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Regularization of Relative Holonomic D-Modules

by

Teresa MONTEIRO FERNANDES

Abstract

Let X and S be complex analytic manifolds where S plays the role of a parameter
space. Using the sheaf DY, /s of relative differential operators of infinite order, we
construct functorially the regular holonomic Dx xg/s-module Mg associated to a rel-
ative holonomic Dx ys/s-module M, extending to the relative case classical theorems
by Kashiwara-Kawai: denoting by M the tensor product of M by DY, /s we make
M explicit in terms of the sheaf of holomorphic solutions of M. As a consequence
of the relative Riemann-Hilbert correspondence we conclude that M> and M3, are
isomorphic.

Mathematics Subject Classification 2020: 14F10 (primary); 32C38, 35A27, 58J15 (sec-
ondary).
Keywords: relative D-module, regular holonomic D-module, relative constructible sheaf.

§1. Introduction

The relative framework we deal with is associated to a projection
p: X x8—S8,

where X and S are complex manifolds. Throughout this work we identify the
relative cotangent bundle T*(X x S/S) to T*X x S and dx and dg will denote
respectively the complex dimension of X and of S. Let Dxg/5 be the subsheaf
of Dxxs of operators commuting with p~'Og and let Modeon(Pxxs/s) be the
abelian category of coherent Dy g/s-modules. A Dx g/ -holonomic module is
a coherent Dy g/s-module whose characteristic variety is contained in a product
A x S where A is C*-conic analytic lagrangian in T*X (cf. [22, 20, 15]). The
datum of a strict (i.e. a p~!Og-flat) holonomic Dx «s/s-module is equivalent to
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the datum of a flat family of holonomic Dx-modules with characteristic variety
contained in A.

Let DY, g/¢ denote the subsheaf of DY, g of operators commuting with
p~1O0g. As pointed out in [21, Rem. 2, p. 406], the sheaf of rings D;’?Xs/s is faith-
fully flat over Dx s/s. Indeed, the method of the proof of [21, Thm. 3.4.1] which
concerns the relative microdifferential case out of the zero section of T*(X x S/5)
adapts to the sheaves Dx /5 and DY, /"

The relative setting means here that Dx and DY are replaced respectively by
Dxys/s and DY ¢ /s and that we consider relative holonomic modules. Our main
result is Theorem 8, which proves a relative version of the following Kashiwara—
Kawai theorem ([9, Thm. 1.4.9]): Let DS denote the sheaf of linear differential
operators on X with possibly infinite order. To any holonomic Dx-module one
associates M™ = D¥ ®p, M and, if F = Sol M, then M> ~ RHom(F, Ox).

The same authors introduce in [9] a regular holonomic Dx-module Mg
contained in M and prove in [9, Thm. 5.2.1] a D¥-isomorphism:

(1) M~ M,

In (b) of Theorem 12 we extend this result to the relative setting. The proof
is based on the relative Riemann—Hilbert correspondence obtained in [3] and [4],
since one previous step is to prove that (s),ee =~ RH(Sole)[—dx]. The latter
isomorphism is a contribution to the understanding of the functor RH”.

The task is not trivial, although we dispose of a good notion of regularity
recalled below, as well as of the inspiration provided by the techniques in [9]. Let
us explain why:

One big difference from the absolute to the relative case is that the trian-
gulated category of Dx g/s-complexes having bounded holonomic cohomologies
(Dp o (Dxxs /s)) is not stable under the inverse image functor by morphisms f x
Id: X’ xS — X x S. Such constraint entails a loss of several functorial properties
(for instance localization, algebraic supports cohomology).

The notions of S-R- and S-C-constructibility were introduced in [15] for
objects in Db(p_l(’)s)7 as well as a natural duality and a middle perversity t-
structure on the triangulated category DE_C(p_l(’)s) whose objects have S-C-
constructible cohomologies. A perverse object with perverse dual is then equivalent
to the datum of a flat family of perverse sheaves on X.

The lack of functorialities in DEOI(D X xS/s) prevents us from stating an irreg-
ular relative Riemann-Hilbert correspondence by simply adapting the strategies
used in the absolute case as treated by D’Agnolo—Kashiwara (cf. [1]). For a satis-
factory functorial behavior, regularity is necessary as proved in [3, 4].



REGULARIZATION OF RELATIVE HOLONOMIC D-MODULES 817

Recall that a regular holonomic Dx g s-module is a holonomic Dx g, 5-
module satisfying the following condition: the (derived) holomorphic restriction
to each fiber of p is a regular holonomic complex on X. We also consider the
associated triangulated category (D5, (Dxx s/s)) of complexes having bounded
regular holonomic cohomologies.

It is then natural to ask what kind of “regularity” can be associated to any
holonomic Dy 5/s-module.

Recall that the relative Riemann—Hilbert equivalence was first proved in [3]
assuming that dg = 1:

The functor PSol: M +— RHomp, ., (M,Oxxs)[dx] from DEhol(DXXS/S)
to Dg..(p~'Og) admits a right and left adjoint denoted by RH® and thus PSol is
an equivalence of categories.

In [4], the same authors proved that this equivalence holds true for arbi-
trary dg.

In the absolute case (meaning that S = pt) we recover Kashiwara’s regular
Riemann—Hilbert correspondence, and, if X = pt, we get the natural duality on
the bounded derived category of complexes with Og-coherent cohomologies.

We now make our results precise:

If M is a holonomic Dy 5/s-module, we define

M = D;(OXS/S ®Dx s/ M

and we generalize this definition by flatness to Dp.;(Dx x 5/8)-

In our main result (Theorem 8) we prove that if M is an object of
DEOI(’DXXS/S) and F' = PSolM then M>* ~ RHom,-10,(F,Oxxs) (to com-
pare with [9, Thm. 1.4.9]). As a consequence one concludes in Theorem 12 that if
M is a holonomic Dx  g/s-module then Mqg ~ RH®(PSol M) and so (1) holds
true in this setting.

The simplest example is the following: for a submanifold Z of X, one has

RH*(Czxs ®p~ ' O5)>[~dx]
~ THom(Czxs, Oxxs)™ = BZ, gx xs[—dl
~ RHom((CZXS7 OXXS)7
where d is the codimension of Z and THom was introduced in [11].
Another example is provided by [9, p.814], replacing a € C by a holomorphic

function a(s) without zeros on some open S := Q C C. For X = C, we consider
the Dy« s/s-module (holonomic, non-regular) defined by

(220, — a(s))u(z,s) = 0.
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We then obtain (cf. [9, p. 815]) an equivalent system substituting the generator
u by ug = v and introducing uy = —x0,u,

(2)

—a(s)ug — zuy = 0.

{x@muo +u; = 0,

After multiplication by matrices in DY, ¢/ g (the matrices provided by [9] which
now depend on the parameter s), one concludes a DY, ¢ / g-isomorphism from the
DY s/s~module extension of (2) to the DE,, s/s~module (with generators wp, w1)
extension of the regular holonomic Dy  5/s-module

3) {xwo —a(s)wy =0,

0, wi; = 0.

We remark that [9] uses microlocal techniques for the proof of the regularity of
Mieg. With the more recent notion of microsupport ([10]) and the results in [22],
the necessary tools in the relative framework (see Section 3 on technical lemmas)
are easier to prove. Together with the relative Riemann—Hilbert correspondence,
our task is much simplified; in particular, we no longer need to microlocalize.

§2. A short reminder on the relative Riemann—Hilbert correspondence

Below we summarize the background from [15, 16, 3, 4] that we shall need in the
sequel.

§2.1. Holonomic and regular holonomic Dx yx s/s-modules

(a) We say that a p~1Og-module is strict if it is flat over p~1Og.

(b) We recall that M € Modcon(Dx xs/5) is holonomic if the characteristic vari-
ety Char(M) is contained in A x S, where A is analytic C*-conic lagrangian
subset of T X; we denote by DEOI(DXXs/S) the associated triangulated cate-
gory whose objects are the bounded complexes with holonomic cohomologies.

(¢) There is a well-defined duality functor
D: DEOI(DXXS/S) — DEOI(DXXS/S>OP
given by
DM :=RHomp, ¢ s(M,Dxxs/s ®0x s Q?};IS/S)[dX]’

where Qy,g/s denotes the sheaf of relative differential forms of maximal
degree.
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(d) D is an involution, i.e. DD = Id.

(e) We recall a tool introduced in [15], the holomorphic restriction to each fiber
of p:

Vs€S, Lil(s)i=eEpros p ' (0s/T0),
where J; is the maximal ideal of functions vanishing in s.

(f) A Nakayama lemma variation: Let M € Dp,(Dyy s/s) and assume that
Li; M =0 for each s, € S. Then M = 0.

(g) Let M be an object of DEOI(DXXs/S). Then DM is concentrated in degree
zero and HODM is strict if and only if M is itself concentrated in degree
zero and HY M is a strict Dx x s/s-module.

(h) We say that M € Mod(Dx xgs/s) is regular holonomic if it is holonomic and
for all s € S, Li*M € DP,,(Dx); we denote by DEhOI(DXXS/S) the associated
triangulated full subcategory of DEOI(DXXS/S).

(i) thol(DXXS/S) is stable by duality.

(j) Modpol(Dx xs/s) and Modmol(Px xs/s) are closed under taking extensions
in Mod(Dx xs/s) and subquotients in Modcon (Px xs/5)-

§2.2. S-constructibility

We say that a sheaf L of p~'Og-modules is S-locally constant coherent if, locally
on X x S, L is isomorphic to p~!G, where G is an Og-coherent module. Such
an L is also called an S-local system. We recall the following full triangulated
subcategories of DP(p~1Og):

e An object F € D°(p~'Og) is an object of D@ (p~'Og) if there exists a C-
analytic stratification (X4 )aca of X, such that for all j € Z, for all a € A,
HIF|x, x5 is S-locally constant coherent. We say for short that F is S-C-
constructible.

e Replacing C-analyticity by subanalyticity with respect to the real analytic
manifold Xg underlying X, we obtain the notion of S-R-constructibility
and the corresponding triangulated category DH%_C(p_l(QS). The category
D .(p~1Og) is a full subcategory of Dp_.(p~'Og).

o If F € DR ,(p'Og) then for each = € X, F|(,}xs belongs to D}, (Os).

e There is a natural duality functor D: Dp_ .(p~'Os) — Dp_.(p~'Og)° which
is an involution given by

DF = RHomp_1OS (F, pilos)[QdX].

. D(}E_C (p~10Og) is stable by duality.
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§2.3. A middle perversity t-structure on DE_C(p_l(Qs)

Here we consider the two subcategories pDé_OC(p_l(’)S) and ng_OC(p_IOS) of
DR .(p~1Og) defined as follows:

We have F' € pDéOC(p’lOs) (resp. F' € ng_OC(pfl(QS)) if for an adapted
p-stratification (X, )aca, noting iy : X, — X,

Vaand Vi > —dim(X,), H/ (iy'F)=0
(resp. Vo and Vj < —dim(X,,), H(i )

We say that F of D@ (p~'Og) is perverse if F € pDé(l(p_l(’)g) and F €
PDf_g(p_lOs), that is, F' belongs to the heart of the ¢-structure defined above.

Remark 1. Note that D is not t-exact for this ¢t-structure; in particular, it does
not preserve perversity.

Theorem 2 ([16]). For a given object F € DR .(p~'Ogs), F and DF are perverse
if and only if for all s, € S, Lig (F) is perverse in D2 (Cx).

§2.4. Link with holonomicity

We have the following link with holonomic Dx y g/ s-modules. Let us note PSol M =
R?-lompxxs/s(/\/l, Oxxs)ldx] and PDRM = RHomDXXS/S(OXXS,M)[dX].
Then (cf. [2, 15, 16]) we have the following properties:

e Sol,DR: Dﬁol(DXXS/S) take values in DR_.(p~'Og) and DPSol = PDR =
PSol D.

o If M € Modyol(DPxxs/s) then PDR M is perverse (cf. [2, Thm. 4.1]).

o If F is such that DF is perverse then RH®(F) is concentrated in degree
zero (cf. [2, Thm. 4.1]). In particular, for any holonomic Dy g, g-module,
RH?(PSol M) is concentrated in degree zero.

e Given M € DEOI(’DXXS/S), M and DM are strict Dx yg/s-modules if and
only if PSol M and PDR M = DPSol M are perverse.

§2.5. The functor RH®

With the subanalytic tools developed in [13, 14], the functor RH® was first intro-
duced in [16], followed by [3] (case dg = 1) and by [4] (general case). Kashiwara’s
functor RH (cf. [7]) is recovered with dg = 0. Below we give a short reminder of
its construction and main results:

Let ps: X x § — Xz x S be the natural morphism of sites introduced in

[14]. The functor pg' admits a left adjoint pgi which is exact. We note O;‘i g the
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relative subanalytic sheaf on Xg, x S associated in [14] to the subanalytic sheaf
O% s on (X x S)s, (introduced in [12]; see also [18]).
The functor RH® on D’(p~10g)P is given by
RH® () i= p5' RHomy. 105 (Rpsi(+), OK ) [dx]:
Theorem 3 ([16, 3, 4]). We have the following properties:

(a) RH® induces an equivalence of categories: Dg.(p~'Og)°P — DEhol(DXXS/S)
compatible with duality.

(b) F is perverse with a perverse dual if and only if RHS(F) is strict and con-
centrated in degree zero.

(¢c) For F € DE_C(p_l(’)S) and M € D]r)hol(,DXxS/S); we have a natural isomor-
phism in DE_C(p_l(’)s),

RHomDXXS/S(M’RHS(F)[_dX])
= RHomp, o o (M, RHom, 104 (F,Oxxs))-
§2.6. Topological aspects of Og

The sheaf Og is made up of complete bornological algebras (multiplicatively con-
vex sheaf of Fréchet algebras over S). In the category of sheaves of complete
bornological modules over Og (denoted by Born(Qg)), Houzel (cf. [6]) introduced
a notion of tensor product « o, +. To the latter one associates a family of functors
« ® M on the category of bornological vector spaces, depending functorialy on
M € Born(Og) (cf. [22, Sect. 3.4]). We have

(4) Oxx5l{apxs ~ Ox.a ® Os.

Then (4) shows that OXXS|{1}XS is a so-called FN-free as well as a DFN-free
Og-module (cf. [22, p.25] for the definition and also [19]).
In particular, given another complex manifold Y, we have

(5) Oxxyxsl{@mixs = (Oxxslizyxs) @os (Oyxslyyxs)-

§3. Technical lemmas
In order to prove the main theorem we shall need the following results:
§3.1. Complements on S-R-constructible sheaves
We refer to [10, Chap. VIII] for the background on constructibility.

Notation 4. For short we shall keep the notation p as well as p~1Og without
referring to the manifold X, whenever there is no risk of ambiguity.
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Let X and Y be complex manifolds. Let g;1: X xY x § — X x S be the
first projection and g2: X XY x § — Y x § be the second projection, which is
illustrated by the following commutative diagram:

XxYxS—23Xxx8

(©) l \ l

YyxS—" X3

Lemma 5. For any F € Dp_.(p~'Og) on X x S and any object G of D*(p~1Og)
on'Y x S, the functorial morphism

T(F) :=q; ' RHomy—10,(F,p~'0s) @5 10, 4, 'G
(7) — T'(F) == RHom, 10, (¢ ' F,45'G)

is an isomorphism.

Proof. The proof is now simpler than that of [9, Lem. B.3] since we dispose of the
notion of microsupport and of its properties (cf. [10, Chap. V]). It is sufficient to
check the isomorphism locally. Furthermore, arguing by induction on the length
of F', we may assume that F' is in degree zero, that is, F' is an S-R-constructible
sheaf.

We recall the following result (cf. Lemma A.9 in [5], which is the complete
version of [4]).

Lemma 6. Let I be an S-R-constructible sheaf on X x S. Then there exist
e a locally finite covering (U(0))sen of X by open subanalytic relatively compact
subsets of X,
e for each o € A a coherent Og-module G,(F) on S,
e and an epimorphism @, . Cy(o) MGy (F) — F.
Let us assume for a moment that F© = Cy X G for some open relatively
compact subanalytic subset U of X and for some coherent Og-module G. In that

case, the proof of Lemma 5 is as follows. Regarding the left-hand term of (7) we
have a chain of isomorphisms:

ql_l RHOIHP—IOS ((CU X G,p’IOs) ®£—1OS q;lg
~ ql_l RHOm((CUXS,RHOmp—IOS (pilG,pilos)) ®II;’1OS qz_lg

= ¢; ' RHom(Cuxs, Cxxs) ® g7 ' RHom,-10,(p'G,p~ ' 0s) @% 1. ;G

& ¢; ' RHom(Cyxs, Cxxs) ® RHom, 10, (0™ "G, 45 'G).
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Isomorphism (a) follows by [10, Prop. 5.4.14(ii)] and isomorphism (b) follows by
the coherence of G.
Similarly, the right-hand term of (7) becomes isomorphic to

RHom(q; 'Cuxs, RHom,-10, (071G, 45 'G))
= RHom(CUXYXSWRHOInp’IOS (p71G7 QQ_lg))
We have
¢; ' RHom(Cpxs, Cxxs) ~ RHom(Cuxyxs, Cxxyxs)-

Thus, for F' = Cy X G, Lemma 5 follows by [10, Prop. 5.4.14(ii)].
As a consequence, Lemma 5 holds true for sheaves of the form

() P Cuo) RG(F).
gEA
We shall now prove the general case (F € Modg_.(p~1Og)) by a standard
argument. The epimorphism of Lemma 6 induces the following exact sequence:

0—-F - K—F—=0,

where K has the form (x), thus K and F” belong to Modg_.(p~1Os). We consider
the associated distinguished triangles

T(F) = T(K) — T(F') 25,
T'(F) - T'(K) — T'(F') 25 .

Thus (7) reads T(K) ~ T'(K) in Dp__.(p~'Og). There exist integers N < M
only depending on T, 7" and G such that the j-cohomology groups of T'(s), T"(e),
with « replaced by F, F', K (see (7)), vanish for j ¢ [N, M]. We have HNT(K) ~
HNT'(K), thus HVNT(F) — HNT'(F) is injective (since HNI1T(F') = 0 =
HNIT'(F')). As F is arbitrary, the same holds true for F replaced by F”. By the
five lemma it follows that HNT(F) ~ HNT'(F) and so HNT(F') ~ HNT'(F')
again because F' is arbitrary. We then pursue this argument recursively, which
ends after a finite number of steps. O

§3.2. A complement on relative holonomic modules
Let X and Y be complex manifolds and let us consider diagram (6).

Lemma 7. Let M € DEOI(DXXS/S) Then we have a natural isomorphism

qfl R/}'[Ornpxxs/s('/\/t7 Oxxs) ®p-105 q;lost

~Y _1
— RlHomqleXXS/S(ql M, OXXYXS)'
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Proof. We adapt [9, Prop. 1.4.3]. Since the morphism is well defined, it is enough
to prove that, for any x € X, y € Y, it induces an isomorphism

RHomp, o s (M, Oxx3)|{z}xs ®os Oy xsliy)xs

~RHom 1p o (67 "M, Ox vy xs) (@) x5

For any s € S, in a neighborhood of (z,s), we now replace M by a bounded
locally free Dxg/s-resolution (fo(xs/sapk)kez ﬁ M. Then we may ass-
ume that RHomp, o (M, Oxxs)l{z}xs 18 quasi-isomorphic to the complex
((O% )|z} xs, Py ) and that RHomqfleXs/S(qflM, Oxxy x5)|{(z,y)}xs 18 quasi-
isomorphic to the complex ((OI;(XYXS”{(I,ZI)}XSva)‘

We have O% , sl(zyxs = O% ,@0s and O% .y ysl{(.p)1 x5 = Oxxv,(2.) @Os
and so O])C(XS‘{QC}XS as well as (’)’;(nys|{(x7y)}xs are FN-free Og-modules in the
sense of [19].

Since RHomp, 5, s (M, Oxxs)l{z}xs has Og-coherent cohomologies we are
in condition to apply [22, Prop. 3.13], and, in view of (5), to conclude quasi-
isomorphisms

(OI)C(xYxSvp;—N{(z,y)}XS = (O])C(XS’p;)‘{m}XS @)@s (OYXS)|{y}><S
~ RHomp, 4 (M, Oxxs)l{z}xs ®os Oy xsliyyxs- O

§4. Main result
§4.1. Statement and proof of the main result

Let A denote the diagonal of X x X.
The canonical section of

-—1 dx _ -1 s}

ZAXSHAXS(OXXXXS) XOxxs QXXS/S - ZAxSBXxS\XxXxS POxxs QX><S/S
corresponding to the global section 1 of DY ¢ /s allows us to define an isomorphism
of sheaves of rings

o0 ~ 51 o0
DXXS/S - ZA><SBX><S|X><X><S QOxxs QX><S/S

(8) ~ i3 s R Axs(Oxxxx8) ®0xrs Uxxs/sldx].

Theorem 8. Let M € DEOI(DXXS/S),
Let F' = Sol M = RHomp, (M, Oxxs). Then we have a natural isomor-
phism in Db(D?Xs/S),

M ~RHom,-10,(F,Oxxs).



REGULARIZATION OF RELATIVE HOLONOMIC D-MODULES 825

Proof. In view of (8), we have isomorphisms
ID?XS/S ®Dx><s/s M

~ it sRUAxs(Oxxxx5) ®0xrs Qxxs/sldx] @Dy ys/s DDM
~ ixy sRTaxs(RHom, - (¢ 'DM, Ox xxxs))[2dx].

1DX><S/S

According to Lemma 7, we have

RHomqfl'Dxxs/s (qleM, Oxxxxs)
~ g ' RHomp, o, (DM,Oxxs) ®p-104 45 Oxxs-
On the other hand, the holonomicity of M implies the isomorphism
RHomexs/s (DM, Oxxs)
~ RHom,-10, (RHomp, o, (M,Oxxs),p” Os).

According to Lemma 5 with X =Y, F = RHomp, . (M,0xxs) and G =
Ox s, we conclude a natural isomorphism

RHomquDXXS/s (qleMv OXXXXS)
~ RHom,-10, (ql—l RHOIHDXXS/S(M; OXXS)7q2_10XxS).

Applying i’ s RT axs and the shift [2dx] to both terms, we finally deduce a
natural isomorphism

M ~RHom, 10, (RHomp o, s (M, Oxxs),Oxxs),
which follows by the sequence of isomorphisms
int s Rl axs (g3 'Oxxs)

~ ’Lgis RHOm(CAXS’ q;loxxs>

o inys(RHom(Caxs,Cxxxxs) @ g Oxxs)

(9) (5) OXXS[*2dX],

where (a’) follows by [10, Prop. 5.4.14(ii)] and (b") by the commutation of the
functors ® and i’ . O

Corollary 9. The following properties hold true:

(a) We have an isomorphism of functors on D2 (p~'Og):

RH® (+)*[~dx] = RHom,-10 (s, Oxxs)-
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(b) Let M, N € DEhol(DXxS/S)' We have a natural isomorphism in D([b:_c (p~t0s):
RHomp, o, (M,N)~RHomp, . (M,N).

Proof. (a) It is an immediate consequence of Theorem 8 since Sol[dx]o RH® = Id.

(b) We set N' = RH*(G) with G = PSol(N) € D_.(p~'Os); then N> ~
RHom,-10, (G, Oxxs)ldx] and the result follows by Theorem 3(c). O

Definition 10. If M is a holonomic Dy g/s-module, we denote by M,e, the
subsheaf of M of local sections u satisfying the following condition: there exists
a coherent ideal J in Dy, g/g such that Ju = 0 and Dxg/5/J is regular holo-
nomic.

Lemma 11. M, is a Dy 5/5-module.

Proof. The proof is similar to that in [9, Prop. 1.1.20]. If u is a local section of
Mieg, let J be a left ideal of Dy g/s as in Definition 10, and let P € Dy g/s;
then the left ideal 7" of operators @) such that QP € J is coherent and Dx x g/5/J’
is isomorphic to a coherent Dy, g/g-submodule of Dxs/5/J; hence, in view of
(j) of Section 2.1, it is regular holonomic so that the conditions of Definition 10
are satisfied by Pu. O

Clearly, the correspondence
M € Modpel(Dx xs/5) — Mreg € Modrnol(Dx xs/s)
defines a left exact functor.

Theorem 12. We have the following properties:

(a) Let N' € Modrnol(Dx xs/s). Then N = Nyeg.
(b) Let N € Modnoi(Dx xs/s). Then Nieg is a regular holonomic Dx  s/s-module
isomorphic to RH® (PSol ). In particular, N> ~ N2,

Proof. (a) By the assumption of regularity, we derive a natural inclusion N C Neg.
Let us now prove the inclusion Mo C V. Let u be a local section of N;eg and let
J be a left coherent ideal of Dy g/g such that Ju = 0 and such that Dy, s/s/J
is regular holonomic. We thus deduce a natural morphism ¢: Dxys/5/J — N©o°
as the composition of Dx,g/5/J — Dxxg/su — N°°. Applying Corollary 9(b)
to the cohomologies of degree zero with M = Dx,5/5/J, ¢ factors through N,
thus Dy s/su C N.

(b) According to Theorem 8 we have a Dy g/g-linear isomorphism

®: N ~ RH¥(PSol V).
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In view of (a), we conclude by a similar argument that ®(MN,e.) is con-
tained in RH®(PSol V). Similarly, using ® ', we conclude that Nieg contains
<I>’1(RHS(pSol./V')). Thus @ provides the desired Dx y g/ g-isomorphism. O

§4.2. Example

We shall assume that dg = 1. Our goal is to make (+)° explicit in the case of the
relative hermitian duality(cf. [17]) by proving the relative variant of [8, Rem. 2.1].

We denote by Dbx xg the sheaf of distributions on the real analytic manifold
Xg x Sg underlying X x S and by Dbxg,s the subsheaf of Dbx s of germs of
distributions holomorphic along S. We call Dbx /g the sheaf of relative distri-
butions. We denote by X the complex conjugate manifold of the manifold X. We
recall the main results [17, (Thm. 2)]:

(a) The relative Hermitian duality functor
Cf{,)?(') = RHomp, . :(* Dbxxs/s)

induces an equivalence
S b ~ b
Cx.x * Drhol(Pxxs/s) = Dinat(Pxwss)™-
5 s
(b) C)?,X o CX,)? ~ Id.
(¢) Moreover, the relative conjugation functor

S S
Cxx = CX,)? oD

induces an equivalence

b ~ b
Ci,)?: Drhol(DXXS/S) — Drhol(D)?XS/S)7

and there is an isomorphism of functors

PSoly o ¢ 5 = PSolx : Doi(Pxxsys) = Deee(p™' Os).

Let Bx, sz be the sheaf of Sato hyperfunctions on Xr x Sg which we regard
as an oriented manifold. Let Bxg/s denote the subsheaf of Bx,xs;, of germs of
hyperfunctions which are holomorphic along the parameter manifold S.

Proposition 13. Let M be an object of D'ﬁhol(Dst/S). Then we have
Cf{,)?(M)OO = RHOHI'DXXS/S (M7 BXXS/S)~

Proof. We note that, by definition of Bx,xs,, we have, for each orientation on
XRr X Sg, an isomorphism of DY, / g-modules

BXXS/S = RFX]RXS(OXXXXS)[2CZX]’
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where, as usual, we regard X x X as a complexification of Xg. Hence
RHomeXs/s(MvBXXS/S) ~ RFXRXS(RHomDXxS/S (M,OXX)?XS))[de].

Let ¢1 denote the projection X x X x S — X x S and let g» denote the projection
X xX xS — X xS. We have

Rl Xz xs R'HomDXXS/S (M, OXX)?XS)[2dX}

(;_7) RT x,x5(q7 SOl M®,-10445 ' Ox, 5)[2dx]

~ Rl x,xs(RHom,-10,(q; ' DRM,p ' 05)®,-10.45 ' Ox, 5)[2dx]
& RUx,xs RHom, 10, (a7 DRM, g3 'O g)[2dx]

RHOmP—IOS (DR./\/[7 O?{xs)

~
c/

()

5, RHomy-10, (Sol C% £ (M), O% . 5)

S [e%S)
(5) CX,)?(M) )

where (a’) follows by Lemma 7, (b’) follows by Lemma 5, (c’) follows by a similar
argument to (9), (d') follows by (c) and Section 2.4 and (e) follows by Theorem 8.
O
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