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1. Introduction

The Stefan problem is extensively studied because of its simple mathematical formula-
tion and since a wide variety of phenomena and processes can be reduced to a problem
of Stefan type (e.g. see [1, 4–7, 11–16, 18, 20, 22, 23, 27, 30, 31] and references cited
therein). Indeed, such mathematical problems arise from a wide field of applications
since several natural phenomena and industrial processes involve the presence of an
evolving interface with diffusion and phase change [8, 26]. The works by Crank [9],
by Fasano and Primicerio [17], and by Tarzia [29] are the fundamental review of the
problem of phase transition related to a moving front (free boundary).

The ice-liquid water phase transition is the most common example of a Stefan
problem. Such a mathematical model consists of solving the heat equations for the solid
(ice) and liquid phases and the equation (representing energy balance) for the interface
separating ice and liquid (usually named Stefan condition). The reduced one-phase
setting consists in assuming that the temperature in one phase is uniform and constant
so that one has just to solve a parabolic equation coupled with the evolution equation
for the interface [19].

In many physical and biological models, diffusion and phase change processes can
be formulated, with a certain degree of approximation, on a surface with particular
geometries, i.e., they occur on thin layers usually modelled as curved surfaces. Some
examples are diffusional transport of substances in the cell membranes [10], and crystal
growth [24]. Literature on this subject is quite vast, e.g. [2, 3, 24, 28, 32].

https://creativecommons.org/licenses/by/4.0/
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The formulation of phase change problems on a surface is a limit case in which
the process takes place in a material occupying a layer which is thin with respect to
the domains in which it is embedded. Further conditions must be fulfilled concerning
the mutual heat exchange, for instance thermal insulation, which here will be assumed
yielding the absence of source terms in the heat conduction equation. In particular,
the surface is assumed to be thermally insulated from the 3D environment in which
the surface is embedded. Together with the absence of irradiation, this reflects in
the absence of source terms in the heat equation. In the reduced scheme, the free
boundary, i.e., the interface where phase change takes place, is identified by a curve on
the surface. Examples of a singular front evolution on thin layer are given in [25]. Here,
the thin material layers are treated as two-dimensional continua since their thickness
is negligible compared to the dimensions of the adjacent bulk materials. The layers
are thus mathematically represented as surfaces with their own thermomechanical
properties. These surfaces therefore carry mass, momentum, energy, and entropy.
A thermodynamic theory of phase boundaries can be therefore developed on the
postulation of conservation laws together with constitutive assumptions. We refer the
readers also to [21] where more details are provided.

In 1976, Stewartson and Waechter [28] provided the complete asymptotic theory
for Stefan problem on a sphere. Recently, an approximate analytical solution for a
two-phase Stefan problem has been developed based on asymptotic analysis with fully
phase-dependent thermophysical properties to model outward solidification on an
annulus [32].

Faraudo [10] studied analytically the diffusional transport on two-dimensional
curved surfaces highlighting the influence of the surface local curvature on chemicals
diffusion.

In [2,3], new insights on PDEs on evolving spaces are illustrated. The Stefan problem
on a moving hypersurface is analyzed by regularization in [2]. Prokhorova in [24] inves-
tigates the self-similar regimes in the problem of crystal growing from a pure melt on an
isothermal surface. In particular, the author discusses the modeling of the spherical crys-
tal growth by analyzing the two-dimensional crystallization on surfaces of revolution.

The aim of this paper is to study the one-phase Stefan problem on a surface of
revolution, looking for those surfaces for which the problem admits self-similar solutions
of the form u.s; t/ D f .g.s/

h.t/
/, where s is the arc length on the curve generating the

surface. We assume that the surface and the environment do not exchange heat so that
the thermal energy diffuses only on the surface. In particular, looking for axisymmetric
solutions, we focus on the surfaces of revolution about the z-axis and consider problems
with azimuthal symmetry. We assume that the initial condition for the interface is
z D constant, and because of the required symmetry, z D b.t/ represents the free
boundary at time t .
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Figure 1. Geometry of the problem: surfaces of revolution about the z-axis.

We assume that the temperature for z > b.t/ is below the melting temperature,
umelting (solid phase), while for z < b.t/ the medium is in the liquid state at the constant
temperature umelting. Figure 1 shows the geometry of the problem.

We find that not all surfaces admit self-similar solutions. The only surfaces of
revolution that admit self-similar solutions depend on a real parameter. We also find
the functional form of g.s/, h.t/.

The paper is organized as follows. In Section 2, we introduce the background and
general formulation of the Stefan problem on a surface. In Sections 3 and 4, we look
for solutions of self-similar type. In Section 5, we classify the surfaces of revolution
admitting similarity solutions. The last section is devoted to discussion and conclusions.

2. Background: The Stefan problem on a regular surface

We briefly report the theory of the Stefan problem on regular surfaces in R3.
As mentioned in the introduction, diffusion and phase change processes on a thin

layer can be modelled, with a certain degree of approximation, replacing the layer
with a 2D surface (see, e.g., [21]). Within such an approximation, we consider the
Stefan problem on a regular surface, †. We denote by †l.t/ and †s.t/ the liquid and
solid domains, respectively, assuming that they are separated by an a priori unknown
curve �.t/. Therefore, † D †l.t/ [†s.t/ [ �.t/ � R3. We denote as u the surface
temperature, u is larger than the melting temperature umelting in †l , while u � umelting

in †s .
We now assume that there is no heat exchange between the surface and the envi-

ronment. Denoting by j the heat flux and by � the thermal conductivity (constant and
uniform) of the material filling the thin layer, the upscaling process leading to the
formulation of heat conduction and phase change on a surface leads to conclude that
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Fourier’s law takes the form
j D ��r†u;

where
r†.�/ D

@.�/

@w˛
X˛
D
@.�/

@w˛
g˛ˇXˇ

is the surface gradient andg˛ˇ the inverse of the covariant metric tensor g˛ˇ ,˛;ˇD 1;2.
The heat equation acquires the form

(2.1) �c
@u

@t
D ��†u;

where � and c are the density and specific heat (constant and uniform) and

�†.�/ D
1
p
g

@

@w˛

�
p
gg˛ˇ

@ .�/

@wˇ

�
is the Laplace–Beltrami operator with g D det.g˛ˇ /.

We suppose that u is rescaled so that the melting temperature vanishes, i.e., umelting

D 0. We assume that the temperature in †s , denoted by us , is non-positive, and the
temperature in †l , denoted by ul , is non-negative, while at the interface,

(2.2) usj� D ul j� D 0:

We then assume that � can be locally represented parametrically in an implicit form as

F .w1; w2; t / D 0; t > 0;

so that the usual Stefan condition rewrites as [21]

(2.3) g˛ˇ
�
�l
@ul

@w˛
� �s

@us

@w˛

�
@F

@wˇ
D ��

@F

@t
;

where � is the melting specific latent heat and �l , �s are thermal conductivity in the
liquid and solid phase, respectively.

3. One-phase Stefan problem on a surface of revolution

Here and in the sequel, we set .x1; x2; x3/ D .x; y; z/ and .w1; w2/ D .�; z/. We
then consider a surface of revolution generated by rotating the graph of the function
x D q.z/ � 0, z 2 D where D is the domain of definition of q, around the z-axis, as
shown in Figure 2, namely,8̂̂<̂

:̂
x.�; z/ D q.z/ cos �;
y.�; z/ D q.z/ sin �;
z.�; z/ D z;

.�; z/ 2 Œ0; 2�� �D :
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The covariant metric tensor g˛ˇ , ˛; ˇ D 1; 2, is

g11 D q.z/
2; g12 D 0; g22 D 1C

�
dq

dz

�2
;

and
p
g D

q
det.g˛ˇ / D q.z/

p
1C q0.z/2:

We assume that the initial condition for the interface is z D constant, and since we
require azimuthal symmetry, F .z; t/ D z � b.t/ D 0 represents the interface between
the liquid and solid phase and †s is the portion z > b.t/. In †s , the temperature u
evolves according to (2.1), while u D 0 for z � b (one-phase Stefan problem). By
introducing the following scaling

t D treft
�; z D Hz�; q D Hq�; b D Hb�;

with H characteristic length (e.g., the length of the sample) and

tref D
�cH 2

�
;

system (2.1), (2.2), (2.3) takes the dimensionless form

(3.1)

8̂̂̂<̂
ˆ̂:
ut D

1

q.z/
p
1Cq0.z/2

@
@z

�
q.z/p
1Cq0.z/2

@u
@z

�
; 0 < t; b.t/ < z;

u
�
b.t/; t

�
D 0;

ƒ Pb.t/ D 1
1Cq0.z/2

@u
@z

ˇ̌
b
;

with ƒ D �=c and where we omit writing � to keep the notation as light as possible.
We proceed introducing

(3.2) s D

Z z

0

p
1C q0.�/2d�;

where we integrate starting from zero without loss of generality, since we can reduce
to this case by means of a vertical translation along the z-axis. We denote the inverse
of (3.2) as z D Oz.s/. We then set

(3.3) Oq.s/ D q
�
Oz.s/

�
; ” q.z/ D Oq

�
s.z/

�
:

In particular, we denote by �.t/ the free boundary in the s coordinate, namely,

�.t/ D

Z b.t/

0

p
1C q0.�/2d�;

P�.t/ D

q
1C q0

�
b.t/

�2 Pb.t/:
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Figure 2. Geometry of a surface of revolution generated by rotating the graph of the function
x D q.z/ around the z-axis. The blue and red regions represent the part of the material in the
solid and liquid state, respectively.

System (3.1) becomes

(3.4)

8̂̂<̂
:̂
ut D uss C B.s/us;

u
�
�.t/; t

�
D 0;

ƒ P�.t/ D @u
@s

ˇ̌
�
;

where

(3.5) B.s/ D
Oq0.s/

Oq.s/
:

We refer the readers to [13–16] for the well-posedness of problem (3.4).

4. Looking for self-similar solutions

We look for a solution in the form

(4.1) u.s; t/ D f .�/;

where

(4.2) � D
g.s/

h.t/
;

assuming here and in the sequel neither g nor h are constant and requiring

g
�
�.t/

�
h.t/

D �;
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with � non-vanishing constant and f .�/ D 0. However, since h and g are defined, at
least at this stage, up to multiplicative constants, we select these constants such that
� D 1. Hence,

(4.3)
g
�
�.t/

�
h.t/

D 1; H) g0
�
�.t/

�
P�.t/ D Ph.t/;

where g.s/ is C 3 and h.t/ is C 2 in the interior of their respective domains of definition.
It is worth noting that if we look for the solution in the form u.s; t/ D k.t/f .�/,

then the function k.t/ has to be constant and formula (4.1) is automatically recovered
(see the appendix for more details).

Plugging (4.1), (4.2) into system (3.4) and noting that

@u

@s

ˇ̌̌
�
D

@

@s

�
f

�
g.s/

h.t/

�
„ ƒ‚ …
D

(4.2)
f .�/

�ˇ̌̌̌
�

D

�
g0.s/

h.t/
f 0.1/

�ˇ̌̌̌
�

D
g0
�
�.t/

�
h.t/

f 0.1/ D
(4.3)

Ph.t/

P�.t/h.t/
f 0.1/;

we have

(4.4)

8̂̂<̂
:̂
f 00
�
g0

h

�2
C
�
g00

h
C g

Ph
h2 C B

g0

h

�
f 0 D 0;

f .1/ D 0;

ƒ P�2 D
Ph.t/
h.t/

f 0.1/;

where f 0.1/ ¤ 0 so that � ¤ constant. In the sequel, we assume that the coefficient of
f 0 is non-vanishing.

The key point is to select the functional form of g.s/ and h.t/ so that equation (4.4)1
can be rewritten in terms of the sole variable � D g.s/=h.t/. We rewrite (4.4)1 as

f 00 C

�
h

g0

�2�
g00

h
C g

Ph

h2
C B

g0

h

�
f 0 D 0;

deducing that a condition for a self-similar solution to exist is that the coefficient of f 0

must be a function of �,

'.�/ D

�
h

g0

�2�
g00

h
C g

Ph

h2
C B

g0

h

�
D
g00.s/h.t/�
g0.s/

�2 C B.s/ h.t/g0.s/
C
g.s/ Ph.t/�
g0.s/

�2 :
(4.5)
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By differentiating equation (4.5) with respect to t , we get

(4.6) �'0.�/
g.s/

h2.t/
Ph.t/ D

g00.s/ Ph.t/�
g0.s/

�2 C B.s/ Ph.t/g0.s/
C
g.s/ Rh.t/�
g0.s/

�2 :
We multiply by .g0/2=g equation (4.6) and then differentiate it with respect to s. We
thus get an equation no longer containing the derivatives of h

� '00.�/

�
g0.s/

�3
h3.t/

� '0.�/
2g0.s/g00.s/

h2.t/

D
g000g C B 0g0g C B.s/g00g � g00g0 � B.g0/2

g2
WD

F1.s/

g2.s/
:

(4.7)

Now, we select s D s0 and set g.s0/=h.t/D v, thus, ' becomes a function of v. Hence,
we rewrite (4.7) as

F1.s0/ D g
2.s0/

�
� 'vv.v/

�
g0.s0/

�3
h3.t/

� 'v.v/
2g0.s0/g

00.s0/

h2.t/

�
D �'vv.v/v

3

�
g0.s0/

�3
g.s0/

� 'v.v/v
22g0.s0/g

00.s0/

WD 'vv.v/v
3F2.s0/C 'v.v/v

2F3.s0/;

(4.8)

where

(4.9) F2.s0/ D �

�
g0.s0/

�3
g.s0/

and F3.s0/ D �2g
0.s0/g

00.s0/:

We remark that since g.s/ cannot be constant, F2.s0/ 6� 0. Therefore, equation (4.8)
rewrites in the form

'vv.v/C
'v.v/

v

�
F3.s0/

F2.s0/

�
„ ƒ‚ …
A1.s0/

D
1

v3

�
F1.s0/

F2.s0/

�
„ ƒ‚ …
A2.s0/

;

whose solution, for a prescribed s0, is8̂̂̂<̂
ˆ̂:
'.v/ D A2.s0/

.2�A1.s0//v
CK1

v1�A1.s0/

1�A1.s0/
CK2; A1.s0/ ¤ 1; 2;

'.v/ D A2.s0/
1
v
CK1 log jvj CK2; A1.s0/ D 1;

'.v/ D
R v A2.s0/ log j� j

�2 d� �K1
1
v
CK2; A1.s0/ D 2;

where K1; K2 are arbitrary constants. We now set

A1.s0/ D r D constant;
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namely, recalling (4.9),

A1.s0/ D
F3.s0/

F2.s0/
D 2g0.s0/g

00.s0/
g.s0/�
g0.s0/

�3
D
2g00.s0/g.s0/�
g0.s0/

�2 D r D constant;

which, setting g0 D w.g/ so that g00 D wg.g/w.g/, implies that

(4.10)
wg.g/

w.g/
D

r

2g
; H) ln jwj D

r

2
ln jgj C C; C D constant:

Therefore, from (4.10), we obtain8<:g0 D w.g/ D c1g; if r D 2;

0 �
�
.g0/2

�1=r
D
�
w2.g/

�1=r
D c1g; if r ¤ 2;

c1 2 R;

i.e., 8<:
g0

g
D c1; if r D 2;

g0.gc1/
�r=2 D 1; H)

yDc1g�0
y0y�r=2 D c1; if r ¤ 2;

which easily provides an expression for g,

(4.11)

8<:g.s/ D c2ec1s; if r D 2;

g.s/ D 1
c1

�
.c1s C c2/

�
�
r
2
C 1

�� 1

� r
2
C1 ; if r ¤ 2;

c1; c2 2 R;

requiring that, for r ¤ 2, the constants c1, c2 and r are selected so that the term in the
squared parenthesis is non-negative.

Now, we recall that we are looking for the solution of the type (4.1), (4.2) to the
system (3.4), thus, using (4.11), by redefining in a suitable way the function f , we can
rewrite u.s; t/ as

(4.12) u.s; t/ D f .�/ D

8<:f
�
ec1s

h.t/

�
; with g.s/ D ec1s;

f
�
c1sCc2

h.t/

�
; with g.s/ D c1s C c2:

By using (4.3) and (4.12), we have

(4.13) �.t/ D

8<:
log jh.t/j
c1

;

h.t/�c2

c1
;
H) P�.t/ D

8<:
Ph.t/
h.t/c1

;

Ph.t/
c1
:



b. calusi, a. farina and r. gianni 224

Thus, by plugging (4.13) into (4.4)3, we have

ƒ P�2 D

8<:ƒ
� Ph.t/
h.t/c1

�2
D
Ph.t/
h.t/

f 0.1/;

ƒ
� Ph.t/
c1

�2
D
Ph.t/
h.t/

f 0.1/;

i.e.,

(4.14)

8̂̂<̂
:̂
ƒ
Ph.t/

h.t/c2
1

D f 0.1/; H) h.t/ D d1e
c2

1
f 0.1/

ƒ t ;

ƒ
Ph.t/

c2
1

D
f 0.1/
h.t/

; H) h.t/2 D
2c2

1
f 0.1/

ƒ
t C d1;

d1 D constant:

Consequently, by using (4.14), formula (4.12) becomes

(4.15) u.s; t/ D f .�/ D

8<:f
�
ec1s

ec3t

�
; with g.s/ D ec1s;

f
�
c1sCc2p
c3tCc4

�
; with g.s/ D c1s C c2;

with c1; c2; c3; c4 constants. Moreover, (4.15) can be also rewritten as

(4.16) u.s; t/ D f .�/ D

8<:f .eb1sCb2t /;

f
�
sCb1p
tCb2

�
;

with b1;2 constants and t C b2 > 0.
Now, plugging (4.16) into (3.4)1, we have that8<:f
0.�/b2e

b1sCb2tDf 00.�/b21e
2.b1sCb2t/Cf 0.�/b21e

b1sCb2tCf 0.�/b1e
b1sCb2tB.s/;

� f 0.�/.s C b1/
.tCb2/

�3=2

2
D f 00.�/.t C b2/

�1
C f 0.�/B.s/.t C b2/

�1=2;

i.e.,

(4.17)

8<:f 0.�/b2 D f 00.�/b21�C f 0.�/b21 C f 0.�/b1B.s/;�f 0.�/�
2
D f 00.�/C f 0.�/B.s/.s C b1/�

�1;

from which we deduce the admissible values for B ,

(4.18) B.s/ D

´
m;

m
sCb1

;
m D constant:

Equations appearing in (4.17) are analytically solvable and in the first case we get f .�/
proportional to a power of �, while in the second case f .�/ is the hypergeometric
function.
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Now, we show that if we consider

(4.19)
g00

h
C g

Ph

h2
C B

g0

h
D 0;

the previous case is essentially retrieved. Indeed, if (4.19) holds true, formula (4.4)1
entails: (i) f 00 D 0, or (ii) g

0

h
D 0. The second possibility is trivially excluded because

of being incompatible with the hypothesis of similarity solution. Considering the first
possibility, i.e., f 00 D 0, rewriting system (4.4), we obtain

(4.20)

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

f 00.�/ D 0;

(4.19)) Ph.t/
h.t/
D �

B.s/g0.s/Cg00.s/
g.s/

D C1 D constant;

f .1/ D 0;

ƒ P�2 D
Ph.t/
h.t/

f 0.1/:

By using (4.20)1;3, we obtain the expression of f , i.e.,

f .�/ D C2.� � 1/; C2 2 R;

from which, by exploiting (4.20)4, we have

ƒ P�2 D
Ph.t/

h.t/
f 0.1/ D constant; H) �.t/ D C3t C C4; C3;4 2 R:

Then, recalling (4.20)2, we obtain the following expression for h:

(4.21) h.t/ D eC1tC5; C5 2 R;

and, since (4.3) holds true, we get

(4.22)
g
�
�.t/

�
h.t/

D 1; ” g
�
�.t/

�
D h.t/ D eC1tC5;

i.e., C3 D C1,

(4.23) �.t/ D C1t C C4:

From (4.22), we deduce the functional form of g.s/,

(4.24) g.s/ D esC6;

where C6 is a suitable constant. Thus, from (4.20)2, we get the admissible values
for B.s/:

(4.25) �
B.s/g0.s/C g00.s/

g.s/
D �B.s/ � 1 D C1; H) B.s/ D constant:
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Therefore, expressions (4.21), (4.24), and (4.25) correspond to solutions (4.16)1 and
(4.18)1, i.e., we have retrieved a result obtained assuming that the coefficient of f 0 in
(4.4)1 is non-vanishing.

5. Profiles q.z/ for which self-similar solutions may exist

We rewrite (4.18) exploiting (3.5) as

(5.1)
Oq0.s/

Oq.s/
D B.s/ D

8<:m;m
sCb1

;

i.e.,

(5.2) Oq.s/ D

´
Aems;

Ajs C b1j
m;

A D constant 2 R:

We point out that, at this stage, the problem of finding profiles q.z/ which admit
self-similar solution is not yet completely solved since (5.2) provides just Oq.s/.

In the sequel, we illustrate the procedure for finding q.z/ from (5.2).
We first analyze (5.2)1, which coupled with (3.2) implies that

(5.3) q.z/ D Oq
�
s.z/

�
D Aem

R z
0

p
1Cq0.�/2d� :

We can assume, without loss of generality, A > 0. By differentiating (5.3) with respect
to z, we get

q0.z/ D q.z/m
�
1C q0.z/2

�1=2
;

from which

(5.4) .q0/2 D
m2q2

1 �m2q2
; H) q0 D ˙

mqp
1 �m2q2

;

for jq.z/j � 1=jmj with m ¤ 0.
By denoting v D

p
1 �m2q2, so that m2q2 D 1 � v2, we rewrite (5.4) as

�
v2

m2q2
v0 D ˙m; where v0 D

dv.z/

dz
;

thus,

�
v2v0

1 � v2
D ˙m; H) v0 �

v0

1 � v2
D ˙m;
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Figure 3. Plot of q.z/ with a positive sign when B.s/ D m with (A,B) A D 1=
p
2 and

(C,D) A D 1 for different values of m. The surface of revolution is generated by rotating q.z/
around the z-axis. The plot of q.z/ with a negative sign is obtained by means of a reflection with
respect to the horizontal axis.

i.e.,
v.z/ � v.0/ � arctanh

�
v.z/

�
C arctanh

�
v.0/

�
D ˙mz;

and, recalling that v D
p
1 �m2q2 and q.z/ D x, we get

z D ˙
1

m

�p
1 �m2x2 �

p

1 �m2A2

� arctanh.
p

1 �m2x2/C arctanh.
p

1 �m2A2/
�
;

(5.5)

where q.0/ D A. Formula (5.5) provides an implicit expression of q.z/. The profile
of q.z/ is displayed in Figure 3 for different values of m and A.

Now, we focus on (5.2)2. Recalling (3.2), we have

(5.6) q.z/ D Oq
�
s.z/

�
D A

ˇ̌̌̌ Z z

0

p
1C q0.�/2d� C b1

ˇ̌̌̌m
:
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.

.

z = b(t)

z 

Figure 4. Geometry of the surface of revolution given by (5.9).

Proceeding similarly to the previous case, we differentiate (5.6) and then squaring, we
get

.q0/2 D m2A2=mq2�2=m
�
1C .q0/2

�
;

i.e., for jq.z/j � 1=jmA1=mj m
m�1 with m ¤ 0,

q0
p
1 �m2A2=mq2�2=m

q1�1=m
D ˙mA1=m;

H) z D ˙
1

mA1=m

Z q.z/

q0

p
1 �m2A2=mw2�2=m

w1�1=m
dw;

(5.7)

where q0 D q.0/ D Ajb1jm. Recalling that x D q.z/, we get

(5.8) z D ˙
1

mA1=m

Z x

x0

p
1 �m2A2=mw2�2=m

w1�1=m
dw;

where x0 D q0 D Ajb1jm. If m D 1, equation (5.8) reduces to

(5.9) z D Cx CD;

i.e., the surface of revolution is a cone as depicted in Figure 4.
If m D 2, recalling q.z/ D x, equation (5.7) reduces to

z D ˙
1

2A1=2

Z x

x0

p
1 � 4Aw

w1=2
dw;



self-similar solution to the stefan problem on surfaces of revolution 229

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5. Plot of q.z/ with a positive sign when B.s/ is given by (5.1)2 with A D 1=4, b1 D 0,
and m D 2. The surface of revolution is generated by rotating q.z/ around the z-axis. The plot
of q.z/ with a negative sign is obtained by means of a reflection with respect to the horizontal
axis.

which, defining y D A1=2w1=2 so that Aw D y2 and dw D 2y=Ady, becomes

z D ˙
1

A

Z A1=2x1=2

A1=2x
1=2
0

p
1 � .2y/2dy

D ˙
1

4A

�
2
p
Ax
p
1 � 4Ax C arcsin .2

p
Ax/

� 2
p
Ax0

p
1 � 4Ax0 � arcsin .2

p
Ax0/

�
:

Figure 5 shows the plot of q.z/ for m D 2.
It is worth noting that (5.5) and (5.8) hold true when m ¤ 0. If m D 0, then (5.2)

entails Oq.s.z// D A. Therefore, recalling (3.3), the surface of revolution is a cylinder.
In this case, problem (3.4) reduces to the classical 1D Stefan problem with one phase,
namely 8̂̂<̂

:̂
ut D uss;

u
�
�.t/; t

�
D 0;

ƒ P�.t/ D @u
@s

ˇ̌
�
;

which is known to have the classical s

2
p
t

similarity variable.
We remark that the procedure here developed highlights the existence, besides

the cylinder, of other surfaces of revolution for which the similarity variable is of the
type s=

p
t , as in formula (4.16). In particular, the set of surfaces admitting s=

p
t as

similarity variable is given by the implicit equation (5.8).
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6. Discussion and Conclusion

We investigated the one-phase Stefan problem on revolution surfaces, looking for those
ones for which the problem admits a self-similar solution. In particular, we considered
the azimuthal symmetry of the thermal field.

If x D q.z/ is the function originating the surface of revolution, we have shown
that self-similar solutions can exist only for particular choices of q.z/.

Moreover, the results show that the problem admits the classical similarity variable
of the type s=

p
t not only when the surface of revolution is a cylinder (as expected)

but also when the surface is given by (5.8).
Operating in this way, we have been able to determine and classify the most general

forms of the profiles q.z/ entailing the existence of similarity solutions.
Possible future developments could involve self-similar solutions on moving surfaces

as well as the two-phase Stefan problem.

Appendix

Let us look for solutions in the form

(A.1) u.s; t/ D k.t/f .�/;

with k.t/ not constant, � given by (4.2), and with (4.3) which still holds true. In this
case, system (3.4) becomes

(A.2)

8̂̂<̂
:̂
f 00
�
g0

h

�2
C
�
g00

h
C g

Ph
h2 C B

g0

h

�
f 0 �

Pk
k
f D 0;

f .1/ D 0;

ƒ P�2 D k.t/
Ph.t/
h.t/

f 0.1/;

since
@u

@s

ˇ̌̌
�
D k.t/

Ph.t/

P�.t/h.t/
f 0.1/:

By multiplying equation (A.2)1 by k
Pk

(recall that we can assume Pk ¤ 0), we have

(A.3)

8<:
�
g0

h

�2 k
Pk
D �1.�/;�

g00

h
C g

Ph
h2 C B

g0

h

�
k
Pk
D �2.�/;

where �1, �2 are arbitrary (at this stage) functions of �. Now, setting

H.t/ D
1

h.t/
; H)

(4.2)
� D H.t/g.s/;(A.4)

k.t/

Pk.t/
D K.t/;(A.5)
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and

(A.6)
�g0
g

�2
D G.s/; G.s/ � 0;

equation (A.3)1 entails

�1.�/ D �1
�
g.s/H.t/

�
D

�g0
h

�2 k
Pk
D

�g0
g

�2
„ƒ‚…
G.s/

�g
h

�2„ƒ‚…
�2

k

Pk„ƒ‚…
K.t/

D G.s/K.t/�2;

namely,

(A.7) G.s/K.t/ D �3.�/; with �3.�/ D �3
�
g.s/H.t/

�
D
�1.�/

�2
:

By differentiating both sides of (A.7) with respect to s and t , we get

G0.s/K.t/ D
@

@s

�
�3
�
g.s/H.t/

��
D �03.�/g

0.s/H.t/;

G.s/ PK.t/ D
@

@t

�
�3
�
g.s/H.t/

��
D �03.�/g.s/

PH.t/;

respectively, whose ratio gives

G0.s/

G.s/

K.t/

PK.t/
D
g0.s/

g.s/

H.t/

PH.t/
;

i.e.,

(A.8)
g0.s/

g.s/

G.s/

G0.s/
D
PH.t/

H.t/

K.t/

PK.t/
D

1

2p
D constant:

By using definitions (A.4)–(A.6) and equation (A.8), we have8<:
g0.s/
g.s/
D

1
2p

G0.s/
G.s/

;

PH.t/
H.t/
D

1
2p

PK.t/
K.t/

;
H)

8<:g.s/ D C1G
1

2p .s/ D C1
�
g0

g

� 1
p ;

1
h.t/
D H.t/ D C2jKj

1
2p .t/ D C2

ˇ̌
k
Pk

ˇ̌ 1
2p ;

from which we have

g0.s/ D C
�p
1 gpC1.s/; H)

8<:g.s/ D
�
� p.C

�p
1 s CD1/

�� 1
p ;

g00.s/ D C
�2p
1 .p C 1/g2pC1.s/;

(A.9)

ˇ̌̌ Pk.t/
k.t/

ˇ̌̌
D
�
C2h.t/

�2p
; H)

Pk.t/

k.t/
D ˙.C2/

2ph.t/2p;(A.10)

with C1 and D1 suitable constants such that the term in squared bracket in (A.9)1 is
well defined.
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Inserting (A.10) in (A.3)2 by assuming p ¤ 0 and defining yC2 D ˙.C2/2p , we get�
g00

h
C g

Ph

h2
C B.s/

g0

h

�
1

h2p
D �2.�/ yC2;

which implies

g00

h2pC1
C g

Ph

h2pC2
C B.s/

g0

h2pC1
D �2.�/ yC2 D �3.�/;

i.e.,

(A.11)
g00

g2pC1
C

g Ph

g2pC1h
C B.s/

g0

g2pC1
D �3.�/

h2pC1

g2pC1
D
�3.�/

�2pC1
D �4.�/:

Differentiating (A.11) with respect to t ,
��
Ph

h

�
1

g2p
D �4;�g

��
1

h

�
;

i.e.,

(A.12) �4;�.�/ D �

� ��
hh � . Ph/2

Ph

�
1

h2pC1
1

�2pC1
:

Let us fix t and integrate (A.12) in � which is still free to move. We get

�4.�/ D K0�
�2p
CK1; K0 D

��

hh � . Ph/2

2p Phh2pC1
; K1 D constant;

where K0 is also a constant since it is a function of the sole variable t , hence,
��

hh � . Ph/2

Phh2pC1
D 2pK0:

Setting Ph.t/ D v.h/ and recalling that Ph ¤ 0, we obtain

vhvh � v
2

vh2pC1
D 2pK0;

i.e.,

(A.13)
vh

h
�
v

h2
D 2ph2p�1K0; H)

Ph

h
D
v

h
D K0h

2p
CK1:

On the other hand, from
g
�
�.t/

�
h.t/

D 1;
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and

g.s/ D
�
� p.C

�p
1 s CD1/

�� 1
p D .as C b/�

1
p ; b D �pD1 D constant;

where a D �pC�p1 D constant ¤ 0 so that the solution in (A.1) is not a function of
the sole variable t , we have

a�.t/C b D
�
h.t/

��p
H) �.t/ D

1

a
�
h.t/

�p � ba ;
and

P� D �
p

a
h�p�1 Ph H) . P�/2 D

p2

a2
h�2p�2. Ph/2;

thus, from (A.2)3, we obtain

ƒ
p2

a2

�
Ph.t/

�2
h2pC2.t/

D k.t/
Ph.t/

h.t/
f 0.1/:

Using (A.13), we get

ƒ
p2

a2
K0h

2p CK1

h2p
D k.t/f 0.1/;

H) k.t/ D
ƒ

f 0.1/

p2

a2

�
K0 C

K1

h2p

�
D �0 C �1h

�2p;

(A.14)

where f 0.1/ ¤ 0 so that � ¤ constant, thus,

Pk.t/

k.t/
D
�1.�2p/h

�2p�1.t/ Ph.t/

�0h2p C �1
h2p

D
�2p�1h

�1 Ph

�0h2p C �1
D

(A.13)

�2p�1.K0h
2p CK1/

�0h2p C �1
;

i.e., ˇ̌̌̌
Pk.t/

k.t/

ˇ̌̌̌
D

ˇ̌̌̌
�2p�1.K0h

2p CK1/

�0h2p C �1

ˇ̌̌̌
D

(A.10)
C
2p
2 h2p;

which, recalling that p ¤ 0, is only possible if �0 D 0 and K1 D 0. However, K1 D 0
implies in (A.14) that k.t/ D constant and we go back to the case already treated in
the previous section of the paper.
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