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Short note An improvement of the Weitzenböck
inequality

Wei-Dong Jiang

In a triangle ABC , with the sides a; b; c, the semi-perimeter, circumradius and inradius
are denoted by s; R and r respectively;4 is its area.

The celebrated Weitzenböck inequality can be stated as follows:
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Equality holds if and only if the triangle is equilateral.
This was first proved in 1919 [2]. It has received considerable attention from re-

searchers in the field of geometrical inequalities and has motivated a number of papers
providing various sharpening, generalisations and improvements.

In this note, we consider the following problem: what is the greatest value of k such
that the inequality
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holds?
Since
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let
.A;B; C / D .� � 2x; x; x/; 0 < x < �:

Then (1) is changed to
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Multiply both sides by x and let x! 0; then x cotx! 1, x
sin x
! 1. At this point, one can

get
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:
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The next theorem proves that (1) holds for k D 9
4

.

Theorem 1. In4ABC , we have
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Equality holds if and only if the triangle is equilateral.

Proof. Using the basic identities in the triangle ABC ,
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it follows that (2) is equivalent to
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This is true since
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follows from Gerretsen’s inequality s2 � 16Rr � 5r2 and Euler’s inequality R � 2r and
the following sharpened Gerretsen inequality [1, Theorem 2]:

16Rr � 5r2
C
r2.R � 2r/

R � r
� s2

� 4R2
C 4Rr C 3r2

�
r2.R � 2r/

R � r
:

References

[1] M. Lukarevski, A new look at the fundamental triangle inequality, Math. Mag. 96 (2023), no. 2, 141–149.
Zbl 07687517 MR 4570210

[2] R. Weitzenböck, Über eine Ungleichung in der Dreiecksgeometrie, Math. Z. 5 (1919), 137–146.
MR 1544379

Wei-Dong Jiang
Department of Information Engineering
Weihai Vocational College
264210 Weihai City, ShanDong Province, P. R. China
jackjwd@163.com

https://doi.org/10.1080/0025570X.2023.2176106
https://zbmath.org/?q=an:07687517
https://mathscinet.ams.org/mathscinet-getitem?mr=4570210
https://doi.org/10.1007/BF01203160
https://mathscinet.ams.org/mathscinet-getitem?mr=1544379
mailto:jackjwd@163.com

	References

