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A quantified local-to-global principle
for Morse quasigeodesics

J. Maxwell Riestenberg

Abstract. Kapovich, Leeb and Porti (2014) gave several new characterizations of Anosov repre-
sentations I' — G, including one where geodesics in the word hyperbolic group I map to “Morse
quasigeodesics” in the associated symmetric space G/K. In analogy with the negative curvature
setting, they prove a local-to-global principle for Morse quasigeodesics and describe an algorithm
which can verify the Anosov property of a given representation in finite time. However, some parts
of their proof involve non-constructive compactness and limiting arguments, so their theorem does
not explicitly quantify the size of the local neighborhoods one needs to examine to guarantee global
Morse behavior. In this paper, we supplement their work with estimates in the symmetric space to
obtain the first explicit criteria for their local-to-global principle. This makes their algorithm for
verifying the Anosov property effective. As an application, we demonstrate how to compute explicit
perturbation neighborhoods of Anosov representations with two examples.
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1. Introduction

Anosov representations were introduced by Labourie and defined in general by Guichard
and Wienhard [11,25]. An Anosov representation is a homomorphism from a word hyper-
bolic group I to a semisimple Lie group G satisfying a strong dynamical condition. These
representations have come to be widely studied as an interesting source of infinite covol-
ume discrete subgroups of higher-rank semisimple Lie groups (see the surveys [15,22]).
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This paper is concerned with certifying the Anosov property of a given representation. For
some well-studied examples of Anosov representations, such as Hitchin representations
and maximal representations of surface groups, the Anosov property can be certified via
coarse topological invariants [6]. However, in the most general setting, deciding whether
a given representation is Anosov is difficult. Building on the work of Kapovich, Leeb and
Porti in [19], we give here the first explicit, finite criteria that certify the Anosov property
for a general representation.

One important property of Anosov representations is stability: Any sufficiently small
perturbation of an Anosov representation remains Anosov. It can happen that a connected
component of the representation space consists entirely of Anosov representations, such
as the Hitchin component, or the components consisting of maximal representations of
surface groups (see also [12, 31]). In these cases, the Anosov condition is closed: Every
deformation of such a representation remains Anosov. However, the Anosov condition is
not closed in general. For instance, given an Anosov representation of a free group, or the
representations of surface groups studied by Barbot in [2], it is unclear how large to expect
Anosov neighborhoods to be. As an application of our main result, we demonstrate how to
construct explicit perturbation neighborhoods of a given Anosov representation with two
examples (see Theorems 1.2 and 1.3).

Anosov representations have come to be viewed as the appropriate generalization to
higher-rank semisimple Lie groups of convex cocompact actions on rank 1 symmetric
spaces. Indeed, when G has real rank 1, a representation of a finitely generated group
is Anosov if and only if it has finite kernel and the image is convex cocompact, that is,
acts cocompactly on a nonempty convex subset of the associated negatively curved sym-
metric space. A finitely generated group of isometries of a negatively curved symmetric
space is convex cocompact if and only if it is undistorted, that is, any orbit map is a
quasi-isometric embedding. By the Morse lemma in hyperbolic geometry, geodesics in I"
then map within uniformly bounded neighborhoods of geodesics in the symmetric space.
Moreover, the Morse lemma implies a local-to-global principle for quasigeodesics, allow-
ing one to establish finite criteria for a finitely generated group to be undistorted. One can
then exhaust the group by balls in the Cayley graph and if any such ball passes a finite
check then the subgroup is undistorted. This is a semi-decidable algorithm to verify undis-
tortion: If the subgroup is undistorted, this algorithm will eventually terminate and certify
so; otherwise, it will run on forever.

The naive generalization of convex cocompactness to higher rank turns out to be too
restrictive. For example, the work of Kleiner and Leeb and independently Quint implies
that a Zariski dense, discrete subgroup of a higher-rank simple Lie group which acts
cocompactly on a convex subset of the associated symmetric space is a uniform lat-
tice [23,29]. On the other hand, the naive generalization of undistortion to higher rank
turns out to be too loose: In his thesis, Guichard described an example of an undistorted
subgroup in SL(2, R) x SL(2, R) which is unstable, in the sense that representations
arbitrarily close to the inclusion fail to have discrete image [10] (see also [9]). More-
over, Kapovich, Leeb and Porti describe an example of a discrete undistorted subgroup of
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SL(2,R) x SL(2, R) which is finitely generated but not finitely presentable [19], using
work Baumslag and Roseblade [3]. The Anosov property strikes a balance between these
two naive generalizations to give a large class of representations that still exhibit good
behavior. We will be concerned with a newer characterization that directly strengthens the
undistortion condition.

In [19], Kapovich, Leeb and Porti gave several new characterizations of Anosov
representations generalizing some of the many characterizations of convex cocompact
subgroups. We will use their characterization, called Morse actions, that strengthens the
undistortion condition by requiring geodesics in I to map to Morse quasigeodesics,
described below. They prove a suitable generalization of the local-to-global principle
for Morse quasigeodesics in higher-rank symmetric spaces (see Theorem 1.1). They then
show the Anosov property is semi-decidable by describing an algorithm which can certify
the Anosov property of a given representation of a word hyperbolic group in finite time.
However, some parts of their proof involve non-constructive compactness and limiting
arguments, so their theorem does not explicitly quantify the size of the local neighbor-
hoods one needs to examine to guarantee global Morse behavior. In order to implement
their algorithm, one needs a quantified version of the local-to-global principle as we give
here.

Roughly speaking, a quasigeodesic is Morse if every finite consecutive subsequence
is uniformly close to a diamond, which plays the role of a geodesic segment in rank 1.
These diamonds are intersections of Weyl cones (see Sections 3.8 and 5.1) and may also
be characterized as unions of Finsler geodesic segments (see [16, 17]). An infinite Morse
quasiray stays within a uniformly bounded neighborhood of a Weyl cone, which plays
the role of a geodesic ray in rank 1, and a bi-infinite Morse quasigeodesic stays within
a uniformly bounded neighborhood of a parallel set, which plays the role of a geodesic
line in rank 1 (see Section 3.12). The precise definition of Morse quasigeodesic is given
in Section 5.

The main result of this paper is a quantified version of the following theorem due to
Kapovich, Leeb and Porti. We let X denote a symmetric space of noncompact type.

Theorem 1.1 ([19, Theorem 7.18]). For any ® < @', D, ¢y, ¢3, 3, C4, there exists a
scale L so that every L-local (©, Tmoq, D)-Morse (c1, c2, c3, c4)-quasigeodesic in X is a
(®’, Tmod, D')-Morse (¢}, ¢4, ¢}, cy)-quasigeodesic.

We reprove Theorem 1.1 and obtain the first explicit estimate of L. This appears in
Theorem 5.8, which depends on Theorems 5.1 and 5.5. The theorem statements involve
several auxiliary parameters and inequalities, so they are too cumbersome to give here. In
order to apply our quantified version of the local-to-global principle and obtain an explicit
scale L, one must produce auxiliary parameters satisfying these inequalities; this process
is tedious but easy, as we discuss in Section 6. Versions of Theorems 5.1 and 5.5 without
explicit conditions are also proved in [19].
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As a demonstration of our techniques, we compute explicit perturbation neighbor-
hoods of two Anosov representations into SL(3, R). To quantify the distance between
linear representations, we use the Frobenius norm on the generators: For a matrix A, let
|43 = trace(AT A). In both cases, we control the orbit map at a basepoint; the Frobenius
norm is closely related to distances to that basepoint (see Section 6.3). The first example
is a neighborhood of Anosov representations of a free group.

Theorem 1.2. Let 'y be the subgroup of SL(3, R) generated by

et 0 0 cosht O sinht
e=l0 1 of, n= 0o 1 o [,
0 0 e sinht 0 cosht

with tanht = 0.75. If T'| is generated by g', ' where max{|g — g’|e, |h — I'|p} <
10712309 shep '} is Anosov.

The second example is a neighborhood of Anosov representations of a closed surface
group. Let I'; be the subgroup of SL(3, R) generated by

cosd@ 0 sinfd][A O O cos@ 0 —sinf
S = 0 1 0 01 o0 0 1 0

96{0,
—sinf 0 cos@||0 O A1 sinf 0 cosf

ool 9

w 3w
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for log A = cosh™! (cot %). This group is isomorphic to the fundamental group of a closed
surface of genus 2 (see Section 6.3). In the statement of Theorem 1.3, we control the per-
turbed representation on a larger generating set S’ = {y € I's | v/6|log ¥ | < 9.5}. The
finite set S’ contains the standard generating set S and consists of the elements of T,
which move a basepoint p in the symmetric space associated with SL(3, R) by a distance
of at most 9.5. This basepoint is the point stabilized by SO(3). Using this larger generating

set allows us to perturb the initial representation farther.

Theorem 1.3. If p: ', — SL(3, R) is a representation satisfying the condition |p(s) —
S|pe < 10_3’698’433f0r all s € S’, then p is Anosov.

We briefly sketch the proof of Theorems 1.2 and 1.3. Let I' denote either I'; or I's.
In either case the group I' acts cocompactly on a closed convex subset of a copy of the
hyperbolic plane embedded totally geodesically in the symmetric space associated with
SL(3, R). We find explicit quasi-isometry constants and by the classical Morse lemma,
there exists R > 0 such that the orbit of any geodesic in I" is within R of a geodesic.
We slightly relax the Morse quasi-isometric parameters of I and apply the local-to-global
principle (Theorem 5.8). This provides a lower bound on k such that any 2k-local Morse
quasigeodesic is a global Morse quasigeodesic. We control the perturbation of words of
length k in terms of the perturbation of the generators, completing the proof.
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We emphasize that our approach is completely general, in the following sense. Let
p: ' — G be any Anosov representation such that the orbit map at p € X has known
Morse quasi-isometry parameters with respect to a finite symmetric generating set S for I.
We may then easily produce explicit parameters k, € such that if any other representation
o': T — G satisfies d(p(y) p, p'(y)p) < € forall y € T of word length at most k, then p’
is Anosov. Moreover, for linear groups we explicitly bound d(p(y) p, o’ (y) p) in terms of
the word length of y, the Frobenius norms |p(s)|r and [p(s) — p'(s)|k:, SO We obtain a
condition on p’ just in terms of the generators.

The bulk of the paper is devoted to a proof of Theorem 1.1. We supply a number of esti-
mates in Section 4 related to the geometry of the symmetric space X. An important tool is
the {-angle Zf,, a Stabg (p)-invariant metric on Flag(tyq) introduced by Kapovich, Leeb
and Porti in [19] (see Section 3.13 for the definition). In Lemma 4.8, we obtain explicit
control on Zf, (x,y) in terms of the Riemannian angle 2, (x, y). The proof uses an explicit
bound for the Hessian of a Morse function on Flag(zmeq) (see Proposition 3.8 and Corol-
lary 3.15). A crucial step in the proof of the local-to-global principle is controlling the
distance from the midpoint of a long regular segment to a nearby diamond. The existence
of such a bound is demonstrated in the proof of Proposition 7.16 of [19] via a limit-
ing argument. To achieve explicit control, we consider the lengths of certain curves in X
which are images of curves in G under the orbit map (see Lemma 4.9). In Lemma 4.10,
the curve in G is required to lie in a maximal compact subgroup. In Lemma 4.11, the
curve is required to lie in a unipotent horocyclic subgroup. We combine these in Corol-
lary 4.13 to obtain explicit, arbitrary control for the distance of midpoints to nearby Weyl
cones (and hence diamonds). Kapovich, Leeb and Porti show that distance from a point
x € X to the parallel set P(7—, t4+) controls the {-angle Li (7, t4+) and vice versa via a
compactness argument [19, Section 2.4.5]. We give an explicit bound for Ai (7=, 74) in
terms of d(x, P(t—, t4+)) in Corollary 4.16. This follows from Lemma 4.14, whose proof
relies on controlling the Lie derivative £y grad f; where X is a Killing vector field and f;
is a Busemann function. Similarly, we obtain an explicit bound for d (x, P(t—, 74+)) terms
of Ai (7, 74+) in Lemma 4.17 by controlling iterated derivatives of Busemann functions.
In particular, we obtain an explicit uniform bound for the third derivative of the restriction
of a Busemann function to a geodesic.

As in [19], the proof of Theorem 1.1 is essentially broken into two parts: Theorems 5.1
and 5.5. Theorem 5.1 guarantees that a sequence (x,) with sufficiently spaced points form-
ing ¢-angles sufficiently close to 7 is a Morse quasigeodesic. It is a quantified version of
[19, Theorem 7.2] and shares the same outline. One first shows that the property of “mov-
ing away” from a simplex propagates along the sequence (see Section 5.1). This implies
that we can extract a simplex t_ that the sequence (x,) moves away from (resp. towards)
as n increases (resp. decreases), and a simplex t4 that the sequence (x,) moves away
from (resp. towards) as n decreases (resp. increases). One then verifies that the simplices
7_, 74 are opposite and that the projections to the parallel set P(7_, 7+) define suitable
diamonds, making (x,) a Morse quasigeodesic.
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Theorem 5.5 is a quantified version of [19, Proposition 7.16]. It states that sufficiently
spaced points on Morse quasigeodesics have straight and spaced midpoint sequences. A
crucial ingredient is Corollary 4.13, which allows us to force the midpoints to be arbitrar-
ily close to the parallel sets in terms of the Morse and spacing parameters. This guarantees
that they appear in nested Weyl cones, and makes the ¢-angles arbitrarily straight.

Armed with Theorems 5.1 and 5.5, the proof of Theorem 5.8 is similar to the proof
of Theorem 7.18 in [19]. We start with an L-local Morse quasigeodesic where L is large
enough to satisfy several explicit inequalities. We then replace our Morse quasigeodesic
with a coarsification and take the midpoint sequence. Our assumptions together with The-
orem 5.5 shows that this coarse midpoint sequence is sufficiently straight and spaced (see
Section 5.1). An application of Theorem 5.1 shows that the midpoint sequence is a Morse
quasigeodesic, and since it is a coarse approximation of the original sequence, the original
sequence is also a Morse quasigeodesic, completing the proof.

The usual proof of the local-to-global principle in hyperbolic geometry depends on
the classical Morse lemma. A higher-rank version of the Morse lemma was proved by
Kapovich, Leeb and Porti in [21]. In particular, they prove that the orbit map I' — X of
a finitely generated group is a coarsely uniformly regular quasi-isometric embedding if
and only if I' is word hyperbolic and the orbit map is a Morse quasi-isometric embed-
ding. It would be interesting to quantify their higher-rank Morse lemma by producing an
explicit Morse parameter for (coarsely) uniformly regular quasi-isometric embeddings,
but we do not do this here. In the special case of the symmetric space associated with
SL(d, R), another proof of the higher-rank Morse lemma appears in [4]. There, Bochi,
Potrie and Sambarino give yet another characterization of Anosov representations in terms
of cone-types and dominated splittings.

The organization of the paper is as follows. In Section 2, we fix some notation we
use throughout the paper. In Section 3, we review some background of symmetric spaces.
Much of this section is classical and may be skipped by experts on symmetric spaces,
but we point the reader to our definition of regularity in Definition 3.12 and the defi-
nition of -angle in Definition 3.22. The notion of regularity here is slightly different,
but equivalent to, that in [19] (see Proposition 3.17). The bulk of the work is in Section 4
where we give several estimates related to the geometry of symmetric spaces. In Section 5,
we supplement the proof of the local-to-global principle in [19] with our estimates from
Section 4, reproving Theorem 1.1 with explicit bounds. Together with some standard geo-
metric group theory, elementary hyperbolic geometry, and linear algebra in Section 6, this
allows us to prove Theorems 1.2 and 1.3.

2. Notation

We establish our notational conventions in this paper. When possible, we have tried to
keep notation consistent with [8, 19,20].
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(1) X = G/K will denote a symmetric space of noncompact type. Let G be the con-
nected component of the isometry group of X, and K be a maximal compact
subgroup of G (see Section 3).

(2) Welet p,q,r,c denote points or curves in X. We let g, &, u, a denote elements
or curves in G. An element or curve in K may be denoted by k.

(3) The Lie algebra of G is denoted g. The Lie algebra of K is denoted £. When
a point p is given, K is the stabilizer of p in G. Usually U, V., W, X, Y, Z will
denote elements of g.

(4) The orbit map orb,: G — X, given by orb,(g) = gp, has differential ev,: g —
T, X at the identity (see Section 3).

(5) The Cartan decomposition induced by p € X is g = ¥ @ p. It corresponds to a
Cartan involution ¥,: g — g (see Section 3.1).

(6) The Killing form on g is denoted B. Each point p € X induces an inner product
B, on g defined by B,(X,Y) = —B(J,X,Y) (see Section 3.1).

(7) We assume that the Riemannian metric (-, -) on X is the one induced by the
Killing form (see equation (3.2)).

(8) The sectional curvature x of X has image [—Kg, 0] (see Section 3.3). Note that «q
is the maximal norm of a restricted root vector (see Proposition 3.3).

(9) A maximal abelian subspace of p will be denoted a. The associated restricted
roots are denoted by A C a*. A choice of simple roots is denoted by A (see
Section 3.2).

(10) Each maximal abelian subspace a has an action by the Weyl group and
decomposition into Euclidean Weyl chambers denoted V' (see Section 3.5).

(11) There is a vector-valued distance function d:XxX — Vinoa With image the
model Euclidean Weyl chamber (see equation (3.4)). In [19, 20], this map is
denoted A, and they let A denote the model Euclidean Weyl chamber we call
Vinod- In this paper, A denotes a choice of simple roots.

(12) A spherical Weyl chamber o corresponds to a set of simple roots A. For a face ©
of o, we have

Ar={aeA|a(t) =0}, Al ={aeA]|al(intt)> 0},
see equation (3.6). We have

T=00N ﬂ kera, intra:{Xeal‘v’aeAj,a(X)>0}, d;o=0nN U ker o.

€A, aeAt
(13) The visual boundary of X is denoted d X (see Section 3.8). We let 7, o denote a
spherical simplex/chamber in a or an ideal simplex/chamber in d X.

(14) There is a type projection 6: 90X — oyog With image the model ideal Weyl
chamber (see Section 3.8).
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(15) A face of oy is called a model simplex and denoted t,04. There is a

decomposition Omeq = inty, 4 Omod LI 07,,,,0mod (s€€ Section 3.9).

(16) The definitions of («g, T)-regular and («, 7)-spanning vectors and geodesics are
given in Section 3.12. These notions are extended to ideal points in Section 3.9.

(17) We let Flag(tyoa) denote the set of ideal simplices in d X of type 04 (se€
Section 3.8). Flag(tmeq) is naturally a partial flag manifold of G.

(18) The definitions of Weyl cones V(x, st(t), ag), V(x, ost(t)) and Weyl sectors
V(x, ) are given in Section 3.9.

(19) The subgroups A; and N; and the generalized Iwasawa decomposition G =
N;A. K are described in Section 3.11.

(20) A parallel set is denoted P (7—, t4) for opposite simplices 7_, T+ € Flag(toq)- A
horocycle is denoted H(p, t) (see Section 3.12). A diamond is denoted <(p, q)
and a truncated diamond is denoted <4, (p, g) (see Section 5.1).

(21) For p e X and x,y € X \ {p}, Zp(x, y) denotes the Riemannian angle
at p between x and y. For n,n' € X, we let Z1ys(n, ) denote their Tits
angle. If px and py are Tpo-regular and 7, v’ € Flag(tmoa) then we have
Af, (r, 1), 4; (t.y), Zp(& (1), {(py)) denote the {-angles (see Section 3.13).

(22) The auxiliary model ideal point {poq € int(Tmeq) is discussed in Section 3.13.
When 7,04 is @ minimal ¢-invariant face of ty,04, the regularity parameter &y =

min{o({meq) | @ € A;*mod} is computed in Section 3.10.

(23) A (c1, c2, c3, c4)-quasigeodesic is a sequence (x,) (possibly finite, infinite or
bi-infinite) in X such that

1
C_|N| — 2 < d(xp, Xp+N) < |N|c3 + cy.
1

A quasigeodesic is (g, Tmod, D)-Morse if for all x,, x,, there exists a dia-
mond & = g, (p, q) such that d(p, x,),d(q, xm) < D and foralln <i <m,
d(x;, <) < D (see Section 5).

3. Background on symmetric spaces

We begin with some background on the structure of symmetric spaces of noncompact
type. Experts on symmetric spaces can skip this section, but should note that we assume
that the metric is induced by the Killing form (see equation (3.2)), quantify the regular-
ity of geodesics in Definition 3.12, and define the {-angle in Definition 3.22. A constant
Lo, relevant for estimates involving ¢-angles, is computed for minimal ¢-invariant faces in
Section 3.10. A constant kg, related to the lower curvature bound of X, is discussed and
computed in Section 3.3. For detailed references on symmetric spaces, see [8, 13, 14].
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A symmetric space is a connected Riemannian manifold X such that for each point
p € X, there exists a geodesic symmetry S,: X — X, an isometry fixing p whose differen-
tial at p is (dSp), = —id7, x. A symmetric space is necessarily complete with transitive
isometry group. Simply connected Riemannian manifolds admit a de Rham decomposi-
tion into metric factors. If X is a simply connected nonpositively curved symmetric space
with no Euclidean de Rham factors, X is called a symmetric space of noncompact type.
Throughout the paper, X refers to any fixed symmetric space of noncompact type.

The isometry group of X is a semisimple Lie group, and we let G be the identity com-
ponent of the isometry group. For each point p € X, the stabilizer K = G, = {g € G |
gp = p} is a maximal compact subgroup of G. Hence, X is diffeomorphic to G/ K by the
orbit-stabilizer theorem for Lie groups and homogeneous spaces. We let g denote the Lie
algebra of left-invariant vector fields on G.

A Killing vector field on a Riemannian manifold is vector field whose induced flow is
by isometries. There is a natural linear isomorphism from g to the space of Killing vector
fields on X by defining for X € g the vector field X * given by

X¥ = —e" pli—o. 3.1)

The Lie bracket of two Killing vector fields is again a Killing vector field, but the map
X — X*is a Lie algebra anti-homomorphism: [X, Y]* = —[X*, Y *].

3.1. Cartan decomposition

Each point p € X induces a Cartan decomposition in the following way. The geodesic
symmetry Sp: X — X induces an involution of G by

g+> Spogosy,.
The differential is a Lie algebra involution ¢,: ¢ — g, so we may write
g=f®p,

where f ={X e g|9,X = X} and p ={X € g | X = —X}. Since ¥}, preserves
brackets, we have
[E.]]Ce, [Ep]Cp. [pp]CE.

We denote the orbit map g — gp by orb,: G — X. The differential (dorb,);: g — 7, X
has kernel precisely £. Moreover, ¥ is the Lie algebra of K = G,. The restriction
(dorbp)1:p — T, X is a vector space isomorphism. For any X € g, (dorby)1 X = X =:
evp X, see equation (3.1), so we use the less cumbersome notation ev, = (dorb,);: g —
T, X throughout the paper (read as “evaluation at p”).

Let B denote the Killing form on g and let (-, -) denote the Riemannian metric on X.
We will assume that for all X,Y € p,

B(X.Y) = (evpX.evpY)p. (3.2)
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that is, that the Riemannian metric on X is induced by the Killing form. Any other G-
invariant Riemannian metrics on X only differs from this one by scaling by a global
constant on each de Rham factor of X.

Under the identification of p with 7, X, the Riemannian exponential map p — X
is given by X > eX p. In particular, the constant speed geodesics at p are given by
c(t)y=eXpforX ep.

The point p € X induces an inner product B, on g defined by

By(X.Y) := —B(#,X.Y). (3.3)

On p, B, is just the restriction of the Killing form B, and we have required that the identi-
fication of (p, B) with (7T, X, (,)) is an isometry. On ¥, B, is the negative of the restriction
of B to ¥. Since ¥ and p are B-orthogonal, it follows that B, is an inner product on g. For
each X € p, ad X is symmetric with respect to B, on g, and likewise foreach Y € ¥,adY
is skew-symmetric.

3.2. Restricted root space decomposition

Let a be a maximal abelian subspace of p. Via the adjoint action, a is a commuting vec-
tor space of diagonalizable linear transformations on g. Therefore, ¢ admits a common
diagonalization called the restricted root space decomposition. For each « € a*, define

gy ={X e€g|VAca,adAX) =a(4)X}.
‘We obtain a collection of roots

A ={aea*\{0} | g, #0)

corresponding to the nonzero root spaces. The restricted root space decomposition is then

5=808Pg.-
aeA

For each root & € A, define the coroot H, € a by a(A) = B(Hy, A) forall 4 € a.
This induces an inner product, also denoted B, on a* by defining B(«, ) := B(Hy, Hp).
The set A forms a root system in (a*, B) (see [8, Proposition 2.9.3]). Note that unlike
the root systems of complex semisimple Lie algebras, the restricted root systems may be
non-reduced, that is, it may not hold that the only multiples of « appearing in A are %o.
For example, the restricted root system of complex hyperbolic space is non-reduced. The
restricted root space decomposition is B,-orthogonal. A subset A of the roots is positive
if for every a € A, exactly one of o, —« is contained in At and for any o, 8 € A™ such
that @ + B isaroot, we have o + 8 € AT,

The Cartan involution restricts to an isomorphism ¢,: g, — g_, foreacha € A U {0}.
Thus, we have

Pa =PNgy B g—o = ([d—Vp)gy = (id—P,)g—a
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and
by =fNaga ®g_o = (id +19p)got = (id+l9p)g—oz-

Note that p, = p_g and likewise ¥, = ¥_, so for AT a set of positive roots, we have the

decomposition
3=a0%® P re® P e

aeAt aeAt

which is both Bj-orthogonal and B-orthogonal. Some authors use the notation m = ¥,.

3.3. The lower curvature bound «

Several estimates in Section 5 will rely on precise curvature estimates which we perform
in the present section. These can be expressed in terms of a constant k¢ which is closely
related to the lower curvature bound of X.

The curvature tensor R of X may be defined using the Levi-Civita connection V by

R(M, v) =V, V, = V,V, — V[u,v]»

for vector fields u, v on X. In a symmetric space the curvature tensor is related to the
structure of g by the following formula.

Theorem 3.1 ([28, p. 242]). Let X,Y,Z € p and write X*,Y*, Z* for the corresponding
Killing vector fields on X. Then

(R(X*,Y*)Z*), = —ev,[[X. Y], Z].

Our convention is that the sectional curvature of a plane spanned by orthonormal unit
vectors u, v € T, X is
k(Span{u,v}) = (R(u,v)v,u).

The following constant appears frequently throughout the paper.

Definition 3.2. Let g = ¥ @ p and let B denote the Killing form of g. Consider a maximal
abelian subspace a C p and let A be the restricted roots. Define

ko ;= max{a(X) | € A, X €a,|X|=1}.

The presence of the constant kg is explained by the following proposition. Moreover,
it can be computed using the work of Adeboye, Wang and Wei [1] (see Theorem 3.4).
We let C; denote the constant appearing in that theorem and we let #Y denote the dual
Coxeter number of the complexification of g (see Table 1).

Proposition 3.3. With k¢ defined as above, we have the following:
(1) The image of the sectional curvature of X is [—«3, 0].
(2) ko = max{|Hy| | @ € A}.
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(3) In any symmetric space, kg < \/Li

4) We have kg = J%

Proof. We first prove item (1). Let X € a, Y € p and assume X, Y are orthogonal unit vec-
tors. For any Y € p, we may write Y = Yy + ZaeA+ Yo where Yy € a and each Y € pq,
and recall that this decomposition is B-orthogonal, so we have the lower curvature bound

k(Span{X,, Y, }) = B(—[[X, Y], Y], X)
= B(X.Y].[X, Y]
= —B(IX.[X.Y]L.Y)
=— ) B@X)*Y,.Y)
aeAt
— Y a(X)’B(Ya,Yp)
a,BeEAT

= 3 @(X)*B(Ya.Ya) = —&3

aeAt

since kg is defined to be the maximum of {«(X) | € A, X € a,|X| = 1}. By setting
Y € p, and X = H,, we see that this bound is attained.

Item (2) follows easily from Definition 3.2, k¢ := max{a(X) |a € A, X €a,|X|=1}.
Since A is finite and the unit sphere in a is compact, there exist &« € A and a unit vector X
realizing the maximum. Such an « is maximized in the direction of the root vector Hy,
so we have ko = a(|Z—Z) = |H,|. Note that the inner product used to define H, and its
norm is the restriction of the Killing form B of g to a.

To see item (3), we have
H,
Ko = a(—a) = |Hy|
| Hol

for some «. By [8, Proposition 2.14.5], we have for A, A’ € a that B(4, A') =
> pea(dimgg)B(A)B(A'), so

H, Ha)
1=B . =
(|Ha| | He| 2

BeA

, H, \? H, \?
(dlmgﬂ)ﬂ(|HZ|) 22O‘(|HZ|) =24,

We prove item (4) using the work of using the work of Adeboye, Wang and Wei [1].
By [1, equation (4.1)], C; = max{a(X) | € AT, X € a,|X|p = 1}. Here, B’ is a
renormalizing of the Killing form B defined by

B =2hVB,

where hY is the dual Coxeter number of the complexification gC. In this normalization,
the long roots of g€ have norm /2. We record the dual Coxeter numbers of complex
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g(C hV

Ay sl(n+1,C) n+1
B, s02n+1,C) 2n-1

C, sp(2n,C) n+1
D, s0(2n,C) 2n—2
Es 12

E5 18

Eg 30

Fy 9

Gy 4

Table 1. Simple complex Lie algebras and their dual Coxeter numbers /"

simple Lie algebras in Table 1. When g already admits the structure of a complex simple
Lie algebra, the dual Coxeter number of g€ is twice that of g.
Forany a € A and A € a, we have

B'(HF' . A) = a(4) = B(HE ., A) =2nVB'(HE . A),
o) Hf’ = 2hV HE. Moreover, for any A € a, |A|p = V2hV|A|p:.
Since the same root « realizes kg and C;, we have

C
Ko = |HE|p = V2hV|HE |p = V20V .

, = ——. =
B 2K

I
2hY ¥

PN

Theorem 3.4 ([1, Theorem 4.5]). Let G/ K be a simply connected irreducible symmetric
space of noncompact type. Equip G with the renormalized Killing form B’. Let Cy be the
constants defined above. Then either C; = ~/2 or C1 = 1. The latter occurs exactly when
G/ K is one of the following:

(1) A rank 1 symmetric space other than H2 or CH", forn > 2;
(2) SU*(2n)/Sp(n), n > 2;

(3) Sp(m.,n)/(Sp(m)Sp(n)).m = n = 2; or

(4) Eg(—26)/ Fa.

1
|Hq

In Helgason’s classification, the irreducible symmetric spaces of noncompact type
with C; = 1 are of type: All = SU*(21)/Sp(n), n > 2, BIl = SO(2n,1)/SO(2n),n > 2,
CIl =Sp(m,n)/(Sp(m)Sp(n)),m >n >2,DII=SOQ2n + 1,1)/SO2n + 1),n > 1, EIV
= E6(_26)/F4, and FII = F4(_20)/Sp1n(9)

Example 3.5. In sl(d, R), each root @ has |Hy| = ﬁ, so we have kg = «/LE and the

associated symmetric space has lower curvature bound —dl.



J. M. Riestenberg 14

3.4. Copies of hyperbolic planes

In Section 6, we will need to know the curvature of copies of the hyperbolic plane
in X. These correspond to copies of s[(2,R) in g. Let « € A and X, € g, such that
By(Xo, Xo) = Set 7, == Hgy so that a(tq) = 2. Set Yy i= =9, Xq € g_q-
Then

_2
|Hel? \H [Ho?

[Ta) Xo] = 2Xo, [T, Ye] = —2Yy, and [Xg,Yy] = 74,
where the last equality follows from considering B([Xg, Yy], A) for A c a =R Hy, &
kera. Then 9,(Xy + Yo) = 9,Xy — 97Xy = —(Yq +X)sz + Y, € p and

| Xo + Yol? = | Xa |B + | Yy |B So ‘H“‘(X + Yy) and Z are orthonormal
unit vectors in p, and

K(Span{| |(X + Yy,), He }) a( Hq )2
| Ho| [Hq|

| Hal* |Ho> 4 e
|Ho2 4 |Hgl? *

|Ha|2

| Ho| >

by the formula above.

Example 3.6. In the symmetric space associated with s[(d, R), the root spaces g, are
one-dimensional, so the subalgebra s[(2, R), spanned by X, Yy, 74 is uniquely deter-
mined by « and we denote it by s[(2, R),,. The image of R Hy, @ p,, under the Riemannian
exponential map at p is a totally geodesic submanifold Hé isometric to the hyperbolic
plane of curvatur —%.

3.5. Weyl chambers and the Weyl group

In this section, we describe Weyl faces as subsets of maximal abelian subspaces a C p. In
Section 3.8, we will define Weyl faces as subsets of the visual boundary d X, and explain
how the definitions relate.

Let A be the roots of a restricted root space decomposition of a maximal abelian sub-
space a of p. For each @ € A C a*, the kernel of « is called a wall, and a component C of
the complement of the union of the walls is called an open Euclidean Weyl chamber; C is
open in a. A vector X € a is called regular if it lies in an open Euclidean Weyl chamber
and singular otherwise. The closure V' of an open Euclidean Weyl chamber is a closed
Euclidean Weyl chamber; V is closed in p (see Figure 1).

For a closed Weyl chamber V/, there is an associated set of positive roots

={aeA|VYveVal) >0}

and simple roots A, that is, those which cannot be written as a sum of two elements of A +
(see [8, Proposition 2.9.6]).
We may define

Nk(a) = {k € K | Ad(k)(a) = a}, Zk(a):={k € K | YA € a,Ad(k)(4) = A}.
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(a) The walls of a maximal flat in SL(3,R)/SO(3). (b) The walls of a maximal flat in SL(4, R)/ SO(4).

Figure 1. The walls of a maximal flat in SL(n, R)/ SO(n) forn = 3, 4.

Since the adjoint action preserves the Killing form, Nk (a) acts by isometries on a with
kernel Zg (a). We call the image of this action the Weyl group. For each reflection r, in a
wall, it is possible to find a k € K whose action on a agrees with r, [8, Proposition 2.9.7].
It is well known that the Weyl group acts simply transitively on the set of Weyl chambers,
which implies it is generated by the reflections in the walls of a chosen Weyl chamber. It is
convenient for us to show this fact in Proposition 3.8, since the same techniques provide
Corollary 3.15.

The Riemannian exponential map identifies maximal abelian subspaces in p isometri-
cally with maximal flats through p. So we can also refer to open/closed Euclidean Weyl
chambers in X as the images of those in some a under this identification. For every X € p,
there exists a maximal abelian subspace a containing X, and in a, there exists some closed
Euclidean Weyl chamber V' containing X .

3.6. A Morse function on flag manifolds

In this subsection, we show that the vector-valued distance function J on X (denoted da
in [19,20], see Definition 3.4) is well defined, and give part of a proof of Theorem 3.10,
an important part of the structure theory of symmetric spaces. Along the way we prove
the d -triangle inequality [18-20, 27], and provide an estimate on the Hessian of a cer-
tain Morse function defined on flag manifolds embedded in p (see Proposition 3.8 and
Corollary 3.15).

We will use the following proposition. For A € p, let e4 be the intersection of all
maximal abelian subspaces containing A.

Proposition 3.7 ([8, Proposition 2.20.18]). Let p in X with Cartan decomposition
g=t@®pandletk € K and A € p. If Ad(k)(A) = A then for all E € eq we have
Ad(k)(E) = E.
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Note that there is a typo in Eberlein: The word “maximal” is omitted in the definition
of e4. The proof of Proposition 3.7 relies on passing to the compact real form of g€.

In this section, a flag manifold is the orbit of a vector Z € p under the adjoint action
of K = Stabg(p). The following proposition is essentially a standard part of the theory
of symmetric spaces; however, we will need to extract a specific estimate, recorded in
Corollary 3.15, in order to prove Lemma 4.8.

Proposition 3.8 (Cf. [14, Lemma 6.3, p. 211] and [7, Proposition 24]). Let X, Z € p be
unit vectors. Define
f:K—>R, f(k)=BX,Adk)Z).
(1) Ifk is a critical point for f, then Ad(k)Z commutes with X.
2) If k is a local maximum for f, then Ad(k)Z lies in a common closed Weyl
chamber with X .
(3) If X is regular then the function B(X,-): Ad(K)Z — R is Morse and has a unique

local maximum.

@) If X is regular then the distance function d(X,-): Ad(K)Z — R has a unique
local minimum.

Note that f is the composition of the orbit map K — Ad(K)Z with the map
B(X,):Ad(K)Z — R.

Proof. (1). Let Y € ¥, viewed as a left-invariant vector field on K. If k is a critical point
for f, then

d
0=dfi(Y) = Ef(kety)|z=o
= S BX. Adke)Z)limo

= B(X,Ad(k)(ad(Y)(Z)))
= B(X,[Y',Z')) = B([Z', X].Y),

where we write Y’ = Ad(k)Y and Z’ = Ad(k)Z. Since Y’ is an arbitrary element of £,
[X, Z'] € ¢, and B is negative definite on ¥, we can conclude that [X, Z'] = 0, which is
the claim (see Figure 2).

(2). At a critical point k for f, the Hessian of f at k is a symmetric bilinear form on
T K determined by

Hess(f)(v.v)k = (f 0¢)"(0)
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Ad(ks)Z
Ad(k3)Z @ °
X
[ ] Ad(kl)Z
o Ad(ky)Z
Ad(ks)Z ®
®
‘Ad(ke)Z

Figure 2. The intersection Ad(K)Z N a.

for any curve ¢ with ¢(0) = k and ¢’(0) = v. Let Y € ¥, the left-invariant vector fields
on K, and choose c(t) = ke'Y . To compute the Hessian of f we only need to compute

d2 d
@f(keﬂ)lmo = 4 BIX. Ad(ke')(ad(Y)(Z)))]i=0
= B(X,Ad(k)([Y. Y, Z]])
= B(X.[Y"[Y.Z'])
= B(X.Y'L.[Y'.Z)
= B([Z'.[X.Y'].Y)

= B(ad(Z")ad(X)(Y').Y') = B(TY'.Y'),

where we write T = ad(Z’) o ad(X) as a linear transformation on £. At a critical point X
and Z' commute by part (1), and we can choose a maximal abelian subspace a containing
both of them, and then consider the corresponding restricted root space decomposition.
For Y, € ¢,

TYy = a(Z)a(X)Y,,

so the transformation T has the eigenvalue o(Z’)a(X) on its eigenspace £, and acts as 0
on f¢. Since we assumed k is a local maximum for f, we have
d2
0> — fke'M)|i=0 = B(TY',Y")
dr2
forallY € #,soforeacha € A, a(Z")a(X) > 0, and therefore X and Z’ lie in a common
closed Weyl chamber.
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(3). We may assume that Z is a critical point of f by precomposing f with a left trans-
lation of K. The differential (dorbz);:¥ — T, Ad(K)Z is given by —ad Z and has kernel
¥z = Zg(Z) ={W €t | [W, Z] = 0} with orthogonal complement #Z = Duacraz)>ota-
Then k is a critical point for f if and only if Z (k) = Ad(k)Z is a critical point for B(X,-).
The Hessians satisfy

Hess(B(X,-))((dorbz)r U, (dorbz)x V) aak)z = Hess(f)(U, V)i,

so by the calculation above the critical points are nondegenerate, occur at Ad(k)Z
when [Ad(k)Z, X] = 0 and have index the number of positive signs in the collection
a(X)a(Ad(k)Z), (weighted by dim £,) as « ranges over the roots with «(Z) > 0. These
can only be nonnegative when Ad(k)Z lies in the closed Weyl chamber containing X .

For uniqueness, observe that any two maximizers Z’, Z” lie in the closed Weyl cham-
ber containing X, and suppose Ad(k)(Z’) = Z”. The adjoint action takes walls to walls,
so Ad(k) preserves the facet spanned by Z’, Z” and hence fixes its soul (i.e., its center of
mass) [8, p. 65]. By Proposition 3.7, Ad(k) fixes each point of the face, and in particular
z'=27".

(4). Since (p, B) is a Euclidean space,

dp(X, Y)? = B(X-Y,X-Y)=BX,X)+ B({Y,Y)-2B(X,Y)
so if X, Y are unit vectors in p
dp(X,Y)* =2(1 - B(X,Y))

and the distance function dy(X, -) is minimized when B(X, -) is maximized. Then by
part (3), the distance function is uniquely minimized at the unique Ad(k)Z in the closed
Weyl chamber containing X . |

The next two results are part of the standard theory of symmetric spaces. Since we
have already proven Proposition 3.8, it is convenient to give the proofs.

Corollary 3.9 ([8, Section 2.12]). Every K-orbit in the unit sphere S(p) intersects each
closed spherical Weyl chamber exactly once.

Proof. Let X be a regular vector in a chosen Weyl chamber. The K-orbit of a unit vec-
tor Z is compact and therefore the function dy, (X, -) has a global minimum on Ad(K)Z.
But that function has a unique local minimum which must lie in the chosen closed Weyl
chamber. ]

For a point p € X, maximal abelian subspace a C p and closed Euclidean Weyl
chamber V C a, we call (p, a, V') a point-chamber triple.

Theorem 3.10 ([8, Section 2.12]). For any two point-chamber triples (p,a,V), (p’.a’,V’)
there exists an isometry g € G taking (p,a, V) to (p’,a’,V'). If g stabilizes (p,a,V),
then it acts trivially on it.
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Proof. The group G acts transitively on X, so we may assume that p’ = p and then show
that an element of K = Stabg (p) takes (a, V) to (a’, V’). Choose any regular unit vectors
X €V, Z € V'. Then Proposition 3.8 implies there is an element k € K such that Ad(k)Z
is in the same open Weyl chamber as X . Regular vectors lie in unique Weyl chambers in
unique maximal abelian subspaces, so Ad(k)a’ = a and Ad(k)V' = V.

If g fixes p and stabilizes (a, V'), then it acts trivially on V' by Corollary 3.9. |

The above isometry is not necessarily unique. For example, consider hyperbolic space
H",n > 3. There a Euclidean Weyl chamber is just a geodesic ray, which has infinite
pointwise stabilizer. However, the action on V' is unique.

As a corollary, we may define the vector-valued distance function

d:XxX = (XxX)/G = Vinod (3.4)

to have range a model closed Euclidean Weyl chamber. One could think of V;,,q as some

preferred Euclidean Weyl chamber, but it is better to think of it as an abstract Euclidean

cone with no reference to a preferred basepoint, flat or Weyl chamber in X. There is

an “opposition involution” t: Vinoa — Vmoa induced by any geodesic symmetry S,. On a

model pointed flat a,04, the composition of — id with the longest element of the Weyl

group restricts to ¢ on the model positive chamber V},,,4. Note that d (p.q) = d (g, p)-
The triangle inequality implies that for any p, p’, ¢, ¢’ in a metric space,

ld(p.q) —d(p".q"| = d(p.p") + d(q.4).
The next result is the “vector-valued triangle inequality” for symmetric spaces.
Corollary 3.11 (The d -triangle inequality [18,20,27]). For points p, p’,q.q" in X,
d(p.q)=d(p'.q) < d(p.p)) +d(q.q".
Proof. In a moment we will use the proposition to prove that for any p, ¢, ¢’ in X,
d(p.q)—d(p.q)| < d(q.9). 3.5)
from which the general inequality follows easily:
d(p.q)—d(p'.q"| =1d(p.q)—d(p.q) + d(p.q") — d(p'.q)

<1d(p.q)—d(p.g)| +id(q, p) —d(q, ')l
<d(q.q")+d(p.p).

To prove (3.5), let X, Z € p such that eX p = ¢ and eZ p = ¢'. Choose a closed Weyl cham-
ber V containing X and the unique Z’ in the K-orbit of Z in that Weyl chamber. The map
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d (p.eY p): V — Vioa is an isometry. Note that k > B(X, Ad(k)Z) is maximized when
k — B(X,Ad(k)Z)/|X||Z| is maximized, so by Proposition 3.8

d(p.q)—d(p.g)? =X =Z']> = |X> +|Z'? —2(X. Z')
<|XP+1Z)?-2(X.Z)
=dp(X,2)* <d(q.q)?

since the Riemannian exponential map is distance non-decreasing by the nonpositive
curvature of X. ]

3.7. Regularity in maximal abelian subspaces

A spherical Weyl chamber is the intersection of a Euclidean Weyl chamber with the unit
sphere S in a. A spherical Weyl chamber o is a spherical simplex, and each of its faces 7 is
called a Weyl face. Each Euclidean (resp. spherical) Weyl face is the intersection of walls
of a (resp. as well as §). The interior of a face int(7) is obtained by removing its proper
faces; the interiors of faces are called open simplices. The unit sphere S is a disjoint union
of the open simplices. If 7 is the smallest simplex containing a unit vector X in its interior,
we say that t is spanned by X and X is t-spanning.

We will quantify the regularity of tangent vectors using a parameter «g > 0. We will
show in Proposition 3.17 that our definition of regularity is equivalent to the definition
in [19]. A similar definition appears in [21, Definition 2.6].

Definition 3.12 (Regularity). Let p € X and X be a closed spherical Weyl chamber and
let T be a face of 0. Consider the corresponding maximal abelian subspace a in p and set
of simple roots A. We define

Ar={aeAla(t)y=0}, A}l ={aeA|alintt)>0}. (3.6)

A vector X € a is called (o, T)-regular if foreach @ € A}, a(X) > ao| X|. A geodesic ¢
at p is called (o, 7)-regular if ¢’(0) = ev, X for an («o, 7)-regular vector X € a.

It is immediate from the definition that X is (¢, 0)-regular for some g > 0 and o if
and only if X is regular. We define

A ={aeA|a(r)=0}), Al :={aeA]a(intr)>0}. 3.7

Observe that X is (o, 7)-regular if and only if for each root @ € A} we have a(X) >
(071} |X|

Remark 3.13. The signed distance from a vector A € a to the wall ker« is a(A) /|| >
a(A)/xo.

Definition 3.14. A unit vector X is (ag, 7)-spanning if it is T-spanning and (&g, 7)-
regular.
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We may now record a mild extension of Proposition 3.8 which will appear in
Lemma 4.8.

Corollary 3.15. Suppose X € p is an («g, T)-regular unit vector and Z € p is a (g, 7)-
spanning unit vector. Then Z is the unique maximum of B(X,-): Ad(K)Z — R, and for
allU,V € Tz Ad(K)Z,

[Hess(B(X,))(U,V)z| = aolo| Bp(U, V).

Proof. The proof of Proposition 3.8 goes through in this setting, requiring only the fol-
lowing observation: If X is r-regular and lies in a spherical Weyl chamber o, then 7 is
aface of 0. If U,V € Tz Ad(K)Z correspond to U’, V' € ¥* under the identification
Tz Ad(K)Z = £%, we showed that Hess(B(X,-))(U,V)z = B(ad(Z)ad(X)U',V’). =

3.8. The visual boundary 0 X

A pair of unit-speed geodesic rays cy, ¢, are called asymptotic if there exists a constant
D > 0 such that

d(ci(t),c2(t)) = D

for all ¢+ > 0. The asymptote relation is an equivalence relation on unit-speed geodesic
rays and the set of asymptote classes is called the visual boundary of X and denoted by
d X. There is a natural topology on d X called the cone ropology, where for each point
p € X the map S (7, X) — 9 X (which takes a unit tangent vector to the geodesic ray with
that derivative) is a homeomorphism. In fact, the cone topology extends to X := X Ud X,
yielding a space homeomorphic to a unit ball of the same dimension as X.

Lemma 3.16. If c; and c; are asymptotic geodesic rays, then for all t > 0,
d(c1(7), c2(2)) = d(c1(0), c2(0)).

Proof. The left-hand side, being convex [8] and bounded above, is therefore (weakly)
decreasing. ]

We have a natural action of G on d X: g[c] = [g o ¢]. For n € 9 X, we denote the
stabilizer

Gy, ={geG|gn=n}

and call G, the parabolic subgroup fixing 7. (Note that in [9, 11], G itself is a parabolic
subgroup, but in this paper a parabolic subgroup is automatically a proper subgroup.)
When 7 is regular, G, is a minimal parabolic subgroup of G (sometimes called a Borel
subgroup).

Let 7, be ideal points in d X, represented by the geodesics c(f) = X p and
c'(t) = e'Y q. Then since G is transitive on point-chamber triples, we can find g € G such
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that gg = p and Ad(g)Y lies in a (closed) Euclidean Weyl chamber in common with X .
In particular, every G orbit in d X intersects every spherical Weyl chamber exactly once.

Each unit sphere S(p) has the structure of a simplicial complex compatible with the
action of G. By Theorem 3.10, this simplicial structure passes to d X, which is in fact
a thick spherical building whose apartments are the ideal boundaries of maximal flats.
In [19, 20], the spherical building structure on d X is used to describe the regularity of
geodesic rays. We have used the restricted roots to define regularity and will show that the
notions are equivalent in Proposition 3.17. When we need to distinguish between simplices
in S(p) and simplices in d X we call the former spherical and the latter ideal. Compared
to a spherical simplex, an ideal simplex lacks the data of a basepoint p € X.

Define the type map to be

0:0X - 30X /G = Opod

with range the model ideal Weyl chamber. The opposition involution t: Vipea — Vinod
induces an opposition involution ¢: 004 — Omod; Se€€ the discussion after equation (3.4) in
the previous subsection. The faces of on,q are called model simplices. For a model sim-
plex Tiod C Omod, We define the flag manifold Flag(timoeq) to be the set of simplices 7 in d X
such that 0(t) = tyeq. If ideal points 7, n’ span the same simplex z, then they correspond
to the same parabolic subgroup, so we define G; := G,. A model simplex corresponds to
the conjugacy class of a parabolic subgroup of G.

3.9. Regularity for ideal points

Theorem 3.10 implies that “model roots” are well defined: If g € G takes the point-
chamber triple (p, a, V) to (p’,a’, V') and takes the simplex T C dV to v/ C dV’, it
also takes A; to A’y and Al to A’ :7 , where A is the simple roots in a* corresponding
to V and A’ is the simple roots in a’ corresponding to V.

An ideal point n € d X is called («g, T)-regular if every geodesic in its asymptote
class is (g, T)-regular. As soon as one representative of an ideal point is (¢, T)-regular,
every representative is. A vector, geodesic or ideal point is (¢, Tmoq)-regular if it is
(g, T)-regular for some simplex t of type Tyoa (see Figure 3).

Following [20], the open star of a simplex 7, denoted ost(7), is the union of open sim-
plices v whose closures intersect 7. Equivalently, it is the collection of t-regular points
in dX. For a model simplex, int;__,(0moq) is the collection of ty0q-regular ideal points in
Omod- BEquivalently, it is oy0a \ weAd kerc.! We have

T=0MN m kera, int,a:{nea|V016Aj,ot(r])>0}, d;0 =0 N U ker .

a€A; aeAT

There is a decomposition Oyeq = inty,; Omod U 07,04 Tmod-

'In [19], the notation ost(tmeq) Was used for what is called int, 1 (0mod) here and in [20].
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T2 T2 T2

T1 3 T 3 T 3
(a) («g, Omoa)-regular. (b) (g, t13)-regular. (¢) (@, 12)-regular.

Figure 3. («g, tmoq)-regularity for various choices of tp0q.

The set of («p, T)-regular points is called the “og-star of t.” The closed cone on the
op-star of T at p is denoted by

V(p,st(t), o) == {cpx(t) | t € [0,00), x is (xp, T)-regular},
the cone on the open star of 7 by
V(p,ost(t)) = {cpx(t) | t € [0, 00), x is T-regular}
and the Euclidean Weyl sector by
V(p,t) = {cpx(t) | t €[0,00), x is T-spanning}.

It follows from Lemma 3.16 that the Hausdorff distance between V(p, st(7), op) and
V(q, st(t), ag) is bounded above by d(p, q), and the same holds for the open cones
V(p,ost(t)) and V(q, ost(t)) and for the Weyl sectors V(p, 7), V(q, 7).

We now describe the notion of regularity used in [19, 20] and show it is equivalent
to our definition. We always work with respect to a fixed type Tmeq- A subset ® C Opmoq
is called Tmoq-Weyl convex if its symmetrization Wy, ,® C dmoq 1S a convex subset of the
model apartment a,,,q. Here we think of the Weyl group W as acting on the visual bound-
ary dmod Oof a model flat ay,q with distinguished Weyl chamber omoq and Wy, is the
subgroup of W stabilizing the simplex 7,,04. One then quantifies 7,,04-regular ideal points
by fixing an auxiliary compact t0q-Weyl convex subset ® of inty, , (Omod) C Omod-

An ideal point 1 is O-regular if 6(n) € ©. It is easy to see that the notions of
®-regularity and (o, Tmeg)-regularity are equivalent.

Proposition 3.17. Let Ay, C A be the model simple roots corresponding to a simplex
Tmod C Omod- Then

(1) If ® is a compact subset of inty, ,(Omoa) then every ©-regular ideal point is
(00, Tmoa)-regular for o = miny, o+ a(O).
Tmod
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(2) Every (ag, tmoa)-regular ideal point is O-regular for ® = {£ € Onoa | Vo €
A7 () = ao}.

Proof. We first prove (1). Since ® is a compact subset of omoa \ (U, e AL ker o, the

quantity min{x({) | @ € Afmod,é‘ € O} exists and is positive.

We now prove (2). The subset © = {{ € 01poq | Y € AT () > g} has symmetriza-

Tmod ’
tion Wy, ,© = {€ € amoa | Yo € AL, a(€) > ap} which is an intersection of finitely

Tmod ’
many half-spaces together with the unit sphere, so it is compact and convex. Furthermore,

® = Omoda N W, ® is a compact subset of int;__,(Gmod) N Omod- ]

3.10. Choosing ¢yeq and computing &g

Throughout the paper it will be essential to choose an auxiliary t-invariant model ideal
point {moa € int(Tmod). The regularity parameter o of {y0q Will appear in many estimates
below. In this subsection, we explain how to compute ¢y when 7,04 is @ minimal (-invariant
face of opeq. In this case, there is a unique choice of {poq. In Subsection 3.10.1, we com-
pute 2(;, which agrees with the regularity parameter {y up to renormalizing the longest
simple restricted root to have +/2. These numbers are presented in Table 3. In the present
subsection, we explain how to compute the renormalizing constant.

Proposition 3.18. Let B’ be the renormalized Killing form B = 2h" B'. If the restricted
root system is reduced, then the longest norm of a simple root with respect to B' is Cy. In
the two rank 1 non-reduced restricted root systems, the longest norm of a simple root with
respect to B’ is % In the four remaining cases, which are Allla, Clla, DIIb and Ellla,
the longest norm of a simple root with respect to B’ is %

Proof. If the restricted root system is reduced, then every restricted root is in the Weyl
group orbit of a simple root.

The non-reduced cases can be analyzed by consulting [13, Table VI, Ch. X].
According to this table, there are six cases of non-reduced restricted root systems.

The cases of AIV and FII have real rank 1, so there is a unique simple restricted
root A and this root is non-reduced. Then 24 is a restricted root of maximal length, so
C1 = |2A|p.

The remaining non-reduced cases are Allla, Clla, DIIb and Ellla. In each of these
cases, there is a unique non-reduced simple restricted root A. Moreover, the root A is the
unique short simple restricted root, and there exists at least one strictly longer simple
restricted root. Since the long restricted roots are reduced, C; = |24|ps, and in each case
the long simple roots have norm +/2|A|p = +v/2C;. |

To give a succinct description of ¢y in each case, we introduce the constant C3 (see
Table 2). We are avoiding the notation C since this constant appears in [1], but we do not
need it here. We set C3 to be 1 in all cases except the non-reduced restricted root systems.
For non-reduced restricted root systems, we set C3 to be 2 for the rank 1 cases and NS
otherwise.
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g Restricted Root System Cs
AlV, FII Non-reduced and rank 1 2
Allla, Clla, DIIb, EIlla  Non-reduced and rank > 2 V2
All others Reduced 1

Table 2. C3 in terms of the restricted root system of g.

Lemma 3.19. Consider a further renormalization of the Killing form
4CEnY GhT b

B = C2

With respect to B”, the longest norm of a simple restricted root is V2.

Proof. For any simple restricted root o, we have

Cl B 1 B’
B//:lH |B —lH |B/»
2C5 «/hV NG
so s
" 2C3 ’
12l = 2
which has maximum ~/2 by Proposition 3.18 and the definition of Cs. ]

Proposition 3.20. Let A be the set of simple roots in a restricted root system and let
o € A. Let Cmoq be the unique t-invariant unit vector in the face Ty corresponding to
{ag, t(og)}. Then Cimoq is (Co, Tmod)-sSpanning where

C,
fo = 2C3\/_§0’

and ZO is recorded in Table 3. Moreover, the regularity parameter g is optimal.

3.10.1. E(; in standardized root systems. Below we will give a brief description of each
irreducible reduced root system. Each root system is considered to be a subset of the
Euclidean space R” with the standard basis ey, ..., ey, standard inner product and dual
basis e!, ..., e". We choose a scaling of the roots so that the longest simple root has
norm +/2. We list the simple roots and describe the opposition involution ¢. In Table 3,
we depict the Dynkin diagram with labeled nodes. For each minimal ¢-invariant subset of
simple roots ®, we record E(; = min{o({moa) | @ € O} where 0q 1S the unique ¢-invariant
unit vector in the face t,0q corresponding to ®. Note that minimal ¢-invariant subsets are
singletons or pairs, so the corresponding faces are vertices or edges.

In order to give a precise description of {04, Wwe need a precise description of the ver-
tices of omeq. For this purpose we consider the fundamental weights w; of the root system,
which are uniquely defined by

o) g
{0, )
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Name Diagram 1/80 (fotke» (k)
2k, 2%k <n+1;
An *r—o— —— 0

o1 (6% Op—1 Opn Jn+1/2, 2k=n+1.
Ba e * vk
V2k, k<mn;

Cn ————o— —————————=—»
o1 (0%) Op—2 Op—1 Op \/n/2, k=n.

Opn—1
Vk, k<n-2;
Dy - o — _2 2/n, k>n-—1,neven;
o1 a2 w—1, k=n—1nodd.
Qn

(097)
Op—3
o2
V342, k=1;
5V2/4, k=2;
E¢
4 as o

o1 a3 o 6 354/4, k =3;
Va2/2, k=4
o
2 V2, k=1, 772, k=2
E Voo k=3 243 ;
7
a1 a3 o4 05 O A7 V15/2, k=5; 2, k=6
V32, k=
o
2 2, k=1; 22, k=2
B V14, k=3; 30, k=4
8

0] 03 o4 o5 o Q7 Of 2V5. k=5 23, k=6
V6, k=7, V2. k=3.
V2, k=1;
V6, k=2

Fy ————e——o —o
a1 oy a3 g V12, k=3;
2, k=4.
V2, k=1

Gy —

V6, k=2.

o1 o2

Table 3. ¢ for minimal ¢-invariant subsets of irreducible root systems, normalized so that the longest
simple roots have norm +/2.
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where the simple roots are A = {¢; }. Then the dual vectors H,,; € a defined by (H,,, A) =
w; (A) are proportional to the vertices of oy4. If o is an t-invariant simple root, then we
set $mod = He, /| He, | and

Co = i (Huy /| Ha|) = i |2/ (2]aog ).

If oty is not t-invariant, then we set {noq = (Ho, + 1(Hy,))/|He, + 1(Hy, )| and

Co = ok (Hup /| Hap + t(Huy))) = |k |*/ (2| Hay + t(Hay))).

The fundamental weights of irreducible root systems can be found, for example, in [24].

Apn. E={v eR" | (v,e; +--- + enq1) = 0}. The simple roots are A = {o;} =
{e! —e'T1}1_ . The fundamental weights are ; = e! +--- + ', restricted to E. The
opposition involution ¢ takes o; t0 &y 4+1—;.

B,. E = R". The simple roots are A = {e! — eiJrl}l’.';l1 U {e"}. The fundamental
weights are w; = e! +---+ ¢’ fori <n and w, = %(e1 + -+ + €™). The opposition
involution is trivial.

C,. E =R". The simple roots are A = {%(ei — '} U {«/2e"}. For this scal-

ing, the long root has norm /2. The fundamental weights are w; = «/Li(e1 +.. 4 eb)
for all i < n. The opposition involution is trivial.

D,. E = R". The simple roots are A = {e! — ei+1};’;11 U {e" ! + ¢"}. The funda-
mental weights are w; = el4 - telfori<n—2,wp_1 = %(e1 4. el et
Wy = %(e1 4+ -+ + €"). When n is even, the opposition involution is trivial. When n
is odd, t(oty;) = oty—1, and ¢ fixes the other simple roots.

n—1
i=1

Es. E ={v e R¥| (v,e¢ — e7) = (v,e7 + eg) = 0}. The simple roots are
A= {%(es—eﬂ—e6—es—e4—e3—ez+el),
e? —I—el,e2 —el,e3 —62,64 —e3,e5 —64}.
The fundamental weights are
{(0,0,0,0,0,—-1/6,-7/6,2/3),(1/2,1/2,1/2,1/2,1/2,1/4,-5/4,1/2),

(—1/2,1/2,1/2,1/2,1/2,1/6,-11/6,5/6),(0,0,1,1,1,1/2, —=5/2, 1),
(0,0,0,1,1,7/12,-23/12,2/3),(0,0,0,0,1,2/3,—4/3,1/3)}.

Zhe opposition involution takes o to e, 03 1O Us, and fixes a5 ancL 4. We have
So(far, a6)) = 1/|w1 + ws| = 2/+/34, {o({e2}) = 1/|wa| = 4/5v/2, {o({ez, a5}) =
1/|lws + ws| = 4/+/354 and {o({aa}) = 1/|wa| = 2/V/42.

E7. E = {v € R¥| (v,e7 + eg) = 0}. The simple roots are
1
A= {5( 8 el —ef—e®—et—eP —e? 4 e,

ez+el,e2—el,e3—ez,e4—e3,e5—e4,e6—e5}.
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The opposition involution is trivial. The fundamental weights are
{eg —e’, %(e1 +e?+ed et +ed+e%—2e7 + 268),
%(—el +er e +et 4% +eb—3e7 +3eP),

3 3
63+e4+€5+€6—287+2€8,e4+€5+€6—§€7+568,

1 1
5 6 __ 7 8 6 .7, .8
e’ +e e’ +e°,e 2e +2€}.

Their norms are v/2, /7/2,v/6,2+/3, /15/2,2, /3/2.

e FEg. E = R®. The simple roots are
1
A= {5(68—67—66—85—84—63—62+€1),
ez+e1,ez—el,e3—ez,e4—e3,es—e4,e6—e5,e7—e6}.
The opposition involution is trivial. The fundamental weights are
1

{2e8, E(e1 +el+e3 et 4’ +eb+e + Seg),
1
E(—e1 +e?+ed+et +e’ +eb +e” +7eb),
e3+e4+es+e6+e7+588,e4+e5+e6+e7+4es,
e’ +e®+e” + 368, e® +e’ + 268, e’ + es}.

Their norms are 2, 2\/5, /14, /30, 2\/5, 2«/3, «/6 V2.

* F4 E =R* Thesimpleroots are A = {e! —e2,e2 —e3,¢3, L(—e! —e? — e3> —e*)}.

The fundamental weights are: w; = e! — e* of norm /2, wy = e! + 2 — 2¢* of
norm /6, w3 = 1(e' + €2 + €3 — 3e*) of norm /3, and wq = —e* of norm 1. The
opposition involution is trivial.

* Gy. E=1{veR>|(v,e; + ey + e3) = 0}. The simple roots are A = \/Lg{e1 -
%, —2e! + ¢ + ¢3}. For this scaling, the short root has norm /% and the long
root has norm /2. The fundamental weights are w; = \%(—ez +e3) and w, =
% (—e! —e? 4 2e3), with norms \/g and +/2, respectively. The opposition involution
is trivial.

Example 3.21. In the symmetric space associated with s{(d, R), the root system is of
type A4—1 and the opposition involution takes the simple root o; to oz—;. The subset
{o1, g1} is a minimal ¢-invariant subset. In this case {poq is given by

é‘mod = (le + de_l)/lel + de_ll
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which may be represented as a diagonal matrix with its first and last entries oppo-
site and all other entries 0. One can compute directly or apply Proposition 3.20 to see
that {o = —1—. In this case Tpoq-Anosov subgroups of SL(d, R) are sometimes called

20 24d
projective Anosov subgroups.

3.11. Generalized Iwasawa decomposition

Let p be a pointin X, t € Flag(tpeq) and let X € p be t-spanning. Choose a Cartan sub-
space X € a C p, with restricted roots A and a choice of simple roots A associated with
o D 7. Recalling the notation in (3.7) following Definition 3.12, we define
M) ar=ZX)Np={Y ep|[X,Y] =0} and A, = exp(a;). Note that a, and A,
depend on p.

(2) The (nilpotent) horocyclic subalgebra n. = @, AF Sa and the (unipotent)
horocyclic subgroup Ny = exp(1iy).

(3) The generalized Iwasawa decomposition of gis g = ¥ @ a; @ ny.

(4) The generalized Iwasawa decomposition of G is G = KA;N; = N;A;K. The
indicated decomposition is unique.

Note that our notation differs from [20], where N; denotes the full horocyclic subgroup
at T and A; is the group of translations of the flat factor of the parallel set defined by p
and t (see Section 3.12). In our notation, N; is the unipotent radical of the parabolic
subgroup G (see [8, Section 2.17]).

3.12. Antipodal simplices, parallel sets and horocycles

A pair of points £, in d X are said to be antipodal if there exists a geodesic ¢ with
¢(—o0) = € and c(400) = n. Equivalently, &,  are antipodal if there exists a geodesic
symmetry S, taking £ to 7.

A pair of simplices 7+ are antipodal if there exists some p € X such that S,7_ = 74,
or equivalently if there exists a geodesic ¢ with ¢(—oo) € int(z—) and ¢(+00) € int(z4).
If a model simplex 7,04 is t-invariant, then every simplex t of type 7,04 has the same type
as any of its antipodes.

For antipodal simplices 74, the parallel set P(t—, t4) is the union of (images of)
geodesics ¢ with ¢(—o0) € 17— and ¢(400) € 74. Given one such geodesic ¢, we may
alternatively define P (7, 74) = P(c) to be the union of geodesics parallel to ¢, or equiv-
alently to be the union of maximal flats containing c. Antipodal t,0q-regular points &,  lie
in the boundary of a unique parallel set P = P(7(£), 7(n)), where 7(§) (resp. t(n)) is the
unique simplex of type T4 in some/every Weyl chamber containing £ (resp. 7). We say
that P(7_, t4+) joins 7 and t4. The parallel set joining a pair of antipodal Weyl chambers
is a maximal flat.

The horocycle centered at T € Flag(tyog) through p € X is denoted H(p, t) and
is defined to be the orbit N; - p. For any p € X and 7 antipodal to 7, the horocycle



J. M. Riestenberg 30

H(p, 7) intersects the parallel set P(7, t) in exactly one point. A horocycle is the union
of basepoints of strongly asymptotic Weyl sectors/geodesic rays [19,20].

3.13. The ¢-angle and Tits angle

We follow [19] in defining the ¢-angle between two simplices at a point p € X. For fixed
p € X and ¢, the ¢-angle provides a metric on Flag(tmoq) by viewing it as embedded in
the tangent space at p and restricting the angle metric Z, to the vectors of type {. The
¢-angle also makes sense for 7,,0q4-regular directions by projecting to Flag(tyoq). To make
this definition, we first fix the auxiliary data of a ({y, Tmoeq)-spanning t-invariant model
ideal point { = {moq € Int(Tmoa). We recall from Definition 3.14 that (g, Tmeq)-Spanning
means that { is in the interior of T4 and all simple roots o € A;; " positive on the interior
of Tmoq satisfy a(£) > .

Definition 3.22 ({-angle, cf. [19, Definitions 2.3 and 2.4]). For ¢ as above, define:

(1) For a simplex t € Flag(tmeq), let (7) denote the unique point in int(t) of type .

(2) For a t0q-regular ideal point £ € 94X, let £ (§) = ¢(7(§)) where 7(§) is the simplex
spanned by £.

(3) Let p € X, let 7, 7/ be Weyl chambers in 3 X and let x, y € X with px and py
Tmod-Tegular. The ¢-angle is given by

Z(.7) = £p(¢(0).5(1)).
£5(1.y) = £p(5(0). L (py)).
25(x.y) = Lp(&(px).L(py)).
Note that there is a typo in the definition of {-angle in [19, Definition 7.5] (see
Figure 4).
For &, € 0X, the Tits angle is

Zris(§,m) = sup £, (§,n).
peX

Ideal points &, 1 are antipodal if and only if their Tits angle is 7. For p € X, £, € 9 X, the
equality Z, (£, 7) = Zris(§, n) holds if and only if there is a maximal flat F' containing p

A =

(a) ¢ € oioq- (b) The ¢-angle between X and Y.

Figure 4. {-angles.
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with &, € dF and moreover for any &, n € d X, there exists some maximal flat F with
&1 € OF [8].
For simplices 7, 7’ in Flag(tmea), we may define

ZE (1. T) = L (C(0). C(T))).

There are only finitely many possible Tits angles between ideal points of fixed type. There-
fore, there exists a bound &({y0q) such that if é%w(t, ') > 7w — &({moq) then T and 7’ are
antipodal, as observed in [19, Remark 2.42]. By Remark 3.13, we have

a(gmod) ;

el T Ko

1
sin (—g(é‘mod)) min
2 otEA,+ od

By the definition of Tits angle, the same holds if the {-angle at any point is strictly within
&(¢moa) of 7: The inequality

2y, 7) = 25 (0. t') > 7 — £(Gmoa)

implies that T and 7’ are antipodal. Since {y < k¢ < 2k¢ (recall kg from Definition 3.2),
we have 5
8o

1
= < % < sin Eg@mod),

=5
0o Ko

N =
=

1
sin —
2k

oy
Ol\) oN

2
and we obtain the estimate g_% < &(Cmoq). We record this observation in the following
ko

lemma.

Lemma 3.23 (Cf. [19, Remark 2.42]). If the lnequalzty 4 s ty) > -3 holdsfor
some p € X, then t_ is antipodal to t4. In other words pr: < &(8mod)-

4. Estimates

This section contains the main contributions of the paper. We prove several explicit esti-
mates in the symmetric space that we will use in Section 5 to give a quantified version
of the local-to-global principle for Morse quasigeodesics. Qualitative versions of these
estimates appear in [19, 20], but there the proofs rely on topological arguments that do
not produce explicit bounds. For example, in Subsection 4.4, Lemma 4.8, we consider
the natural projection from (ag, Tmeq)-regular vectors in p to Flag(tyoeq). This map is the
restriction of a smooth map to a compact submanifold with boundary, so an abstract proof
of the existence of a Lipschitz constant is not hard. However, that approach is not suitable
for our purposes, so we apply Corollary 3.15 to obtain an explicit local Lipschitz constant.
Note that such an estimate cannot be uniform for all &g > 0 and therefore must depend
on g.

A crucial notion, introduced in [19], is the ¢-angle, denoted /8 (see Section 3.13).
Recall that { = {04 18 a fixed type in the interior of t,,q. Moreover, we assume that ¢ is
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(0, Tmoa)-regular and that ¢ and 7,04 are t-invariant (see Definition 3.14 and Section 3.8).
For fixed p € X and ¢, the {-angle provides a metric on Flag(t,0q) by viewing it as embed-
ded in the tangent space at p and restricting the angle metric £, to the vectors of type ¢.
The ¢-angle also makes sense for 7,,0q-regular directions by projecting to Flag(ty0d)-

The organization of the section is as follows. In Subsection 4.1, we relate the
Riemannian metric on X to algebraic data on g, for example, the Killing form B and the
canonical inner product B),. In Subsection 4.2, we use the vector-valued triangle inequal-
ity to control the regularity of bounded perturbations of long regular geodesic segments.
In Subsection 4.4, we prove Lemma 4.8, which allows us to bound ZE, (x, y) in terms of
oo, o and Z,(x, y). In Subsection 4.5, we prepare a technique for the subsequent subsec-
tions, where we bound the lengths of certain non-geodesic curves in X which are images
of curves in G under the orbit map. In Subsection 4.6, the curve lies in the subgroup sta-
bilizing a point, and we bound the distance the midpoint of a segment can move when
we move one endpoint a bounded amount, assuming the segment is long enough. Sub-
section 4.7 is roughly similar; there we bound the distance between points far along on
strongly asymptotic geodesic rays (so the curve in G lies in a unipotent horocyclic sub-
group). These combine to yield a crucial estimate in Corollary 4.13, which implies that if
a pair of points are in the D-neighborhood of a diamond, then their midpoint is close to
the diamond; moreover, the distance from the midpoint to the diamond becomes arbitrarily
small as the points move farther apart. In the remaining subsections, we show that distance
to a corresponding parallel set controls the corresponding ¢-angles (Corollary 4.16) and
vice versa (Lemma 4.17). Along the way we provide some control for the Lie derivatives
of gradients of Busemann functions with respect to Killing vector fields (see the proofs of
Lemmas 4.14 and 4.17).

4.1. Useful properties of the inner product B, on g

We remind the reader that our convention is that the Riemannian metric on X is the one
induced by the Killing form (see equation (3.2)). Recall that each point p € X induces an
inner product B, on g and the evaluation map ev,: g — 7, X (see Section 3.1). We first
relate the inner product B,, the Killing form B on g and the Riemannian metric (-, -) at p.

Lemma 4.1. Forany X,Y e gand p € X,
2(evp X, ev,Y) = B(X,Y) + By(X.,Y).

In particular, any U in . or g, is ad-nilpotent, so B(U,U) = 0 and |U |g, = «/§|eva|
(see Section 3.11).

Recall that ¥, is a Lie algebra automorphism, so #,[X, Y] = [$,X, #,Y] and
B(®,X.0,Y) = B(X.Y).
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Proof. The kernel of ev, is the +1-eigenspace for ¥,, so for any X € g, 2ev, X =
evp(X —9¥,X) and
devp, X, evpY)p = (evp(X —9,X),ev, (Y —0,Y))p
=B(X-9,X.Y —-8,Y)
=BX.Y)+ B(W,X.9,Y) - B(,X,Y)— B(X,0,Y)
=2B(X,Y)+2B,(X,Y). |

Next we show that the transpose on End g with respect to B, restricts to —, on the
image of the adjoint representation.

Lemma4.2. For X,Y,Z € g, Bp(ad X(Y), Z) = B, (Y, ad(—9,X)(Z)).
Proof. We have

By(ad X(Y),Z) = —-B(Wpad X(Y), Z)
= —B(ad(¥,X)(3,Y), Z)
= —B(0,Y,ad(—0,X)(2))
= B,(Y.ad(~9,X)(Z)),

where we have used that ad ¥, X is skew-symmetric relative to B. m

Third, we bound B(ad X(Y'), Z) by the product of the B,-norms of X,Y and Z and
bound the operator norm of ad X by | X |p, along the way.

Lemma 4.3. Let X, Y, Z € g and let p € X induce the inner product By, on g. Consider
the operator norm |-|op and Frobenius norm |-|g: on End g induced by Bj,. Then

(1) ladY|op < [adY | = |Y B,
(2) B(X,adY(2)) < |X|B,|Y|8,|Z|B,. and
(3) forY €p, |[Y, X]|B, < «kolY|5,|X|B,-
Proof. Recall that the operator norm of a linear transformation is the largest singular

value, while the Frobenius norm is the square root of the sum of the singular values
squared. Therefore,

lad X |7, < |ad X |7, = traceq(ad(—9,X) o ad X) = B,(X, X)
by Lemma 4.2, proving the first claim. Using this, we have
B(X,adY(Z)) = —B,(¥,X,ad Y (2))
< |%pX|p,ladY(Z)|B,
=< |X|Bp lad Y|op|Z|Bp
< |X|s,1Y|8,1Z|8,-
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If Y € p, we may choose a maximal abelian subspace a of p containing ¥ and decom-
pose X =) ,cau (0} Xa according to the associated restricted root space decomposition,
which is Bj,-orthogonal. Therefore,

2
Y. X135, =Y a()Xs| =Y a¥)?(Xel}, <k3IY[3 X3,
€A By a€EA
where K¢ is the maximum of {«(A4) | @ € A, A € a, |A| = 1} (see Definition 3.2). |

Fourth, we need to compare the norms induced by p, ¢ € X in terms of d(p, q).

Lemmad.4. Let p,g € X, g € Gand X € g. Then
(1) ﬁgp o Ad(g) = Ad(g) o 19p;
(2) |X|s, = |Ad(g)X|s,,, and
3) |X|B,, < e""d(l”‘I)|X|Bq.

Proof. The point stabilizer G4, is gGpg~! and it follows that Ad(g) takes ¥, to ¥gp.
This, together with the Ad invariance of the Killing form implies (2). For the last point,
choose a maximal flat F' containing p and g, let a C p be the maximal abelian subspace a
of p corresponding to p € F, and let g = g, D P g, be the corresponding restricted root
space decomposition. There is a unique A € a such that e4 p = ¢, and then

Ty,

ae AU{0}

|X|Bp — |eadAX|Bq — < €K0d(p’q)|X|Bq7

B‘I

using the restricted root space decomposition of X and the fact that the restricted root
space decomposition is B, -orthogonal. ]
4.2. Perturbations of long, regular segments

We will need to control the regularity of bounded perturbations of long regular geodesic
segments. The following lemma is an explicit version of [21, Lemma 3.6]. This assertion
also appears in the proof of Lemma 7.10 in [19].

Lemma 4.5. Suppose xy is an (g, Tmod)-regular geodesic segment with d(x, y) > | and
let X', y’ be points in X satisfying d(x,x") < 8y and d(y,y’) < é,. If

. (Ox + 5y)(0l0 + ko) > o

o [—6,—8, — O

then x'"y’ is (ot Tmod)-regular.

We will often apply this lemma in the case 6y = §, = D.
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Proof. We apply Corollary 3.11, the triangle inequality for d-distances:
|d(x,y) —d(x',y)| < d(x,x) +d(y, ) < 6x +8y.

Similarly, |d(x,y) —d(x', )| <d(x,x") +d(y,y") <bx +6y,s0d(x",y') =1 —6x + 6,

and
d(x,y) -1 Oy + 6y -1 Ox + 8y

d(x',y") ~ d(x’,y") ~ =8 =6y

+
Tmod ’

a(d(x',y") _ aod(x,y) —8uko — 8yko

Foranyax € A

dix'.y)  ~ d(x',y")
8x + 8, (8x + 8,)K0
> 1— _
—"‘0( z—sx—sy) =6, —3,
(8x + ) (cto + Ko)
By s st -

It is also straightforward to control the regularity of segments in terms of 7p,04-Weyl
convex subsets ® C Opmod-

Lemma 4.6. Suppose ©, ' C oy,0q satisfy Ng(®) C © where N4(®) denotes the A-
neighborhood of A with respect to the angular metric. Let xy be a ®-regular geodesic
segment with d(x, y) > | and suppose x', y’ satisfy d(x,x') < éx and d(y,y') <é,. If

Sy + 6
sin(4) = =2

then x'y’ is ©'-regular.
Proof. As before, we have

|d(x.y) —d(x'.y)| < 8x +38,
and by assumption d(x, y) > [, so

8y + 6,

sin Z(d (x, y).d(x',y')) < ]

4.3. Angle comparison to Euclidean space

When p, ¢, r are points in X such that d(p, ¢) is much larger than d(q, r), we provide
an upper bound for the Riemannian angle Z, (g, r) by comparing to Euclidean space. The
following estimate is surely not new, but we could not find a direct reference so we give a
proof.
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Lemma 4.7. Let p,q,r be non-collinear points in X. Then

d(q,r)
d(p.q)

The convenience of this estimate is that the third possible distance d(p, r) does not
appear.

sinZp(q,r) <

Proof. Let X,Y epsuchthateX p=gande? p=r.Then|X|=d(p,q)andd(X,Y) <
d(q,r), and we may assume that d(p, g) > d(q, r). In Euclidean space, the comparison
holds: Among vectors Y’ with d(X,Y’) < d(X,Y), the largest angle occurs for a vector ¥’
forming a right triangle with X as hypotenuse. Then

d(X.Y') _d(g.r)

sinZ(X,Y) <sinZ(X,Y') = ’ < ) n
| X| d(p.q)

4.4. Projecting regular vectors to flag manifolds

Recall that we have a fixed type ¢ = {y0q Which is (&g, Tmoa)-spanning (see Defini-
tion 3.14). For a tpeq-regular X € p, define {(X) to be the unique vector in a com-
mon closed Weyl chamber as X of type . Note that {(X) is the unique maximizer for
B(X,-):Ad(K)Z — R where Z € p is any vector of type ¢ by Corollary 3.15. In the next
lemma we show that nearby 7,,,q4-regular points project to nearby points on Ad(K)Z in
the metric induced by viewing Ad(K)Z as a Riemannian submanifold of p. Note that one
expects a local Lipschitz constant proportional to % by considering vectors near the walls
kera fora € AT,

Lemma 4.8. Let X, X' be (o, 7)-regular unit vectors in p with dp(X, X') < ag. Write
Z ={(X)and Z' = {(X'). Then the Riemannian distance on AA(K)Z from Z to Z' is
bounded by the distance in p from X to X':

! 1 !
daagyz(Z,2') = —dp(X, X').
aolo

Proof. Let t — X; be a unit-speed line segment from X to X’ in p. Let {X’ }d'mp be

linear coordinates on p, and we may assume that the derivative of 7 = X; is 3 }3(1 . Since
dp(X,X') < g each X; is (“—2" rmod)-regular. Write Z, = ¢(X;) and note that ¢ — Z; is
a smooth curve on Ad(K)Z. To prove the claim we will show that |%t\ < ﬁ, where
we restrict the inner product on p to a Riemannian metric on Ad(K)Z.

Restricting the domain of B, we write B:p x Ad(K)Z — R. Near (Xg, Zg) =
(Xt9> Z1,), we have coordinates {Z/ }dlmAd(K)Z n Ad(K)Z. We may assume that Z; is
an immersion at Z because the set {t | |d7t| = 0} does not contribute to the arclength
of Z; and furthermore up to a change of coordinates we may assume that —t = 577-On
this coordinate patch U, we obtain the function Bj: p xU — R defined by B (x”, /! ” zZ") =
dBx», Z”)(%)- Along the curve 7 + (X;, Z;), the function B; is identically O (where
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defined) since Z; maximizes B(X;,-) on Ad(K)Z. Differentiating B;(X;, Z;) = 0in¢,

we obtain 3 3 3 5
_ ) _ 1 1
0= dB’(X“Zf)(aXI’aZl) - aBjX * 8B,Z '

Observe that
KT (A a
aBJ fet 321 BZJ (Xt,Zt)
= Hess(B)(i, i)
aZl aZ] (thZt)

ad 0
= HeSS(B(Xh'))(a?’ 87) P
Zi

so by Corollary 3.15 we have

’—Zl > 0o

d d
0z 0z

In particular, along (X, Z;) and setting j = 1, we have

== )| o ) <
since axil is a unit vector. We obtain for all ¢
EApEE
0Z1| ~ wplo
and the claim is proven. ]

4.5. Projecting curves in G to X

In this subsection, we prepare to estimate the length of curves in X which are images of
curves in G under the orbit map. We begin by comparing the speeds of two such curves
related by right translation. We apply this result in the next section to Lemma 4.10 for a
curve in K, and in the following section to Lemma 4.11 for a curve in the subgroup N;.

For an element g € G, we let [g: G — G, Iz (h) = gh denote left translation and
rg: G — G, rg(h) = hg denote right translation. We denote by conj,: G — G the
conjugation map conj, (1) = ghg™!.

Lemma 4.9. Let g: R — G be a curve in G, let h € G and let p € X. Write q5(s) =
g(s)hp. Ifg(s) = (dlg(s))le; then

|Gn ()] = levy Ad(h™") X;].
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Proof. The curve gj,(s) = g(s)hp has the same speed as c¢;,(s) = h~ ' g(s)hp since h™! is
an isometry. Writing
cp(s) = p oconjy-1 0g(s)

and differentiating with respect to s we have

cn(s) = (dorby)j-144 0 (dconjj-1)g(s) © £(5)-
Forany a,b € G and X € T1G, we have

(dconjp)p(dlp)1 X = (dlg)pa-1 (dry V)p(dlp) X
= (dla)pa—1(dlp) =1 (dI7 ) 1(dla) g1 (dr; )1 X
=dlp,-1 Ad(a)X.

We also have (d orb,),(dls)1 = dap(dorby)q, soif g(s) = dlg(s) X, then
¢r(s) = (dorbp)p-145 0 (dlp-141)1 Ad(h™") X5 = (dh™'gh),(dorby); Ad(h™) X;.
This implies
|G ()] = |€n(s)| = |(dorby)1 Ad(h™1) Xs| = [ev, Ad(h™") X

and completes the proof. ]

4.6. Weyl cones forming small angles

In this subsection, we show thatif g € V(p,st(t), o) and r € V(p,st(t’), o) with d(p,q)
much larger than d(q, r), the midpoint of pgq is close to V(p, st(z’), ap). Recall that the
Weyl cone V(p, st(t), ) is defined to be the closed cone at p of the «g-star of T (see
Section 3.9).

Lemma 4.10. Let p,q,r € X. Suppose that pq is an (g, T)-regular geodesic ray with
d(p,q) =2l andd(q,r) < D. Letm = mid(p, q), K = Stabg (p) and suppose moreover
that

_ D(KO + Ol()) > o

oy >0

T —p %

and

1
E(ezkol’ — 1)[sinh(arg (21 — D))] 72 < 30D,

Then there exists k € K such that km € V(p, st(t(pr)), ag) and d(m, km) is at most
2DekoP~aol,

The first inequality guarantees that pr is tpo-regular so that T(pr) is well defined.
The second requirement looks strange and involves an arbitrary choice, but is extremely
mild and serves our purposes well. (When we apply this lemma, we will have a bounded D
and a large /.) Compared to other variations of Lemma 4.10 we could present here, the
given version has a less cuambersome upper bound in the conclusion of the lemma.
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Proof. We may assume that d(p,q) =2/ and d(¢q,r) = D.Letc: [0, D] — X be the unit-
speed geodesic from ¢ to r. We have [ large enough that Lemma 4.5 implies that each ray
pe(t) is (g, Tmod)-regular and defines a simplex t; := t(pc(t)). We may decompose

é(r) = Nc(t) + TC(t)v

so that T, is tangent to V; := V(p, ost(r;)) and N, is normal to V;. Recall that
for t € Flag(tmoa) we let £, denote the infinitesimal stabilizer in ¥ and let ¥° denote
(¥-)* with respect to the restriction of the Killing form to . For each ¢ there is a unique
X; € £ C T1K such that ev.) X; = N¢(), and we extend each X, to a right-invariant
vector field on K. We may view this time-dependent vector field as vector field supported
on a compact neighborhood of [0, D] x K, so it defines a flow and in particular a curve
k:[0, D] — K with k(0) = 1 and k(t) = (X)x() = (drrey)1 Xr.

Viewing ¥ as T7 K, it is convenient to set X; = Ad(k(¢))Y; and work with the time-
dependent tangent vector Y; € £7. We have k(t) = (dlg@))1Y:, so we may extend Y; to
the unique left-invariant vector field agreeing with X, along k(¢).

We may now write ¢(t) = k(t)v(t) where v(r) € V(p,st(r), ) (see Figure 5). Since
Tery = (dk(2))v()V(¢) we have [v] < |¢], so

d(k()v(0), k(t)v(1)) = d(v(0), v(1)) <t < D.

Setting g (t) = k(t)g, we have |§(¢)| = |ev4 Y| by Lemma 4.9, and by Lemma 4.4 (3) we
have

20evg Yil* = |Velf = |Yil3, < e2K°’|Y,|§vm = e Qlevy() Yi|* — |V¢[3),  (4.1)

where |Y,|% = B(Y;,Y;) is nonpositive.

Tt

Figure 5. Weyl cones forming a small angle.
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For large /, the evaluation of Y; at v bounds the Killing form norm of Y;: We choose a

maximal flat containing p and v = e“ p and, suppressing 7, write Y; = Y ac AT Yo + Yy
with ¥, € g, and compute
levy Y|? = levp Ad(e= )Y, by Lemma 4.4 (2)
= Z |(e0‘(A) — e_a(A))evp Yw|2 since Yy + Y_o € kerev,
acAT
1 a(d)  —a(A\2y |2 since the restricted root space
== — Y,
2 Z (e ¢ ) Ya |BI’ decomposition is Bj,-orthogonal
aEA:
1 . 2 since a(A) > af (2] — 1)
> = 2sinh(a (2] —1))]"|Yal} -0
=3 Z [ sin (aO( ))] | Olpr by regularity
aeAT
I . 2
= 5[2 sinh(ag (20 —0)]" Y |Yalp,

aeAT

| 2

1[2 sinh (g (2] — t))] (—|Y|f;).

This bound —[sinh(ag (2] — 1))]*|Y|3 < |evy() Y¢|* together with (4.1) implies
20evg Y[ < e¥2fevy ) Yi[? — (2P = D)|Yi[3

1
< 2levon i |2[e2K°' + 5 (€ — fsinh(o (2] - z))]—z].

We now write m(t) = k(t)m where m = mid(p,q) = ¢! p for W € p. For t > 0,
using «(W) > g > O forall « € A;r and Lemma 4.9, we have

i (t)]* = levy, Ad(e™ 7)Y, |

1
3 L (O

aeAf

< % Z [(e2la(W) _e—21a(W))e—la(W)]2|Ya|%p
aeAT
aeAT

= e720ljg()?

1
< o2l [eZKO’ + 5 (€9 — Dfsinh(op (21 - z))]—Z].
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The length of m is then

D D
1
f lrin(1)]dt < / e“""’\/ e20f + —(e20! — 1)[sinh(erg (21 —1))]~2dt
0 0
D
< / e—aol e2koD + 3e2«0D {y < 2D€K0D_a()la
0

and k(D) is the desired isometry. |

It is possible to give a slightly stronger upper bound in Lemma 4.10, but the improve-
ment would be inconsequential when we apply this lemma in Section 5 while making the
already cumbersome statements even harder to read.

4.7. Strongly asymptotic geodesics and Weyl cones

The next estimate says that a point far along an (¢, 7)-regular geodesic ray gets arbitrar-
ily close to any given parallel set P(7, 7). The following lemma is a quantified version of
[19, Lemma 2.39].

Lemma 4.11. Letq € X and let n € dX be (ag, T)-regular. Let P = P(T, 1) be a parallel
set with d(q, P) < D, and let p € P be the unique point on the horocycle H(q, t). Then
for all | > 0 the geodesic rays pn and qn satisfy

d(pn(l),qn(l)) < De 0Pl

It is possible to prove (a slightly weaker variation of) Lemma 4.11 as a limiting case
of Lemma 4.10, or to construct a curve in N; in a similar way as we constructed a curve
in K in Lemma 4.10. However, we give a direct proof here using the generalized Iwasawa
decomposition (see Section 3.11).

Proof. We may assume that d(q, P) = D. By abuse of notation, let g: [0, D] — X be
the unit-speed geodesic segment from ¢ to its nearest point g € P.Let G = N; A K be
the generalized Iwasawa decomposition associated with p and 7 (see Section 3.11). Since
N x A; = X, (u,a) — uap is a diffeomorphism, we may write ¢(s) = u(s)a(s)p for
unique curves u: [0, D] — N; and a: [0, D] — A.. Note that u(D) = 1 = a(0), since
horocycles at T meet parallel sets P(7, 7) in exactly one point.

Writing ¢;(s) = C(s,t) = u(s)a(t) p we have g(s) = C(s,s) = cs(s), so

. d 0 . 9
CI(SO) = %Sho,s‘o + %”So,&‘o = Csp (SO) + %”So,so

and these vectors are orthogonal, so each has norm bounded by 1. The curve ¢t — a(t)p
has speed bounded by 1 since

0 d
%”so,to = d“(So)Ea(f)Ph:to,
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sod(p,a(t)p) <t < D. We write 1(s) = dl5)Us and use Lemmas 4.1, 4.4 and 4.9 to
obtain

. 1 1
|co(s)] = levpUs| = —2|Uspr < —= e PaOP|y g

V2 V2

_ eKOd(P,ll(S)P)lés(s)l < gkos,

a(s)p

We next need to push this horocyclic curve towards t and check that the length
shrinks by at least e/, Let X € p be the unit vector so that gn(t) = u(0)e'X p. By
abuse of notation, define the curve r,(s) = u(s)e’X p from gn(t) to pn(t) and note that
r1(0) = u(0)e!X p = gn(l) (see Figure 6). We have shown that the speed of ro = ¢ is at
most e“0% and we may conclude after we show that

7 ()] < e |ro(s)]

in the next paragraph.
Define curves Uy (s) € g, by u(s) = (dlys)1 ZaeA;r Uy (s) and using Lemma 4.9
write

evp Ad(e™¥) Y Ua(s)

aeA}*’

evp Z e Xy, (s)

acAT

1 -
= 72‘ Y e @Y, (s)
OtEA:r

1
< —e Z Ua(s)
ﬁ aeAT

= e_a°t|r'0(s)|TC(S)X.

|’:t(s)|Trt(S)X =

Tp

T, X

Bp

Bp

Integrating this inequality bounds the length of r; by De 0Pl and completes the

proof. ]

q = q(0) = co(0)

gn(l) = r(0)

Figure 6. Strongly asymptotic geodesics get close at an exponential rate.
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It is possible to give a slightly stronger upper bound in Lemma 4.11, but the improve-
ment would be inconsequential when we apply this lemma in Section 5 while making the
already cumbersome statements even harder to read.

The following lemma is a quantified version of [19, Lemma 2.40].

Lemma4.12. Let p,q,x € X with pq an (¢, T)-regular geodesic segment and d(p,q) > 1
andd(p,x) < D.If

D(ap + & D 2
ao——(0+ 0)201() and —fé—g,
Il —-D (Xool Ko

then
d(q, V(x,st(r),aq)) < DekoD—aol

Proof. Let n € ost(t) such that pg(+00) = 5. Let y be the unique point in the intersec-
tion P(Syz,7) N H(p, 7). The point ¢’ on the image of yn such that J(y,q/) = c?(p,q)
satisfies d(q,q’) < De*oP~0! by Lemma 4.11. We will prove the lemma by showing that
xq' is (o, T)-regular.

Choose chambers o, ¢’ so that yg’ € V(y,0) and xq’ € V(x, 0’). Then there is a
unique (restricted) isometry g: V(y, o) — V(x,0’) by Theorem 3.10 and

d(gq'.q") = |d(x,2q") —d(x,q)| = |d(y,q') — d(x,q")| < d(x,y) < D.

Now both ¢’ and gq' lie in the same Euclidean Weyl cone V(x, 0’) with d(q’, g¢') < D
and the geodesic segment from x to gq’ is length at least [/ and (o, Tmod)-regular, so
Lemma 4.5 implies that xg” is (¢, Tmoa)-regular.

We conclude by showing that xq’ is t-regular. By Lemmas 4.7 and 4.8, we have that
4 (x,y) < ’E l < g‘;, SO 4§ (x,7) = 7w — &({moa) by Lemma 3.23. Since Syt = Sy 7 is

the unique antipode of r in the boundary of P(St, 7), it follows that x¢g’ is t-regular. =

4.8. Projecting midpoints to Weyl cones

We combine the previous Lemmas 4.10, 4.11 and 4.12 to show that a long regular geodesic
segment in a bounded neighborhood of a Weyl cone has its midpoint arbitrarily close to
the Weyl cone.

Corollary 4.13. Let p,q,x € X with pq an (oo, Tmoa)-regular geodesic segment with mid-
point m, let T € Flag(timoq) and let V =V (x,st(t)). Assume that d(p,x) < D,d(q,V)<D
and d(p,q) = 21. Suppose that
(1)
_ 2D(ag + ko) > a) >0,
[—-2D
(2)
%(e‘“‘"D — 1)[sinh(ay (2] —2D))]72 < 3e*P  and
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(€)] 5
2 Db _%
Ol(/)é'() I~ K02
then
d(m, V(x,st(t), ap)) < 5De?0P—e0l

Proof. Since d(q,V) < D and the Hausdorff distance from V' to V(p, st(z)) is at most D,
we have d(q, V(p,st(r))) < 2D. We may now apply Lemma 4.10 together with assump-
tions (1) and (2) to see that there exists m’ € V(p, st(t), ag) with d(m,m’) < 4D e2¥oD—aol
andd(p,m’) =d(p.m) > [.

By assumption (1) and (3), the bound d(m’, V(x, st(t), a})) < DeXoP=%!l follows
from Lemma 4.12. By the triangle inequality,

d(m,V(x,st(r), ) < d(m,m’) +d(m', V(x,st(r), )

S 4De2K0D70101 + DeKoD*O{Ql S 5De2K0D70[()l‘ n

4.9. Simplex displacement after a short flow

Recall that we have fixed a model type { = (o Spanning ty,0q (see Definition 3.14 and
Section 3.9).

Lemma 4.14. For any point p € X, simplex t € Flag(tmeq) and transvection vector X € p,
it holds that

! Ko
smzlf,(r,eXt) < 7|X|BP'

Proof. Denote by f; the Busemann function associated with the ray from p to ¢(z) and
write grad f; for its gradient (see Figure 7). Then

Ag(r, eX7) = Zp(grad f;, grad f,x )
and | |
sin Eép (grad f;, grad f,x,) = EdTpX(gradff, grad f,x,).

Let Z € p be the unit vector so that ev,Z = (grad f;),. Decompose X = U + Y
according to the generalized Iwasawa decomposition g = ¥ + a; + 11, so that flowing by Y
fixes T and therefore commutes with grad f;, and flowing by U fixes p (see Section 3.11).
We may write X = A + Y ca+(—Xo + 0pXy) and U = ) cp+ (Xo + 9 Xq), s0
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grad f;

grad fix .

p

Figure 7. Simplex displacement.

|K|p, < |X|B,. At p we have

3 erad fux plimo = (%) 2rad o) im0

= (£_x-grad fo),

= [-X", grad f],

=[(—X +Y)*, grad f¢],

= [-U" grad f],

= (£_y-grad fo),

@)@ fo)ew, — (@ fo),
t—0 t

. (de'V)(grad fy), — (grad fr),
= lim
t—0 t
—im (de'Y)ev,Z —ev,Z
t—0 t
i &2 Ad('Y)Z —ev,Z
t—0 t
=ev,[U, Z],.

Since we assumed nothing about the relationship of X and 7, we see that for all ¢’ € [0, 1],

d
- ‘ a((etx)*gradfef”‘r)l’hzo

<IlU.Z]|, < kolU|B, < ko|X|B,.

d
4 &rad for ple—e
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where we used Lemma 4.3 in the second inequality. Finally, we obtain

1
d
|gradfr - gradfexrlTpX = / ‘_gradfe’Xr
o Idt Ty

L4 = kol X,
which completes the proof. ]

4.10. The distance to a parallel set bounds the {-angle
Corollary 4.15. Let p, q be points X and t, ' € Flag(tmoa). If d(p.q) < 2, then

<2,
128 (,7) = 28 (x, 7)) < 4sin”! (KZ—Od(p,q)>.

Proof. Write ¢ = e~ X p for X € p. We use that ¢-angles are G-invariant, the triangle
inequality for quadruples in (Flag(zmoq), 45,) and the simplex displacement estimate given
by Lemma 4.14:

}lé(t, ) — ZEI(‘E, )| = |l§(‘[, ) — lg(exr,ext’)‘
< ég(r, eX1) + éf,(r’,ext/) < 4sin~! (%|X|Bp).
Since |X|p, = d(p,q), we are done. |

We will often apply Corollary 4.15 in the following form. This result is a quantified
version of [19, Lemma 2.43 (i)].

Corollary 4.16. Let 1, 1_ be antipodal simplices in Flag(tyoq) and let P = P(t—, t4)
be the parallel set joining them. Let p be any point in X such that d(p, P) < % Then

£t t4) = 7w —dsin”! ("—z"d(p, P)).

Proof. Since Zg (t—,t4+) = & for any ¢ € P, and in particular the projection of p to P,
the assertion follows immediately from Corollary 4.15. ]

4.11. The ¢-angle bounds the distance to the parallel set

We continue to work with a fixed (g, Tmoq)-spanning type { = {nog and from now on
assume that ¢ is t-invariant (see the discussion after Theorem 3.10). The next lemma com-
plements Corollary 4.16: When the ¢-angle at ¢ € X between simplices 7+ € Flag(timoq)
is near 7, the point ¢ is near the parallel set P(7_, 7). In the proof we use the fact that a
vector field X is Killing (if and) only if for all vector fields V, W on X, we have

X(V. W) =([X.V].W) +(V.[X, W]),

see [26, Proposition 9.25]. The result in the following lemma is a quantified version of
[19, Lemma 2.43 (ii)].
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2

Lemma 4.17. Let 7+ € Flag(tmeq) and let g € X. If § < % and éé (t—,t4) =7 — 6,
0

then t4 are antipodal and d(q, P(1—, 14)) < 8/Co.

2 2
Proof. Since Ag (t—,14) > m — % > — i—oz, Lemma 3.23 implies that the simplices
0 0

7_, 74 are antipodal.

Write ¢4 for the unique ideal points 74 of type ¢, and choose Busemann functions fi
at ¢+. For all p € X we have cos éf,(r_, 74) =cos £Lp(¢—,¢4) = (grad f_, grad f ),. Let
q € P = P(t—,t4) be the nearest point on P to g, and let X € pg such that ¢(1) = !Xy
is the unit-speed geodesic from g to ¢ (see Figure 8). Either Z,({—.q) > 5 — % or
24@q.84) = 5 — %, so without loss of generality we may assume the second inequal-
ity holds. Let f: (—o00,00) — [—1, 1] be defined by f(s) = (=X, grad f )¢(s) and note
that f(s) = cos Z¢(5)(q, ¢4+) for all s > 0. We first show that f/(s) > 0 for all 5, so f is
(weakly) monotonic.

At the point c(s), we have X € p.(s) since X is a transvection along c. The point ¢(s)
together with a fixed choice of chamber containing 74 allows us to decompose X accord-
ing to the restricted root space decomposition. Suppressing the dependence on s, we have
X=A4+4+)  cr+ —Xo +VXy. Then for U = )", cp+ Xo + VX, and the unit vector

Z € p(s) pointing to {, we see that

f(s) = X™ (=X, grad f4 ) (s)
= (X", [X", grad f4])e(s)
= (=X" (U, Z]")c(s)
= B(—X»_[U» Z]g)

=B(A+ Y —Xpg+0Xg. Y a(Z)(Xa —¥Xa))

BeAt aeAt
= > AZ)B(Xo — ¥Xa. Xa — 0 Xy)
aeAt
> Lo ) |—Xa + 9Xel3-
aeAF

a eim(r_)/L/ l ¢, € int(ry)
7P =+P(L, ‘[I)

Figure 8. The ¢-angle at ¢ bounds the distance to P.
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The third line follows from the reasoning in the proof of Lemma 4.14. This calculation
shows that f’(s) > 0 for all s. Moreover, since X * is orthogonal to P (g, t) at s = 0, we
have 1 = [ X2 = Yyept I~ Xa + 0Xol3. 50 £/(0) = Lo

We next bound the norm of

f"(s) = X*(X*(—X", grad f1.))e(s)
= (—X* [X* [X*, grad f4]])e(s)
= (—X*,[X*, [U*, grad f]])c(s)
= (—X*.[U*. [X*. grad f1 ])es) — (X*. [[U, X*]. grad 1) eqo)
= (—X*,[U*, [U*, grad f]])e(s) + (X*, [U™, grad f1])es)
= Be(s)(= X, [U.[U. Z])) + Bes)(X.[U’. Z])
= Boo(IU, X1, [U. Z]) + Bo)([X. Z], U,

where [U, X] = U’ + A’ + N’ according to the KAN decomposition for ¢(s) and 74.. We
get the bound

|/7()] = [Bes)([U. X1, [U. Z]) + Be(s) ([X. Z]. U
< [Be(oy(U. X1 [U. ZD| + | Be(s) ([X. Z]. U")
= |lU. X1l IlU. Z]|B.(,, + |[X. Z]|B,(, IU' |8,
< 2/{3
by applying Lemma 4.3.
Since f(0) > o and | /" (s)| < 2«2, we have f(s) > s{o — k2s>. Since f is mono-

2
tonic, if s > 2% then f(s) > f(%) > S0 On the other hand, if s < §—°2 we have
0 0

- 4lcg' 2k}
F(s) = Cos — k2(2%)s > L¢os. This implies
0 2/(0 2 p
1 8 8 ]
Efod(q, P) < f(d(gq, P)) = cos 45(57, 74) < cos (% — E) = sin (5) < 3
2
unless d(q, P) > 2%, which yields 2% < § and contradicts our assumption. |
0 0

5. Quantified local-to-global principle

In this section, we augment the theorems of [19, Section 7] with quantitative estimates. We
obtain a precise version of the local-to-global principle which allows us to perturb known
Anosov representations by a definite amount, producing new Anosov representations in
Section 6.

In rank 1, local quasigeodesics of sufficiently good quality are global quasigeodesics.
This naive version of the local-to-global principle fails in the Euclidean plane, hence in
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higher rank, so we must use Morse quasigeodesics as defined in [19]. The strategy here,
as in [19], is to show that local Morse quasigeodesics of sufficiently good quality have
straight and spaced midpoint sequences which are then globally Morse quasigeodesics.
First we give an explicit local criterion for a sequence to be a Morse quasigeodesic.

5.1. Sufficiently straight and spaced sequences are Morse quasigeodesics

We recall some definitions from [19]. A sequence of points (x;) in X is (®g, Tmod, €)-
straight if each geodesic segment x, X, +1 1S (g, Tmod)-regular and if

Zin (Yn—1,Xn41) Z T —€

for all n. The sequence is s-spaced if d(xy, x,4+1) > s for all n. A sequence (x,) is said
to move e-away from a simplex t if for all n

chn (t,Xp41) =7 —€.

In this paper, we are only interested in discrete sequences of points in X. For us, a
(c1, c2, €3, c4)-quasigeodesic is a sequence (x,) (possibly finite, infinite or bi-infinite)
such that |

C_|N| — 2 =d(Xn, xp4N) < |Nez + ca.
1

A sequence (xp,) is (c1, c2)-coarsely spaced (or lower-quasigeodesic) if
1
C_|N| —¢2 < d(Xp, Xn+N).
1

Likewise, (x;) is (c3, c4)-coarsely Lipschitz (or upper-quasigeodesic) if
d(xn, Xn4+n) < |Nc3 + ca.
For an (&g, Tmoa)-regular segment pq, the (g, Tmoa)-diamond is the intersection

Ouo (P, q) = V(p,st(t(pgq)),ao) N V(g,st(t(gp)), xo).

A quasigeodesic is (&g, Tmod, D)-Morse if for all x,, x,, there exists a diamond
& = Ouo (P, q) such that d(p, x,),d(q, xm) < D and foralln <i <m, d(x;,<{) < D
(see Figure 9). In rank 1, quasigeodesics are automatically Morse by the Morse lemma.
In higher-rank symmetric spaces of noncompact type, the following theorem allows us to
establish the Morse property for sufficiently straight and spaced sequences.

There are a few variations of the precise definition of Morse quasigeodesic in the
literature. The definition of Morse quasigeodesic here is the same as that given in [20,
Definition 5.50], except that we keep track of more constants in the definition of quasi-
geodesic. This is the same as [19, Definition 7.14] except that we work with sequences
rather than paths. Likewise, [17, Definition 6.13] defines paths to be Morse quasigeodesics
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V(g,st(z(gp)), @o) V(p,st(z(pq)),ao)

o (P2 9)

Figure 9. The (¢, Tmoq)-diamond with endpoints p and g.

when they satisfy a similar and equivalent, but not identical, property as the one we have
given here (the constants will be different).
Define the constant
co = Z dimg,,,

+
acA Tmod

equal to the codimension of any parallel set of type ty,04- The inequality cy > 1 always
holds. Theorem 5.1 is a quantified version of [19, Theorem 7.2]. The constant k¢ is
defined and computed in Section 3.3. Any choice of {04 has some regularity parame-
ter {o = min{c({moa) | @ € A;tm ,J- For minimal (-invariant faces tmoq these are computed
in Section 3.10.

Theorem 5.1. Fix oy < @, S and assume € is small and s is large. Precisely, we assume
that:

2

(1) 5¢ < % so that we may apply the angle-to-distance estimate in Lemma 4.17;
0

(2)

€K €
062K0€/§0_a05 < sin (Z)

%o

so that we may apply the distance-to-angle estimate in Lemma 4.16;

3

%o
to control the distance from the sequence to the parallel set;
“
o — 28(ato + ko) o
0 s _28 — Gnew

so that certain projections are (Qnew, Tmoa)-regular by Lemma 4.5;
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&)

2¢ + sin~! ( ) < e(%)

so that certain simplices are antipodal (see Section 3.13).

eI

Then every (g, Tmod, €)-straight s-spaced sequence (x,,) in X is §-close to a parallel
set P(t—, t4) such that
Xntm € V(Xn, st(T+), tnew)

for all n and m > 1. It follows that the sequence is coarsely spaced:
d(Xn, Xnam) = 20ewoCo(s — 28)m — 28,
and if (xy) is coarsely Lipschitz it is then an (Qnew, Tmod, 8)-Morse quasigeodesic.

Our proof closely follows [19, Section 7], who prove the same theorem without the
explicit assumptions (1) through (5) and without the explicit estimates we obtained in
Section 4. Note that the resulting sequence will always be 2%-01056: to the parallel set,

0

even if § is chosen larger than that quantity.

Proof. Step 1. Propagation, cf. [19, Lemma 7.6]. For sufficiently straight and spaced
sequences, the property of moving away from a simplex propagates along the sequence.
Assume that for some simplex t in Flag(tyoq) We have Lio (t,x1) = w — 2e. Since

2
2e < ;’% by assumption (1), Lemma 3.23 implies that the simplex 7p; containing
0

Xxox1(4+00) is antipodal to 7 and together they define a parallel set P = P(z, t91) (see
Figure 10). Moreover, assumption (1) and our angle-to-distance estimate, Lemma 4.17,
imply that d(xg, P) < %—g By Lemma 4.11, the geodesic ray from x¢ through x; gets

arbitrarily close to P and in particular

)

d(xl P) < 2_682K0€/Z0—0[0S
T b

and by assumption (2) and the distance-to-angle estimate, Corollary 4.16, we have

. —1(€kKo _
Ail (t,701) = m — 4sin” ! (—ez""e/zo "‘OS) > —€,
0

RY)
X1

T [ {(xo0x1) € To1

P = P(‘L’, ‘[01)

Figure 10. “Moving away from t” propagates along the sequence.
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which then implies that 42 (t,x0) =7 — Ail (7, 701) < €. Straightness and an application
of the triangle inequality for (S (7%, X), Zx,) imply Ail (t,x2) > m — 2¢. By induction,
we have that éin (t,xp41) = —2eforalln > 1.

Step 2. Extraction, cf. [19, Lemma 7.7]. We extract antipodal simplices that the sequence
moves away/towards. It follows that the sequence stays near the corresponding parallel
set.”

For each n, define the compact subsets CnjE C Flag(tmoq):

Cf = At | Z5, (t4, Xam1) = 7 — 2¢).

Each of these is nonempty since lin (XnF1Xn, Xn¥F1) = 7 implies t(x,F1X,) € Cni. By
Step 1, C, C C,,, so there exists 7_ € (), C,,". Similarly, there exists some 74 € (), C,}.
Straightness and the triangle inequality imply Ain (7=, 74) = m — 5¢, and by assump-
tion (1) we have 5¢ < % Therefore, the angle-to-distance estimate, Lemma 4.17, implies

that 7 are antipodal and define the parallel set P = P(t_, 74+) and moreover
S¢
d(x}'h P ) S o S 8
So

with the last inequality from assumption (3).

Step 3. Morseness, cf. [19, Lemmas 7.9 and 7.10, Corollary 7.13]. We verify that the
sequence is a Morse quasigeodesic. We have already shown the angles are straight enough
to guarantee that the distance to P is bounded. We show that projected rays land in nested
cones; it follows that projecting further to the -ray yields a monotonic sequence which
makes progress bounded away from zero.

By assumption (4), and Lemma 4.5, we have that the projections (X,) to P are
(Otnew, Tmod)-Tegular. Let & be the ideal point corresponding to the ray X,X,+1 (see
Figure 11). Since the rays x,& and X,& are asymptotic, their Hausdorff distance is at
most d(xp, X,) <8, S0 X,4+1 is at most 28 from x, &. Then

Ly o) = 2 (12, 8) = 24 (o xng1) — 28 (Xng1, )
> =2 — 25 (Xn41.).

By Lemmas 4.7 and 4.8, we may guarantee that

sin Ain (xn41,8) < ——,

so by assumption (5) this Tits angle is within &({) of m, so {(t—) is antipodal to (&), but
the only simplex in dP antipodal to 7_ is 74, so 7(§) = 74+ and

25 (1nFpg1) = 25 (1.6) = 7.

2The simplices are unique when the sequence is bi-infinite (see [19, Lemmas 5.15 and 7.19]), but this
theorem also applies when the sequence is finite or a Morse quasiray.
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§

§(XnXn+1)

P =P(t_,14)

Figure 11. The projection X, 1 lands in the Weyl cone V (X, st(t+), tnew)-

We know that X, X, 41 1S (0new, Tmod)-regular and 4%, (r—, &) = 7 and these two proper-
ties are equivalent to X,+1 € V(X,, st(t4), ¥new). Using the convexity of Weyl cones and
induction, we get that for all » and all m > 1

Xntm € V(Xn, st(t+), ttnew)-
Finally, we want to show the sequence is coarsely spaced. The bound
d(Xn, Xn+m) = 20newoco(s — 28)m — 28

will follow from
d(Xn, Xn+m) = 20thewloco(s — 28)m.

Indeed, the sequence (X,) in P is (s — 28)-spaced and has a monotonic projection (X,)
to the geodesic line X, ¢ (74 ) for any n by the nestedness of Weyl cones (see Figure 12).
By [8, Proposition 2.14.5],

B(t.d(%n. Tnt1)) = Y a((d (Fn. Xny1)) dimg,
aEA
> 20tpewlod (Xn. Xng1) | dimg,

ocEA,+

= 2apewbocod (Xn, Xn+1)-
It follows that the projection X, lies at least 20mewCoco(s — 28) along the ray X,¢. =

In the final step of the proof we used the regularity of the projections to obtain the
linear lower-quasigeodesic constant. When the angular radius of oy,,g With respect to ¢ is
strictly less than 7r/2, the linear lower-quasigeodesic bound can be chosen independent
of the regularity. By [16, Lemma 5.8], this happens exactly when ¢ is not contained in
a factor of a nontrivial spherical join decomposition of op,oq. In particular, this is always
possible when X is irreducible.
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X1 Xq

P =P(r_,ty)
Figure 12. Sufficiently straight and spaced sequences have monotonic projections to a geodesic ray.

Remark 5.2. To provide suitable auxiliary parameters to apply Theorem 5.1, we may first
choose € small enough to satisfy assumptions (1) and (3) subsequently, we can choose s
large enough to satisfy assumptions (2), (4) 2and (5). When we apply Theorem 5.1 in
Section 6, we will choose § = % and e = lg‘l’cz and then find a large enough parameter s
to satisfy the conditions of T heoroem 5.1. ’

Remark 5.3. Theorem 5.1 can be modified to deal with arbitrary t,,q-Weyl convex
subsets @, ® as well. Let ¢p = min{a(0O) | @ € A;fmd} and suppose that a ®-regular
sequence satisfies the hypotheses of Theorem 5.1. If in addition it holds that ® is con-
tained in the sin™! (25 )-neighborhood of ©, then Lemma 4.6 implies that the sequence is

s
(®’, §)-Morse.

5.2. Morse quasigeodesics have straight and spaced midpoints

In this section, we show that Morse quasigeodesics of sufficiently good quality have
straight and spaced midpoint sequences.

Definition 5.4 (Cf. [19, Definition 7.14]). For points p, ¢ in X we let mid(p, ¢) denote
the midpoint of the geodesic segment pg. A sequence (py ZZ;T“ in X satisfies the
(205 Timods €, 5, k)-quadruple condition if for all t1, 15,13, 14 € [to, tmax) N Z With £y — 11,13 —

ty,tq4 — t3 > k the triple of midpoints

(mid(p1, p2), mid(p2, p3), mid(ps, pa))

is (g, Tmod, €)-straight and s-spaced. (Here p(#;) = p;.)

Our next theorem says that sufficiently spaced points on Morse quasigeodesics have
straight and spaced midpoint sequences. In an effort to make Theorem 5.5 readable, we
have given up some control over the required spacing. For example, we use only one aux-
iliary parameter az,x to control the regularity as well as the crude estimate sin~! (x) < 7X
for 0 < x <1 (this follows from the fact that sin~!is convex). The following result is a
quantified version of [19, Proposition 7.16].
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Theorem 5.5. Assume that k is large enough in terms of Quew < 09, D, €, ¢1, ¢p and s.
To make this precise, we use auxiliary constants 1, 8, ayx and make the following
assumptions.

(1) Let k be large enough in terms of the quasigeodesic parameters so that if |N| > k
then d(xy,, xn+nN) > 21. Precisely, let k > c1(2] + ¢3). Our requirements on k
will manifest as requirements on [.

@

2
L D _8
Aauxlo [ Ko

1 < 6sinh(eruy (21 — 2D))?, and 5De2¥0DP—uwl < g

so that midpoints are §-close to diamonds by Lemma 4.13.

(3) We assume that 2z—“o'“(l -8 - D) > § to ensure that the midpoints are appropri-
ately spaced.

(4) We use an auxiliary parameter Qanx such that Qpew < Qaux < o,

b + 30D + 2K D
[—6—-2D

= 0 — Oaux

and
2KOS(Olaux + KO)

< _
2o — 8 — D) — 2ug8 — auwx ™ new:

so that certain perturbations of regular segments are regular by Lemma 4.5.

(5) We assume that

1 D | koS
oo T Goeno 20tam(l — 8 — D) — 30
PR S I + 208 < =
20tuxCo I — D 20hewlo [ — 8 4

to ensure that the midpoint sequence is straight.

Every (&g, Tmod, D)-Morse (c1, c2)-lower-quasigeodesic satisfies the (Qnew, Tmod €, 5, k')-
quadruple condition for every k' > k.

Note that in assumption (5), we have in particular assumed 27 ko8 < €, so the § which
appears in the proof is quite small. Our proof follows [19, Proposition 7.16] closely.

Proof. Let (q,,)ZZ?(‘)‘“ be an («g, Tmod, D)-Morse quasigeodesic and let #q, 15, 13, t4 €
[t0, tmax] N Z such that 5 — t1,t3 — 12,14 — t3 > k. We abbreviate p; := ¢y, and m; =
mid(p;, pi+1). We have d(p;, pi+1) > 21, d(m;, p;) > | and d(m;, pi+1) > L.

To show that the midpoint sequence is (0tpew, Tmod, €)-straight, it suffices to show
that the segment momy iS (Ctpew, Tmod)-regular and that 45,,2 (p2,m1) < €/2 under our

assumptions on k.
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The Morse property implies the existence of a diamond <g,(x1, x3) such that
d(x1, p1),d(x3, p3) < D and p, is in the D-neighborhood of <4, (X1, x3). The diamond
spans a unique parallel set P = P(7_, 74.). We denote by p; and 7; the projections of p;
and m; to P.

We begin by observing that m; is §-close to P as determined by the midpoint pro-
jection estimate Lemma 4.13: We have d(p1, x1) < D, d(p2, V(x1, ost(t(x1x3)))) <
d(p2, Cag(x1,x3)) < D and pj ps is (Haux, Tmod)-regular with d(p1, p2) > 21 and [ large
enough by assumptions (2) and (4):

d(my, P) < 5D 0P %l < g5

Next we look at the directions of the segments 77,7 and m,p, and show that they
have the same r-direction. Let x, be a point in g, (X1, x3) within D of p,. We have

d(p,, V(py,st(ty), ao)) < d(p2, V(P st(ty), o))
<d(p2,x2) +d(x2,V(py,st(ty),0p)) < 2D

since projecting to a closed convex subset is distance-non-increasing. If ¢ is the geodesic
from p; through p,, the function t +— d(c1(z), V(py,st(t+), p)) is convex, which implies
my is 2D-close to V(py, st(t4+), @p). We have d(m1, p;) =1 — 8 — D, so by using the
point in V(p;, st(t4+), &) within 2D of n; and Lemma 4.5 in the presence of assump-
tion (4), we obtain that m, € V(p,, st(t+), Qaux). Similar arguments show that 7, €
V(P,.st(t-), oaux), Or equivalently (by using the geodesic symmetry at mid(p,, p,)) that
D, € V(my,st(t4), daux). By the nestedness of Weyl cones, p; € V(p,, st(t—), ®aux) and
D2 € V(Dy,st(t4), daux). Similarly, m5 € V(p,, st(t4), taux) and p, € V(in2, st(t—), Qaux)
(see Figure 13). The convexity of Weyl cones implies that also 1y € V (3, st(7—), Qayx)-
In particular, 4%2 (Pp.my1) = 0.

It is convenient to show that the midpoint sequence is appropriately spaced at this point
in the proof, so that we can use the resulting estimate to control the regularity parameters
Caux and oey and the straightness parameter €. The inclusions 711 € V(p,, st(7—), Qaux)
and 7, € V(P,, st(t4), auyy) imply that d(my, mp) > 2 (d(my, py) + d(p,, m1)).

= ko

P1 P2 p3

\01/ \02-/ X3

P = P(‘L’_,‘L’+)

Figure 13. The projections satisfy p, € V(my, st(t4), daux) and ma € V(p,, st(t4), Caux)-
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Therefore by assumption (3), the midpoint sequence is appropriately spaced:

20

¢ WX (] —§—D)>s.
Ko

d(my,my) > d(my,mz) >

::x (d(my. ) + d(py. 1)) =

Using the previous estimate, Lemma 4.5 and assumption (4), we see that mom; and
Mo are (Onew, Tmod)-regular and mypy 1S (Caux, Tmod)-regular.
We may now demonstrate the bound 45,,2 (p2,my) < €/2. We have
2t (p2omy) = |28, (pamy) — Z5 (By. 1))
<L, (p2omy) = 25, (1)
+ Ly (P) = £y (1(i12). T (i) )|
+ |25, (202 Po), T (2im)) = Ly, (P 7).

By the triangle inequality for quadruples (in the metric space (Flag(tod), 45,,2)), we
have

|28, (p2.m1) — 25, Py )| < Z£8,(p2. Do) + 25, (my. 1)
1 1
— 2in”! (zdp(zl, zz)) 4 2sin! (Edp(z3, z4)),

where Z1, Z,, Z3, Z4 are the unit vectors at m, in the directions {(m3 p2), {(m2p,),
L(mpmy), C(momy), respectively. Let X1, X5, X3, X4 be the unit vectors at m, which in
the directions p», p,,m1,m1, respectively. Then by Lemma 4.8 and the angle comparison
to Euclidean space Lemma 4.7, we have

1 1 D
d(Z1,7,) < d(X1,X2) = $in =Zm, (P2, Pa) < —.
auxCO Olauxé-o 2 m2 (P2 P2 OlauxZO )
Similarly,
1 2 1 —
d(Z3,Z4)§ d(X3,X4) = sm—émz(ml,ml)
new S50 anewZO 2
1 K()(S

< .
 tnewlo 20tax (I — 8 — D) — kg
Again by the triangle inequality on (Flag(zyoeq), 45,,2),
|2ty (P T1) = L3, (202 5). T (0201)) |
< Lpy, (P2 1 0255)) + Ly, (i1 T (21)).

Asymptotic geodesic rays are bounded by the distance of their tips, so if we let ¢, be
the geodesic ray from m, to n2 p,(+00) we may use Lemma 4.8 to obtain

o o 1 d(p,,imcy) 1 )
—/8 , < < .
sin 3 mz(Pz t(m2p,)) < 20tanlo d(M2. Py) — 20mnlo | — D
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Similarly, by considering the geodesic ray c3 from 7, through m1,

1 d(ml,imcg) < 1 8

Olnewé-O d(mls m1) - zanewgo l _8

sin 24;20”1, t(maimy)) < 3

Write T = t(m,p,) and v/ = t(mym;). By the distance-to-angle estimate Corol-
lary 4.15,

|4fnz(f(m2ﬁ2)y T(n_12m1)) — 4%2 (ﬁ27m1)|
- |4’§"2(T’ ) - 4%2(1—, T/)} < 4sin”! (K?Od(mz,mz)) < 4sin™! (%)

Combining these estimates with the fact that sin! (x) < %x for 0 < x <1 yields

T 1 D 1 Kol
44 , < =
(p2 MI) -2 I:aauxgo + anewé‘o 20(aux(l —-38— D) - 8’(0
PR L +2 3] ¢
K p—
20axlol — D 2openlol —8 012

by assumption (5). For similar reasons émz (p3,m3) < 5, s0 émz (my,m3) > —€ as

desired. We have already shown that mym; is (Qpew, rmod)-regular and s-spaced. For
similar reasons the same holds for m,m3. This concludes the proof. [

Remark 5.6. To provide suitable auxiliary parameters to apply Theorem 5.5, we may first
choose any § < Zm( and any oew < Oaux < ®p. Then we may choose / large enough to
satisfy assumptions (2) through (5), which pr0V1des a suitable k via assumption (1). When

we apply Theorem 5.5 in Section 6, we set § = 20” and o,y = 0.8g + 0.20pew-

Remark 5.7. Theorem 5.5 can be modified to deal with arbitrary 7,,0,q-Weyl convex
subsets as well. Let ¢g = min{a(0®) | a € tmod} and suppose that (x,) is a (®, D)-
Morse (c1, cz)-lower-quasigeodesic. Let ®,yx and Oy be Tmeq-Weyl convex subsets
with oy = min{a(Oqa) | @ € AL} and ey = min{a(Opey) | @ € AL} such that
O is contained in the sin™? (1_28_ D)-neighborhood of ® and O, is contained in
the sin™! (#‘;_D))-neighborhood of @. If in addition (x,) satisfies the hypotheses
of Theorem 5.5, then Lemma 4.6 implies that it satisfies the (Opeyw, €, s, k")-quadruple
condition.

5.3. Local-to-global principle for Morse quasigeodesics

. . . =f.
An L-local (ag, Tmed, D)-Morse (cy, c2, €3, C4)-quasigeodesic is a sequence (x,,)Zzt'(‘)‘“‘*

in X such that for g < #; <t < tax With 1, — t; < L, the subsequence (x,,)ZZZ is an
(0, Tmod» D)-Morse (c1, ¢2, c3, 4)-quasigeodesic.

We now come to the main result of the paper. The following result is a quantified
local-to-global principle for Morse quasigeodesics. Theorem 5.8 says that for any fixed
quality of Morse quasigeodesic, there exists a large enough scale so that a local Morse
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quasigeodesic of that scale and quality is a global Morse quasigeodesic. It is a quanti-
fied version of [19, Theorem 7.18], stated as Theorem 1.1 in the introduction. We will
apply Theorems 5.1 and 5.5. While these theorems have cumbersome statements, finding
auxiliary parameters which satisfy the required inequalities is easy, as we discussed in
Remarks 5.2 and 5.6, and as we demonstrate in the next section.

Theorem 5.8. For any opew < g, D, 1, C2, C3, Ca, there exists a scale L so that every L-
local (atg, Tyod, D)-Morse (c1, ¢2, ¢3, ¢4)-quasigeodesic in X is an (0tyew, Tmod, D’)-Morse
(c1. 5, c§, cy)-quasigeodesic. Precisely, L = 3k is large enough if auxiliary parameters
Oaux» K, 8, 5, € satisfy:
(1) € is small enough and s is large enough to satisfy the conditions of Theorem 5.1
for anew < aﬂUX’ 8)

(2) k is large enough in terms of gy < g, D, €, c1, c2 and s to satisfy the conditions
of Theorem 5.5,

and the sequence has global Morse parameters
(1) D' =c3k + 3ca +6,
(2) (Ci)_] = 2Olnewé'OCO(S - 28)k_1,
(3) ¢, = 2anewloco(s —28) + 28 + 2c3k + 3ca,
@ cy=c3+ ¢

(5 ¢; = ca.

Proof. Let (x,,)gzigg be an L-local (ag, Tmod, D)-Morse (c1, c2, 3, c4)-quasigeodesic.
Theorem 5.5 and assumption (2) imply that each subsequence (xn)Z:ng satisfies
the (Xaux,» Tmod> €, S, k)-quadruple condition. In particular, the coarse midpoint sequence
My = mid(X,k, Xpk+k) 1S (00, Tmod, €)-straight and s-spaced. By Theorem 5.1 and
assumption (1), the midpoint sequence (71,) is an (Cew, Tmods 6)-Morse ((2etpewloco (s —
28))7!, 28)-lower-quasigeodesic. We now use the midpoint sequence as a coarse approx-
imation of the original sequence to show that (x,) is a global Morse quasigeodesic.

The subsequences Xk, Xnk+1s- - - » Xnk-+k—1> Xnk+k are (c3,cq)-upper-quasigeodesics
(because L > k), so they lie in uniform neighborhoods of each m,: If |t — nk| < %, then

d(mp, x;) < d(mp, Xnk) + d(Xnk, X1)

< d(xnkv xnk—i—k)

= 2 + d(xnk» xl)

C3 Cyq k 3
< —k+ = +c35 +c=c3k+ scq.
= P 32 4 3 24

In particular, (x;) iS (Qpews Tmod» P')-Morse for D’ = c3k + %C4 + 8. The midpoint
sequence is coarsely spaced:

d(mnvmn-i-N) > 2anew§0C0(s - 25)|N| — 28,
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so the original sequence is also coarsely spaced:

d(x¢, xp) = d(mp, my) — d(my, x¢) — d(my, X¢r)
> 20ewloCo(s —28)|n —n'| — 28 — 2¢3k — 3¢y
> 20newloCo(s — 28)k Lt — t'| — 20tmewoco (s — 28) — 28 — 2¢3k — 3cy.

Finally, if a sequence is (c3, c4)-coarsely Lipschitz on intervals of length L, it then satisfies
d(xp, Xn+N) < |N|(c3 + F) + ca and is (c3 + T, ca)-coarsely Lipschitz. [

6. Applications of the local-to-global principle

In this section, we give two applications of the main result (Theorem 5.8). We describe
two explicit neighborhoods of Anosov representations in SL(3, R), one for free groups and
another for closed surface groups. Each of them is constructed by perturbing a group act-
ing cocompactly on a convex subset of a totally geodesic hyperbolic plane in the associated
symmetric space.

We will need some further estimates in order to quantify these neighborhoods. First
we recall a standard proof of the Milnor—Schwarz lemma so that we may use the explicit
quasi-isometry constants it produces. We then give a version of the classical Morse lemma
that will be used in Section 6.3. In Section 6.1.3, we use elementary linear algebra to
control the perturbations of long words in a linear group that results from perturbing
the generators. We also relate the Frobenius norm on d x d matrices to the distance
in the symmetric space associated with SL(d, R). In the final two sections, we apply
the local-to-global principle, Theorem 5.8, to describe explicit neighborhoods of Anosov
representations.

As one might expect, straightforward applications of Theorem 5.8 as we have done
here will yield only very small perturbations. This is partially explained by the following
geometric difficulty. The Morse condition implies that the image of each geodesic in the
Cayley graph fellow-travels a unique parallel set. After perturbing the representation, one
expects the image of the geodesic to fellow-travel a new parallel set. For geodesics through
the identity, our techniques merely bound the distance from the perturbed geodesic to its
previous parallel set, so for it to fellow-travel for a long time, the perturbation has to
be extremely small. If we could identify the new parallel set it fellow-travels and bound
the distance to that parallel set, we expect that the perturbation bounds would improve
significantly.

6.1. Preliminary estimates

6.1.1. The Milnor-Schwarz lemma. In this subsection, we state and prove a standard
result in geometric group theory called the Milnor—Schwarz lemma. It is a source of con-
crete quasi-isometry parameters for nice enough actions of finitely generated groups, such



A quantified local-to-global principle for Morse quasigeodesics 61

as those we consider in Sections 6.2 and 6.3. The proof given here is taken directly from
Sisto’s lecture notes [30].

Lemma 6.1 (Milnor—Schwarz lemma). Let G be a group acting properly discontinuously,
cocompactly and by isometries on a proper geodesic space X. Choose any p € X. Then
the group G has a finite generating set S so that the orbit map at p is a quasi-isometry
from G with the word metric induced by S. In fact,

wl(g) <d(p.gp)+1, and d(p,gp) Srsneag{d(p,sz))}wl(g)-

Proof. Since the action is cocompact, there exists a constant R so that the G-translates of
Br(p)cover X.Let S :={g G |d(p,gp) <2R + 1}. Since X is proper, the closed ball
of radius R + % centered at p is compact, and since the action is properly discontinuous,
S={geqG| BR+% (p)N BR+% (gp)} is finite. Now let g € G. Choose a minimal geodesic
from p to gp, and subdivide it with points p; so that p = po, p1, P2,.-., Pn—1, Pn = &P
occur monotonically and for i = 0,1,2,...,n — 2, we have d(p;, pi+1) = 1 and
d(pn—1,pn) < 1. Foreach 1 <i <n —1 choose g; € G so that d(g; p, pi) < R and
set go =1idand g, = g. Thenforall 0 <i <n — 1, we have

d(gip.gi+1p) <d(gip.pi) +d(pi.pi+1) + d(pi+1.&i+1p) < 2R+ 1,

which implies that there exists s;4+1 € S so that g; 1 = gis;4+1. Forall 1 <i <n, it follows
that g; = 515253 --- ;. Therefore, g can be written as a product of n elements of .S, with
n—1<d(p,gp). It follows that S is a finite generating set for G and the word length
of g with respect to S is bounded above by d(p, gp) + 1.

We have shown that S is a finite generating set for G. Write g = g1 --- g, with g; € S.
Then

d(p,g18283-gnp) <d(p,g1+--gn—1p) +d(g1**"gn—-1P- 81" &n—18&n D)
=d(p,g1-++gn—1p) +d(p,gnp)
=d(p.g1p)+--+d(p.gnp)
< rgleagc{d(p,sz))}n,

so the orbit map at p is maxses{d(p, sp)}-Lipschitz with respect to the generating set S.
Note that by the definition of S, maxses{d(p,sp)} < 2R + 1. |

The previous lemma provides quasi-isometry constants in terms of only the constant R
so that the image of an R-ball covers the quotient. In return, we give up control over the
generating set. In particular, when we apply Lemma 6.1 to an action of a closed surface
group on the hyperbolic plane in Section 6.3, we will give quasi-isometry parameters with
a nonstandard generating set for the Cayley graph. We will need to control the Frobenius
norm of the matrices in our generating set by using Lemma 6.7.
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6.1.2. The classical Morse lemma. In Section 6.3, we will use the following version of
the classical Morse lemma to provide Morse quasi-isometry parameters for the orbit map
of a surface group acting on a copy of the hyperbolic plane. The following proof is adapted
from Bridson—Haefliger [5].

Theorem 6.2 (Classical Morse lemma, cf. [5, Theorem III.LH.1.7]). Let Do be an upper
bound for
{D|D—1<56[log,2D +2M?] + 6DMI +aM)|}

and set R = Do + IMDgy + IM? + S. Then:
If ( y,-)i:év is a sequence in a §-hyperbolic geodesic space Y with

d(yi.yj) =M|j—i| and [j—il=<ld(yi,y;)+a

then for all 0 < n < N, the distance from y, to a geodesic segment from yo to yy is
bounded above by R.

Proof. Let ¢: [0, N] = Y be the piecewise geodesic curve with ¢(i) = y;. Let D be
minimal so that the closed D-neighborhood of im ¢ covers the geodesic from p = yy to
q = yn. Choose a point xg on pq realizing D, and choose y,z on pq at distance 2D
from x so that y, xg, z occurs in order (if x¢ is too close to p, use p for y, and likewise
for z). Choose y’ on im ¢ within D of y, and choose z’ similarly. Choose i, j so that y’ is
on y;yi+1 and z’ ison y;_1y;. If ¢(t) = y" and c(¢') = z’, then the length of ¢ restricted
to the [¢,1] is at most

length(c|j,i17) < length(cly, ;) < M|j —i| < M[ld(yi,y;) + a].
Also,
d(yi.yj) <dyi,y)+d(y',y)+d(y.z) +d(z,2')+ d(z', y;) <2M + 6D,

and it follows that the curve ¢’ formed by following a geodesic segment from y to y’ then
along ¢ to z’ then along a geodesic segment to z has length at most 2D + M[I(2M +
6D) + a]. Proposition III.H.1.6 in [5] bounds D in terms of the length of ¢’ and §. In
particular,

D —1 < §|log,(2D +2M? + 6DM1 + aM)|,

which implies an upper bound Dy on D.
Now suppose that (y,,):zzj is a maximal (consecutive) subsequence outside the Dg-
neighborhood of pq. There exist s, s’ such that 0 < s < a’ and b’ < s’ < N within Dg of
the same point on pq, so d(c(s), c(s”)) < 2Dy. As before, by choosing m, n so that ¢ (s)

lies on Yy, Vm+1 and c(s’) lies on y, y,+1, we have that

length(c|[s,s7) < length(c|pm,n) < M|m —n| < MUd(ym, yn) +a)
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and

d(ym. yn) = d(ym.c()) +d(c(s),c(s") +d(c(s"), yn) <2M + 2Dy,

SO we obtain
length |51 < M[I(2Dg + 2M) + al.

It follows that R = Do + M[I(Do + M) + 5] is an upper bound for the distance from
any y, to pq. L]

6.1.3. Matrix estimates. In this subsection, we establish a few elementary estimates
related to the symmetric space associated with SL(d, R). We will control perturbations of
long words in a generating set in terms of the Frobenius norm of the generators. As noted
above, we use a nonstandard generating set for the closed surface group, so we also pre-
pare to control the Frobenius norm of the generators in that case. In Sections 6.2 and 6.3,
we combine these estimates with the local-to-global principle Theorem 5.8 to guaran-
tee that the Morse subgroups under consideration remain Morse after certain explicit
perturbations.

In the rest of the paper, we identify the symmetric space associated with SL(d, R)
with the space of real, symmetric, positive-definite matrices of determinant 1. We remind
the reader that we take the Riemannian metric to be induced by the Killing form, so
at the identity matrix, the Riemannian metric is 2d times the Frobenius inner product
(X,Y)p = trace(XTY).

Lemma 6.3. Let |-| be any submultiplicative norm on d x d matrices. Let w =
8182+ &k—18k be a product of k matrices, and let w' = (g1 + €1)(g2 + €2) -+ - (gr—1 +
€x—1)(gr + €x) be a product of perturbed matrices. Suppose that for all 1 <i <k,
|gil < Aand|ei| < e Ifk = 3and 551§ < 1, then |w' — w| < 2kAF'e.

Proof. We have

K k
w' —wl =[] +e)-[]e
i=1

i=1

=k
Z 8182 8i1—1€i1 8iy+1 " 8ij—1€i; 8ij+1 """ 8k

1<i <-<ij <k

Jj=1

k k o
< kA e 4 (Z)A"‘Ze2 et ( _)A"‘fef ot ek
J

a0

< 2k Ak e,

where the last line follows from the Taylor approximation (1 + %)k —1<k

k=1 (£)?, valid when < < 1.

g
s +
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We next relate the Riemannian distance in X to the B,-norm on the space of matrices.
Recall that when p is the identity matrix, B, is 2d times the Frobenius inner product. We
let B, be defined on all of gl(d, R) as 2d times the Frobenius inner product.

Lemma 6.4. Let g € SL(d,R) and p € X be the identity matrix. Then
dx(gp. p) < Vd(d —Dlg 1|5,

Proof. K = SO(d) acts on (gl(d, R), B,) by isometries on the left and the right, so
lg — 1|, = led — 1|, where

A

Ad

is the Cartan projection of g. That is, A is the unique diagonal matrix with A; > A, >
o> Agand A + -+ + A4 = O such that g = ke“k’ for some k, k' € SO(d). We have
|Al, = d(gp. p). Since —Aq < (d — DAy and A7 < (e — 1)?,

d
2 __ 2 _ 2
d(gp,p)* = |Alp, =2d Y 4

i=1

<2d2(d — 1)%22

d
<2d*(d —1)*) (M —1)?

i=1
=d(d —1)|e? - 13,
=d(d—l)2|g—l|%p. L]

In the following corollary, we control the distance between p’(y) p and p(y) p in terms
of the word length of y and the distance between p’(y;) and p(y;) for a generating set {y; }.

Corollary 6.5. Let I' be a group with symmetric generating set S = {y1,..., Y} and
let p and p' be two representations of T into SL(d, R). Assume that

(1) fori €{l,....n}, [p(yi)lr < A and |p(yi) — ' (vi)lre < € and
@) k>3and '€ < 1.
Then for any y € I" with ds(y,1) <k, it holds that

dx (o' (y)p, p(y)p) < V8d(d — )kA* e,

Proof. Letg = p(y)and g’ = p'(y) for ds(y, 1) < k. Since the Frobenius norm is submul-
tiplicative, we have Ig_1 g < A¥ and moreover because of the assumptions, Lemma 6.3
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applies and we obtain |g — g'|p: < 2kA*~1e. We see that

lg7'e — e =187 (¢ — g)lr
<lg7 ' nlg’ — glee
< AF|g' — gli < 2kA% e

Then by applying Lemma 6.4 to g~ ! g’, we obtain
d(g'p.gp) =d(g'g'p.p) <Vd(d —1)g'¢ — 1|5, < V8d(d — DkA*'c. m

In the next lemma we give a precise, quantitative version of the following statement:
If a representation p induces a Morse quasi-isometric embedding, then its perturbation p’
induces a local Morse quasi-isometric embedding.

Lemma 6.6. Let p, p':T' — SL(d,R) be representations and let S be a symmetric gener-
ating set for U. If d(p(y) p, p'(y) p) < € forall ds(y, 1) < k and if the orbit map of p at p
is an (&g, Tmod, D)-Morse (c1, ¢z, €3, C4)-quasi-isometric embedding then the orbit map
of o at p is a 2k-local (ag, Tmod, D + €)-Morse (c1, ca + €, ¢3, ¢4 + €)-quasi-isometric
embedding.

Proof. It d(p(y)p,p' (y)p) < e forall ds(y, 1) < k, then for every geodesic (yn)ﬁzlik in
I" of length 2k,

d(o' (yn) P, P (vo) p) = d (' (vg )P (vu) P, P)

is within € of d(p(yx)p, p(yo)p). Additionally, if (p(yn)p) is within D of Oy, (g, 1),
then (o'(ya)p) is within D + € of g, (0'(v0)p(vg g, 0/ (vo)p(vg H)r). In particular,
if p induces an (g, Tmed, D)-Morse (cy, 2, €3, ¢4)-quasi-isometric embedding, then p’
induces a 2k-local (og, Tmod, D + €)-Morse (c1, c2 + €, c3, ¢4 + €)-quasi-isometric
embedding. [ ]

When we apply the Milnor-Schwarz lemma we use the generating set S = {s € I |
d(p,sp) < 2R + 1}, and when we apply Corollary 6.5 we need to bound the size of the
generating set. The following lemma helps us do just that.

Lemma 6.7. Let p be the identity matrix in X4 and let g € SL(d,R) such that d(p, gp) <
2R + 1. Let |-|g; denote the Frobenius norm. Then

el < (2R+1)
gl < ex .
R V77

Proof. Combine

Igl7 = |gg" |, = |exploggg” |, <exp|loggg” |,
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and

d 1
V5| loggg" [ = >|logge |5 = ‘IOg \/ggT‘ =d(p.gp) <2R+1
2 2 » B,

to obtain

gl < l|1 T| - (2R+1)
. <exp—|lo < ex
&IF P2 £88 |k p Jod

6.2. An explicit neighborhood of Anosov free groups

In this subsection, we obtain an explicit nonempty neighborhood of Anosov free groups.
Let I'; be the subgroup of SL(3, R) generated by

et 0 0 cosht O sinht
g=[0 1 0. h=| 0 1 o0
0 0 e sinht 0 cosht

As in Section 6.1.3 we identify the associated symmetric space with the space of real,
symmetric, positive-definite matrices of determinant 1. Let p € X be the identity matrix.
Observe that I'q is a subgroup of a reducible copy of SL(2,R) C SL(3, R) preserving a
copy of H? C X containing p of curvature —% (see Section 3.4). We will directly estimate
the Morse quasi-isometry parameters of the orbit map at p on I'y.

The points p, gp, hp form an isosceles right triangle:

0 0 0 0 ¢
0 =2V3r=[l0 0 0 = d(p, hp).
t 00

t
d(p.gp)=1|0
0 —t

0
O BP BP

Write T = tanh(¢). If v/2T > 1, then I'; acts cocompactly on a closed convex sub-
set C of H?, with a Dirichlet domain C, (see Figure 14). The domain C,, is an octagon
with geodesic boundary and neighbors gCp, g7 C,,hCp,h™1C, in C. Since C is convex,
the minimum distance between any pair of neighbors is bounded below by the length of
an arc in C), joining non-adjacent edges. This has lower bound

_ . 1 T2 +/2T2 -1\ 1 14+2T~/1 -T2
c11=«/§mm t,=log| ——————=), = log| ———— | ;.
T2 - V272—-1) 2 1-2TV1-T2
We also set ¢3 = 24/3t. The orbit map is a (c1, 0, c3, 0) quasi-isometry. Set R =
V3tanh™! (v/T~2 =2 + 272). Then C is within the R-neighborhood of T'; - p and the

diameter of Cj, is 2R. The orbit map is R-Morse.
We are now in position to prove Theorem 1.2.

Theorem 1.2. Let 'y be the subgroup of SL(3, R) generated by

et 0 0 cosht 0 sinht
e=l0 1 of, n=| 0o 1 o [,
0 0 e sinht 0 cosht
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hp

hlp
°

Figure 14. The Dirichlet domain C, in the projective model for HZ2.

with tanht = 0.75. If T| is generated by g'. h' where max{|g — &'l |h — I'|p} <
10713309 sp0p '} is Anosov.

Before proceeding to the proof, we discuss how to choose suitable parameters in the
application of Theorem 5.8. There are a number of auxiliary parameters appearing in
Theorems 5.1 and 5.5. We will choose these auxiliary parameters in the same way in
Section 6.3. Because of the large number of auxiliary parameters, it is not clear how to
obtain optimal estimates, even when treating Theorems 5.1, 5.5 and 5.8 as black boxes.
The choices we make here are simply the result of selecting auxiliary parameters in a few
different ways and choosing the best result (smallest k) we achieved. We used a Math-
ematica notebook to verify the system of inequalities for each theorem. Recall that the
constants k¢ and o have been computed in Examples 3.5 and 3.21.

First we choose auxiliary parameters § = ;" and oy := 0.5 + 0. Sanew We apply

Theorem 5.1 with i,y < g and § = §° 5> by setting € = 1(§)

0
enough to satisfy the assumptlons of the theorem. In Theorem 5.5, for any choice of
auxiliary parameters Syyx < 5——— and any opyx < o, < to, there is a large enough aux-

01 P and

1hary parameter / to satisfy the assumptlons We select Saux 1= 0.1
ol = 0800 + 0.2015yx.

27rl<o
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Proof. As discussed earlier in this section, the orbit map of I'y is a (o, Omod, 3.18)-
Morse ((1.28)7!, 0, 3.38, 0)-quasi-isometric embedding. We relax the parameters, ask-
ing the perturbation to induce a 33,602-local (o, Omod, 3.28)-Morse (1, 0.1, 3.38, 0.1)-
quasi-isometric embedding. According to Theorem 5.8, such an orbit map is a global
(0.95¢0; 0imoa; 37,858)-Morse (91; 75,838; 3.38; 0)-quasi-isometric embedding.

If g',h’ € SL(3,R) satisfy |g — g’ |pr |h — | < 10715:3%° then for dr, (w, 1) <k =
16,801 we have d(p(w)p, p’(w)p) < 0.1 by Corollary 6.5, so p" also induces a 33,602-
local ($o, Omod, 3-28)-Morse (1, 0.1, 3.38, 0.1)-quasi-isometric embedding and therefore
its orbit map at p is a (global) Morse quasi-isometric embedding. In particular, g’, 4’
generate an Anosov subgroup of SL(3, R) and our proof of Theorem 1.2 is complete. m

6.3. An explicit neighborhood of Anosov surface groups

Let I'; be the subgroup of SL(3, R) generated by

cos@ 0 sin@][A O O cosf@ 0 —sind
S = 0 1 0 01 o0 0 1 0

T w 3w
oefo st s
—sinf 0 cosf|[0 0 A7l sinf 0 cosf

8

for log A = cosh™!(cot %)- This group acts cocompactly on a complete, totally geodesic
submanifold of X of constant curvature —%, see Section 3.4, with quotient a closed surface
of genus 2. A fundamental domain for this action is given by a regular octagon in H? with
center p, the identity matrix in X. This octagon decomposes into 16 triangles with vertices
at the center, the vertices of the octagon and the midpoints of the edges. These triangles

are isosceles with angles 7, &, T. By the hyperbolic law of cosines (for curvature —%),

1
cosy = —cosa cos f + sina sin 8 cosh (—c)

V3
we see that the distance from the center p to the vertex is R = +/3 cosh™! (cot2 %) The I',
translates of Bg(p) cover H?, so by the Milnor—Schwarz lemma the orbit map orb p 2 —
HZisa (1,1,2R + 1,0)-quasi-isometric embedding. One checks that 2R + 1 < 9.5. Here,
we use the symmetric generating set S’ = {y € I, | d(p, yp) < 9.5}. Note that the S’ here
agrees with the one in the introduction because d(p, yp) = v/6|log y . Every geodesic
in this copy of H? is (ﬁg Umod)-regular in X. Representations of this form were studied
by Barbot in [2].
‘We may now prove the following.

Theorem 1.3. If p:I'; — SL(3, R) is a representation satisfying
|p(S) _ S|Fr < 10—3,698,433

forall s € S, then p is Anosov.
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Proof. From the classical Morse lemma (Theorem 6.2), we get a Morse constant of
D = 163. Thus, the orbit map at p is a (2\/§ Omods 163) -Morse (1, 1, 9.5, 0)-quasi-
isometric embedding. We relax the additive parameters by 10 and ask a perturbation to
be a (2.2 x 10%)-local (2‘/§ Omod> 173) -Morse (1,11, 9.5, lO) -quasi-isometric embed-
ding. By Theorem 5.8, such an orbit map is a global ( YWl , Omod, 0.8 X 106) -Morse
(108,214; 1.4 x 107;9.5; 0)-quasi-isometric embedding.

If p: T, — SL(3, R) is another representation such that |p(s) — s|g < 1073:698:433,
then for dg/(w, 1) < k = 1.1 x 10® we have dx(p(w)p, wp) < 10 by Corollary 6.5
so p also induces a (2.2 x 10%)-local (2\/5 Omods 173) Morse (1, 11, 9.5, 10)-quasi-

isometric embedding. Therefore, the orbit map is a global ( , Omod, 0.8 X 106) -Morse
(108,214;1.4 x 107;9.5; 0)-quasi-isometric embedding. In particular, p is Anosov and our
proof of Theorem 1.3 is complete. ]
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