Rev. Mat. Iberoam. (Online first)
DOI 10.4171/RMI/1529

©2024 Real Sociedad Matematica Espariola
Published by EMS Press

Oscillatory integrals and weighted gradient flows

Michael Greenblatt

Abstract. We investigate estimating scalar oscillatory integrals by integrating by
parts in directions based on (x10x, f(X), ..., Xn0x, f(x)), where f(x) is the phase
function. We prove a theorem which provides estimates that are uniform with respect
to linear perturbations of the phase and investigate some consequences. When the
phase function is quasi-homogeneous the theorem gives estimates for the associ-
ated surface measure Fourier transforms that are generally not too far off from being
sharp. In addition, the theorem provides a new proof, up to endpoints, that the well-
known oscillatory integral estimates of Varchenko when the Newton polyhedron
of the phase function is nondegenerate extend to corresponding bounds for surface
measure Fourier transforms when the index is less than 1/2. A sharp version of this
was originally proven by the author [J. Funct. Anal. 262 (2012), no. 5, 2314-2348].

1. Background and theorem statements

We consider oscillatory integrals of the form
(1.1) 1) = [e“f(xl’""x")qﬁ(xl,...,x,,)dxl ceodxp.

Here f(x) is areal analytic function defined on a bounded neighborhood U of the origin,
¢(x) is a C! real-valued function supported in U, and A is a real parameter. Often one
seeks estimates of the form |1(A)| < h(|A|), where & is an appropriately decreasing func-
tion, such as a function of the form C(1 + |A|) ™%, for C, s > 0. We will always assume that
V f(0) = 0 to ensure we are in a nontrivial situation. By subtracting a constant from f,
without loss of generality we may also assume that f(0) = 0.

A canonical example of where oscillatory integrals (1.1) show up is in the analysis of
Fourier transforms of surface measures. If S is a surface in R” ! that is given by the graph
of a real analytic f(xy,...,X,) on a bounded neighborhood U of the origin and ¢ (x) is
a real-valued C! function supported in U, then the Fourier transform of the Euclidean
surface measure on S localized through ¢ (x), which we denote by pu, is given by

(1.2) [L(/Xl,...,)L,H_l)=/e_i’\”“f(xl""’x")_Mlxl_"'_M”x”¢(x1,...,x,,)dxl---dxn.
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We always assume the surface has been translated and rotated so that like before, f(0) =0
and V f(0) = 0. This time the goal is to find estimates of the form |&(1)| < h(|A]) for
appropriate decreasing /. Since Fourier transforms of surface measures appear in a range
of subjects including restriction problems, maximal averages, lattice point discrepancy,
and more, estimates of this form can help lead to developments in those subjects. We refer
to Chapter 8 of [20] for an introduction to the connections between surface measure Four-
ier transforms and restriction problems, and we refer to [11] for background material on
the connections between maximal averages, lattice point discrepancy, and surface meas-
ure Fourier transforms. The paper [11] also describes various results on surface measure
Fourier transforms.

Since the phase function in (1.2) is a linear perturbation of that of (1.1), one approach
to proving such bounds on |ft(1)] is to provide bounds on |I/(A)| that are uniform under
linear perturbations of the phase. In this paper, we will describe one method of doing that.

To motivate what we will be doing, observe that one approach to the analysis of oscil-
latory integrals (1.1)—(1.2) is to appropriately divide the domain of integration into curves,
do an appropriate integration by parts on each curve, and then integrate the result in the
remaining n — 1 dimensions. The hope would be that if the curves are properly chosen
then one could obtain desirable functions /(|A|) bounding the overall oscillatory integral.
A clue on how to select these curves is given by how oscillatory integral decay is often
connected to bounds on sublevel set measures. Namely, in many situations, the supremum
of the ¢ for which (1.1) satisfies a bound |I(A)| < C(1 4 |A])~¢ for some C > 0 is the
same as the supremum of the ¢ for which there is a constant C > 0 such that the following
holds for all s > 0:

(1.3) m({x e U :|f(x)]| < s}) < Cs®.

Here m is Lebesgue measure. This suggests that one might get good results if the curves on
which one performs the integrations by parts are perpendicular to the boundaries of these
sublevel sets. In other words, one might choose these curves to be tangent to V f. This
idea is further bolstered by the fact that f(x) increases or decreases fastest in the direction
of the gradient, so that the phase oscillates fastest in the directions of such curves.

However, the above is not the whole story, since even if the phase is oscillating quickly
in directions tangent to a curve, if the second derivative of the phase is also large, these
quick oscillations might not have the desired effect; the curve might head rapidly into
region where the phase has a stationary point. Thus to add some flexibility to our activ-
ities, we consider not just curves whose tangents are in the direction of V f, but also in
directions (a1 (x)0x, f(x),...,a,(x)dx, f(x)), where the weights a; (x) are real analytic
or even quotients of real analytic functions.

Using directions of this form have an additional advantage. If one replaces f(x) by
f(x) + b - x for some b € R”, then a;(x)df/dx; becomes a;(x)(df/dx; + b;). Using
resolution of singularities one can show that, generally speaking, for the type of a;(x)
under discussion, if one has sublevel set measure estimates of the form

m({er:lX:; /

ai(x)g—Xi < s}) <Cs*®
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for some C > 0and 0 < ¢ < 1, then if U is sufficiently small, the same will hold when each
a;(x)af/dx; is replaced by a; (x)(df/dx; + b;). This will allow us to state our theorems
in terms of the optimal ¢ for which sublevel set bounds of the form (1.3) hold for certain
functions of the form Y /', |a;(x)df/dx;| (where the a;(x) are slightly different from
the a;(x).) Hence we will have a way of estimating |/(A)| that is uniform under linear
perturbations, providing a way of bounding |L(1)].

To motivate possible choices of the weight functions «;(x), we consider the case
where f(x) is a monomial ax}" -+ x;". When o; > 0, the effect of taking an x; derivative
on f(x) is to multiply it by a constant times x; '. This suggests that for “balance”, one
might choose a; (x) = x;, so that the directions in which one integrates by parts are of
the form (x10yx, f(x),..., X, 0x, f(x)). Our main theorem, Theorem 1.1, will be based on
using such weights. We will then see in Section 2.1 that this theorem provides good bounds
for |[f1(A)| when f(x) is a quasi-homogeneous polynomial. Then, in Section 2.2, we will
that Theorem 1.1 can be used to show, up to endpoints, that when f(x) has nondegenerate
Newton polyhedron in the sense of [21], the optimal estimates for |/(1)| in [21] extend to
analogous bounds for surface measure Fourier transforms. This was earlier shown (includ-
ing endpoints) in [9].

Other choices of a;(x) also lead to results that might be of some interest, but for
simplicity of exposition, we are only focusing on the weights a; (x) = x; in this paper.

We now come to our theorem, whose proof is based on using the above weighted
gradient flow. While it gives especially desirable results in the above situations, the the-
orem holds generally.

Theorem 1.1. Suppose ¢ (x) is C and f(x) is real analytic with £(0)=0and V £(0)=0.
Suppose W is a bounded neighborhood of the origin such that if € > 0 is such that for
some C > 0 and all s > 0 one has the sublevel set measure estimate

(1.4) m({x ew: % < s}) < Cs°®.

Then if U C W is a sufficiently small ball centered at the origin, the following hold.

(1) Forall§ <e/(e+ 1), there is a constant A such that |I(1)| < A(1 + |A|)~% whenever
¢ is supported in U. Here A depends on f, ¢, and 6.

(2) For all § < min(e/ (e + 1), 1/2), there is a constant B such that one has |1(A)| <
B(1 + |A|)~% whenever ¢ is supported in U. Here B depends on f, ¢, and §.

An examination of the proof of Theorem 1.1 reveals that the condition that ¢ is C'! can
actually be weakened to requiring that there is a constant M for which |¢(x)| < M and
|0x;¢(x)| < M/|x;| for each i. On the other hand, if ¢ is smooth, it turns out that if U is a
small enough neighborhood of the origin, if € is such that the sublevel set bounds (1.3) hold
for some C, then one automatically has |/ ()] < C'(1 + |A]|)~¢ for some C’ depending
on f, ¢, and U. If in addition ¢ (x) is nonnegative with ¢(0) > 0, then the supremum
of the ¢ for which such an estimate |I(1)] < C’(1 + |A|)7¢ holds is actually equal to
the supremum of the & for which (1.3) holds, unless the former supremum is a negative
integer. We refer to Chapter 6 of [1] for more information about these matters. This leads
to the following corollary to Theorem 1.1, which may be of interest in its own right.
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Corollary 1.2. If W is a bounded neighborhood of the origin and &, denotes the su-
premum of the € for which (1.4) holds for some C, then if U C W is a sufficiently small
neighborhood of the origin and e, denotes the supremum of the ¢ for which (1.3) holds for
some C, then ¢1/(e1 + 1) < &5.

Although we will not prove it here, using resolution of singularities one can show
that £ is independent of W and ¢, is independent of U if W and U are sufficiently small
neighborhoods of the origin, so that one can take U = W in Corollary 1.2.

There has been quite a bit of work done on scalar oscillatory integrals of the form (1.1).
In addition to [21], some notable examples include the papers [3, 6,7, 13, 19]. For the sur-
face measure Fourier transforms (1.2), there has also been a lot of work done, in part due to
their connections with maximal averages, lattice point discrepancy, and other areas. Much
of the effort in this area has focused on either convex surfaces or the two-dimensional
case. We mention the references [2, 4, 5, 18] for the convex situation, and [16, 17] for the
two-dimensional situation.

Gradient flows for scalar oscillatory integrals are often used in fields such as physics
when putting the method of steepest descent into effect. In addition, gradient flows appear
in various areas of mathematics, including partial differential equations, optimization, and
more applied fields like computer vision and machine learning. The author does not know
of any specific connection between this paper and the work in the above subjects, but it
might be a direction worth exploring.

2. Consequences of Theorem 1.1

2.1. Quasi-homogeneous functions

A polynomial p(x1,...,x,) =Y, cex* is said to be quasi-homogeneous if there are pos-
itive rational numbers k1, . . ., k, such for any o = (o, . .., ®,) for which ¢, # 0, one has
Z?:l kio; = 1. An equivalent statement is that p(tklxl, e tk"x,,) =1tp(X1,...,Xn)
for all (xq,...,x,) € R" and all £ > 0, and this definition extends the former defin-
ition to non-polynomials. A canonical example of a quasi-homogeneous polynomial is
xil + e+ xf,", where one has k; = 1/1; foreachi.

Note that if f(x) is a quasi-homogeneous polynomial, the function Y 7_, |x;/f/x;|
appearing in Theorem 1.1 is also quasi-homogeneous, with the same (k1, ..., k,). Given
the nature of the statement of Theorem 1.1, it makes sense that we would want to under-
stand the growth rate of the measure of the sublevel sets of quasi-homogeneous functions.
Suppose f(x) is a quasi-homogeneous function and k1, ..., k, are as above. Let V' be a
bounded neighborhood of the origin, and let g be defined by the supremum of the ¢ such
that there is a constant C > 0 such that

.1) m({x €V | f(x)] <s}) < Cs®.

Here, as before, m denotes Lebesgue measure, and we will always work with functions for
which gy > 0. Note that an equivalent definition of &g is the supremum of the ¢ such that

(2.2) /V | ()] dx < oo.
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By the quasihomogeneity of £, the number & is independent of V. In particular, one may
take V' to be the box {x : —1 < x; < 1 for all i}, which we do henceforth. If we change
variables in (2.2) from x to y, where x; = y; and x; = (sgnx;)|y;|%/*1 fori > 1, the
integral in (2.2) becomes a constant times

23) [ 17 Tt ay.
i=1

Here f () is the function f(x) in the y coordinates, which has the key property that it is
homogeneous of degree 1/k;. By conversion to polar coordinates, (2.3) is finite when two
requirements are met. First, we need that —e/ky + Y _;_; (ki /k1 — 1) > —n. Secondly,
we need that | f (¥)|~° integrates to a finite value over the boundary sides of V', which
is equivalent to | f(x)|~¢ integrating to a finite value over the boundary sides of V. The
first condition translates into & < Z?:l k;. Thus gq is the supremum of all & such that
e < Z?:l k; and such that for eachi and a = 1, —1, we have

2.4 | f(x)| ™ dxy - dxi—1dxipr -+ dx, < oo.

lx:xi=a,—l<xj<l for all j#i}

We now investigate what Theorem 1.1 says in the quasi-homogeneous case. Assume

that f(x) is a quasi-homogeneous polynomial. Notice that the function ZL],LX—W
i=1 1A
appearing in Theorem 1.1 satisfies
Yoo |Xi0f/0x;] Z af n af
2.5 =l v > X; —— ZC) kixi | = Clfo)l.
o] 2 g | 2 €| ok g | = CU)

Thus whenever we are in a situation where (2.1) holds on some bounded neighborhood V'
W In particular, this
holds for every ¢ < g¢. Thus part (2) of Theorem 1.1 says that in the quasi-homogeneous
case, one has that |t(1)| < B(1 + |A|)~% holds for all § < min(go/(co + 1), 1/2). So
if &g < 1, whereas g( gives the supremal exponent for the scalar oscillatory integral (1)
due to the connection between oscillatory integrals and sublevel set measure growth, the
supremal exponent for the surface measure Fourier transform is at least go/(go + 1).
Hence the true exponent lies somewhere in the interval [go/(g9 + 1), &o]. This can be a
substantial improvement over simply using stationary phase or the Van der Corput lemma
along curves (c12%1, ..., c,t*) as in [10], where one can typically get an exponent no
better than 1/(n + 1).

It might occur to one that since the estimates in (2.5) are not that refined, we might
be able to get better results by using more careful estimates than those of (2.5). It turns
out that this often is the case if the condition & < Y 7_, k; is more stringent than the ones
in (2.4), so that gg = Y_;_, k;. One can show that in many such situations, one will have
that the exponent given by part (2) of Theorem 1.1 is min(}_/_, ki, 1/2), so that there is
no reduction in the exponent when it is less than 1/2. On the other hand, if the conditions
of (2.4) are more stringent than the condition & < Z;’zl k;, then often one can show that
Theorem 1.1 gives no better exponent than the min(eg /(g9 + 1), 1/2) given above, while
the true exponent can be as large as &y.

of the origin, the same will be true if we replace | f(x)| by
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2.2. Estimates in terms of the Newton polyhedron
We first provide some relevant terminology.

Definition 2.1. Let f(x) be a smooth function defined on a neighborhood of the origin
in R”, and let f(x) = >, fox® denote the Taylor expansion of f(x) at the origin. For
any o for which fy # 0, let Q4 be the octant {x € R” : x; > «; for all i }. Then the Newton
polyhedron N(f) of f(x) is defined to be the convex hull of all Q.

A Newton polyhedron may contain faces of dimensions zero through n — 1 (a vertex
is considered to be a compact face of dimension zero.) These faces can be either compact
or unbounded. In this paper, as in earlier work like [8,9,21], an important role is played
by the following functions, defined for compact faces of the Newton polyhedron.

Definition 2.2. Suppose F is a compact face of N(f). Thenif f(x) =), fox® denotes
the Taylor expansion of f like above, we define fr(x) = Y ,cp fo X%

Definition 2.3. The Newton polyhedron of f(x) is said to be nondegenerate if for each
compact face F of N(f'), the function V fF (x) is nonvanishing on (R — {0})".

Definition 2.4. Assume N( f) is nonempty. Then the Newton distance d(f) of f(x) is
defined to be inf{r : (¢,¢,...,2,t) € N(f)}.

The following is a well-known theorem of Varchenko [21]. We include the condition
|A| > 2 in the statement since the result is immediate for || < 2, and we want to avoid
situations where In |A| is near zero.

Theorem 2.5 (Varchenko). Suppose f(x) is real analytic on a neighborhood of the origin
with f(0) = 0 such that N(f) is nondegenerate. Let k denote the dimension of the face
of N(f) intersecting the line x| = --- = x, in its interior. There is a neighborhood U of
the origin such that if ¢ is supported in U, then the following hold.

(1) There is a constant C > 0, depending on f and ¢, such that for all |A| > 2, one has
[ < Cla~Y4D anjapm=t*.

(2) If ¢(x) is nonnegative, $(0) > 0, and d(f) > 1, then there is a C' > 0 depending
on f and ¢ such that if || is sufficiently large, one has

[ 1)) = C'A]7Y4D) (n A=tk

In [9], among other things, Theorem 2.5 was extended to surface measure Fourier
transforms when d(f) > 2. This follows from parts (a) and (b) of the following con-
sequence of Theorem 1.5 of [9].

Theorem 2.6 (Theorem 1.5 of [9]). Suppose f(x) is real analytic on a neighborhood
of the origin with f(0) = 0 and V f(0) = 0. Let k denote the dimension of the face of
N(f) intersecting the line x1 = --- = xp, in its interior. There is a neighborhood U of the
origin such that if ¢ is supported in U, the following hold for |A| > 2, where C denotes a
constant depending on f and ¢.

(@) If d(f) < 2, and each zero of each fr(x) on (R —{0})" has order at most 2, then
there is a constant C such that |[L()] < C|A|7V/2.
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(b) If d(f) = 2 and each zero of each fr(x) on (R — {0})" has order at most d(f),
then there is a constant C such that |t (A)] < C|A|~Y4) (In|A|)*=*. If d(f) is not
an integer, the exponent n — k can be improvedton — 1 — k.

(c) If the maximum order m of any zero of any fr(x) on (R —{0})" satisfies m >
max(d(f),2), then there is a constant C such that |fL(1)] < C|A|7V/™.

To be clear, the order of a zero of fF(x) at some x¢ here means the order of vanishing
of the Taylor series of fr(x) at xg. Also, the nondegeneracy condition in Theorem 2.5 is
equivalent to the statement that the zeroes of each fr(x) on (R — {0})" are of order at
most one. It may be worth pointing out that since the fr (x) here are quasi-homogeneous
polynomials, their zeroes in (R — {0})” are never isolated.

We now investigate what Theorem 1.1 says in the case where f(x) has nondegenerate
Newton polyhedron. The statement (1.4) is equivalent to the statement that

(2.6) m({x ceW - Z?:i_([i:ia];/zaxi)z - s}) < Cst2.
i=1"

Let

n 8f 2
s =3 (vigy )
Then the Newton polyhedron N(g) is the double 2N (/) = {2x : x € N(f)}, the faces F’
of N(g) are the sets {2x : x € F} for faces F of N(f). The statement that N(f) is
nondegenerate, namely that for each compact face F of N( f') the function V fF (x) is non-
vanishing on (R — {0})", translates into the statement that each compact face F’ of N(g),
gF/(x) has no zeroes at all in (R — {0})".
Suppose d(f) > 1, so that d(g) > 2. Let

S Gidf (5 g
l—[?:lxi2 H?=1xi2

Then one can define N(h), d(h), and hF (x) for faces F of N(h) analogously to Defin-
itions 2.2-2.4. So we have d(h) = d(g) —2 = 2d(f) — 2 > 0. Due to the analogous
statement holding for g(x), if F is a compact face of N (h), then the function 4 f (x) has
no zeroes in (R — {0})".

Note that the vertices of N (/) may now have components as low as —2. Nonetheless,
many of the arguments of [8] extend to /(x), in particular the proof of Theorem 1.2 of [8],
which implies that since each for each compact face F of N (/) the function /i f (x) has no
zeroes in (R — {0})", equation (2.6) holds for all ¢/2 < 1/d(h) = 1/(2d(f) — 2). This
can also be shown using toric resolution of singularities, similarly to the arguments in [1].
Consequently, (1.4) holds for any ¢ < 1/(d(f) — 1), or equivalently, when

h(x) =

1
¢ __ap-1 _ L
e+l g+l d)

As a result, the second part of Theorem 1.1 says that |(1)| < B(1 + |A|)~? for each
8 <min(1/2,1/d(f)). Up to endpoints, these are the estimates provided by Theorem 2.6.
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Such estimates are best possible since by taking Ay = 0 for k < n + 1, one reduces to
the oscillatory integral /(1) for which one has sharpness by [21] (part (2) of Theorem 2.5
here). Thus we see that Theorem 1.1 provides another approach to proving such estimates,
modulo endpoints.

3. The proof of Theorem 1.1

3.1. Some preliminary lemmas

We will make use of the following relatively easy lemma, which follows from Lemma 3.2
of [12].

Lemma 3.1 (Lemma 3.2 of [12]). Let (E, i) be a finite measure space and suppose g(x)
is a measurable function on E such that for some positive constants C and 8, for all t > 0
one has w({x € E : |g(x)| < t}) < Ct%. There is a constant Dg > 0 such that the following
holds for all M # 0.

 If 8§ <1, then [ min(1,|Mg|~')dpu < CDs|M|75.

o If § =1, then [y min(1, |Mg| ") du < CD{(1 +log, |[M|)IM|™" + p(E)|M|~".

o If 8> 1, then [y min(1,|Mg|™" ) dp < C(M|™% + Dy|M|™") + pw(E)| M|~
For the non-polynomial case, we will also need the following lemma from [12].

Lemma 3.2 (Corollary 2.1.2 of [12]). Suppose fi(y1,....VYm)s--os i(¥1,..., Ym) are
real analytic functions on a neighborhood of the origin, none identically zero. Then there
are an m — 1 dimensional ball By,—1(0,n) and a positive integer p such that for each
S1,...,81 and each (y1, ..., Ym—1) € Bu—1(0, 1), the set

{m |yml <nand fi(y1,...,ym) < si foreachi}

consists of at most p intervals.

3.2. The beginning of the proof of Theorem 1.1

The size of the domain U will be determined by our arguments; at certain junctures, U
will have to be sufficiently small for the arguments to be valid. Also, we will always
prove bounds of the form C |A| =% for |A| > 2 rather than C(1 + |A|)~% for all A, since the
latter will always hold for |A| < 2 simply by taking absolute values inside the integral and
integrating. The exposition is somewhat easier if we prove estimates in the former form.
In addition, we will always be bounding |{i(4)]; bounds for |(4)| will follow by setting
A =0fork <n+1.

To start the proof, we observe that we may assume that [(A1,...,A,)| < |An+1], for
if U is sufficiently small, if [(Aq,...,A,)| > |A,+1], then the gradient of the phase function
is of magnitude at least C|A|, and one may obtain a bound of C’|A|~! simply by integrat-
ing by parts, better than the estimates we need. Hence in our arguments we will always
assume that [(Aq,...,A,)| < [An+1]. This in particular implies that [A, 41| > \%ML

We next define the sets U; by

3.1) Us = {x € U |xids, f(0)] > |x;0, £ ()] for j # i),
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As long as no two functions x;dy; f(x) are the same, up to a set of measure zero we
will have ( Ji_; U; = U. In the rare event that two functions x;dy, f(x) are in fact the
same, we simply remove redundant x; dy, f(x) from the list when defining the U; in (3.1),
so that we always have | J; U; = U up to a set of measure zero. The idea now is that
since we are trying to integrate in directions based on the weighted gradient flow along
(x10x, f(x), ..., Xp0x, f(x)), on each U; we will integrate by parts in the x; direc-
tion, since in this direction |x;dy, f(x)| is at least c|(x10x, f(X), ..., Xp0x, f(x))| for
¢ = n~"2.To this end, we correspondingly define the integrals /; (1) by

Since | J; U; = U up to a set of measure zero, we have ft(A) = )", I; (1), and in order to
prove Theorem 1.1, it suffices to show that each |/; ()| is bounded by the appropriate of
A|A|7% or B|A|™? as in the statement of the theorem.

Let

1 X1 4+ An
n+1 )Ln+l
so that the phase function in (3.2) is given by A, 41 P(x). The function P (x) is sensible
to focus on here since |A, 41| ~ |A[, and for our arguments it is helpful to view the phase
function as a perturbation of the phase function when Ay = O forallk <n + 1.

Where ¢ is such that (1.4) holds, we write U; = D1 U D,, where

Xn,

P(x)= f(x1,...,xn) + 1

D1 = {x € Ui : 105, P(0)| < A1 D T ;1.
J#i

D, = {x € Ui : 05 P()| > [ATVED ] |x,-|}.
J#i

(3.3)

We correspondingly write /; (1) = J1 (L) + J2(A), where

(34) Jl (/X) — / e—ikn_;_]f(xl,...,xn)—iklxl_...—iknxn ¢(X], o ,Xn) dX] ---dxn,
D,

To bound |J;(A)], we will simply take absolute values of the integrand and integrate in
all variables, but it will take some effort to properly analyze the result. To bound |J2(1)|,
we will perform integrations by parts in the x; variable. For this, we will need that each
domain of integration in the x; variable consists of a number of intervals that is uni-
formly bounded. When f(x) is a polynomial, this is immediate, and for general real
analytic f(x), this follows from applying Lemma 3.2 as follows.

We take the y,, variable in that lemma to be the x; variable here, and the remain-
ing yj variables to be the x; for j # i along with two additional variables, which we
call z; and z,. We take the s; of the lemma to be zero in all cases, and we let the f;(y)
of the lemma to be the functions (x;dy; f(x))? = (x;0y, f(x))? for j # i, along with
the functions zy [];,; X7 — (dx; f(x) 4 z2)?, which we need for z; = [A|72/¢+D and
22 = Ai/An+1.
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Although Lemma 3.2 is a local statement, by compactness one may extend the above
application of Lemma 3.2 to the whole domain of integration here, so that there exists
an N such that for all |A| > 2 and all x; for j # i, the x; domain of integration of J,(A)
consists of at most N intervals.

We will bound |J; ()| and | J2 ()| separately, starting with |J5(1)].

3.3. The analysis of J> (1)

Since the exponents § appearing in Theorem 1.1 satisfy § < 1, we can remove the regions
where |x;j| < |A|™! for some j from the domains of integration when bounding |J2(1)|.
In other words, it suffices to bound |J}(A)|, where J}(A) is given by

(3.6) Jy) = / e~ A1 S =iAhixa = =idnxn g (1) dx
{x€Dj:|xj|>|A|! forall j}

For each k = (ky, ..., k,) such that the set {x : 270~ < x| < 27k for all j}
intersects the domain of integration of (3.6), we define Ji »(A) by
3.7

Jea(A) = e tAnt1 f(D)—idix1— - —idnXn ¢ (x)dx.
’ {xeDy: |xj[>|A1"1, 275 " <|x;| <275 for all j}

Hence J(A) = Y 4 Jir2(A). Without loss of generality, we may assume U is a subset of

the unit ball, so that each k; > 0 and there at most C(In |A])" terms Jg »(A) to consider.

In accordance with the weighted gradient flow concept, since we are on U;, where
|xi0x; f(x)| = n=1/2 [(x10x, f(X), ..., Xxx0x, f(x))|, a given term Ji »(A) will be ana-
lyzed using an integration by parts in the x; direction.

In (3.7), we now integrate by parts in the x; variable over in any of the at most N
intervals of integration for fixed other variables. Suppose L = [/1, [5] is one such inter-
val. Then the exponential appearing in (3.7) can be written as e *42+1 P& which we
may write as —i A, 410y, P(x)(e_M”“P(x)/(—i)LnHBxl. P(x))). Note that the denomin-
ator —iA,410y; P(x) is never zero by the definition of D,. We integrate by parts in x;
over L, integrating —i A, 410y, P(x)e An+1P&) to ¢=iAnt1P() and differentiating the
rest. Taking absolute values in the result, we get the following, where Py(x;) denotes
P(x) as a function of x; with all other variables fixed:

(3.8) ‘ / e—i/\,,_Hf(x1,...,xn)—illxl_...—ilnxn ¢(X] . xn) dXi
L

1 1 1 |02 Po(xi)| 1
<C + —i—/ = dx-—i—/—dx'.
[Ant1l (|3x,-P0(11)| 0%, Po(l2)]  J1 (%, Po(x:))> " J1 |9, Po(x;)] l)

We would like to integrate the first integral in (3.8) back to get terms similar to the endpoint
terms of (3.8). For this to work, we need that agi x; Po(xi) changes sign at boundedly many
points in a given interval L. Since 8)261, x; Po(xi) = 8)261_ x; J (X1,...,xp), we may show this by
once again invoking Lemma 3.2, this time for one function —(8)261, Y AC PP X»))?, letting
the y;, variable be x; and y1,..., y,»—1 the remaining x; variables, and 57 = 0. Again,
due to compactness, it suffices to have the local result of Lemma 3.2 (or alternatively,
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one could just assume U is a sufficiently small neighborhood of the origin.) In any event,
there is an Ny such that 8)2” x Po (x;) changes sign at most Ny times on any interval L.
Consequently, one may write the integral in (3.8) as the union of at most Ny intervals
on which Bil_ x; Po(xi) is either nonnegative or nonpositive, and integrate back to terms
similar to the endpoint terms. Specifically, one may bound (3.8) by

1 1 1 1 1
39) C + + —.-i-/ ———dx; ).
09 € i man * B m ;wx,-f’o(/m , o )

Here there are at most Ny terms in the sum of (3.9). Since the domain of integration of Ji »
consists of points where |, P(x)| > [A|~1/¢+D [ 1 %], and since [An41] > JL§|A| in
the situation at hand, we have that (3.9) is bounded by

(3.10) C' ||/ E+D (]‘[|x,-|) g

J#i
Equation (3.10) bounds the x; integral over a single interval L. There are at most N such
intervals, so the overall integral of (3.7) in the x; direction is also bounded by a constant
times |)L|_8/(8+1)(]_[j¢i |x;|)~L. If one integrates in the remaining n — 1 variables, keep-
ing in mind that the size of the domain of integration in each x; direction for j # i is
bounded by a constant times |x; |, we obtain that

[Tk 2 (V)] < C7 |78/ EFD),

Because there are at most a constant times (In |4])" possible values of k, the sum of all
| Jk,2(A)] is at most C3(In [A[)" |A|78/E+D This is less than C4|A|® forany § < /(e +1),
s0 |J2(A)| < Dy |Jk,2(A)| will always satisfy the bounds needed for Theorem 1.1. Thus
we may focus our attention henceforth on bounding |J1(A)|, which we must show is
bounded by the appropriate quantity in Theorem 1.1.

3.4. The analysis of J1(1)

Taking absolute values of the integrand in (3.4) and integrating (recalling the defini-
tion (3.3) of D) leads to

n
3.11) )] = Cm({x € Ui s it PO = ATV [T g 1}).
j=1

Here, as before, m denotes Lebesgue measure. Suppose we are in the special case where
Ar = 0fork <n + 1, the setting of part (1) of Theorem 1.1. Here P(x) = f(x). Since U;
is the set of points where |x;dyx; f(x)| > [x;dx; f(x)| forall j # i, (3.11) leads to

n n
(12 A= om({x e Uy og fl <na ™D TT 1),
j=1 j=1
By the assumption (1.4), we have that (3.12) is bounded by a constant times |A|~/¢+D,

This is better than what is needed for part (1) of Theorem 1.1, so we have now shown
part (1) of Theorem 1.1.
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We focus our attention on proving part (2) of the theorem. We will show that if the
neighborhood U of the origin is sufficiently small, the right-hand side of (3.11) is bounded
by C|A|~® whenever § < min(g/(e + 1), 1/2).

Since dy; P(x) = 0y, f(x) — ¢, where ¢ = A; /A,y satisfies |c| < 1, we can rewrite
the measure on the right-hand side of (3.11) as

x; f(x) — ¢ ‘ < Ml—l/(eﬂ)})

(3.13) m({x cuU - 1

The idea behind bounding (3.13) is that using resolution of singularities, one can show
that if ¢ < 1, then the measure in (3.13) is bounded by the measure when ¢ = 0, while if
& > 1, one at least has a uniform bound of C|A|~1/E*D In the former case, one uses the
¢ = 0 case exactly above to get an overall bound of C |A|~¢/*D while in the latter case,
since € > 1, (1.4) holds if one replaces ¢ = 1, and thus one can use the ¢ = 1 case to say
that we have an overall bound of C |A|71/2.

We use resolution of singularities, first proved by Hironaka [14,15], as follows. Let W
be as in Theorem 1.1. Assuming U is a sufficiently small neighborhood of the origin, by
resolution of singularities there exists an open U’ C W containing the closure U and a
finite collection { gl}lL:1 of proper real analytic mappings g;: V; — U’, where each V] is

open and contains gl_1 (U), with the following properties.

Each g; is one to one outside a set of measure zero. Let {A,,(x)}¥_, denote the
list of functions consisting of each dy; f(x), each nonzero difference (x;dy; f (x))? -
(xkdx, f(x))?, and each coordinate function x;. Then on V; each function /i, o g;(x)
and the Jacobian determinant Jac; (x) of each g;(x) is of the form aj,, (x) p;m (x), where
Pim(x) is a monomial and ay,, (x) never vanishes; in fact, one will have |a;,, (x)| > & for
some § > 0. For any bounded measurable function F(x) on U, one has

L
(3.14) ’/ F(x) dx‘ < Z/ |F o g7(x)Jac;(x)| dx.
U L%

Because of our assumption that V f(0) = 0, the monomials py,,(x) are never just the
constant monomial 1.

Let mq be such that /i, (x) = 0y, f(x) for the i being used above, and let j, be any
index such that such that p;,,, (x) contains xj, to at least the first power. Then for some
d # 0, one has

d
31y @iy () Py (1)) = (9 @1 (¥) + <01y (¥)) Pimo (3):
Jo

As long as U is a sufficiently small neighborhood of the origin, the term %almo (x) will
dominate 0 xjo Almy (x) in absolute value for at least one choice of jj, since we will be near
enough to gl_l (0). So we may work under the assumption that at each x, there is always
some jo and some constant d’ > 0 so that we have

/

d
(3.15) |95, (@1mg (X) Pimo (x))| = o |a1my (X) Pimo (X)].
Jo
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In order to bound (3.13), we will apply (3.14), letting F (x) be the characteristic function of

{x cU; - ‘(axli_f:-(:;)); C)‘ < |A|—l/(a+1)},

or equivalently, the characteristic function of

{xeUiie— AT [Tl < oy f(6) < e+ ATV T 1.
J#i J#i
Let ¢;(x) = ]_[j#i xj. Then g; o g;(x) is of the form b;;(x)r;;(x), where r;;(x) is a
monomial and |b;; (x)| > § for some positive §. Then F o g;(x) the characteristic func-
tion of

(3.16) {x € g7 (Us) e — ATV by () i (0)| < At (X) P (X)
< ¢+ [ATVED by (x) i (x) ]}

Denote the set in (3.16) by Ejj;.. Then for the above F(x), equation (3.14) leads to

3y f(x) — ¢ =
L) =€)y mren)) < / [Tac; (x)] dx.
l_[j;éixj ‘ }) lzzl Eile

Thus we turn our attention to bounding a given term | Eile |Jac; (x)| dx. We examine
the intersection of the domain of integration E;;;. with a given dyadic rectangle which
we denote by R. Because Jac;(x), b;;(x)ri;(x), and ajpm,(X) pim,(x) are comparable to
monomials, on Ejj;. N R, the functions |Jac; (x)|, |b;(x)ri;(x)], and |@jmy (X) Prmg (X)]
are within a constant factor of |Jac; (x*)|, [b;; (x*)r;;(x™)], and |@1q (X*) P1me (x*)], Te-
spectively, where x* € E;j5. N R is fixed.

As long as the neighborhood of U is sufficiently small, not only does (3.15) hold, but
also for each R there will necessarily be a single jo for which (3.15) holds throughout R,
since we will be close enough to gl_1 (0) for this to be true. By (3.15) and (3.16), the width
of the xj, cross section of E;;;, N R is bounded by

(3.17) m({x e :

A1my (X™) Pimg (X*) |71
. .
Jo

CIATYED by (x*) rip (x))|

The width of this cross section is also trivially bounded by x;.':]. These can be combined by
saying the width of this cross section is bounded by the following, where R, denotes the
cross section of R in the x;, direction:

cJ min(1, A7 ED by () i () @i (XF) Pime ()71 dxjy.
0

Integrating this in the remaining n» — 1 variables and inserting the Jacobian factor, we see
that

/ |Jac; (x)| dx
EijpeNR

(3.18) <C /R [ac; (x*) [ min(L, A7 ETD by (%) rig () |@imo (6%) pimg (x*)| ) dx.
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Since the various factors in (3.18) stay within a bounded factor on R, we may replace the
bound (3.18) by

/ |Jac; (x)| dx
EinneNR

(3.19) <C / [ac; (x) | min(1, X7 EFD by (x) 11 ()| |@ime (X) Pime (X)| 1) dx.
R

We next add (3.19) over all R intersecting gl’1 (U;). Letting W;; denote the union of all R
intersecting gl_1 (U;), we get

/ |Jac; (x)| dx
Eijpe
(320) <C / Jac; (x)| min(L, A7 ETD by (x) 111 (X)||@1me (X) Py (X)) dix.

Wi
By shrinking U if necessary, we can always assume that W;; C gl_1 (U"), where U’ is the
open set containing U of the resolution of singularities procedure. Thus (3.20) becomes

/ [Jac; (x)| dx
Eilre

Gan =C [ | Wac(@)|min(, AT D iy () g ()1 @1mg (6) Piomg ()71 dx.
& !

Now going back into the original coordinates using the coordinate change map g;, (3.21)

leads to

(3.22) / [Jac; (x)| dx < C / min(1L |47 (T b Dlas, F0I ™) dx.
Eitne v’ J#i

We can refine (3.22) in the following way. Since each nonzero difference of the form
(xj0x, f (x))? — (xgdx, f(x))? was monomialized, in particular, each difference of the
form (x;dy, f(x))? — (x; x; | (x))? was monomialized for each j. Thus in the blown up
coordinates of gl’1 (U"), the set of points where |x;dx; f(x)| > |x;dx; f(x)| for a given j,
which is the same as the set where (x;dy, f(x))? — (x; Jx; f(x))? > 0, consists of the
points in gl_1 (U’) where a certain monomial is positive. This consists of the set of points
in gl_l(U ') that are in a certain collection of octants. Thus in the blown up coordinates,
the set of points in gl_1 (U’) where |x;0x; f(x)| > |x;dx, f(x)| forall j are also the points
in gl’1 (U’) that are in certain octants. Furthermore, the above dyadic rectangles R will be
contained in these octants. Hence the relation |x;dy; f(x)| > [x;dx; f(x)| for j # i will
still hold when we return the union of all such R to the original coordinates as in (3.22).
Thus we may amend (3.22) to

(3.23) / |Jac; (x)| dx
Eilre

LAY ([T 11105 £ 017" dx.

< C/ min(
{xeU":|x; 0x; S ()| > |x; 0x; f ()] for j#i} i
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Since

i O -
(M) ie s = (S0 ad wa 0l > 10 1)
i J=11

for all j # i in the domain of integration of (3.23), we may let

S xidf/0xi]
H?:l | |

(the function in Theorem 1.1), and then (3.23) implies

r(x) =

/ |Tac; (x)| dx §C/ min(1, |A|"YED [ (x)7Y) dx.
ilic v’

Combining with (3.17) leads to
(3.24)
Oy, —
m({xeui: O /)~ ¢ ey s [ mingt, ATV E o1 d.
]_[j;éi Xj v’
Since the left-hand side of (3.24) is the right-hand side of (3.13), which by (3.11) is an
upper bound for |J; ()|, we conclude that

(3.25) [J1 (V)] < c'/ min(1, [A|7YED |r ()71 dx.
U/

We now apply Lemma 3.1, using the definition (1.4) of ¢ and the fact that U’ C W.Ife < 1,
the first part of Lemma 3.1 gives that the right-hand side of (3.25) is bounded by a constant
times |A|~#/¢+ D which provides the bound we need for | J; (1)] to give the correct expo-
nent in part (2) of Theorem 1.1. On the other hand, if ¢ > 1, then (1.4) still holds for e =1,
in which case the second part of Lemma 3.1 gives a bound of C’|A|~'/2 In|A|, which is
better than C”|A|~% for all § < 1/2, which is what we need for part (2) of Theorem 1.1
when & > 1. Thus we see that in all cases that |J;(4)| is bounded by the appropriate
quantity in part (2) of Theorem 1.1. This completes the proof of Theorem 1.1.
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