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Dualities for rational multi-particle Painlevé systems:
Spectral versus Ruijsenaars

Ilia Gaiur and Vladimir Rubtsov

Abstract. The extension of the Painlevé–Calogero correspondence for the n-particle
Inozemtsev systems raises to the multi-particle generalisations of the Painlevé equa-
tions. This extension may be obtained by the Hamiltonian reduction applied to the
matrix Painlevé systems. Additionally, such procedure gives an isomonodromic for-
mulation for these non-autonomous Hamiltonian systems. We provide dual systems
for the rational multi-particle Painlevé systems (PI, PII and PIV) using the Hamilto-
nian reduction. We describe this duality in terms of the spectral curve of a non-
reduced system compared to the Ruijsenaars duality.

1. Introduction

The story of the duality phenomenon in the realm of multi-particle systems goes back
to the ideas of Simon Ruijsenaars, which appeared 30 years ago. He raised the following
question: to construct action-angle variables for both theAn-type Calogero–Moser models
as well as their “relativistic” or difference analogues (known now as the Ruijsenaars–
Scheider systems). This story is well documented (see, e.g., [23]). The main tool in his
approach is a commutation relation for the corresponding Lax matrix and some other
explicit matrix function, both exhibited in the phase-space variables. Via the diagonaliza-
tion of an original Lax matrix, he discovered that the auxiliary matrix can be interpreted
as the Lax matrix of another multi-particle system, the position coordinates of which are
given by the eigenvalues of the original Lax matrix, i.e., by the action variables of the first
model. This duality can be described as follows: the action variables of the first system
are the position variables of the second, and vice versa. The simplest example of such
Ruijsenaars duality is exhibited in the self-duality phenomenon of the rational Calogero
model. The self-duality of this model admits an easy geometric interpretation in terms of
the Hamiltonian reduction of Kazhdan, Kostant and Sternberg (see [28]). We revisit their
approach below, while adapting it for our goals.

The basic idea for other Calogero–Moser–Ruijsenaars–Scheider models comes also
from a symplectic reduction. Starting with a “big phase space” (usually of a Lie algebra
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or a Lie group origin), we deal with two commuting families of “free canonical Hamilto-
nians”. After choosing a suitable reduction, one can construct two “natural” models on the
reduced phase space. “Free” Hamiltonians transform into non-trivial many-body Hamilto-
nians written in the variables which correspond to the particle positions. A natural map
between these two models on the reduced phase space yields the “duality morphism”.

Further, Gorsky and Nekrasov have developed the ideas of [28], using an infinite-
dimensional setting for the reduction procedure from the integrable sectors of topolo-
gical quantum fields: N D 2 Yang–Mills theory for the Calogero–Moser model, and the
GWZNW theory for Ruijsenaars–Schneider models (see, e.g., [22]).

The duality ideas were formulated per se in the integrable systems realm in [19], where
the authors specified the Ruijsenaars duality as the action-coordinate (AC) duality (see the
description above), and proposed numerous examples. They focused their attention both
on finite and infinite-dimensional phase spaces, as well as in the holomorphic setting. They
proposed also (for the first time) to extend the phase space symmetry, considering the
Poisson reduction for Poisson–Lie structures related to a Heisenberg double, getting the
Fock–Rosly quadratic relations (well described in [3]). Recently [14], M. Fairon reviewed
the duality phenomenon in the framework of the representation functor philosophy, using
the double Poisson bracket approach.

We should note here that L. Feher, with various co-authors, put these ideas into a rigor-
ous and explicit framework (see [15,17,18] and [16]). His students continue to investigate
various aspects of the Ruijsenaars duality (see, e.g., [20]).

The authors of [19], apart from the AC-duality definition, introduced another import-
ant duality principle: the so-called action-action (AA) duality. This duality is transparent
for the Seiberg–Witten theory, and maps the integrable system in itself. Locally, this
map changes the action variable I ! Idual via the canonical transformation generating
a function S associated with the Lagrangian submanifold Idual D @S=@I and, vice-versa,
I D @Sdual=@Idual for the dual canonical transformation generating function Sdual.

We make an attempt to extend and to compare both the AC and the AA dualities in the
framework of non-autonomous Hamiltonian systems, considering as an example a class
of systems associated with the irregular Painlevé transcendents. More precisely, the other
key ingredient of our work is a famous class of Painlevé equations and their matrix and
non-commutative analogues.

A non-commutative Painlevé II equation first appeared in the work of second author
and Retakh [41]. This abstract non-commutative equation generalizes the matrix Pain-
levé II equation proposed in [5] to the case of non-commutative Painlevé time. This gener-
alization has (via a non-abelian Toda chain) analogue of “rational” solutions expressed via
Hankel quasi-determinants, and allows an isomonodromic representation. It also appears
in a non-commutative version of the Riemann–Hilbert problem [7]. Recently, a similar
problem was addressed for the case of matrix Painlevé equations [10, 11], as well as non-
commutative Painlevé equations with non-commutative time [9].

The multi-particle non-autonomous Hamiltonian systems, which generalize Painlevé
equations from another point of view, were introduced (for Painlevé VI) by Manin [33] and
Levin–Olshanetsky [32]. Manin has described a configuration space for Painlevé VI as a
fibration (a pencil of elliptic curves) � WE! B and its solutions as (multi-valued) sections
of the fibration. He has given an interpretation of the correspondent Painlevé VI phase
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space as a (twisted) sheaf of the relative holomorphic one-forms on E . This description
gives the identification of the Painlevé VI moduli space with an affine space of certain
special closed 2-forms on E . If such form� from this space corresponds to the Painlevé VI
equation, then the corresponding solutions are the leaves of the Lagrangian fibration of�.
Manin has proposed a time-dependent Hamiltonian description of Painlevé VI as
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Here, the Tk are points of order two, and } denotes the Weierstrass }-function. Levin
and Olshantetsky have given a “many-particle” generalization of Manin’s description by
considerating the non-autonomous version of Hitchin integrable systems.

For other Painlevé transcendents, Takasaki [43] has computed (by the confluence pro-
cedure) the multi-particle Painlevé–Calogero Hamiltonians:
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Some of these Hamiltonian systems may be viewed as non-autonomous (deformed)
versions of Inozemtsev systems (see [25]). This may be described as a multi-particle ver-
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sion of the so-called Painlevé–Calogero correspondence, see [32]: QHVI corresponds to
the elliptic Inozemtsev system, QHV to the trigonometric case, and QHIV to the rational
case. There are also two more Hamiltonians which have rational interaction potential:
multi-particle Painlevé I and II. From now on, we refer to rational multi-particle Painlevé
systems as PI; PII and PIV multi-particle systems. In this work, we consider only rational
multi-particle Painlevé models.

The second author (with M. Bertola and M. Cafasso) provided a scheme which con-
nects the matrix Painlevé equations and Takasaki’s Hamiltonians. They showed [8] that
these multi-particle generalisations of the Painlevé systems may be obtained from the mat-
rix Painlevé Hamiltonian systems via the Hamiltonian reduction procedure à la Kazhdan,
Konstant and Sternberg [28], combined with some symplectic map for the reduced sys-
tem. They also gave an isomonodromic formulation of multi-particle Painlevé using this
reduction, answering Takasaki’s question about the existence of a zero-curvature repres-
entation for these Hamiltonians. Recently, the authors of [6] have also described Bäcklund
transformations and a Hamiltonian reduction scheme for several matrix Painlevé systems.

Here we briefly review our reduction procedure for the matrix Painlevé equations.
Details are described in [8]. See also [4] for the basics of Hamiltonian group actions.
We start with the isomonodromic problem of rank 2n, which gives the matrix Painlevé
equations (see [7, 26, 27]) 8̂̂<̂

:̂
@

@z
ˆ D A.q;p; z; t/ˆ;

@

@t
ˆ D B.q;p; z; t/ˆ;

where q and p are unknown elements of gl.n;C/. The compatibility condition
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gives a non-autonomous Hamiltonian system with Hamiltonian TrH.q; p; t / and sym-
plectic form ! D Tr d p^ d qD
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The phase space of matrix Painlevé equations is given by

(1.1) M D .S; !/; S D gl.n;C/ � gl.n;C/ ' ¹.q;p/º; ! D Tr d p ^ d q:

The symplectic manifold M allows a group action of GL.n;C/ by conjugation,

g ı .q;p/ D .Adg�1q;Adg�1p/ D .g�1qg; g�1pg/;

which is Hamiltonian, with moment map given by

(1.2) M.p;q/ D Œp;q�:

Since matrix Painlevé Hamiltonians are traces of rational Okamoto Hamiltonians, they
are invariant under GL.n;C/-action, and the moment map M gives first integrals. Finally,
restricting to the level set of momentum,

Œp;q� D
p
�1 g.1 � vT

˝ v/; v D .1; 1; : : : 1/;

performing a diagonalization of the coordinate q and resolving the moment map condition
for p, we obtain the multi-particle Hamiltonian systems which coincide up to the canon-
ical transformation with the Hamiltonians presented by Takasaki. The isomonodromic
problem for the reduced system arises from the isomonodromic problem for the matrix
Painlevé equations. The special gauge transformation sends the isomonodromic represent-
ation for the matrix Painlevé system to the isomonodromic representation for the reduced
system.

The aim of this work is to introduce the dual Hamiltonian systems for PI, PII and PIV.
Briefly, the dual system is a multi-particle system obtained by the reduction from another
point of the GL.n;C/-orbit, where now p is diagonal. The isomonodromic representations
are responsible for the spectral duality between the systems obtained by reduction, which
differs from the Ruijsenaars (action-angle) duality.

For the matrix PII and PI systems, we also provide autonomous versions. Reduction of
these autonomous systems give rise to integrable autonomizations of Takasaki Hamiltoni-
ans, and may be viewed as a further degeneration of the rational Inozemtsev system.

Let us briefly discuss the structure of this paper. In Section 2, we remind the basic
objects of our study – two types of dualities for the integrable many-body systems. We
illustrate both in the most simple and transparent cases. Then we interpret the spectral
duality as a special case of the AA duality, and formulate it in the form of Theorem 2.1 (the
results of this theorem are probably folklore, but we did not find them in the appropriate
form).

Section 3 contains our main computational results. Here we obtain the dual Hamilto-
nians for the multi-particle Painlevé–Calogero IV, II and I systems, and discuss the self-
duality property. It turns out that the Painlevé IV model has the property of self-duality,
but the other two rational multi-particle Painlevé–Calogero Hamiltonians have not.

In Section 4, we study the autonomous avatars of rational multi-particle Painlevé–
Calogero systems and their behaviour under reduction. This is a subject of the well-known
and classical Painlevé–Calogero correspondence of Levin–Olshanetsky–Zabrodin–Zotov.
We explicitly write the Lax representation for two non-commutative Painlevé models. We
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finish this section with a confluence procedure interpretation of the Inozemtsev system
degeneration and its symplectic properties.

In Section 5, we observe a relation between two types of reduction for non-com-
mutative integrable models (more precisely, for the matrix modified Korteweg–de Vries
(MmKdV) equation, the spectral duality and the Painlevé–Calogero correspondence map-
pings).

In the final Section 6, we indicate a few possible new directions for the proposed
duality exploration for the difference many-body systems (Ruijsenaars–Schneider models)
and the q-Painlevé systems.

We have collected in Appendix A some technicalities related to an explicit computa-
tion of interactive terms for dual multi-particle Painlevé–Calogero Hamiltonians.

Remark 1.1. We will use the following notation: by the matrix Painlevé systems, we
denote the Hamiltonian systems which were obtained by Kawakami in [26]. By the Calo-
gero–Painlevé systems, we mean the multi-particle systems obtained in [8,43]. We use the
term dual systems to denote multi-particle systems dual to Painlevé–Calogero which are
introduced in Section 3.

2. Ruijsenaars duality and spectral duality

In this section, we review some basic facts about the Hamiltonian reduction and the
Ruijsenaars duality for the many-body systems. We illustrate the Ruijsenaars duality in the
simplest example of the self-dual rational Calogero system. Then we introduce a different
kind of duality, which comes from the reduction of the matrix isospectral (or isomono-
dromic) systems. During this section and the rest of the paper, we work with a dense
subset � of (1.1) which corresponds to the diagonalizable p and q.

2.1. Ruijsenaars duality. Rational Calogero–Moser system

The rational Calogero–Moser system may be obtained considering the free particle Hamil-
tonian

H D Tr
�p2

2

�
on the symplectic manifold M given by (1.1). The equations of the motion are²

Pp D 0;
Pq D p:

SinceH is invariant under conjugation, the moment map M given in (1.2) is a constant of
motion. To obtain the rational Calogero–Moser system, we fix the level set of momentum
by the following way:

(2.1) Œp;q� D
p
�1 g.1 � vT

˝ v/ D �0; v D .1; 1; : : : 1/:

Such choice of the moment map allows us to reduce the dimension of the phase space
from 2n2 to 2n. It can be shown that the Adg orbit intersects the level set (2.1) at least
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(Q,P )

(Φ,Λ)

(q,p)

M = ig(1− vT ⊗ v)

Adg

Figure 1. The intersection of the orbit of the point .q;p/with level set M. The blue line means
the level set of momentum, and the magenta line describes the orbit of group action.

at two extra points where q or p are diagonal (see Figure 1 for an illustration of this
intersection). So we may find a matrix C such that

q D CQC�1 and C�1.1 � vT
˝ v/C D 1 � vT

˝ v;

where Q D ıij qi . Acting by C on M, we get

C�1Œp;q�C D ŒC�1pC;Q� DŒP;Q� D
p
�1 g.1 � vT

˝ v/:

Resolving the moment map constraint, we obtain the entries of P :

P D pi ıij C .1 � ıij /

p
�1g

qi � qj
�

The reduced Hamiltonian and symplectic form turn to

H D Tr
�p2

2

�
D Tr

�P 2
2

�
D

X
i

p2i
2
C

X
i<j

g2

.qi � qj /2
and ! D

X
i

dpi ^ d qi ;

and the equations of motion take the following form:²
PP D ŒP; F �;
PQ D P C ŒQ; F �;

F D C�1 PC :

We see that P is a Lax matrix for the rational Calogero–Moser system, so the eigenvalues
of P , .I1; I2; : : : ; In/, are the first integrals for the reduced system. We may also find a
transition matrix QC for the eigenbasis of p such that

QC�1.1 � vT
˝ v/ QC D 1 � vT

˝ v:
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Making the same type of reduction, we obtain

p D QCƒ QC�1; ƒ D ıij Ii ; q D QCˆ QC�1; ˆ D ıij �i C .1 � ıij /

p
�1g

Ii � Ij
,

and the Hamiltonian reduces to

H D Tr
�p2

2

�
D

X
j

I 2j

2
; ! D

X
j

d Ij ^ d�j ;

which gives the action-angle variables .Ii ; �i /. This coincides with the fact that the eigen-
values of P are constants of motion (actions). To describe the Ruijsenaars duality, we have
to consider the flow generated by the dual free Hamiltonian

H .dual/
D Tr

�q2

2

�
:

It is obvious that the first set of reduced variables ¹q1; q2; : : : ; qnI p1;p2; : : : ;pnº is the set
of action-angle variables for the dual system. On the other hand, for the dual coordinates,
we have

H .dual/
D

X
i

�2i
2
C

X
i<j

g2

.Ii � Ij /2
�

So the action angle variables for the Hamiltonian H D Tr.p2=2/ are the coordinates and
the actions for the Hamiltonian H .dual/ D Tr.q2=2/, and vice versa. This duality is called
the Ruijsenaars duality or the action-coordinate duality. Since the dual systems are the
rational Calogero–Moser system in the variables .Ii ; �i /, the rational Calogero–Moser
system is a self-dual system.

Further, we will use C for the transition matrix to the eigenbasis of q, and QC to the
eigenbasis of p. There holds that

C�1.1 � vT
˝ v/C D QC�1.1 � vT

˝ v/ QC D 1 � vT
˝ v:

We also will use the following notation for the reduced coordinates:

Q D C�1qC D ıij qi ; P D C�1pC D ıijpi C .1 � ıij /
p
�1g

qi � qj
,

and for the dual coordinates:

ƒ D QC�1p QC D ıij Ii ; ˆ D QC�1q QC D ıij �i C .1 � ıij /
p
�1g

Ii � Ij
�

The fact that the Adg orbit intersects the level set of the moment map in the points where q
or p are diagonal may be rephrased in the following way: the transition matrices of the
eigenbases for both q and p belong to the stabilizerG�0 of�0. So the previously described
reduction gives the following symplectic quotient:

Mreduced DM==G�0 DM�1.�0/=G�0 :

The dual systems in this situation may be viewed as a realisation of a symplectic quotient
in different points of the orbit of the stabilizer.
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2.2. Spectral duality

In contrast to the Ruijsenaars duality, we want to introduce another type of a duality which
we call a spectral duality. This kind of duality is the special case of the action-action
duality, as it is formulated in the following theorem.

Theorem 2.1. LetH.q;p/ be a “rational” function (i.e., a trace of a polynomial in q, p,
and their inverses) on the symplectic manifold M D ¹.q; p/ 2 gl.n;C/ � gl.n;C/º, and
let ! D Tr d p ^ d q, which is invariant under the adjoint GL.n;C/-action. Let R.M/ be
a space of rational functions on M taking values in gl.n;C/, i.e., the elements of R.M/

are just polynomials in q, p and their inverses. Let H.pi ; qi / and H.Ii ; �i / be the dual
multi-particle systems obtained by the reduction with respect to the moment map (1.2). If
the Hamilton equations forH.q;p/ admit the isospectral or zero-curvature representation

Lt D ŒL;M� or Lt �M� C ŒL;M� D 0;

with
L.�/;M.�/ 2 R.M/ ˝ gl.n;C/˝CŒ�˙1�;

then the dual systems H.pi ; qi / and H.Ii ; �i / admit an isospectral (zero-curvature) rep-
resentation given by the gauge transform for L,M operators. Furthermore, the spectral
curves for both systems are the same:

�.p;q/.�; �/ D �.I;�/.�; �/ D det.L.�/ � �/ D 0:

Proof. Since the Hamiltonian H.p; q/ is invariant under the adjoint action, the moment
map � is a constant of motion with respect to the dynamics generated by H.p; q/. The
moment map for the symplectic manifold M is Œp;q�. To obtain multi-particle reductions,
we fix the moment map

Œp;q� D ig.1 � vT
˝ v/

and perform the diagonalization of q or p using the same arguments as before. To obtain
the reduced Lax (or isomonodromic) representation, we do the gauge transformation for
the eigenfunction of the isospectral (or isomonodromic) problem

‰ D .C ˝ Idn/Y D hY;

where C is the transition matrix to the eigenbasis of q or p. This leads to the following
action on the L and M matrices:

L! h�1Lh; M ! h�1Mh � h�1ht :

Since L takes values in R.M/˝ gl.n;C/, it may be written as

L.q;p/ D
mX

i;jD1

Pij .q;p/˝Eij ;

where .Eij /kl D ıikıjl and Pij are rational functions. Then the gauge transformation acts
in the following way:

h�1Lh D

mX
i;jD1

C�1Pij .q;p/C ˝Eij D
mX

i;jD1

Pij .C
�1qC;C�1pC/˝Eij

D L.C�1qC;C�1pC/;
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i.e., such gauge sends the L-operator to the Lax operator on the reduced space. To obtain
the matrix M , we need to write explicitly g�1gt , which may be done using the reduced
Hamilton equations (for a detailed proof, we refer to Lemma 2.5 in [8]).

Finally, anL-matrix for the reduced system is given by the conjugation of theL-matrix
for the unreduced system, so they have the same eigenvalues and the same spectral curves.
Since both the reduced (p; q) and the dual (I; �) systems are obtained by this procedure,
their spectral curves coincide.

Remark 2.2. The difference between the isospectral and the isomonodromic cases is that
in the isospectral case the same spectral invariants are the integrals of motion for the
reduced systems. For the isomonodromic duality, the invariants are not conserved quant-
ities, since the dynamic is non-autonomous.

Here we provide a simple example of the described duality for the matrix harmonic
oscillator, since the free particle Hamiltonian gives trivial result. In [37], the duality for
the Calogero–Moser–Sutherland systems is described via the Hamiltonian reduction of
the following Hamiltonian system:

(2.2) H D Tr
�p2

2
C !2

q2

2

�
;

which we call the matrix harmonic oscillator. The construction of the dual system is
more complicated than in the case of the rational Calogero–Moser system, because it
requires a polar decomposition in order to change the phase space from T ?g to T ?G,
where G is a Lie group and g is the corresponding Lie algebra. The obtained duality
gives the Ruijsenaars duality between the Calogero–Moser–Sutherland and the rational
Ruijsenaars–Sneider systems.

On the other hand, the Hamiltonian system given by (2.2) may be written as an iso-
spectral deformation for the block-matrix L-operator:²

L‰ D �‰;

‰t DM‰;
with L D

h p !q
!q �p

i
and M D

!

2

h
0 � Idn

Idn 0

i
:

The Lax equation PL D ŒL; M� is the same as the Hamilton–Jacobi equations for the
Hamiltonian (2.2) with symplectic form � D Tr d p ^ d q. Reducing at Q and P , we
get the system

H .red/
D

X
i

�p2i
2
C !2

q2i
2

�
C

X
i<j

g2

.qi � qj /2
�

The Lax pair for the reduced system is given by the gauge

‰ D .C ˝ Id2/Y D hY;

which gives the following Lax pair:´
L.red/Y D �Y;

Yt D .h
�1Mh � h�1ht /Y;

L.red/
D h�1Lh D

h
P !Q

!Q �P

i
:
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Reducing at the dual value of the moment map gives the system

H .dual/
D

X
i

�I 2i
2
C !2

�2i
2

�
C

X
i<j

!2g2

.Ii � Ij /2

with the Lax representation

‰ D . QC ˝ Id2/ QY D Qh QY ;´
L.dual/ QY D � QY ;

QYt D . Qh
�1M Qh � Qh�1 Qht / QY ;

L.dual/
D Qh�1L Qh D

h
ƒ !ˆ

!ˆ �ƒ

i
:

Since the Lax operators L, L.dual/ and L.red/ are conjugate to each other, the spectral
curves for the unreduced, the reduced and the dual systems are the same. Indeed,

�.�; �/ D det.L � �/ D det.h/ det.L.red/
� �/ det.h/�1 D det.L.red/

� �/

D �.red/.�; �/ D det. Qh/ det.L.dual/
� �/ det. Qh/�1 D �.dual/.�; �/ D 0:

In this case, there is no dependence on � in the spectral curve equation �.�; �/ D �.�/,
because we consider the Lax pair without a spectral parameter. In the general case, the
spectral curve depends on both � and �. Since the spectral curves are the same,

�.red/.�; �/ D �.dual/.�; �/ D �.�; �/ D 0;

we call this correspondence the spectral duality. This duality may be viewed as follows:
the Cauchy problem for an unreduced system fixes the coefficients of the spectral curve,
and fixes the same data for the reduced and the dual systems.

In case of the free particle Hamiltonian Tr.p2=2/, this spectral duality is trivial: we
obtain the rational Calogero system and the free particle system which corresponds to the
action angle variables. The consideration of the matrix harmonic oscillator is a non-trivial
example of two systems which have the same spectral invariants.

The obtained reduced system is self-dual, in the sense that the symplectic map

Ii ! !qi ; �i ! �
pi

!

maps H .red/ to H .dual/, i.e.,

H .dual/.qi ; pi / D H
.red/

�
�
pi

!
; !qi

�
:

This symplectic self-duality comes from the symmetry of the unreduced Hamiltonian. In
the general case, the dual systems may not be self-dual.

A similar type of a duality was introduced in the works [35, 36, 46], which give
classical-classical or classical-quantum duality for integrable systems. The most studied
examples are the spectral duality between the Gaudin model and the Heisenberg chain,
and the spectral self-dual Toda lattice. The main difference is that the spectral duality
introduced by Morozov et. al. [35] interchanges � and � on a spectral curve. For example,
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the Gaudin model and the Heisenberg chain spectral curves are connected in the follow-
ing way:

�.Gaudin/.�; �/ D �.Heisenberg/.�; �/:

This duality may be viewed as a Fourier transform between � and �. This Fourier trans-
form duality was explored for the first time in a series of works by Adams, Harnad,
Hurtubise and Previato, both for the isospectral and for the isomonodromic systems, in
order to provide the description of the classical integrable systems in terms of the coad-
joint orbits of a loop group action [1, 2, 24]. The main difference in our case is that we
do not have this twist of spectral parameters, since our duality is not an analogue of the
“Fourier” transform, but it originates from the different reductions of the non-reduced
systems.

3. Dual Hamiltonians for the multi-particle Painlevé–Calogero
systems

In this section, we provide dual Hamiltonian systems which are obtained from the Calo-
gero–Painlevé IV, II and I systems by Hamiltonian reduction. Without loss of generality,
we will use p1; p2 : : : pn and q1; q2 : : : qn for the dual coordinates, instead of I1; I2 : : : In
and �1; �2 : : : �n, since in this case they do not correspond to the action-angle variables
and we want to emphasize the self-duality in the case of PIV. In this section and in the rest
of the paper, we shall use isomonodromic pairs, which appeared before in [8, 26].

3.1. Painlevé–Calogero IV system

Proposition 3.1. There is an anti-symplectic involution of the reduced phase space for
the Calogero–Painlevé IV system such that the reduced Hamiltonian is self-dual.

Proof. The isomonodromic linear problem for the fourth matrix Painlevé system reads8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@

@�
‰ D

2664 �
pq
�

qpC �0 C �1 �
pqpC �0p

�

1C
q
�

��C t C
qpC �0
�

3775‰;
@

@t
‰ D

�
0 �qp � �0 � �1
�1 � � q � t

�
‰:

The compatibility conditions are

(3.1)

´
PqD Œp;q�C�q2� tqC�0;
PpD Œp;q�C�p2C tpC�0 C �1;

HD Tr.pq.p� q� t /C�0p� .�0C�1/q/:

In the dual coordinates

ƒ D diag.p1; p2; : : : ; pn/ and ˆ D diag.q1; q2; : : : ; qn/ �
� ig

pi � pj

�
i¤j

;
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the Hamiltonian reads

(3.2) H .dual/
IV D

nX
iD1

�
qip

2
i � piq

2
i � tqipi C �0pi � .�0 C �1/qi

�
� g2

X
i<j

pi C pk

.pi � pj /2
�

Hence, the change of variables

qi ! �pi ; pi ! �qi ; �0 ! ��1; �1 ! ��0

transforms H .dual/
IV into

H
.red/
IV D

nX
iD1

�
qip

2
i � piq

2
i � tpiqi C �0qi � .�0 C �1/pi

�
C g2

X
i<j

qi C qk

.qi � qj /2
,

which is obtained by the reduction at .Q; P /. The map provided above does change the
sign of the symplectic form, so it is an anti-symplectic involution. This coincides with the
fact that the PIV Hamiltonian from (3.1) is invariant under the same change of variables
in terms of p and q. Indeed, after the first change of variables

p! �q; q! �p;

the Hamiltonian reads

H D Tr .qp.�qC p � t / � �0qC .�0 C �1/p/ :

Since trace is invariant under cyclic permutations, one may rewrite the obtained Hamilto-
nian as

H D Tr
�
�pq2 C pqp � pqt � �0qC .�0 C �1/p

�
D Tr .pq.p � q � t / � �0qC .�0 C �1/p/ :

Now let us change the constants as follows:

�0 ! Q�0 C Q�1 and �1 ! � Q�1:

This leads to
H D Tr.pq.p � q � t /C Q�0p � . Q�0 C Q�1/q/:

As a consequence, the transformed Hamiltonian coincides with the Painlevé IV one after
switching from Q�i to �i for i D 1; 2.

3.2. Painlevé–Calogero II system

We shall see that, in contrast to the precedent model, the dual Hamiltonian of the Calo-
gero–Painlevé II system does not “survive” under this duality map.

Proposition 3.2. The Painlevé–Calogero II system is not self-dual. Moreover, the dual
system admits a quadruple-wise particle interaction, while in case of a q-diagonal reduc-
tion, we obtain only a pair-wise particle interaction.
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Proof. The isomonodromic problem for the matrix Painlevé II system is given by8̂̂̂̂
<̂
ˆ̂̂:

@

@�
ˆ D

�
i �2=2C i q2 C i t=2 �q � ip � �=�
�qC ip � �=� �i �2=2 � i q2 � i t=2

�
ˆ;

@

@t
ˆ D

�
i �=2 q

q �i �=2

�
ˆ;

the compatibility condition of which leads to the following equations:

(3.3)
²
Pq D p
Pp D 2q3 C tqC � H D Tr

�p2

2
�
1

2

�
q2 C

t

2

�2
� �q

�
In the reduced coordinates P and Q, the Hamiltonian reads

H
.red/
II D

nX
iD1

hp2i
2
�
1

2

�
q2i C

t

2

�2
� �qi

i
C g2

X
j<k

1

.qj � qk/2
�

In the dual coordinates, the Hamiltonian turns into

(3.4) H .dual/
II D

nX
iD1

hp2i
2
�
1

2

�
q2i C

t

2

�2
� �qi

i
C 2g2

X
i<j

q2i C qiqj C q
2
j C t=2

.pi � pj /2
� g4

X
i<j

1

.pi � pj /4

�

� X
i<j<k

2g4

.pi �pj /2 .pj �pk/2
C

X
i<j<k<l

4g4

.pi �pj /.pj �pk/.pk�pl /.pl�pi /

�
:

We describe all technical details of the explicit computations for the interaction terms
in this Hamiltonian in Appendix A.

3.3. Painlevé–Calogero I system

The isomonodromic problem for the matrix PI equation is given by

(3.5)

8̂̂̂<̂
ˆ̂:

@

@�
ˆ D

�
p � � q

�2 C �qC q2 C t=2 �p

�
ˆ;

@

@t
ˆ D

�
0 1=2

�=2C q 0

�
ˆ;

and gives the following Hamiltonian system:´
Pq D p;
Pp D

3
2

q2 C t=4;
H D Tr

�p2

2
�

q3

2
�
t

4
q
�
:
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In the reduced coordinates Q and P , the Hamiltonian is

H
.red/
I D

nX
iD1

hp2i
2
�
q3i
2
�
t

4
qi

i
C g2

X
i<j

1

.qi � qj /2
�

Taking the dual coordinates ƒ and ˆ, we obtain

H
.dual/
I D

nX
iD1

hp2i
2
�
q3i
2
�
t

4
qi

i
�
3g2

2

X
j<i

qi C qj

.pi � pj /2
�

The obtained systems are not connected by the anti-symplectic involution. Computations
of the cubic term are provided in Appendix A.

Remark 3.3. The self-dual Painlevé–Calogero IV system is completely integrable since
its autonomous version is canonically equivalent to the rational Inozemtsev system, which
is completely integrable, see [44]. We do not know if the dual Painlevé–Calogero I and II
systems are completely integrable; this question requires further investigation, and will be
addressed elsewhere.

4. The autonomous form of the multi-particle Painlevé equations.
The Painlevé–Calogero correspondence

In this section, we write down the Lax pairs for the autonomous versions of the Hamilto-
nians of the non-commutative PI, PII and PIV. This procedure the well-known Painlevé–
Calogero correspondence for this type of equations. We use � as a parameter which does
not depend on time t further in the text.

Before diving into the examples, we provide a simple lemma about autonomization of
the isomonodromic problems.

Lemma 4.1. Let A.zI t / and B.zI t / be an isomonodromic pair,

d

dt
A �

@

@z
B C ŒA; B� D 0;

such that t is an isomonodromic deformation parameter. If the following cross-derivative
vanishes,

(4.1) @tA � @zB D 0;

then isomonodromic problem may be reduced to the Lax system by freezing the isomono-
dromic time.

Proof. This is a direct computation.
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4.1. Painlevé–Calogero II system

The autonomous form of the matrix PII has form

(4.2)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

L.q;p/ˆ D �ˆ;

L.q;pI�/ D A.q;p; �; �/ D
�
i �2=2C iq2 C i �=2 �q � ip � �=�

�qC ip��=� �i �2=2� iq2� i �=2

�
@

@t
ˆ DM.q;p/ˆ;

M.q;pI�/ D B.q;p; �; �/ D
�
i �=2 q

q �i �=2;

�

Lt C ŒL;M� D 0 )

´
Pq D A.q;p/ D p;
Pp D B.q;p/ D 2q3 C �qC �;

H D Tr
�p2

2
�
1

2

�
q2 C

�

2

�2
� �q

�
:

Since the phase space is the same as in the non-autonomous case, the moment map is the
same as in the previous cases. Since the Hamiltonian in (4.2) is an autonomous version of
the matrix Painlevé II Hamiltonian, it is also invariant under the group action, and one can
obtain dual systems as a reduction at .P;Q/ and .ˆ;ƒ/ in the form

H
.red/
II D

nX
iD1

hp2i
2
�
1

2

�
q2i C

�

2

�2
� �qi

i
C g2

X
i<j

1

.qi � qj /2

and

H
.dual/
II D

nX
iD1

hp2i
2
�
1

2

�
q2i C

�

2

�2
� �qi

i
C 2g2

X
i<j

q2i C qiqj C q
2
j C �=2

.pi � pj /2
� g4

X
i<j

1

.pi � pj /4

� 2g4
� X
i<j<k

1

.pi �pj /2.pj �pk/2
C

X
i<j<k<l

2

.pi �pj /.pj �pk/.pk�pl /.pl�pi /

�
;

with the following Lax pair ²
QL‰ D �‰;
@
@t
‰ D . QM � F ˝ 12/‰;

where QL and QM are the images of initial .L;M/-pair after the gauge transformation which
sends .q;p/ to the reduced coordinates .Q;P / or the dual ones .ˆ;ƒ/. The matrix F for
the reduced and dual cases can be computed as

.qi � qj /
2F

.red/
i;j D .ŒA.Q;P /;Q�/i;j ; .pi � pj /

2F
.dual/
i;j D .ŒB.ˆ;ƒ/;ƒ�/i;j

Fj;j D �
X
k¤j

Fj;k C
1

n

X
l¤k

Fl;k
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The computations of matrices F .red/ and F .dual/ are similar to the computations provided
in Lemma 2.5 of the work [8] by M. Bertola, M. Cafasso and V. Rubtsov. Explicitly, the
L-matrices for the reduced and dual cases take the form

L.red/
D P ˝ �2 C

p
�1

��2
2
CQ2

C
�

2

�
˝ �3 C

�
�Q �

�

�

�
˝ �1;

L.dual/
D ƒ˝ �2 C

p
�1

��2
2
Cˆ2 C

�

2

�
˝ �3 C

�
�ˆ �

�

�

�
˝ �1;

where �1, �2 and �3 are the Pauli matrices.

4.2. Painlevé–Calogero I system

Freezing t in the isomonodromic problem (3.5), we obtain the following autonomous
Hamiltonian system:8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

L.q;p/ˆ D �ˆ

L.q;pI�/ D A.q;p; �; �/ D
�

p � � q
�2 C �qC q2 C �=2 �p

�
@

@t
ˆ DM.q;p/ˆ

M.q;pI�/ D B.q;p; �; �/ D
�

0 1=2

�=2C q 0

�
Lt C ŒL;M� D 0 )

²
Pq D A.p;q/ D p
Pp D B.p;q/ D 3

2
q2 C �=4

H .aut/
D Tr

�
p2

2
�

q3

2
�
�

4
q
�

The reduced systems takes the form

H
.red/
I D

nX
iD1

hp2i
2
�
q3i
2
�
�

4
qi

i
C g2

X
i<j

1

.qi � qj /2
,

H
.dual/
I D

nX
iD1

hp2i
2
�
q3i
2
�
�

4
qi

i
�
3g2

2

X
j<i

qi C qj

.pi � pj /2
�

The L-matrix has the following form:

L.red/
D P ˝ �3 C .� �Q/˝ �C C .�

2
C
�

2
C �QCQ2/˝ ��;

L.dual/
D ƒ˝ �3 C .� �ˆ/˝ �C C .�

2
C
�

2
C �ˆCˆ2/˝ ��;

where �3, �C and �� are the elements of the Cartan–Weyl basis of sl.2;C/.

4.3. The Painlevé–Calogero correspondence. The degeneration of the rational
Inozemtsev system

A well-known confluence scheme for the Painlevé equations [39, 42] also holds for the
matrix Painlevé systems. From the point of view of the reduced Painlevé–Calogero sys-
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tems for the matrix Painlevé VI, V and IV systems, the confluence scheme is the non-
autonomous version of the degeneration for the Inozemtsev Hamiltonian systems. In pre-
vious sections, we have shown that the corresponding autonomous multi-particle systems
for the Painlevé–Calogero I and II systems may be written in the Lax form. According to
Takasaki [43], the multi-particle Painlevé–Calogero I and II systems have to be a further
degeneration of the rational Inozemtsev Hamiltonian system.

This degeneration may be obtained by the autonomization of the confluence scheme
for the Painlevé equations, combined with the symplectic transformations given in [8].
In the case of the Painlevé–Calogero II and I systems, we obtain physical HamiltoniansP
i p

2
i =2C V.qi ; t / by reduction without any additional canonical transformations.

In this section, we will use q.IV/ and q.II/ for the non-commutative canonical coordin-
ates for the matrix Painlevé IV and the matrix Painlevé II systems, respectively. We use
same notation for the non-commutative moments and for the canonical coordinates of the
reduced systems.

Theorem 4.2. The confluence map from the matrix Painlevé IV system (3.1) to the matrix
Painlevé II system (3.3) holds for the Painlevé–Calogero multi-particle systems, but fails
for the dual systems (3.2) and (3.4).

Proof. To provide the degeneration procedure from the matrix Painlevé IV systems to the
matrix Painlevé II system we exploit the confluence formula i.e., a symplectic map for the
extended phase space which contains a parameter ". Taking the limit "! 0, we obtain the
resulting confluent Hamiltonian.

To obtain (3.3) from (3.1), we use the following confluence symplectic map:

(4.3)

q.IV/ D �
1

"3

�1
2
C "2q.II/

�
; p.IV/ D �"

�
p.II/ C

�
q.II/

�2
C t .II/=2

�
;

t .IV/ D
1

"3

�
1 � "4t .II/

�
; �0 D �

1

4"6
, �1 D ��C

1

4"6
,

H .II/
D �"H .IV/

C "�2
�

2
�

We see that (4.3) is indeed a symplectic map

!.IV/ D Tr d p.IV/ ^ d q.IV/ D Tr
�

d p.II/ ^ d q.II/ C d.q.II//2 ^ d q.II/
�

D Tr d p.II/ ^ d q.II/ D !.II/;

since

Tr.d q2 ^ d q/ D
X
i;k;l

.d.qikqkl / ^ d qli /

D

X
i;k;l

qik d qkl ^ d qli„ ƒ‚ …
i D ˛; k D ˇ; l D j

C qkl d qik ^ d qli„ ƒ‚ …
k D ˛; l D ˇ; i D j

D

X
˛;ˇ

q˛ˇ
X
j

�
d qˇj ^ d qj˛ C d qj˛ ^ d qˇj

�
D 0
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and
dH IV

^ dt IV D dH II
^ dt II:

The function

�"H .IV/
C "�2

�

2

after the limit becomes

H D Tr
�p2

2
�
1

2

�
q2 C

t

2

�2
C �q

�
;

after the transformation (4.3) and the limit " ! 0. Here we strip off all superscripts in
the Hamiltonian. The described transformation may be rewritten for the multi-particle
Painlevé–Calogero IV system,

H
.red/
IV D

nX
iD1

�
q
.IV/
i .p

.IV/
i /2 � p

.IV/
i .q

.IV/
i /2 � tp

.IV/
i q

.IV/
i C �0q

.IV/
i � .�0 C �1/p

.IV/
i

�
C g2

X
i<j

q
.IV/
i C q

.IV/
k

.q
.IV/
i � q

.IV/
j /2

,

in the following way:

q
.IV/
i D �

1

"3

�1
2
C "2q

.II/
i

�
; p

.IV/
i D �"

�
p
.II/
i C .q

.II/
i /2 C

t

2

�
with the same re-scaling for the constants, time, and Hamiltonian as in (4.3). The diag-
onal part of the Painlevé–Calogero IV Hamiltonian is a sum of uncoupled Painlevé IV
Hamiltonians, so in the limit "! 0, the diagonal part transforms into the sum of uncoupled
Painlevé II Hamiltonians. For the interaction term, we have

�"g2
X
i<j

q
.IV/
i C q

.IV/
j

.q
.IV/
i � q

.IV/
j /2

D

X
i<j

"2g2
q
.II/
i C q

.II/
j

.q
.II/
i � q

.II/
j /2

C
g2

.q
.II/
i � q

.II/
j /2

!

X
i<j

g2

.q
.II/
i � q

.II/
j /2

,

so the Hamiltonian of the Painlevé–Calogero IV system transforms into the Hamiltonian
of the Painlevé–Calogero II system. However, this reduction of the symplectic map (4.3)
cannot be applied to the dual systems. Indeed, this confluence on the Painlevé–Calogero
side is a consequence of the linearity of the transformation (4.3) with respect to q. We see
that the eigenspace of q.IV/ coincides with the eigenspace of q.II/, so we reduce from the
same point of the GL.n;C/-orbit. On the other hand, on the dual side we have that dual
reduction (diagonalization of p.IV/) for the matrix Painlevé IV system implies transition to
the eigenbasis of p.II/ C .q.II//2, which does not coincide with the dual reduction for the
matrix Painlevé II system. So the dual systems are obtained from the different points of
the GL.n;C/-orbit. This fact is an obstacle for this degeneration for the dual systems.
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Remark 4.3. Here we use the combination of the polynomial canonical transformation
with the confluence transformation given in [39, 42], which is “linear” both for q and p,
and is given by

(4.4)
q.IV/ D �

1

"3

�1
2
C "2 Qq.II/

�
; p.IV/ D �" Qp.II/; t .IV/ D

1

"3
.1 � "4t .II//

�0 D �
1

4"6
, �1 D ��C

1

4"6
, QH .II/

D �"H .IV/
C "�2

�

2
�

This transformation maps the Hamiltonian of the matrix Painlevé IV system to the follow-
ing Hamiltonian:

(4.5) QH .II/
D Tr

�1
2
Qp. Qp � 2 Qq2 � t / � � Qq

�
;

the Painlevé–Calogero reduction of which takes the formX
i

hp2i
2
� piq

2
i �

t

2
pi � �pi

i
C g2

X
i<j

1

.qi � qj /2
,

and the dual reduction isX
i

hp2i
2
� piq

2
i �

t

2
pi � �qi

i
� g2

X
i¤j

pi

.pi � pj /2
�

Since (4.4) is linear in q and p, this confluence holds also for both the Painlevé–Calogero
and the dual systems. The Hamiltonian system QH .II/ is canonically equivalent to (3.3),
due to to the symplectic map

(4.6) Qq D q; Qp D pC q2 C t=2;

which is an obstacle for the degeneration of the dual systems. The degeneration to the
matrix Painlevé I systems is given by the “linear” maps in q and p from the QH .II/ system.
To obtain the confluence from H .II/ given in (3.3), we need to use an inverse of (4.6)
combined with the confluence which leaves the transformation linearity only for q. So that
degeneration to the matrix Painlevé I system holds for the Painlevé–Calogero systems, but
not for the dual systems.

By fixing t D � , we get the autonomous version of the confluence scheme which
provides the degeneration of the rational Inozemtsev system to the rational Calogero-
Painlevé II and I systems.

The obtained multi-particle systems are further degenerations of the Inozemtsev sys-
tems. The arising dual systems look novel and need more detailed analysis. In case of the
multi-particle Painlevé–Calogero II system, there is an interesting interpretation of this
de-autonomization which arises from the symmetry reductions for the matrix modified
Korteweg–de Vries equation. We discuss this connection in details in Section 5.
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5. Matrix modified Korteweg–de Vries equation and the
Painlevé–Calogero correspondence for the Painlevé II system

The matrix modified Korteweg–de Vries (MmKdV) equation has the following form [29]:

(5.1) ut D uxxx C 3Œuxx ;u� � 6uuxu:

In this section, we are going to show the connection between the traveling wave reduc-
tion of MmKdV and its self-similar reduction. The self-similar reduction is the following
change of variables:

(5.2) u.x; t/ D
v.z/
.3t/1=3

, with z D
x

.3t/1=3
�

This change of variables leads to

@t D �
x

.3t/4=3
@z and @x D

1

.3t/1=3
@z ,

and equation (5.1) turns into

(5.3) vzzz C 3Œv; vzz � � 6vvzvC .zv/z D 0:

Let us change the variable z to t , in order to return to our previous notation. It can be
shown that every solution of the matrix Painlevé II equation solves equation (5.3) (but not
vice versa), since (5.3) may be written, see [5, 21], as

(5.4) .@t C 3adv C 2adv ı @
�1
t ı adv/ ı .vt t � 2v3 C tvC �/ D 0;

where
adv ı A D Œv; A�:

After changing t !�t and � !�� , equation (5.4) becomes the matrix Painlevé II equa-
tion. On the other hand, the travelling wave reduction of the MmKdV equation,

u.x; t/ D v.z/; z D x � !t;

has the form

(5.5) .@z � 3adv C 2adv ı @
�1
z ı adv/ ı .vzz � 2v3 C !vC �/ D 0;

where ! is an arbitrary constant. Let us change z to t and ! to � in order to show the
connection with equation (5.5). The equation turns to

vt t C 2v3 C �vC � D 0;

and can be written as the following Hamiltonian system:²
Pq D p
Pp D 2q3 C �qC �

; HPII.q;p; �/ D Tr
�p2

2
�
1

2

�
q2 C

�

2

�2
� �q

�
:
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Thus the matrix Painlevé II equation (which is the special case of the self-similar reduc-
tion of the MmKdV equation) is a � -deformation of the special case of travelling wave
reduction of the MmKdV equation. This Painlevé–Calogero correspondence can be lifted
down to the multi-particle systems which are obtained by Hamiltonian reduction. Finally,
we have the following diagram:

HII.pi ; qi ; t / HII.pi ; qi ; �/

HII.p;q; t / MmKdV HII.p;q; �/

H
.dual/
II .pi ; qi ; t / H

.dual/
II .pi ; qi ; �/

Spectral

duality

Painlevé–Calogero

Spectral

duality

correspondence
q -diag

p -diag

self-similar
reduction

travelling wave

reduction

p -diag

q -diag

Painlevé–Calogero

correspondence

The following situation is a result of the existence of special symmetries of integrable
PDEs, which are formulated in the next theorem.

Theorem 5.1. For all integrable evolution PDEs which allow the self-similar reduction
of the form

u.x; t/ D
v.z/

tˇ
, z D

x

tˇ
,

and also allow the travelling wave reduction

u D w.z/; z D x � !t;

the self-similar reduction is a !-deformation of the travelling wave reduction.

Proof. By an integrable evolution PDE, we mean the following equation:

ut C @xF.u; ux ; uxx ; : : : / D 0:

The existence of the travelling wave solution means that the equation is invariant under
translations, so F does not depend on x. The self-similar reduction means that there exist
a solution of the form

u D
v.z/

tˇ
, with z D

x

t˛
�

The transformation above leads to the following expressions for partial derivatives:

ut D �
ˇ

tˇC1
.v C

˛

ˇ
zvz/ and @nxu D

1

tˇCn˛
dnv.z/

dzn
�

The equation transforms into

ˇ

tˇC1

�
v C

˛

ˇ
zvz

�
�
1

t˛
d

dz
F.v=tˇ ; vz=t

ˇC˛; : : : ; v.n/=tˇCn˛; : : : / D 0:
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Existence of the self-similar reduction implies that the solution v.z/ does not depend on t ,
which means that the function F transforms in such a way that the t -variable factors out.
This implies that F is quasi-homogeneous,

F.u; ux ; : : : / D
F.v; vz ; : : : /

tˇC1�˛
,

and the reduction reads as

(5.6) ˇ
�
v C

˛

ˇ
zvz

�
� @zF.v; vz ; : : : / D 0:

In the case when ˛ D ˇ, one may integrate equation (5.6) and get

F.v; vz ; vzz ; : : : / � ˇzv D C:

Here, C is a constant of integration. On the other hand, the travelling wave reduction
u D w.z D x � !t/ takes the form

F.v; vz ; vzz ; : : : / � !v D C

and we see that the self-similar reduction is the deformation of the travelling wave reduc-
tion with respect to !, i.e., ! switches to ˇz.

6. Further remarks and open questions

This paper is a small first step in the study of the dualities for non-autonomous many-
particle systems. Our examples and computations raise a natural question of Liouville and
quantum integrability for the obtained dual rational many-particle systems. Some of them
are integrable ad hoc, but the integrability of other examples is not clear at all.

We note that in all our examples of the Hamiltonian reduction procedure for the
Painlevé–Calogero Hamiltonian systems, we have always used the cotangent bundle of
the Lie algebras gln.C/ for their phase space, and the momentum mapping is given by
the matrix commutator M D ŒP; Q�: At the same time, the Hamiltonian reductions for
their Calogero–Moser prototypes can be described with various generalizations of this
phase space and the momentum map: the group-like half-commutator M D PQP�1 �Q

on T �GLn, or the “full”group-commutator M D PQP�1Q�1 on the Heisenberg double
G �G. The existence of the isomonodromic systems on T �GLn and on the Heisenberg
double G �G is an open problem which leads to the following question: how can we
extend our dualities to the trigonometric and to the elliptic Painlevé–Calogero Hamiltoni-
ans? The Calogero–Moser–Ruijsenaars–Schneider duality table dictates a necessity of the
existence for some “Ruijsenaars–Painlevé correspondence”, while on the Painlevé side
one should expect the appearance of some discrete or q-Painlevé systems. Some very
encouraging computations show that there exists a (non-autonomous) canonical trans-
formation which provides a direct formula linking the Hamiltonians HD8

PIII and H rat
Ruijsenaars

and their multi-particle reduced forms illustrated the spectral duality in this case. This
result and its further developments are the subject of a future paper.
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Another strong evidence of the existence of this extension is also based on the one-
to-one correspondence between the so-called BCn Inozemtsev model with the Hamilto-
nian HBCn described above,

nX
jD1

�p2j
2
�

3X
`D0

�`.�` C 1/}.qj C !`/
�
�
�.� C 1/

2

X
j¤k

.}.qj � qk/C }.qj C qk//:

It is known, see [44], that the BCn Inozemtsev model is a universal completely integ-
rable model of quantum mechanics; in that paper, the correspondence between the BCn
Ruijsenaars–van Diejen systems and the BCn Inozemtsev system was established. One
should take into account the recent result of Takemura [45], who studied an analogue of the
well-known relation between the Painlevé VI and the Heun differential systems for differ-
ence equations. He proposed, in particular, the correspondence between the elliptic differ-
ence Painlevé equations and the one-variable Ruijsenaars–van Diejen difference equation,
regarded as a difference analogue of the Heun equation. He also proved that (degener-
ated) Rujisenaars–van Diejen operators of one variable are special cases of the linear
q-difference equations related to certain q-Painlevé VI equations by a connection pre-
serving deformation. Another interesting direction is to investigate the adaptation of the
Inozemtsev limit to the non-autonomous multi-particle systems, in order to obtain new
versions of the non-autonomous Toda lattice, in the same way as for autonomous systems
(see [13, 47]).

Our next goal is to find and to study an appropriate general version of the Hamiltonian
reduction and an analogue of the Ruijsenaars duality in the framework of this conjec-
tural “Ruijsenaars–Painlevé correspondence”, which should include the correspondence
between the difference systems like the elliptic Ruijsenaars dual to the elliptic Calogero–
Moser and the fabulous double-elliptic (DELL) ([34]) and the elliptic Rains Painlevé
system and its various degenerations. The first interesting results in this direction were
very recently obtained by Noumi, Ruijsenaars and Yamada in [38]: they showed that the
8-parameter elliptic Sakai difference Painlevé equation can be presented in a Lax-like form
which can be specified as non-autonomous; this gives Schrödinger equation for the BC1
8-parameter Ruijsenaars–van Diejen difference Hamiltonian.

Another intriguing and challenging problem is a transition of the described dualities
to some close domains – such that the theory of (q-)special functions. We suppose that
there are some interesting links between our classical dualities and their quantum coun-
terparts, which we did not consider in this paper. In particular, we expect the existence of a
close connection between the quantum version of our dualities and the dualities described
by Koornwinder and Mazzocco [30] in the case of q-Askey scheme and the degenerate
DAHA. We are going to clarify it and fill some gaps in one of the tables from [12]. In
this direction, it would be highly ambitious and interesting to understand the conjectural
correspondence for the trigonometric degeneration of the difference Ruijsenaars–Shneider
systems and its duality with the q-Knizhnik–Zamolodchikov equations or, more generally,
in the framework of the q-Langlands correspondence (see, e.g. [31]).

We finish the survey of possible applications of our computational observations with
more general open questions related to the end of Section 5. This is the condition for sym-
metries of PDE which leads to the situation when one reduction is deformation of another.
Besides for integrable PDEs lifting of this symmetries to the Lax pairs is also an essential
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issue in this problem. We also believe that these conditions for the self-similar reduction
may be lifted to the non-commutative case, and to more general classes of equations.

A. Appendix: Calculation of interaction terms

In case of the multi-particle dual Painlevé systems, we obtain Hamiltonians which contain
terms with more than two-particle interactions. This comes from the Q3 and Q4 terms in
the matrix Hamiltonians, where Q is the rational Calogero Lax operator

Q D ıij qi C .1 � ıij /

p
�1g

pi � pj
�

In case of a fixed size of the matrix Q (the number of the particles), the calculation of
the traces of any power of Q is a straightforward problem, which may be solved for
example with the help of a computer algebra system. In case of an arbitrary size ofQ, this
computation is not a big problem either, but the process may be tedious.

Here we present a simple approach for a calculation of such interaction terms. We
denote by n a number of particles (the size of Q), and by g a coupling constant. Since Q
is a linear matrix function of g, the trace of Ql is a polynomial in g of degree less than l :

(A.1) TrQl
D

lX
kD0

gk

kŠ
Fk ; with Fk D

dk

dgk
Tr.Ql /

ˇ̌̌
gD0
D Tr

� dk
dgk

Ql
ˇ̌̌
gD0

�
:

To compute coefficients, we use the following technical lemma.

Lemma A.1. The polynomial TrQl is even for all l , i.e.,

TrQl
D

Œl=2�X
kD0

g2k

2kŠ
F2k ;

where Œl=2� is equal to l=2 � 1=2 in the case when l is odd, and to l=2 when l is even.

Proof. In the upcoming calculations, we will use the following notation:

QjgD0 D ıij qi D D and
dQ

dg
D .1 � ıij /

p
�1

pi � pj
D A:

Each odd coefficient F2r�1 of the polynomial (A.1) takes the form

(A.2) F2r�1 D
X

0<i1<���<i2r�1�l

TrEi1;i2:::i2r�1 ;

where E is given by

Ei1;i2:::;i2r�1 D D
i1�1ADi2�i1�1A � � �Dik�ik�1�1Aik � � �Di2r�1�i2r�2�1ADl�i2r�1
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Since A is a symmetric matrix, D is a skew-symmetric matrix, and all the E’s contain an
odd number of D’s, we have

.Ei1;i2;:::;i2r�1/
T
D �El�i2r�1;i2r�2;:::;i2r�i1

On the other hand, the trace is invariant under transpositions, so there are two cases. The
first one is

Ei1;i2;:::;i2r�1 ¤ El�i2r�1;i2r�2;:::;i2r�i1 ;

so for each sequence .i1; i2; : : : ; i2r�1/ in the sum (A.2), we have the “mirror” sequence
.l � i2r�1; l � i2r�2; : : : ; l � i2r�i1/, such that

TrEi1;i2;:::;i2r�1 C TrEl�i2r�1;i2r�2;:::;i2r�i1 D 0;

so they don not contribute to (A.1). The second case is

Ei1;i2;:::;i2r�1 D El�i2r�1;i2r�2;:::;i2r�i1 :

In this case,Ei1;i2;:::;i2r�1 is a skew-symmetric matrix, so it does not contribute to (A.2).

Finally, we provide the calculations of the traces forQ3 andQ4. In the case l D 3, we
have

TrQ3
D Tr.D3/C 3g2 Tr.AAD/ D

nX
iD1

q3i C 3g
2
X
i¤j

qi

.pi � pj /2

D

nX
iD1

q3i C 3g
2
X
i<j

qi C qj

.pi � pj /2
�

For l D 4, the expansion takes the form

TrQ4
D Tr.D4/C 2g2

�
2Tr.D2A2/C Tr.DADA/

�
C g4 Tr.A4/:

Here we have

Tr.D2A2/ D
X
i¤j

q2i
.pi � pj /2

D

X
i<j

q2i C q
2
j

.pi � pj /2
,

Tr.DADA/ D
X
i¤j

qiqj

.pi � pj /2
D 2

X
i<j

qiqj

.pi � pj /2
�

The last g4-term takes the form

Tr.A4/ D
X

i¤j¤k¤l¤i

1

.pi � pj /.pj � pk/.pk � pl /.pl � pi /
,

and there are three possibilities: (a) k D i; l D j , (b) l D j , and (c) all indices i; j; k; l
different. This leads to the following interaction term:

Tr.A4/ D
X
i<j

2

.pi � pj /4
C

X
i<j<k

4

.pi � pj /2.pj � pk/2

C

X
i<j<k<l

8

.pi � pj /.pj � pk/.pk � pl /.pl � pi /
�
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