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Abstract

The purpose of this paper is to develop a new theory of three non-commuting quaternionic
variables and its related Schur analysis theory for a modified version of the quaternionic
global operator.
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§1. Introduction

Quaternionic analysis, or more generally Clifford analysis, allows one to extend the

classical theory of holomorphic functions of one complex variable into function the-

ories of hypercomplex variables. A well-developed theory in this non-commutative

setting is the theory of Cauchy–Fueter regular functions (or monogenic functions);

see [13, 33] and the references therein. In 2007 a new theory of regular functions of

a quaternionic variable was introduced in [29]. These are the so-called slice hyper-

holomorphic functions on quaternions. For more details on this topic we refer the

reader to the books [21, 20, 28] and the references therein. This theory generated

several interesting applications in different areas of mathematics and physics due
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to the discovery of the notion of the S-spectrum for quaternionic operators intro-

duced in [17]; see also [16, 15, 20, 30] and the references therein. In particular, this

function theory allowed one to develop the quaternionic counterpart of operator

theory, Schur analysis, and quantum mechanics; see [4, 16, 15, 20].

Let us recall that Blaschke products are building blocks of classical function

theory on the disk as in [37] and, more generally, in Schur analysis, and they also

constitute essential tools of the Beurling–Lax theorem, which characterizes shift-

invariant subspaces of the Hardy space. A fundamental technique that we use in

this paper is based on the research developed in [19], where the authors discovered

a new approach to the theory of slice hyperholomorphic functions, using a special

operator with non-constant coefficients called the quaternionic global operator. The

authors of [19] proved that under suitable conditions on the domain, the space of

slice hyperholomorphic functions is strictly contained in the kernel of this global

operator with non-constant coefficients. This quaternionic global operator was used

in [5] to prove a counterpart of the well-known Fueter–Sce mapping theorem in

the case of quaternionic polyanalytic functions. It was also used to study poly-slice

monogenic functions introduced in [2, 5].

The purpose of this paper is to develop a theory of three non-commuting

quaternionic variables and a related Schur analysis for the quaternionic global

operator. We first set the framework for our work, and define the skew field of

quaternions (denoted by H) as the space of elements of the form

(1.1) q = x0 + x1e1 + x2e2 + x3e3,

where x0, x1, x2, x3 are real numbers and e1, e2, e3 satisfy the Cayley multipli-

cation table. A number of the form q in (1.1) is called a quaternion, and

q⃗ = x1e1 + x2e2 + x3e3

is called its vector part (more information on quaternions is provided in Section 2).

As in Definition 2.4, the global operator with non-constant coefficients, which

was introduced for the first time in [19], was initially written as

(1.2) Gq(f) := |⃗q|2∂x0
f(q) + q⃗

3∑
l=1

xl∂xl
f(q).

The operator Gq acts on functions of a quaternionic variable which are dif-

ferentiable with respect to the real variables and it was first used to develop a

Cauchy formula in the case of slice hyperholomorphic functions; see [19]. For a

distributional approach to the Cauchy problem in this context see [22]. In par-

ticular, in [19], it was proved that slice-hyperholomorphic functions are strictly
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included in the kernel of the global operator Gq. However, the global operator we

work with, denoted by Vq, is the normalized form of Gq, Vq =
Gq

|⃗q|2 , namely

(1.3) Vq =
∂

∂x0
− 1

q⃗

3∑
u=1

xu
∂

∂xu
.

The global operator Vq was used in [5] to develop the Fueter mapping theorem

for poly slice monogenic functions. In [3] the global operator was used to study

infinite-order differential operators acting on entire hyperholomorphic functions

and it was used also in [31] to study global differential equations for slice regular

functions. Recent extensions and new results on the global operator and related

topics can be found in [14, 32, 35].

Definition 1.1. A quaternionic-valued function f which is at least C1 in the real

variables in a domain ΩR ⊂ R4 is called Vq-regular if Vqf = 0.

In this paper we will focus on a family of Vq-regular functions which are real-

analytic and we develop a Cauchy–Kovalevskaia product (denoted CK-product)

for this space. We consider the version of Gleason problem associated to Vq, which

will allow us to introduce a new type of Fueter-like variables and develop a Schur

analysis and rational functions for this operator. For consistency we now introduce

the notation that will be used throughout the paper.

Definition 1.2. Given x = (x0, x1, x2, x3) ∈ R4 such that xu ̸= 0 for some u =

1, 2, 3, we define the Vq-Fueter variables

(1.4) µu(x) = xu

(
1 +

x0

q⃗

)
, u = 1, 2, 3,

and, for α = (α1, α2, α3) ∈ N3
0, we write, with a slight abuse of notation,

xα = xα1
1 xα2

2 xα3
3 ,

where xα does not depend on x0.

The functions µu, u = 1, 2, 3, are the counterpart of the classical Fueter vari-

ables (see Definition 2.1 for the latter) in the present setting. These new variables

allow us to define and study a counterpart of Schur analysis in this setting. In

Theorem 3.6 we prove a more general form of the following.

Theorem 1.3. The functions

(1.5) µu(x) = xu

(
1 +

x0

q⃗

)
, u = 1, 2, 3,

are Vq-regular on H∗ := {q = x0 + q⃗, q⃗ ̸= 0}.
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Throughout the paper we will exchange the quadruple x = (x0, x1, x2, x3)

with xu ̸= 0 for some u = 1, 2, 3 with the quaternionic variable q = x0 + q⃗ ∈ H∗ so

that we can consider µu as functions of both. For a given x ∈ H∗, µu(x) commute

pairwise and we recover Fueter-like monomials as in Definition 3.3:

(1.6) µα(x) = µα1
1 (x)µα2

2 (x)µα3
3 (x),

where α = (α1, α2, α3) ∈ N3
0.

The functions µα are Vq-regular on H∗ (see Section 3) and we will see that

they can be rewritten as

(1.7) µα(x) = xα
(
1 +

x0

q⃗

)|α|
.

As explained in the following remarks, and throughout the paper, there are

important and fundamental differences between the cases considered in [7, 9, 11]

(and in particular the case of Fueter variables in [9]) and the present setting.

Remark 1.4. In the setting of Fueter variables, the Cauchy–Fueter operator D =

∂x0
+ e1∂x1

+ e2∂x2
+ e3∂x3

and the operators of partial differentiation commute

for smooth functions. This is not the case for the operator Vq, which does not

commute with differentiations with respect to xu, u = 1, 2, 3. So, for instance,
∂f
∂x1

need not be Vq-regular when f is Vq-regular. Since Vq and ∂f
∂x0

commute, ∂f
∂x0

is Vq-regular when f is Vq-regular. As an illustration, the case f(x) = µ1(x) is

considered in Example 3.9. The function ∂µ1

∂x2
is not Vq-regular, while the function

∂µ1

∂x0
is Vq-regular but cannot be written as a convergent Fueter-like series of the

µα monomials.

To present these ideas we adopt the following structure: In Section 2 we review

basic notation and definitions of quaternions, slice hyperholomorphic functions,

and the quaternionic global operator with non-constant coefficients. In Section 3

we introduce the Fueter-like variables and prove a Gleason-type theorem in this

setting. Section 4 is devoted to the study of a Cauchy–Kovalevskaia-type extension

and CK-type product corresponding to these Fueter-like variables. In Sections 5

and 6 we study some examples of reproducing kernel Hilbert spaces generated

by the Fueter-like variables, including a counterpart of Arveson space and Schur

multipliers. Finally, in Section 7 we obtain Blaschke factors in this framework,

followed by building a rational function theory in Section 8. We conclude the

paper with a general description of the next steps we will undertake using these

new Fueter-like variables.
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§2. Preliminary results

We recall that the non-commutative field of quaternions is defined and denoted by

H = {q = x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R},

where the imaginary units satisfy the multiplication rules

i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, ki = −ik = j.

On H the conjugate and the modulus of q are defined respectively by

q̄ = x0 − q⃗, q⃗ = x1i+ x2j + x3k,

and

|q| =
√
qq̄ =

√
x2
0 + x2

1 + x2
2 + x2

3.

Throughout the paper we use the notation e0 = 1, e1 = i, e2 = j, and

e3 = k interchangeably for the imaginary units. It is important to note that the

conjugation satisfies the property pq = q̄p̄ for any p, q ∈ H.

An important tool in the quaternionic case is the symmetric product of n

quaternionic numbers q1, q2, . . . , qn:

(2.1) q1 × q2 × · · · × qn =
1

n!

∑
σ∈Sn

qσ(1)qσ(2) · · · qσ(n),

where the sum is over the set Sn of all permutations on n indices.

In the classical case, Fueter [26, 27] used the following variables to describe

the kernel of the Cauchy–Fueter operator.

Definition 2.1. The classical Fueter variables are ζl = xl − x0el and we denote

by ζα the symmetric product ζ×α1
1 × ζ×α2

2 × ζ×α3
3 , where α = (α1, α2, α3).

These variables are Fueter-regular with respect to the classical Cauchy–Fueter

operator.

We now define the setting for slice hyperholomorphic functions. The unit

sphere {
q⃗ = x1i+ x2j + x3k : x2

1 + x2
2 + x2

3 = 1
}

coincides with the set of all imaginary units given by

S =
{
q ∈ H : q2 = −1

}
.

Definition 2.2. Let f : Ω → H be a C1 function on a given domain Ω ⊂ H.

Then f is said to be (left) slice hyperholomorphic function if, for every I ∈ S,
the restriction fI to CI = R + IR, with variable q = x + Iy, is holomorphic on
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ΩI := Ω ∩ CI , that is, it has continuous partial derivatives with respect to x and

y and the function ∂If : ΩI → H defined by

∂If(x+ Iy) :=
1

2

( ∂

∂x
+ I

∂

∂y

)
fI(x+ yI)

vanishes identically on ΩI . The set of slice hyperholomorphic functions will be

denoted by SR(Ω).

The right quaternion vector space SR(Ω) is endowed with the natural topol-

ogy of uniform convergence on compact sets. The characterization of such functions

on a ball centered at the origin is given by the following theorem.

Theorem 2.3 (Series expansion [29]). An H-valued function f is slice hyperholo-

morphic on B(0, R) if and only if it has a series expansion of the form

f(q) =

+∞∑
n=0

qnan,

converging on B(0, R) = {q ∈ H; |q| < R}.

Another interesting approach to defining slice hyperholomorphic functions

is to consider them as solutions of a special global operator with non-constant

coefficients that was introduced and studied in [19, 22, 31]. This leads to the

following definition.

Definition 2.4. Let Ω be an open set in H and f : Ω → H a function of class C1.

We define the global operator Gq(f) by

Gq(f) := |⃗q|2∂x0
f(q) + q⃗

3∑
l=1

xl∂xl
f(q),

for any q = x0 + q⃗ ∈ Ω.

It was proved in [19] that any slice hyperholomorphic function is in the kernel

of Gq on axially symmetric slice domains. We briefly recall the definition of such

a domain

Definition 2.5. A domain Ω ⊂ H is said to be a slice domain (or just s-domain)

if Ω ∩ R is non-empty and for all I ∈ S, the set ΩI := Ω ∩ CI is a domain of

the complex plane C. If, moreover, for every q = x + Iy ∈ Ω, the whole sphere

x+yS := {x+ Jy; J ∈ S} is contained in Ω, we say that Ω is an axially symmetric

slice domain.
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There are many other interesting properties of the global operator Gq that

have been studied in the literature, in particular in [18]. We recall some here.

Proposition 2.6. Let Ω be an open set in H and f, g : Ω → H two functions of

class C1. Then, for q = x0 + q⃗ ∈ Ω, we have

(1) G(fg) = G(f)g + fG(g) + (⃗qf − f q⃗)
∑3

l=1 xl∂xl
g.

In particular, it holds that

(2) G(fλ+ g) = G(f)λ+G(g) for all λ ∈ H,

(3) G(x0f) = |⃗q|2f + x0G(f) and G(⃗qf) = −|⃗q|2f + q⃗G(f),

(4) G(qkf) = qkG(f) for all k ∈ N.

§3. The Vq-Fueter variables, a new type of Fueter variable

In this section we introduce the Gleason setting that will yield the new Vq-Fueter

variables in the quaternionic case, in a natural way. Through this process, we

find these variables, which correspond to the operator Vq, when we use the same

technique the authors applied in the real ternary case [11], in the split quaternionic

case [7], and in the regular Fueter quaternionic case [9]. For completion, in the case

of Grassmann variables, see also [8].

It is also worth pointing out that our work here is the first to find a counterpart

to the classical Fueter variables through the treatment of this case of a differential

operator with non-constant coefficients. All the applications mentioned before used

this method for operators with constant coefficients.

The strategy involves a clever application of the chain rule, and, for a Vq-

regular function f , we compute ∫ b

a

d

dt
f(tx) dt.

In the previous examples of ternary and split quaternions, we can take a = 0 and

b = 1. In the present case a cannot be chosen to be 0 because of the singularity at

the origin.

We will see that we can apply the same technique to obtain the Fueter-like

variables µu in the proof of the following theorem.

Theorem 3.1. Let Ω be an open domain of H∗. For a Vq-regular function f ∈
C1(Ω), let a, b ∈ Ω be such that [a, b] = {(1− t)a+ tb, 0 ≤ t ≤ 1} ⊂ Ω. Then

(3.1) f(b)− f(a) =

3∑
u=1

µu(b− a)Rab
u f,
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where

(3.2) Rab
u f =

∫ b

a

∂f

∂xu
(a+ t(b− a)) dt.

Proof. The chain rule gives

d

dt
f(a+ tx) = x0

∂f

∂x0
(a+ tx) +

3∑
u=1

xu
∂f

∂xu
(a+ tx)

=
x0

q⃗

3∑
u=1

xu
∂f

∂xu
(a+ tx) +

3∑
u=1

xu
∂f

∂xu
(a+ tx)

=

3∑
u=1

µu(x)
∂f

∂xu
(a+ tx),

and the result follows by integrating back and setting x = b−a. The reader should

note that in the second step of the equality we use the fact that f is in the kernel

of Vq.

Remark 3.2. Note that

(3.3) µu(b− a) ̸= µu(b)− µu(a).

Furthermore, the operators Rab
u do not commute with Vq.

For α = (α1, α2, α3) ∈ N3
0 we use the multi-index notation and set

(3.4) xα = xα1
1 xα2

2 xα3
3 and |α| = α1 + α2 + α3.

Definition 3.3. For the Vq-Fueter variables µu and α = (α1, α2, α3) ∈ N3
0, we

define the product

(3.5) µα(x) = µα1
1 (x)µα2

2 (x)µα3
3 (x),

for every x ∈ H∗.

Remark 3.4. Since the Vq-Fueter variables µu commute, in the above definition

we do not need to use the symmetric product and, in fact, we can rewrite the

product as

(3.6) µα(x) = xα
(
1 +

x0

q⃗

)|α|
.

Proposition 3.5. Let Ω be an open domain in H∗. For every x ∈ Ω ⊂ H∗ it holds

that

(3.7) |µα|2 = |x|2α
(
1 +

x2
0

x2
1 + x2

2 + x2
3

)|α|
,



Fueter-Type Variables, Global Operator 867

and, in particular, we have

(3.8) |µu(x)|2 ≤ |ζu(x)|2, u = 1, 2, 3.

Proof. This follows from the fact that x0

q⃗ has no real part on Ω and

(3.9) |µu(x)|2 = x2
u +

x2
ux

2
0

x2
1 + x2

2 + x2
3

≤ x2
u + x2

0 = |ζu(x)|2.

We can now prove that the Vq-Fueter products µα are in the kernel of Vq

on H∗.

Theorem 3.6. It holds that µα are in the kernel of the operator Vq on any open

domain Ω ⊂ H∗. Moreover, we have

(3.10) Vqµ
α(x) = 0,

for every x ∈ Ω.

Proof. We divide the verification into a number of steps.

Step 1: It holds that

(3.11)
∂

∂xu

1

q⃗
=

eu

q⃗ 2 +
2xu

q⃗ 3 , u = 1, 2, 3.

Indeed, we have
1

q⃗
=

q⃗

q⃗ 2 = − q⃗

x2
1 + x2

2 + x2
3

.

Hence

∂

∂xu

1

q⃗
=

−eu(x
2
1 + x2

2 + x2
3) + 2xuq⃗

(x2
1 + x2

2 + x2
3)

2

=
euq⃗

2

q⃗ 4 +
2xuq⃗

q⃗ 3

and hence the result.

Step 2: It holds that

(3.12)
∂

∂xu

(
1 +

x0

q⃗

)|α|
=

∑
t,s∈N0

t+s=|α|

(
1 +

x0

q⃗

)t(x0eu

q⃗ 2 +
2xux0

q⃗ 3

)(
1 +

x0

q⃗

)s
,

where u = 1, 2, 3.
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Equation (3.12) is a direct consequence of (3.11) and of the formula for the

derivative of fn when f is a matrix-valued function (and in particular quaternionic

valued) of (say) a real variable w:

(3.13)
dfn

dw
=

∑
t,s∈N0

t+s=|α|

f tf ′fs.

Step 3: We have

(3.14)
∂

∂x0

(
1 +

x0

q⃗

)|α|
=

|α|
q⃗

(
1 +

x0

q⃗

)|α|−1

.

This is because 1+ x0

q⃗ commutes with its derivative with respect to x0, and formula

(3.13) reduces then to the classical formula.

Step 4: We now calculate

1

q⃗

3∑
u=1

xu
∂

∂xu
µα.

We have

1

q⃗

3∑
u=1

xu
∂

∂xu
xα
(
1 +

x0

q⃗

)|α|
=

1

q⃗

[ 3∑
u=1

xu

(
αux

α−eu
(
1 +

x0

q⃗

)|α|
+ xα

∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

q⃗

)t(x0eu

q⃗ 2 +
2xux0

q⃗ 3

)(
1 +

x0

q⃗

)s)]

=
1

q⃗

[
|α|xα

(
1 +

x0

q⃗

)|α|
+ xα

∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

q⃗

)t( 3∑
u=1

xux0eu

q⃗ 2 +
2x2

ux0

q⃗ 3

)(
1 +

x0

q⃗

)s]

=
xα

q⃗

[
|α|
(
1 +

x0

q⃗

)|α|
+

∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

q⃗

)t(x0q⃗

q⃗ 2 − 2⃗q 2x0

q⃗ 3

)(
1 +

x0

q⃗

)s]
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=
xα

q⃗

[
|α|
(
1 +

x0

q⃗

)|α|
−

∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

q⃗

)tx0

q⃗

(
1 +

x0

q⃗

)s]

=
xα

q⃗

[
|α|
(
1 +

x0

q⃗

)|α|
− |α|

(
1 +

x0

q⃗

)|α|−1x0

q⃗

]
.

Step 5: We can now compute Vqµ
α. Using (3.14) and the previous step we

have

Vqµ
α = xα |α|

q⃗

(
1 +

x0

q⃗

)|α|−1

− xα

q⃗

[
|α|
(
1 +

x0

q⃗

)|α|
− |α|

(
1 +

x0

q⃗

)|α|−1x0

q⃗

]
=

|α|xα

q⃗

(
1 +

x0

q⃗

)|α|−1(
1−

(
1 +

x0

q⃗

)
+

x0

q⃗

)
= 0.

This ends the proof.

Remark 3.7. We observe that both functions µα and ζα coincide with xα when

x0 = 0. It is important to note that these are two different extensions of the same

real function xα leading to two different regular function theories. In fact, µα is the

Vq-regular extension of xα, while ζα gives the classical Fueter extension. However,

the classical Fueter variables ζα extend xα to the whole space of quaternions while

µα extend xα to domains of H∗.

Proposition 3.8. For any n ∈ N, the function qn is in kerVq and, moreover,

qn =
∑
|α|=n

µαcα,n

where, with α = (α1, α2, α3),

(3.15) cα,n =
n!

α!
e1

×α1 × e2
×α2 × e3

×α3 ,

where the symmetric product is taken among all the products of the units eu.

Proof. In H∗ we have

qn = (x0 + q⃗)n

=
(
1 +

x0

q⃗

)n
(⃗q)n
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=
(
1 +

x0

q⃗

)n( ∑
|α|=n

xαcα,n

)
=
∑
|α|=n

xα
(
1 +

x0

q⃗

)n
cα,n,

for some cα,n ∈ H which can be expressed in terms of symmetrized products as in

(3.15) by known formulas.

We note that (3.15) does not take into account the Cayley table of multipli-

cation for the quaternions.

Example 3.9. Let us examine µ1(x) = x1(1 + x0

q⃗ ) = x1 + x0
x1

q⃗ . The function
∂µ1

∂x2
= x1x0(

e2

q⃗ 2 + 2x2

q⃗ 3 ) is not Vq-regular, while the function ∂µ1

∂x0
= x1

q⃗ is Vq-regular

but cannot be written as a convergent Fueter-like series of the µα.

Discussion of Example 3.9. We have

∂µ1

∂x2
(x) = x1x0

(e2
q⃗ 2 +

2x2

q⃗ 3

)
,

and so
∂2µ1

∂x0∂x2
(x) = x1

(e2
q⃗ 2 +

2x2

q⃗ 3

)
is independent of x0. On the other hand,

3∑
u=1

xu
∂

∂xu

(∂µ1

∂x2

)
=

3∑
u=1

xu
∂

∂xu

(
x1x0

(e2
q⃗ 2 +

2x2

q⃗ 3

))
= x0

[ 3∑
u=1

xu
∂

∂xu

(
x1

(e2
q⃗ 2 +

2x2

q⃗ 3

))]
.

Hence (
Vq

∂µ1

∂x2

)
(x) = x1

(e2
q⃗ 2 +

2x2

q⃗ 3

)
− x0

[ 3∑
u=1

xu
∂

∂xu

(
x1

(e2
q⃗ 2 +

2x2

q⃗ 3

))]
.

Setting x0 = 0 shows that Vq
∂µ1

∂x2
̸≡ 0.

We now turn to ∂µ1

∂x0
, which is Vq-regular since differentiation with respect to

x0 commutes with Vq. Assume now that

∂µ1

∂x0
=
∑
α∈N3

0

µαcα
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for some quaternionic coefficients cα, and where the convergence is assumed in

some set Ω ⊂ H∗. In other words,

(3.16)
x1

q⃗
=
∑
α∈N3

0

xα
(
1 +

x0

q⃗

)|α|
cα.

Setting x0 = 0 in this equation, and multiplying both sides by q⃗ leads to

x1 =
∑
α∈N3

0

xα1+1
1 xα2

2 xα3
3 e1cα +

∑
α∈N3

0

xα1
1 xα2+1

2 xα3
3 e2cα

+
∑
α∈N3

0

xα1
1 xα2

2 xα3+1
3 e3cα,(3.17)

where this equality is valid a priori only for (x1, x2, x3) such that xu ̸= 0 for some

u = 1, 2, 3. By classical results on series and summable families, (3.17) can be

extended to xu = 0. Comparing the linear terms on both sides of (3.17) leads to

x1 = x1e1c0,0,0 + x2e2c0,0,0 + x3e3c0,0,0,

which is impossible, leading to a contradiction.

Just as in the classical case, let us now define the conjugate operator of Vq,

denoted by Vq, to be the operator defined by

(3.18) Vq :=
∂

∂x0
+

1

q⃗

3∑
u=1

eu
∂

∂xu
.

We can prove the following proposition.

Proposition 3.10. Let Ω be an open domain in H∗. If f is Vq-regular on Ω, then

Vq(f) is also Vq-regular on Ω. Moreover, in this case we have

(3.19)
1

2
Vqf(q) =

∂

∂x0
f(q), ∀ q = x0 + q⃗.

Proof. We first observe that

(Vq + Vq)f(q) = 2
∂

∂x0
f(q).

However, since f is Vq-regular, then it belongs to ker(Vq) so that Vq(f) = 0, leading

to

Vqf(q) = 2
∂

∂x0
f(q).
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Thus, applying the operator Vq and, using the fact that it commutes with ∂
∂x0

, we

obtain

VqVqf(q) = 2Vq
∂

∂x0
f(q)

= 2
∂

∂x0
Vqf(q)

= 0.

So, the function Vq(f) is Vq-regular, which ends the proof.

Proposition 3.11. It holds that for every q ∈ H∗ we have

1

2
Vqµ

α(q) =
|α|
q
µα(q).

Proof. We use the previous computations of ∂
∂x0

µα and 1
q⃗

∑3
u=1 xu

∂
∂xu

µα to obtain

Vqµ
α(q) = 2|α|x

α

q⃗

(
1 +

x0

q⃗

)|α|−1

.

Hence, we get

Vqµ
α(q) = 2|α|q−1µα(x),

which is the desired equality.

Remark 3.12. It is easy to see that a consequence of this proposition yields the

counterpart of the properties of the number operators and we have

MqVq(µ
α) = 2|α|µα,

where Mq represents the left quaternionic multiplication.

§4. Cauchy–Kovalevskaia product

In this section we build a Cauchy–Kovalevskaia product using the new variables

µα. We start by building a CK-extension of a function in the kernel of Vq, f =

f0+e1f1+e2f2+e3f3, where f0, f1, f2, f3 are real-valued differentiable functions

on an open subset Ω ⊂ H∗. The equation Vqf = 0 can be rewritten as

(4.1)
∂fj
∂x0

= Gj , j = 0, 1, 2, 3,

where Gj is real analytic in the variables x0, x1, x2, x3. The right-hand side can be

written in terms of the partial derivatives with respect to the other three variables,
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i.e.
∂fj
∂xk

, j = 0, 1, 2, 3, k = 1, 2, 3, and they are given by the following system on an

open subset Ω ⊂ H∗:

(4.2)

∂f0
∂x0

=
1

x2
1 + x2

2 + x2
3

(x1Ef1 + x2Ef2 + x3Ef3),

∂f1
∂x0

= − 1

x2
1 + x2

2 + x2
3

(−x1Ef0 − x2Ef3 + x3Ef2),

∂f2
∂x0

= − 1

x2
1 + x2

2 + x2
3

(−x2Ef0 − x1Ef3 + x3Ef1),

∂f3
∂x0

= − 1

x2
1 + x2

2 + x2
3

(−x3Ef0 − x1Ef2 + x2Ef1),

where E denotes the Euler operator

E =

3∑
u=1

xu
∂

∂xu
.

We can therefore apply the Cauchy–Kovalevskaia theorem (see e.g. [23, §7, p. 39],

which asserts that the system (4.1) has a unique solution near a real point possibly

different from the origin) for given initial real analytic values fj(0, x1, x2, x3) on

an open domain Ω̃ ⊂ (H∗ ∩ {x0 = 0}). This solution, F , is defined on an open

set Ω ⊂ H∗, where Ω̃ = Ω ∩ {x0 = 0}, and we call it the CK-extension of f with

respect to Vq.

Definition 4.1. The CK-extension to Ω with respect to the operator Vq found

above is denoted by F = CKVq (f).

Remark 4.2. The choices

f0(0, x1, x2, x3) = xα1
1 xα2

2 xα3
3

and

f1(0, x1, x2, x3) = f2(0, x1, x2, x3) = f3(0, x1, x2, x3) = 0

lead, in the case of the variables xα to

(4.3) µα = CKVq
(xα).

Definition 4.3. We can now define the CK-product of two functions f , g in the

kernel of Vq to be

(4.4) f ⋆Vq
g = CKVq

(f(0, x1, x2, x3)g(0, x1, x2, x3)),

for every x ∈ Ω.
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It is easy to see that, for any two quaternions c, d, we have that the CK-

product of two powers of these Fueter variables behaves in a very nice way:

Proposition 4.4. On the entire domain H∗ we have that

(4.5) µαc ⋆Vq µ
βd = µα+βcd.

Proof. The proof is left to the reader, with the hint that the main argument is the

uniqueness of the CK extension of xα, xβ , and xα+β , respectively.

Theorem 4.5. For every x ∈ H∗ it holds that

(4.6)
(
exp
(
x0

1

q⃗
E
))

(xα) = µα.

Proof. We proceed in a number of steps.

Step 1: It holds that

(4.7) E
(1
q⃗

)
= −1

q⃗
.

Indeed, using (3.11) we can write

E
(1
q⃗

)
=

3∑
u=1

xu

(eu
q⃗ 2 +

2xu

q⃗ 3

)
=

q⃗

q⃗ 2 + 2
x2
1 + x2

2 + x2
3

q⃗ 3

=
q⃗

q⃗ 2 − 2
q⃗ 2

q⃗ 3

= −1

q⃗
.

Step 2: For non-commuting functions of a real variable it holds that

(4.8) (fg)′ = f ′g + fg′.

This follows from

f(t)g(t)− f(t0)g(t0) = (f(t)− f(t0))g(t) + f(t0)(g(t)− g(t0)).

Note that f and g may commute at a joint value t but we do not assume that

f(t)g(s) = g(s)f(t) for t ̸= s.
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Step 3: It holds that

(4.9) E
(xα

q⃗n

)
=

{
(|α| − n)x

α

q⃗n , 0 ≤ n ≤ |α|,
0 otherwise.

We proceed by induction. The case n = 0 corresponds to the formula

E(xα) = |α|xα.

We then write
xα

q⃗n+1 =
xα

q⃗n

1

q⃗

and apply (4.8) with f(x) = xα

q⃗n and g(x) = 1
q⃗ to get

E
( xα

q⃗n+1

)
=

3∑
u=1

xu
∂

∂xu

( xα

q⃗n+1

)
=

( 3∑
u=1

xu
∂

∂xu

(xα

q⃗n

))1

q⃗
+

xα

q⃗n

( 3∑
u=1

xu
∂

∂xu

1

q⃗

)
= (|α| − n)

xα

q⃗n︸ ︷︷ ︸
induction at rank n

1

q⃗
+

xα

q⃗n

−1

q⃗︸︷︷︸
by (4.7)

= (|α| − n− 1)
xα

q⃗n+1 .

Step 4: We prove

(4.10)
(
E
1

q⃗

)n
(xα) = (|α| − 1)(|α| − 2) · · · (|α| − n+ 1)

xα

q⃗n , n = 1, 2, . . . .

We proceed by induction. The case n = 1 corresponds to the previous step. Then(
E
1

q⃗

)n+1

(xα) = E
1

q⃗

((
E
1

q⃗

)n
(xα)

)
= E

1

q⃗

(
(|α| − 1)(|α| − 2) · · · (|α| − n+ 1)

xα

q⃗n

)
= (|α| − 1)(|α| − 2) · · · (|α| − n+ 1)E

(xα

q⃗n

)1
q⃗

= (|α| − 1)(|α| − 2) · · · (|α| − n+ 1)(|α| − n)
xα

q⃗n+1 ,

where we have used the induction hypothesis to go from the first to the second

line, and formula (4.9) to go from the third line to the fourth.
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Step 5: We prove (4.6). We first note that, in view of (4.10),(
E
1

q⃗

)n
(xα) = 0

for n ≥ |α|. Furthermore, since(1
q⃗
E
)n

=
1

q⃗

(
E
1

q⃗

)n−1

E, n = 1, 2, . . . ,

we have that the series(
exp
(
x0

1

q⃗
E
))

(xα) = xα +

∞∑
n=1

xn
0

n!

(1
q⃗
E
)n

(xα)

= xα +

∞∑
n=1

xn
0

n!

1

q⃗

(
E
1

q⃗

)n−1

E(xα)

has only a finite number of non-zero terms, and is therefore equal to(
exp
(
x0

1

q⃗
E
))

(xα) = xα +

∞∑
n=1

xn
0

n!

1

q⃗

(
E
1

q⃗

)n−1

E(xα)

= xα

( |α|−1∑
n=0

|α|(|α| − 1) · · · (|α| − n+ 1)

n!

(x0

q⃗

)n)
= xα

(
1 +

x0

q⃗

)|α|
.

The theorem is now proven.

Let b and c be two quaternions, and writing

qnb =
∑
α∈N3

0

µαcα,nb and qmc =
∑
α∈N3

0

µαcα,mc,

we have the ⋆Vq
product of the two:

qnb ⋆Vq q
mc =

∑
α,β∈N3

0

µα+βcα,nbcβ,mc.

In the expression above, since b and c are quaternions they do not commute with

cα,n and cβ,m; however, when b ∈ R this expression reduces to

qnb ⋆Vq
qmc =

∑
α,β∈N3

0

µα+βcα,ncβ,mbc

=
∑
γ∈N3

0

( ∑
α+β=γ
α,β∈N3

0

cα,ncβ,m

)
bc, b ∈ R, c ∈ H.(4.11)
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When x0 = 0 we have q = q⃗ and the ⋆Vq
product reduces to the pointwise

product. We have

q⃗n =
∑
α∈N0

xαcα,n

and

q⃗nq⃗m = q⃗n+m,

so that

cγ,n+m =
∑

α+β=γ
α,β∈N3

0

cα,ncβ,m,

qnb ⋆slice q
mc = qn+mbc

=
∑
γ∈N3

0

µγcγ,n+mbc.(4.12)

We then have the following proposition.

Proposition 4.6. Let b ∈ R and c ∈ H. On the entire domain H∗ it holds that

(4.13) qnb ⋆Vq q
mc = qnb ⋆slice q

mc = qn+mbc

and, more generally, for f intrinsic,

f ⋆Vq
g = f ⋆slice g = fg.

The term intrinsic used in slice quaternionic analysis means that the function

preserves all slices. This equality does not hold for more general functions in the

kernel of Vq.

§5. Reproducing kernel Hilbert spaces

We now set the stage for the Schur analysis theory in this case and we begin by

defining a reproducing kernel for the Hilbert space of power series in µα.

For r, R, and ρ strictly positive, let us first define the domain:

(5.1) Ωr,R,ρ =
{
x ∈ R4 : r < |xu| < R, u = 1, 2, 3, and |x0| < ρ

}
.

First we see that for any x ∈ Ωr,R,ρ ⊂ H∗, we have

(5.2) |µα(x)| ≤ L
|α|
r,R,ρ,

where Lr,R,ρ = R(1 + ρ√
3r
).

Let Ωr,R,ρ and L be defined as above. From standard positivity arguments,

as in [7, 11] the next proposition follows.
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Proposition 5.1. Let cα be a family of positive numbers for α in a subset S of

N3
0. Assume that ∑

α∈S

L
2|α|
r1,R1,ρ1

cα
< ∞

for all r1, R1, ρ1 such that

(5.3) r < r1 < R1 < R and 0 < ρ0 < ρ.

Then the function

(5.4) Kc(x, y) =
∑
α∈S

µα(x)µα(y)

cα

is positive definite in Ωr,R,ρ and the associated reproducing kernel Hilbert space

consists of the Fueter-like series with quaternionic coefficients fα:

(5.5) H(Kc) =
{
f =

∑
α∈N3

0
µαfα : f abs. conv. in Ωr,R,ρ,

∑
α∈N3

0
cα|fα|2 <∞

}
.

Proof. The proof follows from the usual arguments as in [7, 11].

Proposition 5.2. Elements of H(Kc) are Vq-regular on

(5.6) Ω(H(Kc)) =
{
x ∈ H∗ :

∑
α∈N3

0

|µα(x)|2
cα

< ∞
}
.

Proof. We proceed in a number of steps.

Step 1: Let a ∈ (0, 1). Then∑
α∈N3

0

a2|α||α|2 < ∞,

and in particular a|α||α| are uniformly bounded. By the Cauchy–Schwarz inequal-

ity,

(α1 + α2 + α3)
2 ≤ 3(α2

1 + α2
2 + α2

3).

Hence ∑
α∈N3

0

a2|α||α|2 ≤ 3
∑
α∈N3

0

a2|α|(α2
1 + α2

2 + α2
3)

= 3

3∑
u=1

( ∑
α∈N3

0

a2α1a2α2a2α3α2
u

)
.

But( ∑
α∈N3

0

a2α1a2α2a2α3α2
1

)
=

( ∞∑
α1=0

a2α1α2
1

)( ∞∑
α2=0

a2α2

)( ∞∑
α3=0

a2α3

)
< ∞,
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and similarly for u = 2 and u = 3.

Step 2: For r1 and R1 as in (5.3),

(5.7)
∑
α∈N3

0

|∂µ
α

∂x1
|2

cα
< ∞

for r1 ≤ |x1| ≤ R1, and similarly for x2 and x3.

We have

∂µα

∂x1
= α1x

α−e1
(
1 +

x0

q⃗

)|α|
+ xα

[ ∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

q⃗

)t(x0eu

q⃗ 2 +
2xux0

q⃗ 3

)(
1 +

x0

q⃗

)s]

and so ∣∣∣∂µα

∂x1

∣∣∣ ≤ α1R
|α|−1
1 +R

|α|
1 |α|

(
1 +

ρ1√
3r1

)|α|−1( ρ1
3r21

+
2R1ρ1

33/2r
3/2
1

)
≤ Rα

1

(
1 +

ρ1√
3r1

)|α|
|α|
[
1 +

1

1 + ρ1√
3r1

( ρ1
3r21

+
2R1ρ1

33/2r
3/2
1

)]
︸ ︷︷ ︸

= M , independent of α

.

Let R2 be such that R1 < R2 < R. We can write

∑
α∈N3

0

|∂µ
α

∂x1
|2

cα
≤ M

∑
α∈N3

0

R
2|α|
1 (1 + ρ1√

3r1
)2|α||α|2

cα

= M
∑
α∈N3

0

R
2|α|
2 (1 + ρ1√

3r1
)2|α||α|

cα

[(R1

R2

)2|α|
|α|2

]

≤ M
∑
α∈N3

0

R
2|α|
2 (1 + ρ1√

3r1
)2|α||α|2

cα

< ∞,

using Step 1, for some constant M .

Step 3: For r1 and R1 as in (5.3) we have

(5.8)
∑
α∈N3

0

|∂µ
α

∂x0
|2

cα
< ∞

for |x0| ≤ ρ1.
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This follows from

∂

∂x0
µα = xα

[ ∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

q⃗

)t(1
q⃗

)(
1 +

x0

q⃗

)s]

and the corresponding bound∣∣∣ ∂

∂x0
µα
∣∣∣ ≤ |α|R|α|

1

(
1 +

ρ1√
3r1

)|α|−1 1√
3r1

.

This step can be proven directly using the Appell-type property, i.e. Vq̄ acts

on powers of µ the same as ∂
∂x0

.

Step 4: We prove that, pointwise, for f =
∑

α∈N3
0
µαfα ∈ H(Kc),

∂

∂xu

∑
α∈N3

0

µαfα =
∑
α∈N3

0

∂

∂xu
µαfα.

Using the Cauchy–Schwarz inequality and the previous lemma we see that the

series of derivatives ∑
α∈N3

0

∂

∂xu
µαfα =

∑
α∈N3

0

∂
∂xu

µα

√
cα

√
cαfα

converges uniformly in intervals [r1, R1]. Since the series
∑

α∈N3
0
µαfα converges

in H(Kc) then it converges pointwise and a classical calculus theorem allows us

to conclude that we have convergence in Step 4. This classical theorem speaks of

sequences and not of summable families, but we can reduce the latter to the case

of sequences by identifying N3
0 and N0 via a bijection.

This solves the cases of u = 1, 2, 3. The case u = 0 is treated in a similar way

and we leave the details to the reader.

We now apply Step 4 four times in the definition of Vq. More precisely,

Vq

( ∑
α∈N3

0

µαfα

)
=

∂

∂x0

( ∑
α∈N3

0

µαfα

)
− 1

q⃗

3∑
u=1

xu
∂

∂xu

( ∑
α∈N3

0

µαfα

)

=

( ∑
α∈N3

0

∂

∂x0
µαfα

)
− 1

q⃗

3∑
u=1

xu

( ∑
α∈N3

0

∂

∂xu
µαfα

)
=
∑
α∈N3

0

Vqµ
αfα

= 0.

This concludes the proof.
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Let us now turn to a definition of a backward-shift and multiplication operator

in this case and we set

(5.9) e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

Definition 5.3. The multiplication and backward shift operators on H∗ are

Muµ
α = µα+eu(5.10)

Buµ
α =

αu

|α|
µα−eu , u = 1, 2, 3(5.11)

with the understanding that Buµ
α = 0 if αu = 0.

Note that

(5.12)

( 3∑
u=1

BuMu

)
µα = µα.

As expected, we have the following result:

Theorem 5.4. Assume that the domain of definition of Mu in H(Kc) contains

the linear span of the Fueter polynomials µα. Then

(5.13) M∗
u(µ

α) =
cα

cα−eu

µα−eu ,

with the understanding that the right-hand side of (5.13) equals 0 if αu = 0.

Proof. It is easy to check that

⟨Muµ
α, µβ⟩ = ⟨µα, µβ+eu⟩

= cαδα,β+eu

= cαδα−eu,β

=
cα

cα−eu

cα−euδα−eu,β

=
cα

cα−eu

⟨µα−eu , µβ⟩.

This concludes the proof.

§6. Arveson space and Schur multipliers

For properties of the classical Arveson space, as well as a motivation for its defini-

tion, the reader can turn to [12, 24]. We now turn to the definition of an Arveson

space in our case, which we will denote by A, in the present setting. We start with

the definition of the counterpart of the unit ball in our case:

(6.1) ΩA = Ω(A) =
{
x ∈ H∗,

∑
α∈N3

0
|µα(x)|2 |α|!

α! < ∞
}
.
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Definition 6.1. The Vq-Arveson space is the Hilbert space of absolutely conver-

gent Vq-series on the unit ball

(6.2)
∑
α∈N3

0

µα(x)cα,

with

(6.3) ⟨f, f⟩ =
∑
α∈N3

0

α!

|α|!
|cα|2 < ∞,

that is,

(6.4) A =
{
f(x) =

∑
α∈N3

0
µα(x)cα : f abs. conv. with ⟨f, f⟩ =

∑
α∈N3

0

α!
|α|! |cα|

2

< ∞
}
.

Here, the notation is that of Definition 3.3.

Definition 6.2. The reproducing kernel for this Arveson space is

(6.5) KA(x, y) =
∑
α∈N3

0

µα(x)µα(y)
|α|!
α!

.

The domain of this kernel is defined by the following.

Proposition 6.3. Elements of the Arveson space are Vq-regular in

(6.6) ΩA = Ω(A) =
{
x ∈ H∗,

∑
α∈N3

0
|µα(x)|2 |α|!

α! < ∞
}
.

Proof. This follows from the reproducing kernel property, using the same type of

arguments as in Section 5.

Evaluation at the origin does not exist; however, we can now define its coun-

terpart by setting, for f ∈ A:

C(f) = c0,0,0.

Theorem 6.4. The Arveson space is the unique reproducing kernel Hilbert space

(up to a multiplicative constant) of Vq power series such that M1, M2 and M3 are

bounded operators there and satisfy

(6.7) I −
3∑

u=1

MuM
∗
u = CC∗.

Furthermore,

(6.8) M∗
u = Bu, u = 1, 2, 3,

in the Arveson space.
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Proof. We first assume that (6.7) (sometimes called the structural identity) is in

force and compute the associated inner product. We proceed in a number of steps.

Step 1: We have that

C∗1 = 1H

(the constant function equal identically to 1).

Indeed,

(C∗1)(y) = ⟨C∗1,KA(·, y)⟩A
= ⟨1H, CKA(·, y)⟩H
= 1.

Here we used the fact that CKA(·, y) = 1H.

Step 2: M∗
u1 = 0. This is (5.13) with α = (0, 0, 0).

Step 3: Let α and β be different from (0, 0, 0), and assume that (6.7) is in

force. We have

(6.9) 1 =

3∑
u=1

cα
cα−eu

, α ∈ N3.

Indeed,

⟨µα, µβ⟩ =
3∑

u=1

⟨M∗
uµ

α,M∗
uµ

β⟩,

that is,

cαδα,β =

3∑
u=1

cαcβ
cα−eucβ−eu

⟨µα−euµβ−eu⟩

or, equivalently, (6.9) holds.

Step 4: The inner product is that of the Arveson space. From (6.9) we have

that the sequence dα = 1
cα

satisfies

dα =

3∑
u=1

dα−eu , α ∈ N3.

Together with d0,0,0 = 1 we get cα = c0,0,0
α!
|α|! .

The converse is proven by reading these arguments backwards, with cα =
α!
|α|! .
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Proposition 6.5. Assume that S is an Hn×m-valued multiplier defined on ΩA.

Then

(6.10)
(
M∗

S(KA(·, y))ξ
)
(x) =

∑
α∈N3

0

|α|!
α!

µα(x)(S ⋆Vq
µα)(y)∗ξ, ∀ ξ ∈ Hn.

Proof. Since M∗
S is continuous we obtain

⟨M∗
S(KA(·, y)ξ),KA(·, x)η⟩A = ⟨KA(·, y)ξ, S ⋆Vq

KA(·, x)η⟩A

=
∑
α∈N3

0

|α|!
α!

µα(x)⟨KA(·, y)ξ, Sη ⋆Vq µ
α⟩A

=
∑
α∈N3

0

|α|!
α!

µα(x)ξ∗Sη ⋆Vq
µα(y)

= η∗
∑
α∈N3

0

|α|!
α!

µα(x)(Sξ ⋆Vq
µα(y))∗

= η∗
∑
α∈N3

0

|α|!
α!

µα(x)(S ⋆Vq
µα)(y)∗ξ.

Theorem 6.6. An Hn×m-valued function S is a contractive multiplier (i.e. a

Schur multiplier) from Am into An if and only if the Hn×n-valued kernel

(6.11) K(x, y) =
∑
α∈N3

0

|α|!
α!

{
µα(x)µα(y)In − (µα ⋆Vq S)(x)(µ

α ⋆Vq S)(y)
∗}

is positive definite in ΩA = Ω(A).

Proof. To simplify notation we assume n = m = 1. Assume first that MS is

a contraction. Then IA − MSM
∗
S is a positive operator from A into itself. The

positivity of the kernel (6.11) follows then from the formula

⟨(IA −MSM
∗
S)KA(·, y),KA(·, x)⟩A

=
∑
α∈N3

0

|α|!
α!

{
µα(x)µα(y)In − (µα ⋆Vq

S)(x)(µα ⋆Vq
S)(y)∗

}
,

which in turn is obtained from (6.10).

Conversely, if the kernel (6.11) is positive definite in Ω(A), the right linear

span of the pairs of functions(
(KA(·, y))(x),

∑
α∈N3

0

|α|!
α!

(µα(x)(S ⋆Vq
µα)(y)∗)

)
∈ A× A
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defines a densely defined contractive relation, which extends therefore to the graph

of an everywhere defined contraction; the adjoint of this contraction is MS .

In view of the structural identity (6.9), the Fueter-like variables are Schur

multipliers. In the next section we present another important Schur multiplier,

which is the counterpart here of an elementary Blaschke factor.

§7. Vq Blaschke-type factors

As mentioned in the introduction, Blaschke products are building blocks of clas-

sical function theory on the disk as in [37] and, more generally, in Schur analysis,

and they also constitute essential tools of the Beurling–Lax theorem, which char-

acterizes shift-invariant subspaces of the Hardy space.

We denote by Ω1(A) the set of x ∈ H∗ such that

3∑
u=1

|µu(x)|2 < 1.

By inequalities (3.8) we have{
x ∈ H∗; 3x2

0 + x2
1 + x2

2 + x2
3 < 1

}
⊂ Ω1(K).

Remark 7.1. It is essential to consider elements of H∗, for example the element

x = ( 13 , 0, 0, 0) ∈ {x ∈ R4; 3x2
0+x2

1+x2
2+x2

3 < 1}. However,
∑3

u=1 |µu(x)|2 is not

defined.

It is also interesting to note that the above ellipsoid also appears in [9].

Theorem 7.2. Let a ∈ Ω1(A) and set µ(a) = (µ1(a) µ2(a) µ3(a)); with this nota-

tion we have that µ(a)µ(a)∗ =
∑3

u=1 |µu(a)|2 < 1. Then the multiplication operator

by µ(a) on the left is a strict contraction from A3 into A and the map

Ba(x) = (1− µ(a)µ(a)∗)1/2(1− µ(x)µ(a)∗)−⋆Vq

⋆Vq
(µ(x)− µ(a))(I3 − µ(a)∗µ(a))−1/2(7.1)

is a Schur multiplier from A3 into A.

Proof. The proof follows the proofs in [6, Prop. 4.1, p. 11] and [9, Thm. 4.7, p. 146],

and is briefly outlined. In the complex setting we also refer to [36], where a different,

but equivalent expression is given for Ba. We set

J =

(
IA 0

0 −IA3

)
.
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Step 1: The operator-matrix

H(a) =

(
(IA −Mµ(a)M

∗
µ(a))

−1/2 −Mµ(a)(IA3 −M∗
µ(a)Mµ(a))

−1/2

−M∗
µ(a)(IA −Mµ(a)M

∗
µ(a))

−1/2 (IA3 −M∗
µ(a)Mµ(a))

−1/2

)
is J-unitary, i.e.

H(a)JH(a)∗ = H(a)∗JH(a) = J.

See [25] for the general case where Mµ(a) is replaced by an arbitrary strict

contraction between Hilbert spaces. The operator-matrixH(a) is called the Halmos

extension of Mµ(a).

Step 2: The operator(
IA Mµ

)
H(a)JH(a)∗

(
IA
M∗

µ

)
is non-negative.

Indeed, H(a)JH(a)∗ = J by the previous step, and IA −MµM
∗
µ ≥ by (6.9).

Step 3: Ba is a Schur multiplier. It suffices to write(
IA Mµ

)
H(a)

=
(
(IA−MµM

∗
µ(a))(IA−Mµ(a)M

∗
µ(a))

−1/2 (Mµ−Mµ(a))(IA3 −M∗
µ(a)Mµ(a))

−1/2
)

=
(√

1− µ(a)∗µ(a)
)1/2

(IA −MµM
∗
µ(a))

(
IA MBa

)
.

This concludes the proof.

§8. Vq rational functions

The notion of a rational function is important in Schur analysis, and leads to

state space representations of linear systems. The study of hypercomplex rational

functions using the Cauchy–Kovalevskaia extension theorem originates with the

work of Laville; see [34].

Definition 8.1. The Hn×m-valued Vq-regular function on an open domain Ω ⊂
H∗ is called Vq-rational if its restriction to x0 = 0 can be written as

(8.1) R(0, x1, x2, x3) = D + C

(
IN −

3∑
u=1

xuAu

)−1( 3∑
u=1

xuBu

)
,

where D ∈ Hn×m, C ∈ Hn×N , A1, A2, A3 ∈ HN×N , and B1, . . . , B3 ∈ HN×m.



Fueter-Type Variables, Global Operator 887

Equivalently, taking the Vq-extension, we can write

(8.2) R(x) = D + C(I − µ(x)A)−⋆Vq ⋆Vq µ(x)B,

where

A =

A1

A2

A3

 and B =

B1

B2

B3

 .

Proposition 8.2. The Blaschke factor (7.1) is a Vq-rational function on Ω1(A).

Proof. We follow the proof of [6, Prop. 4.1, p. 12] and first recall that for a con-

traction K ∈ Hs×r it holds that

K(Ir−K∗K)1/2 = (Is−KK∗)1/2K and K∗(Is−KK∗)1/2 = (Ir−K∗K)1/2K∗.

These equalities are used in the computations below.

To see that Bais Vq-rational we write (with µ(x) = (x1 x2 x3))

Ba(0, x1, x2, x3)

= Ba(0, 0, 0, 0) +Ba(0, x1, x2, x3)−Ba(0, 0, 0, 0)

= − (1− µ(a)µ(a)∗)1/2µ(a)(I3 − µ(a)∗µ(a))−1/2︸ ︷︷ ︸
µ(a)

+ (1− µ(a)µ(a)∗)1/2(1− µ(x)µ(a)∗)−1(µ(x)− µ(a))(I3 − µ(a)∗µ(a))−1/2

+ (1− µ(a)µ(a)∗)1/2µ(a)(I3 − µ(a)∗µ(a))−1/2

= −µ(a)

+ (1− µ(a)µ(a)∗)1/2(1− µ(x)µ(a)∗)−1

×
{
µ(x)− µ(a) + (1− µ(x)µ(a)∗)µ(a)

}
(I3 − µ(a)∗µ(a))−1/2

= −µ(a) + (1− µ(a)µ(a)∗)1/2(1− µ(x)µ(a)∗)−1µ(x)(I3 − µ(a)∗µ(a))1/2,

which is of the form (8.1) with

(8.3) T =


A1 B1

A2 B2

A3 B3

C D

 =

(
µ(a)∗ (I3 − µ(a)∗µ(a))1/2

(1− µ(a)µ(a)∗)1/2 −µ(a)

)
.

Remark 8.3. We note that (8.3) is co-isometric. Existence of a co-isometric real-

ization is a general property of Schur multipliers, and will be considered elsewhere.

Here, T is in fact unitary.
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Rational functions were defined in the setting of the Cauchy operator in [9].

When restricted to x0 = 0, one obtains the same class of functions, namely func-

tions of the form (8.1). The Vq-rational functions are stable under sum, Vq-product,

and Vq-inversion when sizes are compatible. The arguments are the same as in [9],

to which we refer the reader.

§9. Conclusions and future endeavors

We are now extending this work to analyze a theory of Schur–Agler functions (see

[1] and see [10] for the Fueter case) and Schur multipliers, as well as to expand the

rational function theory in this context.

Consider a system of linear ordinary differential equations with variable coef-

ficients of the form

Vj(f) =
∂fj
∂x0

−
3∑

u=1

3∑
k=0

ak,u(x)
∂fk
∂xu

= 0, j = 0, 1, 2, 3,

where the ak,u are real analytic on some open subset of the real line, and the system

of equations is denoted by V . Thanks to the Cauchy–Kovalevskaia theorem one

can define V -Fueter variables as the CK extensions of the functions xu, u = 1, 2, 3,

and monomials as CK-extensions of the monomials xα. It seems difficult though to

develop a general theory which goes beyond some trivial facts. The cases considered

in [9] (for the Cauchy–Fueter operator, factorizing the R4 Laplacian) and in [11]

associated to the operator

∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

+
∂2

∂x2
3

studied in the setting of split quaternion, together with the present analysis for

the Vq-operator, exhibit how different each specific case can be.
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[33] K. Gürlebeck, K. Habetha and W. Sprößig, Holomorphic functions in the plane and n-
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