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When Is a Subcategory Serre or Torsion-Free?

by

Kei-ichiro Iima, Hiroki Matsui, Kaori Shimada and Ryo Takahashi

Abstract

Let R be a commutative noetherian ring. Denote by modR the category of finitely gener-
ated R-modules. In the present paper, we first provide various sufficient (and necessary)
conditions for a full subcategory of modR to be a Serre subcategory, which include sev-
eral refinements of theorems of Stanley and Wang and of Takahashi with simpler proofs.
Next we consider when an IKE-closed subcategory of modR is a torsion-free class. We
investigate certain modules out of which all modules of finite length can be built by tak-
ing direct summands and extensions, and then we apply it to show that the IKE-closed
subcategories of modR are torsion-free classes in the case where R is a certain numerical
semigroup ring.

Mathematics Subject Classification 2020: 13C60.
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§1. Introduction

Let R be a commutative noetherian ring and denote by modR the category of

finitely generated R-modules. Various full subcategories of modR have been stud-

ied so far. Gabriel [4] completely classified the Serre subcategories of modR by

establishing an explicit one-to-one correspondence between them and the special-

ization-closed subsets of SpecR. Takahashi [12] showed that a wide subcategory
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of modR is Serre. Stanley and Wang [11] proved that a torsion class and a nar-

row subcategory of modR are Serre, which extends Takahashi’s result. The first

main result of the present paper is Theorem 2.5, which provides many kinds of

sufficient (and necessary) conditions for a given subcategory of modR to be Serre.

The following theorem is part of it, which extends Stanley and Wang’s result men-

tioned above; recall that a full subcategory X of modR is said to be tensor-ideal

if M ⊗X ∈ X for all M ∈ modR and X ∈ X .

Theorem 1.1. Let R be a commutative noetherian ring. Let X be a tensor-ideal

subcategory of modR which is closed under direct summands and extensions. Then

X is a Serre subcategory of modR.

The torsion-free classes of modR were classified completely by Takahashi [12];

he constructed an explicit bijection between them and the subsets of SpecR. We

say that a full subcategory of modR is IKE-closed if it is closed under images, ker-

nels, and extensions. Evidently, a torsion-free class is an IKE-closed subcategory.

Thus it is natural to ask whether an IKE-closed subcategory of modR is torsion-

free. To get answers to this question, we prove the following theorem, which is the

same as Theorem 5.5.

Theorem 1.2. Let R be a Cohen–Macaulay local ring of dimension one with max-

imal ideal m and infinite residue field k. Suppose that the associated graded ring

grm R has positive depth (or equivalently, that grm R is a Cohen–Macaulay ring).

Let n be a positive integer. Then every R-module of finite length can be built out

of R/mn by taking direct summands and extensions.

Applying the above theorem to numerical semigroup rings, we obtain the

following theorem, which is the combination of Theorems 6.7 and 6.9. The second

assertion of the theorem below provides complete classification of the IKE-closed

subcategories and an affirmative answer to the question stated above.

Theorem 1.3. Let k be a field and a, b be positive integers. Let R = k[[H]] be the

(completed) numerical semigroup ring, where either

� H = ⟨a, b⟩ with a > b and gcd(a, b) = 1, or

� H = ⟨a, a+ 1, . . . , a+ r⟩ with a ⩾ 2, r ⩾ 1 and k infinite.

Then the following two statements hold true:

(1) Every R-module of finite length can be built out of R/c by taking direct sum-

mands and extensions, where c is the conductor of R.
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(2) The IKE-closed subcategories of modR are the zero subcategory, the subcate-

gory of modules of finite length, the subcategory of torsion-free modules, and

modR itself.

We now state the organization of the present paper. For this, let R be a

commutative noetherian ring. In Section 2 we consider when a given subcategory

X of modR is a Serre subcategory. We provide a lot of equivalent conditions for

X to be Serre, which include Theorem 1.1. In Section 3 we establish the question

whether an IKE-closed subcategory of modR is a torsion-free class. We give a

couple of affirmative answers to the question. In Section 4 we keep exploring the

question given in the previous section. We first reduce it to a more accessible

question, and then give positive answers in the case where R is excellent. In Section

5 we explore what modules can be produced by taking only direct summands and

extensions. We find a way to get a certain extension of modules, and prove Theorem

1.2. In Section 6 we apply results obtained mainly in the previous two sections to

the case where R is a numerical semigroup ring, and prove theorems which include

Theorem 1.3 as a special case.

We close the section by stating our convention.

Convention. We adopt the following conventions:

(1) Throughout the present paper, we assume that all rings are commutative and

noetherian, that all modules are finitely generated, and that all subcategories

are strictly full.

(2) Let R be a (commutative noetherian) ring. Denote by modR the category of

(finitely generated) R-modules. For a (strictly full) subcategory X of modR

we say that

(i) X is closed under direct summands provided that if X ∈ X and Y is a

direct summand of X, then Y ∈ X ;

(ii) X is closed under extensions provided that for an exact sequence 0 →
L → M → N → 0 in modR, if L and N are in X , then M is also in X ;

(iii) X is closed under subobjects (resp. quotients) provided that if X is a

module in X and Y is a submodule of X, then Y (resp. X/Y ) is also

in X ;

(iv) X is closed under kernels (resp. images, cokernels) if the kernel (resp.

image, cokernel) of each homomorphismX → X ′ withX,X ′ ∈ X belongs

to X .

(3) Denote by SpecR the set of prime ideals of R. For an R-module M , define

the support SuppM of M as the set of prime ideals p with Mp ̸= 0. For



834 K. Iima, H. Matsui, K. Shimada and R. Takahashi

a subcategory X of modR, we set SuppX =
⋃

X∈X SuppX. For a subset

Φ of SpecR we denote by Supp−1 Φ the subcategory of modR consisting of

R-modules M with SuppM ⊆ Φ.

(4) Let M be an R-module. We say that a prime ideal p of R is an associated

prime ideal of M if there is an injective homomorphism R/p ↪→ M . Denote by

AssM the set of associated prime ideals of M . For a subcategory X of modR,

we set AssX =
⋃

X∈X AssX. For a subset Φ of SpecR we denote by Ass−1 Φ

the subcategory of modR consisting of R-modules M with AssM ⊆ Φ.

(5) Let M be an R-module. We say that a prime ideal p of R is a minimal prime

ideal of M if it is a minimal element of SuppM with respect to the inclusion.

Denote by MinM the set of minimal prime ideals of M . It follows from [9,

Thm. 6.5(iii)] that one has the inclusion MinM ⊆ AssM .

(6) For a prime ideal p of R, we set κ(p) := Rp/pRp.

(7) The transpose of a matrix A is denoted by tA.

§2. Serre subcategories

Recall that a Serre subcategory of modR is by definition a subcategory of modR

which is closed under subobjects, quotients, and extensions. In this section, we

investigate when a given subcategory of modR is Serre. Precisely speaking, we

shall reduce those defining conditions of a Serre subcategory as much as possible,

keeping the resulting conditions defining a Serre subcategory.

For a subcategory X of modR, SuppX is always a specialization-closed subset

of SpecR, while Supp−1 Φ is always a Serre subcategory of modR. We establish a

key lemma.

Lemma 2.1. Let X be a subcategory of modR closed under extensions.

(1) Put Φ = {p ∈ SpecR | R/p ∈ X}. One then has Supp−1 Φ ⊆ X . If SuppX ⊆
Φ, then X is Serre.

(2) If X ̸= Supp−1(SuppX ), then there exists p ∈ SuppX with R/p /∈ X and

Supp−1(V(p) \ {p}) ⊆ X .

(3) Let p be a prime ideal of R such that Supp−1(V(p) \ {p}) ⊆ X . Suppose

that X is closed under direct summands and contains a module X satisfying

MinX = {p} and pXp = 0. Then R/p belongs to X .

Proof. (1) Let M ∈ Supp−1 Φ. Take a filtration 0 = M0 ⊆ · · · ⊆ Mn = M of

submodules of M such that for each i one has Mi/Mi−1
∼= R/pi with pi ∈ SuppM .

Then pi ∈ SuppM ⊆ Φ and R/pi ∈ X . As X is closed under extensions, we get

M ∈ X . If SuppX ⊆ Φ, then X = Supp−1 Φ, and it is Serre.
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(2) There is an R-module M with M /∈ X and M ∈ Y := Supp−1(SuppX ).

Note that Y is a Serre subcategory of modR. If M is generated by n elements,

then there is an exact sequence 0 → M ′ → M → M ′′ → 0 of R-modules such

that M ′ is cyclic, M ′′ is generated by n − 1 elements, and M ′, M ′′ are in Y. By

induction on n we may assume thatM is cyclic. Hence the set I of ideals I ofR with

R/I ∈ Supp−1(SuppX ) and R/I /∈ X is nonempty. As R is noetherian, there exists

a maximal element p of I with respect to the inclusion relation. Then R/p /∈ X
and V(p) = SuppR/p ⊆ SuppX . Take a filtration 0 = M0 ⊆ · · · ⊆ Mn = R/p of

submodules of the R-module R/p such that for each i one has Mi/Mi−1
∼= R/pi

with pi ∈ SpecR. Then each pi contains p. Assume that the ideal p of R is not

prime. Then each pi must strictly contain p, and the maximality of p implies

R/pi ∈ X for all i. As X is closed under extensions, we have R/p ∈ X . This

contradiction shows that p is a prime ideal of R. Let N ∈ Supp−1(V(p) \ {p}) and
q ∈ SuppN . Then p ⊊ q and SuppR/q ⊆ SuppR/p ⊆ SuppX . The maximality of

p implies R/q ∈ X . By (1) we get N ∈ X . Hence Supp−1(V(p) \ {p}) ⊆ X .

(3) We have p ∈ AssX ⊆ SuppX = V(p). Note that there is a submodule

M ⊆ X with X/M ∈ X and AssX/M = {p}. Indeed, if 0 is a primary sub-

module of X (i.e., AssX = {p}), then we can take M = 0. Otherwise, taking

the irredundant primary decomposition of the submodule 0 of the R-module X,

we find submodules M , N of X with 0 = M ∩N such that AssX/M = {p} and

every associated prime ideal of X/N strictly contains p. There is an exact sequence

σ : 0 → X → X/M ⊕ X/N → X/(M + N) → 0. Note that SuppX/(M + N) ⊆
SuppX/N ⊆ V(p) \ {p}. We get X/(M + N) ∈ Supp−1(V(p) \ {p}) ⊆ X and

(X/M)p ∼= Xp
∼= κ(p)⊕m for some m > 0 as pXp = 0. Since X is closed

under direct summands and extensions, the exact sequence σ shows X/M ∈ X .

There is an exact sequence τ : 0 → K → X/M → (R/p)⊕m → C → 0 with

Kp = Cp = 0. As AssK ⊆ AssX/M = {p}, we have K = 0. We also have

C ∈ Supp−1(V(p) \ {p}) ⊆ X . The exact sequence τ implies R/p ∈ X .

A subcategory X of modR is said to be ⊗-ideal if M ⊗R X ∈ X for all

M ∈ modR and X ∈ X . In the proposition below we give a sufficient condition

for X to be Serre.

Proposition 2.2. Let X be a subcategory of modR closed under direct summands

and extensions. If R/p ⊗R X ∈ X for any p ∈ SuppX and X ∈ X , then X is a

Serre subcategory of modR. In particular, if X is a ⊗-ideal subcategory of modR,

then X is a Serre subcategory of modR.

Proof. Suppose that X is not Serre. Then Lemma 2.1(2) implies that there exist

X ∈ X and p ∈ SuppX such that R/p /∈ X and Supp−1(V(p) \ {p}) ⊆ X . From
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the assumption, we have Y := X/pX = R/p ⊗R X ∈ X . Note that MinY = {p}
and pYp = 0. Lemma 2.1(3) implies R/p ∈ X , which is a contradiction.

Let X be a subcategory of modR. We say that X is Hom-ideal (resp. Ext-

ideal) if HomR(M,X) (resp. Ext1R(M,X)) is in X for all M ∈ modR and X ∈ X .

We give two sufficient conditions for X to be Serre.

Proposition 2.3. Let X be a subcategory of modR which is closed under direct

summands and extensions. Suppose that Hom(R/p, X) ∈ X for any p ∈ SuppX

and X ∈ X . If either (1) or (2), then X is Serre.

(1) AssX is specialization-closed.

(2) X is Ext-ideal.

In particular, when X is a Hom-ideal subcategory of modR, it is Serre if either

(1) or (2).

Proof. Assuming that X is not Serre, we shall derive a contradiction. Lemma 2.1(2)

gives rise to a prime ideal p ∈ SuppX such that R/p /∈ X and Supp−1(V(p) \ {p})
⊆ X .

(1) Note that the equality AssX = SuppX holds. We find a module X ∈ X
such that p ∈ AssX. Put Y = HomR(R/p, X) ∈ X . We have pYp = 0 and

AssY = V(p) ∩ AssX, the latter of which implies MinY = {p}. It follows from

Lemma 2.1(3) that R/p is in X , which is a contradiction.

(2) Choose a module X ∈ X such that p ∈ SuppX. By [1, Prop. (2.6)] there

is an exact sequence

0 → Ext1R(TrR/p, X) → X/pX
ϖ−→ HomR(HomR(R/p, R), X)

−→ Ext2R(TrR/p, X) → 0.

Let Z be the image of the map ϖ. By assumption, we have Ext1R(TrR/p, X) ∈
Ext1R(modR,X ) ⊆ X .

First, we suppose Z ∈ X . Since X is closed under extensions, we have Y :=

X/pX ∈ X and pYp = 0. As SuppY = V(p) ∩ SuppX = V(p), we get MinY =

{p}. Lemma 2.1(3) yields R/p ∈ X , a contradiction.

Next we suppose Z /∈ X . Then SuppZ ⊆ SuppX/pX ⊆ V(p). If Zp = 0,

then Z ∈ Supp−1(V(p) \ {p}) ⊆ X , which is contrary to the assumption. Hence

p ∈ SuppZ ⊆ SuppHomR(HomR(R/p, R), X), and we see that p ∈ AssX as

HomRp
(HomRp

(κ(p), Rp), Xp) ∼= HomRp
(κ(p), Xp)

⊕n ̸= 0 for some integer n ⩾ 0.

Setting Y = HomR(R/p, X) ∈ X , we have pYp = 0, AssY = V(p) ∩ AssX and
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MinY = {p}. It follows from Lemma 2.1(3) that R/p belongs to X , which is a

contradiction.

A subcategory X of modR is closed under cokernels of monomorphisms pro-

vided for an exact sequence 0 → L → M → N → 0 in modR with L,M ∈ X one

has N ∈ X . We collect some elementary facts.

Lemma 2.4. The following statements hold true for a subcategory X of modR:

(1) If X is closed under finite direct sums and cokernels, then it is ⊗-ideal and

closed under direct summands.

(2) If X is closed under finite direct sums and kernels, then it is Hom-ideal.

(3) If X is Hom-ideal and closed under cokernels of monomorphisms, then it is

Ext-ideal.

Proof. (1) Let M ∈ modR and X ∈ X . Then there is an exact sequence R⊕a →
R⊕b → M → 0, which induces an exact sequence X⊕a → X⊕b → M ⊗R X → 0.

Since X is closed under cokernels, M ⊗R X ∈ X . Thus X is ⊗-ideal. That X is

closed under direct summands follows by splicing the split exact sequences 0 →
M → M ⊕N → N → 0 and 0 → N → M ⊕N → M → 0 for R-modules M and

N , and by using the assumption that X is closed under cokernels.

(2) Let M ∈ modR and X ∈ X . Then there is an exact sequence R⊕a →
R⊕b → M → 0, which induces an exact sequence 0 → HomR(M,X) → X⊕b →
X⊕a. Hence X contains HomR(modR,X ).

(3) Let M ∈ modR and X ∈ X . Then there is an exact sequence 0 →
N → P → M → 0 with P projective, which induces an exact sequence 0 →
HomR(M,X) → HomR(P,X) → HomR(N,X) → Ext1R(M,X) → 0. As X is

Hom-ideal, HomR(N,X) ∈ X and hence Ext1R(M,X) ∈ X since X is closed under

cokernels of monomorphisms.

Let X be a subcategory of modR closed under extensions. Recall that X is

said to be torsion if it is closed under quotients. Also, X is called wide (resp.

narrow) if it is closed under kernels and cokernels (resp. cokernels). Now we state

and prove the main result of this section, which is the theorem below. This includes

the assertions of the theorems of Stanley and Wang [11, Thm. 2] and of Takahashi

[12, Thm. 3.1] with much simpler proofs.

Theorem 2.5. For a subcategory of X of modR the following eight conditions

are equivalent:

(1) X is Serre.
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(2) X is torsion.

(3) X is wide.

(4) X is narrow.

(5) X is ⊗-ideal, and closed under direct summands and extensions.

(6) X is Hom-ideal, Ext-ideal, and closed under direct summands and extensions.

(7) X is Hom-ideal, and closed under direct summands, extensions and cokernels

of monomorphisms.

(8) X is Hom-ideal, closed under direct summands and extensions, and AssX is

specialization-closed.

Proof. The implications (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4) are clear, while

(8) ⇒ (1) ⇒ (7) ⇒ (6) ⇒ (1) and (4) ⇒ (5) ⇒ (1) follow by Lemma 2.4 and

Propositions 2.2 and 2.3. Indeed, the implications (4) ⇒ (5), (1) ⇒ (7), and (7)

⇒ (6) are due to (1), (2), and (3) of Lemma 2.4, respectively. The implication (5)

⇒ (1) is due to Proposition 2.2. The implications (8) ⇒ (1) and (6) ⇒ (1) are due

to Proposition 2.3. It remains to show (1) ⇒ (8). Let X be Serre. Then X is Hom-

ideal by Lemma 2.4(2). Let p ∈ AssX and q ∈ V(p). There are a monomorphism

R/p → X ∈ X and an epimorphism R/p → R/q. We see R/q ∈ X , whence

q ∈ AssX . Thus AssX is specialization-closed.

We say that a subcategory X of modR is Tor-ideal if TorR1 (M,X) ∈ X for

all M ∈ modR and X ∈ X . To show the final result of this section, we establish a

lemma on Ext-ideal and Tor-ideal subcategories.

Lemma 2.6. Let X be a subcategory of modR, X ∈ X , and p a prime ideal of R

of positive grade. If X is Ext-ideal, then X ⊗R R/p ∈ X . If X is Tor-ideal, then

HomR(R/p, X) ∈ X .

Proof. Let a1, . . . , an be a system of generators of p. Taking the R-dual of the

exact sequence R⊕n ( a1 ··· an )−−−−−−−→ R → R/p → 0 and using the assumption that

HomR(R/p, R) = 0, we have a free resolution 0 → R
t( a1 ··· an )−−−−−−−−→ R⊕n → C → 0

of C. We get two exact sequences

0 → HomR(C,X) → X⊕n ( a1 ··· an )−−−−−−−→ X → Ext1R(C,X) → 0,

0 → TorR1 (C,X) → X
t( a1 ··· an )−−−−−−−−→ X⊕n → C ⊗R X → 0.

These exact sequences give rise to isomorphisms X ⊗R R/p ∼= Ext1R(C,X) and

HomR(R/p, X) ∼= TorR1 (C,X), respectively. This finishes the proof of the

lemma.
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The proposition below concerns when a subcategory X of modR with

SuppX ∩AssR = ∅ is Serre.

Proposition 2.7. Let X be a subcategory of modR closed under direct summands

and extensions. Consider the following conditions on the subcategory X :

(1) X is Serre.

(2) X is Ext-ideal.

(3) X is Tor-ideal and AssX is specialization-closed.

Then (1) implies (2) and (3). If SuppX ∩ AssR = ∅, then the three conditions

are equivalent.

Proof. Suppose that X is Serre. Then X is ⊗-ideal, Ext-ideal and AssX is special-

ization-closed by Theorem 2.5. If M ∈ modR and X ∈ X , then there is an exact

sequence 0 → N → P → M → 0 with P projective, which induces an exact

sequence 0 → TorR1 (M,X) → N ⊗X. Moreover, N ⊗X belongs to X since X is

⊗-ideal. This shows that TorR1 (M,X) belongs to X as X is Serre, and we see that

X is Tor-ideal. Therefore, (1) implies (2) and (3).

Assume SuppX ∩AssR = ∅. Then each p ∈ SuppX satisfies V(p)∩AssR = ∅,
which means that p has positive grade by [2, Exer. 1.2.27]. In view of Lemma 2.6,

the implication (2) ⇒ (1) (resp. (3) ⇒ (1)) follows from Proposition 2.2 (resp.

Proposition 2.3(1)).

§3. A fundamental question on IKE-closed subcategories

In this section we introduce the notion of IKE-closed subcategories of modR,

and pose a natural and fundamental question about the comparison of them with

torsion-free subcategories of modR. We make some observations concerning the

question, and give a couple of affirmative answers to the question.

We start with the definition of a torsion-free module since the subcategory of

all torsion-free modules is a typical example of an IKE-closed subcategory.

Definition 3.1. Let M be an R-module. We say that M is torsion-free if every

regular element on R is regular on M .

Remark 3.2. The following statements hold:

(1) Since the set of regular elements on M is R \
⋃

p∈AssM p by [9, Thm. 6.1(ii)],

M is torsion-free if and only if
⋃

p∈AssM p ⊆
⋃

p∈AssR p. Moreover, it follows

from the prime avoidance lemma [9, Exer. 16.8] that M is torsion-free if and

only if for any p ∈ AssM there is q ∈ AssR with p ⊆ q.
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(2) From the short exact sequence 0 → L → M → N → 0, we have inclusions

AssL ⊆ AssM and AssM ⊆ AssL ∪ AssN . Here, the first inclusion directly

follows from the definition and the second one is by [9, Thm. 6.3]. For this

reason, the subcategory of all torsion-free modules is closed under subobjects

and extensions.

Now let us introduce the following notions, which play central roles in the rest

of this paper.

Definition 3.3. Let X be a subcategory of modR.

(1) We say that X is torsion-free if it is closed under subobjects and extensions.

This name comes from the fact that the torsion-free R-modules form a torsion-

free subcategory of modR.

(2) We say X is IKE-closed if it is closed under images, kernels, and extensions.

Note that if X is IKE-closed, then it is closed under direct summands (indeed,

X is closed under direct summands if it is closed under finite direct sums and

kernels, by a similar argument to the last part of Lemma 2.4(1)).

The remark below says that the IKE-closed property is preserved under taking

factor rings.

Remark 3.4. Let I be an ideal of R. Let X be an IKE-closed subcategory of

modR. We then denote by X ∩modR/I the subcategory of modR/I consisting of

R/I-modules that belong to X as R-modules. Then X ∩modR/I is an IKE-closed

subcategory of modR/I. This is a consequence of the fact that images, kernels,

and extensions of R/I-modules are images, kernels, and extensions of R-modules,

respectively.

By virtue of [12, Thm. 4.1], the assignments X 7→ AssX and Φ 7→ Ass−1 Φ

give a one-to-one correspondence between the torsion-free subcategories of modR

and the subsets of SpecR.

Evidently, every torsion-free subcategory of modR is IKE-closed. Thus it is

natural to ask the following.

Question 3.5. Let R be a noetherian ring. Is every IKE-closed subcategory of

modR torsion-free? Equivalently, does the equality X = Ass−1(AssX ) hold for all

IKE-closed subcategories X of modR?

The following examples indicate that the assumption in the above question is

reasonable.
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Example 3.6. The following statements hold:

(1) Let (R,m, k) be a local ring which is not a field, and X the subcategory

of modR consisting of modules annihilated by m. Then X is closed under

subobjects, whence it is closed under kernels and images. However, X is not

closed under extensions. Indeed, there is an exact sequence 0 → m/m2 →
R/m2 → R/m → 0 and we have m/m2, R/m ∈ X while R/m2 /∈ X . This

example shows that Question 3.5 has a negative answer if the assumption

“closed under extensions” is extracted.

(2) Let (R,m) be a Cohen–Macaulay local ring of dimension at least two. Let X be

the subcategory of modR consisting of modules with depth at least two. Then

X is closed under kernels and extensions by the depth lemma. This subcategory

is not closed under subobjects. Indeed, R belongs to X but its submodule m

does not since it has depth one. This example shows that Question 3.5 has a

negative answer if the assumption “closed under images” is extracted.

Here we state three lemmas. The first one should be well known to experts,

while the second one is used in the next section as well. The proof of the third one

is taken from [12, Lem. 4.2].

Lemma 3.7. Let M ∈ modR. Let A, B be subsets of AssM such that AssM =

A ⊔ B. Then there exist R-modules L, N with AssL = A and AssN = B that fit

into an exact sequence 0 → L → M → N → 0.

Proof. The lemma follows from [5, Lem. 2.27]. As it is written in Japanese, we

explain a bit more for the convenience of the reader. Let L be a maximal element

with respect to the inclusion relation of the set of submodules L′ of M with

AssL′ ⊆ A, and put N = M/L. Then AssL = A and AssN = AssM \A.

Lemma 3.8. Let X be a subcategory of modR closed under direct sums and

images. Let X ∈ X . Let M be a submodule of X⊕n with n ⩾ 0. If there is an

epimorphism π : X⊕m → M with m ⩾ 0, then M ∈ X .

Proof. Let θ : M → X⊕n be the inclusion map. Let f be the composite map

θπ : X⊕m → X⊕n. We then have Im f = M . Since X is closed under direct sums

and images, the module M belongs to X .

Lemma 3.9. Let X be a subcategory of modR closed under images and exten-

sions. Let p be a prime ideal of R, and let M be an R-module. If R/p belongs to

X and AssM = {p}, then M belongs to X .

Proof. Assume M ̸∈ X . We want to make a filtration · · · ⊆ Mn ⊆ Mn−1 ⊆
· · · ⊆ M0 = M of submodules of M with Mn ̸∈ X and AssMn = {p} for all n.
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We shall do this by induction on n. Assume that we have constructed Mn. Let

fn1, . . . , fnsn be a system of generators of HomR(Mn, R/p). LetMn+1 be the kernel

of the map f = t( fn1 ··· fnsn ) : Mn → (R/p)⊕sn . As there is a surjection from a

direct sum of copies of R/p to Im f and X is closed under images and extensions,

Lemma 3.8 implies Im f ∈ X , whence Mn /∈ X implies Mn+1 ̸∈ X . Note that

AssMn+1 = AssMn = {p}. We thus obtain a desired filtration.

Localizing the filtration at p, we get a descending chain · · · ⊆ (Mn)p ⊆
(Mn−1)p ⊆ · · · ⊆ (M0)p = Mp of Rp-modules. As AssM = {p}, Mp is an artinian

Rp-module and hence the descending chain stabilizes, i.e., (Mn)p = (Mn+1)p = · · ·
for some integer n. Then HomRp

((Mn)p, κ(p)) =
∑sn

i=1 Rpfni = 0, and therefore

(Mn)p = 0. This contradicts the fact that AssMn = {p}. Consequently, the module

M belongs to X .

The following proposition plays a central role in both this section and the

next section.

Proposition 3.10. Let X be a subcategory of modR closed under images and

extensions. Let Φ be a set of prime ideals of R. Suppose that R/p ∈ X for all

p ∈ Φ. Then Ass−1 Φ is contained in X .

Proof. LetM ∈ Ass−1 Φ. There are prime ideals p1, . . . , pn ∈ Φ such that AssM =

{p1, . . . , pn}. Lemma 3.7 yields an exact sequence 0 → L → M → N → 0 with

AssL = {p1} and AssN = {p2, . . . , pn}. By Lemma 3.9 and induction on n, we

have L,N ∈ X . As X is closed under extensions, M belongs to X .

To get applications of the above proposition, we establish a lemma.

Lemma 3.11. Let X be a subcategory of modR. Then the following two state-

ments hold true:

(1) If X is Hom-ideal and closed under direct summands, then R/m ∈ X for any

m ∈ MaxR ∩AssX .

(2) If X contains R and is closed under finite direct sums and images, then X is

closed under subobjects.

Proof. (1) Choose an R-module X ∈ X with m ∈ AssX. Then HomR(R/m, X)

is a nonzero module that belongs to X . This implies that R/m is in X , since

HomR(R/m, X) is an R/m-vector space.

(2) Let X be a module in X and M a submodule of X. Composing the

inclusion map M → X with a surjection R⊕n → M , we get a map f : R⊕n → X

with R⊕n, X ∈ X . We then have M = Im f ∈ X .
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We obtain a corollary of the above proposition, which gives an affirmative

answer to Question 3.5.

Corollary 3.12. Suppose that R has dimension at most one. Let X be an IKE-

closed subcategory of modR such that MaxR ⊆ AssX . Then the equality X =

Ass−1(AssX ) holds. Therefore, X is torsion-free.

Proof. It is observed from Lemma 2.4(2) and Lemma 3.11(1) that the module

R/m belongs to X for every m ∈ MaxR. By Proposition 3.10, it suffices to show

that R/p ∈ X for p ∈ AssX . Take a monomorphism R/p → X with X ∈ X .

Put H = HomR(R/p, X) and r = rankR/p H > 0. The Hom-ideal property of X
shows that H ∈ X . There is an exact sequence 0 → (R/p)⊕r → H → C → 0 of

R/p-modules such that C is torsion, which means p ̸∈ SuppC. As dimR/p ⩽ 1

and C is torsion, the module C is supported only on maximal ideals and hence it

has finite length. Since X contains R/m for every m ∈ MaxR and is closed under

extensions, C belongs to X . It follows that (R/p)⊕r is in X , and so is R/p.

We get one more corollary which also answers Question 3.5 in the affirmative;

the corollary below particularly says that all the IKE-closed subcategories ofmodR

containing R are torsion-free.

Corollary 3.13. The assignments X 7→ AssX , Φ 7→ Ass−1 Φ give a one-to-one

correspondence between

� the subcategories of modR closed under images and extensions and containing

R, and

� the subsets of SpecR containing AssR.

Proof. Let X be a subcategory of modR closed under images and extensions and

containing R, and let Φ be a subset of SpecR containing AssR. It suffices to verify

Ass(Ass−1 Φ) ⊇ Φ and Ass−1(AssX ) ⊆ X . The former follows from the fact that

AssR/p = {p}. To show the latter, pick any p ∈ AssX . Then there is an injective

homomorphism R/p → X with X ∈ X . By Lemma 3.11(2) the subcategory X of

modR is closed under subobjects, and hence R/p belongs to X . Proposition 3.10

implies Ass−1(AssX ) ⊆ X .

§4. A reduction of the question and excellent rings

In this section we proceed with the investigation of Question 3.5. We reduce it

to a more accessible question. When the ring R is excellent, we deduce a certain

conclusion from the assumption of the new question, and then give a couple of

positive answers to the original Question 3.5.



844 K. Iima, H. Matsui, K. Shimada and R. Takahashi

Denote by tf R and flR the subcategories of modR consisting of torsion-free

R-modules and consisting of modules of finite length, respectively. When R is a

Cohen–Macaulay local ring of dimension one, tf R coincides with the subcategory

CM(R) consisting of maximal Cohen–Macaulay R-modules.

Lemma 4.1. The following statements hold:

(1) One has Ass−1(Φ) = tf R, where Φ = {p∈ SpecR | p ⊆ q for some q ∈ AssR}.
In particular, Ass−1{0} = tf R if R is a domain.

(2) One has Ass−1(MaxR) = flR. In particular, Ass−1{m} = flR if (R,m) is

local.

Proof. (1) This equality directly follows from Remark 3.2(1).

(2) It suffices to show that AssM ⊆ MaxR if and only if M ∈ flR for any

R-module M . Indeed, this follows from [9, Thm. 6.5(iii)]. Here we use the fact that

flR = Supp−1(MaxR).

We state a question, which is what we want to consider in this section.

Question 4.2. Let R be a domain. Does every IKE-closed subcategory X of

modR with AssX = {0} contain R?

For a domain R which satisfies the condition in the above question, we have

the following result which will be used several times.

Lemma 4.3. Let R be a domain. Suppose that R ∈ X holds for any IKE-subcat-

egory X of modR with AssX = {0}. If an IKE-subcategory X ̸= 0 of modR

satisfies 0 ∈ AssX and R/p ∈ X for any 0 ̸= p ∈ AssX , then R ∈ X .

Proof. By assumption, it suffices to show Ass(X ∩ tf R) = {0}. Assume on the

contrary that Ass(X ∩ tf R) = ∅, i.e., X ∩ tf R = {0}. As 0 ∈ AssX , there is an

R-module X ∈ X with 0 ∈ AssX. Then AssX ⊋ {0}. Putting Φ = AssX \ {0},
we have AssX = {0} ⊔ Φ. Lemma 3.7 gives rise to an exact sequence 0 → M →
X → N → 0 of R-modules such that AssM = {0} and AssN = Φ. Proposition

3.10 shows Ass−1 Φ ⊆ X , which implies N ∈ X . Since X is closed under kernels,

M belongs to X . Using Lemma 4.1(1), we get M ∈ X ∩ tf R. It is now observed

that Ass(X ∩ tf R) = {0}. Since X and tf R are IKE-closed, so is the intersection

X ∩ tf R. Our assumption yields R ∈ X ∩ tf R. Hence R is in X .

The following proposition says that our original Question 3.5 is reduced to

the above Question 4.2.
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Proposition 4.4. Question 4.2 is equivalent to Question 3.5. Namely, every

domain R satisfies the condition in Question 4.2 if and only if every ring R sat-

isfies the condition in Question 3.5.

Proof. The assertion of the proposition follows from (1) and (2) below.

(1) Let R be a domain and X an IKE-closed subcategory of modR with

AssX = {0}. Find 0 ̸= X ∈ X . We have AssX = {0}. Assume that every ring R

satisfies the condition in Question 3.5. Then X = Ass−1(AssX ) holds. We have

AssR = {0} = AssX ⊆ AssX , which implies R ∈ Ass−1(AssX ) = X . Thus

Question 4.2 is affirmative.

(2) Suppose that every domain R satisfies the condition in Question 4.2. We

want to show that Question 3.5 is affirmative as well. Let X be an IKE-closed

subcategory of modR. Fix a prime ideal p ∈ AssX . According to Proposition

3.10, we shall be done if we deduce R/p ∈ X . So, assume that R/p is not in X ,

and choose p to be maximal, with respect to the inclusion relation, among the

prime ideals p′ ∈ AssX with R/p′ /∈ X . Remark 3.4 implies that X ∩ modR/p

is an IKE-closed subcategory of modR/p. If q/p is a nonzero prime ideal of R/p

that belongs to AssR/p(X ∩modR/p), then we have p ⊊ q ∈ AssR X , and R/q is

in X ∩ modR/p by the maximality of p. We want to deduce R/p ∈ X , and then

we shall have a desired contradiction. Toward this, replacing R with R/p, we may

assume that R is a domain and p = 0. Note that R/q ∈ X for all 0 ̸= q ∈ AssX .

Then Lemma 4.3 shows that R is in X and so the proof is completed.

It should be much easier to think of Question 4.2 than Question 3.5. Indeed,

the former has a stronger assumption but a weaker conclusion than the latter. For

example, the following observation may be useful to deduce that Question 4.2 has

a positive answer.

Example 4.5. Let X be a subcategory of modR closed under direct summands

and extensions. Let m be a maximal ideal of R such that 0 ̸= m ∈ X . Then R

belongs to X .

In fact, note that there exists an exact sequence 0 → m2 → m
a−→ (R/m)⊕n →

0 of R-modules with n > 0. Take an epimorphism b : R⊕n → (R/m)⊕n. In the

pullback diagram

0 // m2 // m
a // (R/m)⊕n // 0

0 // m2 // W //

OO

R⊕n //

b

OO

0
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of a and b, the bottom row splits since R⊕n is projective. Hence we get an exact

sequence 0 → m⊕n → m2⊕R⊕n → m → 0. Since m and m⊕n belong to X , so does

R⊕n, and so does R.

Here we prepare an easy lemma.

Lemma 4.6. Let X be a subcategory of modR closed under direct sums and

images.

(1) One has IX ∈ X for all R-modules X ∈ X and all ideals I of R.

(2) Let S be a module-finite R-algebra. Then S is in X if and only if so is every

torsionless S-module (Here, a torsionless module is by definition a submodule

of a free module).

Proof. (1) Let a1, . . . , an be a system of generators of the ideal I. Then we have

a surjection f : X⊕n → IX given by f(t(x1, . . . , xn)) = a1x1 + · · · + anxn. The

assertion follows from Lemma 3.8.

(2) The “if” part holds since S is itself a torsionless S-module. Let us show

the “only if” part. Assume S ∈ X , and let N be a torsionless S-module. Then

there is an injective homomorphism N → S⊕n with n ⩾ 0. Also, there exists a

surjective homomorphism S⊕m → N . The assertion follows from Lemma 3.8.

We state and prove the proposition below, which means that Question 4.2 is

close to be affirmative for such a ring R as in it.

Proposition 4.7. Let R be an excellent domain of equal characteristic zero. Let

S be the integral closure of R. Let X be an IKE-closed subcategory of modR such

that AssX = {0}. Then every torsion-free S-module belongs to X , and so does the

module HomR(N,R) for each S-module N .

Proof. First of all, since R is excellent, the R-algebra S is module-finite; see

[8, Thm. 78]. Take a nonzero module X ∈ X . Set Y = HomR(S,X) and Z =

HomS(Y, Y ). We then have Z = HomS(Y,HomR(S,X)) ∼= HomR(Y,X) by

adjointness. Lemma 2.4(2) implies Y, Z ∈ X . Since X is a torsion-free R-module

by Lemma 4.1(1), Y is torsion-free as an R-module. We directly verify that Y is

torsion-free as an S-module. As R is of equal characteristic zero, so is S. Hence S

contains Q and therefore rank(Y ) is invertible in S. It follows from [6, Prop. A.2

and Cor. A.5] that S is a direct summand of Z. Therefore, S belongs to X since X is

closed under direct summands. It follows by Lemma 4.6(2) that every torsion-free

S-module is in X .

Fix N ∈ modS. A presentation S⊕m → S⊕n → N → 0 induces an

exact sequence 0 → HomR(N,R) → HomR(S,R)⊕n → HomR(S,R)⊕m. Since
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HomR(S,R) is isomorphic to an ideal of S, it belongs to X by Lemma 4.6(2). As

X is closed under finite direct sums and kernels, we obtain HomR(N,R) ∈ X .

Here is a direct application of the above proposition.

Corollary 4.8. Let R be an excellent normal domain of equal characteristic zero.

Then there exists no IKE-closed subcategory X of modR with 0 ⊊ X ⊊ tf R.

Proof. Let X be an IKE-closed subcategory of modR with 0 ̸= X ⊆ tf R. Then,

since tf R = Ass−1{0} by Lemma 4.1(1), we see that AssX = {0}. Letting R = S

in Proposition 4.7 yields that the inclusion X ⊇ tf R holds. We obtain the equality

X = tf R, and the assertion of the corollary now follows.

The two-dimensional version of Corollary 3.12 holds under some mild assump-

tions.

Corollary 4.9. Let (R,m, k) be a two-dimensional excellent normal local domain

of equal characteristic zero. Let X be an IKE-closed subcategory of modR with

m ∈ AssX . Then X = Ass−1(AssX ) and X is torsion-free.

Proof. According to Proposition 3.10, it is enough to prove that R/p belongs to

X for every p ∈ AssX . By Lemma 2.4(2) and Lemma 3.11(1) we have that k ∈ X .

Hence we are done when ht p = 2.

Let us consider the case where ht p = 1. Put X = X ∩modR/p. Then X is an

IKE-closed subcategory of modR/p with 0 ∈ AssR/p X . Note that dimR/p = 1,

and that m/p ∈ AssR/p X as k ∈ X . It follows from Corollary 3.12 that R/p ∈
Ass−1

R/p(AssR/p X ) = X . Therefore, the module R/p belongs to X .

Now consider ht p = 0. Then 0 = p ∈ AssX . The argument so far proves

R/q ∈ X for all 0 ̸= q ∈ AssX . Since Proposition 4.7 shows that the assumption

in Lemma 4.3 is satisfied, we conclude that R ∈ X .

Finally, we study the case where R has dimension one from another point of

view than so far. Let us begin with determining all the torsion-free subcategories

of modR in the remark below.

Remark 4.10. Let (R,m) be a local domain of dimension one. Then the torsion-

free subcategories of modR are 0, flR, tf R, modR. Indeed, thanks to [12, Thm.

4.1], each of the torsion-free subcategories has the form Ass−1 Φ, where Φ is a

subset of SpecR = {0,m}. Note that Φ is one of the sets ∅, {0}, {m}, SpecR.

We have Ass−1 ∅ = 0, Ass−1{0} = tf R, Ass−1{m} = flR, and Ass−1(SpecR) =

modR; see Lemma 4.1.
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Let R be a reduced ring with total quotient ring Q and integral closure S. The

set R :Q S is called the conductor of R. In what follows, we freely use knowledge

of conductors stated in [7, Chap. 12].

We introduce the following notation: for anR-moduleM , we denote by extR M

the extension closure of M , which is defined to be the smallest subcategory of

modR that contains M and is closed under direct summands and extensions (note

here that we require closedness under direct summands).

Now we prove the following result, which gives a sufficient condition for Ques-

tion 3.5 to be affirmative. This proposition plays an important role in the proofs

of the main results of Section 6.

Proposition 4.11. Let R be a one-dimensional excellent henselian local domain.

Let S be the integral closure of R. Let c be the conductor of R. Then the following

statements hold:

(1) Let X be a Hom-ideal subcategory of modR closed under direct summands.

If X contains a nonzero torsion-free R-module X, then X contains the R-

module S.

(2) Suppose that extR c = tf R holds. Then the IKE-closed subcategories of modR

are 0, flR, tf R, modR. In particular, Question 3.5 has a positive answer

for R.

Proof. Since R is an excellent henselian local ring of dimension one, S is a discrete

valuation ring.

(1) Put M = HomR(S,X). It is observed from [2, Exer. 1.2.27] that M is

nonzero. The Hom-ideal property of X shows that M belongs to X . Since the R-

module X is maximal Cohen–Macaulay, so is the S-module M . Since S is regular,

M is S-free. As X is closed under direct summands, we get S ∈ X .

(2) Let X be an IKE-closed subcategory of modR. Note that SpecR = {0,m}.
If AssX = ∅, then X = 0. If m ∈ AssX , then Corollary 3.12 implies that X is

torsion-free, and X ∈ {0, flR, tf R, modR} by Remark 4.10. We may assume

AssX = {0}. Then X ⊆ tf R by Lemma 4.1(1). We have S ∈ X by (1), and c ∈ X
by Lemma 4.6(3) as c is an ideal of S. Hence X ⊇ extR c = tf R. We get X = tf R,

which completes the proof of the first assertion. The second assertion follows from

the first and Remark 4.10.

§5. Closedness under direct summands and extensions

In this section we consider what modules are built by taking only direct summands

and extensions. Results given in this section are used in our further investigation
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of Question 3.5 on IKE-closed subcategories developed in the next section. We

first make elementary observations on extension closures.

Remark 5.1. The following statements hold:

(1) Let R be a local ring with residue field k. Then extR k = flR. Indeed, the

inclusion (⊆) is obvious. To show (⊇), we take a composition series of each

module of finite length.

(2) Let I be an ideal of R. Let M and N be R/I-modules. If N ∈ extR/I M , then

N ∈ extR M . This is a consequence of the fact that a short exact sequence of

R/I-modules is a short exact sequence of R-modules, and a direct summand

of an R/I-module L is a direct summand of the R-module L.

We denote by tf0 R the subcategory of modR consisting of torsion-free R-

modules which are generically free (i.e., locally free on MinR). When R is a Cohen–

Macaulay local ring of dimension one, tf0 R coincides with the subcategory CM0(R)

consisting of maximal Cohen–Macaulay R-modules that are locally free on the

punctured spectrum of R. Below, we establish three lemmas to show the main

result of this section. The first one concerns the extension closures of ideals of a

local ring.

Lemma 5.2. Let R be a local ring with maximal ideal m and residue field k.

(1) Let I, J be ideals of R. If R/I ∈ extR R/J , then I ∈ extR J .

(2) Suppose that R is a Cohen–Macaulay ring of dimension one. Let I be an ideal

of R which is generically free as an R-module. If k belongs to extR R/I, then

the equality extR I = tf0 R holds.

Proof. (1) For each R-module M , denote by ΩM the first syzygy of M in the min-

imal free resolution of M ; hence ΩM is uniquely determined up to isomorphism.

Let X be the subcategory of modR consisting of modules X with ΩX ∈ extR J .

Then it is seen that X is closed under direct summands and extensions, and

contains R/J . Hence X contains extR R/J , which contains R/I. It follows that

I = Ω(R/I) ∈ extR J .

(2) The subcategory tf0 R is closed under direct summands and extensions,

and contains I. Hence tf0 R contains extR I. Conversely, since k = R/m belongs

to extR R/I, it is seen by (1) that m belongs to extR I. As R is a one-dimensional

Cohen–Macaulay local ring, there is an equality extR m = tf0 R by [13, Thm. 2.4].

Therefore, tf0 R is contained in extR I. We conclude that tf0 R = extR I.
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The following lemma may be well known to experts. Perhaps it is more usual

to show the lemma by using the notion of Ratliff–Rush closures, but here we give

an elementary direct proof.

Lemma 5.3. Let R be a local ring with infinite residue field k. Let I be a proper

ideal of R. If the associated graded ring grI R has positive depth, then Ii : Ij = Ii−j

holds for all integers i ⩾ j ⩾ 0.

Proof. We show Ii : Ij ⊆ Ii−j by induction on i−j. It is clear if i−j = 0. Let i−j >

0. The induction hypothesis implies Ii : Ij ⊆ Ii−1 : Ij ⊆ Ii−j−1. As k is infinite,

we can choose a (grI R)-regular element x̄ ∈ (grI R)1 = I/I2 with x ∈ I; see [2,

Prop. 1.5.12]. The injectivity of the multiplication map Ii−j−1/Ii−j xj

−→ Ii−1/Ii

deduces Ii−j = (Ii : xj) ∩ Ii−j−1. As Ii : Ij ⊆ Ii : xj , we get Ii : Ij ⊆ Ii−j .

The lemma below is not advanced but plays a crucial role in the proof of our

next theorem. Indeed, it is essential in exploring extension closures to find a short

exact sequence as in the proof of the lemma.

Lemma 5.4. Let x be an element of R, and let I be an ideal of R. If 0 :R x ⊆ xI,

then R/I ∈ extR R/xI.

Proof. It suffices to show that 0 → R/xI
f−→ R/I ⊕ R/x2I

g−→ R/xI → 0 is an

exact sequence, where f(ā) =
(
ā
xa

)
and g(

(
ā
b̄

)
) = b− xa for a, b ∈ R. It is easy

to see that f , g are well-defined homomorphisms, g is surjective, and gf = 0. If

b − xa ∈ xI, then b − xa = xc for some c ∈ I and
(
ā
b̄

)
=

( a+c

x(a+c)

)
. Hence the

equality Im f = Ker g holds. Suppose xa ∈ x2I. Then xa = x2d for some d ∈ I

and a−xd ∈ 0 :R x. The assumption 0 :R x ⊆ xI implies a−xd ∈ xI, and a ∈ xI.

This shows that f is injective.

Now we can prove the main result of this section, which is the following

theorem. This is not only used in the proof of one of the main results of the next

section on IKE-closed subcategories, but is also of independent interest as a result

purely about subcategories closed under direct summands and extensions.

Theorem 5.5. Let (R,m, k) be a Cohen–Macaulay local ring of dimension one

with k infinite. Suppose that grm R has positive depth. Then extR R/mi = flR and

extR mi = tf0 R for all positive integers i.

Proof. The second assertion is a consequence of the first and Lemma 5.2(2). In

what follows, we prove the first assertion. As k is infinite and dimR = 1, we can

choose a system of parameters x of R such that (x) is a reduction of m; see [2,

Cor. 4.6.10]. There is an integer n > 0 such that mn+1 = xmn. Since k is infinite
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and depth(grm R) > 0, we have mp : mq = mp−q for all integers p ⩾ q ⩾ 0 by

Lemma 5.3.

Fix an integer i with 1 ⩽ i ⩽ n. The ideal mi contains xmi−1, and there is

an ideal I ⊆ mi such that mi = xmi−1 + I. Choose such an ideal I so that the

minimal number of generators µ(I) of I is minimum.

We claim that 0 :R/I x ⊆ x(mi−1/I). In fact, assume that it is not true. We

can choose an element y ∈ R with ȳ ∈ 0 :R/I x and ȳ /∈ x(mi−1/I). Then xy ∈ I

and y /∈ xmi−1 + I = mi. There are implications

xy ∈ mI ⇒ xy ∈ mmi = mi+1

⇒ xymn−i ⊆ mn+1 = xmn

⇒ ymn−i ⊆ mn

⇒ y ∈ mn : mn−i = mi,

where the third implication holds since x is R-regular, and the last equality holds

since n ⩾ n − i ⩾ 0. As y /∈ mi, we get xy /∈ mI. Hence xy is part of a minimal

system of generators of I. If xy ∈ xmi−1, then there exists an ideal I ′ with µ(I ′) <

µ(I) such that mi = xmi−1 + I ′, which contradicts the choice of I. We have

xy /∈ xmi−1, and y /∈ mi−1. Similarly to above, we see that there are implications

xy ∈ I ⇒ xy ∈ mi

⇒ xymn−i+1 ⊆ mn+1 = xmn

⇒ ymn−i+1 ⊆ mn

⇒ y ∈ mn : mn−i+1 = mi−1.

Recall that we have xy ∈ I and y /∈ mi−1. The implications give a contradiction,

and the claim follows.

The above claim enables us to apply Lemma 5.4 to the ring R/I and the ideal

mi−1/I to get R/mi−1 ∈ extR/I R/mi (since xmi−1 + I = mi). By Remark 5.1(2),

we get extR R/mi−1 ⊆ extR R/mi for all 1 ⩽ i ⩽ n. Using Remark 5.1(1), we see

that extR R/mi = flR for all 1 ⩽ i ⩽ n. Recall that n is a positive integer such

that mn+1 = xmn. Multiplying this equality by mn′−n, we have mn′+1 = xmn′
for

all integers n′ ⩾ n. Replacing n with n′ in the above argument, we observe that

extR R/mi = flR for all integers i > 0.

§6. Numerical semigroup rings

In this section we focus on the case where R is a numerical semigroup ring.

We apply results which we have obtained in the previous sections, especially
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Proposition 4.11 and Theorem 5.5, and figure out certain cases where our Question

3.5 has a positive answer.

Recall that a numerical semigroup is by definition a subsemigroup H of the

additive semigroup N such that 0 ∈ H and N \ H is finite. In this section we

investigate IKE-closed subcategories of modR in the case where R is a (completed)

numerical semigroup ring to consider our Question 3.5.

In what follows, we refer the reader to [2, p. 178] for the details of numerical

semigroups. We begin by introducing a numerical semigroup defined by consecutive

integers and computing its conductor.

Definition 6.1. For positive integers a and r, we put

Ha,r = ⟨a, a+1, . . . , a+ r⟩ = {c0a+ c1(a+1)+ · · ·+ cr(a+ r) | c0, c1, . . . , cr ∈ N}.

As gcd(a, a+ 1) = 1, the set N \ ⟨a, a+ 1⟩ is finite, and so is N \Ha,r. Thus Ha,r

is a numerical semigroup.

Recall that the conductor of the numerical semigroup Ha,r is the maximum

integer n with n− 1 ̸∈ Ha,r.

Lemma 6.2. Let a, r be positive integers. Let c be the conductor of the numerical

semigroup Ha,r.

(1) For any integers n ⩾ 1 and 0 ⩽ j ⩽ nr, one has na+ j ∈ Ha,r.

(2) If a ⩽ ur + 1 for an integer u, then ua ⩾ c (i.e., b ∈ Ha,r for any integer

b ⩾ ua).

(3) If a > ur+1, then ua+ j ̸∈ Ha,r for any integer ur < j ⩽ a−1. In particular,

c > ua+ (a− 1).

Proof. (1) We have j = qr+i for some integers q and 0 ⩽ i ⩽ r−1. Then 0 ⩽ q ⩽ n

since 0 ⩽ j ⩽ nr. If i = 0 (i.e., q = n), then we get na+j = n(a+r) ∈ Ha,r. If i > 0

(i.e., q < n), then we also get na+ qr+ i = (n− q−1)a+ q(a+ r)+(a+ i) ∈ Ha,r.

(2) Note that a ⩽ ur + 1 if and only if ua+ ur ⩾ ua+ (a− 1). Then (1) and

the assumption yield that ua + j ∈ Ha,r for all 0 ⩽ j ⩽ a − 1. Since any integer

b ⩾ ua can be written as b = ma + j for some m ⩾ n and 0 ⩽ j ⩽ a − 1, we get

b = (m− n)a+ (na+ j) ∈ Ha,r.

(3) Similarly to above, a > ur+1 if and only if ua+ur < ua+(a−1). Assume

ua+ j ∈ Ha,r and we seek a contradiction. Then ua+ j =
∑r

i=0 li(a+ i) for some

integers li ⩾ 0. Since j ⩽ a − 1, we have (u + 1)a > ua + j =
∑r

i=0 li(a + i) ⩾
(
∑r

i=0 li)a. Therefore,
∑r

i=0 li ⩽ u and hence
∑r

i=0 li · i ⩽ ur < j hold. Then we

conclude u =
∑r

i=0 li and j =
∑r

i=0 li · i, which is a desired contradiction.
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Proposition 6.3. Let c be the conductor of Ha,r, where a, r ⩾ 1. Then one has

c = ⌈a−1
r ⌉ · a.

Proof. Set u = ⌈a−1
r ⌉. Then there are inequalities (u − 1)a + 1 < a ⩽ ua + 1.

Therefore, it follows from (2) and (3) of Lemma 6.2 that the desired equality

c = ua holds true.

Let H be a numerical semigroup. Let B = k[t] be a polynomial ring over a

field k. Take the subring A = k[th | h ∈ H] of B and the ideal I = (th | h ∈ H) of

A. We denote by R = k[[H]] the I-adic completion of A, and call it the numerical

semigroup ring ofH. Note that the formal power series ring S = k[[t]] is the integral

closure of k[[H]]. The conductor of R is the ideal c := annR(S/R). We establish

two lemmas on numerical semigroup rings to deduce our next proposition.

Lemma 6.4. Let R = k[[H]] be a numerical semigroup ring over a field k with

integral closure S = k[[t]]. Denote by m the maximal ideal of R. Then the following

two statements hold true:

(1) For an ideal I of R, one has IS = I if and only if I = taS for some integer

a ⩾ 0.

(2) If H = ⟨a1, a2, . . . , ar⟩ with a1 < a2 < · · · < ar, then mnS = tna1S.

Proof. It is straightforward to verify the second assertion. In what follows, we

show the first assertion. The “if” part is clear. To show the “only if” part, suppose

IS = I. Take a to be the minimum integer i with ti ∈ I. For any integer n ⩾ 0,

we have ta+n = ta · tn ∈ IS = I. This means that I = taS holds.

Lemma 6.5. Let a and r be positive integers. Let R = k[[Ha,r]] be the numerical

semigroup ring over a field k with integral closure S = k[[t]]. Let m be the maximal

ideal of R. Then the equality mnS = mn (or equivalently, mn = tnaS by Lemma

6.4(2)) holds if and only if one has the inequality n ⩾ ⌈a−1
r ⌉.

Proof. Set u = ⌈a−1
r ⌉. Assume n < u. Then nr + 1 < a since n ⩽ u− 1 < ⌈a−1

r ⌉.
By Lemma 6.2(3), we have na+a−1 ̸∈ H. Therefore, we get tna+a−1 ∈ tnaS \R ⊆
tnaS \mn. Hence mn ̸= tnaS.

Next consider the case of n ⩾ u. In this case, nr+1 ⩾ a holds. For any integer

0 ⩽ j ⩽ a− 1 ⩽ nr, na+ j is the sum of n elements of H by the proof of Lemma

6.2(1). Since every integer b ⩾ na is of the form b = ma+ j for some m ⩾ n and

0 ⩽ j ⩽ a− 1, it is the sum of m elements of H. Therefore, we conclude tb ∈ mm

for all integers b ⩾ na. Hence the equality mn = tnaS holds.

Now the proposition below is deduced; it is a direct consequence of Proposition

6.3 and Lemma 6.5. This proposition especially says that the conductor of the
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numerical semigroup ring of Ha,r is given by a power of the maximal ideal, which

plays an essential role in the proof of our next theorem.

Proposition 6.6. Let a, r be positive integers. Let R = k[[Ha,r]] be the numerical

semigroup ring over a field k with integral closure S = k[[t]]. Let c be the conductor

of R. Then c = mu = tuaS, where u = ⌈a−1
r ⌉.

The following theorem is one of the main results of this section, which yields

complete classification of the IKE-closed subcategories of the module category of

the numerical semigroup ring of Ha,r.

Theorem 6.7. Let a ⩾ 2, r ⩾ 1 and H = Ha,r = ⟨a, a + 1, . . . , a + r⟩. Let

R = k[[H]], where k is an infinite field. Let c be the conductor of R. Then the

following statements hold:

(1) There are equalities extR R/c = flR and extR c = tf R.

(2) The IKE-closed subcategories of modR are 0, flR, tf R, modR. In particular,

Question 3.5 has an affirmative answer for R.

Proof. (1) We may assume r ⩽ a− 1. Note then that gcd(a, a+ 1, . . . , a+ r) = 1.

Proposition 6.6 implies c = mt for some t > 0. As a, a+1, . . . , a+r is an arithmetic

sequence, grm R is Cohen–Macaulay by [10, Prop. 1.1]. Hence depth(grm R) =

dim(grm R) = dimR = 1 > 0. It follows from Theorem 5.5 that extR R/mt = flR

and extR mt = tf0 R = tf R. Now the assertion follows.

(2) The assertion is an immediate consequence of (1) and Proposition 4.11(2).

To obtain one more theorem, we prove the general proposition below concern-

ing extension closures.

Proposition 6.8. Let A be a ring. Let R = A[x, y]/(xa ± yb) be a quotient of

a polynomial ring over A. Let I = (xa1yb1 , . . . , xanybn) be an ideal of R, where

a > a1 > · · · > an = 0 and 0 = b1 < · · · < bn < b with n ⩾ 2. Then the R-module

R/(x, y) belongs to extR R/I.

Proof. We have I = (xa1 , xa2yb2 , . . . , xan−1ybn−1 , ybn). Since an−1 > an = 0,

we can define the ideal J = (xa1−1, xa2−1yb2 , . . . , xan−1−1ybn−1) of R and have

I = xJ + (ybn). There is an isomorphism R/(ybn) ∼= A[x, y]/(xa ± yb, ybn) =

A[x, y]/(xa, ybn) since b > bn. Hence 0 :R/(ybn ) x = xa−1(R/(ybn)), which is con-

tained in I(R/(ybn)) = xJ(R/(ybn)) as a − 1 ⩾ a1. It follows from Lemma 5.4
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that R/(J + (ybn)) ∈ extR/(ybn ) R/I. By Remark 5.1(2), we have R/(J + (ybn)) ∈
extR R/I. Note that

J + (ybn) = (xa1−1, xa2−1yb2 , . . . , xan−1−1ybn−1 , ybn),

a > a1 − 1 > a2 − 1 > · · · > an−1 − 1.

If either (n = 2 and a1 − 1 > 1) or (n ⩾ 3 and an−1 − 1 > 0), then we can

apply the same argument to get R/K ∈ extR R/(J + (ybn)) ⊆ extR R/I, where

K := (xa1−2, xa2−2yb2 , . . . , xan−1−2ybn−1 , ybn). Iterating this procedure, we obtain

R/L ∈ extR R/I, where L = (x, yb2) if n = 2, and

L = (xa1−an−1 , xa2−an−1yb2 , . . . , xan−2−an−1ybn−2 , ybn−1 , ybn)

= (xa1−an−1 , xa2−an−1yb2 , . . . , xan−2−an−1ybn−2 , ybn−1)

if n ⩾ 3; the last equality holds since bn−1 < bn.

When n = 2, we replace x with y in the above argument on the ideal I =

(xa1 , yb2). Applying it to the ideal L = (x, yb2) and using the assumption b−1 ⩾ b2,

we obtain R/(x, y) ∈ extR R/L ⊆ extR R/I.

Let us consider the case where n ⩾ 3. We then have a > a1 − an−1 > a2 −
an−1 > · · · > an−2 − an−1 > 0. Applying the above argument on I to L, we see

that R/M ∈ extR R/L ⊆ extR R/I, where

M = (xa1−an−2 , xa2−an−2yb2 , . . . , xan−3−an−2ybn−3 , ybn−2).

Repeating this, we finally obtain R/(xa1−a2 , ybn) ∈ extR R/I. The above argument

in the case n = 2 deduces the containment R/(x, y) ∈ extR R/I.

Now we can prove the following theorem, which is another main result of

this section. This theorem completely classifies the IKE-closed subcategories of

the module category of the numerical semigroup ring of a numerical semigroup

minimally generated by two elements.

Theorem 6.9. Let a > b > 0 be integers with gcd(a, b) = 1. Let H = ⟨a, b⟩ be

a numerical semigroup, and let R = k[[H]] be the numerical semigroup ring of H

over a field k. Let m be the maximal ideal of R and c the conductor of R. Then

the following statements hold:

(1) There are equalities extR R/c = flR and extR c = tf R.

(2) The IKE-closed subcategories of modR are 0, flR, tf R, modR. In particular,

Question 3.5 has an affirmative answer for R.

Proof. (1) Let S = k[[t]] be a formal power series ring, which is equal to the integral

closure of R = k[[ta, tb]]. Let c be the conductor of the numerical semigroup H.
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Then c = (a− 1)(b− 1) and c = tcS = (tc, tc+1, . . . , tc+b−1)R. We identify R with

the quotient k[[x, y]]/(xa − yb) of a formal power series ring, so that x = tb and

y = ta in R. Take any integer n with c ⩽ n ⩽ c+ b− 1. Then there exist integers

p, q ⩾ 0 such that n = ap+ bq. Hence tn = (ta)p(tb)q = xqyp. Note that

n ⩽ c+ b− 1 = a(b− 1) + b · 0, n ⩽ c+ b− 1 ⩽ c+ a− 1 = a · 0 + b(a− 1).

We see that 0 ⩽ p ⩽ b− 1 and 0 ⩽ q ⩽ a− 1.

We claim that one can choose integers a > a1 > · · · > an = 0 and 0 = b1 <

· · · < bn < b with n ⩾ 2 such that c = (xa1yb1 , . . . , xanybn)R. Indeed, since c is a

monomial ideal, there is a minimal system of generators {xaiybi}ni=1. If bi = bj and

ai ⩾ aj , then xajybj divides xaiybi , contradicting the minimality of {xaiybi}ni=1.

Arranging the order of {bi}ni=1, we may assume b1 < · · · < bn < b. If ai+1 ⩾ ai, then

xaiybi divides xai+1ybi+1 , again giving a contradiction. Therefore, there are integers

a > a1 > · · · > an and b1 < · · · < bn < b such that c = (xa1yb1 , . . . , xanybn)R.

Moreover, we have an = b1 = 0 as c is m-primary.

Applying Proposition 6.8 to A = k, I = (xa1yb1 , . . . , xanybn) and taking

the (x, y)-adic completion, we see that k ∈ extR R/c. The assertion follows from

Remark 5.1(1) and Lemma 5.2(2).

(2) The assertion is an immediate consequence of (1) and Proposition 4.11(2).

Remark 6.10. The authors do not know of any example of an IKE-closed sub-

category of modR that is not torsion-free. Haruhisa Enomoto told them that one

might be able to apply [3, Lem. 4.26] to prove that an IKE-closed subcategory of

modR is torsion-free in the case where R is a numerical semigroup ring.
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