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Short note A generalization of Boole’s formula derived
from a system of linear equations

Haoran Zhu

Abstract. We analyze a system of linear algebraic equations whose solutions lead to
a proof of a generalization of Boole’s formula. In particular, our approach provides an
elementary and short alternative to Katsuura’s proof of this generalization.

1 Introduction

Due to their numerous relations, binomial coefficients play an important role in various
mathematical fields, including enumerative combinatorics, statistics and number theory.
In Boole’s classical book “Calculus of Finite Differences” [5], the following beautiful
formula is given, which holds for 1 � m � n 2 N:
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(1)

It is known that the formula is related to Stirling’s partition numbers S.m;n/ (see, e.g., [7]),
which is given by the following equation:
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The relations between the formulas have implications for the study of the degrees of
normed null-polynomials and the derivation of inequalities associated with the Smaran-
dache function (see [10, 11]).

The enduring interest in Boole’s formula has led to a variety of proof techniques being
developed over the years. Gould [6] discussed its properties and called it Euler’s formula.
In 2005, Anglani and Barile [2] introduced two proofs via methods from real analysis and
combinatorics. Subsequently, Phoata [9] and Katsuura [8] provided new proofs and gave
a generalization of Boole’s formula. In this note, we give a short and elementary proof
of this formula which is based on a system of linear equations. More recently, Alzey and
Chapman [1] have presented a novel proof, while Batır and Atpınar [3, 4] have indepen-
dently developed two entirely new approaches to validating Boole’s formula.
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2 Solutions of linear algebraic equations

Let us consider the following system of linear equations:2666664
1 1 � � � 1

a aC b � � � aC nb

a2 .aC b/2 � � � .aC nb/2

:::
:::

: : :
:::

an .aC b/n � � � .aC nb/n

3777775
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0

0

0
:::

bn � nŠ

3777775: (2)

Here a; b can be any real numbers and the coefficient matrix V is a Vandermonde matrix.
To solve this system, we first calculate the determinant of V . Since V is a Vandermonde

matrix, its determinant can be computed as follows:

det.V / D
Y

0�j <i�n

�
.aC ib/ � .aC jb/

�
D nŠ � .n � 1/Š � � � 1Š � b

n.nC1/
2 :

We then proceed to define the matrix Vk as

Vk D

26664
1 1 � � � 1 0 1 � � � 1

a aC b � � � aC .k � 1/b 0 aC .k C 1/b � � � aC nb
:::

:::
: : :

:::
:::

:::
: : :

:::

an .aC b/n � � � .aC .k � 1/b/n bn � nŠ .aC .k C 1/b/n � � � .aC nb/n

37775;

and we denote the matrix obtained by removing the .nC 1/-th row and .k C 1/-th column
from Vk as V 0

k
. The determinant of Vk is computed by applying Laplace’s expansion along

the .kC 1/-th column, which yields the determinant of the submatrix V 0
k

. This submatrix is
also a Vandermonde matrix, and its determinant can be computed using the way previously
showed:

det.Vk/ D .�1/n�k
� bn
� nŠ � det.V 0k/

D .�1/n�k
� b
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2 � nŠ �

nŠ � � � .k C 1/Š � .k � 1/Š � � � 1Š

.n � k/Š
:

Then, by Cramer’s rule, we obtain the following explicit expression for xk :
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Reading the equations in (2) one by one, we obtain the following result.

Theorem (Generalization of Boole’s formula). For any real numbers a and b, and for
1 � m � n 2 N, we have
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.�1/n � bn � nŠ if m D n:
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For the special case aD 0, bD 1, the result in the theorem implies Boole’s formula (1).
Perhaps, similar approaches from linear algebra can also be used to generalize other com-
binatorial identities.
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