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Regularization of Relative Holonomic D-Modules

by

Teresa Monteiro Fernandes

Abstract

Let X and S be complex analytic manifolds where S plays the role of a parameter
space. Using the sheaf D∞

X×S/S of relative differential operators of infinite order, we
construct functorially the regular holonomic DX×S/S-module Mreg associated to a rel-
ative holonomic DX×S/S-module M, extending to the relative case classical theorems
by Kashiwara–Kawai: denoting by M∞ the tensor product of M by D∞

X×S/S we make
M∞ explicit in terms of the sheaf of holomorphic solutions of M. As a consequence
of the relative Riemann–Hilbert correspondence we conclude that M∞ and M∞

reg are
isomorphic.

Mathematics Subject Classification 2020: 14F10 (primary); 32C38, 35A27, 58J15 (sec-
ondary).
Keywords: relative D-module, regular holonomic D-module, relative constructible sheaf.

§1. Introduction

The relative framework we deal with is associated to a projection

p : X × S → S,

where X and S are complex manifolds. Throughout this work we identify the

relative cotangent bundle T ∗(X × S/S) to T ∗X × S and dX and dS will denote

respectively the complex dimension of X and of S. Let DX×S/S be the subsheaf

of DX×S of operators commuting with p−1OS and let Modcoh(DX×S/S) be the

abelian category of coherent DX×S/S-modules. A DX×S/S -holonomic module is

a coherent DX×S/S-module whose characteristic variety is contained in a product

Λ × S where Λ is C∗-conic analytic lagrangian in T ∗X (cf. [22, 20, 15]). The

datum of a strict (i.e. a p−1OS-flat) holonomic DX×S/S-module is equivalent to
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the datum of a flat family of holonomic DX -modules with characteristic variety

contained in Λ.

Let D∞
X×S/S denote the subsheaf of D∞

X×S of operators commuting with

p−1OS . As pointed out in [21, Rem. 2, p. 406], the sheaf of rings D∞
X×S/S is faith-

fully flat over DX×S/S . Indeed, the method of the proof of [21, Thm. 3.4.1] which

concerns the relative microdifferential case out of the zero section of T ∗(X ×S/S)

adapts to the sheaves DX×S/S and D∞
X×S/S .

The relative setting means here that DX and D∞
X are replaced respectively by

DX×S/S and D∞
X×S/S and that we consider relative holonomic modules. Our main

result is Theorem 8, which proves a relative version of the following Kashiwara–

Kawai theorem ([9, Thm. 1.4.9]): Let D∞
X denote the sheaf of linear differential

operators on X with possibly infinite order. To any holonomic DX -module one

associates M∞ := D∞
X ⊗DX

M and, if F = SolM, then M∞ ≃ RHom(F,OX).

The same authors introduce in [9] a regular holonomic DX -module Mreg

contained in M∞ and prove in [9, Thm. 5.2.1] a D∞
X -isomorphism:

(1) M∞ ≃ M∞
reg.

In (b) of Theorem 12 we extend this result to the relative setting. The proof

is based on the relative Riemann–Hilbert correspondence obtained in [3] and [4],

since one previous step is to prove that (•)reg ≃ RHS(Sol •)[−dX ]. The latter

isomorphism is a contribution to the understanding of the functor RHS .

The task is not trivial, although we dispose of a good notion of regularity

recalled below, as well as of the inspiration provided by the techniques in [9]. Let

us explain why:

One big difference from the absolute to the relative case is that the trian-

gulated category of DX×S/S-complexes having bounded holonomic cohomologies

(Db
hol(DX×S/S)) is not stable under the inverse image functor by morphisms f ×

Id : X ′ ×S → X ×S. Such constraint entails a loss of several functorial properties

(for instance localization, algebraic supports cohomology).

The notions of S-R- and S-C-constructibility were introduced in [15] for

objects in Db(p−1OS), as well as a natural duality and a middle perversity t-

structure on the triangulated category Db
C-c(p

−1OS) whose objects have S-C-
constructible cohomologies. A perverse object with perverse dual is then equivalent

to the datum of a flat family of perverse sheaves on X.

The lack of functorialities in Db
hol(DX×S/S) prevents us from stating an irreg-

ular relative Riemann–Hilbert correspondence by simply adapting the strategies

used in the absolute case as treated by D’Agnolo–Kashiwara (cf. [1]). For a satis-

factory functorial behavior, regularity is necessary as proved in [3, 4].
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Recall that a regular holonomic DX×S/S-module is a holonomic DX×S/S-

module satisfying the following condition: the (derived) holomorphic restriction

to each fiber of p is a regular holonomic complex on X. We also consider the

associated triangulated category (Db
rhol(DX×S/S)) of complexes having bounded

regular holonomic cohomologies.

It is then natural to ask what kind of “regularity” can be associated to any

holonomic DX×S/S-module.

Recall that the relative Riemann–Hilbert equivalence was first proved in [3]

assuming that dS = 1:

The functor pSol : M 7→ RHomDX×S/S
(M,OX×S)[dX ] from Db

rhol(DX×S/S)

to Db
C-c(p

−1OS) admits a right and left adjoint denoted by RHS and thus pSol is

an equivalence of categories.

In [4], the same authors proved that this equivalence holds true for arbi-

trary dS .

In the absolute case (meaning that S = pt) we recover Kashiwara’s regular

Riemann–Hilbert correspondence, and, if X = pt, we get the natural duality on

the bounded derived category of complexes with OS-coherent cohomologies.

We now make our results precise:

If M is a holonomic DX×S/S-module, we define

M∞ := D∞
X×S/S ⊗DX×S/S

M

and we generalize this definition by flatness to Db
hol(DX×S/S).

In our main result (Theorem 8) we prove that if M is an object of

Db
hol(DX×S/S) and F = pSolM then M∞ ≃ RHomp−1OS

(F,OX×S) (to com-

pare with [9, Thm. 1.4.9]). As a consequence one concludes in Theorem 12 that if

M is a holonomic DX×S/S-module then Mreg ≃ RHS(pSolM) and so (1) holds

true in this setting.

The simplest example is the following: for a submanifold Z of X, one has

RHS(CZ×S ⊗ p−1OS)
∞[−dX ]

≃ THom(CZ×S ,OX×S)
∞ ≃ B∞

Z×S|X×S [−d]

≃ RHom(CZ×S ,OX×S),

where d is the codimension of Z and THom was introduced in [11].

Another example is provided by [9, p. 814], replacing a ∈ C by a holomorphic

function a(s) without zeros on some open S := Ω ⊂ C. For X = C, we consider

the DX×S/S-module (holonomic, non-regular) defined by

(x2∂x − a(s))u(x, s) = 0.
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We then obtain (cf. [9, p. 815]) an equivalent system substituting the generator

u by u0 = u and introducing u1 = −x∂xu,

(2)

{
x∂xu0 + u1 = 0,

−a(s)u0 − xu1 = 0.

After multiplication by matrices in D∞
X×S/S (the matrices provided by [9] which

now depend on the parameter s), one concludes a D∞
X×S/S-isomorphism from the

D∞
X×S/S-module extension of (2) to the D∞

X×S/S-module (with generators w0, w1)

extension of the regular holonomic DX×S/S-module

(3)

{
xw0 − a(s)w1 = 0,

x∂xw1 = 0.

We remark that [9] uses microlocal techniques for the proof of the regularity of

Mreg. With the more recent notion of microsupport ([10]) and the results in [22],

the necessary tools in the relative framework (see Section 3 on technical lemmas)

are easier to prove. Together with the relative Riemann–Hilbert correspondence,

our task is much simplified; in particular, we no longer need to microlocalize.

§2. A short reminder on the relative Riemann–Hilbert correspondence

Below we summarize the background from [15, 16, 3, 4] that we shall need in the

sequel.

§2.1. Holonomic and regular holonomic DX×S/S-modules

(a) We say that a p−1OS-module is strict if it is flat over p−1OS .

(b) We recall that M ∈ Modcoh(DX×S/S) is holonomic if the characteristic vari-

ety Char(M) is contained in Λ× S, where Λ is analytic C∗-conic lagrangian

subset of T ∗X; we denote by Db
hol(DX×S/S) the associated triangulated cate-

gory whose objects are the bounded complexes with holonomic cohomologies.

(c) There is a well-defined duality functor

D : Db
hol(DX×S/S) → Db

hol(DX×S/S)
op

given by

DM := RHomDX×S/S
(M,DX×S/S ⊗OX×S

Ω⊗−1

X×S/S)[dX ],

where ΩX×S/S denotes the sheaf of relative differential forms of maximal

degree.
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(d) D is an involution, i.e. DD = Id.

(e) We recall a tool introduced in [15], the holomorphic restriction to each fiber

of p:

∀ s ∈ S, Li∗s(•) := •
L
⊗p−1OS

p−1(OS/Js),

where Js is the maximal ideal of functions vanishing in s.

(f) A Nakayama lemma variation: Let M ∈ Db
hol(DX×S/S) and assume that

Li∗soM = 0 for each so ∈ S. Then M = 0.

(g) Let M be an object of Db
hol(DX×S/S). Then DM is concentrated in degree

zero and H0DM is strict if and only if M is itself concentrated in degree

zero and H0M is a strict DX×S/S-module.

(h) We say that M ∈ Mod(DX×S/S) is regular holonomic if it is holonomic and

for all s ∈ S, Li∗sM ∈ Db
rhol(DX); we denote by Db

rhol(DX×S/S) the associated

triangulated full subcategory of Db
hol(DX×S/S).

(i) Db
rhol(DX×S/S) is stable by duality.

(j) Modhol(DX×S/S) and Modrhol(DX×S/S) are closed under taking extensions

in Mod(DX×S/S) and subquotients in Modcoh(DX×S/S).

§2.2. S-constructibility

We say that a sheaf L of p−1OS-modules is S-locally constant coherent if, locally

on X × S, L is isomorphic to p−1G, where G is an OS-coherent module. Such

an L is also called an S-local system. We recall the following full triangulated

subcategories of Db(p−1OS):

� An object F ∈ Db(p−1OS) is an object of Db
C-c(p

−1OS) if there exists a C-
analytic stratification (Xα)α∈A of X, such that for all j ∈ Z, for all α ∈ A,

HjF |Xα×S is S-locally constant coherent. We say for short that F is S-C-
constructible.

� Replacing C-analyticity by subanalyticity with respect to the real analytic

manifold XR underlying X, we obtain the notion of S-R-constructibility
and the corresponding triangulated category Db

R-c(p
−1OS). The category

Db
C-c(p

−1OS) is a full subcategory of Db
R-c(p

−1OS).

� If F ∈ Db
R-c(p

−1OS) then for each x ∈ X, F |{x}×S belongs to Db
coh(OS).

� There is a natural duality functor D : Db
R-c(p

−1OS) → Db
R-c(p

−1OS)
op which

is an involution given by

DF = RHomp−1OS
(F, p−1OS)[2dX ].

� Db
C-c(p

−1OS) is stable by duality.
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§2.3. A middle perversity t-structure on Db
C-c(p

−1OS)

Here we consider the two subcategories pD⩽0
C-c(p

−1OS) and pD⩾0
C-c(p

−1OS) of

Db
C-c(p

−1OS) defined as follows:

We have F ∈ pD⩽0
C-c(p

−1OS) (resp. F ∈ pD⩾0
C-c(p

−1OS)) if for an adapted

µ-stratification (Xα)α∈A, noting iα : Xα ↪→ X,

∀α and ∀ j > −dim(Xα), Hj(i−1
α F ) = 0

(resp. ∀α and ∀ j < −dim(Xα), Hj(i!αF ) = 0.)

We say that F of Db
C-c(p

−1OS) is perverse if F ∈ pD⩽0
C-c(p

−1OS) and F ∈
pD⩾0

C-c(p
−1OS), that is, F belongs to the heart of the t-structure defined above.

Remark 1. Note that D is not t-exact for this t-structure; in particular, it does

not preserve perversity.

Theorem 2 ([16]). For a given object F ∈ Db
C-c(p

−1OS), F and DF are perverse

if and only if for all so ∈ S, Li∗so(F ) is perverse in Db
C-c(CX).

§2.4. Link with holonomicity

We have the following link with holonomic DX×S/S-modules. Let us note pSolM =

RHomDX×S/S
(M,OX×S)[dX ] and pDRM = RHomDX×S/S

(OX×S ,M)[dX ].

Then (cf. [2, 15, 16]) we have the following properties:

� Sol,DR: Db
hol(DX×S/S) take values in Db

C-c(p
−1OS) and D pSol = pDR =

pSolD.

� If M ∈ Modhol(DX×S/S) then
pDRM is perverse (cf. [2, Thm. 4.1]).

� If F is such that DF is perverse then RHS(F ) is concentrated in degree

zero (cf. [2, Thm. 4.1]). In particular, for any holonomic DX×S/S-module,

RHS(pSolM) is concentrated in degree zero.

� Given M ∈ Db
hol(DX×S/S), M and DM are strict DX×S/S-modules if and

only if pSolM and pDRM = D pSolM are perverse.

§2.5. The functor RHS

With the subanalytic tools developed in [13, 14], the functor RHS was first intro-

duced in [16], followed by [3] (case dS = 1) and by [4] (general case). Kashiwara’s

functor RH (cf. [7]) is recovered with dS = 0. Below we give a short reminder of

its construction and main results:

Let ρS : X × S → Xsa × S be the natural morphism of sites introduced in

[14]. The functor ρ−1
S admits a left adjoint ρS! which is exact. We note Ot,S

X×S the
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relative subanalytic sheaf on Xsa × S associated in [14] to the subanalytic sheaf

Ot
X×S on (X × S)sa (introduced in [12]; see also [18]).

The functor RHS on Db(p−1OS)
op is given by

RHS(•) := ρ−1
S RHomρS∗p−1OS

(RρS∗(•),Ot,S
X×S)[dX ].

Theorem 3 ([16, 3, 4]). We have the following properties:

(a) RHS induces an equivalence of categories: Db
C-c(p

−1OS)
op → Db

rhol(DX×S/S)

compatible with duality.

(b) F is perverse with a perverse dual if and only if RHS(F ) is strict and con-

centrated in degree zero.

(c) For F ∈ Db
C-c(p

−1OS) and M ∈ Db
rhol(DX×S/S), we have a natural isomor-

phism in Db
C-c(p

−1OS),

RHomDX×S/S
(M,RHS(F )[−dX ])

∼−→ RHomDX×S/S
(M,RHomp−1OS

(F,OX×S)).

§2.6. Topological aspects of OS

The sheaf OS is made up of complete bornological algebras (multiplicatively con-

vex sheaf of Fréchet algebras over S). In the category of sheaves of complete

bornological modules over OS (denoted by Born(OS)), Houzel (cf. [6]) introduced

a notion of tensor product •⊗̂OS
•. To the latter one associates a family of functors

• ⊗̂ M on the category of bornological vector spaces, depending functorialy on

M ∈ Born(OS) (cf. [22, Sect. 3.4]). We have

(4) OX×S |{x}×S ≃ OX,x ⊗̂ OS .

Then (4) shows that OX×S |{x}×S is a so-called FN-free as well as a DFN-free

OS-module (cf. [22, p. 25] for the definition and also [19]).

In particular, given another complex manifold Y , we have

(5) OX×Y×S |{(x,y)}×S ≃ (OX×S |{x}×S) ⊗̂OS
(OY×S |{y}×S).

§3. Technical lemmas

In order to prove the main theorem we shall need the following results:

§3.1. Complements on S-R-constructible sheaves

We refer to [10, Chap. VIII] for the background on constructibility.

Notation 4. For short we shall keep the notation p as well as p−1OS without

referring to the manifold X, whenever there is no risk of ambiguity.
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Let X and Y be complex manifolds. Let q1 : X × Y × S → X × S be the

first projection and q2 : X × Y × S → Y × S be the second projection, which is

illustrated by the following commutative diagram:

(6)

X × Y × S
q1 //

q2

��

p

&&

X × S

p

��

Y × S
p

// S.

Lemma 5. For any F ∈ Db
R-c(p

−1OS) on X × S and any object G of Db(p−1OS)

on Y × S, the functorial morphism

T (F ) := q−1
1 RHomp−1OS

(F, p−1OS)⊗L
p−1OS

q−1
2 G

→ T ′(F ) := RHomp−1OS
(q−1

1 F, q−1
2 G)(7)

is an isomorphism.

Proof. The proof is now simpler than that of [9, Lem. B.3] since we dispose of the

notion of microsupport and of its properties (cf. [10, Chap. V]). It is sufficient to

check the isomorphism locally. Furthermore, arguing by induction on the length

of F , we may assume that F is in degree zero, that is, F is an S-R-constructible
sheaf.

We recall the following result (cf. Lemma A.9 in [5], which is the complete

version of [4]).

Lemma 6. Let F be an S-R-constructible sheaf on X × S. Then there exist

� a locally finite covering (U(σ))σ∈∆ of X by open subanalytic relatively compact

subsets of X,

� for each σ ∈ ∆ a coherent OS-module Gσ(F ) on S,

� and an epimorphism
⊕

σ∈∆ CU(σ) ⊠Gσ(F ) → F .

Let us assume for a moment that F = CU ⊠ G for some open relatively

compact subanalytic subset U of X and for some coherent OS-module G. In that

case, the proof of Lemma 5 is as follows. Regarding the left-hand term of (7) we

have a chain of isomorphisms:

q−1
1 RHomp−1OS

(CU ⊠G, p−1OS)⊗L
p−1OS

q−1
2 G

≃ q−1
1 RHom(CU×S ,RHomp−1OS

(p−1G, p−1OS))⊗L
p−1OS

q−1
2 G

≃
(a)

q−1
1 RHom(CU×S ,CX×S)⊗ q−1

1 RHomp−1OS
(p−1G, p−1OS)⊗L

p−1OS
q−1
2 G

≃
(b)

q−1
1 RHom(CU×S ,CX×S)⊗ RHomp−1OS

(p−1G, q−1
2 G).



Regularization of Relative Holonomic D-Modules 823

Isomorphism (a) follows by [10, Prop. 5.4.14(ii)] and isomorphism (b) follows by

the coherence of G.

Similarly, the right-hand term of (7) becomes isomorphic to

RHom(q−1
1 CU×S ,RHomp−1OS

(p−1G, q−1
2 G))

≃ RHom(CU×Y×S ,RHomp−1OS
(p−1G, q−1

2 G)).

We have

q−1
1 RHom(CU×S ,CX×S) ≃ RHom(CU×Y×S ,CX×Y×S).

Thus, for F = CU ⊠G, Lemma 5 follows by [10, Prop. 5.4.14(ii)].

As a consequence, Lemma 5 holds true for sheaves of the form

(∗)
⊕
σ∈∆

CU(σ) ⊠Gσ(F ).

We shall now prove the general case (F ∈ ModR−c(p
−1OS)) by a standard

argument. The epimorphism of Lemma 6 induces the following exact sequence:

0 → F ′ → K → F → 0,

where K has the form (∗), thus K and F ′ belong to ModR−c(p
−1OS). We consider

the associated distinguished triangles

T (F ) → T (K) → T (F ′)
+1−−→,

T ′(F ) → T ′(K) → T ′(F ′)
+1−−→ .

Thus (7) reads T (K) ≃ T ′(K) in Db
R−c(p

−1OS). There exist integers N < M

only depending on T , T ′ and G such that the j-cohomology groups of T (•), T ′(•),

with • replaced by F , F ′, K (see (7)), vanish for j /∈ [N,M ]. We have HNT (K) ≃
HNT ′(K), thus HNT (F ) → HNT ′(F ) is injective (since HN−1T (F ′) = 0 =

HN−1T ′(F ′)). As F is arbitrary, the same holds true for F replaced by F ′. By the

five lemma it follows that HNT (F ) ≃ HNT ′(F ) and so HNT (F ′) ≃ HNT ′(F ′)

again because F is arbitrary. We then pursue this argument recursively, which

ends after a finite number of steps.

§3.2. A complement on relative holonomic modules

Let X and Y be complex manifolds and let us consider diagram (6).

Lemma 7. Let M ∈ Db
hol(DX×S/S) Then we have a natural isomorphism

q−1
1 RHomDX×S/S

(M,OX×S)⊗p−1OS
q−1
2 OY×S

∼−→ RHomq−1
1 DX×S/S

(q−1
1 M,OX×Y×S).
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Proof. We adapt [9, Prop. 1.4.3]. Since the morphism is well defined, it is enough

to prove that, for any x ∈ X, y ∈ Y , it induces an isomorphism

RHomDX×S/S
(M,OX×S)|{x}×S ⊗OS

OY×S |{y}×S

≃ RHomq−1
1 DX×S/S

(q−1
1 M,OX×Y×S)|{(x,y)}×S .

For any s ∈ S, in a neighborhood of (x, s), we now replace M by a bounded

locally free DX×S/S-resolution (Dk
X×S/S , pk)k∈Z −−→

QIS
M. Then we may ass-

ume that RHomDX×S/S
(M,OX×S)|{x}×S is quasi-isomorphic to the complex

((Ok
X×S)|{x}×S , p

⊤
k ) and that RHomq−1

1 DX×S/S
(q−1

1 M,OX×Y×S)|{(x,y)}×S is quasi-

isomorphic to the complex ((Ok
X×Y×S)|{(x,y)}×S , p

⊤
k ).

We have Ok
X×S |{x}×S ≃ Ok

X,x⊗̂OS and Ok
X×Y×S |{(x,y)}×S ≃ OX×Y,(x,y)⊗̂OS

and so Ok
X×S |{x}×S as well as Ok

X×Y×S |{(x,y)}×S are FN-free OS-modules in the

sense of [19].

Since RHomDX×S/S
(M,OX×S)|{x}×S has OS-coherent cohomologies we are

in condition to apply [22, Prop. 3.13], and, in view of (5), to conclude quasi-

isomorphisms

(Ok
X×Y×S , p

⊤
k )|{(x,y)}×S ≃ (Ok

X×S , p
⊤
k )|{x}×S ⊗̂OS

(OY×S)|{y}×S

≃ RHomDX×S/S
(M,OX×S)|{x}×S ⊗OS

OY×S |{y}×S .

§4. Main result

§4.1. Statement and proof of the main result

Let ∆ denote the diagonal of X ×X.

The canonical section of

i−1
∆×SH

dX

∆×S(OX×X×S)⊗OX×S
ΩX×S/S = i−1

∆×SB
∞
X×S|X×X×S ⊗OX×S

ΩX×S/S

corresponding to the global section 1 of D∞
X×S/S allows us to define an isomorphism

of sheaves of rings

D∞
X×S/S ≃ i−1

∆×SB
∞
X×S|X×X×S ⊗OX×S

ΩX×S/S

≃ i−1
∆×SRΓ∆×S(OX×X×S)⊗OX×S

ΩX×S/S [dX ].(8)

Theorem 8. Let M ∈ Db
hol(DX×S/S).

Let F = SolM = RHomDX×S/S
(M,OX×S). Then we have a natural isomor-

phism in Db(D∞
X×S/S),

M∞ ≃ RHomp−1OS
(F,OX×S).
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Proof. In view of (8), we have isomorphisms

D∞
X×S/S ⊗DX×S/S

M

≃ i−1
∆×SRΓ∆×S(OX×X×S)⊗OX×S

ΩX×S/S [dX ]⊗DX×S/S
DDM

≃ i−1
∆×SRΓ∆×S(RHomq−1

1 DX×S/S
(q−1

1 DM,OX×X×S))[2dX ].

According to Lemma 7, we have

RHomq−1
1 DX×S/S

(q−1
1 DM,OX×X×S)

≃ q−1
1 RHomDX×S/S

(DM,OX×S)⊗p−1OS
q−1
2 OX×S .

On the other hand, the holonomicity of M implies the isomorphism

RHomDX×S/S
(DM,OX×S)

≃ RHomp−1OS
(RHomDX×S/S

(M,OX×S), p
−1OS).

According to Lemma 5 with X = Y , F = RHomDX×S/S
(M,OX×S) and G =

OX×S , we conclude a natural isomorphism

RHomq−1
1 DX×S/S

(q−1
1 DM,OX×X×S)

≃ RHomp−1OS
(q−1

1 RHomDX×S/S
(M,OX×S), q

−1
2 OX×S).

Applying i−1
∆×SRΓ∆×S and the shift [2dX ] to both terms, we finally deduce a

natural isomorphism

M∞ ≃ RHomp−1OS
(RHomDX×S/S

(M,OX×S),OX×S),

which follows by the sequence of isomorphisms

i−1
∆×SRΓ∆×S(q

−1
2 OX×S)

≃ i−1
∆×S RHom(C∆×S , q

−1
2 OX×S)

≃
(a′)

i−1
∆×S(RHom(C∆×S ,CX×X×S)⊗ q−1

2 OX×S)

≃
(b′)

OX×S [−2dX ],(9)

where (a′) follows by [10, Prop. 5.4.14(ii)] and (b′) by the commutation of the

functors ⊗ and i−1
∆×S .

Corollary 9. The following properties hold true:

(a) We have an isomorphism of functors on Db
C-c(p

−1OS):

RHS(•)∞[−dX ] ≃ RHomp−1OS
(•,OX×S).
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(b) Let M,N ∈ Db
rhol(DX×S/S). We have a natural isomorphism in Db

C-c(p
−1OS):

RHomDX×S/S
(M,N ) ≃ RHomDX×S/S

(M,N∞).

Proof. (a) It is an immediate consequence of Theorem 8 since Sol[dX ]◦RHS = Id.

(b) We set N = RHS(G) with G = pSol(N ) ∈ Db
C-c(p

−1OS); then N∞ ≃
RHomp−1OS

(G,OX×S)[dX ] and the result follows by Theorem 3(c).

Definition 10. If M is a holonomic DX×S/S-module, we denote by Mreg the

subsheaf of M∞ of local sections u satisfying the following condition: there exists

a coherent ideal J in DX×S/S such that J u = 0 and DX×S/S/J is regular holo-

nomic.

Lemma 11. Mreg is a DX×S/S-module.

Proof. The proof is similar to that in [9, Prop. 1.1.20]. If u is a local section of

Mreg, let J be a left ideal of DX×S/S as in Definition 10, and let P ∈ DX×S/S ;

then the left ideal J ′ of operatorsQ such thatQP ∈ J is coherent and DX×S/S/J ′

is isomorphic to a coherent DX×S/S-submodule of DX×S/S/J ; hence, in view of

(j) of Section 2.1, it is regular holonomic so that the conditions of Definition 10

are satisfied by Pu.

Clearly, the correspondence

M ∈ Modhol(DX×S/S) 7→ Mreg ∈ Modrhol(DX×S/S)

defines a left exact functor.

Theorem 12. We have the following properties:

(a) Let N ∈ Modrhol(DX×S/S). Then N = Nreg.

(b) Let N ∈ Modhol(DX×S/S). Then Nreg is a regular holonomic DX×S/S-module

isomorphic to RHS(pSolN ). In particular, N∞ ≃ N∞
reg.

Proof. (a) By the assumption of regularity, we derive a natural inclusionN ⊂ Nreg.

Let us now prove the inclusion Nreg ⊂ N . Let u be a local section of Nreg and let

J be a left coherent ideal of DX×S/S such that J u = 0 and such that DX×S/S/J
is regular holonomic. We thus deduce a natural morphism ϕ : DX×S/S/J → N∞

as the composition of DX×S/S/J ↠ DX×S/Su ↪→ N∞. Applying Corollary 9(b)

to the cohomologies of degree zero with M = DX×S/S/J , ϕ factors through N ,

thus DX×S/Su ⊂ N .

(b) According to Theorem 8 we have a DX×S/S-linear isomorphism

Φ: N∞ ≃ RHS(pSolN )∞.
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In view of (a), we conclude by a similar argument that Φ(Nreg) is con-

tained in RHS(pSolN ). Similarly, using Φ−1, we conclude that Nreg contains

Φ−1(RHS(pSolN )). Thus Φ provides the desired DX×S/S-isomorphism.

§4.2. Example

We shall assume that dS = 1. Our goal is to make (•)∞ explicit in the case of the

relative hermitian duality(cf. [17]) by proving the relative variant of [8, Rem. 2.1].

We denote by DbX×S the sheaf of distributions on the real analytic manifold

XR × SR underlying X × S and by DbX×S/S the subsheaf of DbX×S of germs of

distributions holomorphic along S. We call DbX×S/S the sheaf of relative distri-

butions. We denote by X the complex conjugate manifold of the manifold X. We

recall the main results [17, (Thm. 2)]:

(a) The relative Hermitian duality functor

CS
X,X

(•) := RHomDX×S/S
(•,DbX×S/S)

induces an equivalence

CS
X,X

: Db
rhol(DX×S/S)

∼−→ Db
rhol(DX×S/S)

op.

(b) CS
X,X

◦CS
X,X

≃ Id.

(c) Moreover, the relative conjugation functor

cS
X,X

:= CS
X,X

◦D

induces an equivalence

cS
X,X

: Db
rhol(DX×S/S)

∼−→ Db
rhol(DX×S/S),

and there is an isomorphism of functors

pSolX ◦ cS
X,X

≃ pSolX : Db
rhol(DX×S/S) → Db

C-c(p
−1OS).

Let BXR×SR be the sheaf of Sato hyperfunctions on XR ×SR which we regard

as an oriented manifold. Let BX×S/S denote the subsheaf of BXR×SR of germs of

hyperfunctions which are holomorphic along the parameter manifold S.

Proposition 13. Let M be an object of Db
rhol(DX×S/S). Then we have

CS
X,X

(M)∞ ≃ RHomDX×S/S
(M, BX×S/S).

Proof. We note that, by definition of BXR×SR , we have, for each orientation on

XR × SR, an isomorphism of D∞
X×S/S-modules

BX×S/S ≃ RΓXR×S(OX×X×S)[2dX ],
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where, as usual, we regard X ×X as a complexification of XR. Hence

RHomDX×S/S
(M, BX×S/S) ≃ RΓXR×S(RHomDX×S/S

(M,OX×X×S))[2dX ].

Let q1 denote the projection X ×X ×S → X ×S and let q2 denote the projection

X ×X × S → X × S. We have

RΓXR×S RHomDX×S/S
(M,OX×X×S)[2dX ]

≃
(a′)

RΓXR×S(q
−1
1 SolM⊗p−1OS

q−1
2 OX×S)[2dX ]

≃ RΓXR×S(RHomp−1OS
(q−1

1 DRM, p−1OS)⊗p−1OS
q−1
2 OX×S)[2dX ]

≃
(b′)

RΓXR×S RHomp−1OS
(q−1

1 DRM, q−1
2 OX×S)[2dX ]

≃
(c′)

RHomp−1OS
(DRM,OX×S)

≃
(d′)

RHomp−1OS
(Sol CS

X,X
(M),OX×S)

≃
(e′)

CS
X,X

(M)∞,

where (a′) follows by Lemma 7, (b′) follows by Lemma 5, (c′) follows by a similar

argument to (9), (d′) follows by (c) and Section 2.4 and (e′) follows by Theorem 8.

Acknowledgments

We warmly thank Pierre Schapira and Luisa Fiorot for attentively discussing sev-

eral points. We are deeply grateful for the referee’s corrections which contributed

to improve our work.

The research of T. Monteiro Fernandes was supported by Fundação para a

Ciência e Tecnologia, under the project UIDB/04561/2020.

References

[1] A. D’Agnolo and M. Kashiwara, Riemann–Hilbert correspondence for holonomic D-modules,

Publ. Math. Inst. Hautes Études Sci. 123 (2016), 69–197. Zbl 1351.32017 MR 3502097

[2] L. Fiorot and T. M. Fernandes, t-structures for relative D-modules and t-exactness of the
de Rham functor, J. Algebra 509 (2018), 419–444. Zbl 1428.14031 MR 3812208

[3] L. Fiorot, T. Monteiro Fernandes and C. Sabbah, Relative regular Riemann–Hilbert cor-
respondence, Proc. Lond. Math. Soc. (3) 122 (2021), 434–457; Corrigendum: 123 (2021),
649–654. Zbl 1482.14020 Zbl 1482.14020 MR 4230060 MR 4368685

[4] L. Fiorot, T. Monteiro Fernandes and C. Sabbah, Relative regular Riemann–Hilbert corre-
spondence II, Compos. Math. 159 (2023), 1413–1465. Zbl 1514.14024 MR 4603633

[5] L. Fiorot, T. Monteiro Fernandes and C. Sabbah, Relative regular Riemann–Hilbert corre-
spondence II, arXiv:2203.05444 (2024).

https://doi.org/10.1007/s10240-015-0076-y
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1351.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=3502097
https://doi.org/10.1016/j.jalgebra.2018.05.011
https://doi.org/10.1016/j.jalgebra.2018.05.011
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1428.14031&format=complete
http://www.ams.org/mathscinet-getitem?mr=3812208
https://doi.org/10.1112/plms.12362
https://doi.org/10.1112/plms.12362
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1482.14020&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1482.14020&format=complete
http://www.ams.org/mathscinet-getitem?mr=4230060
http://www.ams.org/mathscinet-getitem?mr=4368685
https://doi.org/10.1112/s0010437x23007224
https://doi.org/10.1112/s0010437x23007224
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1514.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=4603633
http://arxiv.org/abs/2203.05444


Regularization of Relative Holonomic D-Modules 829

[6] C. Houzel, Espaces analytiques relatifs et théorème de finitude, Math. Ann. 205 (1973),
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