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Bound States in Soft Quantum Layers

by

David Krejčiř́ık and Jan Kř́ıž

Abstract

We develop a general approach to study three-dimensional Schrödinger operators with
confining potentials depending on the distance to a surface. The main idea is to apply
parallel coordinates based on the surface but outside its cut-locus in the Euclidean space.
If the surface is asymptotically planar in a suitable sense, we give an estimate on the
location of the essential spectrum of the Schrödinger operator. Moreover, if the surface
coincides up to a compact subset with a surface of revolution with strictly positive total
Gauss curvature, it is shown that the Schrödinger operator possesses an infinite number
of discrete eigenvalues.

Mathematics Subject Classification 2020: 58J50 (primary); 35J10, 35P15, 81Q10 (sec-
ondary).
Keywords: soft waveguides, quantum layers, cut-locus, parallel coordinates, discrete
eigenvalues.

§1. Introduction

Consider a non-relativistic quantum particle propagating in the vicinity of an

unbounded surface Σ in R3. Spectral properties of the hard-wall idealisation, where

the Hamiltonian is identified with the Dirichlet Laplacian in the tubular neigh-

bourhood called layer

(1) Ωa :=
{
x ∈ R3 : dist(x,Σ) < a

}
,

were first analysed by Duclos et al. in the pioneering work [10]. While the essential

spectrum is stable under local perturbations of the straight layer R2 × (−a, a),
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the most interesting result of the study is the existence of bound states, i.e. dis-

crete eigenvalues. This highly non-trivial property for unbounded domains was

established in [10] under rather restrictive geometric and topological conditions

about Σ. However, the subsequent works of Carron et al. [6] and notably of Lu

et al. [32, 31, 33, 34, 28] have demonstrated that the existence of discrete spectra

due to bending is indeed a robust phenomenon. See also [16, 5, 29, 30, 21, 17] for

quantitative properties of the eigenvalues and eigenfunctions, and [19, 9, 8, 35, 27]

for layers over non-smooth surfaces.

To allow for quantum tunnelling, Exner and Kondej [15] introduced a leaky

realisation of the confinement to Σ by considering the singular Schrödinger oper-

ator −∆+ αδΣ in L2(R3), where δΣ is the Dirac delta function and α < 0. Under

suitable geometric assumptions about the surface Σ, the authors demonstrated

the existence of discrete spectra in the regime of large confinement, i.e. α→ −∞.

The robust existence of the discrete eigenvalues for all negative α is stated as an

open problem in [12, Sect. 7.5]. Spectral analysis of related models can be found

in [3, 2, 4, 18, 1].

The purpose of the present paper is to investigate the existence of discrete

spectra in yet another realisation of the confinement, namely when the particle

Hamiltonian is identified with the Schrödinger operator

(2) H := −∆+ V in L2(R3),

where V is a regular potential modelling a force which constrains the particle to

the tubular neighbourhood Ωa. Extending the terminology of Exner [13, 14] for

analogous models when the submanifold is a curve to the present case of surfaces,

we call these realisations soft layers. In this case, there exists only a general asymp-

totic spectral analysis by adiabatic methods of Wachsmuth and Teufel [37] (see

also [22]), from which it follows that the discrete spectrum will exist for deep and

narrow confining potentials V (in agreement with the leaky model above).

From a more general perspective, the hard-wall and leaky realisations fall

into the unifying scheme (2) provided that we formally set Vhard := ∞χR3\Ωa
and

Vleaky := αδΣ. This can be made rigorous by considering the Dirichlet boundary

conditions for the Laplacian in L2(Ωa) or by defining (2) by means of the sesqui-

linear form, respectively. As a matter of fact, the present approach yields new

results for the leaky layers too, namely the robust existence of discrete eigenvalues

for all negative α, solving in this way the open problem of [12, Sect. 7.5], at least

in a special class of rotationally symmetric geometries. The hard-wall layers could

also be treated simultaneously, but our technique does not bring anything new in

this case (except for the explicit observation missing in [10, 6] that there is an
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infinite number of eigenvalues in hard-wall layers with appropriate rotationally

symmetric ends).

Before stating our main results, let us informally summarise the character-

istic hypotheses. The surface Σ is assumed to be smooth and orientable, the Gauss

curvature of Σ is integrable (see (6)) and Σ is asymptotically planar in the sense

that both the Gauss and mean curvatures vanish at infinity of Σ (see (15)). More

restrictively, we assume that Σ is asymptotically cut-locus planar (see (16)). As

usual in the theory of quantum waveguides, we always assume that the tubular

neighbourhood (1) does not overlap itself with some positive a (see (9) and (10)).

Finally, Σ is assumed to contain a cylindrically symmetric end with positive total

Gauss curvature (i.e. the integral of the Gauss curvature is positive), whose asymp-

totic cut-locus is known explicitly (see (30)) and whose parallel curvature admits

a power-like decay (see (32)).

The confining potential V : R3 → R is assumed to be an essentially bounded

function or the leaky realisation Vleaky := αδΣ with α ∈ R. In the former case, we

assume that the support of V is contained in the closure of Ωa and that the profile

does not vary along Σ. More specifically, if n is a unit normal vector field along Σ

and p ∈ Σ, we assume

(3) W (t) := V (p+ n(p)t) is independent of p & suppW ⊂ [−a, a].

This is certainly the case for leaky layers too, because δΣ is zero range and α is

assumed to be a constant. The corresponding one-dimensional operator

T := −∂2t +W (t) in L2(R)

with form domain H1(R) (the sum should be understood as the form sum in the

leaky case) has the essential spectrum covering [0,∞) in both cases. We assume

that W is attractive in the sense that

(4) T possesses at least one negative eigenvalue.

This hypothesis holds in the leaky case if, and only if, α is a negative constant. In

general, a sufficient condition to guarantee (4) is that
∫
RW < 0 (which particu-

larly involves negative potentials). Moreover, it is easy to design potentials which

simultaneously satisfy
∫
RW ≥ 0 and (4) (e.g., it is enough to consider the strong

coupling regime of any W possessing a negative minimum; see [20, Thm. 4]). Let

E1 < 0 denote the lowest discrete eigenvalue of T .

Our main result reads as follows.

Theorem 1. Let Σ be an orientable smooth surface which is asymptotically cut-

locus planar (16) and admits an integrable Gauss curvature (6). Let the tubular
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neighbourhood (1) not overlap itself with some positive a, i.e. (9) and (10) hold.

Let V be an essentially bounded function (or the distribution αδΣ with α < 0)

satisfying (3) and (4). Then

inf σess(H) ≥ E1.

Moreover, if Σ coincides up to a compact subset with a cylindrically symmetric

surface with positive total Gauss curvature and satisfying the extra hypotheses (30)

and (32), then H possesses an infinite number (counting multiplicities) of discrete

eigenvalues below E1, and in this case inf σess(H) = E1.

A special circumstance is of course when Σ coincides with the cylindrically

symmetric end. Then a canonical example of the surface satisfying all the hypo-

theses is the paraboloid of revolution (and other surfaces obtained by revolving

polynomially growing curves). Another typical example is the family of surfaces Σθ

obtained by revolving the planar curve of [26] (see Figure 1),

(5) Γθ(s) :=
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along the second axis in R3, where R > 0 and θ ∈ [0, π]. Hence Σθ is the union

of a spherical cap and a conical end; it is a plane if θ = 0, while the end becomes

cylindrical if θ = π. Of course, Σθ is not smooth (unless θ = 0), but it is piecewise

smooth (in fact, piecewise analytic).

The surface Σθ can be regarded as a regularised version of the conical geo-

metry considered in [19, 9, 35, 11]. Indeed, Theorem 1 applies to Σθ with θ ∈ (0, π),

confirming in this way the results of the precedent works. In fact, not necessarily

rotationally symmetric cones are considered in [35, 11], and moreover the accumu-

lation rate of the eigenvalues is derived there. On the other hand, the strength of

the present work is that we go substantially beyond the conical geometries, so the

present paper can be considered as a generalisation of [35, 11].

The present paper can be also considered as a generalisation of our preced-

ent work [26] to three dimensions. Indeed, our modus operandi is again rooted in

developing the method of parallel coordinates based on Σ involving the cut-locus

of Σ. Unfortunately, the common limitation of the method is that we can consider

special surfaces only: those for which the cut-locus is known explicitly. However,

the unprecedented novelty with respect to [26] is that an asymptotic knowledge

of the cut-locus is enough in the present work. This enables us to cover more
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Figure 1. The piecewise smooth curve (5) (symmetrically extended to s ∈ R) and
its cut-locus (red).

general geometries. What is more, the present proof of the existence of a discrete

spectrum exhibits another important novelty with respect to the previous work:

The argument requires a careful choice of the trial function localised at infinity.

This is indeed a huge difference with respect to [26], where the trial function

was the standard one, i.e. essentially a constant localised everywhere. This phe-

nomenon is closely related to the existence of the intrinsic Gauss curvature K for

surfaces, while there are just extrinsic curvatures for curves. It was noticed in [10]

that a more refined choice of trial functions is necessary for layers over surfaces

with positive total Gauss curvature. Furthermore, the unconventional choice of the

trial function enables one to conclude that there is actually an infinite number of

discrete eigenvalues.

The paper is organised as follows. In Section 2 we develop a general approach

to soft and leaky quantum layers; in particular we introduce a useful paramet-

risation of R3 involving the cut-locus of Σ. In Section 3 we consider the special

situation of cylindrically symmetric layers. Theorem 1 is proved in Section 4.

§2. Parallel coordinates

Let us first develop a general approach to study soft quantum layers. The first

part of our approach (before speaking about the cut-locus) is rather standard and

we refer to [6, 29] for similar geometric preliminaries.

Let Σ be a connected orientable smooth surface in R3. We are particularly

interested in non-compact complete surfaces, but Σ can alternatively be compact
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in these geometric preliminaries. The induced metric of Σ will be denoted by g.

Introducing the standard notation |g| := det(g), the surface element of Σ reads

dΣ = |g|1/2 ds1 ∧ ds2, where (s1, s2) is a local coordinate system of Σ. The orient-

ation of Σ is specified by a globally defined unit normal vector field n ∈ Σ → S2.
For any p ∈ Σ, we introduce the Weingarten map

L : TpΣ → TpΣ: {ξ 7→ −dn(ξ)}.

The eigenvalues k1, k2 of L are called the principal curvatures of Σ. They are

defined only locally on Σ, but the Gauss curvature K := det(L) = k1k2 and the

mean curvature M := 1
2 tr(L) =

1
2 (k1 + k2) are globally defined smooth functions

on Σ. The relationship of L with the second fundamental form h of Σ is through

the formula Lµ
ν = gµρhρν , where h = hµν ds

µ dsν , g = gµν ds
µ dsν and, as usual,

gµν denote the entries of the inverse matrix (gµν)
−1. Here we adopt the Einstein

summation convention, the range of Greek and Latin indices being 1, 2 and 1, 2, 3,

respectively.

The characteristic hypothesis of this work is that the Gauss curvature is integ-

rable:

(6) K ∈ L1(Σ).

Then the total Gauss curvature K :=
∫
Σ
K dΣ is well defined. The quantity K

plays an important role in the global geometry of Σ. In fact, by the celebrated

Gauss–Bonnet theorem (see, e.g., [25, Sect. 6.3]), K is a topological invariant for

closed surfaces. By [23], the hypothesis (6) implies that Σ is conformally equivalent

to a closed surface from which a finite number of points have been removed.

Let us consider the normal exponential map

(7) Φ: Σ× R → R3 : {(p, t) 7→ p+ n(p)t}.

It gives rise to parallel (or Fermi) “coordinates” (p, t) based on Σ. The metric G

induced by (7) has a block form

(8) G = g ◦ (I − tL)2 + dt2,

where I denotes the identity map on TpΣ. Consequently,

|G| := det(G) = |g|[det(I − tL)]2 = |g|[(1− tk1)(1− tk2)]
2 = |g|(1− 2Mt+Kt2)2.

The map Φ is standardly used in the theory of quantum layers as a convenient

parametrisation of the tubular neighbourhood Ωa introduced in (1). It follows by

the inverse function theorem that the restricted map Φ: Σ × (−a, a) → Ωa is a
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local diffeomorphism provided that

(9) 0 < a < (max{∥k1∥∞, ∥k2∥∞})−1

(with the convention that the right-hand side equals ∞ if the principal curvatures

are identically equal to zero). Of course, to be able to satisfy this inequality with

a positive a, it is necessary to assume that the Gauss and mean curvatures are

globally bounded functions (this is automatically satisfied for compact Σ). The

crucial requirement that the tubular neighbourhood (1) “does not overlap itself”

precisely means that Φ: Σ × (−a, a) → Ωa is a (global) diffeomorphism, which is

ensured by assuming in addition to (9) the ad hoc requirement that

(10) Φ ↾ Σ× (−a, a) is injective.

Then (Σ× (−a, a), G) is an embedded submanifold of R3 and Ωa = Φ(Σ× (−a, a))
indeed has the geometrical meaning of the set of points in R3 squeezed between two

parallel hypersurfaces at the distance a from Σ. Indeed, within Ωa, one observes

that p 7→ Φ(p, t) is an embedded surface parallel to Σ at the distance |t| for

any fixed t ∈ (−a, a), while t 7→ Φ(p, t) is a straight line (i.e. a geodesic in R3)

orthogonal to Σ at any fixed point p ∈ Σ.

Now we go beyond the standard approach to quantum layers by extending

the parallel coordinates Φ from Ωa to the whole space R3. We are inspired by [36,

Appx. 1]. Define the cut-radius maps c± : Σ → (0,∞] by the property that the

segment t 7→ Φ(p, t) for positive (respectively, negative) t minimises the distance

from Σ if, and only if, t ∈ [0, c+(p)) (respectively, t ∈ (−c−(p), 0]). The cut-radius

maps are known to be continuous. The cut-locus

(11) Cut(Σ) :=
{
Φ(p, c+(p)) : p ∈ Σ

}
∪
{
Φ(p,−c−(p)) : p ∈ Σ

}
is a closed subset of R3 of measure zero (see, e.g., [7, Chap. III]). The map Φ,

when restricted to the set

(12) U :=
{
(p, t) ∈ Σ× R : −c−(p) < t < c+(p)

}
is a diffeomorphism onto Φ(U) = R3 \ Cut(Γ). Obviously, one has the inclusion

(13) Cut(Σ) ⊃ Cut0(Σ) :=
{
Φ(p, t) : 1− 2M(p)t+K(p)t2 = 0

}
,

where Cut0(Σ) is called the conjugate locus of Σ (points where the Jacobian of Φ

vanishes).

Outside the cut-locus, we have the usual coordinates of quantum layers. If

(s1, s2) is a local coordinate system of Σ, then (s1, s2, t) is a natural local coordinate
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system of Φ(U). With respect to the corresponding coordinate frame, the metric G

admits the matrix representation

(14) (Gij) =

(
(Gµν) 0

0 1

)
with Gµν = gµρ(δ

ρ
σ − tLρ

σ)(δ
σ
ν − tLσ

ν).

In particular, the volume element of Φ(U) is given by

dv := (1− 2Mt+Kt2) dΣ ∧ dt.

In agreement with [10], we say that a non-compact surface Σ is asymptotically

planar if the Gauss and mean curvatures vanish at infinity, which we schematically

write as

(15) K,M
∞−→ 0.

Recall that a function f , defined on a non-compact manifold Σ, is said to vanish

at infinity if, given any positive number ε, there exists a compact subset K ⊂ Σ

such that |f | < ε on Σ \K. Similarly, we say that f diverges at infinity and write

f
∞−→ ∞ if, given any positive number ε, there exists a compact subset K ⊂ Σ

such that |f | > ε−1 on Σ\K. In parallel with (15), we say that Σ is asymptotically

cut-locus planar if

(16) c±
∞−→ ∞.

Note that (16) implies (15) due to the inclusion (13). On the other hand, we expect

that the reverse implication does not hold in general.

Conjecture 1. There exists a connected surface such that (15) holds but (16) is

violated.

For possibly disconnected surfaces this is obvious (think about two parallel

planes), but constructing an explicit connected example seems difficult (see Fig-

ure 2 for a partial attempt). A sufficient condition to ensure hypothesis (16) as a

consequence of (15) is given by surfaces of revolution (cf. Lemma 4 below).

Now we turn from geometric to analytic preliminaries. Recall our Hamilto-

nian H given in (2). If V : R3 → R is an essentially bounded function (as is indeed

the case for the soft realisation of the confinement), then H can be introduced

as an ordinary operator sum of the self-adjoint Laplacian with domain H2(R3)

and the maximal operator of multiplication generated by V . The associated closed

form reads

(17) h[u] :=

∫
R3

|∇u|2 +
∫
R3

V |u|2, domh := H1(R3).
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(a) asymptotically
neither cut-locus
planar nor planar

(b) asymptotically planar
(along x2) but not cut-locus
planar

(c) asymptotically cut-locus planar
(along x2)

Figure 2. Towards the proof of Conjecture 1. Surface (a) is the curve of Figure 1

with θ = π and R = 1 translated along axis x3. Then it is not asymptotically cut-

locus planar because the distance between the flat parts equals the constant 2 as

x2 → ∞. Surface (b) is obtained from (a) by taking the radius R in (5) dependent

on both s and x3, namely R(s, x3) := 1+(x3)2/(1+s2). Then (b) is not asymptotic-

ally cut-locus planar either (the distance between the modified flat parts remains 2

as x2 → ∞ and x3 = 0), while K,M → 0 as x2 → ∞ and x3 is fixed (the challenge

is to have (15) globally). Surface (c) is the curve of Figure 1 with θ = 5
7π and R

as for (b); then c± → ∞ as x2 → ∞ and x3 is fixed.

If V is the distribution of the leaky type Vleaky := αδΣ, it is simplest to start with

the form (17), where the second term should be interpreted as α
∫
Σ
|u|2. Again,

it is a well-defined and closed form under our standing hypothesis (9) and (10).

In either case, H can be defined as the self-adjoint operator associated with h

(with the properly interpreted second integral) via the representation theorem

[24, Thm. VI.2.1].

Finally, we express H in the parallel coordinates. This is achieved by means

of the unitary map U : L2(R3) → L2(U,dv) defined by Uu := u ◦ Φ. Then Ĥ :=

UHU−1 is the operator associated with the quadratic form ĥ[ψ] := h[U−1ψ] with

dom ĥ := U domh. Explicitly, using the block-diagonal form of the metric (8), one

has

(18) ĥ[ψ] =

∫
U

∂µψG
µν∂νψ dv +

∫
U

|∂tψ|2 dv +
∫
U

W (t)|ψ|2 dv,

where (Gµν) := (Gµν)
−1. Hereafter, the last integral should be interpreted as

α
∫
Σ
|ψ(·, 0)|2 dΣ in the case of leaky layers. In the sense of distributions, the



750 D. Krejčiř́ık and J. Kř́ıž

operator Ĥ associated with ĥ acts as

Ĥ = −|G|−1/2∂µ|G|1/2Gµν∂ν − |G|−1/2∂t|G|1/2∂t +W.

Here, W is absent in the case of leaky layers, the influence of the Dirac interaction

being realised by appropriate transmission conditions imposed on Σ in the operator

domain. We shall not need to specify this condition, for it is enough to work on

the level of forms for our purposes.

§3. Rotationally symmetric layers

The parallel coordinates of the previous section enable one to transfer the geomet-

rically complicated action of the operatorH into the coefficients of the transformed

operator Ĥ. The problem is that even the form domain dom ĥ is not easy to identify

because of the boundary conditions on ∂U . An objective of this paper is to point

out that there exists a special class of surfaces for which this is feasible because

of more precise information about the cut-locus. These are surfaces of revolution,

so here we consider layers which are invariant with respect to rotations around a

fixed axis in R3.

Let r, z : [0,∞) → R be smooth functions such that r(s) > 0 for all s > 0,

r(0) = 0 = z(0), r′(0) = 1 and

(19) r′(s)2 + z′(s)2 = 1

for all s ≥ 0. The last identity implies that the planar curve Γ(s) := (r(s), z(s)) is

unit-speed (see Figure 3). We consider the smooth surface of revolution Σ obtained

by revolving Γ around the second axis:

(20) Σ :=
{
(r(s) cosϑ, r(s) sinϑ, z(s)) : (s, ϑ) ∈ [0,∞)× [0, 2π)

}
.

We use the following natural parametrisation of Σ:

(21) p : (0,∞)× (0, 2π) → R3 :
{
(s, ϑ) 7→ (r(s) cosϑ, r(s) sinϑ, z(s))

}
,

which gives rise to geodesic polar “coordinates” (s, ϑ) on Σ. With respect to these

coordinates, the induced metric gµν := ∂µp · ∂νp, where the dot denotes the scalar

product in R3, reads

(22) (gµν) =

(
1 0

0 r2

)
.

In particular, the surface element of Σ reads dΣ := r(s) ds ∧ dϑ. Because of the

availability of a unique chart p−1 (which covers the whole Σ except for the curve Γ,
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k1(s) < 0

k1(s) > 0

Figure 3. The geometry of the generating curve Γ.

which is a set of measure zero relative to Σ), we shall consider the geometric objects

of Σ as functions of (s, ϑ) rather than points of Σ.

With respect to the surface normal

(23) n(s, ϑ) := (−z′(s) cosϑ,−z′(s) sinϑ, r′(s)),

we have the following formulae for the second fundamental form hµν := −∂µn ·∂νp
and the Weingarten tensor Lµ

ν = gµρhρν :

(24)

(hµν) =

(
r′z′′ − r′′z′ 0

0 rz′

)
,

(Lµ
ν) =

(
k1 0

0 k2

)
, k1 := r′z′′ − r′′z′, k2 :=

z′

r
.

Consequently, the layer metric (14) is actually diagonal. The principal curvatures

k1 and k2 will be called the meridian and parallel curvatures, respectively. Because

of the rotational symmetry, the curvatures are independent of ϑ, so we suppress

this variable from the arguments to simplify the notation.

Differentiating (19), we obtain the identity r′r′′ + z′z′′ = 0. Using it in the

definition of K = k1k2 with help of the formulae (24) for the principal curvatures,

we arrive at the Jacobi equation

(25) r′′ +Kr = 0,

subject to initial conditions r(0) = 0 and r′(0) = 1. The differential equation (25)

has important consequences. First, we have the following upper bound on the

Jacobian r.
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Lemma 1. Assume (6). Then there exists a positive constant CΣ such that

∀ s ≥ 0, r(s) ≤ CΣs.

Proof. Integrating (25), we obtain the uniform bound

r′(s) = 1−
∫ s

0

(Kr)(s) ds ≤ 1 +
∥K∥L1(Σ)

2π
=: CΣ

for all s ≥ 0. Integrating this inequality, we obtain the desired claim.

Second, (25) implies the Gauss–Bonnet theorem

(26) K = 2π[1− r′(∞)], where r′(∞) := lim
s→∞

r′(s).

Note that the limit is well defined as a consequence of this equality and hypo-

thesis (6). Necessarily,

(27) 0 ≤ K ≤ 2π.

Here, the non-negativity follows from (19), while the upper bound is valid due to

the positivity of r. If the total Gauss curvature K is positive, we get important

information on the parallel curvature.

Lemma 2. Assume (6) with K > 0. There exist positive numbers δ and s0 such

that

∀s ≥ s0,
δ

r(s)
≤ |k2(s)| ≤

1

r(s)
.

Proof. The lemma is due to [10, Lem. 6.1]; we repeat the proof to make the

presentation self-contained. By (27), (26) and the assumption K > 0, one has

0 ≤ r′(∞) < 1. It follows that there exist δ′ ∈ (0, 12 ) and s0 > 0 such that

−δ′ ≤ r′(s) ≤ 1 − δ′ for all s ≥ s0. Then the desired claim follows from the

definition of k2.

It follows from Lemmata 1 and 2 that k2 is not integrable, i.e., k2 ̸∈ L1((0,∞)).

On the other hand, the meridian curvature k1 is integrable, which follows from the

smoothness of r, z and the following estimates:

(28) ∞ >
∥K∥L1(Σ)

2π
≥
∫ ∞

s0

|k1(s)k2(s)|r(s) ds ≥ δ

∫ ∞

s0

|k1(s)|ds.

Consequently,M ̸∈ L1((0,∞)). This is the essence of our subsequent analysis: even

if M may decay at infinity, it is not negligible in the integral sense there.
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Since Σ is rotationally symmetric, the cut-radius maps c± do not depend on

the angular variable, so we may suppress it from the argument. The map Φ defined

in (7), when restricted to the open set

(29) U :=
{
(s, ϑ, t) ∈ (0,∞)× (0, 2π)× R : −c−(s) < t < c+(s)

}
,

is a diffeomorphism onto Φ(U) = R3 \ {(x1, 0, x3) : x1 ≥ 0, x3 ∈ R}. Since the

latter coincides with R3 up to a set of measure zero, the map Φ can be used as a

parametrisation of R3.

The basic hypothesis (9) is obviously satisfied (with a positive a) due to (15)

and smoothness of Σ. The global requirement (10) must still be satisfied ad hoc

due to possible self-crossings of Γ. The following observation shows, however, that

it is actually enough to exclude the self-crossings only locally.

Lemma 3. Assume (6) and (15). Then r(s) → ∞ as s→ ∞.

Proof. If (6) holds with K > 0, then the result follows from Lemma 2 (note that

K, M vanish at infinity if, and only if, k1, k2 vanish at infinity). If K = 0, then

r′(∞) = 1. But then r(s) = r(s0) +
∫ s

s0
r′ ≥ 1

2 (s − s0) for all sufficiently large

s0 < s. Fixing s0 and sending s to ∞, we get the desired claim.

Our main hypothesis for rotationally symmetric layers is that the cut-locus

of Σ asymptotically coincides with the upper part of the axis of symmetry:

(30) ∃R0 > 0, Cut(Σ) \BR0
(0) =

{
(0, 0, x3) : x3 ≥ R0

}
.

Lemma 4. Assume (6) with K > 0, (15) and (30). Then there exists s0 > 0

such that, for all s ≥ s0, k1(s) ≥ 0, k2(s) > 0, c−(s) = ∞, c+(s) = 1/k2(s) and

k1(s) ≤ k2(s).

Proof. The crucial observation is that r(s) → ∞ as s → ∞ as a consequence of

Lemma 2 and (15) (or see Lemma 3 directly). At the same time, z(s) → ±∞ as

s → ∞ because z′(∞)2 = 1 − r′(∞)2 > 0, where the inequality is implied by

K > 0 and (26). Then c−(s) = ∞ and c+(s) = 1/k2(s) for all sufficiently large s.

Indeed, by (30) and the symmetry, for all sufficiently large s and any ϑ ∈ [0, 2π),

the curve γ(t) := p(s, ϑ) + n(s, ϑ)t does not intersect the ball BR0(0), so the only

intersection must be with the semi-axis {(0, 0, x3) : x3 ≥ R0}. Moreover, γ1(t) = 0

implies t = r/z′ = 1/k2. This argument also excludes the possibility z(s) → −∞
as s → ∞, because otherwise the curve γ would intersect the negative semi-axis

{(0, 0, x3) : x3 ≤ −R0} for all sufficiently large s. Consequently, z′(∞) > 0, so the

parallel curvature k2(s) is positive for all sufficiently large s. We claim that the

meridian curvature k1(s) is non-negative for all sufficiently large s (see Figure 3).
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Indeed, if it is not the case, then there exist large positive numbers s1 < s2
such that the graph of the curve Γ is strictly concave on (s1, s2), implying the

existence of a cut-locus of Γ to the right of the curve (when traced according to

the arc-length parameter), therefore violating (30). Finally, if k1(s) > k2(s), then

1/k1(s) < 1/k2(s) = c+(s), implying a contradiction that there exists a conjugate

point outside the cut-locus.

There are many surfaces of revolution satisfying (30). For instance, if s 7→ Γ(s)

is a convex graph, then c−(s) = ∞ for all s ≥ 0, so there is no cut-locus “outside” Σ

(i.e. for negative t). To show that the cut-locus satisfies (30) “inside” Σ (i.e. for

positive t), one can employ the geometric interpretation of the principal curvatures

(minimal and maximal values of the normal curvatures of all the curves passing

through a given point). Then it is easy to verify that (30) can be achieved as a

consequence (15) (still assuming (6) with K > 0). In particular, the paraboloid of

revolution satisfies (30) (as well as (6) with K = 2π and (15)).

To be even more explicit, let us consider the family of surfaces Σθ obtained

by revolving the planar curve (5). The cut-locus of Σθ is the semi-axis {(0, 0, x3) :
x3 ≥ R} if θ ∈ (0, π], while it is empty if θ = 0. Of course, Σθ is not smooth

(unless θ = 0), but it is piecewise smooth (in fact, piecewise analytic). The total

Gauss curvature of Σθ reads

(31) Kθ = 2π(1− cos θ
2 ),

so the hypotheses of Lemma 2 are met whenever θ ∈ (0, π).

Finally, we make a hypothesis about a sufficient decay of the parallel curvature

at infinity:

(32) ∃ ϵ > 0, k2(s) = O(s−ϵ) as s→ ∞.

This condition (with ϵ = 1) is easily verified for Σθ whenever θ ∈ [0, π). It also

holds for the paraboloid of revolution (with ϵ = 1/2) and other surfaces obtained

by revolving polynomially growing curves.

§4. The proofs

We assume that the potential V is either the distribution Vleaky := αδΣ with α < 0

or it is an essentially bounded function satisfying (3) and (4). Let E1 < 0 denote

the lowest discrete eigenvalue of T . The variational characterisation yields

(33) E1 = inf
ξ∈H1(R)

ξ ̸=0

∫
R
|ξ′(t)|2 dt+

∫
R
W (t)|ξ(t)|2 dt∫

R
|ξ(t)|2 dt

.
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In the leaky case, the integral
∫
RW (t)|ξ(t)|2 dt should be interpreted as α|ξ(0)|2,

in which case, explicitly, E1 = −α2

4 . It is well known that E1 is simple and that

the corresponding eigenfunction ξ1 can be chosen to be positive. We addition-

ally choose the eigenfunction to be normalised to 1 in L2(R), i.e., ∥ξ1∥L2(R) = 1.

Explicitly, ξ1(t) =
√
|α|/4eα

2 |t| in the leaky case. In any case, one knows that

ξ1 ∈ H1(R) ∩ L∞(R) and that the following identities hold true:

(34) ξ1(t) = N±e
∓
√
−E1t for every ±t > a,

where N± are positive constants.

Remark 1. In principle, the assumption suppW ⊂ [−a, a] of (3) could be relaxed

to a decay ofW at infinity. Then the asymptotics (34) could be replaced by Agmon-

type estimates.

First of all, we locate the essential spectrum of H (assuming suppW ⊂ [−a, a]
or the leaky setting). As an auxiliary quantity, in parallel with (33), we consider

(35) Eb
1 := inf

ξ∈H1((−b,b))
ξ ̸=0

∫ b

−b

|ξ′(t)|2 dt+
∫ b

−b

W (t)|ξ(t)|2 dt∫ b

−b

|ξ(t)|2 dt
,

where b > a. Of course, Eb
1 is the lowest eigenvalue of the operator T restricted to

(−b, b), subject to Neumann boundary conditions.

Lemma 5. One has

lim
b→∞

Eb
1 = E1.

Proof. In the leaky case, Eb
1 solves the implicit equation 2

√
−E=−α coth(

√
−Eb),

from which the convergence can easily be deduced. In the regular case, let us

assume b > a. By using ξ1 (or, more precisely, its restriction to (−b, b)) as a trial

function in (35), it is easy to see that

(36) Eb
1 ≤ E1.

To get the opposite estimate in the limit, let ξb1 be the positive minimiser of (35)

normalised to 1 in L2((−b, b)). We extend it to the whole line by setting

ξ̃b1(t) :=

{
ξb1(t) if |t| < b,

ξb1(±b) exp(∓
√
−E1(t∓ b)) if ±t ≥ b.
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Since ξ̃b1 ∈ H1(R), we use it as a trial function in (33) and obtain

E1 ≤
Eb

1 +
1
2

√
−E1[ξ

b
1(−b)2 + ξb1(b)

2]

1 + 1
2

1√
−E1

[ξb1(−b)2 + ξb1(b)
2]

.

It remains to notice that ξb1(±b) → 0 as b → ∞. To see it, we employ the explicit

solution

ξb1(t) = ξb1(±b) cosh
(√

−Eb
1(t∓ b)

)
for a ≤ ±t ≤ b.

Take t = ±a and use that the value ξb1(±a) can be estimated by the H1((−a, a))
norm of ξb1 as follows:

ξb1(±a)2 ≤
∫ a

−a

|ξb1
′
(t)|2 dt+ Ca

∫ a

−a

|ξb1(t)|2 dt,

where explicitly Ca := 1 + (2a)−1. In turn, the right-hand side can be estimated

by using the identity∫ b

−b

|ξb1
′
(t)|2 dt+

∫ b

−b

W (t)|ξb1(t)|2 dt = Eb
1

∫ b

−b

|ξb1(t)|2 dt.

Consequently, ξb1(±a)2 ≤ ∥W∥∞ + Ca. Finally, we obtain the exponential decay

ξb1(±b) ≤
√
∥W∥∞ + Ca

cosh
(√

−Eb
1(a∓ b)

) −−−→
b→∞

0.

This concludes the proof of the lemma.

The following theorem does not require that Σ is a surface of revolution.

Theorem 2. Let Σ be an orientable smooth surface which is asymptotically cut-

locus planar (16). Let the tubular neighbourhood (1) not overlap itself with some

positive a, i.e. (9) and (10) hold. Let V satisfy (3) and (4). Then

inf σess(H) ≥ E1.

Proof. Fixing a point p0 ∈ Σ and giving any positive number R, we divide the

surface Σ into two parts Σint := Σ∩BR(p0) and Σext := Σ\BR(p0), where BR(p0)

is the geodesic ball of radius R centred at p0. Correspondingly, we divide the set U

into two parts:

Uint :=
{
(p, t) ∈ Σint × R : −c−(p) < t < c+(p)

}
,

Uext :=
{
(p, t) ∈ Σext × R : −c−(p) < t < c+(p)

}
.
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The interior part is further subdivided into two subparts:

Uint,1 :=
{
(p, t) ∈ Σint × R : −a < t < a

}
,

Uint,2 :=
{
(p, t) ∈ Σint × R : −c−(p) < t < −a ∨ a < t < c+(p)

}
.

Analogously, we subdivide Uext into two subparts:

Uext,1 :=
{
(p, t) ∈ Σext × R : −b < t < b

}
,

Uext,2 :=
{
(p, t) ∈ Σext × R : −c−(p) < t < −b ∨ b < t < c+(p)

}
,

where b > 0. By (16), we can assume b > a by choosing R large enough. Define

c±R := 1± 2∥M∥Rb± ∥K∥Rb2 with ∥ · ∥R := ∥ · ∥L∞(Σext).

Since (16) implies (15), given any (large) b > a, there exists (large) R such that c−R
is positive.

We consider the auxiliary operator ĤN which is obtained from Ĥ by imposing

an extra Neumann condition (i.e. no condition on the level of sesquilinear forms)

on the boundaries of the subsets described above. More specifically, ĤN = ĤN
int,1⊕

ĤN
int,2 ⊕ ĤN

ext, where Ĥ
N
ext = ĤN

ext,1 ⊕ ĤN
ext,2 is the self-adjoint operator associated

with the form ĥNext in L
2(Uext,dv) defined by

ĥNext[ψ] :=

∫
Uext

∂µψG
µν∂νψ dv +

∫
Uext

|∂tψ|2 dv +
∫
Uext

W (t)|ψ|2 dv,

dom ĥNext[ψ] :=
{
ψ ↾ ĥext : ψ ∈ dom ĥ

}
,

and similarly for the other operators. Obviously, dom ĥN ⊃ dom ĥ, therefore ĤN ≤
Ĥ in the sense of quadratic forms, so, by the minimax principle, it is enough to

show that inf σess(Ĥ
N ) ≥ E1. Since suppW ⊂ [−a, a] due to (3), the operator

ĤN
int,2 is non-negative, so the inequality inf σess(Ĥ

N
int,2) ≥ E1 is trivial. At the

same time, ĤN
int,1 is an operator with compact resolvent, so it does not contribute

to the essential spectrum of ĤN (one has inf σess(Ĥ
N
int,1) = ∞ by the minimax

principle). It remains to estimate the essential spectrum of ĤN
ext.

For every ψ ∈ dom ĥNext,

ĥNext[ψ] ≥
∫
Uext

|∂tψ|2 dv +
∫
Uext

W (t)|ψ|2 dv

≥
∫
Uext,1

|∂tψ|2 dv +
∫
Uext,1

W (t)|ψ|2 dv

≥ c−R

∫
Uext,1

|∂tψ|2 dΣdt+

∫
Uext,1

W (t)|ψ|2 dv
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≥ c−RE
b
1

∫
Uext,1

|ψ|2 dΣdt− c−R

∫
Uext,1

W (t)|ψ|2 dΣdt+

∫
Uext,1

W (t)|ψ|2 dv

≥
c−R
c+R
Eb

1∥ψ∥2L2(Uext,dv)
− c−R

∫
Uext,1

W (t)|ψ|2 dΣdt+

∫
Uext,1

W (t)|ψ|2 dv,

where the fourth inequality employs the variational definition of Eb
1 (cf. (35)) with

the help of Fubini’s theorem and the fact that suppW ⊂ [−a, a]. Since∫
Uext,1

W (t)|ψ|2 dv ≥
∫
Uext,1

cR(t)W (t)|ψ|2 dΣdt,

where cR(t) := c−R if W (t) ≥ 0 and cR(t) := c+R if W (t) < 0, we get

ĥNext[ψ] ≥
c−R
c+R
Eb

1∥ψ∥2L2(Uext,dv)
− (c+R − c−R)

∫
Uext,1

χ{W (t)<0}(t)|W (t)| |ψ|2 dΣdt

≥
(c−R
c+R
Eb

1 −
c+R − c−R
c−R

∥W∥∞
)
∥ψ∥2L2(Uext,dv)

.

In summary,

inf σess(Ĥ) ≥ inf σess(Ĥ
N
ext) ≥ inf σ(ĤN

ext) ≥
c−R
c+R
Eb

1 −
c+R − c−R
c−R

∥W∥∞.

Since c−R/c
+
R → 1 as R → ∞ due to (15) (which is a consequence of (16)), we

obtain inf σess(Ĥ) ≥ Eb
1. Finally, the arbitrariness of b and Lemma 5 yield that

inf σess(Ĥ) ≥ E1.

We leave as an open problem whether σess(H) ⊃ [E1,∞) under the hypotheses

of Theorem 2.

Now we turn to the existence of bound states. We heavily rely on results in

Section 3 for rotationally symmetric layers. In particular, recall that, under the

hypotheses of the following theorem, the surface Jacobian r(s) is bounded from

above by a multiple of s (Lemma 1) and diverges as s→ ∞ (Lemma 3); the parallel

curvature k2 behaves like r−1 (Lemma 2); the cut-radius maps satisfy c−(s) = ∞
and c+(s) = k2(s)

−1 for all sufficiently large s (Lemma 4); and thus (16) follows

as a consequence of (15).

Theorem 3. Let Σ be a surface of revolution given by (20) and satisfying (6) with

K > 0 and (15). Let V satisfy (3) with some positive a and (4). Assume in addi-

tion (30) and (32). Then H possesses an infinite number (counting multiplicities)

of discrete eigenvalues below E1.

Proof. In view of Theorem 2, to establish the existence of a discrete eigenvalue

of H, it is enough to show that inf σ(H) < E1. By the minimax principle, it
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is thus enough to find a trial function ψ ∈ domQ := dom ĥ such that Q[ψ] :=

ĥ[ψ]−E1∥ψ∥2 < 0, where ∥ · ∥ denotes the norm in L2(U,dv). Recall that, in the

rotationally symmetric case, we have

(37)

ĥ[ψ] =

∫
U

|∂sψ(s, ϑ, t)|2
1−k2(s)t
1−k1(s)t

dΣdt+

∫
U

|∂ϑψ(s, ϑ, t)|2

r(s)2
1−k1(s)t
1−k2(s)t

dΣdt

+

∫
U

|∂tψ(s, ϑ, t)|2(1− k1(s)t)(1− k2(s)t) dΣdt

∥ψ∥2 =

∫
U

|ψ(s, ϑ, t)|2(1− k1(s)t)(1− k2(s)t) dΣdt,

where dΣ = r(s) ds ∧ dϑ and U is given by (29).

For every real ε, we introduce a ϑ-independent trial function

ψn,ε(s, ϑ, t) := φn(s)ξ1(t) + εϕn(s)tξ1(t),

where the sequence {φn}∞n=2 is defined by

φn(s) :=



0 if s ∈ [0, n),

log(s/n)

log n
if s ∈ [n, n2),

log(n3/s)

log n
if s ∈ [n2, n3),

0 if s ∈ [n3,∞),

and ϕn(s) :=
φn(s)

s
.

Note that the supports of φn and ϕn tend to infinity as n→ ∞. We always assume

that n is so large that the asymptotic properties of Lemma 4 hold. Proceeding as

in [26, Lem. 1] (see also below), one can verify that ψn,ε ∈ domQ. Then

(38) Q[ψn,ε] = Q[φnξ1] + 2εQ(ϕntξ1, φnξ1) + ε2Q[ϕntξ1].

We make the decomposition Q = Q1 + Q2, where Q1[ψ] :=
∫
U
∂µψG

µν∂νψ dv is

just the first line of (37).

Q1 One has

Q1[φnξ1] =

∫
U

φ′
n(s)

2ξ1(t)
2f(s, t) dΣdt with f(s, t) :=

1− k2(s)t

1− k1(s)t
≥ 0.

Since

∂tf(·, t) =
k1 − k2

(1− k1t)2
≤ 0,
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where the inequality holds due to Lemma 4, one has ∥f∥∞ = 1. Consequently,

Q1[φnξ1] ≤
∫
U

φ′
n(s)

2ξ1(t)
2 dΣdt

≤ 2πCΣ

∫ ∞

0

φ′
n(s)

2sds

=
4πCΣ

log n
,

where the second inequality holds due to Lemma 1 and the normalisation of ξ1.

Similarly,

Q1[ϕntξ1] ≤
4πCCΣ

n2 log n
, where C :=

∫
R
ξ1(t)

2t2 dt,

where the extra decay n−2 comes from the bound s ≥ n on the support of ϕn. The

mixed term Q1(ϕntξ1, φnξ1) tends to zero as n→ ∞ by using these estimates and

the Schwarz inequality. In summary,

lim
n→∞

Q1[ψn,ε] = 0.

Q2, order ε
0 One has

Q2[φnξ1] =

∫
U

φn(s)
2ξ′1(t)

2(1− 2M(s)t+K(s)t2) dΣdt

+

∫
U

W (t)φn(s)
2ξ1(t)

2(1− 2M(s)t+K(s)t2) dΣdt

− E1

∫
U

φn(s)
2ξ1(t)

2(1− 2M(s)t+K(s)t2) dΣdt

=

∫
U

|φn(s)|2ξ1(t)ξ′1(t)(2M(s)− 2K(s)t) dΣdt

+

∫
Σ

|φn(s)|2
[
ξ1(t)ξ

′
1(t)(1− 2M(s)t+K(s)t2)

]t=c+(s)

t=−c−(s)
dΣ

=

∫
U

|φn(s)|2|ξ1(t)|2K(s) dΣdt

+

∫
Σ

|φn(s)|2
[
ξ1(t)

2(M(s)−K(s)t)

+ ξ1(t)ξ
′
1(t)(1− 2M(s)t+K(s)t2)

]t=c+(s)

t=−c−(s)
dΣ.(39)

Here, the first equality follows by an integration by parts and the identity −ξ′′1 +

Wξ1 = E1ξ1. The second equality is a result of yet another integration by parts

after writing 2ξ1ξ
′
1 = (ξ21)

′. Recall that the support of φn tends to infinity as
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n→ ∞. Then the resulting integral over U vanishes as n→ ∞ due to (6) and the

dominated convergence theorem. What is more, the resulting integral over Σ van-

ishes as n→ ∞, for the exponential decay of ξ1 dominates all the other functions

that appear there. More specifically, evaluating at −c−(s) = −∞ (recall Lemma 4)

does not contribute. Recalling that c+ = 1/k2, one has (1 − 2Mc+ + Kc2+) =

(1− k1c+)(1− k2c+) = 0 and M −Kc+ = 1
2 (k2 − k1) ≤ 1 (because the curvatures

vanish at infinity), so it is enough to estimate (recall (34))∣∣∣∣∫
Σ

|φn(s)|2ξ1(c+(s))2 dΣ
∣∣∣∣ ≤ 2π

∫ n3

n

ξ1(c+(s))
2r(s) ds

≤ 2πN2
+

∫ n3

n

e−2
√
−E1c+(s)c+(s) ds

≤ 2πN2
+(n

3 − n)e−2
√
−E1c+(n)c+(n

3),

where the first inequality employs r ≤ c+. The upper bound vanishes as n → ∞
due to (32). In summary,

lim
n→∞

Q2[φnξ1] = 0.

Q2, order ε
1 Proceeding as in (39), we have

Q2(ϕntξ1, φnξ1)

=

∫
U

ϕn(s)φn(s)(tξ1(t))
′ξ′1(t)(1− 2M(s)t+K(s)t2) dΣdt

+

∫
U

W (t)ϕn(s)φn(s)tξ1(t)ξ1(t)(1− 2M(s)t+K(s)t2) dΣdt

− E1

∫
U

ϕn(s)φn(s)tξ1(t)ξ1(t)(1− 2M(s)t+K(s)t2) dΣdt

=

∫
U

ϕn(s)φn(s)tξ1(t)ξ
′
1(t)(2M(s)− 2K(s)t) dΣdt

+

∫
Σ

ϕn(s)φn(s)
[
tξ1(t)ξ

′
1(t)(1− 2M(s)t+K(s)t2)

]t=c+(s)

t=−c−(s)
dΣ

= −
∫
U

ϕn(s)φn(s)ξ1(t)
2(M(s)− 2K(s)t) dΣdt

+

∫
Σ

ϕn(s)φn(s)
[
tξ1(t)

2(M(s)−K(s)t)

+ tξ1(t)ξ
′
1(t)(1− 2M(s)t+K(s)t2)

]t=c+(s)

t=−c−(s)
dΣ.
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Again, the terms containing K in the resulting integral over U and the resulting

integral over Σ vanish as n→ ∞. Consequently, as n→ ∞,

Q2(ϕntξ1, φnξ1) = −
∫
U

ϕn(s)φn(s)ξ1(t)
2M(s) dΣdt+ o(1)

= −1

2

∫
U

ϕn(s)φn(s)ξ1(t)
2k2(s) dΣdt+ o(1),

where the second equality follows from (28) and the dominated convergence the-

orem. Here, employing Lemma 2,∫
U

ϕn(s)φn(s)ξ1(t)
2k2(s) dΣdt ≥ 2πδ

∫ ∞

0

φn(s)
2

s

∫ c+(s)

−c−(s)

ξ1(t)
2 dtds

= 2πδ

∫ ∞

0

φn(s)
2

s

(
1−

∫ ∞

c+(s)

ξ1(t)
2 dt

)
ds

= 2πδ

∫ ∞

0

φn(s)
2

s

(
1− ξ1(c+(s))

2

2
√
−E1

)
ds.

Here, the inequality is due to Lemma 2, the first equality employs the normalisation

of ξ1 and the last equality is due to the asymptotics (34). Since c+(s) → ∞ as

s→ ∞, one has

Q2(ϕntξ1, φnξ1) ≤ −πδ
∫ ∞

0

φn(s)
2

s
ds+ o(1)

as n→ ∞. It remains to compute

(40)

∫ ∞

0

φn(s)
2

s
ds =

2

3
log n.

In summary,

Q2(ϕntξ1, φnξ1) ≤ −c1 log n+ o(1) as n→ ∞,

where c1 := 2
3πδ is positive.

Q2, order ε
2 Integrating by parts as above, we have

Q2[ϕntξ1] =

∫
U

ϕn(s)
2(tξ1(t))

′(tξ1(t))
′(1− 2M(s)t+K(s)t2) dΣdt

+

∫
U

W (t)ϕn(s)
2tξ1(t)tξ1(t)(1− 2M(s)t+K(s)t2) dΣdt

− E1

∫
U

ϕn(s)
2tξ1(t)tξ1(t)(1− 2M(s)t+K(s)t2) dΣdt
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=

∫
U

ϕn(s)
2tξ1(t)(tξ1(t))

′(2M(s)− 2K(s)t) dΣdt

− 2

∫
U

ϕn(s)
2tξ1(t)ξ

′
1(t)(1− 2M(s)t+K(s)t2) dΣdt

+

∫
Σ

ϕn(s)
2
[
tξ1(t)(tξ1(t))

′(1− 2M(s)t+K(s)t2)
]t=c+(s)

t=−c−(s)
dΣ

=

∫
U

ϕn(s)
2t2ξ1(t)

2K(s) dΣdt

+

∫
U

ϕn(s)
2ξ1(t)

2(1− 4M(s)t+ 3K(s)t2) dΣdt

+

∫
Σ

ϕn(s)
2
[
ξ1(t)

2(t− 2M(s)t2 +K(s)t3)

+ t2ξ1(t)
2(M(s)−K(s)t)

]t=c+(s)

t=−c−(s)
dΣ

+

∫
Σ

ϕn(s)
2
[
tξ1(t)(tξ1(t))

′(1− 2M(s)t+K(s)t2)
]t=c+(s)

t=−c−(s)
dΣ.

As above, we conclude that

Q2[ϕntξ1] =

∫
U

ϕn(s)
2ξ1(t)

2(1− 4M(s)t) dΣdt+ o(1)

=

∫
U

ϕn(s)
2ξ1(t)

2(1− 2k2(s)t) dΣdt+ o(1)

≤
∫
U

ϕn(s)
2ξ1(t)

2 dΣdt+ o(1)

as n→ ∞. Here (using Lemma 1),∫
U

ϕn(s)
2ξ1(t)

2 dΣdt ≤ 2πCΣ

∫ ∞

0

φn(s)
2

s2
s

∫ c+(s)

−c−(s)

ξ1(t)
2 dtds

= 2πCΣ

∫ ∞

0

φn(s)
2

s

(
1−

∫ ∞

c+(s)

ξ1(t)
2 dt

)
ds

= 2πCΣ

∫ ∞

0

φn(s)
2

s

(
1− ξ1(c+(s))

2

2
√
−E1

)
ds.

Consequently,

Q2[ϕntξ1] ≤ c2 log n+ o(1) as n→ ∞,

where c2 := 2
32πCΣ.

Q Putting the results together, we finally arrive at

(41) Q[ψn,ε] ≤ (−2εc1 + ε2c2) log n+ o(1) as n→ ∞.
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Obviously, it is possible to choose ε positive and sufficiently small so that Q[ψn,ε]

is negative for all sufficiently large n. (Note that ∥ψn,ε∥ → ∞ as n → ∞, so the

result (41) does not contradict the fact that Q is bounded from below.)

1 7→ ∞ The argument above, together with Theorem 2, demonstrates that there

is at least one discrete eigenvalue (below E1). To realise that the same argument

actually shows that there is an infinite number (counting multiplicities) of dis-

crete eigenvalues, it is enough to notice that we have constructed a non-compact

sequence of trial functions. Indeed, {ψn,ε}∞n=2 certainly contains an infinite sub-

sequence of functions with mutually disjoint supports.

Theorem 1 from the introduction is a combination of Theorems 2 and 3, as

well as the observation that the trial function from the proof of Theorem 3 “does

not feel” what happens on any compact subset of R3. In fact, the perturbation of Σ

can be a conical surface as in [11]. At the same time, the essential spectrum of H is

stable under changes of Σ on a compact set. The extra property that inf σess(H) =

E1 in the last part of Theorem 1 follows from the general inequality inf σess(H) ≥
E1 and the fact that there is an infinite number of discrete eigenvalues, which can

accumulate to the lowest point of the essential spectrum only.
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[30] D. Krejčǐŕık and M. Tušek, Nodal sets of thin curved layers, J. Differential Equations 258
(2015), 281–301. Zbl 1323.35109 MR 3274759

[31] C. Lin and Z. Lu, On the discrete spectrum of generalized quantum tubes, Comm. Partial
Differential Equations 31 (2006), 1529–1546. Zbl 1107.53014 MR 2273964

[32] C. Lin and Z. Lu, Existence of bound states for layers built over hypersurfaces in Rn+1,
J. Funct. Anal. 244 (2007), 1–25. Zbl 1111.81059 MR 2294473

[33] C. Lin and Z. Lu, Quantum layers over surfaces ruled outside a compact set, J. Math. Phys.
48 (2007), article no. 053522, 14 pp. Zbl 1144.81376 MR 2329884

[34] Z. Lu and J. Rowlett, On the discrete spectrum of quantum layers, J. Math. Phys. 53 (2012),
article no. 073519, 22 pp. Zbl 1278.82081 MR 2985259

[35] T. Ourmières-Bonafos and K. Pankrashkin, Discrete spectrum of interactions concentrated
near conical surfaces, Appl. Anal. 97 (2018), 1628–1649. Zbl 1398.35024 MR 3819761

[36] A. Savo, Lower bounds for the nodal length of eigenfunctions of the Laplacian, Ann. Global
Anal. Geom. 19 (2001), 133–151. Zbl 1010.58025 MR 1826398

[37] J. Wachsmuth and S. Teufel, Effective Hamiltonians for constrained quantum systems, Mem.
Amer. Math. Soc. 230 (2014), no. 1083, vi+83 pp. Zbl 1300.81046 MR 3236129

https://doi.org/10.1063/1.4893035
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1301.82073&format=complete
http://www.ams.org/mathscinet-getitem?mr=3390760
https://doi.org/10.1007/s12220-014-9525-y
https://doi.org/10.1007/s12220-014-9525-y
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1337.35042&format=complete
http://www.ams.org/mathscinet-getitem?mr=3427137
https://doi.org/10.1016/j.jde.2014.09.009
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1323.35109&format=complete
http://www.ams.org/mathscinet-getitem?mr=3274759
https://doi.org/10.1080/03605300600635111
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1107.53014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2273964
https://doi.org/10.1016/j.jfa.2006.11.017
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1111.81059&format=complete
http://www.ams.org/mathscinet-getitem?mr=2294473
https://doi.org/10.1063/1.2736518
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1144.81376&format=complete
http://www.ams.org/mathscinet-getitem?mr=2329884
https://doi.org/10.1063/1.4736412
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1278.82081&format=complete
http://www.ams.org/mathscinet-getitem?mr=2985259
https://doi.org/10.1080/00036811.2017.1325472
https://doi.org/10.1080/00036811.2017.1325472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1398.35024&format=complete
http://www.ams.org/mathscinet-getitem?mr=3819761
https://doi.org/10.1023/A:1010774905973
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1010.58025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1826398
https://doi.org/10.1090/memo/1083
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1300.81046&format=complete
http://www.ams.org/mathscinet-getitem?mr=3236129

	Introduction
	Parallel coordinates
	Rotationally symmetric layers
	The proofs
	References

