice segments and their reflections through the line i D k. Thus, the graph
of C.s; t/ D 2 is the boundary of a hexagon contained in our original hexagon H . We can
repeat and get the curves

C.s; t/ D 1; C.s; t/ D 2; : : : ;

which are the boundaries of the hexagons and each of which contained the hexagon corre-
sponding to the previous curve. The procedure stops when we finally get that C.s; t/ D k
corresponds to a degenerate hexagon, that is, a triangular or a point. In this stage, k is
the maximum value of C.s; t/, and this function acquires its maximum k on all points of
this degenerate hexagon. It can be argued that the maximum value of C.s; t/ is n in case
p � 2n and is p � n in case p � 2n (recall that p D 2n only when R is a square).

We close the above discussion by giving two degenerate examples. If R is the lattice
segment Œ.0; 0/; .0; 5/�, then H is the triangle with vertices .0; 0/; .0; 5/; .5; 0/. Thus,
C.s; t/ D 1 for all .s; t/ in this triangle and C.s; t/ D 0 otherwise. Therefore,

˛.x; 1; z/ D
X

iCk�5

xizk :

If R is the lattice segment Œ.0; 0/; .0; 0/�, then we easily get C.0; 0/ D 1 and C.s; t/ D 0
otherwise. Therefore,

˛.x; 1; z/ D 1:

Given our H and function C.s; t/, we can think of C.s; t/ as a height function. In this
case, the points .s; t; C.s; t// will form a simplicial complex. It follows from the earlier
remarks that this complex will be a (maybe truncated) pyramid sitting on a face of height
one. In this regard, we want to give some questions and propose a conjecture, which papers
[1,4] add a little weight to them. We conclude the paper by stating these questions and our
conjecture.

2.4 Some questions and a conjecture

In order to make the questions precise, one needs to generalize the above-mentioned nota-
tions to the higher dimensions. Let i1; : : : ; in and j1; : : : ; jn be nonnegative integers
.n � 3/. Then Œ.i1; : : : ; in/; .j1; : : : ; jn/� and ˛.x1; : : : ; xn/ could be defined in a similar
way as we defined them for the two-dimensional case and for the 3� 3 generalized Vander-
monde matrices. Now, letC.i1; : : : ; in/ be the coefficient of xi1

1 : : :x
in
n in the corresponding

˛.x1; : : : ; xn/. By [4], the coefficients C.i1; : : : ; in/ of ˛.x1; : : : ; xn/ are all nonnegative
(see also [1]). Also, in [1, 4], the authors have provided a formula for

P
C.s1; : : : ; sn/,

where the summation runs over all .s1; : : : ; sn/ in a suitable set, say H , as above. For this
purpose, we raise the following questions.
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Questions 2.3. Let n � 3 be an integer and suppose that C.i1; : : : ; in/ is the coefficient of
xi1

1 : : : x
in
n in the corresponding ˛.x1; : : : ; xn/.

(1) Is the set of .i1; : : : ; in/ with C.i1; : : : ; in/ > 0 convex? Here, convex means that if
.i1; : : : ; in/ and .j1; : : : ; jn/ are two such points, then all

.s1; : : : ; sn/ 2 Œ.i1; : : : ; in/; .j1; : : : ; jn/�

satisfy C.s1; : : : ; sn/ > 0. If this condition does not hold, is the set at least pathwise
connected? Here, our paths are sequences of such lattice segments satisfying the
obvious conditions .for example, concerning end points of adjacent segments/.

(2) The same question as above about the set of .i1; : : : ; in/ with C.i1; : : : ; in/ � 1.

(3) Is the set of .i1; : : : ; in/ with C.i1; : : : ; in/D 1 pathwise connected? If so, are there
simple such paths?

(4) Is there a way to find the largest value of C.i1; : : : ; in/?

(5) IfC.s1; : : : ; sn/D k andC.t1; : : : ; tn/D `, where k and ` are nonnegative integers,
does C take every integer value between k and `?

We now state our conjecture, but with some explanations. Let us state the conjecture
for the following 4 � 4 generalized Vandermonde matrix, where 1 � k1 < k2 < k3 are
some integers: 26664

1 x
k1
1 x

k2
1 x

k3
1

1 x
k1
2 x

k2
2 x

k3
2

1 x
k1
3 x

k2
3 x

k3
3

1 x
k1
4 x

k2
4 x

k3
4

37775:
Let ˛.x1; x2; x3; x4/ as usual, that is, the determinant of the above matrix divided byQ

1�i<j�4.xj � xi /. Our object is to find the coefficients C.i1; i2; i3; i4/ of xi1
1 x

i2
2 x

i3
3 x

i4
4

in ˛.x1; x2; x3; x4/. Let k D k1 C k2 C k3 � 6, which is the degree of the homogeneous
polynomial ˛.x1; x2; x3; x4/. It is known that C.i1; i2; i3; i4/ � 0 for all .i1; i2; i3; i4/
(see [1, 4]). Thus, we consider the set of .i1; i2; i3; i4/ with i1 � 0, i2 � 0, i3 � 0, i4 � 0
and with i1C i2C i3C i4 D k. Now, we can consider the simplicial complex C , where its
vertices are the .i1; i2; i3; i4/ in our set with C.i1; i2; i3; i4/ > 0. Also, an edge in C will
be formed by the following paths as long as the two end points are in C :

Œ.i1 ˙ 1; i2; i3; i4/; .i1 � 1; i2; i3; i4/�;

Œ.i1; i2 ˙ 1; i3; i4/; .i1; i2 � 1; i3; i4/�;

Œ.i1; i2; i3 ˙ 1; i4/; .i1; i2; i3 � 1; i4/�;

Œ.i1; i2; i3; i4 ˙ 1/; .i1; i2; i3; i4 � 1/�:

Let k be the maximum value of C.i1; i2; i3; i4/. We are interested in describing the set of
.i1; i2; i3; i4/ with

C.i1; i2; i3; i4/ D 1;
:::

C.i1; i2; i3; i4/ D k:
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We may propose the following conjecture.

Conjecture 2.4. Suppose that C is the above-mentioned simplicial complex. Then there
are “spheres” S1; : : : ; Sk�1 in C such that SjC1 is precisely the points in the interior of
Sj connected by an edge with a point in Sj (1 � j � k � 2). Moreover,

(1) Sj is the graph of C.i1; i2; i3; i4/ D j (1 � j � k � 1) and

(2) T is the graph of C.i1; i2; i3; i4/ D k, where T is the interior of Sk�1.

If the conjecture is true, then to find ˛.x1; x2; x3; x4/, we would need to know k,
the maximum value of C.i1; i2; i3; i4/, and to know for which .i1; i2; i3; i4/ we have
C.i1; i2; i3; i4/ D 1. We can propose an analogous conjecture for the n � n general-
ized Vandermonde matrices with n � 4. Our results show that the analogous conjecture
for n D 3 is true. In order to see this, we need to add the third coordinate j so that
i C j C k D nC p � 2. Then the conjecture would say there are circles U1; : : : ; U`�1; V ,
where ` is the maximum value satisfying the analogous condition. In fact, our circles are
hexagons.

Acknowledgments. The authors would like to express their thanks to the referee for care-
ful checking of the details of the paper and for pointing out the typos.
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