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Abstract. – Even if the Fourier symbols of two constant rank differential operators have the
same nullspace for each non-trivial phase space variable, the nullspaces of those differential
operators might differ by an infinite-dimensional space. Under the natural condition of constant
rank over C, we establish that the equality of nullspaces on the Fourier symbol level already
implies the equality of the nullspaces of the differential operators in D0 modulo polynomials of a
fixed degree. In particular, this condition allows one to speak of natural annihilators within the
framework of complexes of differential operators.
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1. Introduction

1.1. Aim and scope

Let V;W;X be three real, finite-dimensional inner product spaces and let, for k; ` 2 N,

A WD
X
j˛jDk

A˛@
˛; B WD

X
jˇ jD`

Bˇ@
ˇ(1.1)

be two constant coefficient differential operators on Rn from V to W or from W to X ,
respectively. By this we understand that for each j˛j D k and jˇj D `, we have A˛ 2

L.V IW / or Bˇ 2 L.W IX/.
For instance, this setting comprises the usual gradient Du for maps uWRn ! RN

or the symmetric gradient ".u/ WD 1
2
.DuCDu>/ for maps uWRn! Rn as frequently

employed in nonlinear elasticity; these can be recovered by the particular choices
.V;W / D .RN ;RN�n/ or .V;W / D .Rn;Rn�nsym /, respectively. To describe the main
question of the present paper, note that

C1.RnIRN /
D
�! C1.RnIRN�n/

curl
��! C1.RnIRN�n/;

C1.RnIRn/
"
�! C1.RnIRn�nsym /

curlcurl>
�����! C1.RnIRd /;
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for suitable d 2 N, are sequences that are exact at the corresponding mid point vector
spaces. Here, we have set for u D .ujk/1�j�N; 1�k�n and v D .vjk/1�j; k�n

curl.u/ D .@kuj i � @iujk/ijk;
curlcurl>.v/ D .@ij vkl C @klvij � @ilvkj � @kj vil/ijkl :

(1.2)

The first example is the usual gradient-curl-complex, whereas the second one is referred
to as the Saint–Venant compatibility complex (see, e.g., [5]). In the language of Fourier
analysis, this circumstance can be restated by the associated symbol complex

V
AŒ��
���! W

BŒ��
��! X being exact at W for all � 2 Rn n ¹0º

for the corresponding choices .A;B/ D .D; curl/ or .A;B/ D ."; curlcurl>/, respect-
ively. This means that for each � 2 Rn n ¹0º, we have AŒ��.V / D ker.BŒ��/, where

(1.3) AŒ�� D
X
j˛jDk

�˛A˛; BŒ�� D
X
jˇ jD`

�ˇBˇ ; � 2 Rn:

In this situation, we call A a potential of B, and B an annihilator of A. Annihilators are
far from being uniquely determined: For instance, letting� be the usual Laplacian, each
�jB (j 2N) satisfies ker.�jBŒ��/D ker.j�j2jBŒ��/D ker.BŒ��/ for any � 2Rn n ¹0º.
Still, in the above examples with .A;B/ D .D; curl/ or .A;B/ D ."; curlcurl>/, the
nullspaces of B and�jB differ by an infinite-dimensional vector space. Thus, denoting
the class of annihilators of a given differential operator A by

(1.4) An.A/ WD
²

B W
B is of the form (1.3) for some vector space X;
ker
�
BŒ��

�
D AŒ��.V / for all � 2 Rn n ¹0º

³
;

it is logical to ask for a subset C � An.A/ with the property that the distributional
nullspaces of B;B0 2 C only differ by a finite-dimensional vector space each, and under
which conditions on A the class C is non-empty.

1.2. Operators with constant rank over C

We first recall some terminology that is customary in the above context. Following
the works of Schulenberger and Wilcox [23] and Murat [19] (also see Fonseca and
Müller [10]), operators A and B of the form (1.3) are said to be of constant rank
(over R) provided dimR.AŒ��.V // or dimR.BŒ��.W //, respectively, are independent
of the phase space variable � 2 Rn n ¹0º. By Raiţă [20] (also see [2]), every constant
rank operator possesses a constant rank potential.

Towards the above question from (1.4)ff., a strengthening of the notion of constant
rank is required.
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Definition 1.1 (Constant rank over C). Let B be a differential operator as in (1.1).
We say that B has constant rank over C provided

dimC

�
BŒ��.V C iV /

�
is independent of � 2 Cn

n ¹0º:(1.5)

For (1.5), note that whenever a complex phase variable � D Re.�/C i Im.�/ is
inserted into BŒ��, it consequently gives rise to a linear map BŒ��WV C iV !W C iW .
Similarly, as the constant rank operators generalise the notion of (overdetermined real)
elliptic differential operators A á la Hörmander and Spencer [16, 25], operators of
constant rank over C generalise the concept of C-elliptic operators in the spirit of
Smith [24] (also see [4, 13, 17]). Here, an operator A is called (real or R-) elliptic
provided AŒ��W V ! W is injective for all � 2 Rn n ¹0º, and C-elliptic provided
AŒ��WV C iV ! W C iW is injective for all � 2 Cn n ¹0º. Adopting the terminology
of Definition 1.1, the main result of the present paper is as follows.

Theorem 1.2. Let B, zB be two differential operators with constant rank over C. Then,
the following are equivalent:

(a) For all � 2 Cn n ¹0º, we have

ker
�
BŒ��

�
D ker

�
zBŒ��

�
:

(b) There exist two finite-dimensional vector subspaces X1;X2 of the W -valued
polynomials on Rn such that

(1.6) ker.B/CX1 D ker.zB/CX2;

where ker is understood as the nullspace in D0.RnIW /, so e.g.

ker.B/ D
®
T 2 D0.RnIW /W BT D 0

¯
:

Let us note that if the Fourier symbols BŒ�� and zBŒ�� have the same nullspace for
any � , then they are both annihilators of some differential operator A with constant rank
in C. Also note that the statement of Theorem 1.2 is false if we drop the assumption
that B and zB satisfy the constant rank property over C (cf. Example 4.3).

In the language of algebraic geometry, the proof of Theorem 1.2 relies on a vectorial
Nullstellensatz to be stated and established in Section 3 below. Nullstellensatz techniques
have been employed in slightly different contexts (see [14, 17, 24]). However, these by
now routine applications to differential operators (to be revisited in detail in Section 3)
do not prove sufficient to establish Theorem 1.2.

If a differential operator A has an annihilator B of constant complex rank, this
annihilator is in some sense minimal when being compared with other annihilators
(so e.g. D ı B for (real) elliptic operators D on Rn from X to some finite-dimensional
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real vector space Y ). Thus, annihilators of constant complex rank – provided existent
– are natural. Even though the condition of constant rank over C might seem quite
restrictive, it is satisfied for a wealth of operators to be gathered below. Following the
discussion in [3, §6] (also see [12, 21]), it is also this class of operators for which one
expects truncation theorems that play, e.g., a role in plasticity problems.

We wish to point out that when preparing this note, we became aware that the above
theorem can also be established as a consequence of Härkönen, Niklasson and Raita
[15, Thm. 1.2]. In particular, [15] makes use of a decomposition

kerC1 A D kerC1 Ac C kerC1 AuI

that holds for any operator A. Within our setting of complex constant rank Au can be
shown to be complex elliptic. To arrive at this decomposition requires some deeper tools
from commutative algebra. Instead, our proof only hinges on the Hilbert Nullstellensatz
and elementary linear algebra.

1.3. Organisation of the document

Apart from this introductory section, the paper is organised as follows. In Section 2, we
gather examples of operators arising in applications that verify the constant rank condi-
tion over C. Section 3 then is devoted to a suitable variant of a vectorial Nullstellensatz,
which displays the pivotal step in the proof of Theorem 1.2 in Section 4.

1.4. Notation

For k 2 N, we denote by Pk.R
nIRd / the Rd -valued polynomials on Rn of degree

at most k; the space of Rd -valued polynomials p on Rn which are homogeneous of
degree k, so satisfying p.�x/ D �kp.x/ for all � 2 R and x 2 Rn, is denoted as
Ph
k
.RnIRd /. Moreover, given a ring R, we use the convention I E R to express that

I is an ideal in R.

2. (Non-)Examples of operators of constant rank over C

In this section, we discuss some (non-)examples that satisfy the algebraic condition of
constant rank over C from Definition 1.1 and arise frequently in applications.

Example 2.1 (C-elliptic operators). C-ellipticity of an operator A of the form (1.3)
means that

AŒ��WV C iV ! W C iW



natural annihilators and operators of constant rank over C 159

is injective for any � 2Cn n ¹0º. Such operators have constant rank over C by definition;
trivially, the usual k-th order gradients are C-elliptic. As discussed e.g. in [4, Ex. 2.2],
the symmetric gradient ".u/ WD .1

2
.@iuj C @jui //ij for maps uWRn!Rn is C-elliptic

for n � 2, and so is the trace-free gradient

"D.u/ WD ".u/ �
1

n
div.u/En

with the .n � n/-unit matrix En provided n � 3. These operators play a crucial role in
elasticity, plasticity or fluid mechanics; see, e.g., [11].

Example 2.2 (The curl- and curlcurl>-operator). Given n � 2 and uWRn ! RN�n,
we define curl.u/ as in the introduction. Note that, for v 2 CN�n, curlŒ��.v/ D 0 for
� 2 Cn n ¹0º if and only if v D a�> for some a 2 CN , so dimC.ker.curlŒ��// D N .
Similarly, for the Saint–Venant-compatibility complex, one explicitly verifies that
curlcurl>Œ��.v/D 0 if and only if v D aˇ � D 1

2
.a�>C �a>/ for some a 2Cn. Thus,

dimC.ker.curlcurl>Œ��// D n, and the validity of the constant rank property follows.

Example 2.3 (Divergence-type operators). For n� 2 and uD .u1; : : : ;un/WRn!Rn,
the divergence div.u/ D

Pn
iD1 @iui has symbol divŒ��.v/ WD

Pn
iD1 �ivi . Therefore,

with � 2 Cn n ¹0º, we have
Pn
iD1 �ivi D 0 provided v 2 �?, and thus

dimC

�
ker

�
divŒ��

��
D n � 1:

Hence, div is of constant complex rank. An operator that arises in the relaxation of
static problems, cf. [6], is the divergence of symmetric matrices; the same argument as
above establishes that the divergence of symmetric matrices is of constant complex
rank.

Example 2.4 (The Laplacian). The (scalar) Laplacian B D � does not satisfy the
constant rank condition over C. For instance, let n D 2. Writing � D .�1; �2/> 2 C2,
the relevant symbol in view of Definition 1.1 is

(2.1) BŒ�� D �>� D �21 C �
2
2 :

The polynomial given by (2.1) vanishes if and only if � 2 C.1; i/> or � 2 C.1;�i/>,
and so

kerC

�
BŒ��

�
D

´
C if � D �.1; i/> or � D �.1;�i/>; � 2 C

¹0º otherwise;

and so the constant rank condition is violated over C; still, over the base field R, the
Laplacian is elliptic and hence of constant rank over R. Likewise, any real elliptic
operator BWC1.RnI V /! C1.RnI V / cannot be complex elliptic by a projective
version of the fundamental theorem of algebra.
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3. A Nullstellensatz for operators of constant complex rank

The proof of Theorem 1.2 hinges on a variant of the Hilbert Nullstellensatz from
algebraic geometry stated in Theorem 3.2 below. For the reader’s convenience, let us
first display a classical version of the Hilbert Nullstellensatz as a background tool,
which may e.g. be found in [8, §4.1, Thm. 2].

Lemma 3.1 (HNS). Let F be an algebraically closed field and A E F ŒX1; : : : ; Xn� an
ideal. Then, we have

p
A D 	.V .A//, where

•
p

A WD ¹x 2 F ŒX1; : : : ; Xn�W 9m 2 N0W xm 2 Aº is the radical of A,
• V.A/ WD ¹x D .x1; : : : ; xn/ 2 FnW 8x 2 AW x.x/ D 0º is the set of common zeros

of A, and
• 	.V .A// WD ¹x 2 F ŒX1; : : : ; Xn�W 8x 2 V.A/W x.x/ D 0º.

The standard use of this result in the context of differential operators (see Remark 3.4
below) does not prove sufficient for Theorem 1.2. Hence, let d; k; l 2 N. For i 2
¹1; : : : ;dº and j 2¹1; : : : ; lº, we consider homogeneous polynomialspij 2CŒ�1; : : : ; �n�

of order k and the system of equations

(3.1) v|p.�/j WD

dX
iD1

pij .�/vi D 0; � D .�1; : : : ; �n/ 2 Cn; j 2 ¹1; : : : ; lº;

where v D .v1; : : : ; vd / 2 Cd . In accordance with Definition 1.1, we say that the
system (3.1) satisfies the constant rank property over C if there exists an r 2 ¹0; : : : ; dº
such that for every � 2 Cn n ¹0º the vector space

X�

�
.pij /ij

�
WD
®
v D .v1; : : : ; vd / 2 Cd

W v|p.�/ D 0 for all j 2 ¹1; : : : ; lº
¯

has dimension .d � r/ over C. We may now state the main ingredient for the proof of
Theorem 1.2, which arises as a generalisation of the usual Hilbert Nullstellensatz.

Theorem 3.2 (Vectorial Nullstellensatz for constant rank operators). Let d; k; l 2 N

and, for i 2 ¹1; : : : ; dº and j 2 ¹1; : : : ; lº, let pij 2 CŒ�1; : : : ; �n� be homogeneous
polynomials of degree k such that (3.1) satisfies the constant rank property over C. Let
b1; : : : ; bd 2 CŒ�1; : : : ; �n�, v D .v1; : : : ; vd / 2 Cd and define

BŒ��.v/ WD

dX
iD1

vibi .�/ D v
>b.�/:

Suppose that for any � D .�1; : : : ; �n/ 2 Cn n ¹0º and v D .v1; : : : ; vd / 2 Cd we have
that

(3.2) v|p.�/ D 0 H) BŒ��.v/ D 0;
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and let q 2 CŒ�1; : : : ; �n� be a homogeneous polynomial of degree � 1. Then, there
exist polynomials hj 2 CŒ�1; : : : ; �n�, j 2 ¹1; : : : ; lº, and an m 2 N, such that for all
� 2 Cn and all v 2 Cd , there holds

(3.3) qm.�/BŒ��.v/ D h|.�/p.�/v:

Remark 3.3. This Nullstellensatz is a generalisation of the elliptic Nullstellensatz (cf.
[24]) in the following way. There, it is assumed that the operator B D Id is the identity
operator on V . Then, assumption (3.2) corresponds to v|p.�/ D 0) v D 0, i.e. to
the assumption that p is complex elliptic.

Proof. Let the polynomials pij satisfy the constant rank property for some fixed
r 2 ¹0; : : : ; dº. We define sets

J D
®
J � ¹1; : : : ; lºW jJ j D r

¯
; 	 D

®
I � ¹1; : : : ; dºW jI j D r

¯
:

For a subset J 2 J, we write J D ¹j.1/; : : : ; j.r/º for j.1/ < � � � < j.r/ and likewise
for I 2 	, I D ¹i.1/; : : : ; i.r/º for i.1/ < � � � < i.r/. Define the matrixMIJ 2 Cr�r

by its entries via
.MIJ /ˇ
 WD pi.ˇ/;j.
/:

Now consider an arbitrary .r � r/-minor of P.�/ D .pij .�//ij ; any such minor arises
as det.MIJ .�// for some I 2 	; J 2 J. If � 2 Cn n ¹0º is a common zero of all
qIJ WD det.MIJ /, then

dimC

�
X�

�
.pij /ij

��
¤ d � r

by virtue of the constant rank property over C. On the other hand, by the homogeneity
of the pij ’s, � D 0 is a common zero of the qIJ ’s, and so is the only common zero of
the qIJ ’s.

On the other hand, � D 0 is a zero of any homogeneous polynomial q 2CŒ�1; : : : ; �n�

of degree � 1. Thus, the Hilbert Nullstellensatz from Lemma 3.1 implies the existence
of an m 2 N and polynomials gIJ 2 CŒ�1; : : : ; �n� (I 2 	; J 2 J) such that

(3.4) qm D
X
J2J

X
I2	

gIJ det.MIJ /:

We now come to the definition of hj as appearing in (3.3). For the matrix MIJ and

 2 ¹1; : : : ; rº, we define the matrix M 


IJ as the matrix where the 
 -th column vector
is replaced by .bi.ˇ//ˇD1;:::;r ; i.e.,

M


IJ D

0B@pi.1/j.1/ � � � pi.1/j.
�1/ bi.1/ pi.1/j.
C1/ � � � pi.1/j.r/
� � � � � � � � � � � � � � �

pi.r/j.1/ � � � pi.r/j.
�1/ bi.r/ pi.r/j.
C1/ � � � pi.r/j.r/

1CA :
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We then define for j 2 ¹1; : : : ; lº

(3.5) hj WD

rX

D1

X
I2	

X
J2JWj.
/Dj

gIJ det.M 

IJ /

and claim that
rX


D1

pij.
/ det.M 

IJ / D bi detMIJ for all i 2 ¹1; : : : ; dº;(3.6)

lX
jD1

hj

� dX
iD1

pij vi

�
D qm

dX
iD1

bivi ;(3.7)

so that the hj ’s will satisfy (3.3). Let us see how (3.7) follows from (3.6): In fact,

lX
jD1

hj

� dX
iD1

pij vi

�
(3.5)
D

lX
jD1

dX
iD1

rX

D1

X
I2	

X
J2JWj.
/Dj

gIJ det.M 

IJ /pij vi

D

X
J2J

X
I2	

gIJ

� dX
iD1

rX

D1

pij.
/ det.M 

IJ /vi

�
(3.6)
D

X
J2J

X
I2	

gIJ det.MIJ / �

� dX
iD1

bivi

�
(3.4)
D qm

dX
iD1

bivi :

Hence, it remains to show (3.6). To this end, for ˇ; 
 2 ¹1; : : : ; rº, let us define the
matrix MI.ˇ/J.
/ as the .r � 1/ � .r � 1/ matrix, where the 
 -th column of MIJ and
the ˇ-th row have been removed. By the Laplace expansion formula and the definition
of M 


IJ , we then obtain

det.M 

IJ / D

rX
ˇD1

.�1/ˇC
bi.ˇ/ det.MI.ˇ/J.
//:

Hence,
rX


D1

pij.
/ det.M 

IJ / D

rX
ˇ;
D1

.�1/ˇC
bi.ˇ/ det.MI.ˇ/J.
//pij.
/:(3.8)
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Now consider the .r C 1/ � .r C 1/-matrix M defined by

M WD

0BBB@
pi.1/j.1/ : : : pi.1/j.r/ bi.1/

:::
: : :

:::
:::

pi.r/j.1/ � � � pi.r/j.r/ bi.r/
pij.1/ � � � pij.r/ bi

1CCCA :
By (3.2), for each � 2 Cn n ¹0º, the subspace of v 2 Cd such that

dX
iD1

pij .�/vi D 0 for all j 2 ¹1; : : : ; lº;
dX
iD1

vibi .�/ D 0

is X�..pij /ij / and thus has dimension .d � r/. Therefore, all .r C 1/� .r C 1/minors
of the matrix corresponding to these linear equations vanish. In particular, the determ-
inant of the matrix M is 0. Denote by M ˇ the .r � r/-submatrix of M , where the
last column and the ˇ-th row of M are eliminated. We apply the Laplace expansion
formula twice to M (in the last column and then in the last row), to see that

0 D det.M/

D

� rX
ˇD1

bi.ˇ/.�1/
rC1Cˇ det.M ˇ /

�
C bi det.MIJ /

D

� rX

D1

rX
ˇD1

.�1/rC1Cˇ .�1/rC
bi.ˇ/pij.
/ det.MI.ˇ/J.
//

�
C bi det.MIJ /:

Therefore,

bi det.MIJ / D

rX

D1

rX
ˇD1

.�1/ˇC
bi.ˇ/pij.
/ det.MI.ˇ/J.
//;

which establishes (3.6). The proof is complete.

Remark 3.4. We briefly comment on the by now well-understood situation of C-
elliptic differential operators A, where the Hilbert Nullstellensatz is typically applied
as follows (cf. [24], [17, Lem. 4, Thm. 5], [14, Prop. 3.2], [9, §3]). Let V Š RN ,
W Š Rm and let A be a homogeneous differential operator on Rn from V toW . Then,
C-ellipticity of A implies by virtue of the Hilbert Nullstellensatz that there exists k 2N

with the following property. There exists a linear, homogeneous differential operator
L on Rn from W to V ˇk Rn of order .k � 1/ such that Dk D LA. Inserting this
relation into the usual Sobolev integral representation of u 2 C1.B1.0/IV / (cf. [1, §4]
or [18, Thm. 1.1.10.1]) and integrating by parts then yields a polynomial P of order
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.k � 1/ such that

u.x/ D P.x/C

Z
B1.0/

K.x; y/Au.y/dy

for all x 2 B1.0/ and all u 2 C1.B1.0/IV /; here, the function

KWB1.0/ � B1.0/! L.W IV /

is a suitable integral kernel. This, in particular, implies that dim.ker.A// <1.
In our situation, an approach via the Sobolev representation formula does not work:

The operators B; zB from Theorem 1.2 do not have finite-dimensional nullspaces, but
their nullspaces differ by finite-dimensional vector spaces. However, we may replace the
formulaDk D LA by the relationDkBD LzB and still get some quantitative estimates,
also cf. [22].

4. Proof of Theorem 1.2

We assume that AWC1.RnIRd /!C1.RnIRl/ is a homogeneous differential operator
of the form

Au D
X
j˛jDk

A˛@
˛u:

In fact, in what follows, one might also assume that A˛ is a complex matrix and that A

is not entirely homogeneous, but only coordinate-wise homogeneous, as Theorem 3.2
does only require these assumptions (also cf. Remark 4.4).

Based on Theorem 3.2, the proof of Theorem 1.2 requires two additional ingredients
that we record next.

Lemma 4.1. Let AWC1.RnIRd /! C1.RnIRl/ be a homogeneous differential oper-
ator of order k. Define the differential operator

r ıAWC1.RnIRd /! C1.RnIRl �Rn/

componentwisely by �
.r ıA/u

�
i
D @iAu; i 2 ¹1; : : : ; nº:

Then, we have

(4.1) ker.r ıA/ D ker.A/C Pk.R
n
IRd /:

Observe that this result does not require the constant rank property.
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Proof. Suppose that u 2 ker.r ıA/. Then, Au is a constant function. Consider the
spaceW � Rl defined byW WD span¹AŒ��.Rd /W � 2 Rnº. Note that, on the one hand,
Au 2 W pointwisely, and, on the other hand,

(4.2) W D APhk.R
n
IRd / D APk.R

n
IRd /:

The last line can be seen by considering, for jˇj D k and v 2 Rd , the polynomials
pˇ .x/ WD

xˇ

ˇŠ
v. Then, for any � 2 Rn,

A
� X
jˇ jDk

�ˇpˇ

�
D

X
j˛jDk

X
jˇ jDk

�ˇA˛@
˛pˇ D

X
j˛jDk

�˛A˛v

and so (4.2) follows by the homogeneity of A of degree k. In particular, for every
u 2 ker.r ıA/, we can find a polynomial p of degree k with A.u � p/ D 0. Hence,

ker.r ıA/ � ker.A/C Pk.R
n
IRd /:

On the other hand, since A is homogeneous and of order k, every element of ker.A/C
Pk.R

nIRd / belongs to the nullspace of r ı A. Thus, (4.1) follows and the proof is
complete.

Corollary 4.2 (Kernels of annihilators). Let A.1/ and A.2/ be two homogeneous
differential operators of order k.1/ and k.2/, which have constant rank over C and both
act on C1.RnIRd /. Moreover, suppose that their Fourier symbols satisfy

(4.3) ker
�
A.2/Œ��

�
� ker

�
A.1/Œ��

�
for all � 2 Cn:

Then, the following hold:

(a) There exists Qk 2 N and a differential operator B, such that

r
Qk
ıA.2/ D B ıA.1/:

(b) For the nullspace of A.1/, we have

¹u 2 L1locWA
.1/u D 0º � ¹u 2 L1locWA

.2/u D 0º C V;

where V is a finite-dimensional vector space (consisting of polynomials).

(c) If, in addition,
ker

�
A.1/Œ��

�
D ker

�
A.2/Œ��

�
;

then we may write

¹u 2 L1locWA
.1/u D 0º C V D ¹u 2 L1locWA

.2/u D 0º CW

for finite-dimensional vector spaces V and W consisting of polynomials.
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Proof. Ad (a). We aim to apply Theorem 3.2, and we explain the setting first. Assuming
that A.1/ is Rl1-valued and A.2/ is Rl2-valued, we may write for vD .v1; : : : ; vd / 2Cd

A.1/Œ��v D

� dX
iD1

A
.1/
ij .�/vi

�
jD1;:::;l1

and A.2/Œ��v D
�
A.2/m .�/v

�
mD1;:::;l2

;

where every A.2/m .�/v can be written as

A.2/m .�/v D

dX
iD1

vibim.�/:

For eachm2 ¹1; : : : ; l2º, we apply Theorem 3.2 topij Œ��DA.1/ij Œ�� andBŒ��DA.2/m .�/;
note that its applicability is ensured by (4.3).

In consequence, for every component A.2/m withm 2 ¹1; : : : ; l2º and a 2 ¹1; : : : ; nº,
we may find N.a;m/ 2 N and polynomials hj;a 2 CŒ�1; : : : ; �n�, such that

�N.a;m/a A.2/m .�/ D

l1X
jD1

hj;a.�/

dX
iD1

A
.1/
ij .�/vi :

Therefore, choosing Qk WD nmaxm2¹1;:::;l2º; a2¹1;:::;nºN.a;m/, we obtain that for every
˛ 2 Nn with j˛j D Qk and m 2 ¹1; : : : ; l2º, there exists hj˛ such that

�˛A.2/m .�/ D

l1X
jD1

hj˛.�/

dX
iD1

A
.1/
ij .�/vi :

Defining the differential operator B according to this Fourier symbol, (a) follows; i.e.,

BŒ��m;˛.w/ D

l1X
jD1

hj˛.�/wj ; m 2 ¹1; : : : ; l2º:

Ad (b). This directly follows from Lemma 4.1. Indeed, applying Lemma 4.1 Qk-times,
there exists a finite-dimensional space zV of polynomials such that

¹u 2 L1locW r
QkA.2/u D 0º D ¹u 2 L1locWA

.2/u D 0º C zV :

As ker A.1/ � ker B ıA.1/ D kerr Qk ıA.2/, the result directly follows. Finally, (c) is
immediate by applying (b) in both directions. The proof is complete.

We may now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Direction (a))(b) of Theorem 1.2 is just Corollary 4.2;
using convolution, one may first observe this for L1loc functions and then generalise it
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to D0. On the other hand, direction (b))(a) follows from a routine construction (see
e.g. [10,13,24]) of plane waves which we outline for the reader’s convenience. Suppose
towards a contradiction that there exists � 2 Cn n ¹0º such that ker.BŒ��/ ¤ ker.zBŒ��/.
Without loss of generality, we may then assume there exists v 2 Cl n ¹0º such that

v 2 ker
�
BŒ��

�
n ker

�
zBŒ��

�
:

Consider the waves uh.x/ WD eix�h�v for h 2 Z and sort by real and imaginary parts.
Observe that all uh are linearly independent as functions and, in particular,

X D

² HX
hD1

ah Re
�
uh.x/

�
a1; : : : ; ah 2 R; H 2 N

³
forms an infinite-dimensional vector space. One may now calculate that Bu D 0 for
any u 2 X, but for u D

PH
hD1 ahuh.x/, we have

zBu D
HX
hD1

ahi
khk zBŒ��.v/eix�h�

¤ 0

due to the linear independence of eix�h� and also zB.Re u/ ¤ 0. Thus, we find an
infinite-dimensional vector space X that is in ker B, but X \ ker zB D ¹0º.

Example 4.3. In general, direction (a))(b) in Theorem 1.2 will fail if B and zB do not
satisfy the complex constant rank property. As one readily verifies, if we take B D �

and zB D �2 to be the Laplacian and the Bi-Laplacian (and so both violate the constant
rank condition over C by Example 2.4) in n D 2 dimensions,

kerC

�
BŒ��

�
D kerC

�
zBŒ��

�
D

´
C if � D �.1; i/> or � D �.1;�i/>; � 2 C;

¹0º otherwise:

Denote ker.�/ and ker.�2/ as the nullspaces of � or �2, respectively, in D0.Rn/.
Denoting the homogeneous harmonic polynomials on Rn by Pho.Rn/, we have

ker.�/C zP � ker.�2/;

where zP D ¹vW �v D p for some p 2 Pho.Rn/º, and from here one sees that the
nullspaces of B and zB differ by an infinite-dimensional vector space. As one can see
from the proof of Theorem 1.2, however, the implication (b))(a) can be shown by
contradiction, even if the complex constant rank property does not hold.

Remark 4.4. Up to now, we assumed that the polynomials pij are homogeneous
polynomials of order k. This assumption is motivated by the fact that we deal with
homogeneous differential operators. However, we can also define the constant rank
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property when not all polynomials have the same order. In particular, for polynomials
pij as in (3.1), we may weaken the assumption to pij having order kj 2 N, and the
statement of the vectorial Nullstellensatz still holds true.

For the corresponding differential operator, this includes the following setting. The
operator B D .B0; : : : ;Bk/ is componentwisely defined via homogeneous differential
operators Bi WC1.RnI V /! C1.RnIWi / of order i (for i D 0, the operator B0 is
similarly understood to be a linear map). In particular,

BWC1.RnIV /! C1.RnIW0 � � � � �Wk/:

The constant rank property in this setting means that there exists r 2 N such that
k\
iD0

ker
�
Bi Œ��

�
D r; for all � 2 Cn

n ¹0º:

Observe that it is not required at all, that each homogeneous component satisfies the
constant rank property itself; e.g., Bu D .@1u; @22u/.

In view of Lemma 4.1, we can however also transform this setting into a fully
homogeneous one, while only allowing an additional finite-dimensional nullspace.
Indeed, the operator zB given by

zB D .rk ı B0;r
k�1
ı B1; : : : ;Bk/

is homogeneous of order k and its nullspace only differs by a finite-dimensional space
from the nullspace of B.

4.1. On natural annilators

For now, we have seen that if BŒ�� and zBŒ�� have the same nullspace for all � 2Cn n ¹0º,
then their nullspaces as differential operators only differ by finite-dimensional subspaces.
Given the nullspaces V.�/ D ker.BŒ��/ for some differential operator B, it is natural to
ask for a minimal differential operator in the sense of nullspaces; i.e.,

ker
�
B0Œ��

�
D V.�/

and ker.B0/ � ker.zB/ for all zB with ker.zBŒ��/ D V.�/. Indeed, let us assume that we
are given a potential operator AWC1.RnIV /! C1.RnIRd / that obeys

Im AŒ�� D ker BŒ��:

Such a potential operator exists due to the constant rank property, cf. [20]. Consider the
set B�.CŒ�1; : : : ; �n�/d as the set of annihilator polynomials that vanish on AŒ��; i.e.,

B D

²
p 2 CŒ�1; : : : ; �n�

d
W

dX
iD1

pi .�/ ıAi .�/ D 0

³
:
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Then, B is a submodule of the free module CŒ�1; : : : ; �n�d and is finitely generated.
As there exists some B such that the relation

Im AŒ�� D ker BŒ��

is satisfied for all � 2 Cn n ¹0º, the same can be said about any generator of B; i.e., if
p1; : : : ; pl is a generator of B, then

B0v D
lX
iD1

�
pi .�/v

�
� ei

is an annihilator of A; i.e., Im AŒ�� D ker B0Œ��. Moreover, due to its properties as a
generator, for any B that satisfies ker B0Œ�� D ker BŒ��, we have some polynomial L

such that
BŒ�� D L ı B0:

If the generator is further minimal, we also might speak of a natural annihilator of B

(which is, of course, not unique, as the choice of a basis for a submodule is equally not
unique).

Example 4.5. Let us consider a few examples that already appeared in Section 2.

(a) If A D r, then B0 D curl is a natural annihilator.

(b) Likewise, if A is the operator of exterior differentiation on differential forms, then
the exterior derivative itself is the natural annihilator.

(c) If A D .r C r>/, then B0 D curlcurl> is a natural annihilator.

(d) Consider the k-th order gradient rk D .@˛/j˛jDk acting on C1.RnIR/. A can-
didate for the annihilator is the operator consisting of entries of the form

@˛vˇ � @
ˇv˛:

This is, however, not a natural annihilator. Indeed, viewing rk as a concatenation
ofr andrk�1, i.e.rk WC1.RnIR/! C1.RnIRn˝ .V k�1//, applying the curl
to the first-component is a natural annihilator. In particular, the coordinates of this
operator are

@j vˇ � @
kv˛ if the multi-indices obey ej C ˇ D ek C ˛:

(e) Even if the operator A is homogeneous, the natural annihilator does not need to
be. A simple example is an operator acting on a pair of functions, e.g.

A.u1; u2/ D
�
ru1; .r C r

>/u2
�
;
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where a natural annihilator obviously is B0.v1; v2/ D curl v1curlcurl>v2. Consid-
ering the natural annihilator of this B0 again yields an operator that is component-
wise homogeneous.
Another, more complex, example is the C-elliptic operator

AWC1.R3IR3/! C1.R3IR3�3/

given by

A.v1; v2; v3/ D

0B@ @1v1 @2v1 C @1v2 @3v1

@2v1 C @1v2 @2v2 @3v2

@1v3 @2v3 @3v3

1CA
i.e. a mixture of symmetric and full gradient. A natural annihilator B0 of this is
always non-homogeneous (with homogeneous rows), while a natural annihilator
of this operator in turn will be fully non-homogeneous (i.e. we cannot even arrange
homogeneous rows). Indeed, it does not seem clear what condition some operator
A needs to satisfy to ensure that a natural annihilator is fully homogeneous (which
also means that any natural annihilator is homogeneous).

4.2. Remarks on a Poincaré-type lemma

The classical Poincaré lemma asserts that a differential form ! is closed, i.e., d! D 0,
if and only if ! D du. This result holds on all domains of a certain geometry and
regularity. Generalising this result to constant rank operators, one has that if

Im AŒ�� D ker BŒ�� 8� 2 Rn n ¹0º;

then
B.u/ D 0;

Z
Tn
u D 0 H) u D Av

and sharp estimates on the norm of v may also be given in suitable spaces (e.g. Lp,
Wk;p when 1 < p <1). Results like this can, for instance, be proven by using the
Fourier transform and naturally also hold on the full space.

The situation is not so clear in the general case of functions defined on open and
bounded (and sufficiently regular) subsets��Rn (with or without prescribed boundary
values). In order to get reasonable results for the underlying functions, the complex
constant rank condition is a suitable assumption in this setting.

The previous results have the following consequences for the Poincaré lemma. Let
A and B be given operators of order kA and kB such that Im AŒ�� D ker BŒ�� for all
� 2 Cn n ¹0º. In particular, those operators have complex constant rank.
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(a) We may reduce to the problem, where B is of order one: Suppose that we are given
a function u that satisfies Bu D 0. Then, Qu D rkB�1u also satisfies a differential
equation, namely, zB QuD 0 (where zB comes through rewriting B as a concatenation
of zB and rkB�1), as well as the condition curl Qu which establishes that Qu is a
gradient of order kB � 1. One may check that zA D rkB�1 ıA is a potential of zB.
Instead of searching for a Poincaré lemma for B and A we can therefore establish
a Poincaré lemma for zB and zA. In particular, the operation u 7! Qu is reversible up
to polynomials of order kB � 1.

(b) We may reduce to the problem, where A is of order one: As before, we may write
A as a concatenation of zA and rkA�1. Hence, all functions of the form u D Av

can be written as zA Qv under the additional side-constraint curl v D 0. The operator
given by

A0v D

�
zAv

curl v

�
then has an annihilator B0 (of order that might be larger than one). Showing a
Poincaré lemma for A0 and B0 and applying it to vectors .u 0/ (such that the second
condition is curl v D 0) then also yields a Poincaré lemma for A and B.

(c) IfkAD kBD 1 and the space dimension is two, the situation is quite special: We can
show that AWC1.RnIU/! C1.RnIV / (after suitable coordinate transformation)
can be decomposed into

Au D

0@ ru1curlu2
0

1A
if u D .u1; u2; u3/ 2 U1 ˚ U2 ˚ U3 D U . This can be, for instance, seen by
setting U3 D ker AŒe1�\ ker AŒe2�, U1 D .ker AŒe1�C ker AŒe2�/? and choosing
U3 accordingly. As B has order one, we conclude that the elliptic part (on U1)
needs to be the gradient. A similar argument then holds for the non-elliptic part.
Therefore, by using classical results for the Poincaré lemma forr (see, for instance,
[7]), we get a Poincaré lemma for A and B and through the reductions made before
also for a wider class of operators in n D 2.
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