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Boutroux Ansatz for the Degenerate Third
Painlevé Transcendents

by

Shun Shimomura

Abstract

For a general solution of the degenerate third Painlevé equation we show the Boutroux
ansatz near the point at infinity. It admits an asymptotic representation in terms of
the Weierstrass pe-function in cheese-like strips along generic directions. The expression
is obtained by using isomonodromy deformation of a linear system governed by the
degenerate third Painlevé equation.
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§1. Introduction

In the geometrical study of the spaces of initial values for Painlevé equations,

Sakai [27] classified the third Painlevé equations into three types PIII(D6), PIII(D7)

and PIII(D8). For the types PIII(D7) and PIII(D8), Ohyama et al. [24] examined

basic matters including τ -functions, irreducibility and the spaces of initial values.

Equation PIII(D8) is changed into a special case of PIII(D6). Equation PIII(D7)

is called the degenerate third Painlevé equation or degenerate PIII, which may be

normalised in the form

vξξ =
v2ξ
v

− vξ
ξ

− 2v2

ξ2
+

a

ξ
+

1

v

(vξ = dv/dξ) with a ∈ C. The change of variables

2ξ = ϵbτ2, v = ϵτu
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takes this equation to the equivalent equation discussed in [17, 18],

(1.1) uττ =
u2
τ

u
− uτ

τ
+

1

τ
(−8ϵu2 + 2ab) +

b2

u
,

with ϵ = ±1, a ∈ C, b ∈ R \ {0}, which governs isomonodromy deformation of the

linear system (3.1). Using the isomonodromy system (3.1), Kitaev and Vartanian

[17, 18] obtained asymptotic solutions of (1.1) as τ → ±∞, ±i∞ and τ → ±0,

±i0, with connection formulas among them. Furthermore, for (1.1), a special mero-

morphic solution is studied in [16, 19] and a one-parameter family of trans-series

solutions is given in [29].

As mentioned in [17, 29], in physical and geometrical applications, degener-

ate PIII appears in contexts independent of PIII(D6), i.e. complete PIII, and its

significant analytic properties are important. Indeed, the behaviours of solutions

of (1.1) along real and imaginary axes [17, 18] are quite different from those for

complete PIII [12]. For complete PIII of the sine-Gordon type, Novokshënov [22, 23]

and [5, Chap. 16] provided an asymptotic representation of solutions in terms of

the sn-function along generic directions near the point at infinity. It is meaningful

to establish the counterpart of this expression for degenerate PIII.

In this paper we show the Boutroux ansatz [2] for degenerate PIII, i.e. present

an elliptic asymptotic representation for a general solution along generic directions

near the point at infinity. The main results are described in Section 2. As in

Theorems 2.1 and 2.2, degenerate PIII admits a general solution written in terms

of the Weierstrass ℘-function, and so does PI ([7, 8, 14, 15]). On the other hand,

for PII, PIV, PIII(D6) (of sine-Gordon type) and PV, elliptic asymptotic solutions

are given by the sn-function ([5, 9, 10, 11, 15, 20, 21, 22, 23, 28, 30]). This fact

reflects the position of degenerate PIII, i.e. PIII(D7) in the degeneration scheme of

the Painlevé equations [24, 25, 27].

For our purpose it is appropriate to treat an equation of the form

(1.2) y′′ =
(y′)2

y
− y′

x
− 2y2 +

3a

x
+

1

y

(y′ = dy/dx), which comes from (1.1) via the substitution

(1.3) ϵτu = (x/3)2y, ϵbτ2 = 2(x/3)3.

Equation (1.2) with x = eiϕt governs isomonodromy deformation of the linear

system

(1.4)
dΨ

dλ
=

t

3
B(λ, t)Ψ,
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with

B(λ, t) = −ieiϕλσ3 +

(
0 −2ieiϕy

Γ0(t, y, y
t)/y 0

)

−
(
Γ0(t, y, y

t) +
3

2
(1 + 2ia)t−1

)
λ−1σ3 + 2eiϕ

(
0 i

i 0

)
λ−2,

in which y and yt are arbitrary complex parameters, and

Γ0(t, y, y
t) =

yt

y
− ieiϕ

y
− (1 + 3ia)t−1, σ3 =

(
1 0

0−1

)
.

As shown in Section 3, system (1.4) is a result of a transformation of system (3.1)

treated in [17, 18]. The isomonodromy deformation of (3.1) is governed by equation

(1.1), and solutions of (1.1) are related to the invariant monodromy data on the

monodromy manifold for (3.1) defined by Stokes matrices and a connection matrix

G = (gij) ∈ SL2(C) for matrix solutions around µ = 0 and µ = ∞. System (1.4)

admits the same monodromy manifold as of (3.1), which is described by the same

Stokes matrices and G for suitably chosen matrix solutions (cf. Proposition 3.2),

so that solutions of (1.1) and (1.2) correspond to the same monodromy data.

Applying WKB analysis we solve the direct monodromy problem for the linear

system (1.4) in Section 5, and obtain key relations in Corollary 5.2 containing the

monodromy data G and certain integrals, which lead to a solution of an inverse

problem. Basic necessary materials for this calculation are summarised in Section 4.

Asymptotic properties of these integrals are examined in Section 6 by the use of

the ϑ-function, and from these formulas asymptotic forms in the main theorems

are derived in Section 7. Then the justification as a solution of (1.2) is made along

the lines of Kitaev [13, 15]. The final section is devoted to the Boutroux equations,

which determine the modulus contained in the elliptic representation of solutions.

Throughout this paper we use the following symbols:

(1) σ1, σ2, σ3 are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0−i

i 0

)
, σ3 =

(
1 0

0−1

)
;

(2) for complex-valued functions f and g, we write f ≪ g or g ≫ f if f = O(|g|),
and write f ≍ g if g ≪ f ≪ g.

§2. Main results

To state our main results we give some explanations of necessary facts.
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§2.1. Monodromy data

Isomonodromy system (3.1) admits the matrix solutions

Y ∞
k (µ) = (I +O(µ−1))µ−(1/2+ia)σ3 exp(−iτµ2σ3)

as µ → ∞ through the sector |argµ+ arg τ1/2 − πk/2| < π/2, and

X0
k(µ) = (i/

√
2)Θσ3

0 (σ1 + σ3 +O(µ)) exp(−i
√
τϵbµ−1σ3)

as µ → 0 through the sector |argµ− arg(τϵb)1/2 − πk| < π, where k ∈ Z (see

Section 3.2). Let the invariant Stokes matrices and a connection matrix be such

that Y ∞
j+1(µ) = Y ∞

j (µ)S∞
j , X0

j+1(µ) = X0
j (µ)S

0
j with j ∈ Z and that Y ∞

0 (µ) =

X0
0 (µ)G. These are

S∞
0 =

(
1 0

s∞0 1

)
, S∞

1 =

(
1 s∞1
0 1

)
, S0

0 =

(
1 s00
0 1

)

with (3.7), and G = (gij) with g11g22−g12g21 = 1. The monodromy manifold M is

given by GS∞
0 S∞

1 σ3e
π(i/2−a)σ3 = S0

0σ1G, whose generic points are expressed by G

[17, p. 1172]. Solutions u(τ) of (1.1) and y(x) of (1.2) related via (1.3) correspond

to the same monodromy data. As described in Remark 3.1, a change of the matrix

solution basis induces an action on the monodromy data with G on M, and each

solution of (1.1) or (1.2) is parametrised by an orbit, or equivalence class, in the

quotient of M under this action. In what follows, a solution corresponding to an

orbit passing through G is simply called a solution labelled by G.

§2.2. Elliptic curve and Boutroux equations

For A ∈ C around A = 3 · 22/3, the polynomial 4z3−Az2+1 has roots z0, z1 close

to 2−1/3 and z2 close to −4−2/3, and especially, z0 = z1 = 2−1/3, z2 = −4−2/3

when A = 3 · 22/3. Let Π+ and Π− be the copies of P 1(C) \ ([∞, z2]∪ [z0, z1]) and

set ΠA = Π+ ∪ Π− glued along the cuts [∞, z2] and [z0, z1], where Re z → −∞
along [∞, z2]. Then ΠA is the elliptic curve given by

w(A, z)2 = 4z3 −Az2 + 1,

where the branch of
√
4z3 −Az2 + 1 := 2

√
z − z0

√
z − z1

√
z − z2 is chosen in such

a way that Re
√
z − zj → +∞ as z → ∞ along the positive real axis on the upper

plane Π+. The elliptic curve ΠA does not degenerate as long as A ̸= 3 ·22/3e2πim/3

(m = 0,±1), i.e. 4z3 − Az2 + 1 has no double roots, and then we may define ΠA

continuously.
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As will be shown in Section 8, for any ϕ ∈ R, there exists Aϕ ∈ C with ΠAϕ

such that, for every cycle c on ΠAϕ
,

Im eiϕ
∫
c

w(Aϕ, z)

z2
dz = 0,

and that Aϕ has the following properties (Proposition 8.15):

(1) for every ϕ, Aϕ is uniquely determined;

(2) Aϕ is continuous in ϕ ∈ R, and is smooth in ϕ ∈ R \ {kπ/3 | k ∈ Z};
(3) Aϕ±2π/3 = e±2πi/3Aϕ, Aϕ+π = Aϕ, A−ϕ = Aϕ;

(4) ΠAϕ
degenerates if and only if ϕ = kπ/3 with k ∈ Z, and then A0 = 3 · 22/3,

A±π/3 = e∓2πi/3A0, A±2π/3 = e±2πi/3A0, A±π = A0.

In particular, for 0 < |ϕ| < π/3 let us consider Aϕ for specified cycles. For Aϕ

close to A0 = 3 · 22/3, by Proposition 8.16, number the roots of w(Aϕ, z)
2 close

to 2−1/3 in such a way that Im z0 ≤ Im z1 if ϕ > 0 (respectively, Im z1 ≤ Im z0 if

ϕ < 0), and let the numbering be retained as long as coalescence does not occur.

Then for 0 < |ϕ| < π/3 we have basic cycles a and b on ΠAϕ
, which are drawn on

Π+ as in Figure 1. For |ϕ| < π/3 the cycles a and b may be defined continuously

on ΠAϕ
, and the Boutroux equations are given by

(2.1) Im eiϕ
∫
a

w(Aϕ, z)

z2
dz = 0, Im eiϕ

∫
b

w(Aϕ, z)

z2
dz = 0,

admitting a unique solution Aϕ. For |ϕ| < π/3 the periods of ΠAϕ
along a and b

are defined by

Ωϕ
a = Ωa =

∫
a

dz

w(Aϕ, z)
, Ωϕ

b = Ωb =

∫
b

dz

w(Aϕ, z)
,

which satisfy ImΩb/Ωa > 0.

∞

z2

z0

z1
(a) ϕ → −0

�
�
�
�

�
�
�
�

6

s

a

b

Π+

q q
q

∞

z2

z0

z1

(b) ϕ → +0

A
A
A
A

A
A
A
A

Y

-

a

b

Π+

q q
q

Figure 1. Cycles a and b
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§2.3. Main theorems

Let y(x) = y(G, x) be a solution of (1.2) labelled by the monodromy data G =

(gij) ∈ SL2(C). Then we have the following, in which ℘(u; g2, g3) is the Weierstrass

℘-function satisfying ℘2
u = 4℘3 − g2℘− g3 ([6, 31]):

Theorem 2.1. Suppose that 0 < ϕ < π/3 and that g11g12g22 ̸= 0. Then

y(x) = ℘(i(x− x+
0 ) +O(x−δ); g2(Aϕ), g3(Aϕ)) +

Aϕ

12

as x = teiϕ → ∞ through the cheese-like strip

S(ϕ, t∞, κ0, δ0) =
{
x = teiϕ

∣∣ Re t > t∞, |Im t| < κ0

}
\

⋃
σ∈P(x+

0 )

{
|x− σ| < δ0

}
,

with

P(x+
0 ) =

{
σ
∣∣ ℘(i(σ − x+

0 ); g2(Aϕ), g3(Aϕ)) = ∞
}
=
{
x+
0 − iΩaZ− iΩbZ

}
.

Here, δ is some positive number, κ0 a given positive number, δ0 a given small

positive number, t∞ = t∞(κ0, δ0) a sufficiently large number depending on (κ0, δ0),

and

g2(Aϕ) =
A2

ϕ

12
, g3(Aϕ) =

A3
ϕ

216
− 1,

−ix+
0 ≡ i

2π

(
Ωa log

g12
g22

− Ωb(log(g11g22)− πi)
)
− iaΩ0 mod ΩaZ+ΩbZ

with

Ω0 =

∫ 0+

∞

dz

w(Aϕ, z)
,

in which 0+ denotes 0 ∈ Π+ and the contour [∞, 0+] ⊂ Π+ contains the line from

−∞ to z2 along the upper shore of the cut [∞, z2].

Theorem 2.2. Suppose that −π/3 < ϕ < 0 and that g11g21g22 ̸= 0. Then y(x)

admits an asymptotic representation of the same form as in Theorem 2.1 with the

phase shift

−ix−
0 ≡ −i

2π

(
Ωa log

g21
g11

+Ωb(log(g11g22)− πi)
)
− iaΩ0 mod ΩaZ+ΩbZ.

Remark 2.1. From a relation in the proof of Theorem 2.1 we have an expression

for y′(x) for 0 < ϕ < π/3 and −π/3 < ϕ < 0 of the form

iy′(x) + 1

2y(x)2
= ℘(i(x− x̂±

0 ) +O(x−δ); g2(Aϕ), g3(Aϕ)) +
Aϕ

12
,

respectively, where ix̂±
0 = ix±

0 +Ω0.
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Remark 2.2. The phase shifts in the theorems above are represented by g11g22,

g21/g11 and g12/g22, which are invariants under an action on G in Remark 3.1.

The expressions of y(x) in Theorems 2.1 and 2.2 are determined by Aϕ and

x0 = x+
0 for 0 < ϕ < π/3, = x−

0 for −π/3 < ϕ < 0. Since Ωa,b and Ω0 depend on

Aϕ, these may be denoted by Ωϕ
a,b and Ωϕ

0 , respectively. To emphasise this fact,

write

y(x) = P (Aϕ, x0(G,Ωϕ
a ,Ω

ϕ
b,Ω

ϕ
0 );x)

for 0 < |ϕ| < π/3.

For ϕ such that |ϕ − 2mπ/3| < π/3 (m ∈ Z), set Ωϕ
a,b = e2mπi/3Ω

ϕ−2mπ/3
a,b .

The period, say Ωϕ
a , may be expressed by the integral on Π+,

Ωϕ
a =

∫
e2mπi/3a

dz

w(Aϕ, z)
=

∫
e2mπi/3a

dz

w(e2mπi/3Aϕ−2mπ/3, z)

= e2mπi/3

∫
a

dζ

w(Aϕ−2mπ/3, ζ)
= e2mπi/3Ωϕ−2mπ/3

a (z = e2mπi/3ζ).

Furthermore, for |ϕ − 2mπ/3| < π/3 set Ωϕ
0 = e2mπi/3Ω

ϕ−2mπ/3
0 . The following

provides an analytic continuation of y(x) beyond the sector |ϕ| < π/3:

Theorem 2.3. Suppose that 0 < ϕ − 2mπ/3 < π/3 (respectively, −π/3 < ϕ −
2mπ/3 < 0) for m ∈ Z \ {0}. Then y(x) admits the expression

y(x) = y(G, x) = P (Aϕ, x0(G
(m),Ωϕ

a ,Ω
ϕ
b,Ω

ϕ
0 );x)

as x = teiϕ → ∞ through the strip S(ϕ, t∞, κ0, δ0) with P(x0(G
(m),Ωϕ

a ,Ω
ϕ
b,Ω

ϕ
0 )),

if g
(m)
11 g

(m)
12 g

(m)
22 ̸= 0 (respectively, g

(m)
11 g

(m)
21 g

(m)
22 ̸= 0), where

G(m) =

{
(S0

0σ1)
mGσm

3 e(mπ/3)(a−i/2)σ3 if m ≥ 1,

(σ1S
0
0)

nGσn
3 e

(nπ/3)(i/2−a)σ3 if m = −n ≤ −1.

Remark 2.3. The matrix G(m) has another expression of the form

G(m) =

{
G(S∞

0 S∞
1 σ3e

π(i/2−a)σ3)mσm
3 e(mπ/3)(a−i/2)σ3 if m ≥ 1,

G(σ3e
π(a−i/2)σ3S∞

1 S∞
0 )nσn

3 e
(nπ/3)(i/2−a)σ3 if m = −n ≤ −1.

§2.4. Examples

For simplicity suppose that ϵ = 1 and b = 2 in equation (1.1). Let G = (gij) with

g11g22 − g12g21 = 1 be the monodromy data in Kitaev–Vartanian [17, 18], which

coincide with ours above. Suppose that g11g12g21g22 ̸= 0. Then [17, Thm. 3.1], [18,

Thms. 2.1 and 2.3] with ε1 = ε2 = 0 provide general solutions of (1.1) as in the

following examples, in which we write l(g11g22) = i(2π)−1 log(g11g22).
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Example 2.1. If |Re l(g11g22)| < 1/6, equation (1.1) admits a solution of the

form

u(τ) = 2−1/3τ1/3 + 21/23−1/4e3πi/4l(g11g22)
1/2 cosh(χ(τ)),

χ(τ) = i21/333/2τ2/3 + l(g11g22) log(2
1/333/2τ2/3) + γ(g11g22, g12/g22) + o(τ−δ̃)

as τ → +∞, where γ(g11g22, g12/g22) is a constant expressed by (g11g22, g12/g22),

and δ̃ is some positive number.

Example 2.2. For Re l(g11g22) ∈ (0, 1), equation (1.1) admits a solution of the

form

u(τ) = 2−1/3τ1/3
(
1− 3

2 sin2(χ̃(τ)/2)

)
= 2−1/3τ1/3

sin(χ̃(τ)/2− χ0) sin(χ̃(τ)/2 + χ0)

sin2(χ̃(τ)/2)
,

with

χ0 = −π/2 + (i/2) log(2 +
√
3),

χ̃(τ) = 21/333/2τ2/3 + l∗(g11g22) log(2
1/333/2τ2/3) + γ∗(gij) + o(τ−δ̃)

as τ → +∞ in a strip |Im τ2/3| ≪ 1. Here, l∗(g11g22) = (2π)−1 log(−g11g22)

(∈ R) if Re l(g11g22) = 1/2, and = −i(l(g11g22) − 1/2) otherwise; and γ∗(gij) is

a constant expressed by (l∗(g11g22), g11g12, g21g22) if Re l(g11g22) = 1/2, and by

(l(g11g22), g11g12) otherwise.

By the change of variables τ2 = (x/3)3, τu = (x/3)2y, these solutions are

taken to solutions of (1.2) on the positive real axis. Proposition 3.2 guarantees

the transfer between solutions of (1.1) and (1.2) with labels. Observing g11g12 =

g11g22 ·g12/g22 and g21g22 = g11g22 ·g21/g11, and applying Theorems 2.1 and 2.2, we

have elliptic representations of these solutions for −π/3 < ϕ < 0 and 0 < ϕ < π/3.

In the case where g12 = 0 or g21 = 0, [17, Thms. 3.2 and 3.3] with ε1 = ε2 = 0

give one-parameter solutions as follows:

Example 2.3. Suppose that g21 or g12 = 0 and that g11g22 = 1. Then (1.1)

admits

u(τ) = 2−1/3τ1/3 +
(s00 − ie−πa)cia∗
2 · 31/4π1/2

exp(ϵ∗i(2
1/333/2τ2/3 + k∗π/4))(1 + o(τ−δ̃)),

as τ → +∞. Here, s00− ie−πa = g12/g22, c∗ = 2−
√
3, ϵ∗ = −1, k∗ = −1 if g21 = 0;

and s00 − ie−πa = −g21/g11, c∗ = 2 +
√
3, ϵ∗ = 1, k∗ = 3 if g12 = 0.
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If g11g22g12 ̸= 0, g21 = 0 (respectively, g11g22g21 ̸= 0, g12 = 0), Theorem 2.1

for 0 < ϕ < π/3 (respectively, Theorem 2.2 for −π/3 < ϕ < 0) applies to the

corresponding solution of (1.2). In the case, say g21 = 0, this solution is represented

by the ℘-function for 0 < ϕ < π/3, and is truncated for −π < ϕ < 0.

§3. Isomonodromy deformation and monodromy data

§3.1. Isomonodromy deformation

Equation (1.1) governs isomonodromy deformation of the linear system

dU

dµ
= U(µ, τ)U,(3.1)

U(µ, τ) = −2iτµσ3 + 2τ

(
0 2iϵeiφ

−(ϵ/4)e−iφ(uτ/u− 1/τ − iφτ ) 0

)

− 1

µ

(
ia+

τ

2
(uτ/u− iφτ )

)
σ3 +

1

µ2

(
0 2ϵeiφ(ia− iτφτ/2)

−iue−iφ 0

)
,

with φτ = (d/dτ)φ = 2a/τ+b/u, i.e. the monodromy data remain invariant under

small change of τ if and only if uτ = (d/dτ)u holds and u(τ) solves (1.1) [17, Props.

1.1, 1.2 and 2.1]. Let us change (3.1) into system (1.4) associated with (1.2). After

the transformation

U =

(
eiφ/2 0

0 e−iφ/2

)(√
ϵτ3/4 0

0 τ−3/4/
√
ϵ

)
Û , µ =

√
2/κτ1/2µ̂,

put

τ2 = κξ, τu = q/ϵ, uτ + u/τ = 2(ϵκ)−1qξ, Û =

(
(2/κ)1/4 0

0 (2/κ)−1/4

)
V ,

with κ chosen so that ϵκb = 2. Then (3.1) becomes

dV

dµ̂
= V(µ̂, ξ)V,

V(µ̂, ξ) = −4iξµ̂σ3 +

(
0 4i

−ξ(2ξqξ/q − 2(1 + ia)− 2iξ/q) 0

)

− 1

µ̂

(
ξ
qξ

q
− 1

2
− iξ

q

)
σ3 −

i

µ̂2

(
0 1/q

q 0

)
.
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The further change of variables

V =

(
−i/

√
q 0

0 i
√
q

)
Ψ, q = (x/3)2y, ξ = (x/3)3,

qξ = yx + 2y/x, (x/3)µ̂ = λ/2

with x = teiϕ and yx = e−iϕyt takes the system above to (1.4):

dΨ

dλ
=

t

3
B(λ, t)Ψ,

whose right-hand side is written in the form

B(λ, t) = b1σ1 + b2σ2 + b3σ3,(3.2)

b1 = −(i/2)(2eiϕy + iΓ0(t, y, y
t)y−1) + 2ieiϕλ−2,

b2 = (1/2)(2eiϕy − iΓ0(t, y, y
t)y−1),

b3 = −ieiϕλ− (Γ0(t, y, y
t) + 3(1/2 + ia)t−1)λ−1,

Γ0(t, y, y
t) =

yt

y
− ieiϕ

y
− 1 + 3ia

t
.

In the linear systems above, u, uτ ; q, qξ; y, yt are arbitrary complex parameters

or functions, and 2(ϵκ)−1qξ = uτ + u/τ , qξ = yx + 2y/x and yx = e−iϕyt are

compatible with their derivatives.

Proposition 3.1. System (1.4) admits the isomonodromy property if and only if

yt = (d/dt)y holds and y = y(eiϕt) = y(x) solves equation (1.2).

§3.2. Monodromy data

For each j ∈ Z system (1.4) admits the matrix solutions

(3.3) Ŷ ∞
j (λ) = (I +O(λ−1))λ−(1/2+ia)σ3 exp(−(i/6)eiϕtλ2σ3)

as λ → ∞ through the sector |arg λ+ ϕ/2− jπ/2| < π/2, and

(3.4) Ŷ 0
j (λ) = (i/

√
2)(σ1 + σ3 +O(λ)) exp(−(2i/3)eiϕtλ−1σ3)

as λ → 0 through the sector |arg λ− ϕ− jπ| < π. The Stokes matrices are such

that

Ŷ ∞
j+1(λ) = Ŷ ∞

j (λ)Ŝ∞
j , Ŷ 0

j+1(λ) = Ŷ 0
j (λ)Ŝ

0
j ,

and the connection matrix Ĝ = (ĝij) is defined by

(3.5) Ŷ ∞
0 (λ) = Ŷ 0

0 (λ)Ĝ, ĝ11ĝ22 − ĝ12ĝ21 = 1.
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The Stokes matrices satisfy

Ŝ∞
k+2 = σ3e

−π(a−i/2)σ3 Ŝ∞
k eπ(a−i/2)σ3σ3, Ŝ0

k = σ1Ŝ
0
k+1σ1,

for k ∈ Z, and the monodromy manifold is given by

ĜŜ∞
0 Ŝ∞

1 σ3e
π(i/2−a)σ3 = Ŝ0

0σ1Ĝ

with

Ŝ∞
0 =

(
1 0

ŝ∞0 1

)
, Ŝ∞

1 =

(
1 ŝ∞1
0 1

)
, Ŝ0

0 =

(
1 ŝ00
0 1

)
.

These monodromy data and their relations are obtained by the same argument as

in [17, Sect. 2].

Let G = (gij) be the monodromy data for system (3.1) given in [17, 18]. This

connection matrix is defined by

Y ∞
0 (µ) = X0

0 (µ)G.

Here, Y ∞
0 (µ) and X0

0 (µ) are matrix solutions of system (3.1) as follows:

Y ∞
k (µ) = (I +O(µ−1))µ−(1/2+ia)σ3 exp(−iτµ2σ3)

as µ → ∞ through the sector |argµ+ arg τ1/2 − πk/2| < π/2, and

X0
k(µ) = (i/

√
2)Θσ3

0 (σ1 + σ3 +O(µ)) exp(−i
√
τϵbµ−1σ3),

Θ0 = (ϵb)1/4τ−1/4(−ue−iφ/τ)−1/2

as µ → 0 through the sector |argµ− arg(τϵb)1/2 − πk| < π [17, Prop. 2.2]. Fur-

thermore, Stokes matrices are defined by

Y ∞
j+1(λ) = Y ∞

j (λ)S∞
j , X0

j+1(λ) = X0
j (λ)S

0
j ,

and the monodromy manifold M for (3.1) is given by

(3.6) GS∞
0 S∞

1 σ3e
π(i/2−a)σ3 = S0

0σ1G

with

S∞
0 =

(
1 0

s∞0 1

)
, S∞

1 =

(
1 s∞1
0 1

)
, S0

0 =

(
1 s00
0 1

)
.

For k ∈ Z,

(3.7) S∞
k+2 = σ3e

−π(a−i/2)σ3S∞
k eπ(a−i/2)σ3σ3, S0

k = σ1S
0
k+1σ1.

A generic point on M is represented by G; indeed, if g11g22 ̸= 0, then s∞0 , s∞1 and

s00 are written in terms of gij [17, p. 1172].
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Remark 3.1. Instead of the matrix solutions (Y ∞
j (µ), X0

j (µ)), we may take

(Y ∞
j,∗(µ), X

0
j,∗(µ)) := (cσ3/2Y ∞

j (µ)c−σ3/2, cσ3/2X0
j (µ))

with any c ∈ C\{0}, in which Y ∞
j,∗(µ) = (I+O(µ−1))Y ∞

j (µ). Then the connection

formula Y ∞
0 (µ) = X0

0 (µ)G becomes Y ∞
0,∗(µ) = X0

0,∗(µ)Gc−σ3/2, which induces the

action

ac : (S∞
0 , S∞

1 , S0
0 , G) 7→ (cσ3/2S∞

0 c−σ3/2, cσ3/2S∞
1 c−σ3/2, S0

0 , Gc−σ3/2)

on M. As shown in [26, Sect. 3.5], each solution of (1.1) corresponds to an orbit

by the action ac, and the quotient of M consisting of these orbits is a nonsingular

affine cubic surface Va(M) ⊂ C3 parametrised by a. Then g11g22, g21/g11, g12/g22
are invariants under ac, and two of them may be coordinates of a generic point

on Va(M).

As in [17, Thms. 3.1, 3.2, 3.3] and [18, Thms. 2.1, 2.2, 2.3], a solution of (1.1)

labelled by G is parametrised by g11g22, g12/g22, g21/g11, provided that (3.1) is an

isomonodromy system governed by (1.1). The following relation suggests that we

are allowed to use the same monodromy invariants in parametrising our solutions

of (1.2) as in [17] and [18] (cf. Examples 2.1, 2.2, 2.3):

Proposition 3.2. Let (Y ∞,∗
0 (λ), Ŷ 0

0 (λ)) = (Ŷ ∞
0 (λ)Θ−σ3

0,∗ , Ŷ 0
0 (λ)) be a pair of mat-

rix solutions of (1.4) near λ = ∞ and 0, where Θ0,∗ = Θ0c
1/2+ia
0 with c0 =

(3/2)
√
ϵbτ1/2x−1. Then, for this pair, the corresponding Stokes matrices and con-

nection matrix coincide with S∞
0 , S∞

1 , S0
0 and G for (Y ∞

0 (µ), X0
0 (µ)) of (3.1).

Proof. Note that (3.1) is changed into (1.4) by the transformation U = Θσ3
0 Ψ,

µ = c0λ with c0 = (3/2)
√
ϵbτ1/2x−1. Set Y ∞,∗

0 (λ) = Ŷ 0
0 (λ)G

∗. Then

(Θ−σ3
0 Y ∞

0 (c0λ),Θ
−σ3
0 X0

0 (c0λ)) = (Ŷ ∞
0 (λ)Θ−σ3

0 c
−(1/2+ia)σ3

0 , Ŷ 0
0 (λ))

= (Y ∞,∗
0 (λ), Ŷ 0

0 (λ))

solves (1.4). Insertion of this into Y ∞
0 (µ) = X0

0 (µ)G yields G = G∗. Let S∞,∗
0 ,

S∞,∗
1 and S0,∗

0 be the Stokes matrices for (Y ∞,∗
0 (λ), Ŷ 0

0 (λ)). Then the equation of

the monodromy manifold is

GS∞,∗
0 S∞,∗

1 σ3e
π(i/2−a)σ3 = S0,∗

0 σ1G,

which yields the entries of S∞,∗
0 , S∞,∗

1 and S0,∗
0 in terms of gij coinciding with

those of S∞
0 , S∞

1 and S0
0 derived from (3.6) as in [17, p. 1172]. This completes the

proof.
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Remark 3.2. We have G = ĜΘ−σ3
0 c

−(1/2+ia)σ3

0 = ĜΘ−σ3
0,∗ , S∞

m = Θσ3
0,∗Ŝ

∞
mΘ−σ3

0,∗
and S0

m = Ŝ0
m.

Equation (3.6) of the monodromy manifold may be extended.

Proposition 3.3. For m = 1, 2, 3, . . . ,

GS∞
0 S∞

1 · · ·S∞
2m−2S

∞
2m−1σ

m
3 emπ(i/2−a)σ3 = S0

0 · · ·S0
m−1σ

m
1 G,

GS∞
−1S

∞
−2 · · ·S∞

−2m+1S
∞
−2mσm

3 emπ(a−i/2)σ3 = S0
−1 · · ·S0

−mσm
1 G.

Proof. Recall the relations Y ∞
k (µ) = σ3Y

∞
k+2(µe

πi)σ3e
−π(a−i/2)σ3 and X0

k(µ) =

σ3X
0
k+1(µe

πi)σ1 given by [17, eqn. (24)]. Then

Y ∞
0 (µ)S∞

0 S∞
1 · · ·S∞

2m−2S
∞
2m−1 = Y ∞

2m(µ) = σ3Y
∞
2(m−1)(µe

−πi)σ3e
π(a−i/2)σ3

= · · · = σm
3 Y ∞

0 (µe−mπi)σm
3 emπ(a−i/2)σ3 ,

Y 0
0 (µ)S

0
0 · · ·S0

m−1 = Y 0
m(µ) = σ3Y

0
m−1(µe

−πi)σ1

= · · · = σm
3 Y 0

0 (µe
−mπi)σm

1 .

Using Y ∞
0 (µ) = Y 0

0 (µ)G and Y ∞
0 (µe−mπi) = Y 0

0 (µe
−mπi)G, we have

Y 0
0 (µ)GS∞

0 S∞
1 · · ·S∞

2m−2S
∞
2m−1 = σm

3 Y 0
0 (µe

−mπi)Gσm
3 emπ(a−i/2)σ3

= Y 0
0 (µ)S

0
0 · · ·S0

m−1σ
m
1 Gσm

3 emπ(a−i/2)σ3 ,

which implies the first relation.

The formulas above are also written as follows:

Proposition 3.4. For m = 1, 2, 3, . . . ,

GS∞
0 S∞

1 · · ·S∞
2m−2S

∞
2m−1 = (S0

0σ1)
mGσm

3 emπ(a−i/2)σ3 ,

GS∞
−1S

∞
−2 · · ·S∞

−2m+1S
∞
−2m = (σ1S

0
0)

mGσm
3 emπ(i/2−a)σ3 .

Proof. By (3.7), S0
j−1σ

j
1 = σ1S

0
j−2σ

j−1
1 = · · · = σj−1

1 S0
0σ1, and hence

S0
0 · · ·S0

m−1σ
m
1 G = (S0

0σ1)
mG, S0

−1 · · ·S0
−mσm

1 G = (σ1S
0
0)

mG.

Combining these with Proposition 3.3, we have the desired result.

§4. WKB analysis

§4.1. Turning points and Stokes graphs

Let us examine the characteristic roots ±µ = ±µ(t, λ) of B(t, λ), the turning

points, i.e. the roots of µ, and the Stokes graph, which are used in calculating
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monodromy data for system (1.4). The characteristic roots are given by

µ2 = b21 + b22 + b23

= −e2iϕλ2 + e2iϕaϕλ
−2 − 4e2iϕλ−4 + 3ieiϕ(1 + 2ia)t−1(4.1)

with

(4.2) aϕ = aϕ(t) = e−2iϕ
(yt
y

+
1

2t

)2
+ 4y +

1

y2
− 3ie−iϕ(1 + 2ia)

1

ty
.

The Stokes graph consists of the Stokes curves and the vertices: each Stokes curve

is defined by Re
∫ λ

λ∗
µ(λ) dλ = 0 with a turning point λ∗, and the vertices are

turning points or singular points λ = 0,∞. Here, µ(λ) is considered on a two-

sheeted Riemann surface glued along cuts with ends of turning points or singular

points.

First suppose that ϕ = 0. If a0 = aϕ=0 = 3 · 22/3, then

µ(∞, λ)2|ϕ=0 = −λ2 + a0λ
−2 − 4λ−4 = −λ−4(λ2 − 21/3)2(λ2 + 42/3).

This means that µ(t, λ) admits six turning points λ0, λ1, λ
′
0, λ

′
1, λ2, λ

′
2 such that

λ0 and λ1 coalesce at 21/6, λ′
0 and λ′

1 at −21/6 as t → ∞, and that λ2 and λ′
2

approach ±22/3i, respectively. The Stokes graph with ϕ = 0 is used in [17, Sect.

4]. (Note that a solution y(x) of (1.2) for x = t > 0 corresponds to u(τ) satisfying

(1.1) for τ > 0 if ϵb > 0.) The limit Stokes graph with t = ∞ is as in Figure

2(c) and µ(λ) is defined on the two-sheeted Riemann surface R0 glued along, say

[λ2, e
πi/20] ∪ [λ′

2, e
−πi/20].

The limit Stokes graph for the isomonodromy system (1.4) is considered to

reflect the Boutroux equations (2.1). When ϕ increases or decreases, the limit

turning points for λ0 and λ1 move according to the solution Aϕ of the Boutroux

equations (2.1). By Proposition 8.16, for ϕ close to 0, the double turning point

at 21/6 is resolved into two simple turning points such that Imλ0 > 0 > Imλ1,

Reλ0 < 21/6 < Reλ1 if ϕ > 0, and that Imλ0 < 0 < Imλ1, Reλ0 < 21/6 <

Reλ1 if ϕ < 0. As will be shown in Proposition 8.15, for 0 < |ϕ| < π/3 the

coalescence of turning points does not occur, and then topological properties of

the limit Stokes graph remain invariant. Every turning point is simple, and the

two-sheeted Riemann surface Rϕ of µ(λ) is glued along the cuts [λ0, λ1], [λ
′
0, λ

′
1]

and [λ2, e
(π−ϕ)i/20]∪ [λ′

2, e
−(π+ϕ)i/20]. The Stokes graph lies on the upper sheet of

Rϕ. For −π/3 < ϕ < 0 and 0 < ϕ < π/3, the limit Stokes graphs are as in Figures

2(b) and (d), in which each limit turning point with t = ∞ is also denoted by λι

or λ′
ι. In our calculation, for 0 < |ϕ| < π/3, we use the Stokes curve from 0 to ∞

passing through λ0 and λ1 appearing as a resolution of the double turning point.

For a technical reason, the cut [λ0, λ1] on the upper sheet is made in such a way
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r
λ0

λ1

λ′
2

0
λ′
0

λ′
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λ2

(d) 0 < ϕ < π/3

Figure 2. Limit Stokes graphs for |ϕ| ≤ π/3

that the Stokes curve (λ0, λ1)
∼ is located along the lower shore (respectively, the

upper shore) of the cut if 0 < ϕ < π/3 (respectively, −π/3 < ϕ < 0), and the cut

[0, λ2] in such a way that the cut [λ0, λ1] is located on the right-hand side of [0, λ2]

(cf. Figures 3, 4, 5).

Let us set

µ(t, λ) = ieiϕλ−2
√
4− aϕλ2 + λ6 − 3ie−iϕ(1 + 2ia)λ4t−1.

This square root is defined as the product of the form

−ie−iϕλ2µ(∞, λ) = 2
√
(1− λ−2

0,∞λ2)(1− λ−2
1,∞λ2)(1− λ−2

2,∞λ2)

= 2
√
1− λ−2

0,∞λ2

√
1− λ−2

1,∞λ2

√
1− λ−2

2,∞λ2

with λj,∞ = λj(∞) satisfying λ2
0,∞λ2

1,∞λ2
2,∞ = −4, in which the branch of each

minor square root is fixed in such a way that
√

1− λ−2
j,∞λ2 → 1 as λ → 0 on the
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upper sheet. Then µ(t, λ) → −ieiϕλ + O(1) as λ → ∞ and µ(t, λ) → 2ieiϕλ−2 +

O(1) as λ → 0 on the upper sheet.

An unbounded domain D ⊂ Rϕ is called a canonical domain if, for each

λ ∈ D, there exist contours C±(λ) ⊂ D terminating in λ such that

Re

∫ λ

λ−

µ(λ) dλ → −∞
(
respectively, Re

∫ λ

λ+

µ(λ) dλ → +∞
)

as λ− → ∞ along C−(λ) (respectively, as λ+ → ∞ along C+(λ)) (see [4], [5,

p. 242]). The interior of a canonical domain contains exactly one Stokes curve, and

its boundary consists of Stokes curves.

§4.2. WKB solution

The following WKB solution will be used in our calculus:

Proposition 4.1. In the canonical domain whose interior contains a Stokes curve

issuing from the turning point λ0 or λ1, system (1.4) with B(λ, t) given by (3.2)

admits an asymptotic solution expressed as

ΨWKB(λ) = T (I +O(t−δ)) exp

(∫ λ

λ̃∗

Λ(τ) dτ

)
, T =

(
1 b3−µ

b1+ib2
µ−b3
b1−ib2

1

)

outside suitable neighbourhoods of zeros of b1±ib2 as long as |λ−λι| ≫ t−2/3+(2/3)δ

(ι = 0, 1, 2). Here, δ is an arbitrary number such that 0 < δ < 1, λ̃∗ is a base point

near λ0 or λ1, and

Λ(λ) =
t

3
µ(t, λ)σ3 − diag T−1Tλ.

Proof. This is shown by using µ = −ieiϕλ+O(1) near λ = ∞, and = 2ieiϕλ−2 +

O(1) near λ = 0 (cf. [5, Thm. 7.2], [28, Prop. 3.8]).

Remark 4.1. In the proposition above

diag T−1Tλ =
1

2µ(µ+ b3)
(i(b1b

′
2 − b′1b2)σ3 + (b3µ

′ − b′3µ)I)

=
1

4

(
1− b3

µ

) ∂

∂λ
log

b1 + ib2
b1 − ib2

σ3 +
1

2

∂

∂λ
log

µ

µ+ b3
I,

where b′1 = (∂/∂λ)b1.
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§4.3. Local solution around a turning point

Near turning points the WKB solution above fails in expressing asymptotic beha-

viour. In the neighbourhood of λι, system (1.4) is reduced to

(4.3)
dW

dζ
=

(
0 1

ζ 0

)
W,

which has the solutions T (Ai(ζ),Aiζ(ζ)),
T (Bi(ζ),Biζ(ζ)) with the Airy function

Ai(ζ) and Bi(ζ) = e−πi/6Ai(e−2πi/3ζ) ([1, 3]). Then we have the following solution

near each simple turning point ([5, Thm. 7.3], [28, Prop. 3.9]):

Proposition 4.2. For each simple turning point λι (ι = 0, 1, 2) write ck = bk(λι),

c′k = (bk)λ(λι) (k = 1, 2, 3), and suppose that ck, c
′
k are bounded and c1 ± ic2 ̸= 0.

Let t̂ = 2(2κc)
−1/3(c1 − ic2)(t/3)

1/3 with κc = c1c
′
1 + c2c

′
2 + c3c

′
3. Then system

(1.4) admits a matrix solution of the form

Φι(λ) = Tι(I +O(t−δ′))

(
1 0

0 t̂−1

)
W (ζ), Tι =

(
1 − c3

c1+ic2

− c3
c1−ic2

1

)
,

in which λ − λι = (2κc)
−1/3(t/3)−2/3(ζ + ζ0) with |ζ0| ≪ t−1/3, as long as |ζ| ≪

t(2/3−δ′)/3, i.e. |λ − λι| ≪ t−2/3+(2/3−δ′)/3. Here, δ′ is an arbitrary number such

that 0 < δ′ < 2/3, and W (ζ) solves system (4.3) having canonical solutions Wν(ζ)

(ν ∈ Z) such that

Wν(ζ) = ζ−(1/4)σ3(σ3 + σ1)(I +O(ζ−3/2)) exp((2/3)ζ3/2σ3)

as ζ → ∞ through the sector |arg ζ − (2ν − 1)π/3| < 2π/3, and that Wν+1(ζ) =

Wν(ζ)Sν with

S1 =

(
1−i

0 1

)
, S2 =

(
1 0

−i 1

)
, Sν+1 = σ1Sνσ1.

Remark 4.2. Putting λ−λι = (2κc)
−1/3(e2πi/3)2j(t/3)−2/3(ζ+ ζ0), j ∈ {0,±1},

we have an expression of Φι(λ) with t̂ = 2(2κc)
−1/3(e2πi/3)2j(c1 − ic2)(t/3)

1/3.

§5. Calculation of the connection matrix

We calculate the connection matrix Ĝ = (ĝij) given by (3.5) as a solution of the

direct monodromy problem by applying WKB analysis to system (1.4). Suppose

that aϕ(t) is given by (4.2) with a pair of arbitrary functions (y, yt) = (y(t), yt(t))

not necessarily solving (1.2), and that

(5.1) aϕ(t) = Aϕ +
Bϕ(t)

t
, Bϕ(t) ≪ 1
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0

λ0

λ1

∞

c0
c1

c∞

k

1
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r
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Figure 3. Stokes curve for 0 < ϕ < π/3

for t ∈ Sϕ(t
′
∞, κ1, δ1) with given κ1 > 0, small given δ1 > 0 and sufficiently large

t′∞ > 0. Here, Aϕ is a solution of the Boutroux equations (2.1), and

Sϕ(t
′
∞, κ1, δ1) =

{
t
∣∣ Re t > t′∞, |Im t| < κ1, |y(t)|+ |yt(t)|+ |y(t)|−1 < δ−1

1

}
.

Let 0 < ϕ < π/3. We calculate the analytic continuation of the matrix solution

near λ = ∞ along the Stokes curve consisting of

c∞ = (∞, λ1)
∼, c1 = (λ1, λ0)

∼, c0 = (λ0, 0)
∼

starting from ∞ and terminating at 0 on the upper sheet of the Riemann surface

Rϕ of µ(∞, λ) as in Figure 3. Under supposition (5.1), these curves c0, c1, c∞ lie

within the distance O(t−1) from the limit Stokes graph. Recall that the curve c1
is located along the lower shore of the cut [λ0, λ1].

In the WKB solution, write Λ(λ) in the component-wise form Λ(λ) = Λ3(λ)+

ΛI(λ) with

Λ3(λ) =
t

3
µ(t, λ)σ3 − diag T−1Tλ|σ3σ3, ΛI(λ) = −diag T−1Tλ|II,

in which diag T−1Tλ|σ3
σ3 ∈ Cσ3, diag T

−1Tλ|II ∈ CI. In Propositions 4.1 and

4.2, if δ = δ′ = 2/9− ε with any ε such that 0 < ε < 2/9, then both propositions

are applicable in the annulus

Aι
ε : t

−2/3+(2/3)(2/9−ε) ≪ |λ− λι| ≪ t−2/3+(2/3)(2/9+ε/2)

(ι = 0, 1). In what follows we set δ = 2/9− ε, and write ck = bk(λ0), dk = bk(λ1)

(k = 1, 2, 3).

(1) Let Ψ∞(λ) along c∞ = (∞, λ1)
∼ be a WKB solution by Proposition

4.1, and let Y ∞,∗
0 (λ) = Ŷ ∞

0 (λ)Θ−σ3
0,∗ be given by (3.3) and Proposition 3.2. Set
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Y ∞,∗
0 (λ)Θσ3

0,∗ = Ŷ ∞
0 (λ) = Ψ∞(λ)Γ∞. Using µ(t, λ) = −ieiϕλ− 3

2 (1+2ia)t−1λ−1+

O(λ−3) along c∞, and µ− b3 ≪ λ−1 as λ → ∞, we have

Γ∞ = Ψ∞(λ)−1Ŷ ∞
0 (λ) = Ψ∞(λ)−1Y ∞,∗

0 (λ)Θσ3
0,∗

= exp

(
−
∫ λ

λ̃1

Λ(τ) dτ

)
T−1(I +O(|t−δ|+ |λ|−1))

× exp
(
−1

6
(ieiϕtλ2 + 3(1 + 2ia) log λ)σ3

)
= C3(λ̃1)cI(λ̃1)(I +O(t−δ))

× exp

(
− lim

λ→∞
λ∈c∞

(∫ λ

λ1

Λ3(τ) dτ +
1

6
(ieiϕtλ2 + 3(1 + 2ia) log λ)σ3

))
,

in which C3(λ̃1) = exp(
∫ λ̃1

λ1
Λ3(τ) dτ), cI(λ̃1) = exp(−

∫∞
λ̃1

ΛI(τ) dτ), and λ̃1 ∈ c∞,

λ̃1 − λ1 ≍ t−1.

(2) For Ψ∞(λ) and for Φ+
1 (λ) given by Proposition 4.2 in the annulus A1

ε

around λ1, set Ψ∞(λ) = Φ+
1 (λ)Γ1+ along c∞. Suppose that the curve (2κd)

1/3(λ−
λ̃1) = (t/3)−2/3(ζ + O(t−1/3)), κd = d1d

′
1 + d2d

′
2 + d3d

′
3 with λ ∈ c∞ enters the

sector |arg ζ − 7π/3| < 2π/3 (the other cases are similarly treated by Remark 4.2).

Write K−1 = 2(2κd)
−1/3(d1 − id2). Then, by Propositions 4.1 and 4.2,

Γ1+ = Φ+
1 (λ)

−1Ψ∞(λ)

= W (ζ)−1

(
1 0

0 (t/3)−1/3K

)−1

(I +O(t−δ))

(
1 − d3

d1+id2

− d3

d1−id2
1

)−1

×

(
1 b3−µ

b1+ib2
µ−b3
b1−ib2

1

)
(I +O(t−δ)) exp

(∫ λ

λ̃1

Λ(τ) dτ

)

= W (ζ)−1

(
1 d3

d1+id2

(t/3)1/3µ
2K(d1−id2)

(t/3)1/3µ
2Kd3

)
(I +O(t−δ)) exp

(∫ λ

λ̃1

Λ(τ) dτ

)
for λ ∈ A1

ε∩c∞, where (µ−b3)/(b1± ib2) = (µ−d3)/(d1± id2)+O(η), η = λ− λ̃1.

Since µ = (2κd)
1/2η1/2(1+O(η)) = 2K(d1 − id2)(t/3)

−1/3ζ1/2(1+O(η)), we have

Γ1+ = exp

(∫ λ

λ̃1

Λ(τ) dτ − 2

3
ζ3/2σ3

)
ζ1/4(I +O(t−δ))

(
1 0

0−d1−id2

d3

)
.

By Λ3(λ) = ((2κd)
1/2(t/3)η1/2(1 + O(η)) + O(η−1/2))σ3 and ΛI(λ) = (−η−1/4 +

O(η−1/2))I (cf. Remark 4.1) for η = λ− λ̃1, λ ∈ A1
ε ∩ c∞,

Γ1+ = (ζ̃1)
1/4(I +O(t−δ))C3(λ̃1)

−1

(
1 0

0−d1−id2

d3

)
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with suitably chosen ζ̃1 ≍ λ̃1 − λ1.

(3) Let Φ−
1 (λ) be the solution by Proposition 4.2 near c1 = (λ1, λ0)

∼, and

set Φ+
1 (λ) = Φ−

1 (λ)Γ1∗, where Φ+
1 (λ) is the analytic continuation along an arc in

A1
ε in the clockwise direction. Then by Proposition 4.2,

Γ1∗ = Φ−
1 (λ)

−1Φ+
1 (λ) = S2S3 =

(
1 0

−i 1

)(
1−i

0 1

)
.

(4) For Φ−
1 (λ) and the WKB solution Ψ−

1 (λ) along c1, set Φ
−
1 (λ)=Ψ−

1 (λ)Γ1−.

Then, supposing the curve (2κd)
1/3(λ− λ̃′

1) = (t/3)−2/3(ζ+O(t−1/3)) with λ ∈ c1
to be in the sector |arg ζ − π| < 2π/3, we have, for λ̃′

1 ∈ c1, |λ̃′
1 − λ1| ≍ t−1,

Γ1− = Ψ−
1 (λ)

−1Φ−
1 (λ)

= exp

(
−
∫ λ

λ̃′
1

Λ(τ) dτ

)
(I +O(t−δ))

(
1 b3−µ

b1+ib2
µ−b3
b1−ib2

1

)−1

×

(
1 − d3

d1+id2

− d3

d1−id2
1

)
(I +O(t−δ))

(
1 0

0 (t/3)−1/3K̃

)
W (ζ)

= exp

(
2

3
ζ3/2σ3 −

∫ λ

λ̃′
1

Λ(τ) dτ

)
ζ−1/4(I +O(t−δ))

(
1 0

0− d3

d1−id2

)
,

where K̃−1 = 2(2κd)
−1/3(d1 − id2). This yields

Γ1− = (ζ̃ ′1)
−1/4(I +O(t−δ))C ′

3(λ̃
′
1)

(
1 0

0− d3

d1−id2

)

with C ′
3(λ̃

′
1) = exp(

∫ λ̃′
1

λ1
Λ3(τ) dτ) for some ζ̃ ′1 ≍ λ̃′

1 − λ1.

(5) For Ψ−
1 (λ) and the WKB solution Ψ+

0 (λ) along c1 near λ0, set Ψ
−
1 (λ) =

Ψ+
0 (λ)Γ01. Then, for λ̃0 ∈ c1, λ̃0 − λ0 ≍ t−1,

Γ01 = Ψ+
0 (λ)

−1Ψ−
1 (λ)

= exp

(
−
∫ λ

λ̃0

Λ(τ) dτ

)
T−1(I +O(t−δ))T exp

(∫ λ

λ̃′
1

Λ(τ) dτ

)
= C ′

3(λ̃
′
1)

−1C ′′
3 (λ̃0)cI(λ̃

′
1, λ̃0) exp

(
−
∫ λ1

λ0

Λ3(τ) dτ

)
,

where C ′′
3 (λ̃0) = exp(

∫ λ̃0

λ0
Λ3(τ) dτ), cI(λ̃

′
1, λ̃0) = exp(−

∫ λ̃′
1

λ̃0
ΛI(τ) dτ).
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(6) For Ψ+
0 (λ) and for Φ+

0 (λ) given by Proposition 4.2 in the annulus A0
ε

around λ0, set Ψ
+
0 (λ) = Φ+

0 (λ)Γ0+. Then, by the same argument as in (2) above,

we have

Γ0+ = Φ+
0 (λ)

−1Ψ+
0 (λ) = (ζ̃0)

1/4(I +O(t−δ))C ′′
3 (λ̃0)

−1

(
1 0

0− c1−ic2
c3

)

for some ζ̃0 ≍ λ̃0 − λ0.

(7) Let Φ−
0 (λ) be the solution by Proposition 4.2 near c0 = (λ0, 0)

∼, and set

Φ+
0 (λ) = Φ−

0 (λ)Γ0 ∗, where Φ+
0 (λ) is the analytic continuation along an arc in A0

ε

in the clockwise direction. Then by Proposition 4.2,

Γ0 ∗ = Φ−
0 (λ)

−1Φ+
0 (λ) = S2 =

(
1 0

−i 1

)
.

(8) For Φ−
0 (λ) and the WKB solution Ψ0(λ) along c0, set Φ

−
0 (λ) = Ψ0(λ)Γ0−.

By the same argument as in (4), we have

Γ0− = Ψ0(λ)
−1Φ−

0 (λ) = (ζ̃ ′0)
−1/4(I +O(t−δ))Ĉ3(λ̃

′
0)

(
1 0

0− c3
c1−ic2

)

with Ĉ3(λ̃
′
0) = exp(

∫ λ̃′
0

λ0
Λ3(τ) dτ) for some ζ̃ ′0 ≍ λ̃′

0 − λ0.

(9) For Ψ0(λ) and Ŷ 0
0 (λ) given by (3.4), set Ψ0(λ) = Ŷ 0

0 (λ)Γ0. Then

Γ0 = Ŷ 0
0 (λ)

−1Ψ0(λ)

= exp
(2i
3
eiϕtλ−1σ3

)√2

i
(σ1 + σ3)

−1(I +O(|t−δ|+ |λ|))T exp

(∫ λ

λ̃′
0

Λ(τ) dτ

)
.

Note that µ(t, λ) = 2ieiϕλ−2 +O(1) as λ → 0 along c0. Since

(σ1 + σ3)
−1 lim

λ→0
T (λ) =

1

2
(σ1 + σ3)

(
1−1

1 1

)
= σ3,

we have

Γ0 = Ĉ3(λ̃
′
0)

−1ĉI(λ̃
′
0)(σ3 +O(t−δ)) exp

(
lim
λ→0
λ∈c0

(∫ λ

λ0

Λ3(τ) dτ +
2i

3
eiϕtλ−1σ3

))

with ĉI(λ̃
′
0) = −

√
2i exp(

∫ 0

λ̃′
0
ΛI(τ) dτ).
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Collecting the matrices above, we have the connection matrix

Ĝ = GΘσ3
0,∗ = Ŷ 0

0 (λ)
−1Y ∞,∗

0 (λ)Θσ3
0,∗ = Ŷ 0

0 (λ)
−1Ŷ ∞

0 (λ)

= Γ0Γ0−Γ0 ∗Γ0+Γ01Γ1−Γ1∗Γ1+Γ∞

= ϵ+i(σ3 +O(t−δ)) exp(J0σ3)

(
1 0

0−c−1
0

)(
1 0

−i 1

)(
1 0

0−c0

)

× exp(−J1σ3)

(
1 0

0−d−1
0

)(
1 0

−i 1

)(
1−i

0 1

)(
1 0

0−d0

)
exp(−J∞σ3)

= ϵ+(I +O(t−δ))

×
(

i exp(J0 − J1 − J∞) −d0 exp(J0 − J1 + J∞)

(c−1
0 exp(−J1) + d−1

0 exp(J1)) exp(−J0 − J∞) ic−1
0 d0 exp(−J0 − J1 + J∞)

)
if 0 < ϕ < π/3, where ϵ2+ = 1, c0 = (c1 − ic2)/c3, d0 = (d1 − id2)/d3, and

J0σ3 = lim
λ→0
λ∈c0

(∫ λ

λ0

Λ3(τ) dτ +
2i

3
eiϕtλ−1σ3

)
,(5.2)

J1σ3 =

∫ λ1

λ0

Λ3(τ) dτ (along c1),(5.3)

J∞σ3 = lim
λ→∞
λ∈c∞

(∫ λ

λ1

Λ3(τ) dτ +
1

6
(ieiϕtλ2 + 3(1 + 2ia) log λ)σ3

)
.(5.4)

In the case −π/3 < ϕ < 0, from the analytic continuation along the Stokes

curves as in Figure 4, it follows that

Ĝ = ϵ−i(σ3 +O(t−δ)) exp(J0σ3)

(
1 0

0−c−1
0

)(
1 i

0 1

)(
1 0

0−c0

)

× exp(−Ĵ1σ3)

(
1 0

0−d−1
0

)(
1 i

0 1

)(
1 0

i 1

)(
1 0

0−d0

)
exp(−J∞σ3)

= ϵ−(I +O(t−δ))

×

(
−ic0d

−1
0 exp(J0 + Ĵ1 − J∞) (c0 exp(Ĵ1) + d0 exp(−Ĵ1)) exp(J0 + J∞)

−d−1
0 exp(−J0 + Ĵ1 − J∞) −i exp(−J0 + Ĵ1 + J∞)

)
.

Here, ϵ2− = 1, and

(5.5) Ĵ1σ3 =

∫ λ1

λ0

Λ3(τ) dτ (along ĉ1),

in which ĉ1 is a curve joining λ0 to λ1 located along the upper shore of the cut on

the upper sheet of Rϕ. Thus we have the following proposition:
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0

λ0

λ1

∞

c0
ĉ1

c∞

+

q

+

b
r

r

Figure 4. Stokes curve for −π/3 < ϕ < 0

Proposition 5.1. Let c0 = (c1 − ic2)/c3, d0 = (d1 − id2)/d3 with ck = bk(λ0),

dk = bk(λ1) for k = 1, 2, 3. If 0 < ϕ < π/3, then

Ĝ = ϵ+(I +O(t−δ))

×
(

i exp(J0 − J1 − J∞) −d0 exp(J0 − J1 + J∞)

(c−1
0 exp(−J1) + d−1

0 exp(J1)) exp(−J0 − J∞) ic−1
0 d0 exp(−J0 − J1 + J∞)

)
,

and, if −π/3 < ϕ < 0, then

Ĝ = ϵ−(I +O(t−δ))

×

(
−ic0d

−1
0 exp(J0 + Ĵ1 − J∞) (c0 exp(Ĵ1) + d0 exp(−Ĵ1)) exp(J0 + J∞)

−d−1
0 exp(−J0 + Ĵ1 − J∞) −i exp(−J0 + Ĵ1 + J∞)

)
.

Here, ϵ2± = 1, and J0, J1, Ĵ1, J∞ are integrals given by (5.2) through (5.5).

From the proposition above with Ĝ = GΘσ3
0,∗, G = (gij) (Remark 3.2), we

derive key relations.

Corollary 5.2. If 0 < ϕ < π/3 and g11g12g22 ̸= 0, then

g11g22 = −c−1
0 d0(1 +O(t−δ)) exp(−2J1),

g12
g22

= ic0(1 +O(t−δ)) exp(2J0).

If −π/3 < ϕ < 0 and g11g21g22 ̸= 0, then

g11g22 = −c0d
−1
0 (1 +O(t−δ)) exp(2Ĵ1),

g21
g11

= −ic−1
0 (1 +O(t−δ)) exp(−2J0).
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§6. Asymptotic properties of monodromy data

§6.1. Expressions of J0, J1 and Ĵ1

To examine asymptotic properties of J0, J1 and Ĵ1, we make the change of variables

λ−2 = z. Then, by (4.1) and (4.2), µ(t, λ) becomes

µ(t, λ) dλ =
(
−e2iϕ

z
+ e2iϕaϕz − 4e2iϕz2 + 3ieiϕ(1 + 2ia)t−1

)1/2 (−z−3/2)

2
dz

=
(
− i

2
eiϕ

w(z)

z2
− 3

4
(1 + 2ia)t−1 1

zw(z)
+O(t−2w(z)−3)

)
dz

with w(z)2 = w(aϕ, z)
2 = 4z3 − aϕz

2 + 1, for z such that w(z) ≫ 1. The turning

points λ0, λ1, λ2 and 0 on Rϕ are mapped to

z0 = λ−2
0 , z1 = λ−2

1 , z2 = λ−2
2

and ∞, respectively, on the elliptic curve Πaϕ
for w(aϕ, z) constructed in the same

way as in the case of ΠAϕ
in Section 2.2. The branch of µ(t, λ) is compatible with

that of w(aϕ, z). Suppose that Πaϕ
is equipped with the cycles a and b as in

Section 2.2. Then the inverse image of the cycle a is a closed curve aλ surrounding

the cut [λ0, λ1] anticlockwise (see Figure 5).

Since ∫
w(z)

z2
dz = 2

w(z)

z
− aϕ

∫
dz

w(z)
+ 3

∫
dz

z2w(z)
,

we have

µ(t, λ) dλ = −ieiϕ
w(z)

z
+

i

2
eiϕaϕ

dz

w(z)
− 3i

2
eiϕ

dz

z2w(z)

− 3

4
(1 + 2ia)t−1 dz

zw(z)
+O(t−2w(z)−3) dz,

in which w(z)/z = 2z1/2 +O(z−1/2) as z → ∞. Hence

lim
λ→0
λ∈c0

(∫ λ

λ0

µ(t, τ) dτ + 2ieiϕλ−1

)
= − i

4
eiϕaϕ

∫
b

dz

w(z)
+

3i

4
eiϕ
∫
b

dz

z2w(z)
+

3

8
(1 + 2ia)t−1

∫
b

dz

zw(z)

+O(t−2)

=
i

4
eiϕ
∫
b

w(z)

z2
dz +

3

8
(1 + 2ia)t−1

∫
b

dz

zw(z)
+O(t−2),(6.1)
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�
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6
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q

0
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∞
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�
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∞
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A
A

A
A
A
A

Y
-
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0 < ϕ < π/3
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Figure 5. Correspondence of the cycles under the map z = λ−2

and ∫ λ1

λ0(c1)

µ(t, τ) dτ, −
∫ λ1

λ0(ĉ1)

µ(t, τ) dτ

=
i

4
eiϕaϕ

∫
a

dz

w(z)
− 3i

4
eiϕ
∫
a

dz

z2w(z)
− 3

8
(1 + 2ia)t−1

∫
a

dz

zw(z)

+O(t−2)

= − i

4
eiϕ
∫
a

w(z)

z2
dz − 3

8
(1 + 2ia)t−1

∫
a

dz

zw(z)
+O(t−2),(6.2)

in which
∫ λ1

λ0(c)
denotes the integral along the contour c. By Remark 4.1,

Λ3(t, λ) =
( t
3
µ(t, λ)− diag T−1Tλ|σ3

)
σ3,(6.3)

diag T−1Tλ|σ3
=

1

4

(
1− b3

µ

) ∂

∂λ
log

b1 + ib2
b1 − ib2

.
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To calculate J0, J1 and Ĵ1, it is necessary to know diag T−1Tλ|σ3
in addition to

(6.1) and (6.2). Note that, by (3.2),

b1 = 2ieiϕλ−2 − iK+, b2 = K−, b3 = −ieiϕλ−K0λ
−1,

with K± = eiϕy± 1
2 iy

−1Γ0(t, y, y
t), K0 = Γ0(t, y, y

t)+ 3
2 (1+2ia)t−1, Γ0(t, y, y

t) =

yty−1 − ieiϕy−1 − (1 + 3ia)t−1. Setting z± = e−iϕ(K+ ±K−)/2, i.e.

(6.4) z+ = y, z− = (i/2)e−iϕy−1Γ0(t, y, y
t),

and λ−2 = z, we have

(6.5) b1 − ib2 = 2ieiϕ(z − z+), b1 + ib2 = 2ieiϕ(z − z−).

By (4.1), µ2 = −e2iϕλ2w(z)2 + O(t−1), which implies µ = ieiϕλ(w(z) + O(t−1z))

on the upper sheet of Πaϕ
, and hence

b3
µ

= −ie−iϕ b3
λ

( 1

w(z)
+O(t−1z−2)

)
,

where b3/λ = −K0z − ieiϕ satisfies (b3/λ)(z±) = −(µ/λ)(z±) = −ieiϕw(z±) +

O(t−1), since µ(z±)
2 = (b1− ib2)(b1+ ib2)(z±)+b3(z±)

2 = b3(z±)
2 by (6.5). These

facts combined with (6.5) yield

diag T−1Tλ|σ3
dλ =

1

4

(
1− b3

µ

) d

dλ
log

b1 + ib2
b1 − ib2

dλ

=
1

4

(
1− b3

µ

) d

dz
log

b1 + ib2
b1 − ib2

dz

=
1

4

(
1 + ie−iϕ b3

λ

( 1

w(z)
+O(t−1z−2)

))( 1

z − z−
− 1

z − z+

)
dz

= −1

4

( 1

z − z+
− 1

z − z−
+
( w(z+)
z − z+

− w(z−)

z − z−

) 1

w(z)

+O(t−1z−2)
)
dz,

which implies

lim
λ→0
λ∈c0

∫ λ

λ0

diag T−1Tλ|σ3 dλ =
1

4
log

z0 − z+
z0 − z−

+
1

8

∫
b

( w(z+)
z − z+

− w(z−)

z − z−

) dz

w(z)
+O(t−1).

Here, by (6.5), c20 = (c1− ic2)
2/c23 = −(c1− ic2)/(c1+ ic2) = −(z0− z+)/(z0− z−)

and log((z0 − z+)/(z0 − z−)) = log(−c20) = 2 log(ic0). Similarly,

−
∫ λ1

λ0(c1)

diag T−1Tλ|σ3
dλ+

1

2
log(c0d

−1
0 ),

∫ λ1

λ0(ĉ1)

diag T−1Tλ|σ3
dλ− 1

2
log(c0d

−1
0 )

=
1

8

∫
a

( w(z+)
z − z+

− w(z−)

z − z−

) dz

w(z)
+O(t−1).



Boutroux Ansatz for the Degenerate Third Painlevé Transcendents 677

Insertion of (6.1), (6.2) and the relations above into (5.2), (5.5) with (6.3) provides

the expressions of J0, J1 and Ĵ1. Then by Corollary 5.2 we have the following

proposition:

Proposition 6.1. Let

W (z) =
( w(z+)
z − z+

− w(z−)

z − z−

) 1

w(z)
.

(1) Suppose that g11g22 ̸= 0, g12/g22 ̸= 0. For 0 < ϕ < π/3,

log
g12
g22

=
ieiϕt

6

∫
b

w(z)

z2
dz − 1

4

∫
b

W (z) dz +
1

4
(1 + 2ia)

∫
b

dz

zw(z)
+O(t−δ),

log(g11g22) =
ieiϕt

6

∫
a

w(z)

z2
dz − 1

4

∫
a

W (z) dz +
1

4
(1 + 2ia)

∫
a

dz

zw(z)

+ πi+O(t−δ).

(2) Suppose that g11g22 ̸= 0, g21/g11 ̸= 0. For −π/3 < ϕ < 0,

log
g21
g11

= − ieiϕt

6

∫
b

w(z)

z2
dz +

1

4

∫
b

W (z) dz − 1

4
(1 + 2ia)

∫
b

dz

zw(z)
+O(t−δ),

log(g11g22) =
ieiϕt

6

∫
a

w(z)

z2
dz − 1

4

∫
a

W (z) dz +
1

4
(1 + 2ia)

∫
a

dz

zw(z)

+ πi+O(t−δ).

Remark 6.1. In the proposition above,

ieiϕt

6

∫
a,b

w(z)

z2
dz = − ieiϕaϕt

6

∫
a,b

dz

w(z)
+

ieiϕt

2

∫
a,b

dz

z2w(z)
.

§6.2. Expressions by the ϑ-function

For w(z)2 = w(aϕ, z)
2 = 4z3 − aϕz

2 + 1, the differential equation (dz/du)2 =

w(aϕ, z)
2 defines the Weierstrass ℘-function

z = ℘(u; g2, g3) +
aϕ
12

, g2 =
a2ϕ
12

, g3 = −1 +
a3ϕ
216

.

The periods of ℘(u; g2, g3) are

ωa =

∫
a

dz

w(aϕ, z)
, ωb =

∫
b

dz

w(aϕ, z)
, τ =

ωb

ωa
, Im τ > 0,

where a and b are the cycles on the elliptic curve Πaϕ
= Π+ ∪Π− for w(aϕ, z) in

Section 6.1 (cf. Figure 5). The ϑ-function ϑ(z, τ) = ϑ(z) is defined by

ϑ(z, τ) =

∞∑
n=−∞

eπiτn
2+2πizn,
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and we set

ν =
1 + τ

2

(cf. [6, 31]). For z, z̃ ∈ Πaϕ
= Π+ ∪Π−, let

F (z̃, z) =
1

ωa

∫ z

z̃

dz

w(z)
=

1

ωa

∫ z

∞

dz

w(z)
− 1

ωa

∫ z̃

∞

dz

w(z)
.

For any z0 ∈ Πaϕ
denote the projections of z0 on the respective sheets by z+0 =

(z0, w(z0)) = (z0, w(z
+
0 )) and z−0 = (z0,−w(z0)) = (z0,−w(z+0 )). If z0 ∈ Π+

(respectively, z0 ∈ Π−), then z±0 ∈ Π± (respectively, z±0 ∈ Π∓).

Proposition 6.2. For any z0 ∈ Πaϕ
,

dz

(z − z0)w(z)
=

1

w(z+0 )
d log

ϑ(F (z+0 , z) + ν, τ)

ϑ(F (z−0 , z) + ν, τ)
− g0(z0)

dz

w(z)
,

g0(z0) =
w′(z+0 )

2w(z+0 )
− 1

ωa

1

w(z+0 )

(
πi+

ϑ′

ϑ
(F (z−0 , z+0 ) + ν, τ)

)
.

Proof. For z0 = ℘(u0) + aϕ/12 ∈ Πaϕ
let u±

0 be such that z±0 = ℘(u±
0 ) + aϕ/12.

Then

dz

(z − z0)w(z)
=

du

℘(u)− ℘(u0)

=
1

w(z+0 )

(
ζ(u− u+

0 )− ζ(u− u−
0 ) + ζ(u+

0 − u−
0 )−

1

2
w′(z+0 )

)
du

=
1

w(z+0 )
d log

σ(u− u+
0 )

σ(u− u−
0 )

+
1

w(z+0 )

(
ζ(u+

0 − u−
0 )−

1

2
w′(z+0 )

)
du.

From

d log
σ(u− u+

0 )

σ(u− u−
0 )

= −2ηa
ωa

(u+
0 − u−

0 ) du+ d log
ϑ(F (z+0 , z) + ν, τ)

ϑ(F (z−0 , z) + ν, τ)
,

ζ(u+
0 − u−

0 ) =
σ′

σ
(u+

0 − u−
0 )

=
2ηa
ωa

(u+
0 − u−

0 ) +
πi

ωa
+

1

ωa

ϑ′

ϑ
(F (z−0 , z+0 ) + ν, τ)

with F (z±0 , z) = ω−1
a

∫ z

z±
0

dz/w(z), the desired formula follows.
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Observe that

log ϑ(F (z±0 , z) + ν, τ)|a = 0,

log
ϑ(F (z+0 , z) + ν, τ)

ϑ(F (z−0 , z) + ν, τ)

∣∣∣
b
= log

ϑ(F (z+0 , zb) + τ + ν, τ)ϑ(F (z−0 , zb) + ν, τ)

ϑ(F (z−0 , zb) + τ + ν, τ)ϑ(F (z+0 , zb) + ν, τ)

= log exp
(
−πi(2(F (z+0 , zb) + ν) + τ)

)
+ log exp

(
πi(2(F (z−0 , zb) + ν) + τ)

)
= 2πiF (z−0 , z+0 )

for zb ∈ b ∩ (Π+)
cl ∩ (Π−)

cl, since ϑ(z ± τ, τ) = e−πi(τ±2z)ϑ(z, τ), where (Π+)
cl

denotes the closure of Π+. Then∫
a

dz

(z − z0)w(z)
= −g0(z0)ωa,∫

b

dz

(z − z0)w(z)
=

2πi

w(z+0 )
F (z−0 , z+0 ) + τ

∫
a

dz

(z − z0)w(z)
.

Differentiation of both sides with respect to z0 at z0 = 0 yields∫
b

dz

z2w(z)
=

4πi

ωa
+ τ

∫
a

dz

z2w(z)
.

Using these formulas we have the following proposition:

Proposition 6.3. For W (z) as in Proposition 6.1 and for z± by (6.4),∫
a

W (z) dz = −(w(z+)g0(z+)− w(z−)g0(z−))ωa

= −1

2
(w′(z++)− w′(z+−))ωa

+
ϑ′

ϑ
(F (z−+ , z++) + ν, τ)− ϑ′

ϑ
(F (z−− , z+−) + ν, τ),(∫

b

−τ

∫
a

)
W (z) dz = 2πi(F (z−+ , z++)− F (z−− , z+−)),

and ∫
a

dz

zw(z)
= −g0(0

+)ωa, g0(0
+) =

1

ωa

(
πi+

ϑ′

ϑ
(F (0−, 0+) + ν, τ)

)
,(∫

b

−τ

∫
a

)
dz

zw(z)
= −2πiF (0−, 0+),(∫

b

−τ

∫
a

)
dz

z2w(z)
=

4πi

ωa
.
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Remark 6.2. In the proposition above, the first formula is rewritten in the form∫
a

W (z) dz = 2
(ϑ′

ϑ

(1
2
F (z−+ , z++) + ν, τ

)
− ϑ′

ϑ

(1
2
F (z−− , z+−) + ν, τ

))
.

The right-hand side is obtained by comparing the poles of (ϑ′/ϑ)( 12F (z−, z+)+ν, τ)

with those of − 1
2w

′(z+) + (ϑ′/ϑ)(F (z−, z+) + ν, τ) on Πaϕ
, and showing that the

difference is a constant (see also [15, pp. 117–119]).

§6.3. Expression of Bϕ(t)

Let us write the quantity Bϕ(t) in terms of

Ωa =

∫
a

dz

w(Aϕ, z)
, Ωb =

∫
b

dz

w(Aϕ, z)
,

Ja =

∫
a

w(Aϕ, z)

z2
dz, Jb =

∫
b

w(Aϕ, z)

z2
dz

with w(Aϕ, z) =
√
4z3 −Aϕz2 + 1 and a, b on ΠAϕ

= Π∗
+∪Π∗

− = limaϕ(t)→Aϕ
Πaϕ

.

By (5.1) the cycles a and b on Πaϕ
may be regarded as those on ΠAϕ

, and are

independent of t for sufficiently large t.

Let 0 < ϕ < π/3. By Proposition 6.3, the integral
∫
a
W (z) dz is expressed

in terms of ϑ∗(±) = (ϑ′/ϑ)( 12F (z−± , z+±) + ν, τ) (Remark 6.2) or w′(z+±) and

(ϑ′/ϑ)(F (z−± , z+±) + ν, τ), in which

F (z−± , z+±) =
1

ωa

∫ z+
±

z−
±

dz

w(aϕ, z)
=

2

ωa

∫ z+
±

∞

dz

w(aϕ, z)
.

Note that
∫
a
W (z) dz has no poles or zeros in Sϕ(t

′
∞, κ1, δ1). Indeed, if, say ϑ∗(+)

or ϑ∗(−) = ∞ at t = t∗, then z+ or z− = ∞, and hence t∗ is a pole or a

zero of y(t), or a pole of yt(t), which is excluded from Sϕ(t
′
∞, κ1, δ1). Consider

z± = z±(t) (cf. (6.4)) moving on the elliptic curve Πaϕ
crossing a- and b-cycles,

and then F (z−± , z+±) = 2p±(t)+2q±(t)τ +O(1) with p±(t), q±(t) ∈ Z. This implies

the boundedness of Re(ϑ′/ϑ)( 12F (z−± , z+±) + ν, τ) or Re(ϑ′/ϑ)(F (z−± , z+±) + ν, τ) in

Sϕ(t
′
∞, κ1, δ1), and hence the modulus of Re

∫
a
W (z) dz is uniformly bounded in

Sϕ(t
′
∞, κ1, δ1). Note that, by (5.1),

1

z2
(w(aϕ, z)− w(Aϕ, z)) =

1

z2
(√

4z3 − aϕz2 + 1−
√
4z3 −Aϕz2 + 1

)
= − t−1Bϕ(t)

2w(Aϕ, z)

(
1 +O(t−1Bϕ(t))

)
.
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By using this and Proposition 6.3, the second formula in Proposition 6.1(1) is

written in the form

log(g11g22) =
ieiϕt

6

∫
a

(w(Aϕ, z)

z2
− t−1Bϕ(t)

2w(Aϕ, z)

)
dz

− 1

4

∫
a

W (z) dz − 1

4
(1 + 2ia)g0(0

+)ωa + πi+O(t−δ),

which implies

ieiϕ
(
tJa − Ωa

2
Bϕ(t)

)
=

3

2

∫
a

W (z) dz +
3

2
(1 + 2ia)g0(0

+)ωa + 6 log(g11g22)− 6πi+O(t−δ).

Recall that G = ĜΘ−σ3
0,∗ = (gij), gij = gij(t) is a solution of the direct monodromy

problem. Suppose that

(6.6) |log(g11g22)| ≪ 1, |log(g12/g22)| ≪ 1 in Sϕ(t
′
∞, κ1, δ1).

By the Boutroux equations (2.1), Im eiϕΩaBϕ(t) is bounded as eiϕt → ∞ through

Sϕ(t
′
∞, κ1, δ1). By using the first formula of Proposition 6.1(1), we have

ieiϕ
(
tJb − Ωb

2
Bϕ(t)

)
=

3

2

∫
b

W (z) dz +
3

2
(1 + 2ia)(2πiF (0−, 0+) + g0(0

+)ωb)

+ 6 log
g12
g22

+O(t−δ),

in which
∫
b
W (z) dz admits a similar expression in terms of the ϑ-function with

τ̂ = (−ωa)/ωb. This implies the boundedness of Im eiϕΩbBϕ(t). Then we have

|Bϕ(t)| ≤ C0 for some C0 > 0 in Sϕ(t
′
∞, κ1, δ1). The implied constant of Bϕ(t) ≪

1 in (5.1) may be supposed to be greater than 2C0, which causes no changes

in the subsequent equations by choosing t′∞ larger if necessary, and hence the

boundedness of Bϕ(t) has been shown independently of (5.1) under (6.6). The

case −π/3 < ϕ < 0 is similarly treated under the supposition

(6.7) |log(g11g22)| ≪ 1, |log(g21/g11)| ≪ 1 in Sϕ(t
′
∞, κ1, δ1).

Remark 6.3. The argument above also works under a weaker condition, say

Bϕ(t) ≪ t(1−δ)/2. The supposition Bϕ(t) ≪ 1 in (5.1) guarantees that each turning

point is located within the distance O(t−1) from its limit one, which enables us to

use the limit Stokes graph in the WKB analysis.



682 S. Shimomura

Proposition 6.4. Suppose that 0 < ϕ < π/3 and (6.6) (respectively, −π/3 < ϕ <

0 and (6.7)). Then, in Sϕ(t
′
∞, κ1, δ1), Bϕ(t) is bounded, and

ieiϕ
(
tJa − Ωa

2
Bϕ(t)

)
=

3

2

∫
a

W (z) dz +
3

2
(1 + 2ia)g0(0

+)ωa

+ 6 log(g11g22)− 6πi+O(t−δ),

= 3
(ϑ′

ϑ

(1
2
F (z−+ , z++) + ν, τ

)
− ϑ′

ϑ

(1
2
F (z−− , z+−) + ν, τ

))
+

3

2
(1 + 2ia)g0(0

+)ωa + 6 log(g11g22)− 6πi+O(t−δ),

g0(0
+) =

1

ωa

(
πi+

ϑ′

ϑ
(F (0−, 0+) + ν, τ)

)
.

Remark 6.4. Conversely, (5.1) implies (6.6) and (6.7).

The following fact guarantees the possibility of limitation with respect to aϕ:

Proposition 6.5. Under the same supposition as in Proposition 6.4, we have(∫ z+
+

z−
+

−
∫ z+

−

z−
−

)
dz

w(aϕ, z)
=

(∫ z+
+

z−
+

−
∫ z+

−

z−
−

)
dz

w(Aϕ, z)
+O(t−1)

uniformly in z±+ , z±− as teiϕ → ∞ through Sϕ(t
′
∞, κ1, δ1).

Proof. To show this proposition we note the lemma below, which follows from the

relations∫
w

z2
dz = −180

A2
ϕ

∫
w dz +

(108
A2

ϕ

−Aϕ

)∫ dz

w
− w

z
− 6

Aϕ
w +

72

A2
ϕ

zw,

ΩaJb − ΩbJa = −
A2

ϕ

15
πi, Ja,b =

∫
a,b

w dz,

with w = w(Aϕ, z), the latter equality being obtained in the same way as in the

proof of Legendre’s relation [6, 31].

Lemma 6.6. ΩaJb − ΩbJa = 12πi.

From the boundedness of Bϕ(t) it follows that ωa,b = Ωa,b + O(t−1). By

Propositions 6.1, 6.3 and Remark 6.1, in the case 0 < ϕ < π/3, we have

log(g12/g22)− τ log(g11g22)

=

(∫
b

−τ

∫
a

)( ieiϕt
6

· w(aϕ, z)
z2

− 1

4
W (z) +

1 + 2ia

4zw(aϕ, z)

)
dz − τπi+O(t−δ)



Boutroux Ansatz for the Degenerate Third Painlevé Transcendents 683

= −2πeiϕt

ωa
− πi

2
(F (z−+ , z++)− F (z−− , z+−)) +O(1)

= −2πeiϕt

ωa
− πi

(
p(t) +

ωb

ωa
q(t)

)
+O(1) = Υ ≪ 1,

with p(t) = p+(t) − p−(t), q(t) = q+(t) − q−(t) ∈ Z, since F (z−± , z+±) = 2p±(t) +

2q±(t)τ , p±, q± ∈ Z. Set eiϕJat/6 + πq(t) = X, eiϕJbt/6 − πp(t) = Y , where

|ImX| and |ImY | are bounded by the Boutroux equations (2.1). Then, by Lemma

6.6 and ωa,b = Ωa,b +O(t−1),

ωaΥ = −2πeiϕt− i(eiϕt(ΩaJb − ΩbJa)/6 + ωbX − ωaY ) +O(1)

= −i(ωbX − ωaY ) +O(1) ≪ 1

with Im(ωb/ωa) > 0, which implies |X|, |Y | ≪ 1, and hence

πp(t) = eiϕJbt/6 +O(1), πq(t) = −eiϕJat/6 +O(1).

Since w(aϕ, z)
−1 − w(Aϕ, z)

−1 = (z2/2)w(Aϕ, z)
−3Bϕ(t)t

−1 +O(t−2), we have∣∣∣∣(∫ z+
+

z−
+

−
∫ z+

−

z−
−

)( 1

w(aϕ, z)
− 1

w(Aϕ, z)

)
dz

∣∣∣∣
≪
∣∣∣∣(∫ z+

+

z−
+

−
∫ z+

−

z−
−

)
z2Bϕ(t)t

−1

w(Aϕ, z)3
dz

∣∣∣∣+ |t−1|

≪
∣∣∣∣t−1

(∫ z+
+

z−
+

−
∫ z+

−

z−
−

)
z2 dz

w(Aϕ, z)3

∣∣∣∣+ |t−1|

≪ |t−1| |p(t)ja + q(t)jb|+ |t−1|
≪ |Jbja − Jajb|+ |t−1| = 2|(∂/∂Aϕ)(JbΩa − JaΩb)|+ |t−1| ≪ t−1,

where ja,b =
∫
a,b

z2w(Aϕ, z)
−3 dz. This completes the proof of the proposition.

§7. Proofs of the main theorems

§7.1. Proofs of Theorems 2.1 and 2.2

Suppose that 0 < ϕ < π/3. Let G = (gij) ∈ SL2(C) be a given matrix with

g11g12g22 ̸= 0 in the inverse monodromy problem. Then

log(g12/g22)− τ log(g11g22)

=

(∫
b

−τ

∫
a

)( ieiϕt
6

· w(aϕ, z)
z2

− 1

4
W (z) +

1 + 2ia

4zw(aϕ, z)

)
dz − τπi+O(t−δ)
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= −2πeiϕt

ωa
− πi

2
(F (z−+ , z++)− F (z−− , z+−))−

πi

2
(1 + 2ia)F (0−, 0+)

− τπi+O(t−δ)

(cf. the proof of Proposition 6.5). By Proposition 6.5, replacing aϕ with Aϕ, we

have

log(g12/g22)− τ log(g11g22) = −2πeiϕt

Ωa
− πi

2
(FAϕ

(z−+ , z++)− FAϕ
(z−− , z+−))

− πi

2
(1 + 2ia)FAϕ

(0−, 0+)− Ωb

Ωa
πi+O(t−δ)

with FAϕ
(z̃, z) = Ω−1

a

∫ z

z̃
dz/w(Aϕ, z). Note that

FAϕ
(z−+ , z++)− FAϕ

(z−− , z+−) = 2(FAϕ
(∞, z++)− FAϕ

(∞, z+−)),

FAϕ
(0−, 0+) = 2FAϕ

(∞, 0+),

and let ℘(u) = ℘(u; g2, g3) with g2 = 1
12A

2
ϕ, g3 = 1

216A
3
ϕ − 1. Let us set

u+ = ΩaFAϕ
(∞, z++), u− = ΩaFAϕ

(∞, z+−), i.e. z+± = ℘(u±) +
Aϕ

12
,

to write

u+ − u− = 2ieiϕt+
i

π

(
Ωa log

g12
g22

− Ωb log(g11g22)
)

− Ωb − (1 + 2ia)ΩaFAϕ
(∞, 0+) +O(t−δ).(7.1)

By the addition theorem for the ℘-function,

℘(u+ + u−) = −℘(u+)− ℘(u−) +
1

4

(℘′(u+)− ℘′(u−)

℘(u+)− ℘(u−)

)2
= −z++ − z+− +

Aϕ

6
+

1

4

(w(z++)− w(z+−)

z++ − z+−

)2
.

By (6.4), z+ = y and z− = (i/2)e−iϕy−1Γ0(t, y, y
t) satisfy

z++ + z+− = e−iϕK+,

w(z+±) = ie−iϕ(b3/λ)(z
+
±) = 1− ie−iϕΓ0(t, y, y

t)z+± +O(t−1),

and hence

℘(u+ + u−) = −e−iϕK+ +
Aϕ

6
+

1

4
(ie−iϕΓ0(t, y, y

t) +O(t−1))2

=
Aϕ

6
− 1

4
(4e−iϕK+ + e−2iϕΓ0(t, y, y

t)2) +O(t−1)

= −Aϕ

12
+O(t−1),
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since 4e−iϕK+ + e−2iϕΓ0(t, y, y
t)2 = aϕ +O(t−1). This implies

(7.2) u+ + u− =

∫ 0+

∞

dz

w(Aϕ, z)
+O(t−1) = ΩaFAϕ

(∞, 0+) +O(t−1).

From (7.1) and (7.2) with ΩaFAϕ
(∞, 0+) = Ω0, it follows that

u+ =

∫ z+
+

∞

dz

w(Aϕ, z)

= ieiϕt+
i

2π

(
Ωa log

g12
g22

− Ωb log(g11g22)
)
− Ωb

2
− iaΩ0 +O(t−δ),

u− =

∫ z+
−

∞

dz

w(Aϕ, z)

= −ieiϕt− i

2π

(
Ωa log

g12
g22

− Ωb log(g11g22)
)
+

Ωb

2
+ (1 + ia)Ω0 +O(t−δ),

which leads us to the asymptotic expressions of Theorem 2.1 and Remark 2.1.

Justification. The justification of y(x) as a solution of (1.2) is made along the

lines of [15, pp. 105–106, 120–121]. Let G = (g12/g22, g11g22) be a given point such

that g11g12g22 ̸= 0 on the monodromy manifold for (1.4). In addition to y(x)

obtained above, we have the following expression for Bϕ(t) from Proposition 6.4:

Proposition 7.1. In Sϕ(t
′
∞, κ1, δ1),

ieiϕ
(
tJa − Ωa

2
Bϕ(t)

)
= 3
(ϑ′

ϑ
(Ω−1

a i(x− x+
0 ) + ν, τΩ) +

ϑ′

ϑ

(
Ω−1

a (i(x− x+
0 )− Ω0) + ν, τΩ

))
+

3

2
(1 + 2ia)g0(0

+)Ωa + 6 log(g11g22)− 6πi+O(t−δ)

with x = eiϕt, τΩ = Ωb/Ωa.

The equation about u+ and the proposition above provide the leading term

expressions

yas = yas(G, t) = ℘(i(eiϕt− x+
0 ); g2(Aϕ), g3(Aϕ)) +

Aϕ

12

and (Bϕ)as = (Bϕ)as(G, t) without O(t−δ), where x+
0 depends on (g12/g22, g11g22).

Taking (4.2) and (5.1) into account, we set

ytas = −yas
2
t−1 + ieiϕ

√
4y3as −Aϕy2as + 1− (3ie−iϕ(1 + 2ia) + (Bϕ)asyas)yast−1,
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where the branch of the square root is chosen in such a way that ytas is com-

patible with (∂/∂t)yas. Then (yas, y
t
as) = (yas(G, t), ytas(G, t)) fulfils (5.1) with

Bϕ(t) = (Bϕ)as(G, t) in the domain Ŝ(ϕ, t∞, κ0, δ2) = {t | Re t > t∞, |Im t| <
κ0} \

⋃
iσ∈Z0

{|t − e−iϕσ| < δ2} with Z0 = {ix+
0 + ΩaZ + ΩbZ} ∪ {ix+

0 + Ω0 +

ΩaZ + ΩbZ} ∪ {ix+
0 + ξ0 | ℘(ξ0) = −Aϕ/12}. Let Gas(t) be the monodromy

data for system (1.4) containing (yas, y
t
as). As a result of the WKB analysis for

the direct monodromy problem we have ∥Gas(t) − G∥ ≪ t−δ, which holds uni-

formly in a neighbourhood of G. Then the justification scheme of Kitaev [13]

applies to our case. Using the maximal modulus principle in each neighbourhood

of iσ = ix+
0 + {Ω0 + ΩaZ + ΩbZ} ∪ {ξ0 | ℘(ξ0) = −Aϕ/12}, we obtain Theorem

2.1. Theorem 2.2 is proved by the same argument as above.

§7.2. Proof of Theorem 2.3

Let (1.4) with yt = (d/dt)y be an isomonodromy system. Equation (1.2), system

(1.4) and the function aϕ with yt = (d/dt)y remain invariant under the substitution

ϕ = ϕ̃+ 2mπ/3, y = e2mπi/3ỹ, x = e2mπi/3x̃,

λ = e2mπi/3λ̃, aϕ = e2mπi/3aϕ̃.

To show the theorem we use this symmetry (cf. [14]). Let ϕ be such that 0 <

|ϕ − 2mπ/3| < π/3. Then a new system with respect to (λ̃, ỹ, x̃, ϕ̃) is an iso-

monodromy system for 0 < |ϕ̃| < π/3. Denote by G(m) a connection matrix as

the matrix monodromy data for the system governed by ỹ(x̃) = e−2mπi/3y(x) =

e−2mπi/3y(e2mπi/3x̃). We would like to know the relation between G(m) and G.

The matrix solutions of the new system are

Ỹ ∞
j (λ̃) ∼ λ̃−(1/2+ia)σ3 exp(−(i/6)eiϕ̃tλ̃2σ3)

as λ̃ → ∞ through the sector |arg λ̃+ ϕ̃/2− jπ/2| < π/2, and

Ỹ 0
j (λ̃) ∼ (i/

√
2)(σ1 + σ3) exp(−(2i/3)eiϕ̃tλ̃−1σ3)

as λ̃ → 0 through the sector |arg λ̃− ϕ̃− jπ| < π. The connection matrix G(m)

is defined by Ỹ ∞,∗
0 (λ̃) = Ỹ ∞

0 (λ̃)Θ−σ3
0,∗ = Ỹ 0

0 (λ̃)G
(m). Note that Ỹ ∞

0 (λ̃) and Ỹ 0
0 (λ̃)

are also expressed as

Ỹ ∞
0 (λ̃) = Ỹ ∞

0 (e−2mπi/3λ) ∼ λ−(1/2+ia)σ3 exp(−(i/6)eiϕtλ2σ3)e
(2mπi/3)(1/2+ia)σ3

in the sector |arg λ+ ϕ/2−mπ| < π/2, and that

Ỹ 0
0 (λ̃) = Ỹ 0

0 (e
−2mπi/3λ) ∼ (i/

√
2)(σ1 + σ3) exp(−(2i/3)eiϕtλ−1σ3)
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in the sector |arg λ− ϕ| < π. Then we have Ỹ 0
0 (λ̃) = Ŷ 0

0 (λ) and, if m ≥ 1,

Ỹ ∞
0 (λ̃) = Ŷ ∞

2m(λ)e(2mπi/3)(1/2+ia)σ3

= Ŷ ∞
0 (λ)Ŝ∞

0 Ŝ∞
1 · · · Ŝ∞

2m−2Ŝ
∞
2m−1e

(2mπi/3)(1/2+ia)σ3 ,

which implies, by Remark 3.2,

G(m) = GS∞
0 S∞

1 · · ·S∞
2m−2S

∞
2m−1e

(2mπi/3)(1/2+ia)σ3 .

This combined with Proposition 3.4 yields the expression of G(m) for m ≥ 1 as

in the theorem. Note that P∗(u,A) = ℘(u; g2(A), g3(A)) + 1
12A solves (Pu)

2 =

4P 3 −AP 2 + 1. Then

P∗(u,A) = e−2πi/3P∗(e
2πi/3u, e2πi/3A) = e2πi/3P∗(e

−2πi/3u, e−2πi/3A).

By Theorems 2.1 and 2.2, ỹ(x̃) = e−2mπi/3y(x) for 0 < |ϕ − 2mπ/3| = |ϕ̃| < π/3

is represented by

e−2mπi/3y(x) = ỹ(x̃) = P∗
(
i(x̃− x0(G

(m),Ωϕ̃
a ,Ω

ϕ̃
b,Ω

ϕ̃
0 )) +O(x−δ);Aϕ̃

)
.

Using the relation above, we have

y(x) = e2mπi/3P∗
(
i(x̃− x0(G

(m),Ωϕ̃
a ,Ω

ϕ̃
b,Ω

ϕ̃
0 )) +O(x−δ);Aϕ̃

)
= P∗

(
i(x− e2mπi/3x0(G

(m),Ωϕ̃
a ,Ω

ϕ̃
b,Ω

ϕ̃
0 )) +O(x−δ);Aϕ

)
= P∗

(
i(x− x0(G

(m),Ωϕ
a ,Ω

ϕ
b,Ω

ϕ
0 )) +O(x−δ);Aϕ

)
,

which is denoted by P (Aϕ, x0(G
(m),Ωϕ

a ,Ω
ϕ
b,Ω

ϕ
0 );x) as in the theorem.

§8. Modulus Aϕ and the Boutroux equations

Recall the elliptic curve ΠA for w(A, z)2 = 4z3 − Az2 + 1 defined in Section 2.2.

For a given ϕ ∈ R we would like to examine the modulus Aϕ ∈ C such that, for

every cycle c ⊂ ΠAϕ
,

Im eiϕ
∫
c

w(Aϕ, z)

z2
dz = 0.

First, for |ϕ| ≤ π/3, let us consider Aϕ satisfying the Boutroux equations

(BE)ϕ Im eiϕIa(Aϕ) = 0, Im eiϕIb(Aϕ) = 0,

where a, b denote the basic cycles given in Section 2.2 and

Ia,b(A) =

∫
a,b

w(A, z)

z2
dz =

∫
a,b

1

z2

√
4z3 −Az2 + 1 dz.



688 S. Shimomura

It is easy to see that w(A, z)2 = 4z3 −Az2 + 1 has double roots z0, z1 if and only

if

A = 3 · 22/3, z0, z1 = 2−1/3, z2 = −4−2/3;

A = 3 · 22/3e±2πi/3, z0, z1 = 2−1/3e±2πi/3, z2 = −4−2/3e±2πi/3.

Example 8.1. When ϕ = 0, we have Ia(3 · 22/3) = 0, Ib(3 · 22/3) = −24/333/2.

Indeed,

Ib(3 · 22/3) = 2

∫ 2−1/3

−4−2/3

2

z2
(
i
√
2−1/3 − z

)2√
z + 4−2/3 dz

= −42/3
∫ 2

−1

(2− t)
√
t+ 1

t2
dt,

in which the residue of the integrand at z = 0 vanishes.

Note that a is a cycle enclosing the cut [z0, z1]. In accordance with [14, Sect.

7] we begin with the following:

Proposition 8.1. Suppose that Im Ia(A) = 0. Then A ∈ R.

Proof. Set

Ja(A) =

∫
−a

1

z2
v(A, z) dz

with v(A, z) =
√
4z3 +Az2 − 1 = −iw(A,−z). Since Ia(A) = −iJa(A), the sup-

position means Ja(A) ∈ iR. In this proof, to simplify the description, we write

v(A, z) = vA(z), v(Ā, z) = vĀ(z) and v(A, z)± v(Ā, z) = (vA ± vĀ)(z). Then

0 = Ja(A)+Ja(A) = Ja(A)+Jā(Ā) = Ja(A)−Ja(Ā) = (A−Ā)

∫
−a

dz

(vA + vĀ)(z)
.

The polynomials vA(z)
2 and vĀ(z)

2 have the roots −z0, −z1, −z2, and −z0,

−z1, −z2, respectively. The algebraic functions (vA ± vĀ)(z) may be considered

on the two-sheeted Riemann surface glued along the cuts [−z0,−z1], [−z0,−z1],

[−z2,−z2]∪ [−∞,−Re z2] (cf. Figure 6). The cycle −a may be supposed to enclose

both cuts [−z0,−z1], [−z0,−z1], and the cycles as in Figure 6(a.1) and (a.2) may

be deformed into contours consisting of horizontal and vertical lines and enclos-

ing the cuts [−z2,−z2] ∪ [−∞,−Re z2] clockwise as in Figure 6(a∗.1) and (a∗.2),

respectively. Possible extension of this contour is caused by further movement of

−z0, −z1 and −z2, and is given by adding horizontal and vertical lines located in

the symmetric position with respect to the real axis. To show A ∈ R it is sufficient

to verify that, under the supposition A− Ā ̸= 0,

J =

∫
−a

dz

(vA + vĀ)(z)
̸= 0.
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s
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s
s �
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−z0
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s
s
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s

s
]

−z1

−z0

−z2

−z1

−z0
−z2

−a

(a.2)

s
s
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s

s�y

z −z1

−z0

−z2 = γ + iβα+ iβ

−z1

−z0

−z2 = γ − iβα− iβ

α

−a

(a∗.2)

Figure 6. Modification of the cycle −a

Let us compute this integral along the contour −a, say as in Figure 6(a∗.2) with

vertices α± iβ, γ ± iβ such that −z2,−z2 = γ ± iβ, in which α ≤ γ, β ≥ 0, and α

may be supposed to be α < 0.

The integral J is decomposed into three parts: J = J0 + Jhor + Jver with the

real line part

J0 = 2

∫ α

−∞

dz

(vA + vĀ)(z)
,

the horizontal part Jhor = J+
hor + J−

hor, where

J+
hor =

∫ γ

α

ds

(vA + vĀ)(s+ iβ)
+

∫ α

γ

ds

(−vA + vĀ)(s+ iβ)
,

J−
hor =

∫ γ

α

ds

(−vA + vĀ)(s− iβ)
+

∫ α

γ

ds

(−vA − vĀ)(s− iβ)
,
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and the vertical part Jver = J+
ver + J−

ver, where

J+
ver =

∫ β

0

i dt

(vA + vĀ)(α+ it)
+

∫ 0

β

i dt

(−vA + vĀ)(α+ it)
,

J−
ver =

∫ −β

0

i dt

(−vA + vĀ)(α+ it)
+

∫ 0

−β

i dt

(−vA − vĀ)(α+ it)
.

Then we have

Jhor =
2

A− Ā

(∫ γ

α

vA(s+ iβ)

(s+ iβ)2
ds−

∫ γ

α

vĀ(s− iβ)

(s− iβ)2
ds

)
∈ R

and

Jver =
2i

A− Ā

(∫ β

0

vA(α+ it)

(α+ it)2
dt+

∫ β

0

vĀ(α− it)

(α− it)2
dt

)
∈ R,

and hence Jhor + Jver ∈ R. Furthermore, observing, for −t = x− α, t ≥ 0, α < 0,

vA(x) = (−4(t− α)3 + (ReA+ i ImA)(t− α)2 − 1)1/2 = i(g(t)− ih(t))1/2,

g(t) = 4(t− α)3 − ReA · (t− α)2 + 1, h(t) = ImA · (t− α)2,

we have

1

2
J0 =

∫ α

−∞

dx

(vA + vĀ)(x)
= − i√

2

∫ ∞

0

dt√
g(t) +

√
g(t)2 + h(t)2

∈ iR \ {0},

which implies J ̸= 0 under the supposition A− Ā ̸= 0. In the case where extension

by horizontal or vertical lines occurs, the contributions from these parts to J are

integrals analogous to Jhor or Jver, and J ̸= 0 are similarly shown.

Let us examine Ia(A) for A ∈ R. It is easy to see that w(A, z)2 has real roots

z2 < z1 < z0 if A > 3 · 22/3. Then Ia(A) ∈ iR \ {0}. For A = 3 · 22/3 we have

z2 < z1 = z0 = 2−1/3, and then Ia(3 · 22/3) = 0.

Suppose that A < 3 · 22/3. The roots of w(A, z)2 are α± iβ and z2 with α, β,

z2 ∈ R, and a is a cycle enclosing the cut [α− iβ, α+ iβ]. Then Ia(A) ∈ iR, since
Ia(A) = −Ia(A), and the integral

Ia(A) = 2i

∫ β

−β

w(A,α+ it)

(α+ it)2
dt = 4i

∫ β

0

Re
w(A,α+ it)

(α+ it)2
dt

satisfies, for A < 3 · 22/3,

∂

∂A

(1
i
Ia(A)

)
= 2

∫ β

0

Rew(A,α+ it)−1 dt =
√
2

∫ β

0

√
g∗ +

√
g2∗ + h2

∗√
g2∗ + h2

∗
dt > 0,
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where

g∗ = g∗(t) = Rew(A,α+ it)2 = 4(α3 − 3αt2)−A(α2 − t2) + 1,

h∗ = h∗(t) = Imw(A,α+ it)2 = 4(−t3 + 3α2t)− 2Aαt.

This implies Ia(A) ∈ iR \ {0} for A < 3 · 22/3.
The fact above combined with Proposition 8.1 leads us to the following:

Proposition 8.2. If ϕ = 0, then the Boutroux equations (BE)0 admit a unique

solution A0 = 3 · 22/3.

Corollary 8.3. For every A ∈ C, (Ia(A), Ib(A)) ̸= (0, 0).

Proof. If Ia(A) = 0, then A ∈ R by Proposition 8.1. By Proposition 8.2 and

Example 8.1, A = 3 · 22/3 and Ib(A) ̸= 0.

Proposition 8.4. Suppose that, for Aϕ solving (BE)ϕ with 0 < |ϕ| ≤ π/3, the

elliptic curve ΠAϕ
degenerates. Then ϕ = π/3 or −π/3 and A±π/3 = 3·22/3e∓2πi/3.

Proof. When ΠAϕ
degenerates, Aϕ = 3 · 22/3e2kπi/3, k = 0,±1. Suppose that

Aϕ = 3 · 22/3e2πi/3, and that the roots of w(Aϕ, z)
2 are z0 = z1 and z2 ̸= z0, z1.

Then

eiϕ
∫ z2

z0

1

z2

√
4z3 −Aϕz2 + 1 dz = ei(ϕ−2π/3)

∫ ζ2

ζ0

1

ζ2

√
4ζ3 − 3 · 22/3ζ2 + 1 dζ ̸= 0

with ζ0,2 = z0,2e
−2πi/3 ∈ {2−1/3,−4−2/3} is real valued, which implies ϕ = −π/3.

Similarly, if Aϕ = 3 · 22/3e−2πi/3, then ϕ = π/3.

Proposition 8.5. If ϕ = ±π/3, then the Boutroux equations (BE)±π/3 admit a

unique solution A±π/3 = 3 · 22/3e∓2πi/3.

Proof. For ϕ = π/3, (BE)π/3 are equivalent to

eπi/3
∫
c

1

z2

√
4z3 −Aπ/3z2 + 1 dz ∈ R

for every cycle c on ΠAπ/3
, which is written as (BE)0 with ϕ = 0,

eπi
∫
ce2πi/3

1

ζ2

√
4ζ3 − e2πi/3Aπ/3ζ2 + 1 dζ ∈ R (z = e−2πi/3ζ).

Then by Proposition 8.2, e2πi/3Aπ/3 = 3 ·22/3 is a unique solution of (BE)π/3.

The function h(A) = Ia(A)/Ib(A) [21, Appx. I] is useful in examining Aϕ.
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Proposition 8.6. Suppose that A ∈ C.

(1) If A solves (BE)ϕ for some ϕ ∈ R and Ib(A) ̸= 0, then h(A) ∈ R.
(2) If h(A) ∈ R \ {0}, then, for some ϕ ∈ R, A solves (BE)ϕ.

Proof. Suppose that h(A) = ρ ∈ R, and write Ia(A) = u + iv, Ib(A) = U + iV

with u, v, U , V ∈ R. Then u = ρU , v = ρV , and hence v/u = V/U = − tanϕ for

some ϕ ∈ [−π/2, π/2]. This implies Im eiϕIa(A) = Im eiϕIb(A) = 0.

Proposition 8.7. The set {A ∈ C | A solves (BE)ϕ for some ϕ ∈ R} is bounded.

Proof. The roots of w(A, z) are z0, z1 ∼ ±A−1/2, z2 ∼ A/4 if A is large. Then∫ z0

z2

1

z2
w(A, z) dz ∼

∫ A−1/2

A/4

1

z2

√
4z3 −Az2 + 1 dz

∼ iA1/2

∫ 4A−3/2

1

1

t

√
1− t dt

∼ iA1/2(2 + log(2A−3/2)) ∼ −3i

2
A1/2 logA

and ∫ z1

z0

1

z2
w(A, z) dz ∼

∫ A−1/2

−A−1/2

1

z2

√
4z3 −Az2 + 1 dz

∼ A1/2

∫ 1

−1

1

t2

√
1− t2 dt

∼ πA1/2.

This implies h(A) ̸∈ R if A is sufficiently large, which completes the proof.

The following fact is used in discussing solutions of (BE)ϕ.

Let 0 < |ϕ| < π/3, and write

Ia(A) = u(A) + iv(A), Ib(A) = U(A) + iV (A).

Note that A solves (BE)ϕ if and only if

Im eiϕIa(A) = u(A) sinϕ+ v(A) cosϕ = 0,

Im eiϕIb(A) = U(A) sinϕ+ V (A) cosϕ = 0,

that is,

(8.1) u(A) tanϕ+ v(A) = 0, U(A) tanϕ+ V (A) = 0.
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Then, by the Cauchy–Riemann equations, the Jacobian for (8.1) with A = x+ iy

is written as

det J(ϕ,A) = det

(
ux tanϕ+ vx uy tanϕ+ vy
Ux tanϕ+ Vx Uy tanϕ+ Vy

)
= (1 + tan2 ϕ)(vxVy − vyVx)

= −1

4
(1 + tan2 ϕ)|Ωa(A)|2 Im Ωb(A)

Ωa(A)
,(8.2)

where Ωa(A) and Ωb(A) are periods of the elliptic curve w(A, z). For 0 < |ϕ| < π/3,

(d/dt)(8.1) with t = tanϕ is written as

J(ϕ,A)

(
x′(t)

y′(t)

)
+

(
u(A)

U(A)

)
≡ o.

Then we have

(8.3) (x′(t), y′(t)) ̸= (0, 0) and (d/dϕ)A = (x′(t) + iy′(t)) cos−2 ϕ ̸= 0

for 0 < |ϕ| < π/3.

Proposition 8.8. Suppose that, for some ϕ0 such that 0 < |ϕ0| < π/3, Aϕ0
solves

(BE)ϕ0 . Then there exists a trajectory T0 : A = χ(ϕ0, ϕ) for 0 < |ϕ| < π/3 with

the properties

(1) χ(ϕ0, ϕ0) = Aϕ0
;

(2) for each ϕ, A = χ(ϕ0, ϕ) solves (BE)ϕ;

(3) χ(ϕ0, ϕ) is smooth for 0 < |ϕ| < π/3.

Proof. Since the Jacobian (8.2) satisfies det J(ϕ0, Aϕ0
) ∈ R \ {0}, there exists a

local trajectory A = χloc(ϕ0, ϕ) having the properties (1), (2) and (3) above for

|ϕ−ϕ0| < δ, where δ is sufficiently small. Since (8.2) is in R\{0} for 0 < |ϕ| < π/3,

χloc(ϕ0, ϕ) may be extended to the interval 0 < |ϕ| < π/3.

Proposition 8.9. The trajectory T0 : A = χ(ϕ0, ϕ) given above may be extended

to |ϕ| ≤ π/3 such that χ(ϕ0, ϕ) is continuous in ϕ and that χ(ϕ0, 0) = A0 = 3·22/3,
χ(ϕ0,±π/3) = A±π/3 = 3 · 22/3e∓2πi/3.

Proof. To show that χ(ϕ0, ϕ) → A0 as ϕ → 0, suppose to the contrary that there

exists a sequence {ϕν} such that ϕν → 0 and that χ(ϕ0, ϕν) does not converge

to A0. There exists a subsequence {ϕν(n)} such that χ(ϕ0, ϕν(n)) → A′
0 for some

A′
0 ̸= A0, since, by Proposition 8.7, the trajectory T0 for 0 < |ϕ| < π/3 is bounded.

Then we have Im Ia(A
′
0) = Im Ib(A

′
0) = 0, which contradicts the uniqueness of a
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solution of (BE)0. Hence χ(ϕ0, ϕ) is extended to ϕ = 0 and is continuous in a

neighbourhood of ϕ = 0. By Proposition 8.5, it is possible to extend χ(ϕ0, ϕ) to

ϕ = ±π/3 by the same argument.

Lemma 8.10. h′(A) = −6πiIb(A)−2.

Proof. From I ′a,b(A) = −Ωa,b/2 and Lemma 6.6, the conclusion follows.

Corollary 8.11. If Ib(A) ̸= 0,∞, then h(A) is conformal around A.

By Example 8.1, h(A) is conformal at A0 = 3 ·22/3 and h(A0) = 0. By Lemma

8.10,

h(A) = h′(A0)(A−A0) + o(A−A0) = − πi

25/3 · 32
(A−A0) + o(A−A0)

around A = A0. By Proposition 8.6, for a sufficiently small ε > 0, the inverse

image of (−ε, 0) ∪ (0, ε) under h(A) is a trajectory T0− ∪ T0+ : A = χ±
0 (ϕ) solving

(BE)ϕ, and is expressed as

(8.4) χ±
0 (ϕ) = A0 + γ0(ϕ)i+ o(γ0(ϕ)),

near ϕ = 0, where γ0(ϕ) ∈ R is continuous in ϕ and γ0(0) = 0.

The fact above implies that there exists a local trajectory solving (BE)ϕ near

ϕ = 0. From this, a trajectory for |ϕ| ≤ π/3 as in Proposition 8.9 may be obtained.

Furthermore, if two trajectories χ1(ϕ) and χ2(ϕ) solving (BE)ϕ satisfy χ1(ϕ0) =

χ2(ϕ0) for some ϕ0 such that 0 < |ϕ0| < π/3, then (8.2) or the conformality of

h(A) at A = A0 implies χ1(ϕ) ≡ χ2(ϕ). Thus we have the following:

Proposition 8.12. There exists a trajectory A = Aϕ for |ϕ| ≤ π/3 with the

properties

(1) for each ϕ, Aϕ is a unique solution of (BE)ϕ;

(2) Aϕ is smooth in ϕ for 0 < |ϕ| < π/3 and continuous in ϕ for |ϕ| ≤ π/3.

For any cycle c, it is easy to see that

eiϕ
∫
c

1

z2
w(Aϕ, z) dz = ei(ϕ∓2π/3)

∫
e∓2πi/3c

1

ζ2
w(e∓2πi/3Aϕ, ζ) dζ,

eiϕ
∫
c

1

z2
w(Aϕ, z) dz = −ei(ϕ+π)

∫
c

1

ζ2
w(Aϕ, ζ) dζ,

which yields the following:

Proposition 8.13. Set Aϕ∓2π/3 = e∓2πi/3Aϕ for |ϕ| ≤ π/3. Then for |ϕ| ≤ π,

Aϕ is a unique solution of (BE)ϕ. Furthermore, Aϕ+π = Aϕ, A−ϕ = Aϕ.



Boutroux Ansatz for the Degenerate Third Painlevé Transcendents 695

Let us examine the properties of Aϕ in more detail. Note that the trajectory

A = Aϕ = x+ iy for |ϕ| < π/3 satisfies h(Aϕ) ∈ R. Then, by (8.3),

d

dt
h(Aϕ) = (x′(t) + iy′(t))(−6πi)Ib(Aϕ)

−2 ∈ R \ {0}

with t = tanϕ for 0 < |ϕ| < π/3. Setting Ib(Aϕ)
−1 = P + iQ, we have

− 1

6π
Im

d

dt
h(Aϕ) = x′(t)(P 2 −Q2)− 2y′(t)PQ = 0.

If x′(t0) = 0 for some t0 = tan(ϕ0) ̸= 0,±∞, then PQ = 0, and hence Ib(Aϕ0
) ∈

iR\{0} or R\{0}. This is impossible for 0 < |ϕ| < π/3, which implies x′(t) ̸= 0 for

0 < |ϕ| < π/3. Since A±π/3 = A0e
∓2πi/3, we have x′(t) < 0 for 0 < ϕ < π/3 and

x′(t) > 0 for −π/3 < ϕ < 0. If y′(t0) = 0 for some t0 with 0 < |ϕ0| < π/3, then

P 2 −Q2 = 0, i.e. Ib(Aϕ0
)−1 = P (1± i), implying ϕ0 = ±π/4. Note that PQ < 0,

|P | > |Q| for −π/4 < ϕ < 0 and that PQ > 0, |P | > |Q| for 0 < ϕ < π/4. It

follows that y′(t) < 0 for 0 < |ϕ| < π/4.

Proposition 8.14. The trajectory Aϕ = x(t) + iy(t) with t = tanϕ has the prop-

erties

(1) x′(t) > 0 for −π/3 < ϕ < 0, and x′(t) < 0 for 0 < ϕ < π/3;

(2) y′(t) < 0 for 0 < |ϕ| < π/4 and y′(tan(±π/4)) = 0.

Thus we have the following proposition:

Proposition 8.15. For every ϕ ∈ R there exists a trajectory A = Aϕ with the

properties

(1) for each ϕ, Aϕ is a unique solution of (BE)ϕ;

(2) Aϕ±2π/3 = e±2πi/3Aϕ, Aϕ+π = Aϕ, A−ϕ = Aϕ;

(3) A0 = 3 · 22/3, A±π/3 = 3 · 22/3e∓2πi/3;

(4) Aϕ is continuous in ϕ ∈ R, and smooth in ϕ ∈ R \ {mπ/3 | m ∈ Z}.

Figure 7 is a rough drawing of the trajectory of Aϕ.

By Proposition 8.14, when |ϕ| is sufficiently small, the location of the turning

points may be examined. Small variance of Aϕ around ϕ = 0 is given by Aϕ =

A0 + δϕ with δϕ having the properties (1) δϕ → 0 as ϕ → 0; (2) Re δϕ ≤ 0;

(3) Im δϕ ≥ 0 if ϕ ≤ 0 and Im δϕ ≤ 0 if ϕ ≥ 0. Then the roots z0, z1 = 2−1/3 and

z2 = −4−2/3 of w(A0, z)
2 vary in such a way that

z0 = 2−1/3 + ϱ+O(ϱ2), z1 = 2−1/3 − ϱ+O(ϱ2), z2 = −4−2/3 +O(ϱ2)
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s s
s

s 	
A−2π/3, Aπ/3

A−π/3, A2π/3

A0, A±π0

Figure 7. Trajectory of Aϕ for |ϕ| ≤ π

with ϱ = 2−2/3 · 3−1/2δ
1/2
ϕ . Indeed, insertion of z0 = 2−1/3 + ϱ+, z1 = 2−1/3 + ϱ−,

z2 = −4−2/3 + ϱ2 into z0 + z1 + z2 = Aϕ/4, z1z2 + z2z0 + z0z1 = 0, z0z1z2 = −1/4

yields

p+ ϱ2 = δϕ/4, p+ 4ϱ2 + 24/3q = O(pϱ2), p− 2ϱ2 + 21/3q = O(|ϱ2|(|p|+ |q|))

with p = ϱ+ + ϱ−, q = ϱ+ϱ−, from which the estimates above follow. Thus we

have the following:

Proposition 8.16. If |ϕ| is sufficiently small, the turning points λk and zk = λ−2
k

(k = 0, 1, 2) are represented as

λ0 = 21/6 − εϕe
iθϕ +O(ε2ϕ), λ1 = 21/6 + εϕe

iθϕ +O(ε2ϕ), λ2 = 22/3i+O(ε2ϕ),

z0 = 2−1/3 + 21/2εϕe
iθϕ +O(ε2ϕ), z1 = 2−1/3 − 21/2εϕe

iθϕ +O(ε2ϕ),

z2 = −4−2/3 +O(ε2ϕ).

Here, εϕ and θϕ fulfil

(1) εϕ > 0 and εϕ → 0 as ϕ → 0; and

(2) θϕ → π/4 as ϕ → 0 with ϕ < 0, and θϕ → −π/4 as ϕ → 0 with ϕ > 0.
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134(176) (1987), 421–444, 448; English translation: Math. USSR-Sb. 62 (1989), 421–444.
Zbl 0662.34056 MR 0922633

[13] A. V. Kitaev, The justification of asymptotic formulas that can be obtained by the method
of isomonodromic deformations (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI) 179 (1989), Mat. Vopr. Teor. Rasprostr. Voln. 19, 101–109, 189–190;
English translation: J. Soviet Math. 57 (1991), 3131–3135. Zbl 0745.34061 MR 1039598

[14] A. V. Kitaev, The isomonodromy technique and the elliptic asymptotics of the first Painlevé
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