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Katz type p-adic L-functions for primes p non-split
in the CM field

Fabrizio Andreatta and Adrian Iovita

Abstract. For every triple F , K, p where F is a classical elliptic eigenform, K is a quadratic
imaginary field and p is an odd prime integer which is not split in K, we attach a p-adic
L-function which interpolates the algebraic parts of the special values of the complex L-func-
tions of F twisted by algebraic Hecke characters of K such that the p-part of their conductor
is pn, with n large enough (for p � 5 it suffices n � 2). This construction extends a classical
construction of N. Katz for F an Eisenstein series, and of Bertolini–Darmon–Prasanna for F
a cuspform when p is split in K. Moreover, we prove a Kronecker limit formula, respectively,
p-adic Gross–Zagier formulae, for our newly defined p-adic L-functions.
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1. Introduction

The celebrated 1976 article of N. Katz p-adic interpolation of real analytic Eisenstein
series [18], attaches a two variables p-adic L-function to a pair .K;p/ consisting of a
quadratic imaginary fieldK and a prime integer p, satisfying a number of assumptions
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of which the most important is that the prime p is split inK. Katz’ p-adic L-function
associated to a pair .K; p/ as above can be seen to interpolate p-adically the central
critical values of the complex Rankin L-functions of a p-adic family of Eisenstein
series twisted by a family of certain algebraic Hecke characters. This article was very
influential and produced, during the last 45 years, a large number of papers extending
these ideas to other similar situations and/or trying to prove properties of these new
“Katz type” p-adic L-functions.

An example is the work of Bertolini–Darmon–Prasanna (see [9]), who studied
Katz type p-adic L-functions in which the Eisenstein family was replaced by a cusp-
form. More precisely they defined a one variable anticyclotomic p-adic L-function
attached to an elliptic cuspidal eigenform F and an imaginary quadratic field, which
interpolates the central critical values of the Rankin L-functions of F twisted by
anticyclotomic characters of higher infinity type and proved p-adic Gross–Zagier
formulae for these p-adic L-functions. They assumed that p was split in the quad-
ratic imaginary field.

The main result of this article is the construction of one- (respectively, two)-
variable p-adic L-functions à la Bertolini–Darmon–Prasanna, i.e., associated to ellip-
tic cuspidal eigenforms (respectively, p-adic families of such), or à la Katz, i.e.,
associated to elliptic Eisenstein series (respectively, to p-adic families of Eisenstein
series), and a pair .K; p/ consisting of a quadratic imaginary field and prime integer
p > 2 which is not split in K. We also prove special values formulae for these new
one variable p-adic L-functions.

To simplify the discussion, in this introduction we focus on the case of the one
variable p-adic L-functions for p inert in K and p � 5. For the cases p D 3 inert
in K or p odd and ramified in K and for the two variable p-adic L-functions the
reader can consult Section 5.3 (the inert case) and Section 6.3 (the ramified case),
respectively.

ClassicalL-values. In what follows we fix a classical, elliptic eigenform F of weight
k � 1, level �1.N / for N � 5 and character � and a quadratic imaginary field K. We
assume that there is an ideal N of OK such that we have a ring isomorphism

OK=N Š Z=NZ

(this is the so-called Heegner hypothesis); we choose and fix such an ideal. We also
fix a positive, odd integer c prime to N . We consider the L-functions L.F; �; s/ of
the complex variable s, where � varies in the set †cc.k; c;N; �/ of algebraic Hecke
characters of K, of infinity type .k1; k2/ with k1 � 1 and k1 C k2 D k, of conductor
dividing cN and character � (in the sense of Section 2.1) and such that we are in one
of the following two cases:

(a) F D Ek;� is an Eisenstein series, � has parity k and is non-trivial if k D 2;
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(b) F is a cuspform of weight k � 2 and � is such that s D 0 is the central critical
value of L.F; �; s/.

Looking at the infinity types of the characters in†cc.k; c;N; �/, we have a natural
decomposition

†cc.k; c;N; �/ D †
.1/
cc .k; c;N; �/q†

.2/
cc .k; c;N; �/;

where †.1/cc .k; c;N; �/ is the subset of Hecke characters having infinity type

.k � 1 � j; 1C j / for 0 � j � k � 2

and †.2/cc .k; c;N; �/ is the subset of Hecke characters having infinity type

.k C j;�j / for j � 0:

For F as above and � 2 †.2/cc .k; c;N; �/ we have an explicit description of the
algebraic part of the special value of L.F; �; 0/ as follows, thanks to Damerell’s the-
orem in the Eisenstein case and thanks to a result of Waldspurger’s in the cuspidal
case (assuming that K has odd discriminant):

Lalg.F; �/ WD
X

a2Pic.Oc/

��1j .a/ı
j

k
.F /

�
a � .A0; t0; !0/

�
2 xQ

and �
Lalg.F; �/

��
D C.F; �/

L.F; �; 0/

��.kC2j /
;

where � D 1 if F is an Eisenstein series and � D 2 if F is a cuspform, C.F; �/ is
an explicit constant which varies if F is an Eisenstein series or a cuspform, � is a
complex period, Oc is the order in OK of conductor c, �j D � � Nj , where N is the
norm Hecke character of K, and .A0; t0; !0/ is a triple consisting of an elliptic curve
with CM by Oc , t0 is a generator of A0ŒN� and !0 is a generator of the invariant
differentials on A0. Here we say that A0 as CM by Oc if we have a ring isomorphism
�WK ! End0.A0/ such that ��1.End.A0// D Oc . We remark that the isomorphism
classes of elliptic curves with CM by Oc are points of a Shimura variety. Given any
such A0, we abusively refer to the choice of a generator t0 of A0ŒN� as a �1.N/-
level structure on A0, identifying .A0; t0/ to a point of the above mentioned Shimura
variety of level �1.N/. Furthermore, a � .A0; t0; !0/ denotes the natural action of
a2 Pic.Oc/ on the triples .A0; t0;!0/. Finally, one of the most important players in the
above formula is the weight k Shimura–Maass differential operator ık . This operator
is analytically defined on (real analytic) modular forms of weight k for �1.N / on the
complex upper half plane by the formula:

ık.F / WD
1

2�i

� @
@z
C

k

z � xz

�
.F /

and acts on the q-expansion of F as the differential operator q d
dq

.
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p-Adic interpolation of the valuesLalg.F;�/. As we mentioned at the beginning of
this introduction, if F is an Eisenstein series, respectively, a cuspform, and p is split
in K, Katz in [18], and respectively, Bertolini–Darmon–Prasana in [9], constructed
p-adic L-functions interpolating p-adically the values Lalg.F; �/ for � 2 †.2/cc .N/.

A legitimate question is then: what about if p is non-split in K? When F D Ek;�
is an Eisenstein series and p is a prime integer inert in K, the L-values Lalg.Ek;�; �/

have been extensively studied by Fujiwara in [16], Bannai–Kobayashi in [5] and by
Bannai–Kobayashi–Yasuda in [6]. One knows, thanks to work of Katz [19], that the
values Lalg.Ek;�; �/ are p-adic integers for � algebraic Hecke characters of infinity
type .k C j;�j /, where k � 2 and j � 0 are integers. It was observed by Fujiwara
that their p-adic valuations tend to infinity as k or j tend to infinity; this was done
by carefully computing explicit lower bounds for these valuations. This makes it clear
that the special L-values cannot be “naively” p-adically interpolated and one would
need to divide those L-values by naturally appearing p-adic periods in order to com-
pensate for the growth of the p-adic valuations.

The main goal of the present article is to define the p-adic L-functions of Katz
and of Bertolini–Darmon–Prasana in the cases when the prime p � 3 is either inert or
ramified in the quadratic imaginary fieldK. Our construction is purely geometric and
is based on the idea of an analytic continuation of certain overconvergent de Rham
classes, which we will try to explain further. But most importantly, our geometric
constructions naturally produce p-adic periods which divide the special classical L-
values when they are compared with the special values of the p-adic L-functions. If �
is a classical Hecke character of K of conductor pn and infinity type .k Cm;�m/,
the relevant period is denoted by�kC2mp;n . We have computed the p-adic valuations of
these p-adic periods in Proposition 5.9 (in the inert case), respectively, Proposition 6.6
(in the ramified case), and they seem to agree with the bounds of the p-adic valuations
of the special L-values of Fujiwara and Bannai–Kobayashi–Yasuda.

For our construction of the one variable p-adic L-function, denoted Lp.F;�/,
à la Katz and à la Bertolini–Darmon–Prasanna, we assume that the p-part of the
conductors of the Hecke characters appearing is pn for n � 2. We let

†.2/;p
n

cc .k; c;N; �/ � †.2/cc .k; c;N; �/

be the subspace defined by this condition. (Here we use our hypothesis that p � 5
and p is inert. In general, one has a bound n � n0 where n0 depends on p. We refer
the reader to Sections 5.3 and 6.3 for a discussion in the cases that p D 3 or that p is
ramified and also in the case of the two variable p-adic L-functions.)

As in the p-split in K situation (see [9]), the function

Lp.F;�/W y†
.2/;pn

cc .k; c;N; �/! Cp
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is a locally analytic function defined on the space y†.2/;p
n
.k; c;N; �/, the p-adic com-

pletion of †.2/;p
n

cc .k; c;N; �/. We prove in Section 2.5 that the natural map

wW†.2/;p
n

cc .k; c;N; �/! Z

sending � to j , where the infinity type of � is .k C j;�j /, is continuous and extends
to a local homeomorphism

wW y†.2/;p
n

.k; c;N; �/! W.Qp/;

where W.Qp/ is the space of Qp-valued p-adic weights, i.e.,

W.Qp/ D Homcont.Z
�
p;Z

�
p/:

For � 2 y†.2/;p
n

cc .k; c;N; �/, we put � WDw.�/ 2W.Qp/ and we will try to explain
how to make sense of the following formula:

Lp.F; �/ D
X

a2Pic.Oc/

��1� .a/ı
�
k.F /

�
a � .A0; t0; !0/

�
:

Let X1.N / denote the modular curve parametrizing generalized elliptic curves with
�1.N /-level structure, seen as a rigid analytic curve over Qp and let .H; r; Fil�/
denote the first relative de Rham cohomology sheaf of the universal generalized ellip-
tic curve over X1.N /, denoted H, with its Gauss–Manin connection r and its Hodge
filtration Fil�. For every ˛ 2 W.Qp/ we defined in [1] a triple .W˛;r˛; Fil�˛/ con-
sisting of an overconvergent sheaf of Banach modules W˛ (i.e., this is a sheaf on
a strict neighbourhood of the ordinary locus in X1.N /), with a connection r˛ and
a Hodge filtration, interpolating p-adically the family .Symm H;rm; Fil�m/m2N . We
also showed that if � 2W.Qp/, the expression .rk/�.F Œp�/ is an overconvergent sec-
tion of WkC2� which interpolates the natural iterations of rk on F Œp�. Finally, F Œp�,
the p-depletion of F , is the overconvergent modular form whose q-expansion isX

.n;p/D1

anq
n

if the q-expansion of F is
1X
nD0

anq
n:

In Section 4, we review and improve the discussion of [1] in order to make explicit the
neighbourhoods of the ordinary locus where these objects are defined. In particular,
we remark that the section .rk/�.F Œp�/ is defined in a neighbourhood containing the
points a � .A0; t0; !0/ thanks to our assumption that n � 2.
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Taking this for granted, we need to explain how to evaluate the above mentioned
section .rk/�.F Œp�/ at triples a � .A0; t0;!0/ for a 2 Pic.Oc/. Recall that .A0; t0;!0/
is a triple consisting of an elliptic curveA0 with CM by Oc , t0 is a generator ofA0ŒN�
and !0 a generator of the invariant differentials ofA0. We can construct .A0; t0;!0/ as
follows. Write c D dpn, with d prime to p and n� 2. Choose a triple .E DEd ; t;!/,
where E is an elliptic curve with CM by Od , t is a �1.N/-level structure on E and !
is a generator of the invariant differentials of E. When p is inert in K, the elliptic
curve E, that we view as an elliptic curve over an extension of Qp , has supersingular
reduction, and moreover it has no canonical subgroup.

We choose a subgroup scheme C .n/ � EŒpn�, generically cyclic of order pn and
define

E.n/ WD E=C .n/ and E 0 WD E=
�
C .n/Œp�

�
:

Then E.n/ is an elliptic curve having a canonical subgroup of level pn, namely

H .n/
WD EŒpn�=C .n/;

and CM by Oc andE 0 is an elliptic curve with a canonical subgroup of level p and CM
by Odp . The images of t in E.n/ and E 0 define level �1.N/-structures denoted ‰.n/N
and ‰0N , respectively, and the pull-back of ! by the dual of the natural isogenies
define invariant differentials !.n/ and !0 of E.n/ and E 0, respectively. Therefore, the
pairs

x WD
�
E.n/; ‰

.n/
N

�
; x0 WD

�
E 0; ‰0N

�
define points of the modular curve X1.N /, and moreover, for every a 2 Pic.Oc/, the
pairs

xa WD a �
�
E.n/; ‰

.n/
N

�
; x0a WD a �

�
E 0; ‰0N

�
;

respectively, define points of X1.N / with the property: .rk/�.F Œp�/ is defined at xa

and the image of the pull-back of .rk/�.F Œp�/xa under the morphism induced by the
isogeny E.n/! E 0, is a section of a submodule of .WkC2�/x0a , for which the Hodge-
filtration can be split using the CM action of Opd . Its image under the splitting is a
section of .wkC2�/x0a . Using the generator .a � !0/kC2� of .wkC2�/x0a , we obtain an
element of Cp , which is the looked for value: .rk/�.F Œp�/.a � .A0; t0; !0//.

The construction presented above has the following property: if

� 2 †.2/;p
n

cc .k; c;N; �/ � y†.2/;p
n

cc .k; c;N; �/

is an algebraic Hecke character so thatw.�/D � Dm 2N, choosing an isomorphism
Cp Š C, we have

.rk/
m
�
F Œp�

��
a � .A0; t0; !0/

�
D ımk

�
F Œp�

��
a � .A0; t0; !0/

�
:
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Therefore, as a first approximation, we could define for � 2 y†.2/cc .k; c;N; �/ with
w.�/ D � 2 W.Qp/:

Lp.F; �/ WD
X

a2Pic.Oc/

��1� .a/.rk/
�
�
F Œp�

��
a � .A0; t0; !0/

�
:

We need to remark that, as described, the construction depends on various choices so
that in order to remove this dependence we sum over the group H .c;N/, instead of
Pic.Oc/, defined by the invertible Oc-ideals co-prime to N\Oc (see Definition 2.1).
Furthermore, as explained in Corollary 4.23, the p-adic modular forms F Œp� can
be realized as a classical modular form over X.N; p2/, the modular curve of level
�1.N / \ �0.p

2/. For this reason, we move the whole construction to X.N; p2/. The
reader is invited to see Definition 5.7 in the inert case and Definition 6.5 in the rami-
fied case for the precise formulae.

Interpolation properties. As before, will only illustrate the interpolation proper-
ties for the one variable p-adic L-function attached to a classical eigenform F of
level �1.N /, weight k � 2 and character �, in the case p � 5 is inert in K; a dis-
cussion of the ramified case can be found in Section 6.3. Let � 2 †.2/;p

n

cc .k; c;N; �/,
i.e., � is an algebraic Hecke character with w.�/ D m � 0 and the p-part of its con-
ductor is pn with n � 2. We denote by �p;n the appropriate p-adic period (see the
remark above). Then we have the following relationship between the values of the
p-adic L function and of the complex L-function at � (see Proposition 5.9):

Lp.F; �/ D
Lalg.F; �/

�kC2mp;n

:

Special values Lp.F; �/ for � 2 †
.1/
cc .N/. We will continue to illustrate this result

in the case p � 5 is inert in K and F is a cuspidal eigenform of even weight k � 2
and leave the reader to look at Section 7.1 for the case p D 3 or p ramified in K. We
also refer to Proposition 7.9 for the case F D E2;� of an Eisenstein series of weight 2
and character � where one gets a p-adic analogue of Kronecker limit formula.

We first remark that for � 2 †.1/cc .N/, as the sign of the functional equation of
L.F; ��1; s/ is �1, we have Lalg.F; �

�1/ D 0. The value Lp.F; ��1/ does not inter-
polate classical L-values. In fact, it is obtained in terms of the Abel–Jacobi image of a
certain generalized Heegner cycle defined in [9] and will be called, as in [9], a p-adic
Gross–Zagier formula.

We let .A; tA/ be an elliptic curve with CM by OK and �1.N/-level structure,
let !A denote a generator of the invariant differentials of A and �A an element of
H1dR.A/ such that h!A; �Ai D 1 via the Poincaré pairing. Moreover, '0WA! A0 is a
cyclic isogeny of degree c so that A0 has CM by Oc . For every a 2 Pic.Oc/ we have
an isogeny 'aWA0! a �A0 and AJp.�'a'0/ denotes the p-adic Abel–Jacobi map of
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the generalized Heegner cycle denoted �'a'0 constructed in [9, Section 2] supported
in the fibre of the modular point 'a ı '0WA! a � A0.

Let � 2 †.1/cc .k; c;N; �/ be a character of infinity type .k � 1 � j; 1 C j / with
0 � j � r WD k � 2 and such that the p-power of the conductor is pn with n � 2.
Then � can be seen as a p-adic character of y†.2/;p

n
.k; c;N; �/, i.e., we can evaluate

the p-adic L-functions on it. We have

Lp.F;�/D
c�j�

r�2j
p;n

j Š

� X
a2Pic.Oc/

c�j

j Š
��1.a/N.a/AJL.�'a'0/

�
!f ^ !

j
A ^ �

r�j
A

��
:

Notice that, as in the split case, the formula does not involve the derivative of the
p-adic L-function but its value.

We remark that Daniel Kriz has a different construction of p-adic L-functions in
the cases in which p is not split in K by defining a p-adic analogue of the Shimura–
Maass operator ık on the functions of the perfectoid tower of modular curves of
levelNp1, more precisely on the functions on the supersingular locus of that perfect-
oid tower. See [20]. Our work has been inspired by Kriz’s report on this construction.
So far no comparison between the two constructions is available but we hope to report
on such a result soon.

We would also like to remark that the recent progress on the Iwasawa theory of
supersingular elliptic curves in articles like [10, 11, 13] gives hope that it would be
soon possible to understand Iwasawa theoretic properties of the p-adic L-functions
defined in this article.

2. Classical L-values

2.1. Algebraic Hecke characters

We fix a quadratic imaginary field K of discriminant DK . We start by choosing
embeddings �1WK ,! C and �pWK ,! Cp and an isomorphism �WCp Š C such that
� ı �p D �1.

Recall that a Hecke character of K is a continuous homomorphism

�WA�K=K
�
! C�;

where A�K is the group of idèles of K and K� is embedded diagonally in A�K . We say
that � is algebraic or a grossencharacter of K of type A0 if the restriction of � to the
infinity component �1W .K ˝Z R/� ! C� of A�K has the form

�1.z ˝ 1/ D �1.z/
n�1.xz/

m

for a pair of integers .n;m/, called the infinity type of �.
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Associated to � we have an ideal F of OK , the conductor, and a finite character
�W .OK=F/

� ! C�. Throughout this paper we assume that

(i) there exists an ideal N � OK such that NK=Q.N/ D NZ and we have a ring
isomorphism OK=N Š Z=NZ (Heegner assumption);

(ii) there exist a character �W .Z=NZ/�! C� and a positive integer c prime toN
having the following properties. Write �N for the character of .OK=N/� induced by �
via the identification OK=NŠ Z=NZ. Then, the conductor F divides cN and denot-
ing by Oc D ZC cOK � OK the order of conductor c and letting Nc WD N \ Oc ,
the restriction of � to yO�c factors through .Oc=NcOc/

� and the induced character
of .Oc=Nc/

� coincides with the character �Nc , the composite of �N and the isomorph-
ism .Oc=NcOc/

� Š .OK=NOK/
�.

Under these assumptions we say that � is of type .c;N; �/.
There is a group associated to characters of type .c;N; �/ that we now define. We

denote by:

(1) A.Nc/;�K the subgroup of the idèles A�K whose components at places divid-
ing Nc lie in

Q
P jNc O�KP

. We write A.Nc/;f;�K for the subgroup of A.Nc/;�K of finite
idèles;

(2) H .Nc/� yO�K D
Q
p.OK ˝Zp/��A.Nc/;f;�K the compact open subgroup con-

sisting of elements whose components in
Q

P jN O�KP
are congruent to 1 modulo N

and whose components in
Q

P jc O�KP
are in

Q
pjc.Oc ˝ Zp/�;

(3) K.Nc/ WD K� \A.Nc/;�K .

Notice that A.Nc/;�K =K.Nc/ Š A�K=K
� so that to give a Hecke character of type

.c;N; �/ is equivalent to give a continuous group homomorphism

�WA.Nc/;�K =K.Nc/ ! C�

such that its restriction to the image of yO�K in A.Nc/;�K =K.Nc/ factors through the
quotient

yO�K=H
Nc
Š
�
yO�K=
yO�c
�
� .OK=N/

�

and the restriction to .OK=N/� coincides with the character �N.

Definition 2.1. Define the group H .c;N/ WD K.Nc/nA.Nc/;f;�K =H .Nc/.

As usual we have an interpretation of this group in terms of fractional ideals for the
order Oc . We denote by I.c;Nc/ the group of fractional invertible Oc-ideals generated
by the integral invertible ideals of Oc prime to Nc . Let P.c;Nc/ be the subgroup of
I.c;Nc/ generated by principal integral ideals .˛/ of Oc with ˛ � 1 modulo Nc .
Recall the following result.
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Lemma 2.2. The group H .c;N/ is finite and H .c;N/ Š I.c;Nc/=P.c;Nc/. In
particular, for N D 1, we have H .c; 1/ Š Pic.Oc/ the group of invertible fractional
Oc-ideals. For general N , the natural map H .c;N/ ! H .c; 1/ is surjective with
kernel isomorphic to .OK=N/�.

Proof. The group H .c;N/ coincides with the quotient K�nAf;�K =H .Nc/ which is
isomorphic to the group K�nA�K=.H

.Nc/ � C�/. This is a quotient of the ray class
group of modulus cN and, in particular, it is finite.

Let I 0.c;Nc/ � I.c;Nc/ be the subgroup of fractional invertible Oc-ideals gen-
erated by the integral invertible ideals of Oc prime to cNc . Let P 0.c;Nc/ be the
subgroup of I 0.c;Nc/ generated by principal integral ideals .˛/ of Oc with ˛ 2Q
pjc.Oc ˝ Zp/� and ˛ � 1 modulo Nc . Then

P 0.c;Nc/ D I
0.c;Nc/ \ P.c;Nc/

and
I 0.c;Nc/=P

0.c;Nc/ Š I.c;Nc/=P.c;Nc/:

The map I 7! IOK defines a group isomorphism I 0.c;Nc/ Š IOK .cN/ to the
group of fractional OK-ideals coprime to cN. The inverse sends an ideal J � OK ,
coprime to cN, to the Oc-ideal Jc D J \Oc , which is an invertible ideal of Oc prime
to cNc . Such an isomorphism sends P 0.c;N/ to the subgroup

POK .c;N/ � IOK .cN/

generated by principal ideals .˛/ � OK with ˛ 2
Q
pjc.Oc ˝ Zp/� and ˛ � 1 mod-

ulo N. Then IOK .cN/=POK .c;N/ is isomorphic to H .c;N/. The other statements
are clear.

Using the lemma to give a Hecke character of type .c;N; �/ and infinity type
.n; m/ is then equivalent to give a character of the group I.c;N/ such that for every
.˛/ 2 P.c;OK/, considering the class z̨ of ˛ in .OK=N/�, we have

�..˛// D �N.z̨/�1.˛/
�n�1.x̨/

�m:

We will freely use these two points of view.

2.2. Algebraic Hecke characters and their p-adic avatars

Given an algebraic Hecke character �WA�K=K
� ! C� of infinity type .n; m/ we

denote by p̨ the character p̨WA
�;f
K ! C�p on the finite idèles of K which is trivial

on all components different from p and such that p̨W .K ˝Z Qp/
� ! C�p is the con-

tinuous character ˛.z ˝ 1/ D �p.z/n�p.xz/m.
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Every algebraic Hecke character � as above has a p-adic avatar, namely the char-
acter

� � p̨WA
�;f
K =K� ! C�p :

It is continuous for the natural topology on A�;fK and the p-adic topology on C�p .

2.3. Classical values of L.F;�; s/

We fix the following notation. Set A0 to be the elliptic curve A0.C/ WD C=�.Oc/

and let !0 be a Néron differential. Choose a generator t 2 N�1c =Oc . Let t0 be the
corresponding generator of A0ŒN�. It defines a �1.N/-level structure on A0 and the
isomorphism class of the pair .A0; t0/ determines a point in X1.N /.C/. For a 2

Pic.Oc/ coprime to N\Oc , write a � .A0; t0; !0/ WD .A; ta; !/ with AD A0=A0Œa�,
ta the image of t and ! such that its pull-back via the isogeny �aWA0 ! A is !0.

2.3.1. The case F D Ek;� is an Eisenstein series. We start by reviewing some of
the results of Katz [18]. Consider a fractional OK-ideal M of K and an isomorphism

˛W .Z=NZ/2 Š
1

N
M=M:

Let EM be the elliptic curve C=M with full �.N/-level structure

ˇ˛W�N � Z=NZ Š EŒN �

defined by ˛ (we identify Z=NZŠ�N via the choice of the primitive root of unity �N
given by the Weil pairing of ˛.1; 0/ and ˛.0; 1/). Let ! be a generator of the differ-
entials of the Nèron model of EM over a number field L. We assume that L contains
theN -th roots of unity and we letW be the completion of OL at a prime above p. Fix
an OL-valued function  W .Z=NZ/2 ! OL.

For any positive integer k � 1, assuming thatX
j

.0; j / D
X
j

.j; 0/ D 0

if k D 2, Katz defines in [18, Definition 3.6.5 and Theorem 3.6.9] the Eisenstein
series Gk;0; of weight k and full level �.N/ over L. For every ` � 0, set

Lalg.; k C `;�`IM;˛/ WD ı
`
k.2Gk;0; /.EM ; ˇ˛; !/:

It is proved in [18, Corollary 4.1.3] that this is an algebraic integer and in fact lies inL
(Damerell’s theorem). In loc. cit., one finds the Weil operator instead of the Shimura–
Maass operator ık in the previous formula but it follows from [18, (2.3.38)] that the
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two operators coincide. In particular, N `ı`
k
.2Gk;0; / D 2GkC2`;�`; by [18, (3.6.8)]

and one finds in [18, (8.6.8)] the explicit formula

Lalg.; k C `;�`IM;˛/ WD
.�1/k.k C ` � 1/ŠN k�`

a.M/`�kC2`

�

� X
0¤m2M

g.m/m`

mkC`N.m/s

�ˇ̌̌̌
sD0

; (1)

where a.M/ is the co-volume of M � C, N is the norm map on K, � is a complex
period associated to ! by the equality ! D �dz (for z the coordinate C via the
uniformization E.C/ D C=M ) and g is a function on M=NM described explicitly
in [18, Section 8.7] associated to  . We will compute later the function g in the case
that  is associated to a character showing that, up to a Gauss sum, the associated g is
itself a character so that formula (1) will provide the link to special values of Hecke
L-series.

L-functions of Hecke grossencharacters. Next we explain, following [18, Sec-
tion 9.4], how to express the value at 0 of the L-function associated to an algebraic
Hecke character � as in Section 2.1 as a combination of special values of real analytic
Eisenstein series (of full level �.N/).

Denote by†cc.k; c;N; �/ (respectively,†.2/cc .k; c;N; �/) the set of Hecke charac-
ters of type .c;N; �/, according to the definition in Section 2.1, such that the infinity
type is .k C j;�j / with k C j � 1 (respectively, with j � 0) and

(i) k � 1 and � is of parity k, i.e., that �.�x/D .�1/k�.x/ (respectively, j � 0);

(ii) � is non-trivial if k D 2.

Let a1; : : : ; ah be integral invertible ideals of OK , coprime to cN, such that

a1 \Oc ; : : : ; ah \Oc

are representatives of the class group of Oc . Given � 2†.2/cc .k; c;N; �/ defineL.K;�/
to be the value at 0 of the L-function attached to K and the grossencharacter � as
in [18, (9.4.31)]:

L.K; �/ D
1

jO�c j

� hX
iD1

�.ai /
�1

N.ai /�s
X

0¤˛2ai\Oc

�..˛//

N.˛/s

�ˇ̌̌̌
sD0

:

Here we use the conventions of loc. cit. and we view � as a classical Hecke character
as recalled in Section 2.1. Define �W .Z=NZ/2! OL by �.m;n/D �.m/. It follows
from [18, Theorem 3.6.9] that

2Gk;0;� D Ek;� D L.1 � k; �/C 2
X
n�1

�k�1;�.n/q
n; �k�1;�.n/ D

X
d jn

�.d/dk�1
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is an Eisenstein series of weight k, level �1.N / and character �. The function

g�W .Z=NZ/2 ! OL

associated to � is

g�.n;m/ WD
1

N

X
a2Z=NZ

�.a/��naN

(see [18, (3.2.2)]). This coincides with

g�.n;m/ D �
�1.n/

s.�/

N
; s.�/ D

X
a2.Z=NZ/�

�.a/��aN ;

where s.�/ is simply the Gauss sum associated to the character �. Using the notation
at the beginning of Section 2.3, we set

Lalg.Ek;�; �/ WD
X

a2Pic.Oc/

��1j .a/ı
j

k
.Ek;�/

�
a � .A0; t0; !0/

�
;

where �j D � � Nj . Put a.Oc/ to be the co-volume of �.Oc/ � C and write � for the
complex period defined by !0 D �dz. We then have the following proposition.

Proposition 2.3. Let � 2 †.2/cc .k; c;N; �/ be of infinity type .k C j;�j /. We have

L
�
K;�

�
D

1

jO�c j

.�1/k.k C j � 1/ŠN kC1�j

s.�/a.Oc/j�kC2j
Lalg.Ek;�; �/:

Proof. This follows from (1) using that a�A0 is the elliptic curve associated toEM D
C=�.a�1/ with M D a, taking a D a1 \ Oc ; : : : ; ah \ Oc and a�1 to be the inverse
as an invertible Oc-module.

2.3.2. The case F D f is a cuspform. Let f be a normalized cuspidal newform of
weight k, of level �1.N / and nebentype �. Following [9, Definition 4.4], we denote by
†cc.k; c;N; �/ (respectively,†.2/cc .k; c;N; �/) the set of algebraic Hecke characters �
of type .c;N; �/, as in Section 2.1, satisfying the following:

(1) c is odd;

(2) the infinity type is .kC j;�j /, with k � 2 and kC j � 1 (respectively, k � 2
and j � 0);

(3) they are central critical for f , i.e., we have ��D�, or equivalently �jA�QD�N
k,

where N is the norm character.

If the q-expansion of f is f .q/D
P1
nD1 anq

n, theL-function of f can be written

L.f; s/ D

1X
nD1

ann
�s
D

Y
`

.1 � ˛``
�s/�1.1 � ˇ``

�s/�1;
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where the product is over all positive prime integers `. The above equality defines the
pairs .˛`;ˇ`/, for all `. Every algebraic Hecke character �2†.2/cc .N/ is central critical
for f , i.e., s D 0 is a critical point for the L-function L.f; ��1; s/. With the notation
at the beginning of Section 2.3, we define� to be the complex period of [9, (5.1.16)],
characterized by the property that !0 D � � 2�i dz with z the standard coordinate
on C via the uniformization A0.C/ D C=�.Oc/. We have the following explicit form
of Waldspurger’s formula:

Theorem 2.4 ([9, Theorems 5.4 and 5.5]). Assume dK is odd. Let � 2†.2/cc .k; c;N; �/
with infinity type .kC j;�j / be such that the epsilon factor �q.f;��1/DC1 at every
finite place. Let

Lalg.f; �/ WD
X

a2Pic.Oc/

��1j .a/ı
j

k
.f /

�
a � .A0; t0; !0/

�
;

where �j D � � Nj . Here N is the norm Hecke character and the infinite type of � is
.k C j;�j / with j � 0. Then Lalg.f; �/ is an algebraic number and

.Lalg.f; �//
2
D
w.f; �/�1C.f; �; c/L.f; �; 0/

�2.kC2j /
;

wherew.f;�/ 2 ¹˙1º, C.f;�; c/ is a precisely defined constant and� is the complex
period.

2.4. Conclusions

Recall that we have fixed a quadratic imaginary fieldK and an integerN � 5, withN
satisfying the Heegner assumptions, i.e., there is an ideal N of OK with the property
that OK=N Š Z=NZ. We fix a character �W .Z=NZ/� ! xQ�. We also choose an
integer c � 1 such that .c; N / D 1, and we denote by Oc the order in OK of con-
ductor c. We fix an odd prime integer p > 0 which is non-split in K.

We let†.2/cc .c;N; �/�†cc.c;N; �/ denote the spaces of Hecke characters of type
.c;N; �/ as in Section 2.1 of infinity type .k C j;�j / with k � 1 and k C j � 1 (and
j � 0 for †.2/cc .k; c;N; �/), and for which one of the following holds:

(i) � is of parity k and non-trivial if k D 2;

(ii) c and dK are odd, k � 2 and �jA�Q D �N
k .

We write†.2/cc .k;c;N; �/�†
.2/
cc .c;N; �/, respectively,†cc.k;c;N; �/�†cc.c;N; �/,

for the subspaces where the integer k is fixed.
Consider an Eisenstein series f as in Section 2.3.1 in the first case and a cusp-

form f as in Theorem 2.4 in the second case. Let k be the weight of f . We then have
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an algebraic integer

Lalg.f; �/ WD
X

a2Pic.Oc/

��1j .a/ı
j

k
.f /

�
a � .A0; t0; !0/

�
:

Our goal is to p-adically interpolate the family of special values Lalg.f;�/ by varying
the algebraic Hecke characters � 2 †.2/cc .k; c;N; �/ by a p-adic L-function. We will
see that there is an integer n0 depending on p, for example, n0 D 2 works if p � 5,
such that under the assumption that

pn0 divides the conductor of �;

the p-adic L-function will be defined as a locally analytic function on the (open and
closed) subspace of the analytic space y†.2/.k; c;N; �/ (defined in the next section)
given by the displayed condition above. We will also construct a two variable p-adic
L-function by allowing f to vary in a p-adic family of finite slope overconvergent
forms.

2.5. p-adic families of Hecke characters

We simply write †.2/.c;N; �/ for the space of p-adic avatars, in the sense of Sec-
tion 2.2 for p odd, of the algebraic Hecke characters in †.2/cc .c;N; �/ defined in
Section 2.4. Consider the map

w1 � w2W†
.2/.c;N; �/! Z � Z

given by sending a character � of infinity type .k C j;�j / to .k; j /.
Let S be a field extension ofK in xQ which contains the values of the characters of

the finite group H .c;N/ defined in Definition 2.1. Let p be a prime of S dividing pOS

and denote by OS;p the p-adic completion of OS . Given � 2 †.2/.c;N; �/, we write

�0WA.Nc/;f;�K ! OS;p

for the restriction of � to the subgroup of finite idèles A.Nc/;f;�K prime to cN. Denote
by F .A.Nc/;f;�K ;OS;p/ the space of continuous maps endowed with the compact open
topology. We obtain an injective map

�W†.2/.c;N; �/ � F
�
A.Nc/;f;�K ;OS;p

�
:

We decompose †.2/.c;N; �/ D q�†.2/.c;N; �/ according to their finite characters

�W .OK=cN/
�
! C�p :
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The embedding � of †.2/.c;N; �/ in F .A.Nc/;f;�K ;OS;p/ endows each †.2/.c;N; �/
with the induced topology. We denote by y†.2/.c;N; �/ the completion of†.2/.c;N; �/
with respect to this topology. Set

y†.2/.c;N; �/ WD q� y†
.2/
cc .c;N; �/:

Let q be the cardinality of the residue field of OK and define

xw WD w1 � w2W†
.2/.c;N; �/! Z � Z

,!
�
.Z=6.q � 1/Z/ � Zp

�
�
�
.Z=6.q � 1/Z/ � Zp

�
:

Lemma 2.5. The map xw is continuous and extends to a map

xwW y†.2/.c;N; �/!
�
.Z=6.q � 1/Z/ � Zp

�2
:

Moreover, xw is a local homeomorphism. In particular, y†.2/.c;N; �/ inherits a unique
structure of analytic space making xw a locally analytic isomorphism.

Proof. We take � 2 †.2/.c;N; �/ with finite character � and infinity type .m; r/. Let
t1; : : : ; ts 2 A.Nc/;f;�K be representatives of elements of H .c;N/. Given a positive
integer M , we let

U.�;M/ � F
�
A.Nc/;f;�K ;OS;p

�
be the subset consisting of functions g such that for every i D 1; : : : ; s and every
h 2 ti �H

.Nc/, we have

g.h/ � �.h/ mod pMOS;p:

For varying M , we get a fundamental system of open neighbourhoods of � for the
compact open topology on F .A.Nc/;f;�K ;OS;p/. If �0 2 †.2/.c;N; �/ has infinity type
.m0; r 0/ with m0 � m and r 0 � r modulo 6.q � 1/Z, then �0 2 U.�;M/ if and only
if the following condition holds:

˛mCr�m
0�r 0

p x̨
r 0�r
p 2 1C pMOS;p for all p̨ 2 1CP yOK;p (�)

with P the maximal ideal of yOK;p . Using the p-adic logarithm and the fact that p¤ 2,
Condition (�) is equivalent to require thatm�m0 and r � r 0 modulo pM�1Z. Hence,

xw.�0/ 2 xw.�/C
�
¹0º � pM�1Z

�2
:

This implies that xw is continuous and extends to a map

xwW y†.2/.c;N; �/!
�
.Z=6.q � 1/Z/ � Zp

�2
:
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Vice versa, consider the neighbourhood W.m; r;M/ of .m; r/ in ..Z=6.q � 1/Z/
� Zp/2 of elements that are congruent to .m; r/ modulo .6.q � 1/pM�1Zp/2. For
.m0; r 0/2W.m;r;M/, let �02F .A.Nc/;f;�K ;OS;p/ be defined for k2K.Nc/, ˛2H .Nc/,
i D 1; : : : ; s, by

�0.kti˛/ D �.kti˛/.ti;p p̨/
m0Cr 0�m�r.xti;p x̨p/

r�r 0

D �.ti /t
m0Cr 0�m�r
i;p

xt r�r
0

i;p ˛m
0Cr 0

p x̨
�r 0

p :

We first prove that �0 is well defined. Notice that

kti˛ D htiˇ

for h;k 2K.Nc/ and ˛;ˇ 2H .Nc/ if and only if there exists z 2K.Nc/ \H .Nc/ such
that ˛ D ˇz and k D hz�1. As

K.Nc/ \H .Nc/
� O�K D �K

(the roots of unity in K), we have that �K D �4 if K D Q.i/, �K D �6 if K is the
sixth cyclotomic field, and �K D ¹˙1º otherwise. In any case,

�0.kti˛/ D �
0.htiˇ/z

m0�mCr 0�r
xzr�r

0

D �0.htiˇ/

as by assumption, 12 divides m0 �m and r 0 � r and z12 D 1.
One checks that �0 defines a group homomorphism A.Nc/;f;�K ! O�S;p and that it

lies in U.�;M/. For .m0; r 0/ 2 Z �Z, withm0 � 1 and r 0 � 0, it lies in †.2/.c;N; �/
and xw.�0/ D .m0; r 0/. We thus get a map

W.m; r;M/! U.�;M/ \ y†.2/.c;N; �/

that defines the inverse of the restriction of xw to U.�;M/ \†.2/.c;N; �/ and, hence
to U.�;M/ \ y†.2/.c;N; �/. Hence, xw provides a homeomorphism

U.�;M/ \ y†.2/.c;N; �/ Š W.m; r;M/;

as claimed.

Remark 2.6. As explained in the proof of Lemma 2.5, the choice of the quantity
6.q � 1/ is made so that the order of the group of roots of unity �K of the imaginary
field K divides 6.q � 1/. If p is inert and p � 5, then q � 1 D p2 � 1 is already
divisible by 12 and the quantity q � 1 suffices. Similarly, if K is not the fourth or the
sixth cyclotomic field, then �K has order 2, and since q � 1 is divisible by 2, we can
take q � 1 in this case as well.

We now fix a positive integer k and denote by .xk; k/ the diagonal image of k in
.Z=6.q � 1/Z/ � Zp .
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Definition 2.7. We define y†.2/.k; c;N; �/ WD xw�1.¹.xk; k/º � .Z=6.q � 1/Z/ � Zp/

and the composite map

w2W y†
.2/.k; c;N; �/

xw
�! ¹.xk; k/º �

�
.Z=6.q � 1/Z/�Zp

� proj
��!

�
Z=6.q � 1/Z

�
�Zp;

where proj is the second projection.

It follows from Lemma 2.5 above that y†.2/.k; c;N; �/ is the closed subspace of
y†.2/.c;N; �/ given by the completion of the space of p-adic avatars †.2/.k; c;N; �/
of characters in†.2/cc .k; c;N; �/ (defined in Section 2.4) and that w2 is a local homeo-
morphism. Moreover, we have the following commutative and cartesian diagram:

y†.2/.c;N; �/
�
.Z=6.q � 1/Z/ � Zp

�
�
�
.Z=6.q � 1/Z/ � Zp

�
y†.2/.k; c;N; �/

�
Z=6.q � 1/Z

�
� Zp;

xw

�

w2

˛

where ˛ is the map ˛.x/ D ..xk; k/; x/.
Now, because p � 1 divides q � 1, we have a canonical projection

Z=6.q � 1/Z! Z=.p � 1/Z

and a canonical locally analytic isomorphism

Z=.p � 1/Z � Zp Š W.Qp/;

where let us recall W is the weight space. By composing w2 and xw with these maps,
we obtain compatible locally analytic maps

wW y†.2/.k; c;N; �/! W.Qp/;

zwW y†.2/.c;N; �/! W.Qp/ �W.Qp/:

Remark 2.8. As y†.2/.c;N; �/ WD q� y†
.2/
cc .c;N; �/, for every integer n > 1, the

requirement that the finite character � on .OK ˝ Zp/� is not trivial on the sub-
group 1 C pn�1OK ˝ Zp , defines open and closed subspaces y†.2/;p

n
.c;N; �/ and

y†.2/;p
n
.k; c;N; �/ of y†.2/.c;N; �/, and respectively, of y†.2/.k; c;N; �/. They con-

tain the classical Hecke characters with pn dividing their conductor as dense subsets.

3. Preliminaries on CM elliptic curves

In this section we consider a quadratic imaginary field K and a positive integer d .
Fix an elliptic curve .E; �/ with full CM by Od , the order of conductor d in OK . The



Katz type p-adic L-functions for primes p non-split in the CM field 659

pair .E; �/ is then defined over the ring of integers OL of a suitable ring class field L
of K. Let p be an odd prime not dividing d and let R be the completion of OL at a
prime above p. We review the theory of the canonical subgroup of order a power of p
of E over R. If p splits in K then E is ordinary over R so that E admits canonical
subgroups of every level n, coinciding with the connected subgroup of EŒpn�. The
cases when p is either inert or ramified inK are more subtle. If E 0 is an elliptic curve
overR we write Hdg.E 0/ 2R for any element lifting the Hasse invariant of the mod p
reduction of E 0.

3.1. Canonical subgroups for CM elliptic curves. The inert case

Assume first that p is inert in K. We then have the following lemma.

Lemma 3.1. Let E be an elliptic curve over the ring of integers R of a local field
with CM by Od . Then

(a) E does not admit a canonical subgroup and vp.Hdg.E// � p=.p C 1/;

(b) if C .n/ � EŒpn� is a cyclic subgroup of order pn for n � 1 and we define
E.n/ WDE=C .n/, thenE.n/ admits a canonical subgroup H.n/ DEŒpn�=C .n/

of order pn and vp.Hdg.E.n/// D 1=.pn�1.p C 1//;

Proof. We remark that E cannot have a canonical subgroup D of order p for if it
had then D would be stabilized by the action of Od by functoriality. Since p is inert,
coprime to d , we have Od=pOd Š Fp2 and D would be an Fp2-vector space, which
it cannot be. It then follows from the Katz–Lubin theory of canonical subgroups [17,
Theorem 3.10.7] that vp.Hdg.E// � p=.p C 1/. The second statement follows from
loc. cit.

3.2. Canonical subgroups for CM elliptic curves. The ramified case

Assume that p is ramified inK and let P be the prime of OK over p. Let H WD EŒP�;
it is a subgroup scheme of EŒp� of order p. We then have the following result.

Lemma 3.2. The following statements hold.

(a) vp.Hdg.E// D 1=2 and H is the canonical subgroup of order p of E.

(b) For any subgroup C .n/ � EŒp� of order pn with n � 1 and C \ H D ¹0º,
if we denote E.n/ WD E=C .n/, then vp.Hdg.E.n/// D 1=2pn and H.n/ WD
EŒpn�=C .n/ is the canonical subgroup of order pn of E.n/.

Proof. We first note that vp.Hdg.E// depends only on the underlying p-divisible
group EŒp1� of E. If � denotes a uniformizer of KP, then Œ��WEŒp1�! EŒp1�
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identifies its kernel with EŒP� and the quotient EŒp1�=EŒP� with EŒp1�. Hence,

vp
�
Hdg.E/

�
D vp

�
Hdg.E=EŒP�/

�
and by the Katz–Lubin theorem [17, Theorem 3.10.7], the only possibility is that this
value is 1=2. Claim (b) follows again from the Katz–Lubin theorem.

3.3. A technical lemma

Consider the elliptic curve E 0 D E.1/ defined in Lemma 3.1 (in the inert case) or in
Lemma 3.2 (in the ramified case). It is a quotient of E, and in particular it has CM
by Oa with a D pd . Moreover, E 0 admits a canonical subgroup H0 and E 0=H0 Š E.
We let �WE 0!E be the quotient map and we denote by �0WE!E 0 the dual isogeny.

Let C 0 � E 0Œp� denote one of the p subgroups of order p of E 0Œp� distinct
from H0. Define E 00 WD E 0=C 0 and let �00WE 0 ! E 00 be the quotient morphisms and
.�00/_WE 00 ! E 0 the dual isogeny. Summarizing, we have the degree p isogenies

E
�0

�! E 0
�00

�! E 00:

Let HE 0 be the de Rham cohomology H1dR.E
0=R/. It sits in the exact sequence,

defined by the Hodge filtration

0! !E 0 ! HE 0 ! !_E 0 ! 0:

We denote by HE 0;� , HE 0;x� the R-submodules of HE 0 on which Oa acts via the CM
type � WK ! L and its complex conjugate x� , respectively. The isogeny �00 defines a
morphism on the de Rham cohomology .�00/�WHE 00 ! HE 0 that induces a commut-
ative diagram:

0 !E 00 HE 00 !_E 00 0

0 !E 0 HE 0 !_E 0 0:

.�00/� .�00/� Lie..�00/_/

The last technical result of this section, to be used in Sections 5.2 and 6.2, concerns
the relative positions of the R-submodules HE 0;x� and Lie..�00/_/.!_E 00/ in !_E 0 .

Lemma 3.3. We have that

(i) HE 0;� D !E 0 , the invariant differentials of E 0;

(ii) the inclusion HE 0;x� � !_E 0 has cokernel annihilated by Hdg.E 0/ � diffK=Q,
where diffK=Q denotes the different ideal of K=Q;

(iii) the image of the inclusion given by Lie..�00/_/.!_E 00/ � !
_
E 0 is contained in

pHdg.E 00/�1!_E 0 .
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Proof. (i) The first claim follows from the fact that Oa acts on !E 0 via � by the
definition of CM type and the Hodge filtration provides an exact sequence

0! !E 0 ! HE 0 ! !_E 0 ! 0

of Oa-modules, where Oa acts on !_E 0 via x� .
(ii) Write zHE WD HE;� ˚ HE;x� � HE similarly to what has been done for E 0.

Then � induces morphisms:

zHE HE

zHE 0 HE 0 :

��

The map ��WHE ! HE 0 respects the Hodge filtration. It coincides with pull-back
of the differentials ��W!E ! !E 0 . On the quotient of the Hodge filtration, it induces
the map

Lie.�_/W!_E ! !_E 0 ;

where �_WE 0 ! E is the dual isogeny.
In order to prove claim (ii), it is sufficient to show that !_E 0=HE 0;x� is annihilated

by HdgE 0 � diffK=Q. This follows if we prove that

(I) the module !_E=HE;x� is annihilated by diffK=Q;

(II) the map Lie.�_/W!_E ! !_E 0 has cokernel annihilated by Hdg.E 0/.

Proof of Claim (I). Notice that E is defined over the p-adic completion R of OK . Let
R0 D W .k/ � R be the ring of Witt vectors of the residue field k of R. Since its
ramification index is � 2 � p � 1, then HE ˝OK R coincides with the base change
via R0 ! R of crystalline cohomology Hcris.E0=R0/ of the special fibre E0 of E
(see [7]). It suffices to prove that Hcris.E0=R0/ is a projective OK ˝ R0-module of
rank 1. But this is true after inverting p and OK ˝R0 is a Dedekind domain for which
projective modules are torsion free modules. The claim then follows.

Let us observe the following elementary fact: if e and e denote the idempotents
.1; 0/ and .0; 1/ in K � K identified with OK ˝Z K via the isomorphism of K-
algebras

� � x� WOK ˝Z K Š K �K;

then diffK=Q e and diffK=Q e lie in OK ˝Z OK .
To conclude the proof of the lemma let z 2 HE . We have diffK=Q ez 2 HE;�

and diffK=Q ez 2 HE;x� and their sum is diffK=Q z by the above observation. Thus the
cokernel of zHE �HE , which is the cokernel of HE;x� � !_E , is annihilated by diffK=Q,
as claimed.
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Proof of Claim (II). Since !E and !E 0 are free R-modules, it suffices to show that
.�_/�W!E 0 ! !E has image equal to Hdg.E 0/!E . Since �WE 0 ! E is the quotient
of E 0 by its canonical subgroup, it coincides with Frobenius modulo p Hdg.E 0/�1.
Hence, �_ is Verschiebung modulo pHdg.E 0/�1, so the image of .�_/�W!E 0 ! !E

coincides with Hdg.E 0/!E modulo p Hdg.E 0/�1 (recall that the Hasse invariant is
defined as the image of the Verschiebung map on differentials modulo p). Since
vp.Hdg.E 0// < 1=2 by Lemma 3.1 (in the inert case) or by Lemma 3.2 (in the ramified
case), we deduce that vp.Hdg.E 0// < vp.pHdg.E 0/�1/. The conclusion follows.

(iii) By construction �00WE 0 ! E 00 is defined by dividing by a subgroup differ-
ent from the canonical subgroup. In particular, the dual isogeny .�00/_WE 00 ! E 0

is the quotient by the canonical subgroup of E 00. Arguing as in the proof of (II),
we deduce that .�00/_ is Frobenius modulo p Hdg.E 00/�1 so that the induced map
..�00/_/�W !E 0 ! !E 00 on differentials is 0 modulo p Hdg.E 00/�1. The conclusion
follows.

3.4. Adelic description of CM elliptic curves

Let c and N be coprime positive integers. We assume that there exists an ideal N

of OK whose norm is N . In general, the set of elliptic curves with CM by Oc and
�1.N/-level structure is a principal homogeneous space under the action of the group
H .c;N/ of Definition 2.1. Given such an elliptic curve .E; �;  N/ and given a D

.aP /P 2 A.Nc/;f;�K , we set

a � .E; �;  N/ WD .E
0; �0;  0N/

to be the elliptic curve E 0 whose Tate module T.E 0/ is isomorphic to

a�1
�
T.E/

�
� T.E/˝Q

(recall that T.E/D
Q
`T`.E/ is a principal Oc ˝bZ-module so that this makes sense).

By construction also T.E 0/ is a principal Oc ˝ bZ-module so that E 0 has CM by Oc

and the N-torsion ofE andE 0 are canonically isomorphic so thatE 0 acquires a natural
�1.N/-level structure  0N.

Using the interpretation of H .c;N/ in terms of invertible Oc-ideals prime to c
and Nc provided by Lemma 2.2, given any such ideal a � Oc the elliptic curve E 0

above is identified with the quotient

E 0 WD E=EŒa�;

�0 is the Oc-action induced by � and the �1.N/-level structure  0N is the composite
of  N with the projection �aWE ! E 0. Furthermore, if ! is an invariant differential
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of E, we set
a � .E; �;  N; !/ WD .E

0; �0;  0N; !
0/;

where .E 0; �0;  0N; / is as above and !0 is the differential on E 0 whose pull-back to E
via �a is !.

Similarly, if D � E is a subgroup of p-power order with pjc, we define

a � .E; �;  N;D/ WD .E
0; �0;  0N;D

0/;

a � .E; �;  N;D; !/ WD .E
0; �0;  0N;D

0; !0/;

where .E 0; �0;  0N/ is like above and D0 � E 0 is the image of D via �a, which is a
prime to p isogeny, and likewise for .E 0; �0;  0N;D

0; !0/.

4. Vector bundles with marked sections. The sheaves Wk

We only present the theory in the cases we need, namely for the treatment of the
p-adic L-functions attached to an elliptic modular eigenform twisted by Hecke char-
acters of a quadratic, imaginary field. The main references for this section are [1]
and [3], where more general cases are presented and all the details are carefully
spelled out.

Let S be a formal scheme with ideal of definition 	 which is invertible (i.e.,
locally principal, generated locally by non-zero divisors) and let E be a locally free
OS-module of rank 1 or 2. Let also s 2 H0.S;E=	E/ be a section (we refer to it as
“the marked section”) such that sOS=	 is a direct summand of E=	E . We call the
pair .E; s/ a locally free sheaf with a marked section.

Theorem 4.1 ([1, Section 2.2]). We have the following.

(a) The functor attaching to a morphism of formal schemes �WT ! S (the ideal
of definition of T is ��.	/) the set

V .E/.�WT ! S/ WD HomOT

�
��.E/;OT

�
;

is represented by the formal vector bundle V .E/ WD Spf.Sym.E//.

(b) The sub-functor of V .E/, denoted V0.E; s/, which associates to every morph-
ism of formal schemes �WT ! S as above, the set

V0.E; s/.�WT ! S/

WD
®
h 2 V .E/.� W T ! S/ j

�
h.mod��.	//

��
��.s// D 1

¯
;

is represented by the open in the admissible formal blow-up of V .E/ at the
ideal J WD .zs � 1;	/ � OV .E/, where the inverse image of this ideal is gen-
erated by 	. Here zs is a lift of s to H0.� ;E/.
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Remark 4.2 (Extra structure and functoriality). We make the following remarks.

(I) Extra structure. If E has extra structure, namely (1) a connection for which s is
horizontal; and/or (2) a filtration F � E with F and E=F locally free of rank 1 and s
a generator of F =	F , then if we denote by � WV0.E; s/!S the structural morphism,
the OS-module ��.OV0.E;s// has the same type of extra structures, namely a connec-
tion in case (1) and an increasing filtration in case (2). In this second case � factors
via � 0W V0.F ; s/ ! S and the first piece of the filtration is simply � 0�.OV0.F ;s//.
See [1, Sections 2.3 and 2.4].

(II) Functoriality. Let us suppose that we have a morphism of formal schemes
'WS!S0 such that the ideal of definition 	0 of S0 is invertible and the ideal of defin-
ition of S is '�.	0/. Suppose we also have a pair .E 0; s0/ consisting of a locally free
sheaf with a marked section on S0 and let E WD '�.E 0/ and s WD '�.s0/. Then .E; s/ is
a locally free sheaf with a marked section on S. Moreover, the functoriality of VBMS
implies that the following natural diagram is cartesian:

V0.E; s/ V0.E 0; s0/

S S0:

u v

'

In particular, we have u�.OV0.E;s// Š '
�.v�.OV0.E0;s0//.

4.1. Applications to modular curves. The sheaves Wk

Let N � 5 be an integer and p � 3 a prime integer such that .N;p/ D 1 and consider
the tower of modular curves

X.N; p2/! X.N; p/! X1.N /

over the ring of integers of a finite extension of Qp , to be made more precise later.
Here the modular curves classify, from left-to-right: generalized elliptic curves with
�1.N /\�0.p

2/ (respectively, �1.N /\�0.p/), respectively, �1.N /-level structures.
We denote

yX.N; p2/! yX.N; p/! yX1.N /

the sequence of formal completions of these curves along their respective special
fibres and denote by X.N;p2/!X.N;p/!X1.N / the adic analytic generic fibres
associated to the previous sequence of formal scheme. We denote E the universal
generalized elliptic curve over all these formal schemes or adic spaces.

Consider the ideal Hdg, called the Hodge ideal, defined as the ideal of O yX1.N/
,

locally (on open affines Spf.R/ � yX1.N / which trivialize the sheaf !E) generated
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by p and a local lift, Hao.E=R; !/, of the Hasse invariant Ha, where ! is a basis
of !E . For every integer r � 2 we denote by Xr the formal open sub-scheme of the
formal admissible blow-up of yX1.N / with respect to the sheaf of ideals .p;Hdgr/,
where this ideal is generated by Hdgr . Let Xr denote the adic generic fibre of Xr . By
construction Hdg is an invertible ideal in Xr . Recall from [2, Appendix A] that the
universal generalized elliptic curve E! Xr has a canonical subgroup Hm � EŒpm�

of order pm, wherem depends on r . In this article we only need: if r � 2 thenmD 1,
and if r � pC 2 thenmD 2. For r D 2, we drop the subscript, i.e., we write X WDX2,
X WD X2 etc.

Let us denote by

� W	Gm;r WD Isom
�

Z=pmZ;HDm
�
! Xr

them-th layer of the adic analytic Igusa tower over Xr , where HDm denotes the Cartier
dual of Hm. Then 	Gm;r is a finite, ètale, Galois cover of Xr , with Galois group
.Z=pmZ/� and we denote by IGm;r the formal scheme which is the normalization
of Xr in 	Gm;r . Let r � 2.

Proposition 4.3. We have that

(i) the canonical subgroup H1 of the universal elliptic curve E over IG1;r is a
lifting of the kernel of Frobenius modulo p=Hdg;

(ii) the map of invariant differentials associated to the inclusion H1 � E induces
an isomorphism !E=.pHdg�1/!E Š !H1 so that via dlogH1 WH

D
1 ! !H1 , we

get a section

s0 WD dlogH1.P
univ/ 2 H0

�
IG1;r ; !E=.pHdg�1/!E

�
:

Proof. These statements are proved, for example, in [2, Appendix A].

Let s0 WD dlogH1.P
univ/ 2 H0.IG1;r ; !E=.p Hdg�1/!E/ be the section defined

in Proposition 4.3 (ii).

Lemma 4.4. Any local lift of the section s0 WD dlogH1.P
univ/, as above, to a local

section zs of !E, spans the OIG1;r
-submodule Hdg1=.p�1/ !E � !E:

Proof. The statement of the Lemma strengthens [2], where it was stated for r � p2.
It follows in this stronger form by the explicit computation of dlogH1 WH

D
1 ! !H1

using congruence group schemes in [4, Section 6]. For the convenience of the reader
we recall the main ideas. For every r � 2, the result of R. Coleman in the cited art-
icle describes the canonical subgroup H1 in terms of Oort–Tate theory. As explained
after [4, Proposition 6.1] the existence of P univWH1 ! �p , which is an isomorph-
ism generically, allows us to further describe H1 as a congruence group scheme Gı ,
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with ıp�1 a generator of Hdg. Finally,

dlog.P univ/ D .P univ/�.dT=T /;

with T the canonical coordinate on �p , spans ı � !H1 , as proved in loc. cit. The claim
follows.

We will use the trivialized canonical subgroups on IG1;r in order to define locally
free sheaves with marked sections on this formal scheme, to which we will apply
the VBMS-machine presented in Section 4. More precisely, in the notations above,
we define the invertible OIG1;r

-submodule �E of !E as the span of any lift zs of s
such that, if we set ı WD �E!

�1
E , then ı is an invertible OIG1;r

-ideal with ıp�1 D
��.Hdg/ (recall that � WIG1;r ! Xr is the natural projection). From zs we also get a
canonical section s of H0.IG1;r ; �E=p Hdg�p=.p�1/�E/, so that s defines a basis
of�E=pHdg�p=.p�1/�E as OIG1;r

=pHdg�p=.p�1/OIG1;r
-module. Therefore, our

first locally free sheaf with marked section on .IG1;r ;	 WD p Hdg�p=.p�1// is the
pair .�E; s/.

We now define a second locally free sheaf with marked section on�
IG1;r ;	 WD pHdg�p=.p�1/

�
:

We denote by H#
E the push-out in the category of coherent sheaves on IG1;r of the

diagram
ıp!E ıpHE

�E:

�

We then have the following commutative diagram of sheaves with exact rows:

0 ıp!E ıpHE ıp!�1E 0

0 �E H#
E ıp!�1E 0

0 !E HE !�1E 0:

�
� � �

It follows that H#
E is a locally free OIG1;r

-module of rank two and

.�E; s/ D .ı!E; s/ � .H#
E; s/
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is a compatible inclusion of locally free sheaves with marked sections. We also have
the following commutative diagram with exact rows:

0 �E H#
E ıp!�1E 0

0 �E ıHE ı!�1E 0

� �

in which the right square is cartesian, defining H#
E as a pull-back.

We have natural actions of T ext WD Z�p.1C ��.p Hdg�p=.p�1/ OIG1;r
// on the

morphisms of formal schemes

uWV0.H#
E; s/! Xr ; and on vWV0.�E; s/! Xr ;

with trivial action on Xr .

Definition 4.5. Given a ring R which is p-adically complete and separated, we say
that a homomorphism �WZ�p! R� is an analytic weight if there exists u 2 R with the
property that �.t/ D exp.u log t /, for every t 2 1C pZp .

Assume now that r � 2 for p � 5 and r � 4 for p D 3. Let � be an R-valued
analytic weight.

Definition 4.6. We define

w�
WD v�

�
OV0.�E;s/

y̋ZpR
�
Œ��; W� WD u�

�
OV0.H#

E;s/
y̋ZpR

�
Œ��

as the sub-sheaves of sections of the respective sheaves on which T ext acts via �
(see [1, Sections 3.1 and 3.3]).

The definition makes sense if r � p2 for any prime p, as explained in [1, Sec-
tions 3.2 and 3.3].

Remark 4.7 (Specialization). In the notations of Definition 4.6, assume that R0 is the
ring of integers of a finite extension of Qp and that we have an algebra homomorphism
R ! R0. Let x be an R0-valued point of Xr defined by an elliptic curve E over R0.
Set

�E WD x
�.�E/; H#

E WD x
�.H#

E/

with induced section sx obtained from s by pulling-back via x. Then, applying the
construction above to .�E ; sx/, .H#

E ; sx/, and the R0-valued weight �0WZ�p ! .R0/�,
which is the composition

Z�p
�
! R� ! .R0/�;
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we get R0-modules w�0

R0 � W�0;R0 that coincide with x�.w�/ and x�.W�/, respect-
ively, by the description provided in Section 4.1.1. We sometimes write

w�0

R0 D w�0

R0.�E ; sx/; W�0;R0 DW�0;R0.H#
E ; sx/

if needed.

As in [1, Sections 3.2 and 3.3], one has the following proposition.

Proposition 4.8. The sheaf w� is an invertible OXr
y̋R-module and W� has a nat-

ural, increasing filtration .Fil/n�0 by OXr
y̋R-submodules such that w� is identified

with Fil0. The Gauss–Manin connection rWHE! HE ˝�
1
Xr=R

.log.cusps// induces
a connection r� (with poles) on W� .

Proof. For r � p2 this is proved in loc. cit. For p � 3 and r � 4 and for p � 5 and
r � 2, one argues as follows.

Consider the maps v0WV0.�E; s/! IG1;r , u0WV0.H#
E; s/! IG1;r and define

w�;0
WD v0;�

�
OV0.�E;s/

y̋ZpR
�
Œ��; W 0

� WD u0;�
�
OV0.H#

E;s/
y̋ZpR

�
Œ��

as the sheaves of functions on which 1C p Hdg�p=.p�1/ OIG1
acts via �. The map

� W IG1;r ! Xr is of degree p � 1 and is endowed with an action of F�p . Then
��.OIG1;r

/, ��.w�;0/ and ��.W 0
� / decompose as a sum of .p�1/-invertible sheaves

according to the residual action of F�p . One reduces to prove all statements for w�;0

and W 0
� over IG1;r . To define the filtration and the connection one uses Remark 4.2

(see [1, Sections 3.3 and 3.4] for the details). It is F�p -equivariant by functoriality of
the construction. The description of the filtration and the fact that w�;0 is invertible
follow from the explicit description in Section 4.1.1.

We now fix analytic weights k and �, in the sense of Definition 4.5, that satisfy

k.t/ D �0.t/ exp
�
.aC u/ log.t/

�
; �.t/ D ".t/ exp

�
.b C s/ log.t/

�
for all t 2 Z�p , and the following assumptions (cf. [1, Assumption 4.1]):

• a and b 2 Z;

• �0 and " characters of .Z=pZ/� and �0 even, i.e., �0 D �2 for a character �;

• u 2 pR and s 2 p2R.

We recall one of the main results of [1, Theorem 4.3] about p-adic iterates of the
Gauss–Manin connection. The operator U in the theorem is the Hecke operator Up
on overconvergent modular forms.
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Theorem 4.9. Let F 2 H0.IG1;r ;w
k/ such that U.F / D 0 with r � p C 2. Then,

there exists a positive integer b.p; r/ depending on p and r and there exists a section
.rk/

�.F / of WkC2� over 	G 1;b.p;r/ whose q-expansion, as a nearly overconvergent
form, coincides with

.rk/
�.F.q// WD

X
jD0

�
s

j

� j�1Y
iD0

.uC s � 1 � i/@��j .F.q//VkC2�;j

where �
us

j

�
D
s � .s � 1/ � � � .s � j C 1/

j Š

and if F.q/ D
P
n;p−n anq

n, then @��j .F.q// D
P
n;p−n �.n/n

�janq
n.

Proof. This is the content of [1, Theorem 4.3] and we refer to loc. cit. for details on
the q-expansion.

Remark 4.10. Notice that, in particular, any analytic character uWZ�p ! Z�p satisfies
the assumptions of Theorem 4.9, so that .rk/u.F / is defined for any F as in the
statement of the theorem.

As a consequence of the theorem, we also have the following interpolation prop-
erty. Take a homomorphism  WR!Zp such that the induced character  ı�WZ�p!Z�p
is a classical positive weight `, i.e., it is given by raising elements of Z�p to the `-th
power.

Corollary 4.11. The specialization of .rk/�.F / via  isr`
k
.F / (the usual `-th iterate

of the Gauss–Manin connection).

Proof. See [1, Corollary 4.7].

4.1.1. Local descriptions of the sheaves W� . We have nice, local descriptions of the
sheaves w�;0 and W .0/

� on IG1;r provided in [1, Section 3.2.2]. Let �WZ�p ! R� be
anR-valued weight, withR a p-adically complete and separated Zp-algebra. LetA be
a p-adically complete and separated R-algebra with a map Spf.A/! .IG1;r/R over
Spf.R/, and such that!EjSpf.A/ is free and pHdg�p=.p�1/ jSpf.A/, ıjSpf.A/ are principal
ideals generated, respectively, by ˇ, ı. It follows that the A-module H#

E.Spf.A// is
free of rank two and let us choose a basis of it ¹f; eº such that

f .modˇA/ D s D dlog.P univ/;

where we recall that P univ extends the universal generator of HD on 	G 1;r to IG1;r .
Then an A-point of V0.H#

E; s/, i.e., a point of V0.H#
E; s/.Spf.A// can be seen as

x WD af _ C be_;
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where ¹f _; e_º is the dual basis of ¹f; eº and a, b 2 A satisfy .a � 1/ 2 ˇA. We have

u0;�
�
OV0.H#

E
;s/

�
.Spf.A// D AhY;Zi

and the point xD af _C be_ 2V0.H#
E ; s/.Spf.A// corresponds to the algebra homo-

morphism xWAhY;Zi ! A sending Y ! b;Z ! .a � 1/=ˇ. We then have

w�;0.Spf.A//D .1CˇZ/�A; W .0/
� .Spf.A//D .1CˇZ/�A

D Y

1C ˇZ

E
�AhY;Zi:

Here we use Lemma 4.14 to define .1C ˇZ/� . The filtration is defined by the degree
in Y=.1C ˇZ/.

Now suppose that U D Spf.A/, V D Spf.B/ � .IG1;r/R are open affines over
Spf.R/, with the R-algebras A; B , as above. Let ı; ˇ be, respectively, generators of
the ideals ı.U /, p Hdg�p=.p�1/.U / as above, and ı0; ˇ0, respectively, generators of
the sections of the same ideals over V . Let also ¹f; eº be an A-basis of H#

E .U / sat-
isfying the properties above and similarly, ¹f 0; e0º be a B-basis of H#

E .V / satisfying
similar properties. We denote by Y;Z;T WD Y=.1C ˇZ/ the variables attached to the
basis ¹f; eº as above, and Y 0; Z0; T 0 WD Y 0=.1C ˇ0Z0/ the variables attached to the
basis ¹f 0; e0º such that

W .0/
� .U / D .1C ˇZ/�AhT i; W .0/

� .V / D .1C ˇ0Z0/�BhT 0i:

Let C be a p-adically complete and separated R-algebra such that

S WD Spf.C / � U \ V

is an open affine and let  WD
�
a b
c d

�
2 GL2.C / be the change of base matrix for the

restrictions of ¹f; eº and ¹f 0; e0º to S . We notice that a D 1.mod ˇ/, c D 0.mod ˇ/.
Then the isomorphism between ..1 C ˇZ/�AhT i/jS and ..1 C ˇ0Z0/�BhT 0i/jS is
given by sending

.1C ˇZ/�f .T /! .1C ˇ0Z0/�.aC cT 0/�f

�
b C dT 0

aC cT 0

�
;

where f .T / 2 C hT i.

4.1.2. Definition of nearly overconvergent modular forms à la Katz. Let �WZ�p!
R� be an R-valued weight, for R a p-adically complete and separated Zp-algebra,
andA a p-adically complete and separatedR-algebra. SupposeA has an ideal ID˛A
with I \ Zp D pnZp for some n � 1 and � is n-analytic, i.e., its restriction to
1C pnZp is analytic. Define the subgroup G � GL2.A/ by

G WD
®�
a b
c d

�
2 GL2.A/ j a D 1 .mod ˛/; c D 0 .mod ˛/

¯
:
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Let A�.A/ WD AhT i with the weight �-action by G be defined as follows: let  WD�
a b
c d

�
2 G and f .T / 2 A�hT i, then

 �� f .T / WD .aC cT /
�f

�
b C dT

aC cT

�
:

We now describe the category on which the nearly overconvergent modular forms
of weight � are defined. The objects of this category are tuples .E=A; N ;C;s;¹f;eº/,
where

• E=A is an elliptic curve over the p-adically complete and separated R-algebra A,
EŒp�.A/ contains a canonical subgroup H with HD.A/ Š Z=pZ. The ring A is
supposed to contain an ideal I D ˛A such that I \ZpDpnZp and � is n-analytic;

•  N is a level �1.N /-level structure on E=A;

• C � EŒp� is a �0.p/-level structure on E=A;

• s 2 !E=I!E is a marked section, i.e., in this case, it is the image under dlog of a
generator of HD.A/;

• ¹f; eº is an A-basis of H#
E , with f an A-basis of �E such that f D s.mod I /.

Definition 4.12. A nearly overconvergent modular form F on X.N; p/ of weight �
is a rule which assigns to every tuple .E=A;  N ; C; s; ¹f; eº/ as above, an element
F.E=A; N ; C; s; ¹f; eº/ 2 A�hT i such that

(i) the element F
�
E=A; N ;C; s;¹f;eº

�
only depends on the isomorphism class

of the tuple .E=A; N ; C; s; ¹f; eº/;

(ii) F commutes with base-change;

(iii) if .E=A; N ; C; s; ¹f 0; e0º/ is the same tuple with another A-basis, ¹f 0; e0º,
of H#

E , if  2 G is the change of basis matrix, i.e., .f 0 e0/ D .f e/ , then

F
�
E=A; N ; C; s; ¹f

0; e0º
�
D  �� F

�
E=A; N ; C; s; ¹f; eº

�
:

Finally, using the above Definition 4.12, one may define the action of the oper-
ator U D Up on nearly overconvergent modular forms on X.N; p/, of weight � as
follows. Let .E=A;  N ; C; s; ¹f; eº/ be a tuple as in Definition 4.12 such that for
every D � EŒp�, D ¤ C , the elliptic curve E=D has a canonical subgroup over A,
necessarily EŒp�=D. Let �DWE ! E=D WD E 0 be the projection and �DWE 0 ! E

be the dual isogeny. Let �#
DWH

#
E ! H#

E 0 be the A-linear map induced by ��D . Then
�#
D induces an isomorphism �E Š �E 0 .

Let F be a nearly overconvergent modular form on X.N;p/, as in Definition 4.12.
Then we can evaluate U.F / at the tuple .E=A; N ; C; s; ¹f; eº/ as follows:

U.F /
�
E=A; N ;C; s; ¹f; eº

�
D

X
D¤C

F
�
.E=D/=A; x N ; xC ;�

�
D.s/; ¹�

#
D.f /;�

#
D.e/º

�
;
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where x N is the natural �1.N / level structure on E=D induced by  N on E, and
xC D EŒp�=D.

Remark 4.13 (See also [22, Proposition 2.5.3]). Suppose .E=OK ;  N ; C / is a triple
withE an elliptic curve over OK , withK a finite extension of Qp ,  N a level �1.N /-
structure and C a �0.p/-structure over OK . Suppose C is not the canonical subgroup
of E but for all the p subgroups D � EŒp�, the elliptic curve E=D has a canonical
subgroup, which will be EŒp�=D. For example, this happens if

v
�
Ha.E=OK ;  N ; C; !/

�
D

p

p C 1
;

where ! is a generator of !E . We suppose that C.OK/ Š Z=pZ, otherwise extend
scalars.

Let P 2 CD.OK/ be a generator and let s WD dlog.P / 2 !E=˛!E , where

˛OK D pHdg�p=.p�1/.E; N ; C /:

We remark that .s; �E D zsOK � !E / is a pair consisting in a line-bundle with a
marked section, so let H#

E be the associated submodule of H1dR.E=OK/, as at the
beginning of Section 4, and let ¹f; eº be a basis adapted to .s; �E /. Then, even if C
is not the canonical subgroup of E (E may not have a canonical subgroup at all), if F
is a nearly overconvergent modular form of weight �WZ�p ! O�K which is overcon-
vergent (i.e., defined) at .E=D; x N ; xC WD EŒp�=D/, seen as a point of X.N; p/, for
every subgroup D of EŒp� of order p with D ¤ C , then U.F / can be evaluated at
.E=OK ;  N ; C; s; ¹f; eº/. More precisely, we have

U.F /
�
E=OK ;  N ; C; s; ¹f; eº

�
WD

X
D¤C

F
�
E=D; x N ; EŒp�=C; �

�
D.s/; ¹�

#
D.f /; �

#
D.e/º

�
;

where if D ¤ C , we denote by �DW E ! E=D the canonical projection and by
�DWE=D ! E the isogeny dual to �D . We remark that �D defines an isomorph-
ism

C Š xC WD EŒp�=D:

Therefore, for everyD ¤ C , the tuple .E=D; x N ; EŒp�=C; ��D.s/; ¹�
#
D.f /; �

#
D.e/º/

is like the ones in Definition 4.12, so F can be evaluated at all such tuples.

4.1.3. Powers of the Gauss–Manin connection. In this section we make explicit
some of the constants defined above.

We first turn to Definition 4.6: we know the definitions of w� and W� work if
r � p2 for every p > 0 prime integer. We will now show that the definitions make
sense also if r � 4 for p � 3 and even for r � 2 for p � 5 thanks to the following
lemma.



Katz type p-adic L-functions for primes p non-split in the CM field 673

Lemma 4.14. Consider a p-adically complete and separated R-algebra A with a
map Spf.A/! IG1;r . Write h for the image of Hdg in A. Then, for x 2 A, we have
that

�
�
1C ph�p=.p�1/x

�
WD exp

�
u log

�
1C ph�p=.p�1/x

��
is a well-defined element of A, congruent to 1 mod p1=.p�1/.

Proof. We have

vp
�
ph�p=.p�1/

�
D 1 �

p

p � 1
vp.h/ � 1 �

p

4.p � 1/
�

5

4.p � 1/

for r � 4 and p � 3. Thus, y WD log.1Cph�p=.p�1/x/ converges inA and is divisible
by p5=.4.p�1// for any x 2 A.

Similarly,

vp
�
ph�p=.p�1/

�
�

3

2.p � 1/

for r � 2 and p � 5 and y WD log.1C ph�p=.p�1/x/ converges to an element of A
divisible by p3=.2.p�1// for any x 2 A.

Recall that vp.nŠ/ < n=.p � 1/. Thus,

vp.yn=nŠ/ D nvp.y/ � vp.nŠ/ > n
�

vp.y/ �
1

p � 1

�
� n

1

4.p � 1/
:

Hence, z WD exp.uy/ converges to an element of A. As vp.yn=nŠ/ � 1=.p � 1/ for
n� 4 by the previous computation and also for 1� n� 3 by direct computation using
that p � 3, we conclude that z is congruent to 1 mod p1=.p�1/.

Next we look at Theorem 4.9.

Theorem 4.15. Let k; � be analytic weights satisfying the assumption before The-
orem 4.9 (cf. [1, Assumption 4.1]), let F 2 H0.IG1;r ;w

k/ be such that U.F / D 0
with r � p C 7. Then the positive integer b.p; r/, whose existence is proved in The-
orem 4.9, can be taken b.p; r/ D p.r � 1/ for p � 5, such that there exists a section
.rk/

�.F / of WkC2� over 	G 1;b.p;r/, whose q-expansion is described in Theorem 4.9.

Before we start proving Theorem 4.15, we’ll make a comment regarding the use-
fulness of this result and then prove two results needed in its proof.

Remark 4.16. The constant b.p; r/ in Theorems 4.9 and 4.15 measures the degree
of overconvergence of the section .rk/�.F /. In order to define the Katz type p-adic
L-function attached to a classical eigenform f of level N (the F in both theor-
ems is F D f Œp�), we need to evaluate this section to triples .A;  ; !/ consisting
of a CM point of the modular curve .A;  / and an invariant differential ! of the
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elliptic curve A. Therefore, the point .A;  / has to be in the region where the sec-
tion .rk/�.F / is defined, and therefore, the conductor of the p-adic Hecke character
on which we can evaluate the p-adic L-function is related to the conductor of a CM
elliptic curve A, which is related to the constant b.p; r/. Therefore it is important
to evaluate b.p; r/ as precisely as possible in order to determine the domain of the
p-adic L-function.

Lemma 4.17. Let F 2 H0.IG1;r ;w
k/ and let r � p C 2. Then

(1) for every N 2 N, we have

HdgN.pC1/=.p�1/ rNk .F / 2 H0.IG1;r ;WkC2N /I

(2) if U.F / D 0, for every N 2 N, we have

Hdg.pC1/pNCrN .rp�1 � Id/pN 2 pNH0
�
IG1;r ;˚

.p�1/pN
iD0 WkC2i

�
:

Proof. (1) We learn from [1, Lemma 3.20, Section 3.4.1] that the sections a; b; c; d
defining the connection (we use the notations of that section) have the property that
1 � a; b; c; 1 � d 2 1

Hdg Wk ˝ �
�.�1

X=ƒ
/, where �W IG

0

1;r ! Xr is defined by trivi-
alizing the full p-torsion of the universal generalized elliptic curve over Xr , as in loc.
cit. Moreover, [1, formula (2), p. 2027] implies that rk.Vk;m/ 2 1

Hdg Wk ˝ �
�.�1

X=ƒ
/.

To finish the proof of (1), we only need to show that the image of �IG1;r=ƒI

in �IG1;r=ƒI Œ1=p� is contained in the pull-back of 1
Hdg�X=ƒI to IG1;r . Let U D

Spf.A/� X be an affine open such that !EjU is a free A-module of rank one and let h
be a generator of the ideal Hdg.U/. Let us denote Spf.B/ � Xr and Spf.C / � IG1;r

the inverse images of U in Xr and IG1;r . The relative description of these algebras
is done in [2, Lemme 3.4] as follows:

B D AhY i=.hrY � p/;

and
C WD BhZi=.Zp�1 � h/ D AhZ; Y i=

�
Zp�1 � h;Z.p�1/rY � p

�
:

Therefore, �1
C=ƒI

is the C module generated by dZ; dY and �A=ƒI , with the rela-
tions hrdY D�rhr�1dh and .p � 1/Zp�2dZD dh. Therefore, the image of�C=ƒI
in �C=ƒI Œ1=p� is contained in 1

h
C ˝A �

1
A=ƒI

. This implies that

rk.Wk/ �
1

Hdg
Wk ˝ �

�.�1X=ƒ/ �
1

Hdg.pC1/=.p�1/
WkC2

as ı2��.�1
X=ƒ

/ � w2, using the Kodaira–Spencer isomorphism: �1
X=ƒ
Š !2E.

(2) Let us first note that .rp�1
k
�Id/pN is a polynomial inrk of degree .p�1/pN .

Therefore, if we denote by g WD Hdg.pC1/pN .rp�1 � Id/pN .F /, then on one hand
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it follows from (1) that g 2 H0.IG1;r ;˚
.pC1/pN
iD0 WkC2i /. On the other hand, it fol-

lows from [1, Theorem 4.3] that the restriction of g to the ordinary locus, lies in
pNH0.IG

.1/;ord
1;r ;˚

.pC1/pN
iD0 WkC2i /. Now using [1, Lemma 3.4], we deduce that

HdgrN g 2 pNH0
�
IG1;r ;˚

.pC1/pN
iD0 WkC2i

�
:

The claim follows.

Lemma 4.18. Consider a positive integer h and a prime p� 5. LetN D j1C � � �C jh
be the sum of positive integers j1; : : : ; jh. Then

2C hC
N

p
�

X
i

vp.ji / �
h

p � 1
> z

N

p

with z WD 1 � 1=2p.

Proof. As N D j1 C � � � C jh it suffices to prove this formula for h D 1, i.e., that for
every positive integer j , we have

2C
1

2p2
j > vp.j /C

1

p � 1
:

If vp.j / D 0 this is clear. Otherwise, write j D pr with p not dividing  and r � 1
and the inequality becomes

2C
1

2
pt�2 > t C

1

p � 1
:

It suffices to prove it for  D 1. For t D 1 or 2, this is clear as p � 3. For t � 3, this
follows as pt�2 > 2.t � 1/ since p � 5. This concludes the proof.

We are now able to prove Theorem 4.15.

Proof of Theorem 4.15. We recall the assumption on the analytic weights k and �,
i.e., they satisfy

k.t/ D �0.t/ exp..aC u/ log.t//; �.t/ D ".t/ exp..b C s/ log.t//

for all t 2 Z�p , such that

(i) a and b 2 Z;

(ii) �0 and " are characters of .Z=pZ/� and �0 is even, i.e., �0 D �2 for a charac-
ter �. Moreover, u 2 pR and s 2 p2R.

We now take ˛; ˇ 2 Z and write  WD ˇ � ˛ C b. Assume that

• ˛ > 0,  > 0 and pj.aC 2˛/;
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• ˇ D Np2 with N a positive integer such that the map .Z=pZ/� ! .Z=pZ/�,
x 7! x , coincides with the character �"W .Z=pZ/� ! .Z=pZ/�.

The last condition implies that xN D �.x/".x/x˛�b for every x 2 .Z=pZ/�. So
given ˛ satisfying the first assumption, as .Z=pZ/� is cyclic, an N with this property
can be found. We also denote by .Œ �; h i/WZ�p Š �p�1 � .1 C pZp/ the canonical
isomorphism.

We recall the definition of r�.F /, as a nearly overconvergent form of weight
k C 2� over IG1;p.r�1/. Let F0 WD r˛.#�

�1�˛.F //. Here r˛ D r ı r ı � ı r
iterated ˛-times. The operator #�

�1�˛ is the operator defined in [1, Section 3.8] asso-
ciated to the finite character

�p�1 ! �p�1; � 7! ��1.�/��˛

using that over IG1;r , we have a canonical subgroup of order p2 as r � p C 2.
Then F0 is a nearly overconvergent modular form of weight k0 WD hu C a C 2˛i
defined over IG1;r and such that U.F0/ D 0 by [1, Proposition 3.29]. We recall the
convention used in loc. cit. that

huC aC 2˛i.t/ D exp
�
.uC aC 2˛/ log.t/

�
for any t 2 Z�p

Let F1 D rhs�ˇi.F0/. We claim that this is a nearly overconvergent form defined
over IG1;p.r�1/ of weight h2s � 2ˇ C uC aC 2˛i. Assume this is the case and let

r
�
�
F Œp�

�
WD r

 .F1/;

where r Dr ır ı � ı r  -times. This is a nearly overconvergent form defined over
IG1;p.r�1/. Let k0 be the weight ofr�.F Œp�/. Write it as a weight  D! hi (here !
is the Teichmüller lift). Thus the restriction to 1C pZp is huC aC 2s C 2bi and the
restriction to .Z=pZ/� is the character x 7! x2 , which is �0"2. So k0 D k C 2� as
wanted. Moreover, on q-expansions we have

r
hi.F1/ D r

hCs�ˇi
�
r
h˛i.#�

�1

.F //
�
D r

hbCsi.#�
�1

.F //:

Hence,

r
 .F1/ D #


�
r
hbCsi.#�

�1

.F //
�
D #�

�
r
hbCsi

�
F Œp�

��
D r

�
�
F Œp�

�
;

as wanted.
To finish the proof we need to prove the claim concerning F1. Notice that w D

s � ˇ 2 p2R. We recall how rw.F0/ is constructed as a section of Wk0C2w over
IG1;p.r�1/ following the argument in the proof of [1, Proposition 4.13].
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From Lemma 4.18, one deduces that for any positive integer M , we have

Hdg.pC1/pMCrM
�
r
p�1

k
� Id

�pM
D 0 .mod pM /:

Let N > 0 be an integer and write M WD ŒN=p�, where Œx� denotes the greatest
integer part of the real number x. One writes .rk/w.F0/ as the limit of a sequence
.B.F0;w/n/n of sections of

Ln.p�1/
iD0 Wk0C2i which needs to be proved to be Cauchy.

We recall that

B.F0; w/n WD

nX
iD0

1

iŠ

uiw
.p � 1/i

�

� X
.j1;j2;:::;ji /2Hi;n

� iY
aD1

.�1/ja�1

ja

�
.rp�1 � Id/j1C���Cji

�
.F0/

for n� 0. From the proof of [1, Corollary 4.11] and Lemma 4.17 forN Dj1C� � �Cjh,
we have that there is  independent of N such that

Hdg Hdg..pC1/pCr/ŒN=p�.rp�1 � Id/pŒN=p�.F0/ D 0
�
modpŒN=p�

�
:

This implies that

vp
�
Hdg Hdg..pC1/pCr/ŒN=p�

�
B.F0; w/n � B.F0; w/n�1

��
� 2hC

N

p
�

hX
iD1

vp.ji / �
h

p � 1
� z

N

p
;

where we used thatN=p � ŒN=p� < 1 and Lemma 4.18. We recall that z D 1� 1=2p.
To show that the sequence .B.F0; w/n/n is Cauchy, when restricted to IG1;p.r�1/,
we need to show that the section

pz=p

Hdg..pC1/pCr/=p

is nilpotent in OIG1;p.r�1/
. We remark that on IG1;p.r�1/, we have

vp.Hdg/ �
1

p.r � 1/
;

and therefore

vp
�
Hdg..pC1/pCr/=p

�
�
.p C 1/p C r

p2.r � 1/
:

It is therefore enough to show

z

p
>
.p C 1/p C r

p2.r � 1/
:
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Putting r D p C 7C h, where h � 0, we see that the desired inequality is equivalent
to �

p �
1

2

�
.p C 7C h/ > p2 C 2p C 7C h or p

�9
2
C h

�
>
21

2
C
3

2
h;

which is true for all p� 3 if h� 0. Nevertheless, as in the proof, we used Lemma 4.18,
p � 5 and r � p C 7 imply that b.p; r/ D p.r � 1/ works. In particular, for p � 5
and r D p C 7, we have b.p; r/ D p.p C 6/.

4.1.4. p-adic iterations of powers of rk on X1.N/b.p;r/. Let �r W	G 1;r!X1.N /r

be the natural projection. As a consequence of Theorem 4.9, we deduce that given
weights k and � as in Section 4.1.3, and given G 2 H0.X1.N /r ;w

k/ such that
U.G/ D 0, we have the following corollary.

Corollary 4.19. There exists a unique section .rk/�.G/ of WkC2� over X1.N /b.p;r/
such that ��

b.p;r/
..rk/

�.G// coincides with .rk/�.��r .G//, where the latter is defined
as in Theorem 4.9. If the weight � specializes to a classical positive integral weight `
then .rk/u.G/ specializes to the `-th iterate of the Gauss–Manin connection applied
to G.

Proof. The maps �r and �b.p;r/ are finite ètale and Galois with group AD .Z=pZ/�

acting on P univ. Moreover, WkC2� D .�b.p;r/;�.�
�
b.p;r/

.WkC2�///
A and the map

.rk/
�
WH0

�
	G 1;r ; �

�
r .Wk/

�UD0
! H0

�
	G 1;b.p;r/; �

�
b.p;r/.WkC2�/

�
of Theorem 4.9 commutes with the action of A. The first claim follows. The second
claim follows from the description of the q-expansion in Theorem 4.9.

Remark 4.20. If in the hypothesis of Corollary 4.19 we assumeG2H0.X1.N /r ;wk/

such that U.G/ D 0, then we obtain

.rk/
�.G/ 2 p�a � H0

�
X1.N /b.p;r/;WkC2�

�
� H0

�
X1.N /b.p;r/;WkC2�

�
;

where a 2 N is a constant independent of � and G.

Finally, we show that the p-adic iterates of powers of rk cannot overconverge
to X.N; p/pC1. It has been first observed by Buzzard, Calegari that overconvergent
modular forms of integer weights and infinite slope cannot overconverge too much
and later by L. Ye that this is true without the restriction on weights.

Proposition 4.21 (See also [22, Proposition 3.1.1] and [12, Lemma 6.13]). The fol-
lowing statements hold.

(a) If w 2 H0.X.N; p/pC1;Wk/
UD0, then w D 0.
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(b) Let f 2 H0.X.N;p/; !kE / be a classical eigenform (so k 2 Z) and let � be a
p-adic weight. Then r�

k
.f Œp�/ 2 H0.X.N; p/b;WkC2�/, with b > p C 1.

Proof. (a) Let .E=OK ;  N ; C / a triple such that v.Ha.E;  N ; C; !// D p=.p C 1/,
then this triple is as in Remark 4.13, for all order p subgroup C � EŒp�. For every C ,
we have

0 D U.F /
�
E=OK ;  N ; C; s; ¹f; eº

�
D

X
D¤C

F
�
E=D; x N ; xC ; �

�
D.s/; ¹�

#
D.f /; �

#
D.e/º

�
: (�)

We sum the right-hand sides of these equalities over all p C 1 subgroups C of EŒp�,
divide by p to obtainX

D�EŒp�

F
�
E=D; x N ; xC ; �

�
D.s/; ¹�

#
D.f /; �

#
D.e/º

�
D 0: (��)

Subtracting the relation (�) from (��), we obtain

F
�
E 0 WD E=C; N ;H WD EŒp�=C; �

�
C .s/; ¹�

#
C .f /; �

#
C .e/º

�
D 0

for all .E 0;  N ; H/ with valuation of its Hasse invariant equal to 1=.p C 1/. By
analyticity, this implies that F D 0.

To prove (b), it is enough to notice that U.r�
k
.f Œp�// D 0 by Appendix A, so we

apply (a).

Remark 4.22. We remark that it is easier to obtain (b) of the above Proposition 4.21,
at least in the following weak form: Let f be a classical eigenform of weight k
on X.N; p/, then f Œp� is an overconvergent modular form on X.N; p/ of infinite
slope so by [22, Proposition 3.1.1], f Œp� 2 H0.X.N;p/r ; !kE / with r > pC 1. From
the way r�

k
.f Œp�/ is constructed, we have r�

k
.f Œp�/ 2 H0.X.N; p/b;WkC2�/ with

b � r > p C 1.
By applying Proposition 4.21, we have that the stronger result r�

k
.f Œp�/ cannot

be analytically continued to X.N; p/pC1.

4.2. The p-depletion operator on classical and overconvergent modular forms

The input for Corollary 4.19 are overconvergent formsG of weight k and level �1.N /
defined over the rigid analytic fibre Xr of Xr and such that U.G/ D 0 (i.e., G has
infinite slope). We will now recall how to obtain a large supply of such overconvergent
modular forms of infinite slope.
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Consider an overconvergent form F of weight k and level �1.N /. One has oper-
ators U , V that can be defined geometrically on the overconvergent modular forms;
see [1, Sections 3.6 and 3.7]. On q-expansions if F.q/ D

P1
nD0 anq

n, then

U.F.q// WD

1X
nD0

anpq
n and V.F.q// WD

1X
nD0

anq
pn
D F.qp/:

It is then easy to see that U ı V D Id, and we define

F Œp� WD F � .V ı U/.F / D
�
.U ı V / � .V ı U/

�
.F /:

It is an overconvergent modular form F Œp� 2 H0.X1.N /r �U;wkuniv
/ defined for

some r and we have

F Œp�.q/ D

1X
nD1;.n;p/D1

anq
n and U

�
F Œp�

�
.q/ D U

�
F Œp�.q/

�
D 0:

Recall from the Katz–Lubin theory of the canonical subgroup that the univer-
sal generalized elliptic curve over XpC2 admits a canonical subgroup of order p2.
Thus, XpC2 can be identified with the strict neighbourhood of the ordinary locus
X.N;p2/pC2 of X.N;p2/, the rigid space associated to the modular curve X.N;p2/
over Qp of level �1.N /\�0.p2/. We prove that, if F is a classical modular form, the
p-depletion F Œp� can be defined on the full X.N;p2/, i.e., F Œp� is a classical modular
form of level �1.N / \ �0.p2/.

First of all we define the operators V 2, respectively, V , restricted to classical mod-
ular forms as the pull-back via the morphisms

X.N; p2/! X1.N / and X.N; p2/! X1.N; p/

over Qp , defined by
.E=S; N ;D/ 7!

�
E=D; x N

�
;

respectively,
.E=S; N ;D/ 7!

�
E=DŒp�; x N ;D=DŒp�

�
I

here .E=S;  N ; D/ is an elliptic curve over S with �1.N /-level structure  N and a
cyclic subgroup D of order p2 (respectively, p) and x‰N is the �1.N /-level structure
induced by  N on E=D, respectively, on E=DŒp�, via the quotient map E ! E=D,
respectively, E ! E=DŒp�.

Over X1.N /pC2 the universal elliptic curve admits a canonical subgroups C of
order p2 (respectively, p) we can identify X1.N /pC2 with an open of X.N; p2/,
respectively, X.N;p/ by taking C , respectively, C Œp�, as level subgroups. Hence, the
operators V 2 and V on this space give the operators V 2, and respectively, V , defined
in [1, Section 3.7], which act on q-expansions as described above.
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Corollary 4.23. If F is a classical modular form of weight k 2 Z>0 of level �1.N /,
character �, then

F Œp� WD F j.1 � V U /

is a classical modular form of level �1.N / \ �0.p2/, where U is induces by the U -
correspondence on the pull-back of F to X.N; p/ and V is the operator induced by
the morphism

V WX.N; p2/! X1.N; p/

above. The restriction of F Œp� to X1.N /pC2, via the identification X1.N /pC2 �

X.N;p2/, gives the p-depletion of F described above on q-expansions. In particular,
U.F Œp�/ D 0. Finally, if F is an eigenform for the operator Tp with eigenvalues ap ,
we also have

F Œp� D F j
�
1 � apV C �.p/p

k�1V 2
�
:

Proof. The claim follows from the discussion above and the following simple calcu-
lation. Suppose that Tp.F / D ap.F /. Then apF D F jTp D F jU C �.p/pk�1F jV ,
and therefore

F Œp� D F j.1 � V U / D F j
�
1 � apV C �.p/p

k�1V 2
�
:

The fact that U.F Œp�/D 0 follows from the fact that it is true on X1.N /pC2 and the U
correspondences on X1.N /pC2 and X.N; p2/ are compatible via the identification
X1.N /pC2 � X.N; p2/.

Assume more generally thatF is a generalized eigenform of weight k for the oper-
ator U of finite slope. As U increases the radius of overconvergence, we may and will
assume that F is defined on X1.N /4 and even on X1.N /2 for p � 5 thanks to Defini-
tion 4.6. Then its p-depletion FŒp� D .1�UV /.F/ will be defined over X1.N /r �U

with r D 4p and r D 2p for p � 5.

Definition 4.24. Given an analytic weight k, we let

rk.p/ D

8̂̂<̂
:̂
2p p � 5;

4p p D 3;

p C 2 k 2 Z>0:

Let bk.p/ WD b.p; rk.p// be the integer b.p; r/ of Theorem 4.9 with r D rk.p/. We
also let nk.p/ 2 N be the smallest positive integer such that

(i) pnk.p/�1.p C 1/ � bk.p/ if p is inert in K;

(ii) 2pnk.p/ � bk.p/ if p is ramified in K.
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In particular, we have bk.p/ D p.rk.p/ � 1/ for p � 5. Thus, nk.p/ D 2 for k a
classical weight and p � 5 or for p � 5 ramified and nk.p/ D 3 for k non-classical
and p � 5.

5. The case: p is inert in K

Let kuniv be the universal weight of some rigid analytic disk U inW such that kunivjU

is analytic in the sense of Definition 4.5. Consider a finite slope family F of neben-
type � and weight kunivjU. As explained in the discussion before Definition 4.24,
we may and will assume that its p-depletion FŒp� D .1 � UV /.F/ is defined over
X1.N /r �U with r D rkuniv.p/ as in Definition 4.24.

We assume that there is an integral weight u 2 U.Qp/ such that the specializa-
tion Fu is an overconvergent modular form which arises from a classical eigenform F

of weight u and nebentype � that satisfies the assumptions of Section 2.4. We suppose
that p is inert in K.

5.1. Evaluation at CM-points

We fix

(a) an elliptic curveE over the ring of integer of a finite extension of Qp with full
CM by Od , with d prime to pdK ;

(b) a �1.N/-level structure  N on E;

(c) a subgroup C .n/ � EŒpn� of order pn which is generically cyclic for n � n0
with n0 D nkuniv.p/ as in Definition 4.24.

Notice that for p � 5 it suffices to take n � 3. Consider the elliptic curve E.n/ WD
E=C .n/ with projections �nWE ! E.n/. Then

(i) E.n/ has CM by Oc with c D pnd ;

(ii)  
.n/
N WD �n ı N defines �1.Nc/-level structure onE.n/ with Nc DOc \N;

(iii) H .n/ D EŒpn�=C .n/ defines canonical subgroup of level pn of E.n/ (see
Lemma 3.1).

In particular, we define the L-valued point x.n/ WD .E.n/;  
.n/
N ; H .n/Œp2�/ of

X.N; p2/ over some finite extension L of Qp . If OL is the ring of integers of L,
thanks to Lemma 3.1, x.n/ extends to an OL-valued point, 'x.n/ , of the formal model
X1.N /b.p/ of the open X1.N /b.p/ � X.N; p2/ for b.p/ as in Definition 4.24.

We denote C 0 WD C .n/Œp� and E 0 WD E=C 0. Factor

�nWE
�0

�! E 0
�0n
�! E.n/:
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Thanks to Lemma 3.1 the elliptic curveE 0 admits a canonical subgroup H0DEŒp�=C
and together with the level N structure  0N D �

0 ı  N it defines an L-valued point
x0 D .E 0;  0N / of X1.N /pC1 that extends to an OL-valued point 'x0 of X1.N /pC1.

5.2. Splitting the Hodge filtration

We keep the notations of the previous section. By functoriality of VBMS (see Sec-
tion 4.2), the isogeny �0nWE

0 ! E.n/ induces morphisms .�0n/
�WH]

E .n/
! H]E 0 . On

the other hand E 0 has CM by Opd . Possibly enlarging L, we have two embeddings
�; x� WOpd ! OL. We define HE 0;� ˚ HE 0;x� � HE 0 as in Section 3.3 and

zH]E 0 WD H
]
E 0;� ˚ H]E 0;x� WD ıE 0HE 0;� ˚ ı

p
E 0HE 0;x� � H]E 0 :

Lemma 5.1. The image of H]
E .n/

via .�0n/
� is contained in zH]E 0 .

Proof. As �0n induces an isomorphism H 0 ! H .n/Œp� of canonical subgroups of
level p, the map .�0n/

� induces an isomorphism �E .n/ Š �E 0 D H]E 0;� . Thus it suf-
fices to prove that the map n induced on the quotients H]

E .n/
=�E .n/ ! H]E 0=�E 0

factors through H]E 0;x� .

Recall that H]
E .n/

=�E .n/ D ı
p

E .n/
!_
E .n/

and H]E 0=�E 0 D ı
p
E 0!

_
E 0 and by construc-

tion the map between them is induced by the map Lie..�0n/
_/W !_

E .n/
! !_E 0 , the

OL-dual to the map of differentials !E 0 ! !E .n/ defined by pull-back via the dual
isogeny .�0n/

_.
The map �0n factors via �02WE

0 ! E.2/ with E.2/ WD E=.C .n/Œp2�/ so that n
factors through the map 2WH

]

E .2/
=�E .2/ ! H]E 0=�E 0 associated to �02. We are then

left to prove the claim on n for n D 2.
The map E 0 ! E.2/ has kernel of degree p that does not intersect the canonical

subgroup. It then follows from Lemma 3.3 that

(i) Hdg.E 0/!_E 0 � HE 0;x� � !_E 0 ;

(ii) Lie..�02/
_/.!_

E .2/
/ � pHdg.E.2//�1!_E 0 .

Thus it suffices to show that ıp
E .2/

p Hdg.E.2//�1!_E 0 � Hdg.E 0/ıpE 0!
_
E 0 . This

amounts to proving that
valp

�
ı
p

E .2/

�
� valp

�
ı
2p�1
E 0

�
(we use that valp.Hdg.E.2/// D .p � 1/ valp.ıE .2//, and likewise for E 0). Since
valp.ıE 0/ D p valp.ıE .2//, this amounts to showing that�

.2p � 1/p � 1
�

valp
�
ıE .2/

�
� 1:

But valp.ıE .2// D 1=.p.p C 1/.p � 1// by Lemma 3.1. Hence, we need to show
that 2p2 � p � 1 � p3 � p, or equivalently 2p2 � 1 � p3, which is true for any
prime p.
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Take L large enough so that .H0/D.L/D Z=pZ. Let !0 be an element of�E 0=OL
reducing to an element in the image of s0 2 dlog..H0/D.L// mod pı.E 0/�p (see Sec-
tion 4.1).

Let us now fix k and � 2 U.Qp/. As explained in Section 4.1.1, the choice of !0

defines a trivialization
v!0 Ww

kC2�
E 0;OL

�
�! OL:

Let !n be the generator !E .n/ ˝OL L whose pull-back via �0nWE
0 ! E.n/ is !0.

As �0n defines an isomorphism H0 Š H.n/Œp� of canonical subgroups, s0 defines a
section sn 2 dlog..H.n/Œp�/D.L// and !n is a generator of �E .n/=OL reducing to
sn mod pı.E.n//�p .

It follows from Definition 4.6 that both x0 and x.n/ are points of X1.N /pC1 over
which WkC2� is defined. By functoriality of the VBMS (see Remark 4.7), we have
that

'�x0.WkC2�/ DWkC2�;OL

�
H]E 0 ; s

�
; '�

x.n/
.WkC2�/ DWkC2�;OL

�
H]
E .n/

; sn
�
:

We also observe that the inclusion zH]E 0 � H]E 0 identifies WkC2�;OL.
zH]E 0 ; s/ as a

submodule of WkC2�;OL.H
]
E 0 ; s/. As the Hodge filtration on zH]E 0 is split, also the

filtration on WkC2�;OL.
zH]E 0 ; s/ is canonically split. In particular, it has a canonical

Opd -equivariant projection

‰E 0 WWkC2�;OL

�
zH]E 0 ; s

�
! wkC2�

E 0;OL
:

Thanks to Lemma 5.1, the image of

.�0n/
�
WWkC2�;OL

�
H]
E .n/

; sn
�
!WkC2�;OL.H

]
E 0 ; s/

factors through WkC2�;R0.zH
]
E 0 ; s/, so that we get a natural projection

‰E 0
�
.�0n/

�
ı '�xi

�
.rk/

�
�
F Œp�

���
2 p�awkC2�

E 0;OL
� wkC2�

E 0;OL
Œp�1�:

We have remarked that x.n/ is a point of X1.N /b.p/, so that .rk/�.F Œp�/ can be
indeed evaluated at x.n/ by the discussion before Definition 4.24. We recall also that
the constant a was defined in Remark 4.20.

Definition 5.2. We define

ı�k
�
F Œp�

��
E.n/=OL;  N ; !n

�
WD v!0 ı‰E 0

�
.�0n/

�
ı '�

x.n/

�
.rk/

�
�
F Œp�

���
2 p�aOL � L:
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Remark 5.3. We make the following remarks.

(1) Let�can
E 0=OL

��E=OL be the Z�p.1Cpı.E
0/�pOL/-torsor of sections arising

via .�_/� from sections of�E 0=OL reducing to the image of dlog.H0/D.L//n¹0º mod
pı.E 0/�p , and similarly forE.n/. As the map �0nWE

0!E.n/ induces an isomorphism
of level subgroups of level p, then the map on differentials .�0n/

� gives an isomorph-
ism

.�0n/
�
W�can

E .n/=OL
! �can

E 0=OL
;

so that !n is a generator of �can
E .n/=OL

.

(2) Let D1 and D2 � EŒpn� be two subgroups of order pn, generically cyclic.
Let �01WE! E 01 D E=D1Œp� and �02WE! E 02 D E=D2Œp� be the two corresponding
cyclic isogenies of degree p, as above. We claim that there exists a 2 yO�

d
such that

Œa�.D1/ D D2, and hence

�can
E 0
1
=OL
D Œa��

�
�can
E 0
2
=OL

�
D a�1 ��can

E 0
2
=OL

:

Indeed, .Od ˝Zp/� acts transitively on the set of subgroups of E, generically cyclic,
of order pn. This follows as E is defined over a dvr so that there is a 1 W 1 corres-
pondence between these subgroups and the cyclic subgroups of EŒpn�L, given by
taking the generic fibre in one direction and taking the schematic closure in the other.
Then one concludes remarking that .Od ˝ Zp/�acts transitively on the elements of
order pn in EŒpn�.xQp/ Š OK=p

nOK since p does not divide d .

5.3. Definition of the p-adic L-functions in the inert case

We define both one and two-variable p-adic L-functions.

Two-variablep-adicL-functions. The notation is as at the beginning of this section.
We denote

y†.2/;p
n

.c;N; �/U � y†
.2/.c;N; �/

the open subspace of p-adic Hecke characters � in the space y†.2/.c;N; �/ defined in
Section 2.5 with the property that

zw.�/ D .x; y/ 2 U.Qp/ �U.Qp/

and the p-part of the conductor is pn with n � n0 (here n0 D nkuniv.p/ is as in Defin-
ition 4.24; we can simply take n � 3 for p � 5).

Definition 5.4. For every � 2 y†.2/;p
n
.d;N; �/U with weight zw.�/ D .u; �/, set

Lp.F; �/ WD
1

j.OK=N/�j

X
a2H.c;N/

��1� .a/ı
�
u

�
.Fu/Œp�

��
a �

�
E.n/=OL;  

.n/
N ; !n

��
;
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where the evaluation of .ru/�..Fu/Œp�/ at a � .E.n/=OL;  
.n/
N ; !n/ is done using

Definition 5.2 and Section 3.4.

Remark 5.5. We make the following remarks.

(a) Specifically, what we mean by using Definition 5.2 to evaluate .ru/�..Fu/Œp�/
at a � .E.n/=OL;  

.n/
N ; !n/ is the following. As explained in Section 3.4, for every

a 2 H .c;N/, we set

a �
�
E.n/=OL;  

.n/
N ; !n

�
D
�
a �

�
E.n/=OL;  

.n/
N

�
; �p.ap/

�1!n;a
�
I

where we have denoted !n;a the differential whose pull-back via the natural isogeny

E.n/ ! E.n/a WD E.n/=E.n/Œa�

is !n. Notice that if we write .E.n/a ;  
.n/
N;a/ for a � .E.n/;  

.n/
N /, then

�p.ap/
�1!a 2 �

can
E 0a=OL

by Remark 5.3. Let x.n/a WD.E
.n/
a ;  

.n/
N;a/ be seen as an L point of X. Similarly, set

a � .E 0;  0N ; !
0/ DW .E 0a;  

0
N;a; !

0
a/;

we let x0a WD .E 0a;  
0
N;a/ 2 X.L/. We have a canonical isogeny �0n;aWE

0
a ! E

.n/
a

induced by �nWE 0 ! E.n/ and Lemma 5.1 implies that

.�0n;a/
�
�
'�
x
.n/
a

�
r
�
u

�
FŒp�u

���
2WuC2�

�
zH]
E 0a
; sa
�
;

which is split. Applying the splitting ‰E 0a to .�0n;a/
�.'�

x
.n/
a

.r�u.F
Œp�
u /// and using the

generator .!0a/
uC2� , we obtain an element of L.

(b) The formula above is well posed, namely if we multiply a by an element
r 2 yO�K;p , which is congruent to 1 mod pn, then one has

��1� .a/.ru/
�
�
FŒp�u

��
a �

�
E.n/=OL;  

.n/
N ; !n

��
D ��1� .ra/.ru/

�
�
FŒp�u

��
.ra/ �

�
E.n/=OL;  

.n/
N ; !n

��
:

Indeed,�
.ra/ �

�
E.n/=OL;  

.n/
N ; !n

��
D
�
a �

�
E.n/=OL;  

.n/
N ; �p.rp/

�1!n
��
;

so that

.ru/
�
�
FŒp�u

��
.ra/ �

�
E.n/=OL;  

.n/
N ; !n

��
D .uC 2�/.�p.r//.ru/

�
�
FŒp�u

��
a �

�
E.n/=OL;  

.n/
N ; !n

��
:

The conclusion follows as ��.r/ D .uC 2�/.�p.r// by construction.
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We also have the following proposition.

Proposition 5.6. The function Lp.F;�/W y†.2/;p
n
.c;N; �/U! Cp is locally analytic,

i.e., Lp.F; �/ is locally analytic in the variable � considering the analytic structure
on y†.2/;p

n
.c;N; �/ defined in Lemma 2.5.

Proof. Let �2 y†.2/;p
n
.c;N; �/U and let .a;b/2 ..Z=6.q � 1/Z/�Zp/2 be its image

by .w0; w/. Given the way the topology of y†.2/.c;N; �/U is defined, it is enough
to suppose that the components of .a; b/ in Z=6.q � 1/Z are fixed, and so without
loss of generality, we may assume the torsion components are 0. So .a; b/ 2 Z2p
and the weights in .u; �/ 2 W.Qp/

2 associated to � are u.t/ D exp.a log.t// and
�.t/ D exp.b log.t// for all t 2 Z�p .

Let us first remark that in the expression of Lp.F; �/, for a fixed a 2 H .c;N/,
��1� .a/ is analytic in � and �. So we will analyze the rest of the formula, again for a
fixed a.

It is enough to work over 	G 1;b.p/ and we recall that we have the points x.n/a D a�

.E.n/; 
.n/
N / and x0a�.E

0; 0N / of Xb.p/.L/, which we regard as points of 	G 1;b.p/.L/

by choosing a generator of the dual of the canonical subgroup of E, i.e., a marked
section. Let T WD Spa.R;RC/� 	G 1;b.p/ be an affinoid containing x.n/a ; x0a and such
that !CE jT is a freeRC-module of rank 1. We choose basis f , e of .H]E/jT such that f
lifts the marked section s. As explained in Section 4.1.1, this gives us coordinates Z
and V D Y=.1C ˇZ/ of W jT�U such that FŒp�jT�U D ˛k

univ.1C ˇZ/, with ˛ 2
OC
T�U

.T �U/. Then

FŒp�u D ˛uk
univ.u/.1C ˇZ/ D ˛u.1C ˇZ/

a;

with ˛u 2 RC. On the other hand,

r
�
u D exp

� b

p � 1
log
�
r
p�1
u � Id

��
;

and therefore, using that kuniv.u/.t/D u.t/ for all t 2 Z�p and the formulae giving the
expression of the connection in local coordinates (see [1, Proposition 4.15], we have

r
�
u

�
FŒp�u

�
D

� 1X
nD0

An.a; b/V
n

�
.1C ˇZ/aC2b;

where An.a; b/ are power series in a and b with coefficients in R.
Now we choose an adapted basis of H]

E .n/
and zHE 0 WD H]E 0;� ˚ H]E 0;x� , which

gives us coordinates Vn, Zn of W .H]
E .n/

; s.n// and V 0, Z0 of W .zH]E 0 ; s
0/. Evaluating

H]EjA at x.n/a means making a linear change of coordinates and the evaluation of the
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coefficients in R D OT .T / at x.n/a , then further applying '�
x0a

means again a linear
change of variables. We obtain

'�
x0a

�
'�
x
.n/
a

�
r
�
u

�
FŒp�n

���
D

� 1X
nD0

Bn.a; b/.V
0/n
�
.1C ˇZ0/aC2b

with Bn.a; b/ power series in a; b with coefficients in L. Therefore, the splitting of
the Hodge filtration sends this to

ı�u
�
FŒp�u

��
a �

�
E.n/;  

.n/
N

��
D B0.a; b/.1C ˇZ

0/aC2b

and denoting  2 O�L the unit such that 1C ˇZ0 D !0a, we have

ı�u
�
FŒp�u

��
a �

�
E.n/;  

.n/
N ; !n

��
D B0.a; b/

aC2b;

which is locally analytic in a, b.

The one variable p-adic L-function. Let k > 0 be a fixed integer and F a classical
eigenform of weight k, nebentype � and level �1.N / as in Section 2.4. Denote by
y†.2/;p

n
.k;c;N; �/U the open subspace of Hecke characters of the space y†.2/.k;c;N; �/

defined in Remark 2.8 whose image via w lies in U.Qp/. We assume n � nk.p/ as
in Definition 4.24, e.g., n � 2 for p � 5.

Definition 5.7. For every � 2 y†.2/;p
n
.k; c;N; �/U with weight � WD w.�/, we set

Lp.F; �/ WD
1

j.OK=N/�j

X
a2H.c;N/

��1� .a/ı
�
k

�
F Œp�

��
a �

�
E.n/=R; 

.n/
N ; !n

��
;

where the evaluation of .rk/�.F Œp�/ at a � .E.n/=OL;  
.n/
N ; !n/ is done using Defin-

ition 5.2.

Remark 5.8. We make the following remarks.

(1) Arguing as in the proof of Proposition 5.6 it follows that also Lp.F; �/ is a
locally analytic function.

(2) Let us consider the notations of definition 5.4 and suppose u 2 U.Qp/ is an
integer weight large enough such that Fu is classical. Let

� 2 y†.2/;p
n

.u; c;N; �/U � y†
.2/.c;N; �/U;

i.e., zw.�/ D .u;w.�// D .u; �/. Then Lp.F; �/ D Lp.Fu; �/, i.e., we have

Lp.F;�/jy†.2/.u;c;N;�/U D Lp.Fu;�/:

(3) Inside y†.2/;p
n
.c;N; �/ we have different one-dimensional directions to which

one can restrict Lp.F; �/. For example, the direction of the second variable. Our
choice above is motivated by the formulae in Section 7.1, which use this specific line.
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5.4. Interpolation properties in the case p is inert in K

In this section assume that F is a classical modular form of weight k and nebentype �
as in Section 2.4. We show that the values Lp.F; �/, for � 2 †.2/.k; c;N; �/, a clas-
sical algebraic Hecke character of K of conductor divisible by pn, can be related to
the classical values Lalg.F; �/.

Proposition 5.9. For every � 2 †.2/.k; c;N; "/ such that pn is the p-part of the
conductor with n � nk.p/ (Definition 4.24) and the infinity type is .k C m; �m/
for m � 0:

Lp.F; �/ D
Lalg.F; �/

�kC2mp;n

:

Here �p;n 2 OL is a non-zero element of the p-adic valuation

vp.�p;n/ D
1

pn�1.p2 � 1/
:

Proof. Set�p;n to be the p-adic period ofE.n/ defined by the equality!nD�p;n!.n/

that expresses !n, which is not a generator of the invariant differentials !E .n/ , in terms
of the generator !.n/. As observed in Remark 5.3, the section !n generates

�can
E .n/=OL

� !E .n/=OL :

Then, as in Section 4.1, we conclude that�p;n has valuation equal to 1=.p � 1/ times
the p-adic valuation of Hdg.E.n/. The conclusion follows then from Lemma 3.1.

We are left to prove the displayed equality. We denote by ap the Tp-eigenvalue
of F , i.e., Tp.F / D apF . Using Lemma 4.23, we can interpret F Œp� as a classical
modular form of level �1.N / \ �0.p2/. In fact,

F Œp� D F j
�
1 � apV C �.p/p

k�1V 2
�
:

Then .rk/m.F Œp�/ 2 H0.X.N;p2/;SymkC2m.HE//, i.e., it is a classical (i.e., global)
object, the evaluation of .rk/m.F Œp�/ at .a � .E.n/=L;  .n/N ;H.n/Œp2�; !.n/// can be
done directly by splitting the Hodge filtration of SymkC2m.Ha�E .n// using the action
of the CM field K and using a non-zero differential of E.n/. Notice that, using the
conventions of Section 3.4, we have

V j
�
a �

�
E.n/=OL;  

.n/
N ;H .n/; !n

��
D a �

�
E.n�j /=OL;  

.n�j /
N ; !n�j

�
; j D 1; 2:

Here, to deal with the case nD 2, we setE.0/DE, .0/N D N and !0 is the pull-back
of !n via the projection �nWE ! E.n/. Hence, F Œp�.a � ..E.n/;  .n/N ;H .n/; !n// is

F
�
a �

�
E.n/;  

.n/
N ; !n

��
� apF

�
a �

�
E.n�1/=OL;  

.n�1/
N ; !n�1

��
C �.p/pk�1F

�
a �

�
E.n�2/=OL;  

.n�2/
N ; !n�2

��
:
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It follows from Definition 5.7 that

Lp.F; �/ WD
X

a2H.c;N/

��1m .a/ı
m
k

�
F Œp�

��
a �

�
E.n/=OL;  

.n/
N ; !n

��
:

On the other hand, as recalled in Section 2.4, we have

Lalg.F; �/ WD
X

a2Pic.Oc/

��1m .a/ı
m
k .F /

�
a �

�
E.n/=OL;  

.n/
N ; !.n/

��
:

As j.OK=N/�j � jPic.Oc/j D jH .c;N/j by Lemma 2.2, dividingLalg.F;�/ by�kC2mp;n

we have that

Lalg.F; �/

�kC2mp;n

D
1

j.OK=N/�j

X
a2H.c;N/

��1m .a/ı
m
k .F /

�
a �

�
E.n/=OL;  

.n/
N ; !n

��
:

In order to conclude it suffices to show thatX
a2H.c;N/

��1m .a/ı
m
k .F /

�
a �

�
E.m/=OL;  

.m/
N ; !m

��
D 0

for every m � n � 1.
Given b 2 H .pn�1d;N/ and a class a0 2 H .pnd;N/ mapping to b all other

classes mapping to b are of the type ra0 with

r 2 Un WD
�
1C pn�1 yOd

�
=
�
1C pn yOd C p

nZp
�
Š Z=pZ:

As explained in Remark 5.5, ım
k
.F /.a � .E.m/=OL;  

.m/
N ; !m/ for m < n, depends

only on b. As �m.ra0/ D �.r/�m.a0/ it suffices to show thatX
r2Un

��1.r/ D 0:

This follows from the fact that pn is the maximal power of p dividing the conductor
of � so that �.Un/ D �p and the sum of the p-th roots of unity is 0.

6. The case: p is ramified in K

Consider, as in the inert case, a finite slope family F, of nebentype � and weight
kunivjU, where kuniv is the universal weight of some rigid analytic disk U in W such
that kunivjU is analytic in the sense of Definition 4.5. As in the discussion before
Definition 4.24, we assume that its p-depletion FŒp� D .1 � UV /.F/ is defined over
X1.N /r �U with r D rkuniv.p/ as in Definition 4.24.
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We assume that there is an integral weight u 2 U.Qp/ such that the specializa-
tion Fu is an overconvergent modular form which arises from a classical eigenform F

of weight u and nebentype � that satisfies the assumptions of Section 2.4. We suppose
that p is ramified in K and denote by P the unique prime ideal of OK over p and
by KP the totally ramified extension of Qp of degree 2 given by the P-adic comple-
tion of K.

6.1. Evaluation at CM-points

Consider a pair .E;  N / consisting of an elliptic curve with CM by Od � OK , an
order of conductor d prime to p, and a level �1.N/-structure defined over the ring
of integers OL of a finite extension L of Qp . According to Lemma 3.2, the subgroup
EŒP� D H is the canonical subgroup of E=OL of order p. We choose n � nkuniv.p/

as in Definition 4.24. In particular, we may take n � 2 for p � 5. Fix, possibly by
enlarging the field L,

(i) a subgroup C .n/ � EŒpn�, generically cyclic of order pn such that

C .n/Œp� \EŒP� D ¹0ºI

(ii) �nWE ! E.n/ WD E=C .n/ the projection and  .n/N WD �n ı  N the induced
�1.N/-level structure;

(iii) H .n/ D EŒpn�=C .n/, which is the canonical subgroup of level pn of E.n/ by
Lemma 3.2.

Notice that E.n/ has CM by Oc with c D pnd and valp.Hdg.E.n//// D 1=2pn

by Lemma 3.2, so that x.n/ D .E.n/;  .n/N / defines an OL-valued point

'x.n/ WSpf.OL/! X2pn :

Therefore, if k; � 2 U.Qp/ we can use Theorem 4.9 to define

'�
x.n/

�
.rk/

�
�
FŒp�
k

��
2 p�a'�

x.n/
.WkC2�/.Spf.OL//

for some a 2 N introduced in Remark 4.20.

6.2. Splitting the Hodge filtration

With the notations of the previous section set C WD C .n/Œp� and �0WE!E 0 WDE=C .
We notice that E 0 has CM by Opd . The subgroup EŒp�=C D H0 is the canonical
subgroup of E 0. Set ‰0N WD �0 ı  0N . Then x0 WD .E 0; ‰0N / defines an OL-valued
point 'x0 WSpf.OL/! X2p thanks to Lemma 3.2 and we can factor �n as

�nWE
�0

�! E 0
�0n
�! E.n/:
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Moreover, it follows from Definition 4.6 that WkC2� is defined on X2p so that we can
take its fibre at x0 and x.n/. As explained in Remark 4.2, the isogeny �0n induces a
morphism .�0n/

�WH]
E .n/
! H]E 0 . We define HE 0;� ˚HE 0;x� � HE 0 as in Section 3.3

and
zH]E 0 WD H

]
E 0;� ˚H

]
E 0;x� WD ıE 0HE 0;� ˚ ı

p
E 0HE 0;x� � H

]
E 0 :

We then have the following analogue of Lemma 5.1.

Lemma 6.1. The image of H]
E .n/

via .�0n/
� is contained in zH]E 0 .

Proof. The proof proceeds as the proof of Lemma 5.1 reducing to the case n D 2. In
this case Lemma 3.3 states that

(i) Hdg.E 0/ diffK=Q !_E 0 � HE 0;x� � !_E 0 ;

(ii) ...�02/
_/�/_.!_

E .2/
/ � pHdg.E.2//�1!_E 0 .

As in loc. cit. it suffices to show that

ı
p

E .2/
pHdg

�
E.2/

��1
!_E 0 � Hdg.E 0/ diffK=Q ı

p
E 0!

_
E 0 :

Since diffK=Q D P, then vp.diffK=Q/ D 1=2 and we need to prove that

1=2C vp.ıE .2// � vp
�
ı
2p�1
E 0

�
;

or equivalently that �
.2p � 1/p � 1

�
valp.ıE .2// � 1=2:

But valp.ıE .2// D 1=.2p
2.p � 1// by Lemma 3.2. Hence, we need to show that

2p2 � p � 1 � p3 � p2;

or equivalently 3p2 � p � 1 � p3, and this is true for any prime p.

Possibly after enlarging L, we assume that H0.L/D Z=pZ. Let !0 be a generator
of �E 0=OL � !E=OL reducing to dlog.H0.L// .mod pı.E 0/�p/ (see Section 4.1):

v!0 Ww
kC2�
E 0;OL

�
�! OL:

We denote by !n the differential on !E .n/=OL , whose pull-back via �0n is !0 and
sn 2 dlog.HnŒp�.L// the section defined by s using the isomorphism of canonical sub-
groups H0ŠH.n/Œp� provided by �0n. Then, !n is a generator of�E .n/=OL�!E .n/=OL
reducing to sn mod pı.E.n//�p .

Thanks to Lemma 6.1, we deduce that the morphism

WkC2�;OL

�
H]
E .n/

; sn
�
!WkC2�;OL

�
H]E 0 ; s

�
;
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induced by the map .�0n/
�WH]

E .n/
!H]E 0 using the functoriality of Remark 4.2, factors

through WkC2�.zH
]
E 0 ; s/. For the latter we have a canonical splitting‰E 0 of the Hodge

filtration wkC2�
E 0 �WkC2�.zH

]
E 0 ; s/. In particular, we get

‰E 0
�
.�0n/

�
ı '�

x.n/

�
.rk/

�
�
F Œp�

���
2 p�awkC2�

E 0 � wkC2�
E 0 Œp�1�;

where we use that '�
x.n/

.WkC2�/ D WkC2�;OL.H
]

E .n/
; sn/ (see Remark 4.7). Notice

that x.n/ defines a point of X1.N /p.pC1/, so that .rk/�.F Œp�/ can be evaluated at x.n/

by the discussion before Definition 4.24. We then have the following definition.

Definition 6.2. We define

ı�k
�
FŒp�

��
E.n/=OL;  

.n/
N ; !n

�
WD v!0 ı‰E 0

�
.�0n/

�
ı '�

x.n/

�
.rk/

�
�
F Œp�

���
2 p�aOL � OLŒp

�1� D L:

6.3. Definition of the p-adic L-function in the ramified case

Consider � 2 y†.2/;p
n
.c;N; �/, a character of conductor divisible by pn and with

weights w0.�/ D u 2 U.Qp/ and w.�/ D � 2 U.Qp/ satisfying the assumption in
Section 4.1.3. Recall that we assume that n� nkuniv.p/ as in Definition 4.24. We define
the p-adic L-function Lp.F; �/, where F is an eigenfamily of weight kuniv over the
affinoid disk U � W , as at the beginning of Section 6 by the same formula as in the
inert case.

Definition 6.3. We define

Lp.F; �/ WD
1

j.OK=N/�j

X
a2H.c;N/

��1� .a/ı
�
u

��
Fu
�Œp���

a �
�
E.n/=OL;  

.n/
N ; !n

��
;

where the evaluation of .Fu/Œp� at a � .E.n/=OL;  
.n/
N ; !n/ is defined via Defini-

tion 6.2 using Section 3.4.

We have the analogue of Proposition 5.6.

Proposition 6.4. The function Lp.F;�/W y†.2/;p
n
.c;N; �/U! Cp is locally analytic.

We refer to loc. cit. for the proof. Suppose k is a fixed positive integer and F is a
classical eigenform of weight k, levelN and nebentype � and � 2 y†.2/;p

n
.k; c;N; �/,

with w.�/ D � 2 U.Qp/.

Definition 6.5. We define

Lp.F; �/ WD
1

j.OK=N/�j

X
a2H.c;N/

��1� .a/ı
�
k

�
F Œp�

��
a �

�
E.n/=OL;  

.n/
N ; !n

��
;
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where the evaluation of F Œp� at a � .E.n/=OL;  
.n/
N ; !n/ is done via Definition 6.2,

using Section 3.4.

As in the inert case we have, also Lp.F; �/ is a locally analytic function. Fur-
thermore, we have Lp.F;�/jy†.2/;pn .k;c;N;�/ D Lp.Fk;�/, where the equality is as

functions on y†.2/.k; c;N; �/.

6.4. Interpolation properties in the case p is ramified in K

Assume that F is a classical eigenform of weight k, level �1.N / and nebentype � and
that � 2 †.2/cc .c;N; �/ is an algebraic Hecke character with weight w.�/D j (i.e., the
infinity type of � is .k C j;�j / with j 2 N) as in Section 2.4. We assume that � is
of conductor with p-part pn with n � nk.p/, the integer of Definition 4.24. We then
have the following proposition.

Proposition 6.6. We have

Lp.F; �/ D
Lalg.F; �/

�
kC2j
p;n

with �p;n 2 OL a p-adic period of valuation vp.�p;n/ D 1=.2pn.p � 1//.

Proof. The proof proceeds as the proof of Proposition 5.9. We only elaborate on the
p-adic valuation of �p;n. It is the non-zero element of OL such that, given a gener-
ator !.n/ of the differential !E .n/=OL , we have !n D �p;n!.n/. By the discussion of
Section 4.1, we have

.p � 1/vp.�p;n/ D vp
�
Hdg

�
E.n/

��
:

It follows from Lemma 3.2 that Hdg.E.n// has p-adic valuation 1=.2pn/. The con-
clusion follows.

7. Special values Lp.F;�/ for � 2 †
.1/
cc .N/

In this section we give formulae for the special values of our p-adic L-functions at
algebraic Hecke characters in †.1/cc .N/. In the case p is split in K, these formulae
have been called “p-adic Gross–Zagier” formulae in [9], if F is a cuspform and they
have been called “Kronecker limit formulae” in [18], if F is an Eisenstein series. We
prove such formulae in the cases in which p is not split in K.
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7.1. The p-adic Gross–Zagier formulae

We work under the assumptions of Section 2.4, where F D f is a normalized new
cuspform for �1.N / of integer weight k � 2 and character �. For n 2 N, consider
the subset †p

n

cc .k; c;N; �/ of the space of algebraic Hecke characters †cc.k; c;N; �/
defined in Section 2.4, where c D dpn and .d; p/ D 1 and pn is the p-part of the
conductor. Then

†p
n

cc .k; c;N; �/ D †
.1/;pn

cc .k; c;N; �/ [†.2/;p
n

cc .k; c;N; �/;

where

• †
.1/;pn

cc .k; c;N; �/ is the subset of characters of †cc.c;N; �/ having infinity type
.k � 1 � j; 1C j / with 0 � j � k � 2;

• †
.2/;pn

cc .k; c;N; �/ is the subset of characters of †cc.c;N; �/ having infinity type
.k C j;�j / for j � 0.

As explained in [9, Section 5.3] the characters in †.1/;p
n

cc .k; c;N; �/ can be real-
ized in the completion y†.2/;p

n
.k; c;N; �/ of the space †.2/;p

n

cc .k; c;N; �/ defined in
Remark 2.8, i.e., as p-adic limits of characters in the space †.2/;p

n

cc .k; c;N; �/. The
goal of the present section is to prove the following result.

Theorem 7.1. Assume that n � nk.p/ with nk.p/ as in Definition 4.24 (for example,
nk.p/ D 2 for p � 5). Let � 2 †.1/;p

n

cc .k; c;N; �/ be a character of infinity type
.k � 1� j;1C j / with 0� j � r WD k � 2. Then, the valueLp.f;�/ of the 1-variable
p-adic L-function Lp.f; _ / of Definitions 5.7 and 6.5 at � viewed as an element of
y†.2/;p

n
.k; c;N; �/ is

Lp.f; �/ D
c�j�

r�2j
p;n

j Š

X
a2Pic.Oc/

��1.a/N.a/AJL.�'a'0/
�
!f ^ !

j
A ^ �

r�j
A

�
:

Here and elsewhere !f is f seen as a section of H1dR.X1.N /
an;Symk.HE//.

We explain the notation. The pair .A; tA/ denotes an elliptic curve with CM by OK

and �1.N/-level structure, !A is a generator of the invariant differentials of A and �A
is an element of H1dR.A/ such that h!A; �Ai D 1 via the Poincaré pairing. Everything is
defined over the finite extensionL of Qp . Moreover, '0WA!A0 is a cyclic isogeny of
degree c D dpn so that A0 has CM by Oc . In the sections Section 5.3 and Section 6.3,
we used the notation E.n/ instead of A0, but we prefer in this section to follow the
notations of [9] in everything connected to the generalized Heegner cycles.

For every a 2 H .c;N/ we have an isogeny 'aWA0 ! a � A0 and AJF .�'a'0/ is
the p-adic Abel–Jacobi map of a generalized Heegner cycle constructed in [9, Sec-
tion 2] over the modular point 'a ı '0WA! a � A0.
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The rest of the section is devoted to the proof of Theorem 7.1. First of all, fol-
lowing [9], we explain how one can compute the Abel–Jacobi image of the gener-
alized Heegner cycle in terms of a Coleman primitive of our modular form f . Let
us denote by X the open analytic subspace of the modular curve X1.N / defined in
Section 4.1. It is an open rigid subspace of X1.N /an and consists of the points .E; t/
such thatE has a canonical subgroup of order p. Let us denote byˆ the Frobenius on
H1dR.X; Symr HE / and by P.X/ 2 QpŒX� a polynomial such that: P.ˆ/.Œ!f �/ D 0
and P.ˆ/ defines an automorphism of H0dR.X; Symr.HE /loc/; we recall that Œ!f �
denotes the cohomology class of f in H1dR.X; Symr HE /, and Symr Hloc

E denotes the
sheaf of locally analytic sections (i.e., analytic on every residue class of X1.N /an) of
the sheaf Symr HE . Recall from [14, Section 11] that we have a Coleman primitiveG
of f : this is a section G over X1.N /an of Symr Hloc

E such that r.G/ D f and such
that P.ˆ/.GjX/ is an analytic section of Symr HE on some overconvergent neigh-
bourhood X0 � X of the ordinary locus in X1.N /an. It then follows that G is unique
up to a horizontal section of Symr HE on X0, i.e., it is unique if r > 0 and unique up
to a constant if r D 0.

This is related to AJF .�'a'0/.!f ^!
j
A�

r�j
A / as follows. The isogeny '0WA!A0

of degree c and the �1.N/-level structure tA on A induces a �1.N/-level structure t0
on A0. The element !A is a generator of the invariant differentials on A such that
h!A; �Ai D 1 via the Poincaré pairing. Thus we get an invariant differential !0 on A0
such that '�0 .!0/ D !A. The Coleman primitive G, being defined over X1.N /an, can
be evaluated at the points a � .A0; t0/ and, using the CM action, we can decompose

Symr
�
H1dR.a � A0/

�
D

rM
iD0

Symr
�
H1dR.a � A0/

�
�r�ix� i

into eigenspaces for the action of K. Then we decompose

G
�
a � .A0; t0; !0/

�
D

rX
iD1

.�1/iGi
�
a � .A0; t0; !0/

�
!r�ia �ia;

where !a; �a is a basis of H1dR.a � A0/ adapted to the K-decomposition such that !a

corresponds to !0.
We recall, following [9, Section 3.3], that the p-adic Abel–Jacobi image of the

generalized Heegner cycle AJp;L.�'/ in H1
f
.L; V / is seen as an extension class in

the category of p-adic Galois representations of GL:

0! V ! W ! Qp ! 0;

where L is a finite extension of Qp over which the generalized Heegner cycle �' is
defined and V;W are crystalline GL-representations such that V is the restriction of a
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global Galois representation of Deligne weight �1, toGL. Via the p-adic comparison
isomorphism this extension class becomes an extension class of admissible filtered,
Frobenius modules in Ext1L0;crys.L0; H/, where H D Dcris.V / and L0 D Dcris.Qp/.
Here L0 is the maximal unramified extension of Qp in L, and it is seen as a filtered,
Frobenius module with Frobenius, the geometric Frobenius � 2 Gal.L0=Qp/ and
filtration Fili .L0/ D L for i � 0 and Fili .L0/ D 0 for i > 0.

The following lemma is [9, Proposition 3.5] in the case L D L0 (in their case
.c; p/ D 1).

Lemma 7.2. There is a canonical and functorial isomorphism

˛WExt1L0;crys.L0;H/ Š HL=Fil0.H/;

where HL WD H ˝L0 L.

Proof. For an object D in the category of filtered, Frobenius modules over L0 we
denote by Fil.D/� its filtration by L-vector subspaces of DL WD D ˝L0 L, and by
�DWD ! D its � -linear Frobenius, which is bijective.

The map ˛ is defined as follows: let x 2 Ext1L0;ffm.L0;H/ denote the class of the
extension

0! H
ˇ
�! E


�! L0 ! 0: (�)

We recall from [23] that if D is a finite-dimensional L0-vector space with a
� -linear automorphism �DWD ! D, then D has a canonical and functorial slope
decomposition

D D
M
�2Q

D�;

where if �D r=s 2Q, with r; s 2 Z, s > 0, thenD� is the largest L0-vector subspace
of D containing an OL0-lattice M , such that �sD.M/ D prM .

It follows immediately that we have a canonical exact sequence of the slope � D
0-subspaces of the sequence (�):

0! H0 ! E0
0
�! .L0/0 D L0 ! 0;

and the assumption on the weight of V implies that H0 D 0. Therefore, we have
0WE0 Š .L0/0 D L0 is an isomorphism and this implies that, as Frobenius modules,
we have a canonical isomorphism .ˇ C �10 /WH ˚ L0 Š E. Let us denote, as in the
proof of [9, Proposition 3.5] by �frob 2 E0 the unique element such that .�frob/ D

1 2 L0 and �E .�frob/ D �frob.
We also have an exact sequence of L-vector spaces

0! Fil0.H/! Fil0.E/

�! Fil0.L0/ D L! 0;
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so we denote by �hol 2 Fil0.E/ an element such that .�hol/ D 1. Let � 2 HL be the
unique element such that .ˇ ˝ 1L/.�/ D �hol � �frob ˝ 1.

We define ˛.x/D �.mod Fil0.H// 2HL=Fil0.H/. We observe that ˛.x/ is well
defined and determines a morphism ˛WExt1L0;ffm.L0;H/!HL=Fil0.H/. Let us show
that ˛ is an isomorphism of groups.

If ˛.x/D 0, we have that Fil0.E/ is generated by �frob˝ 1 and this shows that the
exact sequence (�) is split as a sequence of filtered, Frobenius modules, i.e., x D 0.
This shows injectivity.

Let now y 2 HL= Fil0.H/ be a class. We define Ey WD H ˚ uL0 as vector
spaces with Frobenius �Ey defined by �E .hC au/ WD �H .h/C �.a/u for h 2H and
a 2 L0. We define the filtration on .Ey/L D HL ˝ .u˝ 1/L by Fili .Ey/ D Fili .H/
for i > 0 and Fili .Ey/D Fili .H/C ..u˝ 1/C zy/L, where zy 2HL is an element lift-
ing y, for i � 0. Observe that Fil�.Ey/ is well defined, the filtered, Frobenius module
.Ey ; Fil�.Ey/; �Ey / is admissible and we have a natural exact sequence of filtered,
Frobenius modules

0! H ! Ey ! L0 ! 0:

Moreover, the image under ˛ of the class of this extension is y.

Next we would like to calculate the Abel–Jacobi image of the cycles �'0 , so we
apply Lemma 7.2 for HL D �H1dR.X1.N /

an;Lr;r ;rr/.r C 1/, where � is an idem-
potent defining a Chow motive (see [9]) and Lr;r is the OX1.N/an-module

Lr;r WD Symr.HE/˝ Symr
�
H1dR.A/

�
:

The Poincaré pairing

h ; iWH1dR

�
X1.N /

an;Lr;r ;rr
�
.r C 1/ � H1dR

�
X1.N /

an;Lr;r ;rr
�
.r/! L;

gives an isomorphism

H1dR

�
X1.N /

an;Lr;r ;rr
�
.r C 1/=Fil0 Š Fil1

�
H1dR

�
X1.N /

an;Lr;r ;rr
�
.r/
�_
;

and therefore we have (see [9, Section 3.4])

AJL.�'0/ 2 H0
�
X1.N /

an; !rC2E

�_
˝ Symr

�
H1dR.A/

_
�
:

The evaluation of AJL.�'0/ at the family of elements .!f ˝ .!A/j .�A/r�j /jD0;r is
given by the following lemma.

Lemma 7.3 ([9, Lemma 3.22]). We have

AJL.�'0/
�
!f ˝ .!A/

j .�A/
r�j

�
D cjGj .A0; t0; !0/:
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Evaluating the p-adicL-functionLp.f;_ / of Definitions 5.7 (if p is inert) and 6.5
(if p is ramified) at � and using the conventions after Theorem 7.1 for the notation
.A0; t0; !0/, and of Section 3.4 for a � .A0; t0; !0/, we obtain

Lp.f; �/ D
1

j.OK=N/�j

X
a2H.c;N/

��1�1�j .a/ı
�1�j

k

�
F Œp�

��
a � .A0; t0; !0/

�
:

Thus, in order to prove Theorem 7.1 we are left to show the formula

Lp.f; �/ D
�
r�2j
p;n

j Š

X
a2Pic.Oc/

��1�1�j .a/Gj
�
a � .A0; t0; !0/

�
: (2)

We will first prove some properties of the Coleman primitives. Let f be our clas-
sical cuspidal eigenform of weight k D r C 2 � 2 and level �1.N /. Let P.X/ be
a polynomial with the property (1) P.ˆ/.Œ!f �/ D 0, and (2) P.ˆ/ defines an auto-
morphism of H0 WD H0dR.X

0; Symr.HE/
loc/ over a strict neighbourhood X0 of the

ordinary locus where we have a lift ˆ of Frobenius. We then have the following
lemma.

Lemma 7.4. Let G and G0 be two Coleman primitives of f such that P.ˆ/.G/ and
P.ˆ/.G0/ are analytic over a strict neighbourhood X0 of the ordinary locus. Then
we have that

(a) if G.q/ D G0.q/, then G D G0 (where G.q/ and G0.q/ denote the q-expan-
sions of G and G0, respectively);

(b) if � ¤ T � X0 is an admissible open and GjT D G0jT , then G D G0.

Proof. We set F WD G �G0, then

r.F / D r.G/ � r.G0/ D f jX0 � f jX0 D 0;

and therefore F 2 H0. We also have

P.ˆ/.F / D P.ˆ/.G/ � P.ˆ/.G0/ 2 H0
�
X0;Symr.HE/

�
;

i.e., P.ˆ/.F / is an analytic section of Symr.HE/.

(a) Let now F.q/ D G.q/ �G0.q/. Then

P.ˆ/.F /.q/ D P.ˆ/.G/.g/ � P.ˆ/.G0/.q/ D 0;

and as P.ˆ/.F / is an analytic section of Symr.HE/, we have P.ˆ/.F / D 0. But by
property (2) above, P.ˆ/ is an automorphism of H0, therefore F D 0, i.e., G D G0.
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(b) Similarly, we have P.ˆ/.F /jP.ˆ/�1.T / D 0, and as � ¤ P.ˆ/�1.T / is an
open of X0, we have P.ˆ/.F /D 0 by analytic continuation which implies, as above,
F D 0, i.e., G D G0.

We define

GŒp� WD Gj.1 � V U / D Gj
�
1 � Tp ı V C

1

p
Œp�V 2

�
;

viewed as a locally analytic section of Symr.HE/ on XpC2 or a locally analytic sec-
tion of Symr.HE/ on X.N; p2/. Let .GŒp�/r be the locally analytic global section
of !�rE over X.N; p2/ given by�
GŒp�

�
r
WD .�1/r � the image of GŒp� via the quotient map Symr.HE /! !�rE :

Remark 7.5. (1) The sign in the above definition is there so that the restriction of
.GŒp�/r to the ordinary locus agrees with the section denoted G[r in [9, Proposi-
tion 3.24].

(2) In [9], the objects Gj.UV � V U / and f j.UV � V U / are denoted by G[,
and respectively, f [, but we prefer to follow the later notations of [15] of GŒp�, and
respectively, f Œp�, for the same objects.

Recall from Section 4.1.4 that we have a sheaf W�r over the rigid open subspace
XpC2 of the rigid analytic modular curve X1.N /an and also over X.N;p2/pC2 of the
rigid analytic modular curve X.N; p2/an with a connection rj�r WW�r !W�rC2j .
Moreover, we have an inclusion

!�rE D Fil0 W�r �W�r :

Furthermore, as �1 � j 2 Z can be seen as a weight in W.Qp/, then r�1�jrC2 .f Œp�/

was defined as a section of Wr�2j over XpC2, and also over X.N;p2/pC2. Moreover,
r
r�j
�r ..G

Œp�/r/ is a section over X.N; p2/pC2 of Wr�2j , therefore the statement of
the following Proposition makes sense. Let X>pC2 denote the wide open in the rigid
analytic modular curve X1.N /an,

X>pC2 WD lim
!;r

Xr ;

where the inductive limit is over all r 2 N with r > pC 2 and by X.N;p2/>pC2 the
inverse image of X>pC2 in X.N; p2/an.

Proposition 7.6. The following statements hold.

(1) The section GŒp� is analytic on X>pC2, so in particular on X.N; p2/>pC2,
and

rr

�
GŒp�

�
D f Œp�:
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(2) .GŒp�/r is an analytic section of !�rE on X.N; p2/>pC2, and we have

r
r�j
�r

�
GŒp�

�
r
D rŠr

�1�j
rC2

�
F Œp�

�
as sections of Wr�2j over X.N; p2/>pC2.

Proof. Using the definition of r�1�jrC2 it suffices to prove both statements on X>pC2.

(1) Write

f Œp� D f j.1 � V U / D f j
�
1 � apV C �.p/p

k�1V 2
�
;

where the last polynomial of degree 2 in V can be written as a polynomial P for a
Frobenius lift ˆ on H1 WD H1dR.X>pC2;Symr.HE//. Moreover, we have

P.ˆ/
�
Œ!f �

�
D Œf Œp�� D 0

as H1 is finite-dimensional and in a finite-dimensional vector space if UV D 1, then
V U D 1 as well. Also P.ˆ/ D .1 � V U / is an isomorphism on H0 by the cal-
culations of [14, Lemma 11.1], i.e., the operator .1 � V U / D P.ˆ/ is one of the
polynomials in Frobenius which can be used to define the Coleman primitives. There-
fore,GŒp� is an analytic section of Symr.HE/ on a strict neighbourhood X0 � X>pC2

of the ordinary locus of X1.N /an. Secondly, both rr.GŒp�/ and f Œp� are analytic
overconvergent sections of Symr HE, which by Proposition A.1, agree on the admiss-
ible open Y ord, the ordinary locus of X1.N / minus the residue classes of the cusps.
Therefore, they are equal on X0. And thirdly, as the cohomology class Œf Œp�� D 0 in
H1 WD H1dR.X>pC2; Symr.HE// and as X>pC2 is a wide open analytic space, i.e., a
Stein space, so that

H1
D

H0.X>pC2;SymrC2 HE/

r.H0.X>pC2;Symr HE//
;

there is a section G0 2 H0.X>pC2; Symr.HE//, unique up to horizontal section of
the sheaf Symr HE such that f Œp� D rr.G0/. Choose G0 such that G0jX0 D GŒp�. It
follows that GŒp� can be analytically extended to X>pC2 (by G0).

(2) It follows from (1) that .GŒp�/r is an overconvergent modular form defined
on X.N; p2/>pC2 as it is an image of GŒp�. We first check the second statement for
j D 0, on q-expansions. We write

GŒp�.q/ D

rX
jD0

.�1/jg
Œp�
j .q/Vr;j
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according to the canonical basis of Symr.HE / at the cusp. In this case [1, The-
orem 4.3] gives the expression of the q-expansion of

r
�1�r
rC2

�
F Œp�

�
WD @�1�r

�
f Œp�.q/

�
V�r;0

C

X
j�1

�
�1 � r

j

� j�1Y
iD0

.�i/@�r�1�j
�
f Œp�.q/

�
V�r;j

D @�r�1
�
f Œp�.q/

�
V�r;0:

On the other hand, rŠ@�r�1.f Œp�.q//D gŒp�r .q/ (see [9, Proposition 3.24] or the proof
of Proposition 7.8) and the claim follows as GŒp�r .q/ D g

Œp�
r .q/V�r;0 by definition.

This implies that rŠr�1.f Œp�/ D rrGŒp�r . Therefore, for every 0 < j � r , we have

rŠr
�1�j
rC2

�
F Œp�

�
D r

�j
r

�
r
�1
rC2

�
F Œp�

��
D r

�j
r

�
r
r
�r

��
GŒp�

�
r

��
D r

r�j
�r

�
GŒp�r

�
:

Remark 7.7. As observed in Proposition 7.6, the element GŒp� is an analytic section
of Symr.HE/ on X>pC2. Its pull-back to X.N; p2/an extends to a global, locally
analytic section of the same sheaf which is analytic on the inverse image of X>pC2.
This follows as f Œp� is a classical modular form on X.N; p2/an and G is a global,
locally analytic section on X1.N /an.

We fix an a 2 H .c;N/. We recall that GŒp� 2 H0.X>pC2; Symr.HE //, and as
r�1rC2.f

Œp�/DGŒp�, thenGŒp� can be evaluated at xa WD .a � .A0; t0;D//2X.N;p2/.
We decompose GŒp�.xa/ in Symr H1dR.a � A0/ according to the K-action as follows
(we remind the reader that in this section Symr H1dR.a � A0/ is seen as a finite-
dimensional vector space over a finite extension of Qp with an action of K, so the
decomposition is a full decomposition)

GŒp�.xa/ D

rX
jD0

.�1/j
�
GŒp�

�
j
;

where �
GŒp�

�
j
2
�
Symr

�
H1dR.a � A0/

��
�r�j ;x�j

:

We denote by !a the pull-back of !0 via the isogeny dual to the isogeny A0 !
A0=A0Œa�, and by �a an element of H1dR.a � A0/ such that the pair !a; �a is a basis
compatible with the K decomposition. Moreover, for 0 � j � r , we denote by

G
Œp�
j

�
a � .A0; t0; !0/

�
2 L

the element such that .GŒp�/j D G
Œp�
j .a � .A0; t0; !0//!

j
a�
r�j
a .
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Proposition 7.8. We have

ı
�1�j

k

�
F Œp�

��
a � .A0; t0;D; !/

�
D
�
r�2j
p;n

j Š
G
Œp�
j

�
a � .A0; t0;D; !0/

�
:

Proof. We denote .B; tB ;DB ; !B/ WD a � .A0; t0;D;!0/. Thanks to Proposition 7.6,
we have

ı
�1�j

k

�
F Œp�

�
.B; tB ;DB ; !B/ D

1

rŠ

�
r
r�j
r

�
GŒp�

�
r

�
0
.B; tB ;DB ; !B/;

where .rr�jr .GŒp�/r/0.B; tB ;DB ; !B/ is the 0-th component of�
r
r�j
�r

�
GŒp�

�
r

�
.B; tB ;DB ; !B/

for the action of K, i.e., the coefficient of !r�2jB in .Wr�2j /ya .
Denote by D 0 the residue class in the modular curve X1.N / at the point ya WD

.B; tB/ 2X. As ya is a smooth point of the special fibre of X1.N /, D 0 is isomorphic
to the p-adic (wide) open unit disk centred at ya. Let �WD!D 0 be the inverse image
of D 0 in X.N; p2/pC2. It is a finite map and D contains the OL-valued point xa

defined by .B; tB ;DB/.
We first work over D 0, namely we denote HD 0 WD HEjD 0 . We have

HD 0 Š Hya ˝OD 0 ;

so that Hya DH1dR.B/ is isomorphic to the space of horizontal sections for the Gauss–
Manin connection r on HD 0 . Let us fix a basis !, � respecting the K-decomposition
of Hya D HB and pairing to 1 via the paring on HB induced by the principal polariz-
ation on B . The Hodge filtration of HD 0 is generated by an element

!0 WD ! ˝ 1C b.�˝ 1/

for some global section b 2OD 0 such that b.ya/D 0. Then !0 and �0 WD �˝ 1 provide
a basis for of HD 0 . The Kodaira–Spencer isomorphism KS identifies !˝2E jD 0 Š �

1
D 0

.
Since r.!0/ D .�˝ 1/˝ db then KS is defined by db with respect to the basis !0

and �0 so that db is a basis element of�1
D 0

. Let @ be the derivation on OD 0 dual to db.
The Gauss–Manin connection rWHD 0 ! HD 0 ˝�

1
D 0

is defined by

r.!0/ D �0 ˝ db and r.�0/ D 0:

We notice that the filtration Fil�W�r Œ1=p�jD 0 admits .!0/�r�j .�0/j , for j 2 N,
as a basis as a OD 0-module. In fact, consider � WV0.H

]

D 0
; s/!D 0 the analytic generic

fibre of the vector bundle with a marked sections of Theorem 4.1. If we invert p, then

H]
D 0
Œ1=p� D HD 0 :
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Thus, � factors through � 0WV 0.HD 0/!D 0 that classifies sections of the dual of HD 0

that are invertible on !0. Consider

W alg
�r WD �

0
�

�
OV 0.HD0 /

�
Œ�r�;

the functions on which Gm, acting by scalar multiplication on HD 0 , acts by the algeb-
raic character: Gm ! Gm, g 7! g�r . It admits .!0/�r�j .�0/j for j 2 N, as an OD 0-
basis. It is endowed with a filtration such that Filn W alg

�r is spanned by .!0/�r�j .�0/j

for 0 � j � n. The map V0.H
]

D 0
; s/! V 0.HD 0/ identifies

Filn W alg
�r Š Filn W�r Œ1=p�jD 0 :

Then we can compute .rr�j�r .GŒp�/r/0 using the connection on W alg
�r as follows:

For every n � 0 and a a section of OD 0 , we have (using the explicit description of the
connection in [1, Section 3.4.1])

r�r

�
a.!0/�r�n.�0/n

�
WD @.a/.!0/�r�nC2.�0/n C .�r � n/a.!0/�r�nC1.�0/nC1:

It follows that we can write .GŒp�/r D gr.!0/�r in W�r jD 0 , with gr a section of OD 0

in a neighbourhood of ya, and we have

r
r�j
�r

��
GŒp�

�
r

�
D r

r�j
�r

�
gr.!

0/�r
�
D @r�j .gr/.!

0/r�2j CM;

where M contains terms of the form ai .!
0/r�2j�i .�0/i with i > 0 and ai sections

of OD 0 . It follows that rr�j�r ..GŒp�/r/0 D @r�j .gr/.
Now in order to calculate this quantity we look at Symr

�
HEjD 0

�
and its connec-

tion rr . We write Symr.HEjD 0/ D
Lr
jD0 OD 0.!

0/j .�0/r�j . If we specialize at ya

this decomposition induces the decomposition of Symr Hya into eigenspaces for the
K-action.

Write

GŒp�jD 0 D

rX
jD0

.�1/jgj .!
0/r�j .�0/j and f Œp�jD 0 D h.!

0/k :

We observe that �0.mod !0OD 0/ D .!
0/�1, and therefore the coefficient denoted gr

in this expression of GŒp� and the one appearing in the previous expression of .GŒp�/r
are the same. Possibly after shrinking D 0 we may assume that the gj ’s,GŒp� and h are
defined and analytic on D 0 (we recall that GŒp� and f Œp� are only an overconvergent
section of Symr.HE/, respectively, an overconvergent modular form on X). We then
have r.GŒp�jD 0/D f Œp�jD 0 implies that @.g0/D h and @.gj /� .r � j C 1/gj�1 D 0
for 1 � j � r .
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In conclusion, for all 0 � j � r and on the annulus where all the sections are
defined (in particular, at ya), we have�

r
r�j
�r

�
GŒp�

�
r

�
0
D @r�j .gr/ D .r � j /Šgj :

Evaluating at ya, we conclude that�
r
r�j
�r

�
GŒp�

�
r

�
0
.B; tB ; !B/ D

�
r
r�j
�r

�
GŒp�

�
r

�
0
.ya/

D .r � j /Šgj .ya/ D .r � j /Š
�
GŒp�

�
j
.B; tB ; !B/:

Now we pull back these equalities to D via the tamely ramified map �WD !D 0 and
we evaluate at xa. We obtain the claimed equality

ı
�1�j

k

�
F Œp�

�
.B; tB ;DB ; !B/ D

1

j Š
G
Œp�
j .B; tB ;DB ; !B/:

In particular, we have

Lp.f; �/ D
�
r�2j
p;n

j Šj.OK=N/�j

X
a2H.c;N/

�
�1�j
�1 .a/G

Œp�
j

�
a � .A0; t0;D; !0/

�
:

In order to prove (2) and conclude the proof of Theorem 7.1, it remains to show

1

j.OK=N/�j

X
a2H.c;N/

�
�1�j
�1 .a/G

Œp�
j

�
a � .A0; t0;D; !0/

�
D

X
a2Pic.Oc/

�
�1�j
�1 .a/Gj

�
a � .A0; t0; !0/

�
:

The calculations in the Appendix A imply, for i 2 ¹1; 2º, we have

f jV i D
�
r.G/

�
jV i D p�ir.GjV i /:

It follows that we have

r

�
Gj
�
1 �

1

p
apV C �.p/p

k�3V 2
��
D f j

�
1 � apV C �.p/p

k�1V 2
�
D f Œp�:

Therefore, on XpC2, we have

GŒp� D r�1k
�
F Œp�

�
D Gj

�
1 �

1

p
apV C �.p/p

k�3V 2
�
;

and this identity is compatible with the CM decomposition at each point xa, for a 2

H .c;N/. Moreover, G is a global locally analytic section on X1.N /an, in particular
it is defined and it is analytic on all the supersingular residue classes.

From now on the proof follows as in the proof of Proposition 5.9 in the inert case,
and of Proposition 6.6 in the ramified case.
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7.2. The Kronecker limit formula

We next prove the analogue of a particular case of the Kronecker limit formula [18,
Section 10] (more specifically, the account in [8, Theorem 1.3]) for p non-split in K,
proceeding as in Section 7.1. We take k D 2 and � an even, non-trivial character.

Let � be an algebraic Hecke character in the space †cc.k; c;N; �/ defined in
Section 2.3.1 of infinity type .1; 1/. We assume that c D dpn and .d; p/ D 1 and pn

is the p-part of the conductor of �. Let us remark that � can be viewed as an element
of the space y†.2/;p

n
.k; c;N; �/ of Remark 2.8 so that we can evaluate the p-adic

L-function Lp.E2;�;_ / of Definitions 5.7 (if p is inert) and 6.5 (if p is ramified) at �.
Let u� be a modular unit, namely an element u� 2H0.Y1.N /;O�Y1.N// on the open

modular curve Y1.N / such that

dlogu� D
du�

u�
D E2;�:

We then have the following proposition.

Proposition 7.9. Assume that n � nk.p/ as in Definition 4.24. Then,

Lp.E2;�; �/ D
X

a2Pic.Oc/

N.a/
�.a/

logp.u�/
�
a � .A0; t0; !0/

�
:

7.2.1. On the p-adic logarithm. Let X be a wide open disk or annulus in P1Cp and
g 2 OX .X/

�. We wish to study the Coleman integral of the differential form

!g WD dlog.g/ D
dg

g

on X . Let us denote by t a parameter of X . We work over Cp and denote by F its
residue field. With the notations above we have the following.

Lemma 7.10. The following statements hold.

(a) If X is a disk and g 2 OX .X/
�, then there is a 2 C�p , h 2 OX .X/ with the

property jh.x/jX < 1 for all x 2 X such that g D a.1C h/.

(b) If X is an annulus with parameter t and g 2 OX .X/
�, then there are a 2 C�p ,

a section h 2 OX .X/ with the property jh.x/jX < 1 for all x 2 X and n 2 Z

such that g D atn.1C h/ and Rest .!g/ D n.

Proof. This lemma is probably well known, but we will sketch the proof of (a) for
the convenience of the reader and leave she/he to think about (b). As the power series
expansion of g does not change if we restrict to a smaller disk, it is enough to prove
the lemma for all affinoid disks contained in X , i.e., it is enough to prove it for

X D ¹x 2 P1Cp j jxj � 1º:
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On OX we have the norm jgjX WD supx2X jg.x/j, which satisfies the maximum mod-
ulus principle, i.e., the norm of g can be calculated on the annulus

Y WD ¹x 2 X j jxj D 1º � X:

As xX D Spec.F Œt �/ is irreducible the norm j jX is multiplicative. Let c 2 C�p be such
that jcgjX D 1, then j.cg/�1jX D 1, i.e., cg 2 .F Œt �/� D F�. Let b 2O�Cp be such that
bcg D 1. Then clearly if we set a D bc and h D a�1g � 1, we have g D a.1C h/
with h satisfying the desired property.

Let us denote by logpWC
�
p ! Cp the locally analytic homomorphism uniquely

determined by the following properties:

(i) logp.p/ D 0; and

(ii) if x 2 C�p is such that jxj < 1, then logp.x/ D
P1
nD1.�1/

n�1 .x�1/
n

n
.

Then d.logp.z// D
dz
z

.
Let us remark that if X is a wide open disk and g 2 OX .X/

�, using Lemma 7.10,
the function

G WD logp.a/C
1X
nD1

.�1/n�1
hn

n
2 OX .X/

and it satisfies dG D !g WD dg
g

. We will use the notation G WD logp.g/.
If X is an annulus with parameter t let us denote by T WD logp.t/ a new variable

such that

dT D dlog.t/ D
dt

t
:

Let Olog.X/ WD OX .X/ŒT �. Let g 2 OX .X/
� be such that Rest .!g/ D n. Then the

function G 2 Olog.X/ defined by

G WD logp.a/C nT C
1X
nD1

.�1/n�1
hn

n

satisfies dG D !g WD dg
g

. We will use the notation G WD logp.g/ 2 Olog.X/.
We remark that we have the following rigidity property: if V � X is a non-void

admissible open subspace and G, G0 2 Olog.X/ are such that GjV D G0jV , then
G D G0.

7.2.2. The proof of Proposition 7.9. We now come back to our modular unit u� .
Let G WD logp.u�/ denote the locally analytic function on Y WD . yY1.N //

an, which is
logp.u�/jX 2OX .X/ for every residue classX of a point in Y. Here Y is the rigid gen-
eric fibre of the formal scheme yY1.N /, i.e., the rigid space which is the complement
in X1.N /an of the residue classes of all the cusps. Then G is a Coleman primitive of
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du�
u�
D E2;� on Y, uniquely defined and which satisfies the rigidity principle stated at

the end of the previous section. Proposition 7.6 and Proposition 7.8 with r D j D 0
imply that

Lp.E2;�; �/ D
1

j.OK ;N/�j

X
a2H.c;N/

N.a/
�.a/

ı�12
�
E
Œp�
2;�

��
a � .A0; t0; !/

�
D

1

j.OK ;N/�j

X
a2H.c;N/

N.a/
�.a/

GŒp�
�
a � .A0; t0; !/

�
:

The arguments at the end of the previous section imply that the latter value coincides
with X

a2Pic.Oc/

N.a/
�.a/

logp.u�/
�
a � .A0; t0; !0/

�
;

as let us recall that the point a � .A0; t0/ being supersingular is not in the residue class
of any cusp. The claim follows.

A. r , U and V

Let yY ord be the formal open subscheme of yX1.N / corresponding the ordinary locus
(with the cusps removed). Let E! yY ord be the universal elliptic curve. Denote by
'WE! E0 the quotient by the canonical subgroup of order p and by '_WE0 ! E the
dual isogeny. We have a unique morphismˆW yY ord! yY ord such that the pull-back of E

is E0. It is a finite and flat morphism of degree p. Let r � 0 be an integer and denote
by Fr either the sheaf Symr HE or the sheaf Symr Hloc

E of locally analytic sections of
the first sheaf as defined in Section 7.1.

The V operator. The operator V WFr ! Fr is defined by the following rational map
on HE :

V./ WD ..'_/�/�1.ˆ�.// D
'�

p
.ˆ�.//I

here  2 HE and ˆ�./ is viewed as an element of HE0 Š ˆ
�.HE/. The map

.'_/�WHE ! HE0

is the pull-back via '_ and similarly '�WHE0 ! HE is induced by '.

TheU operator. The operatorU Wˆ�.Fr/!Fr is defined by the rational map on HE

given by the composite

U WD
1

p
Trˆ ı.'_/�;
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where
.'_/�Wˆ�.HE/! ˆ�.ˆ

�HE/

is defined by pull-back via '_ and TrˆWˆ�.ˆ�HE/! HE is the trace map (as coher-
ent sheaves) via the finite and flat map ˆ. Notice that U ı V D Id.

Proposition A.1. Let r 2 N and consider the connection rWFr ! FrC2. We have
the formulae

r ı V D pV ı r and r ı U D
1

p
U ı r:

In particular, if r.G/ D f , then r.GŒp�/ D f Œp�, where .� /Œp� stands for the p-
depletion operator .1 � V ı U/.

Proof. The compatibility of r with the p-depletion clearly follows from the commut-
ation formula for r with V and U , respectively.

The isogeny 'WE! E0 composed with the projection � WE0 D E �ˆ
yY ord
yY ord ! E

induces the map
� WD '� ıˆ�WHE ! HE:

Let dˆW�1
yY ord
! �1

yY ord
be the map induced by pull-back via ˆ. By functoriality, we

get a commutative diagram

HE HE ˝�
1
yY ord

HE HE ˝�
1
yY ord
:

r

� �˝dˆ

r

Recall that the Kodaira–Spencer isomorphism !2E Š �
1
yY ord

is defined by restrict-
ingr to!E and projecting onto!_E ˝�

1
yY ord

. The commutative diagram above implies
that the map dˆW�1

yY ord
! �1

yY ord
induces the map

pV D p..'_/�/�2 ıˆ� D
�
'� ˝ .'_/�

��1
ıˆ�W!2E ! !2E:

Indeed, � is '� on !E and .'_/� on !_E . Since by construction � D pV , we conclude
that the following diagram commutes:

HE HE ˝ !
2
E

HE HE ˝ !
2
E:

r

V V˝.pV /

r

Passing to Fr we get the statement on the V -operator.
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Next we study the U operator. The map .'_/�, induced by '_WE0 ! E, is com-
patible with the Gauss–Manin connection by functoriality. On the other hand,

ˆ�
�
�1
yY ord

�
D p�1

yY ord

(as can be seen using Serre–Tate coordinates), so that 1
p
ˆ� ıˆ

�.�1
yY ord
/Dˆ�.�

1
yY ord
/.

We then have the commutative diagram

ˆ�.HE/ ˆ�..HE/˝ˆ�.�
1
yY ord
/Œp�1�

ˆ�.HE0/ ˆ�.HE0/˝ .ˆ� ıˆ
�.�1

yY ord
//Œp�1�

HE HE ˝�
1
yY ord
Œp�1�

r

.'_/� .'_/�˝Id

r

Trˆ Trˆ

r

(here we use ˆ�.HE0/ D ˆ� ı ˆ
�.HE/). Using this commutative diagram and the

Kodiara–Spencer isomorphism, we deduce that the map

ˆ�
�
�1
yY ord

�
Œp�1� D ˆ� ıˆ

�
�
�1
OY ord

�
Œp�1�

Trˆ
! �1

yY ord Œp
�1�

coincides with the rational map

� WD Trˆ ı
�
.'_/� ˝ .'�/�1

�
Wˆ�.!

2
E/! ˆ� ıˆ

�.!2E/! !2E:

As .'�/�1 D p�1.'_/�, then �D 1
p
U . We conclude that the following diagram com-

mutes:
ˆ�.HE/ ˆ�.HE/˝ˆ�.!

2
E/

HE HE ˝ !
2
E:

r

U U˝.p�1U/

r

Passing to Fr we get the claim for the U operator.

B. The case p split

We explain how to recover the construction of the p-adic L-functions of [9] in the
easier case that p-splits in K following the approach outlined above. We recall the
formula. For � 2 y†.2/ with � WD w.�/ 2 W.Qp/, we have in [9, Theorem 5.9]:

Lp.F; �
�1/ D

X
a2Pic.Oc/

��1� .a/#
�
k

�
F Œp�

��
a � .A0; t0; �can/

�
: (3)
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Here # is Serre’s theta operator that on q-expansions sends g.q/ 7! q � dg.q/
dq

, A0 is an
ordinary elliptic curve with full CM by the order Oc and t0 is a �1.N/-level structure
on A0. Its formal group is isomorphic to yGm and �can is the invariant differential
defined, via such an isomorphism, by the standard differential on Gm. In this case
notice that the p-adic completion of OK is isomorphic to Zp � Zp . We assume as in
loc. cit. that c is prime to p.

We relate this to our approach, hoping that it will help to better understand the
general situation. We first introduce the sheaves Wk and the interpolation of the con-
nection .rk/� .

Fix a ring R, p-adically complete and separated, p-torsion free. Fix weights k,
�WZ�p ! R� such that there exist elements uk and u� 2 pR and finite characters �k
and �� of Z�p such that for all t 2 Z�p , we have

k.t/ D �k.t/exp
�
uk � log.t/

�
; �.t/ D ��.t/exp

�
u� � log.t/

�
:

Let Xord be the open formal scheme defining the ordinary locus in the completion
yX1.N / of X1.N / along the special fibre. Let IG1 ! Xord be the Igusa tower, clas-

sifying isomorphisms yE Š yGm between the formal group of the generalized elliptic
curve E over Xord and the formal torus yGm. It is a Galois cover with group Z�p D

Aut. yGm/: given an isomorphism 'W yEŠ yGm, we let ˛ 2Z�p act by sending ' 7! ˛�1'.
Over IG1 the universal isomorphism 'univW yE Š yGm defines a canonical generator
!can of the invariant differentials of E relative to Xord as the pull-back via 'univ of the
canonical invariant differential of Gm.

Let !E, respectively, HE, be the relative differentials, respectively, the logarithmic
de Rham cohomology, of E=Xord. We first introduce the relevant objects using the
formalism of VBMS (vector bundles with marked sections) discussed in Section 4.
Define

V0.HE; !can/! V0.!E; !can/! IG1

to be the p-adic formal schemes spaces classifying sections of the dual H_E, respect-
ively, !_E , that are 1 on !can. The first map is induced by the inclusion !E ! HE (the
Hodge filtration). The second map is an isomorphism V0.!E; !can/ Š IG1. These
spaces are endowed with compatible actions of Z�p , considering the Galois action
on IG1 and the scalar multiplication on !E and on HE; in particular, such action
preserves !can so that the isomorphism V0.!E; !can/ Š IG1 is Z�p-equivariant, as
claimed. We define

!k;o � H0
�
V0.!E; !can/;OV0.!E;!can/

y̋R
�
D H0

�
IG1;OIG1

y̋R
�
;

as the subspace on which Z�p acts via the character k. Let !k WD !k;oŒp�1�. Similarly
let

W o
k � H0

�
V0.HE; !can/;OV0.HE;!can/

y̋R
�
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be the subspace of functions such that Z�p acts via the character k. Set WkWDW o
k
Œp�1�.

It is a Qp-Banach space with unit ball W o
k

. The morphism

V0.HE; !can/! V0.!E; !can/

induces inclusions
!k;o �W o

k ; !k �Wk :

The formalism of VBMS allows to define Wk in the more general settings of p inert
or ramified.

Work of Katz [17] implies that HE splits canonically as the direct sum HE D

!1;o ˚ !�1;o (the unit root splitting). The direct summand corresponding to !�1;o is
the part of HE, identified with the log crystalline cohomology of the special fibre E,
on which Frobenius is an isomorphism. It is proved in [1, Section 3.5, formula (3)],
using the unit root splitting, that

W o
k Š

�M
i2N

!k�2i;o; (4)

where ẙ stands for the p-adic completion of the infinite direct sum.

Remark B.1. For k a positive integer !k;o is identified with the k-th power of the
invariant differentials of E=Xord, the k-th symmetric power Symk.HE/ of HE splits
canonically as Symk.HE/D

Lk
iD0!

k�2i;o and it is identified with a subspace of W o
k

.
This should justify the introduction of Wk as the correct substitute for Symk when k
is not a positive integer.

Motivated by [1, Remark 3.39] and by [21, Remark 2.4.2 and Section 3.5.2], we
define, for g 2 .!k;o/UpD0,

r
�
�
g
�
WD

1X
jD0

�
u�

j

� j�1Y
iD0

.uk C u� � 1 � i/#
��j .g/:

For � D n 2 N, it follows from the q-expansion principle and the computation of
powers of the Gauss–Manin connection on q-expansions in [1, Lemma 3.38], that
the displayed formula agrees with the n-th iteration of the Gauss–Manin connection.
We remark that the assumption that g 2 .!k;o/UpD0 is equivalent to ask that the q-
expansion is of the form

g.q/ D
X
p−n

anq
n:

Then #��j
�
g
�
2 !kC2��2j;o is well defined and has q-expansion

#��j .g/.q/ D
X
p−n

�
�.n/n�j

�
anq

n:
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Our assumption on the weights implies, using the description (4), that the infinite sum
in the definition of r�.g/ converges to an element

r
�.g/ 2

�M
i2N

!k�2i;oŒ1=p� DWkC2� :

Remark B.2. In [9], only the composite #�.g/ of r�.g/ to H0.Xord;!kC2�/, defined
by the splitting of the inclusion !kC2� � WkC2� , is used. One can then relax the
assumption on the weights. This assumption is used only to ensure that the product�
u�
j

� Qj�1
iD0 .uk C u� � 1 � i/ converges p-adically to 0 as j goes to 1 implying

thatr�.g/ is well defined. For p inert or ramified the unit root splitting is not available
outside the ordinary locus and we have no choice but to work with r�.g/.

We now specialize at the point x0 of Xord defined by the ordinary elliptic curve
with �1.N /-level structure .A0; t0/. Let L be the field of definition of x0 and OL its
ring of integers. It is an extension of the CM field K. We view x0 as an OL-point
of Xord. The p-adic completion Kp of K splits as the product of two copies of Qp

corresponding to the completion ofK with respect to the two primes P and xP over p.
Given ˛ 2 K we write ˛ 2 KP and x̨ 2 KxP for the two projections. The field K acts
on HA0 Œ1=p� so that, via the unit root splitting HA0 D!A0 ˚!

�1
A0

,K acts on !A0 Œ1=p�
via the linear action of KP and on !�1A0 Œ1=p� via the linear action of KxP.

Let
!kC2�;ojx0 WD x

�
0

�
!kC2�;o

�
; W o

kC2� jx0 WD x
�
0

�
W o
kC2�

�
;

and similarly for !kC2� jx0 and WkC2� jx0 . Then

WkC2� jx0 DW o
kC2� jx0 Œ1=p�:

There is an action of 1C pOc on WkC2� jx0 obtained from theK-action on HA0 Œ1=p�
letting K act via endomorphisms of A0: indeed W o

kC2�
jx0 can be defined directly as

k C 2�-invariant functions on V0.HE; !can/jx0 D V0.HA0 ; x
�
0 .!can// and the latter

formal OL-scheme is functorial with respect to endomorphisms of A0Œp1�.
Via the unit root splitting W o

kC2�
jx0 coincides with the p-adic completion ofL1

iD0 !
kC2��2i;ojx0 . The key observation is that we can recover

!kC2��2i jx0 �WkC2� jx0

without using the unit root splitting but using only the CM action; indeed it is the
subspace on which ˛ 2 1C pOc acts via .k C 2� � i/.˛/ � x̨i . In particular, we get a
splitting ‰x0 WWkC2� jx0 ! !kC2� jx0 of the inclusion !kC2� jx0 �WkC2� jx0 and

#�.g/.A0; t0; �can/ D ‰x0
�
r
�.g/jx0

�
.�can/:
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We then recover definition (3) in the form

Lp.F; �
�1/ D

X
a2Pic.Oc/

��1� .a/‰a�x0

�
r
�
�
F Œp�

�
ja�x0

�
.a ��can/:

This is the formula that we generalize in the case p inert or ramified. Notice that at the
expense of working with r� , that imposes restrictions on the permissible weights k
and �, we avoided the use of the unit root splitting, substituted by the splitting induced
by the CM action of 1C pOc on the specialization of WkC2� at the CM points a � x0.
Such action is defined using the functoriality of the formalism of VBMS relatively to
endomorphisms of A0. In particular, it is still available in the inert or ramified case
and constitutes one of the ingredients in our proof.
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