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Abstract

First, we simplify the existing classification due to Kawakita and Yamamoto of 3-dimen-
sional divisorial contractions with centre a cAn-singularity, also called a compound An

singularity. Next, we describe the global algebraic divisorial contractions corresponding
to a given local analytic equivalence class of divisorial contractions with centre a point.
Finally, we consider divisorial contractions of discrepancy at least 2 to a fixed variety with
centre a cAn-singularity. We show that if there exists one such divisorial contraction, then
there exist uncountably many such divisorial contractions.

Mathematics Subject Classification 2020: 14E30 (primary); 14E05, 14J30 (secondary).
Keywords: weighted blow-up, terminal singularity, Mori theory.

§1. Introduction

The minimal model program and the Sarkisov program give a general framework

for the birational classification of algebraic varieties, a central problem in algebraic

geometry. Morphisms called divisorial contractions play a major role in both the

minimal model program and the Sarkisov program. Therefore, classifying divisorial

contractions is a fundamental problem.

A divisorial contraction is a proper birational morphism φ : Y → X between

terminal algebraic varieties such that the exceptional locus of φ is a prime divisor

and −KY is φ-ample. The explicit classification of 3-dimensional divisorial con-

tractions where the centre is a point has been completed, except when the centre

is a cDn or a cEn-singularity and the discrepancy is 1. The case where the centre

is a non-Gorenstein point has been done in [Hay99, Hay00, Hay05, Kaw05, Kaw12,

Kaw96] and the Gorenstein case in [Kaw01, Kaw02, Kaw03], [Kaw05, Thm. 1.2]

and [Yam18].
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Above, the divisorial contractions are classified up to local analytic equiva-

lence, meaning that we allow local analytic changes on X around P and on Y

around the exceptional locus. Since the local analytic germ of a Q-factorial vari-

ety can be non-factorial, the classification is given more generally for Q-Gorenstein

varieties with terminal singularities without requiring Q-factoriality. If a morphism

φ : Y → X is a divisorial contraction in this sense, without requiring Q-factoriality,

and if X is Q-factorial, then we automatically find that Y is Q-factorial, since the

prime exceptional divisor is Cartier.

In this paper we focus on cAn-singularities, also called compound An sin-

gularities, meaning that a general section through the point defines the surface

An-singularity; see Definition 3.7. Compound An singularities are the simplest 3-

dimensional terminal hypersurface singularities. There is an ongoing project with

the goal of showing that all smooth Fano 3-folds are obtainable by deformations

from singular toric 3-folds with cAn-singularities.
1

The classification due to Hayakawa, Kawakita, Kawamata and Yamamoto

gives a list of weighted blow-ups such that every divisorial contraction is locally

analytically equivalent to at least one member of the list. One way to improve

the classification is to find which members of the classification lists give locally

analytically equivalent blow-ups:

Problem 1.1. Describe the local analytic equivalence classes of 3-dimensional

divisorial contractions with centre a point.

This is roughly what was asked in [Cor00, Prob. 3.8].

We have solved Problem 1.1 for cAn-singularities in Theorem 6.1 and Lemma

6.2. This can drastically simplify the classification, as the complicated family in

Theorem 3.10(3) reduces to just one simple case, Theorem 6.1(3).

The next step is to classify divisorial contractions globally algebraically:

Problem 1.2. Describe all global algebraic blow-ups up to isomorphism over the

base that are locally analytically equivalent to a given weighted blow-up.

We have solved Problem 1.2 completely in Corollary 5.6. The global algebraic

classification has applications in birational rigidity, finding birational relations and

computing Sarkisov links; see [AK16, AZ16, Oka14, Oka18, Oka20, Pae20].

To prove that a given morphism is a divisorial contraction of a certain type,

for example when computing Sarkisov links, it is best to have a classification list

1A. Corti and H. Ruddat, Smoothing toroidal crossing Fano threefolds with admissible log
singularities, unpublished.
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Singularity Isomorphism over base Local analytic equivalence

Smooth point Uncountable Countable

cAn, only discr 1 n ⌈n/2⌉
cAn, admits discr > 1 Uncountable Finite

Table 1. Counting divisorial contractions with centre a cAn-point

where the conditions are as mild and as easy to check as possible. One way to

phrase this is the following:

Problem 1.3. Describe an algorithm to determine whether a given weighted

blow-up is locally analytically equivalent to a given member of the classification

list.

We have solved Problem 1.3 for cAn-singularities in Theorem 6.1 and Lemma

6.2. It is straightforward to determine the weight of a power series and it is algo-

rithmic to check the singularity type of a simple singularity (Definition 3.6). To

check whether a given singularity is of type An, Dn, E6, E7 or E8, see [AGZV85,

“16.2 The determinator 1.–9k.”] or [GLS07, Thms. I.2.48, I.2.51 and I.2.53]. It can

be computed using a computer algebra system, for example Singular [DGPS22].

On the other hand, to prove local properties or local inequalities such as

[KOPP24, Thm. 1.2], it helps to have a list which is as specific as possible, con-

taining only a few members. Even though the classification lists in the literature

contain uncountable families of weighted blow-ups, a countably infinite list, or

even a finite list in certain cases, may suffice.

Problem 1.4. Given a variety X and a point P , determine whether there exist

finitely many, countably many or uncountably many divisorial contractions to X

with centre P , depending on the singularity type of P , where the counting is up

to local analytic equivalence and up to global algebraic isomorphism over X.

We have solved Problem 1.4 for cAn-singularities in Theorem 6.5. We have

also included the case of smooth points in Table 1. By the proof of Theorem 6.5,

the cardinalities up to local biholomorphism around the exceptional loci over the

base are the same as up to global algebraic isomorphism over the base in the case

of cAn-points and smooth points.

As an example application of such results, [Oka20] uses the specific counts

of divisorial contractions of a given type described in [Hay99] (such as [Hay99,

Thm. 6.4]) to prove birational birigidity of varieties.

Table 1 raises the following questions:
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Question 1.5. Let X be a 3-dimensional variety and P ∈ X a singular point.

Do there exist only finitely many divisorial contractions to X with centre P up to

local analytic equivalence?

Question 1.6. Let X be a 3-dimensional variety and P ∈ X a point. Is it true

that there exist uncountably many divisorial contractions to X with centre P up

to isomorphism over X if and only if there exists a divisorial contraction to X

with centre P with discrepancy greater than 1?

Regarding Question 1.6, it is known that there exist only finitely many divi-

sorial contractions of discrepancy at most 1 to a fixed variety; see Proposition 6.4.

By [Pae20, §6] we expect there to be only finitely many divisorial contractions of

ordinary type that are (r1, r2, a, 1)-blow-ups with centre a cAn-singularity, even if

the discrepancy a is greater than 1, as long as the inequalities a ≤ r1 ≤ r2 are

satisfied. This does not answer Question 1.6 negatively; see Theorem 6.5.

The proofs in this paper rely on the concept of weight-respecting maps; see

Definition 4.1, which is comparable to the equivalence relation “∼” defined in

[Hay99, “3.7 Weighted valuations”] for 3-dimensional index ≥ 2 terminal singular-

ities embedded as hypersurfaces in orbifolds.

§2. Meaning of classification

The classification due to Hayakawa, Kawakita, Kawamata and Yamamoto is a clas-

sification list, as defined in Definition 2.1, except that it does not satisfy item (1)

if the discrepancy of φ is 1 and the centre is either a cD or a cE point.

Definition 2.1. A set L is called a classification list if it consists of pairs (w, Z),

where w := (w1, . . . , w5) ∈ ((1/m)Z)5 is a vector of positive rational numbers and

Z is a codimension-2 complete intersection complex analytic space with an isolated

singularity at the origin 0 inside an orbifold C5/Zm, such that

(1) for every 3-dimensional divisorial contraction φ with centre a point, φ is locally

analytically equivalent (Definition 3.3) to the w-blow-up of Z for some (w, Z)

in L,

(2) for every pair (w, Z) in L, there exist a Q-Gorenstein variety X with terminal

singularities and a point P ∈ X such that (X,P ) is locally biholomorphic

to (Z,0), and

(3) for every Q-Gorenstein variety X with terminal singularities and point P ∈ X,

if (X,P ) is locally biholomorphic to (Z,0) for some (w, Z) in L, then there

exists a divisorial contraction to X which is locally analytically equivalent to

the w-blow-up of Z.
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w Conditions f wt f Sing Discr

(1, a, b) (a, b) = 1, a ≤ b sm a+ b

r1 ≤ r2,

(r1, r2, a, 1)
a | r1 + r2, xy + g(z, t),

r1 + r2 cAn a
(r1, a) = (r2, a) = 1, wt g = r1 + r2
a(n+ 1) = r1 + r2

(1, 5, 3, 2) xy + z2 + t3 6 A2 4

(4, 3, 2, 1) x2 + y2 + z3 + xt2 6 E6 3

Table 2. Local analytic equivalence classes of divisorial contractions, cAn-singu-

larities

The divisorial contraction in item (3) can be constructed using either Propo-

sition 5.1 or Corollary 5.6.

Given a classification list L and two pairs (w, Z) and (w′, Z ′), Problem 1.1

asks us to determine when the weighted blow-ups of Z and Z ′ are locally ana-

lytically equivalent. For cAn-points, we prove their local analytic equivalence if

w = w′ in Lemma 6.2. It should not be difficult to prove in the case where

there are only finitely many such divisorial contractions, which happens for exam-

ple when the discrepancy is at most 1; see Proposition 6.4. See [Hay99, Hay00]

for explicit descriptions and counts of minimal discrepancy divisorial contractions

with centre a non-Gorenstein point.

Definition 2.2. We say a classification list L is a nice classification list if for

every two pairs (w, Z) and (w′, Z ′) in L, the w-blow-up of Z and the w′-blow-up

of Z ′ are locally analytically equivalent if and only if Z and Z ′ are biholomorphic

around the origins and w = w′.

Finding a nice classification list, if it exists, would solve Problem 1.1.

Question 2.3. Does there exist a nice classification list?

By Theorem 6.1 and Lemma 6.2, the answer to Problem 2.3 is yes in the case

of cAn-points. We give two nice classification lists L and L′ for cAn-singularities

and smooth points, corresponding to columns 1, 2, 3 and columns 1, 2, 4, 5 of

Table 2, respectively. The final column “Discr” in Table 2 gives the discrepancy of

the divisorial contraction.

For cAn-singularities, the classification list contains only weighted blow-ups

such that X is embedded locally analytically as a hypersurface V(f) in C4. We
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can also embed it as a codimension-2 complete intersection V(f, x5) in C5 choosing

the weight w5 to be any positive integer. In such cases we write only the first four

variables x, y, z, t and their weights w1, w2, w3, w4. Similarly, C3 can be embedded

in C5 by V(x4, x5) with any positive integer weights w4, w5 for x4, x5, so we give

only the first three weights.

The first nice classification list for cAn-singularities and smooth points is given

by

(2.3.1) L := L1 ∪ L2 ∪ L3 ∪ L4,

where

L1 :=
{
((1, a, b),C3)

∣∣ a and b are coprime positive integers, a ≤ b
}
,

L2 :=
{(

(r1, r2, a, 1),V(xy + g(z, t))
) ∣∣ wt g = r1 + r2

}
,

L3 :=
{
((1, 5, 3, 2),V(xy + z2 + t3))

}
,

L4 :=
{
((4, 3, 2, 1),V(x2 + y2 + z3 + xt2))

}
,

where in L2 the convergent power series g ∈ C{z, t} defines an isolated singularity

at the origin and r1, r2 and a are positive integers that satisfy r1 ≤ r2, a divides

r1 + r2, a is coprime to both r1 and r2, and a(n + 1) = r1 + r2. The polynomial

xy+ g(z, t) with wt g = r1 + r2 appears in [Kaw02, Thm. 1.1] and the polynomial

xy+ z2 + t3 appears in [Kaw03, Thm. 1.13], whereas the complicated condition of

[Yam18, Thm. 2.6] is simplified in Theorem 6.1 to x2 + y2 + z3 + xt2.

The second nice classification list for cAn-singularities and smooth points is

given by

L′ := L1 ∪ L′
2 ∪ L′

3 ∪ L′
4,

where

L′
2 :=

{
((r1, r2, a, 1),V(f))

∣∣ (V(f),0) is a cAn-singularity, wt f = r1 + r2
}
,

L′
3 :=

{
((1, 5, 3, 2),V(f))

∣∣ (V(f),0) is an A2-singularity, wt f = 6
}
,

L′
4 :=

{
((4, 3, 2, 1),V(f))

∣∣ (V(f),0) is an E6-singularity, wt f = 6
}
,

where the convergent power series f ∈ C{x, y, z, t} defines an isolated singularity

at the origin and in L2 the positive integers r1, r2 and a satisfy the same conditions

as for the first classification list. The singularities cAn, A2 and E6 are defined in

Definitions 3.6 and 3.7.

§3. Preliminaries

Notation 3.1. Let C denote the complex numbers. A variety, short for algebraic

variety, is defined to be an integral separated scheme of finite type over C. All



Counting Divisorial Contractions with Centre a cAn-Singularity 705

morphisms of varieties are defined over C. The C-algebra of power series that are

absolutely convergent in a neighbourhood of the origin is denoted C{x}, short for
C{x1, . . . , xn}. The complex space, short for complex analytic space, corresponding

to a variety X is denoted Xan. A singularity is defined to be a complex space germ

(see [GLS07, Def. I.1.47]). If I is an ideal of regular functions on a variety or an

ideal of holomorphic functions on a complex space, then V(I) denotes the zero

locus of I. If I is an ideal of holomorphic function germs on a complex space germ

(X,P ), then (V(I), P ) denotes the (possibly non-reduced) subgerm defined by I

(see [GLS07, §I.1.4]).

Given a convergent power series f ∈ C{x} := C{x1, . . . , xn} we define the

multiplicity of f , denoted mult f , by

mult f := min
{
i1 + · · ·+ in

∣∣ xi11 · . . . · xinn has non-zero coefficient in f
}
.

Given positive integer weights w1, . . . , wn for variables x1, . . . , xn we define the

weight of f , denoted wt f , by

wt f := min
{
w1i1 + · · ·+ wnin

∣∣ xi11 · . . . · xinn has non-zero coefficient in f
}

if f is non-zero, and we define wt 0 = ∞ otherwise. We denote the quasihomo-

geneous weight d part of f by fwt=d. The quadratic part of f is defined to be the

homogeneous degree 2 part of f . The quadratic rank of f is defined to be the rank

of the symmetric matrix M with complex coefficients such that the quadratic part

of f is equal to xTMx where x is the vector (x1, . . . , xn).

We denote the Jacobian ideal (∂f/∂x1, . . . , ∂f/∂xn) ⊆ C{x} of f by j(f).

We remind that the Milnor algebra of f is the C-algebra C{x}/j(f). We say that

a set S of monomials of C[x] := C{x1, . . . , xn} is a monomial spanning set for a

C-algebra C{x}/J if the set {s+J | s ∈ S} generates the C-vector space C{x}/J ,
and we say S is a monomial basis for the C-algebra C{x}/J if {s+ J | s ∈ S} is a

basis for the C-vector space C{x}/J . By Zorn’s lemma, every C-algebra C{x}/J
has a (possibly infinite) monomial basis.

Definition 3.2. A divisorial contraction is a proper birational morphism φ : Y →
X between normal Q-Gorenstein varieties with terminal singularities such that

(1) the exceptional locus of φ is a prime divisor and

(2) −KY is φ-ample.

Definition 3.3 ([Pae21, Def. 2.14]). Let φ : Y → X and φ′ : Y ′ → X ′ be bira-

tional morphisms of varieties (or bimeromorphic holomorphisms of complex

analytic spaces). We say that an isomorphism X → X ′ lifts if there exists an
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isomorphism Y ∼= Y ′ such that the diagram

Y Y ′

X X ′

φ φ′

commutes. We say that φ and φ′ are equivalent if there exists an isomorphism

X ∼= X ′ that lifts. We say φ and φ′ are locally equivalent if there exist isomorphic

open subsets U ⊆ X and U ′ ⊆ X ′ containing the centres of the morphisms φ and

φ′ such that the restrictions φ|φ−1U : φ−1U → U and φ′|φ′−1U ′ : φ′−1U ′ → U ′ are

equivalent.

If we consider the complex space corresponding to a variety or when we wish

to emphasise that we are working in the category of complex spaces, then we say

analytically equivalent or locally analytically equivalent.

Definition 3.4. Let n be a positive integer and let w = (w1, . . . , wn) be posi-

tive integers, called the weights of the blow-up. Define a C∗-action on Cn+1 by

λ · (u, x1, . . . , xn) = (λ−1u, λw1x1, . . . , λ
wnxn) and define T by the geometric quo-

tient (Cn+1 \V(x1, . . . , xn))/C∗ (or its analytification). Then the map φ : T → Cn,

[u, x1, . . . , xn] 7→ (uw1x1, . . . , u
wnxn) is called the w-blow-up of Cn. If Z ⊆ Cn is

a closed subvariety (or a closed complex subspace Z ⊆ D where D ⊆ Cn is

open) and Z̃ is the closure of φ−1(Z \ {0}) in T (in φ−1D), then the restriction

φ|Z̃ : Z̃ → Z is called the w-blow-up of Z. Let ρ : Y → X be a surjective birational

morphism of varieties (or a surjective bimeromorphic holomorphism of complex

spaces). Given an open subset U ⊆ X containing the centre of ρ and an isomor-

phism U ∼= X ′ ⊆ Cn taking a point P ∈ X to the origin 0, the map ρ is called the

w-blow-up of X at P if the restriction ρ|ρ−1U : ρ−1U → U is equivalent, through

the given isomorphism U ∼= X ′, to the w-blow-up of X ′.

Remark 3.5. We make the following remarks on Definition 3.4:

(a) A weighted blow-up crucially depends both on the isomorphism U ∼= X ′ and a

choice of coordinates x1, . . . , xn, even though it is not explicit in the notation.

(b) Replacing w by (w1/g, . . . , wn/g) in Definition 3.4, where g is the greatest

common divisor of w1, . . . , wn, gives an isomorphic blow-up over X.

(c) By [CLS11, Thm. 5.1.11], the weighted blow-up of an affine space in Defini-

tion 3.4 coincides with the toric description of subdividing a cone in [KM92,

Prop.-Def. 10.3].

Definition 3.6. A simple hypersurface singularity, also known as an ADE-sin-

gularity, is a complex space germ (X,P ) isomorphic to (V(f),0), where f ∈
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C{x1, . . . , xn} is one of the following:

Ak : xk+1
1 + x22 + · · ·+ x2n, k ≥ 1,

Dk : x1(x
2
2 + xk−2

1 ) + x23 + · · ·+ x2n, k ≥ 4,

E6 : x31 + x42 + x23 + · · ·+ x2n,

E7 : x1(x
2
1 + x32) + x23 + · · ·+ x2n,

E8 : x31 + x42 + x23 + · · ·+ x2n,

where n is at least 1 in the case Ak and at least 2 in all other cases.

Definition 3.7. Let k be a positive integer. A compound Ak-singularity, denoted

cAk, is a complex space germ isomorphic to (V(xy + g),0) ⊆ (C4,0), where g ∈
C{z, t} has multiplicity k + 1.

We state the known classification of divisorial contractions to both smooth

points and cAn-points.

Theorem 3.8 ([Kaw01, Thm. 1.1]). Let P be a smooth point of a 3-dimensional

Q-Gorenstein variety X with terminal singularities. Let φ : Y → X be a surjective

birational morphism with centre P . Then φ is a divisorial contraction if and only

if φ is locally analytically equivalent to the (1, a, b)-blow-up of A3, where a and b

are coprime positive integers.

Remark 3.9. By [CLS11, Lem. 11.4.10] the discrepancy of the (1, a, b)-blow-up

of A3 is a+ b.

Theorem 3.10. Let n be a positive integer. Let P be a cAn-point of a Q-Goren-

stein variety with terminal singularities. Let φ : Y → X be a surjective birational

morphism with centre P . Then φ is a divisorial contraction if and only if one of

the following holds:

(1) φ is locally analytically equivalent to the (r1, r2, a, 1)-blow-up of V(f) at 0

where f ∈ C{x, y, z, t} is such that

(1a) r1, r2 and a are positive integers such that r1 ≤ r2, a(n+ 1) = r1 + r2,

a divides r1 + r2, a is coprime to both r1 and r2 and

(1b) f = xy + g(z, t), where wt g = r1 + r2,

(2) n = 1 and φ is locally analytically equivalent to the (1, 5, 3, 2)-blow-up of V(f)
at 0 where f ∈ C{x, y, z, t} is such that

(2a) f = xy + z2 + t3,
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(3) n = 2 and φ is locally analytically equivalent to the (4, 3, 2, 1)-blow-up of V(f)
at 0 where f ∈ C{x, y, z, t} is such that

(3a) f = x2 + y2 + 2cxy + 2xp(z, t) + 2cypwt=3(z, t) + z3 + g(z, t), where

c ∈ C\{−1, 1}, wt g ≥ 6, the power series p contains only monomials of

weights 2 and 3 for the weights (4, 3, 2, 1), the coefficient of t2 is non-zero

in p and deg g(z, 1) ≤ 2.

Conditions (1b), (2a) and (3a) are the same as in [Kaw02, Thm. 1.1], [Kaw03,

Thm. 1.13] and [Yam18, Thm. 2.6], except for the small difference in that the

condition that z(r1+r2)/a has a non-zero coefficient in f is replaced by the equiv-

alent condition a(n+ 1) = r1 + r2. We simplify Theorem 3.10 in Theorem 6.1. In

particular, we show that we can replace item (3a) with the much simpler condition

f = x2 + y2 + z3 + xt2. This polynomial appears in [Kaw03, Exa. 6.8].

Remark 3.11. By [Hay99, §3.9] the discrepancy in Theorem 3.10 in cases (1),

(2) and (3) is respectively a, 4 and 3.

§4. Weight-respecting maps

The main tools we use in this paper are weight-respecting maps (see Definition 4.1)

and some classical theorems from singularity theory in weight-respecting form (see

Lemmas 4.3, 4.5 and Corollary 4.7).

For Definition 4.1 and Lemma 4.2, let n and m be positive integers. Let

x = (x1, . . . , xn) and y = (y1, . . . , ym) denote the coordinates on Cn and Cm,

respectively. Choose positive integer weights for x and y.

Definition 4.1 ([Pae21, Def. 4.1]). Let X ⊆ Cn and X ′ ⊆ Cm be complex ana-

lytic spaces. We say that a biholomorphic map ψ : X → X ′ taking 0 to 0 is weight

respecting if denoting its inverse by θ, we can locally analytically around the ori-

gins write ψ = (ψ1, . . . , ψm) and θ = (θ1, . . . , θn), where for all i and j, the power

series ψj ∈ C{x} and θi ∈ C{y} satisfy wt(ψj) ≥ wt(yj) and wt(θi) ≥ wt(xi).

Compare Definition 4.1 with the equivalence relation “∼” defined in [Hay99,

“3.7 Weighted valuations”] for 3-dimensional index ≥ 2 terminal singularities

embedded as hypersurfaces in orbifolds.

Lemma 4.2 ([Pae21, Cor. 4.4]). If a biholomorphism from X ⊆ Cn to X ′ ⊆ Cm

taking 0 to 0 is weight respecting, then it lifts to the weighted blown-up spaces.

Compare Lemma 4.2 with [Hay99, Lem. 5.6].

We recall that two convergent power series f, g ∈ C{x1, . . . , xn} are said to

be right equivalent if there exists a biholomorphic map germ φ : (Cn,0) → (Cn,0)
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such that g = f ◦ φ, and are said to be contact equivalent if there exist a biholo-

morphic map germ φ : (Cn,0) → (Cn,0) and a unit u ∈ C{x1, . . . , xn} such that

g = u(f ◦ φ) (this is [GLS07, Def. I.2.9]).

It is a standard result that every convergent power series is right equivalent

to a polynomial (see the theorem in [AGZV85, §6.3] or [GLS07, Cor. I.2.24]).

By following the standard proof we show that, unsurprisingly, there also exists a

weight-respecting right equivalence.

Lemma 4.3. Let n be a positive integer. Let f ∈ C{x1, . . . , xn} define an isolated

singularity at the origin with Milnor number µ. Then for every integer N ≥ µ+1,

there exists an automorphism Ψ of C{x1, . . . , xn} such that

(1) Ψ(f) is equal to the truncation of f up to degree N and

(2) for every i ∈ {1, . . . , n} the truncation of Ψ(xi) up to degree N − µ is equal

to xi.

Proof. Denote C{x} := C{x1, . . . , xn} and let m :=
∑
xiC{x} be the maximal

ideal. The ideal mµ is contained in the Jacobian ideal

j(f) :=
∑ ∂f

∂xi
C{x}

of f by the proof of the lemma in [AGZV85, §5.5]. Let h ∈ mN+1. Define F ∈
C{x}[t] by F := f + th. Below we construct a biholomorphic map germ ψ : (Cn,0)

→ (Cn,0) by following the proof of [GLS07, Thm. I.2.23].

First, we show that for every t0 ∈ C we have the equality of ideals

(4.3.1) j(f) · C{x, t− t0} =
∑ ∂F

∂xi
C{x, t− t0},

where we consider F = f + t0h+ (t− t0)h as an element of C{x, t− t0}. Since mµ

is inside j(f), we find the equality of ideals

(4.3.2) j(f) · C{x, t− t0} =
∑ ∂F

∂xi
C{x, t− t0}+m · j(f) · C{x, t− t0}.

Applying the Nakayama lemma ([GLS07, Prop. B.3.6]) to equation (4.3.2) gives

equation (4.3.1).

Now, equation (4.3.1) implies that

h ∈ (mN+1−µ · C{x, t− t0}) ·
(∑ ∂F

∂xi
C{x, t− t0}

)
.

By [GLS07, Thm. I.2.22(2) and Rem. I.2.22.1], for every t0 ∈ C there exists an

open neighbourhood Ut0 ⊆ C of t0 such that for every t′ ∈ Ut0 there exists a
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biholomorphic map germ ψt′ : (Cn,0) → (Cn,0) such that xi ◦ψt′ − xi ∈ mN+1−µ

and (f + t′h) ◦ ψt′ = f + t0h. Since the interval [0, 1] is compact, there exist

finitely many biholomorphic map germs ψt1 , . . . , ψtk such that the composition

ψ := ψtk ◦ · · · ◦ ψt1 satisfies f ◦ ψ = f + h and xi ◦ ψ − xi ∈ mN+1−µ.

Finally, choosing h to be the negative of the sum of the degree > N parts of

f and choosing Ψ to be the precomposition by ψ proves the lemma.

The lemma in [AGZV85, §12.6] is useful for computing normal forms of sin-

gularities. Here we give a weight-respecting version.

Lemma 4.4. Let n be a positive integer and let w := (w1, . . . , wn) be positive

integer weights for the variables x1, . . . , xn. Let f ∈ C{x} define an isolated singu-

larity at the origin. Let f0 denote the least weight non-zero quasihomogeneous part

of f . Choose a monomial spanning set S ⊆ C[x] for the Milnor algebra C{x}/j(f0)
of f0. Then there exists an automorphism Ψ of C{x} of the following form: for all

i : Ψ(xi) = xi + gi, where each gi ∈ C{x} is either zero or satisfies wt gi > wtxi,

such that every monomial of C[x] with weight greater than wt f0 that does not

belong to S has coefficient zero in Ψ(f).

Proof. We find an automorphism Ψ′ of C[[x]] satisfying the conditions of the lemma

following the proof in [AGZV85, §12.6]. Next, we define an automorphism Ψ̂

of C{x} by letting Ψ̂(xi) be the truncation of Ψ′(xi) up to some high enough

degree N . The automorphism Ψ̂ satisfies the conditions of the lemma, except that

there might be monomials of weight greater than N that have a non-zero coefficient

in Ψ̂(f). Now using Lemma 4.3 we find a suitable Ψ.

Lemma 4.5. Let n ≥ 2 be an integer and let w = (w1, . . . , wn) be positive integer

weights for variables x = (x1, . . . , xn). Let f ∈ C{x} be such that the coefficient of

x1x2 is non-zero in f and wtx1x2 = wt f . Then there exists a weight-respecting

automorphism Ψ of C{x} such that the only monomial that belongs to the ideal

(x1, x2) and has non-zero coefficient in Ψ(f) is x1x2.

Proof. See the proof of [Pae21, Prop. 4.6].

Remark 4.6. In the case where f defines an isolated singularity at the origin,

Lemma 4.5 follows also from Lemma 4.4.

One easy corollary of Lemma 4.4 is the following:

Corollary 4.7. Let the variables x = (x1, . . . , xn) have positive integer weights

w = (w1, . . . , wn). Let the least weight non-zero quasihomogeneous part f0 of f ∈
C{x} be one of the five forms described in Definition 3.6. Then there is a weight-

respecting automorphism Ψ of C{x} such that Ψ(f) = f0.
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Proof. Use Lemma 4.4 with a set S that does not contain any elements of weight

greater than wt f .

§5. From analytic to algebraic category

In Proposition 5.1, we show how to extend blow-ups along points with possibly

non-reduced structure (equivalently, blow-ups along coherent ideal sheaves with

cosupport a point) from the analytic category to the algebraic. Proposition 5.1

was explained to me by Masayuki Kawakita.

Proposition 5.1. Let X be a variety and J a coherent OXan-ideal sheaf with

cosupport a point, where Xan is the analytification of X. Then there exists a coher-

ent OX-ideal sheaf I such that its analytification is J .

Proof. Since the cosupport of J is a point P , there exists a positive integer k such

that the kth power of the maximal ideal of OXan,P is in the stalk JP . Proposition

5.1 follows.

We give an alternative construction in Corollary 5.6(a), which describes the

divisorial contraction as a weighted blow-up. Corollary 5.6(a) is a modification of

[Pae21, Lem. 4.9] which was used for explicitly constructing weighted blow-ups of

affine hypersurfaces with a cAn-point.

Construction 5.2. Let U be an affine variety Spec(C[x1, . . . , xn]/I) containing

the point V(x1, . . . , xn), for some ideal I ⊆ C[x1, . . . , xn]. Assign positive integer

weights w1, . . . , wm to the variables y1, . . . , ym of Cm and assign weights 1, . . . , 1

to the variables x1, . . . , xn.

Let ψ : (Uan,0) → (Z,0) be a local biholomorphism to a complex space Z ⊆
Cm containing the origin. Define the variety Û by

Û : V(I + (ψ<w1
1 − y1, . . . , ψ

<wm
m − ym)) ⊆ An+m := SpecC[x1, . . . , xn, y1, . . . , ym],

where ψ
<wj

j ∈ C[x1, . . . , xn] denotes the truncation of the jth coordinate power

series of ψ up to order wj − 1. Note that Û is isomorphic to U .

Proposition 5.3. In Construction 5.2, the local biholomorphism (Ûan,0) →
(Z,0) given by the composition of yj 7→ yj + ψ

<wj

j − ψj and the projection to

Cm is weight respecting.

Proof. The local biholomorphism yj 7→ yj + ψ
<wj

j − ψj with inverse yj 7→ yj −
ψ
<wj

j + ψj is clearly weight respecting. The projection to Cm is given by

(x1, . . . , xn, y1, . . . , ym) 7→ (y1, . . . , ym),
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with inverse

(θ1, . . . , θn, y1, . . . , ym) 7→(y1, . . . , ym),

where θi ∈ C{y1, . . . , ym} are convergent power series with constant term zero. We

see that for all i, either wt θi ≥ wtxi = 1 or θi = 0. This shows that the projection

to Cm is weight respecting.

Remark 5.4. If any of the weights wj were zero in Construction 5.2, then the

truncation ψ
<wj

j might not be a polynomial.

Lemma 5.5. Let Y1 → X and Y2 → X be birational morphisms of varieties.

Then Y1 and Y2 are isomorphic over X if and only if the analytifications Y an
1 and

Y an
2 are locally biholomorphic over Xan around the exceptional loci.

Proof. “=⇒”. The isomorphism Y1 → Y2 induces a biholomorphism Y an
1 → Y an

2 .

“⇐=”. The local biholomorphism extends to a unique biholomorphism Y an
1 →

Y an
2 over Xan. Now, it suffices to show that if f is a rational map of varieties such

that its analytification is holomorphic, then f is a morphism of varieties. For this,

it suffices to show that if f is a rational function on an affine variety Z = SpecA

such that its analytification fan is holomorphic, then f ∈ A. For this, we follow

the argument in [JS19].

First, we show that f is integral over A. Let Ā be the integral closure of A

in its field of fractions. Using the inclusions FracA → Frac Ā and O(SpecA)an →
O(Spec Ā)an , we see that f is a rational function on Spec Ā and fan is a holomor-

phic function on (Spec Ā)an. Therefore, fan is bounded on every small analytic

neighbourhood of any point of (Spec Ā)an. Therefore, the order of vanishing of f

along every prime divisor D of Spec Ā is non-negative. Since Spec Ā is normal, we

find f ∈ Ā.

By [JK20, Prop. 2.2], A is integrally closed in OZan(Zan). Since f is holomor-

phic, we have f ∈ OZan(Zan), and since f is integral over A, we find f ∈ A.

Corollary 5.6. Let X be a variety, P ∈ X a closed point and U ⊆ X an affine

open containing P . Let W → Z be a weighted blow-up of complex spaces with

centre a point Q ∈ Z such that (Xan, P ) is locally biholomorphic to (Z,Q). Then,

(a) the construction in Proposition 5.3 gives a weighted blow-up Y → X that is

locally analytically equivalent to W → Z;

(b) every blow-up Y → X that is locally analytically equivalent to W → Z is

isomorphic over X to a blow-up Ŷ → X given in Construction 5.2 for some ψ.

Proof. (a) It suffices to consider the case where Z is a complex subspace of Cm and

Q is the origin. Using Proposition 5.3, we find an isomorphism U → Û ⊆ An+m
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and a choice of weights for the variables x1, . . . , xn, y1, . . . , ym of An+m such that

the weighted blow-up of Û ⊆ An+m is locally analytically equivalent to W → Z

by Lemma 4.2. By gluing, we find a weighted blow-up Y → X which is locally

analytically equivalent to W → Z.

(b) Let Xan → Z be local biholomorphism that lifts to the blown-up spaces.

The construction in Proposition 5.3 gives a weighted blow-up Ŷ → X̂, an isomor-

phism X̂ → X and a weight-respecting local biholomorphism X̂an → Z. Since

both Xan → Z and X̂an → Z lift to the blown-up spaces, X̂an → Xan locally lifts

to blown-up spaces. By Lemma 5.5, the isomorphism X̂ → X lifts to the blown-up

spaces.

Example 5.7 shows that Proposition 5.1 and Corollary 5.6(a) cannot always

be true when we blow up a positive-dimensional closed complex subspace.

Example 5.7. Let X be a Q-factorial 3-fold with a unique singular point P which

is an ordinary double point, meaning a singularity isomorphic to (V(xy+ zt),0) ⊆
(C4,0). Then locally analytically there exists a small resolution φ, the blow-up

of the divisor V(x, z) of V(xy + zt) with exceptional locus a curve. On the other

hand, since X is Q-factorial, there is no proper birational morphism Y → X from

a smooth variety Y which is locally analytically equivalent to φ.

§6. Counting divisorial contractions

We show that we can simplify Theorem 3.10.

Theorem 6.1. Theorem 3.10 remains true if we

(1) replace item (1b) with “wt f = r1 + r2”,

(2) replace item (2a) with “(V(f),0) is an A2-singularity and wt f = 6” and

(3) replace item (3a) with either “f = x2 + y2 + z3 + xt2” or with “(V(f),0) is

an E6-singularity and wt f = 6”.

Proof. (1) Follows from [Pae21, Prop. 4.6].

(2) Let f ∈ C{x, y, z, t} be such that wt f = 6 and (V(f),0) is an A2-

singularity.

If the coefficient of yt is non-zero and the coefficient of xy is zero in f , then

after a suitable coordinate change of the form t 7→ by + cz, where b and c are

complex numbers, the coefficients of y2 and yz will be zero in f . This coordi-

nate change is weight respecting. Since f has quadratic rank 3, after scaling, the

quadratic part will be yt+z2. Now (V(f),0) is an A2-singularity if and only if the

coefficient of x3 is non-zero, which cannot happen since wt f = 6.
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Therefore, since the quadratic rank of f is 3, the coefficient of xy is non-zero.

After a suitable coordinate change of the form x 7→ x + by + cz + dt, where a,

b, c, d are complex numbers, the coefficients of y2, yz and yt will be zero. This

coordinate change is weight respecting. Now the coefficient of z2 must be non-zero.

After scaling, the quadratic part of f will be xy + z2. We see that (V(f),0) is an
A2-singularity if and only if the coefficient of t3 is non-zero.

After scaling, the least weight non-zero quasihomogeneous part of f with

respect to weights w = (3, 3, 3, 2) will be xy+z2+ t3. Corollary 4.7 gives a weight-

respecting automorphism Ψ such that Ψ(f) = xy + z2 + t3.

(3) To begin, we show that f ∈ C{x, y, z, t} satisfying item (3a) of Theo-

rem 3.10 defines an E6-singularity at the origin. Let Ψ be the automorphism of

C{x, y, z, t} given by composing x 7→ x/
√
1− c2 with y 7→ y− c(x+ pwt=3). Defin-

ing p′, g′ ∈ C{z, t} by p = 1/2(
√
1− c2)p′ + c2pwt=3 and g = g′ + c2 + p2wt=3 − z3,

we find that Ψ(f) is equal to x2 + y2 + xp′ + g′, where wt p′ is 2, wt g′ is 6 and

all monomials of weight greater than 3 have coefficient zero in p′. Let Φ be the

coordinate change x 7→ x − p′/2 composed with a suitable scaling of the vari-

able t. Then the least weight non-zero quasihomogeneous part of Φ(Ψ(f)) will be

x2 + y2 + z3 + t4 under the weights w = (6, 6, 4, 3). Using the lemma in [AGZV85,

§12.6] or Corollary 4.7 we find that Φ(Ψ(f)) is right equivalent to x2+y2+z3+ t4,

proving that f defines an E6-singularity at the origin.

Now let f ∈ C{x, y, z, t} be such that wt f = 6 and (V(f),0) is an E6-

singularity.

First, we show that the coefficient of xz in f is zero. We recall that the

quadratic rank of a convergent power series defining a 3-dimensional E6-singularity

is 2. If the coefficient of xz is non-zero, since f has quadratic rank 2, the coefficient

of y2 must be zero. After a suitable coordinate change of the form z 7→ ax+by+cz,

where a, b and c are complex numbers and c is non-zero, the quadratic part of

f will be xz. By Lemma 4.5, after a weight-respecting coordinate change f will

be of the form xz + h, where h ∈ C{y, t}. If the coefficient of y2t is non-zero,

then by [GLS07, Thm. I.2.51] (V(f),0) is either a Dk-singularity or a non-isolated

singularity, a contradiction. So the coefficient of y2t is zero. Since (V(f),0) is a

cA2-singularity, after scaling the 3-jet of f will be xz+y3. If the coefficient d of yt3

is non-zero, then Corollary 4.7 with w := (9, 6, 9, 4) and f0 := xz+y3+dyt3 implies

that (V (f),0) is an E7-singularity, a contradiction. Therefore, the coefficient of

yt3 is zero. Now [GLS07, Thm. I.2.55(2)] shows that (V(f),0) is not a simple

singularity, a contradiction.

Second, we show that the coefficient of y2 is non-zero. If the coefficient of y2

is zero, then the coefficient of xy must be non-zero. After a suitable coordinate
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change of the form y 7→ ax + y + h, where a ∈ C and h ∈ C{x, y, z, t} has

multiplicity at least 2 or is zero, the only monomial that is divisible by x and has

non-zero coefficient in f will be xy. Now the weight of f is at least 5 and the

monomials of weight 5 that have a non-zero coefficient in f are in the set {zt3, t5}.
After a suitable coordinate change of the form x 7→ x + h′, where h′ ∈ C{y, z, t}
has multiplicity at least 2 or is zero, the only monomial in the ideal (x, y) that

has non-zero coefficient in f will be xy. The weight of f is still at least 5 and

the monomials of weight 5 are still in the set {zt3, t5}. Since (V(f),0) is a cA2-

singularity, the coefficient of z3 is non-zero. If the coefficient of zt3 is non-zero, then

Corollary 4.7 with w := (9, 9, 6, 4) and f0 := axy + bz3 + czt3, where a, b, c ∈ C
are non-zero, shows that (V(f),0) is an E7-singularity, a contradiction. So the

coefficient of zt3 is zero. If the coefficient of t5 is non-zero, then Corollary 4.7 with

w := (15, 15, 5, 3) and f0 := axy + bz3 + ct5, where a, b, c ∈ C are non-zero, shows

that (V (f),0) is an E8-singularity, a contradiction. Therefore, f − axy belongs to

the ideal (z, t2) of C{z, t}. By [GLS07, Thm. I.2.55(2)] (V(f),0) is not a simple

singularity, a contradiction.

Next, we show that the coefficient of xt2 is non-zero. If the coefficient of xt2 is

zero, then after a suitable linear weight-respecting coordinate change the quadratic

part of f will be xy+y2. Now, after a suitable weight-respecting coordinate change

of the form y 7→ y+h, where h ∈ C{x, y, z, t} has multiplicity at least 2 or is non-

zero, followed by an application of Lemma 4.3, the only monomial with non-zero

coefficient in f that is divisible by x will be xy. After a suitable coordinate change

of the form x 7→ x + h′, where h′ ∈ C{x, y, z, t}, the only monomial in the ideal

that has non-zero coefficient in f will be xy and the weight of f will still be 6. By

[GLS07, Thm. I.2.55(2)] (V(f),0) is not a simple singularity, a contradiction.

Now, after a suitable linear weight-respecting coordinate change, the quadratic

part of f will be x2 + y2. Using a suitable weight-respecting coordinate change of

the form x 7→ x + h and y 7→ y + h′, where h, h′ ∈ C{x, y, z, t}, followed by an

application of Lemma 4.3, the power series f will have the form

(6.1.1) f = x2 + y2 + xp+ g,

where p ∈ C{z, t} has only monomials of weight 2 and 3, the coefficient of t2 in p

is 1 and the coefficient of z3 in g ∈ C{z, t} is 1.

Finally, we show that there exists a weight-respecting automorphism Ψ of

C{x, y, z, t} such that Ψ(f) = x2+y2+z3+xt2, where f is given by equation (6.1.1).

The least weight non-zero quasihomogeneous part of g − p2/4 under the weights

(4, 3) is z3−t4/4. By Corollary 4.7 there exists an automorphism Φ of C{z, t} such

that Φ(g − p2/4) is equal to z3 − t4/4, Φ(z)− z is in the ideal (z, t)2 and Φ(t)− t

is in the ideal (z, t2). So Φ is weight respecting with respect to weights (2, 1). We
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find that

(6.1.2) (Φ(p)− t2)(Φ(p) + t2) = 4(Φ(g)− z3)

is either zero or has weight at least 6. The term Φ(p) + t2 has weight 2 since the

coefficient of t2 is 2. Therefore, Φ(p) − t2 is either zero or has weight at least 4.

Applying Φ−1 to equation (6.1.2), we find that Φ−1(t2) − p is also either zero or

has weight at least 4. Now it suffices to choose Ψ to be

Ψ(x) := x+
t2 − Φ(p)

2
, Ψ(y) := y, Ψ(z) := Φ(z), Ψ(t) := Φ(t).

Lemma 6.2. Let n be a positive integer. Let P be a cAn-point of a Q-Gorenstein

variety X with terminal singularities. Then any two divisorial contractions to X

with centre P are locally analytically equivalent if they are either

(1) both of type (1) with the same weights (r1, r2, a, 1),

(2) both of type (2) or

(3) both of type (3).

Proof. Case (1) is [Pae21, Prop. 4.7], case (2) is clear and case (3) follows from

Theorem 6.1(3).

We describe conditions for the existence of divisorial contractions to X with

centre P of types (1), (2) and (3) of Theorem 3.10.

Lemma 6.3. Let P be a cAn-point of a Q-Gorenstein variety X with terminal

singularities.

(a) If there exists a divisorial contraction of type (1) to X with centre P which

is an (r1, r2, a, 1)-blow-up, then for all a′ ∈ {1, . . . , a} and for all r′1 ∈
{1, . . . , a′(n+1)−1} such that a′ is coprime to both r′1 and r′2 := a′(n+1)−r′1
there exists a divisorial contraction of type (1) which is an (r′1, r

′
2, a

′, 1)-blow-

up.

(b) There is a positive integer N such that there is no divisorial contraction of

type (1) to X with centre P which is an (r1, r2, a, 1)-blow-up where a > N .

(c) If n = 1, then there exists a divisorial contraction of type (1) which is an

(r1, r2, a, 1)-blow-up if and only if (Xan, P ) is an Ak-singularity where k ≥ a.

(d) If n = 1, then there exists a divisorial contraction of type (2) if and only if

(Xan, P ) is the A2-singularity.

(e) If n = 2, then there exists a divisorial contraction of type (1) with a = 2 if

and only if (Xan, P ) is not a simple singularity.
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(f) If n = 2, then there exists a divisorial contraction of type (3) if and only if

(Xan, P ) is an E6-singularity.

Proof. (a) If f is of the form xy + g and the weight of g ∈ C{z, t} is r1 + r2 with

respect to the weights (r1, r2, a, 1), then the weight of g is also r′1+r
′
2 with respect

to the weights (r′1, r
′
2, a

′, 1).

(b) By [GLS07, Cor. I.2.18] or [AGZV85, §12.2] the Milnor number of xy +

gwt=r1+r2 is at least n((n + 1)a − 1). On the other hand, the isolated singularity

(Xan, P ) has finite Milnor number.

(e) By [GLS07, Thm. I.2.55(2)] a cA2-singularity (V(f),0), where f is in

C{x, y, z, t}, is not contact simple if and only if there is an automorphism Ψ of

C{x, y, z, t} such that Ψ(f) = xy + g(z, t), where g is in the ideal z, t2 of C{z, t}.

Parts (c), (d) and (f) follow from the definition of simple singularities (Defi-

nition 3.6).

It is known that there are only finitely many divisorial contractions with

discrepancy at most 1; see [Kaw05, below Thm. 1.2]. I have added a proof here

since I have not found a proof in the literature. The precise statement is as follows:

Proposition 6.4. Let X be a Q-Gorenstein variety with terminal singularities.

Then there are only finitely many divisorial contractions to X with discrepancy at

most 1.

Proof. Let f : Y → X be a resolution of singularities with exceptional locus of

pure codimension 1. Let v be the valuation on the function field C(X) given

by the exceptional divisor of a divisorial contraction to X. Then v is equal to

the valuation given by a prime divisor D on a normal variety Z with a proper

birational morphism Z → Y . The centre of D on Y is necessarily contained in an

exceptional prime divisor of f . We see that if the discrepancy of D is at most 1,

then the centre of D on Y necessarily coincides with an exceptional prime divisors

of f . So v is equal to the valuation given by one of the finitely many exceptional

prime divisor of f . The proposition follows from the fact that any two divisorial

contractions whose exceptional divisors define the same valuation are isomorphic

over X; see [Kaw01, Lem. 3.4].

Theorem 6.5. Let n be a positive integer. Let P be a point of a Q-Gorenstein

variety X with terminal singularities. We count the number of divisorial contrac-

tions to X with centre P .
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(a) If (Xan, P ) is smooth, then there are uncountably many divisorial contrac-

tions up to isomorphism over X and countably many up to local analytic

equivalence.

(b) If (Xan, P ) is a cAn-singularity that admits only discrepancy 1 divisorial con-

tractions, then there are exactly n divisorial contractions up to isomorphism

over X and exactly ⌈n/2⌉ up to local analytic equivalence, where ⌈r⌉ denotes

the smallest integer greater than or equal to the real number r.

(c) If (Xan, P ) is a cAn-singularity that admits a divisorial contraction with dis-

crepancy ≥ 2, then there are uncountably many divisorial contractions up to

isomorphism over X and finitely many up to local analytic equivalence.

Proof. (a) By Theorem 3.8 there are countably many divisorial contractions up

to local analytic equivalence. Since the automorphism Ψ of C{x, y, z} given by

z 7→ z + ax, where a ∈ C is non-zero, does not lift to an isomorphism of the

blown-up spaces when performing a (1, 1, 2)-blow-up, there are uncountably many

divisorial contractions up to isomorphism over X.

(b) Similarly to the proof of [Hay99, Thm. 6.4], we can show that there

are exactly n local analytic germs of divisorial contractions up to isomorphism

over Xan. Note that the last sentence in the statement of [Hay99, Thm. 6.4]

contains a typo: it should say, “Furthermore, there are exactly k divisors with

discrepancies 1/m over X” (the symbol k is missing). The global algebraic divi-

sorial contractions are constructed using Proposition 5.1 or Corollary 5.6. To see

that there are exactly ⌈n/2⌉ divisorial contractions up to local analytic equiva-

lence, note that (x, y, z, t) 7→ (y, x, z, t) is weight respecting with respect to the

weights (r1, r2, a, 1) and (r2, r1, a, 1).

(c) It follows from Lemma 6.3(b) and Lemma 6.2 that there are only finitely

many divisorial contractions up to local analytic equivalence.

If (Xan, P ) is not an E6-singularity, then there exists a divisorial contraction

of type (1) of Theorem 6.1 with a > 1. By Lemma 6.3(a) there exists a divisorial

contraction with r1 = 1. Let f ∈ C{x, y, z, t} be as in item (1b). For any c ∈ C
there exists an automorphism Φc of C{x, y, z, t} that fixes f given by

Φc(x) := x, Φc(y) := y + h, Φc(z) := z + cx, Φc(t) := t,

where h ∈ C{x, y, z, t} depends on f . Each automorphism Φc defines a diviso-

rial contraction of the analytic germ (Xan, P ), naming composing the divisorial

contraction to X with the precomposition with Φc. The composition Φc′ ◦ Φ−1
c

is weight respecting with respect to weights (1, r2, a, 1) if and only if c = c′. We

can check on the affine patch t ̸= 0 of the (1, r2, a, 1)-blown-up space that the
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biholomorphic map germ corresponding to Φc′ ◦Φ−1
c lifts to an isomorphism of the

blown-up spaces if and only if c = c′. Thus there are uncountably many analytic

germs of (1, r2, a, 1)-blow-ups to X with centre P . By Proposition 5.1 or Corol-

lary 5.6, each such analytic germ extends to a divisorial contraction to X with

centre P .

If (Xan, P ) is an E6-singularity, then for any complex number v ∈ C, any
square root w of 1 − v2 and any u ∈ {−1, 1}, the automorphism Ψu,v,w of

C{x, y, z, t} given by

Ψu,v,w(x) := vx+ wy + (v − 1)t2/2, Ψu,v,w(z) := z,

Ψu,v,w(y) := uwx− uvy + uwt2/2, Ψu,v,w(t) := t

fixes x2+y2+z3+xt2. Note that Ψu′,v′,w′ ◦Ψ−1
u,v,w is weight respecting with respect

to weights (4, 3, 2, 1) if and only if v′ = v and w′ = uu′w. We can check that the

biholomorphic map germ corresponding to Ψu′,v′,w′◦Ψ−1
u,v,w lifts to an isomorphism

of the blown-up spaces if and only if v′ = v and w′ = uu′w. Similarly to the

previous case, this shows that there are uncountably many divisorial contractions

of type (3) to X with centre P .
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