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Abstract. – We investigate the random bipartite optimal matching problem on a flat torus in
two dimensions, considering general strictly convex power costs of the distance. We extend the
successful ansatz first introduced by Caracciolo et al. for the quadratic case, involving a linear
Poisson equation, to a non-linear equation of q-Poisson type, allowing for a more comprehensive
analysis of the optimal transport cost. Our results establish new asymptotic connections between
the energy of the solution to the PDE and the optimal transport cost, providing insights on their
asymptotic behavior.
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1. Introduction and main result

Let .X1; : : : ; Xn/, .Y1; : : : ; Yn/ be two sets of n random points independent and
uniformly distributed on the flat torus T2 D R2=Z2, i.e., with common law given
by the Lebesgue measure m on T2. The random bipartite optimal matching problem
concerns the study of the optimal coupling (with respect to a certain cost function) of
these points, that is, the optimal transport from the empirical measure�n WD 1

n

Pn
iD1 ıXi

to �n WD 1
n

Pn
iD1 ıYi

, in particular in the limit n� 1.
For the quadratic cost c.x; y/ WD d.x; y/2, where d is the quotient (flat) distance

in T2, the seminal paper [11] gave a very appealing PDE ansatz on the asymptotic of the
expectation of the optimal transport cost, based on a linearization of the Monge–Ampère
equation. While it was already known in the literature that, for the cost c D dp in
dimensiond D 2, the expectation of the optimal transport cost behaves like .n�1 lnn/p=2

(since [1]), in [11], they managed to predict the limit coefficient as 1=.2�/ in the case
pD 2, exploiting Fourier analysis and some renormalization procedure. This prediction
was then rigorously proven in [7], together with a new PDE proof of the classical bounds
in [1].

Since then, several works have been using such PDE ansatz to estimate with different
degrees of sharpness the asymptotics of random optimal matching costs and their
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solutions, in several settings. Focusing only on the two-dimensional case, but possibly
including more general manifolds than T2, we mention here the rigorous results [4–6,
10, 12, 14–16, 18] as well as further intriguing predictions from the physical literature
[8, 9] and refer e.g. to the contribution [25] for a more general overview on the subject.

The aim of the present work is to establish new asymptotic connections between the
solution of a “linearized PDE” and the expectation of the optimal transport cost, on T2,
for general p > 1, extending the main results in [4,7]. Let us mention here that recently
other works focused on two-dimensional random optimal matching problems, beyond
the quadratic cost, in particular [22], where the quantitative harmonic approximation
techniques – originally in [15], see also the exposition [23] – are extended to any
p > 1, and the preprint [19], where the existence of a p-cyclically monotone stationary
matching from a Poisson point process to the Lebesgue measure is ruled out for any
p > 1 – the quadratic case is covered in [18].

In order to describe here informally our results, we may treat the empirical measures
�n D �0m, �n D �1m as absolutely continuous with respect to m. This will be made
rigorous by a regularization with the heat kernel Pt on T2, as performed in [7]. We
first recall (see e.g., [2, Remark 5.3]) that the Kantorovich potential � is related to the
optimal transport map T by the identity

T .x/ D x C
ˇ̌
r�.x/

ˇ̌q�2
r�.x/;

where, throughout the paper, q D p=.p � 1/ denotes the dual exponent of p. Then,
the Monge–Ampère equation takes the form

�1
�
x C

ˇ̌
r�.x/

ˇ̌q�2
r�.x/

�
det

�
r
�
x C

ˇ̌
r�.x/

ˇ̌q�2
r�.x/

��
D �0.x/:

This PDE contains three non-linearities: the determinant, the dependence of �1 on r�,
and finally, when p ¤ 2, the nonlinear term jr�jq�2r�. Our main result shows that in
order to obtain a good first-order approximation of the expected value of the transport
cost, it is sufficient to remove only the first two non-linearities, keeping the third one.
This invokes the “linearized” (but still nonlinear!) PDE of q-Poisson type

(1.1) � div
�
jr�jq�2r�

�
D �1 � �0; � 2 H 1;q.T2/

in the sense of distributions, namely,

(1.2)
Z

T2

jr�jq�2hr�;r�i dm D

Z
T2

.�1 � �0/� dm 8� 2 H 1;q.T2/;

where we always assume, just to ensure uniqueness, that
R

T2 � dm D 0, yielding the
approximation

(1.3)
ˇ̌
T .x/ � x

ˇ̌p
�
ˇ̌ˇ̌
r�.x/

ˇ̌q�2
r�.x/

ˇ̌p
D
ˇ̌
r�.x/

ˇ̌q
:
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Our main result makes precise such approximation (see Section 2 for more details on
the notation).

Theorem 1.1 (Main result). If .Xi /1iD1 and .Yi /1iD1 are independent and identically
distributed random variables with law m on T2, then

lim
n!1

�
n

lnn

�p=2 ˇ̌̌̌
E
�
W p
p .�

n; �n/
�
� E

� Z
T2

jr�nj
q dm

�ˇ̌̌̌
D 0

where

(1.4) �n D
1

n

nX
iD1

ıXi
; �n D

1

n

nX
iD1

ıYi
;

and �n is the solution to (1.2) with random right-hand side �1 � �0 D �1;n � �0;n and

(1.5) �0;nm D Ptn�
n; �1;nm D Ptn�

n

provided tn � n�1 lnn and ln.ntn/� lnn.

For instance, a good choice of the intermediate regularization scale tn in the main
result would be tn D n�1.lnn/ˇ with ˇ > 1. Thanks to this result, the existence of the
limit

lim
n!1

E
�
W
p
p .�

n; �n/
��

.lnn/=n
�p=2

is equivalent to the existence of the limit when, in the numerator, EŒW p
p .�

n; �n/�

is replaced by EŒ
R

T2 jr�nj
q dm�, with �n solutions to the PDE (1.2) with a random

right-hand side (1.5). It would be interesting to prove or disprove the existence of the
limit thanks to this reduction to a stochastic PDE.

In order to prove Theorem 1.1, the only probabilistic ingredients (see Section 2.4)
will consist in checking that as n!1, with high probability, the densities �i;n in (1.5),
for i D 0; 1, are both sufficiently close to the constant density (Proposition 2.6), as well
as not too far from �n and �n in the Wasserstein sense (Proposition 2.5), collecting
and slightly extending some results from [4, 7]. Then, in Sections 4.1 and 4.2, we will
focus our efforts on showing the following deterministic result.

Theorem 1.2. Let p > 1, let � be a solution of (1.2), and let

c WD 2 max
iD0;1

k�i � 1kL1.T2/:

Then, there exist ı D ı.c; p/ and xı D xı.c; p/ such that ı C xı ! 0 as c ! 0 and

.1 � ı/

Z
T2

jr�jq dm � W p
p .�0m; �1m/ � .1C

xı/

Z
T2

jr�jq dm:
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This result actually holds, with the same proof, on any d -dimensional torus. The
extension to the setting of compact Riemannian manifolds (along the lines of [7])
possibly with boundary is beyond the scope of this note and requires in particular the
understanding in that more general setting of the stability of the estimates from above
for the Riemannian analogous of the operator div.jr�jq�1r�/ under the action of the
Hopf–Lax semigroup, even after shocks.

2. Preliminaries

2.1. The Wasserstein distance

Given probability measures�, � on T2 andp � 1, we define thep-Wasserstein distance
between � and � as

Wp.�; �/ WD min
²�Z

T2�T2

d.x; y/pd�.x; y/
�1=p ˇ̌̌

�1 D �; �2 D �

³
:

We refer to [2] for an introduction to the subject. In particular, we will use throughout
thatWp enjoys the triangle inequality. Moreover, we recall here for later use the following
consequence of the Benamou–Brenier formula; see e.g. [27], [24, Theorem 2] or
[17, Lemma 3.4].

Proposition 2.1. Let � D �0m, � D �1m be absolutely continuous with respect to
m and let � be a solution to (1.2) with q D 2. Then, for every p � 1, there exists a
constant

C D C.T2; p/ <1

such that

(2.1) W p
p .�; �/ � C.ess-inf �1/1�p

Z
T2

jr�jp dm:

We notice that the bound above is asymmetric in the roles of � and � since only �1
is required to be (essentially) bounded from below. In some sense, our work aims to
sharpen (2.1) by replacing the linear Poisson equation with the non-linear q-Poisson one,
and indeed Proposition 4.1 below is proved using a similar argument. However, (2.1)
is useful as one can combine it with harmonic analysis tools, as done e.g. in [7, 24].
For example, for any p > 1, by the classical boundedness of the Riesz transform
operator r.��/�1=2 on T2, where .��/�1=2 is defined as a Fourier multiplier, one
can further bound from aboveZ

T2

jr�jp dm � C

Z
T2

ˇ̌
.��/�1=2.�1 � �0/

ˇ̌p dm;
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where C D C.T2; p/ <1. Hence, from (2.1), we further deduce the upper bound

(2.2) W p
p .�; �/ � C.ess-inf �1/1�p

Z
T2

ˇ̌
.��/�1=2.�1 � �0/

ˇ̌p dm;

where again C D C.T2; p/ <1.

2.2. Viscosity solutions

Viscosity solutions are designed to give a suitable notion of solution (with good
properties such as uniqueness, stability, and comparison principles) for general non-
linear equations for which the distributional point of view does not make sense, as
fully nonlinear PDEs. However, this notion reveals to be useful also for PDEs having a
distributional formulation. This is the case of the q-Laplace (also called q-Poisson)
equation considered in this paper, associated with the differential operator

��qu WD � div
�
jrujq�2ru

�
:

Actually, we will just deal with supersolutions.

Definition 2.2. Let g W T2 ! R. We say that a function

f W T2
! .�1;C1�

is a viscosity supersolution for the equation ��quC g D 0, and we write

(2.3) ��quC g � 0 in the viscosity sense

if the following conditions hold:

(i) f is lower semicontinuous, f 6� C1, and

(ii) whenever x0 2 T2 and ' 2 C 2.T2/ are such that f � ' has a local minimum
at x0 and r'.x0/ ¤ 0, we have

��q'.x0/C g.x0/ � 0:

Definition 2.2 is adapted to the special form of the q-Laplace PDE. Indeed, the
additional requirement r'.x0/ ¤ 0 (not present in the general theory of viscosity
solutions, see for instance [13]) is due to the fact that the expression

(2.4) �q' D jr'j
q�4

�
jr'j2�' C .q � 2/

nX
i; jD1

@'

@xi

@'

@xj

@2'

@xi@xj

�
is singular at the critical points of ', when 1 < q < 2.
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Remark 2.3. With this convention, any f 2 C 2.T2/ satisfying ��qf C g � 0 in
the pointwise sense is also a viscosity supersolution. This follows from the fact that if
we call

Fq.v; S/ W
�
R2 n ¹0º

�
� Sym2�2.R/! R

the differential operator such that Fq.ru;r2u/ D ��qu, then F is non-increasing
with respect to S ( just look at (2.4)). It follows that if f � ' has a local minimum at x0
with r'.x0/ ¤ 0, then rf .x0/ D r'.x0/ ¤ 0 and

Fq
�
r'.x0/;r

2'.x0/
�
C g.x0/ � Fq

�
rf .x0/;r

2f .x0/
�
C g.x0/ � 0

as r2f .x0/ � r2'.x0/.

2.3. Hopf–Lax semigroup

Given f W T2 ! R lower semicontinuous, let u D Qtf be the Hopf–Lax semigroup
associated with the Hamilton–Jacobi equation

(2.5) @tuC
jrujq

q
D 0I

that is,

(2.6) .Qtf /.x/ D min
y2T2

²
f .y/C

dp.x; y/
ptp�1

³
:

The following properties of the semigroupQtf , withQ0f D f , are well known; see
for instance [3, Proposition 3.3] for a detailed proof.

Proposition 2.4. Let f W T2!R be Lipschitz. Then, the functionsQtf are Lipschitz,
uniformly with respect to t 2 Œ0; 1�, t 7! Qtf is Lipschitz from Œ0; 1� to C.T2/, and
the PDE (2.5) is satisfied almost everywhere in .0; 1/ � T2.

2.4. Heat kernel on T2

We recall that the heat kernel on the torus T2 D R2=Z2 is given by

(2.7) pt .x/ WD
X

n2Z2

Npt .x C n/;

where Npt .x/ D 1
4�t
e�
jxj2

4t , x 2 R2, is the Euclidean heat kernel. Given a probability
measure � in T2, we denote by Pt�� m the probability measure having density

�.x/ D

Z
T2

pt .x � y/ d�.y/:
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Let us recall that .Pt /t�0 defines a symmetric Markov (convolution) semigroup,
PsCt D Ps ı Pt with (unique) invariant measures m and generator given by the (distri-
butional) Laplacian. Let us recall the following deterministic dispersion bound, directly
coming from the coupling

† D

Z
T2

pt .z/†z dm.z/ with †z D .Id � �z/#�

between � and Pt� (where �z is the shift map):

(2.8) Wp.�; Pt�/ � C0
p
t 8t > 0;

with C0 D C0.T2/D .
R

T2 jzj
pp1.z/ dm.z//1=p for any probability measure � in T2.

A remarkable fact, first noticed in [4, Theorem 5.2], is that the dispersion bound
above can be significantly improved (in average) when applied to empirical measures�n

as in (1.4).

Proposition 2.5. For everyp� 1, there exists positive constantC1.T2;p/,C2.T2;p/

such that the following holds. If t D ˛=n � 1
2

with ˛ � C1.T2; p/ lnn, then

E
�
W p
p .�

n; Pt�
n/
�
� C2.T

2; p/

�
ln˛
n

�p=2
:

Proof. The case p D 2 is established in [4, Theorem 5.2], and by the Hölder inequality,
it entails the thesis for every 1 � p < 2:

(2.9) E
�
W p
p .�

n; Pt�
n/
�
� .C2/

p=2 .ln˛/
p=2

np=2
; t D

˛

n
; ˛ � C1 lnn:

Therefore, it is sufficient to consider the case p � 2. To this aim, we combine the
argument from [4] with the application of Rosenthal’s inequality, from [24], where the
upper bounds for the random bipartite matching cost are proved for any p � 2. By the
triangle inequality and the elementary bound

(2.10) jx C yjp � 2p�1
�
jxjp C jyjp

�
for some C D C.p/ <1, we find

E
�
W p
p .�

n; Pt�
n/
�

� 2p�1
�

E
�
W p
p .�

n; P1=n�
n/
�
C E

�
W p
p .P1=n�

n; Pt�
n/
��

� 2p�1
�
C0n

�p=2
C E

�
W p
p .P1=n�

n; Pt�
n/
��
;

(2.11)

having used (2.8) in the second inequality. Thus, we are reduced to bound from above
the expectation of W p

p .P1=n�
n; Pt�

n/. Since this random variable is always bounded



l. ambrosio, f. vitillaro and d. trevisan 330

from above by diam.T2/p, by choosing e.g. d D 1=2 in (2.15) of Proposition 2.6
below, we see that, if we pick C1 D .ln a/�1K sufficiently large – precisely such that
5 �Kd2 < p=2, we can safely reduce ourselves to argue on the event k�t;n � 1k � 1=2,
so that Pt�n D �t;nm has a density uniformly bounded from below by 1=2. On such
event, we use (2.2) (with � D P1=n�n and � D Pt�n), and we find

(2.12) W p
p .P1=n�

n; Pt�
n/ � C

Z
T2

ˇ̌
.��/�1=2.�1=n;n � �t;n/

ˇ̌p dm;

where C D C.T2; p/ <1. By the linearity of the operator .��/�1=2, we collect the
identity

.��/�1=2.�1=n;n � �t;n/.x/ D
1

n

nX
iD1

�
.��/�1=2.p1=n � pt /

�
.Xi � x/;

and notice that, for each x 2 T2, the random variables

'i .x/ WD
�
.��/�1=2.p1=n � pt /

�
.Xi � x/; for i D 1; : : : ; n;

are independent and centered. After taking expectation in (2.12), we see that the thesis
amounts to bound from above the quantityZ

T2

E

"ˇ̌̌̌
1

n

nX
iD1

'i .x/

ˇ̌̌̌p#
dm.x/;

where we recognize, for every x, the p-th moment of a sum of independent cen-
tered random variables. By Rosenthal’s inequality, [28], we have for some constant
C D C.p/ <1,

(2.13) E

"ˇ̌̌̌
1

n

nX
iD1

'i .x/

ˇ̌̌̌p#
� C

�
1

np�1
E
�ˇ̌
'.x/

ˇ̌p�
C

1

np=2
E
�ˇ̌
'.x/

ˇ̌2�p=2�
;

where we write ' WD Œ.��/�1=2.p1=n � pt /�.X1 � x/. To conclude, we follow very
closely the argument in [24, (34)] onwards (in the case d D 2), so we omit some details.
We collect first the uniform bound, valid for 0 < s � 1=2:

sup
z2T2

ˇ̌
.��/�1=2.ps � 1/.z/

ˇ̌
�

C

s1=2
;

which we apply in particular to s 2 ¹1=n; tº, yielding

sup
z2T2

ˇ̌
'.z/

ˇ̌
� sup
z2T2

ˇ̌
.��/�1=2.p1=n � 1/.z/

ˇ̌
C sup
z2T2

ˇ̌
.��/�1=2.pt � 1/.z/

ˇ̌
� Cn1=2:
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Then, by the representation .��/�1 D
R1
0
Psds, we find for any f 2 L2.T2/ withR

T2 f dm D 0 thatZ
T2

�
.��/�1=2f

�2 dm D

Z
T2

f .��/�1f dm D

Z 1
0

Z
T2

fPsf dm ds

D

Z 1
0

Z
T2

.Ps=2f /
2 dm ds:

We use this identity in our case, i.e., with f D p1=n � pt , yielding

E
�ˇ̌
'.x/

ˇ̌2�
D

Z
T2

�
.��/�1=2.p1=n � pt /

�2
.y � x/ dm.y/

D

Z 1
0

Z
T2

�
ps=2C1=n.y � x/ � ps=2Ct .y � x/

�2 dm.y/ ds

D

Z 1
0

�
psC2=n.0/C psC2t .0/ � 2psCtC1=n.0/

�
ds

D O
�
� log.2=n/ � log.2t/C 2 log.t C 1=n/C 1

�
D O.ln˛/;

where in developing the square we invoked the semigroup property (so that, for any
t1; t2 > 0,

R
T2 pt1.y � x/pt2.y � x/ dm.y/ D Pt1Ct2ıx.x/ D pt1Ct2.0/), and the

final asymptotics can be computed directly from (2.7).
Combining these bounds, we find

E
�ˇ̌
'.x/

ˇ̌p�
� sup
z2T2

ˇ̌
'.z/

ˇ̌p�2
E
�ˇ̌
'.x/

ˇ̌2�
� Cn.p�2/=2 ln˛;

and therefore we bound from above the right-hand side in (2.13) with

(2.14)
�

1

np�1
E
�ˇ̌
'.x/

ˇ̌p�
C

1

np=2
E
�ˇ̌
'.x/

ˇ̌2�p=2�
� C

ln˛
np=2

C C

�
ln˛
n

�p=2
and the thesis follows.

In the proof above, we used a regularizing property of the heat semigroup, when
acting on empirical measures, as established in [4] (see Theorem 3.3 and Remark 3.17
therein), that we report here.

Proposition 2.6. If �n are as in (1.4) and Pt�n D �t;nm, then

P
�®
k�t;n � 1k1 > d

¯�
�
C3.T2/

d2t3
a�ntd

2

for some C3.T2/ > 0 and aD a.T2/ > 1:

In particular, if d � n�1 and t D .ln a/�1Kn�1 lnn with K � 1, then

(2.15) P
�®
k�t;n � 1k1 > d

¯�
� C3.T

2/.ln a/3n5�Kd
2

:
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Our strategy for proving Theorem 1.1 will be to adjust the parametersK DKn!1
and d D dn ! 0 in such a way that Kd is sufficiently large, so that the probability of
the deviation from the constant density 1 will have the power like decay we need with
respect to n.

We will also need Lp estimates on �t;n, provided by the following proposition.

Proposition 2.7. Let tn be as in Theorem 1.1, and K D Kn related to tn as in
Proposition 2.6. Fixing k > 0, take cn ! 0C such that

(2.16) lim inf
n

Knc
2
n > k C 5:

Then,

sup
²
nk E

�
1¹k�tn;n�1k1>cnº

Z
T2

j�tn;n � 1j
p dm

�
W n � 2

³
<1:

Proof. In this proof, C denotes a positive constant, depending only on T2. Arguing
as in [4, proof of Theorem 3.3], the bounds

EŒY 2� �
C

t
; jY j �

C

t
; t 2 .0; 1/

for the random variables Y D Yi D pt .Xi ; y/� 1, together with Bernstein’s inequality
yield

P
�®
j�t;n.y/ � 1j > �

¯�
� C exp.�nct�/ 8t 2 .0; 1/; � > 1

for all y 2 T2. For our choice of t D tn, Fubini’s theorem and Cavalieri’s formula yield

nk E

� Z
¹j�tn;n�1j>1º

ˇ̌
�tn;n � 1

ˇ̌p dm

�
� C

Z 1
1

nk�c.lna/
�1Kn� � �p�1 d�:

Thus, for n� 1,

nk E

� Z
¹j�tn;n�1j>1º

ˇ̌
�tn;n � 1

ˇ̌p dm

�
� C

Z 1
1

n�.k�c.lna/
�1Kn/�p�1d� � C

Z 1
1

2���p�1 d� <1:

On the other hand, exploiting Proposition 2.6 along with (2.16), we get

nk E

�
1¹k�tn;n�1k1>cnº

Z
¹j�tn;n�1j�1º

ˇ̌
�tn;n � 1

ˇ̌p dm

�
� nkP

�®
k�tn;n � 1k1 > cn

¯�
� C3.T

2/.ln a/3nkC5�Knc
2
n ! 0:
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3. Propagation of q-Laplacian estimates and differentiation ofR
jrQt� j

q dm

Recalling the definition of c � 0 in Theorem 1.2, � 2 H 1;q.T2/ satisfies in a distribu-
tional sense the inequality

(3.1) � div
�
jr�jq�2r�

�
C c � 0:

Namely, for every non-negative � 2 C1.T2/, we have

(3.2)
Z

T2

jr�jq�2hr�;r�i dmC c

Z
T2

� dm � 0:

In order to control the time derivative of
R

T2 jrQt�j
q dm, we would like to show

that (3.2) propagates with the Hopf–Lax semigroup; that is, it is satisfied also by Qt�

for any t 2 .0; 1/. The proof of this stability property becomes much easier if we
understand (3.1) in the viscosity sense; this is possible thanks to the following result
(see [20, 21] for the homogeneous case g D 0 and Remark 3.3 below).

Theorem 3.1. Let f 2H 1;q.T2/ and g WT2!R be continuous. Then,��qf C g �
0 in the viscosity sense, according to Definition 2.2, if and only if ��qf C g � 0 in
the sense of distributions.

We are going to use Theorem 3.1 both ways: first we pass from the distributional
sense for �, granted by (1.1), to the viscosity sense, and then we pass from the viscosity
sense to the distributional sense for Qs� in the proof of Lemma 3.4.

Then, let us show the propagation of the estimate ��q� C c � 0 to Qt� in the
viscosity sense. Actually, it will be useful to prove this property for the Hopf–Lax
semigroup associated with any power r > 1. We provide a direct proof, even though
the statement could directly follow by the general fact that viscosity supersolutions to
��q C c � 0 are stable under translations in the dependent and independent variables,
and infimum.

Proposition 3.2. Let f W T2!R be lower semicontinuous and satisfying��qf C c
� 0 in the viscosity sense and r 2 .1;1/. Then, for all t > 0, the function

ft .x/ WD min
y2T2

²
f .y/C

dr.x; y/
rt r�1

³
still satisfies ��qft C c � 0 in the viscosity sense.

Proof. Given t > 0 and x0 2 T2, let y0 2 T2 be a point where the minimum in the
definition of ft is attained, so that

ft .x0/ D f .y0/C
dr.x0; y0/
rt r�1

:
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Consider ' 2 C 2.T2/ such that ft � ' has a local minimum in x0 and, with no loss
of generality, assume that the minimum is global and ft .x0/ D '.x0/.

If we set  .x/ WD '.x � y0 C x0/, we claim that � �  has a minimum in y0,
equal to �dr.x0; y0/=.rt r�1/. From this we would obtain

Fq
�
r .y0/;r

2 .y0/
�
� c

and thus
Fq
�
r'.x0/;r

2'.x0/
�
� c:

To prove the claim, we notice that

�.y0/ �  .y0/ D �.y0/ � '.x0/ D �.y0/ � ft .x0/ D �
1

rt r�1
dr.x0; y0/;

while on the other hand, ft .x/ � '.x/ implies

�.y/C
1

rt r�1
dr.x; y/ � '.x/ 8x; y:

Choosing y D x � x0 C y0 (understanding the sum modulo Z2), we obtain

�.y/ �  .y/ � �
1

rt r�1
dr.x0; y0/ 8y;

as desired.

Remark 3.3. We can use Proposition 3.2 to provide a sketchy proof of the implication
from viscous to distributional granted, also in the converse direction, by Theorem 3.1.
Indeed, we can use the Hopf–Lax semigroup with power r D 2 to obtain that fs DQsf
still satisfy ��qfs C c � 0 in the viscosity sense and C 1;1 regularity of fs . Since
fs! f inH 1;q.T2/ as s! 0C, it is then sufficient to show that��qfs C c � 0 in the
sense of distributions. Here, we can use the C 1;1 regularity of fs to build appropriate
test functions �, of the form

�.x/ D fs.x0/C
˝
rfs.x0/; x � x0

˛
C
1

2

˝
r
2fs.x0/.x � x0/; .x � x0/

˛
� "jx � x0j

2

at any point x0 2T2 whererfs.x0/¤ 0 andr2fs.x0/ exists. This leads to the validity
of ��qfs C c � 0 almost everywhere in the open set �s D ¹jrfsj ¤ 0º. Then, one
obtains the validity of the inequality in the sense of distributions first in�s and then on
the whole of T2, using the fact that the flux of the continuous vector field jrfsjq�2rfs
is null on the boundary (because q > 1). If�s is not smooth, one can perform a further
approximation since

1

"

Z "

0

Z
¹jrfs jD�º

jrfsj
q�1 dH 1 d� D

Z
¹0<jrfs j<"º

jrfsj
q dm

tends to 0 as "! 0.



pde estimates for random matching with power cost 335

Now, we apply Proposition 3.2 with f D � and r D p in order to estimate the
variation in time of

R
T2 jrQt�j

q dm.

Lemma 3.4. Let ƒ.t/ WD
R

T2 jrQt�j
q dm with � as in (1.2) and c D k�1 � �0k1.

Then, ƒ is Lipschitz in Œ0; 1� and d
dtƒ.t/ � cƒ.t/ for almost every t 2 .0; 1/. In

particular,

(3.3)
Z

T2

jrQt�j
q dm � ect

Z
T2

jr�jq dm 8t 2 Œ0; 1�:

Proof. Thanks to Proposition 3.2, ft D Qt� satisfy ��qft C c � 0 in the viscosity
sense. Therefore, Theorem 3.1 grants this property also in the sense of distributions;
namely (notice that the improvement from C1.T2/ to H 1;q.T2/ follows by density
and Lp integrability of jrft jq�2rft ),

(3.4)
Z

T2

jrft j
q�2
hrft ;r�i dmC c

Z
T2

� dm � 0 8� 2 H 1;q.T2/; � � 0:

First, we note that, by (3.4), the distribution T WD � div.jrft jq�2rft /C c is non-
negative. Thus, if � 2 C1.T2/,

hT; �i �
˝
T; k�k11

˛
D k�k1c

and then T is represented by a non-negative finite measure with mass less than or
equal to c (here we used that hdiv.jrft jq�2rft /; 1i D 0 and therefore hT; 1i D c). It
follows that �t WD div.jrft jq�2rft / is a signed measure with k�tk � 2c.

By the convexity of y 7! jyjq , we then infer

ƒ.t/ �ƒ.s/ � q

Z
T2

jrfsj
q�2

˝
rfs;r.ft � fs/

˛
dm D q

Z
T2

.fs � ft / d�s

� �2cqkft � fsk1

(3.5)

for every s; t 2 Œ0; 1�. From the Lipschitz regularity of the initial datum � (which
follows by [29, Theorem 2.1]) and Proposition 2.4, we deduce that the map t 7! ft is
Lipschitz with respect to the sup norm, let us say with constant L. Hence, exchanging
the roles of t and s, we conclude thatˇ̌

ƒ.t/ �ƒ.s/
ˇ̌
� 2cqLjt � sj;

as we desired.
Now, we can refine (3.5) as follows. Let t 2 .0; 1/ be a differentiability point

for ƒ such that �q d
dt ft D jrft j

q a.e. in T2. Thanks to Rademacher’s theorem and
Proposition 2.4, both properties are satisfied for a.e. t 2 .0; 1/. For s � t , using the
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inequality ft � fs granted directly from the definition (2.6), as well as the inequality
� div.jrfsjq�2rfs/C c � 0 in the sense of distributions, we get

ƒ.s/ �ƒ.t/ � �q

Z
T2

jrfsj
q�2

˝
rfs;r.ft � fs/

˛
dm

D q

Z
T2

div
�
jrfsj

q�2
rfs

�
.ft � fs/ dm

� cq

Z
T2

.ft � fs/ dm;

so that

d
dt
ƒ.t/ D lim

s!tC

ƒ.s/ �ƒ.t/

s � t
� lim
s!tC

cq

Z
T2

ft � fs

s � t
dm

D �cq

Z
T2

d
dt
ft dm D c

Z
T2

jrft j
q dm;

which proves that ƒ0.t/ � cƒ.t/. Finally, the validity of (3.3) follows by Gronwall’s
lemma.

4. Proof of Theorem 1.2

In this section, �, c are as in Theorem 1.2.

4.1. Upper bound

The upper bound in Theorem 1.2 can be obtained immediately by repeating the argument
in [7, Proposition 2.3], involving duality and the Hopf–Lax formula. We still give the
proof here for the sake of completeness.

Since T2 is compact, the duality formula for W p
p can be written in the form

1

p
W p
p .�0m; �1m/

D sup
²
�

Z
T2

f�0 dmC

Z
T2

.Q1f /�1 dm W f W T2
! R Lipschitz

³
:

(4.1)

Proposition 4.1 (Upper bound). There exists xı.c; p/ such that xı.c; p/! 0 as c! 0

and
W p
p .�0m; �1m/ �

�
1C xı.c; p/

� Z
T2

jr�jq dm:
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Proof. Let us bound uniformly the argument of the supremum in (4.1), for f WT2!R

Lipschitz, exploiting the PDE (1.2) satisfied by �, the fact thatQtf solves (2.5) almost
everywhere in .0; 1/ � T2 and dominated convergence to put d

ds under the integral
sign. If we set �t WD t�1 C .1 � t /�0 per t 2 .0; 1/, thenZ

T2

.�1Q1f � �0f / dm

D

Z 1

0

d
ds

Z
T2

�sQsf dm ds

D

Z 1

0

Z
T2

�
�s

d
ds
Qsf C .�1 � �0/Qsf

�
dm ds

D

Z 1

0

Z
T2

�
�
1

q
jrQsf j

q�s C jr�j
q�2
hr�;rQsf i

�
dm ds

�

Z 1

0

Z
T2

�
�
1

q
jr�jq�

�
q

q�1
s �s C jr�j

q�
� 1

q�1
s

�
dm ds

D
1

p

Z
T2

�Z 1

0

�
� 1

q�1
s ds

�
jr�jq dm;

(4.2)

where for the inequality we used that v D �
� 1

q�1
s r� minimizes

v 7!
1

q
jvjq�s � jr�j

q�2
hr�; vi:

In conclusion,

W p
p .�0m; �1m/ �

Z
T2

Mq.�0; �1/jr�j
q dm;

where Mq.�0; �1/.x/ D
R 1
0
�s.x/

� 1
q�1 ds . 1 as c ! 0. More precisely, since

k�i � 1k1 � c=2; for c < 2;

one has
Mq.�0; �1/.x/ � 1C xı.c; p/

with xı.c; p/ D .1 � c=2/�
1

q�1 � 1.

4.2. Lower bound

Proposition 4.2 (Lower bound). There exists ı.c; p/ such that ı.c; p/! 0 as c! 0

and
W p
p .�0m; �1m/ �

�
1 � ı.c; p/

� Z
T2

jr�jq dm:
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Proof. From the duality formula, with an integration by parts and Fubini’s theorem,
we get

1

p
W p
p .�1m; �0m/ � �

Z
T2

��0 dmC

Z
T2

.Q1�/�1 dm

D

Z
T2

�.�1 � �0/ dmC

Z
T2

.Q1� � �/�1 dm

D

Z
T2

jr�jq dm �
1

q

Z 1

0

Z
T2

jrQs�j
q�1 dm ds:

Now, we can use first the inequality k�1 � 1k1 � c=2 to replace �1 with 1 and then
Lemma 3.4 with c � k�1 � �0k1 to estimate

1

p
W p
p .�1m; �0m/ �

1

p

Z
T2

jr�jq dm �
cec=2C ec � 1

q

Z
T2

jr�jq dm;

so that ı.c; p/ D .p � 1/.cec=2C ec � 1/.

5. Proof of Theorem 1.1

In this section, we adopt the notation in the statement of Theorem 1.1.

5.1. Upper bound

Since ln.ntn/� lnn, using Proposition 2.5 and the triangle inequality forWp , arguing
as in [7], the proof of the upper bound reduces to the following estimate:

(5.1) lim sup
n!1

�
n

lnn

�p=2�
E
�
W p
p .Ptn�

n; Ptn�
n/
�
� E

� Z
T2

jr�jq dm

��
� 0

where � is the solution to (1.2) with the right-hand side

�0;nm D Ptn�
n; �1;nm D Ptn�

n:

Now, since tn� n�1 lnn, we can use Proposition 2.6 to write tn as .lna/�1Knn�1 lnn
with Kn � 1 and cn ! 0 in such a way that Knc2n > 2p C 10, so that

P

�²
k�i;n � 1k1 >

cn

2

³�
� C3.T

2/.ln a/3n5�Knc
2
n=4 D O.n�p=2/; i D 0; 1:

Since Wp.�; �/ � diam.T2/ for any pair of probability measures �, �, it follows that
the contribution to (5.1) of the event ¹maxi k�i;n � 1k1 > cn

2
º is null, and in the

complementary event, we can use Theorem 1.2 to conclude.
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5.2. Lower bound

Recall that the semigroup Pt is contractive in T2 with respect to any Wp distance;
this can be easily proved taking any coupling † between � and � and considering the
average x† D

R
†zpt .z/ dm.z/ of the shifted couplings

†z WD .�z � �z/#† with �z.x/ D x C z;

which provides a coupling between Pt� and Pt� with the same cost. Therefore, the
lower bound

(5.2) lim inf
n!1

�
n

lnn

�p=2�
E
�
W p
p .�

n; �n/
�
� E

� Z
T2

jr�jq dm

��
� 0

can be deduced from

(5.3) lim inf
n!1

�
n

lnn

�p=2�
E
�
W p
p .�0;nm; �1;n/m

�
� E

� Z
T2

jr�jq dm

��
� 0:

Now, recall that the solution � to (1.1) is the unique minimizer of the functional

ƒq.f / WD

Z
T2

1

q
jrf jq � f .�1 � �0/ dm D

Z
T2

1

q
jrf jq � .f � Nf /.�1 � �0/ dm

whose minimum value is non-positive. Hence, from the Sobolev embedding, we obtain

1

q

Z
T2

jr�jq dm � k�1 � �0kpk�kq � cSk�1 � �0kp

�Z
T2

jr�jq dm

�1=q
and then the deterministic upper bound

(5.4)
Z

T2

jr�jq dm �
�
k�1 � �0kpcSq

�p
:

As in the proof of the upper bound, sincentn� lnn, we can use this time Proposition 2.7
that provides an estimate in expectation on k�i;n � 1kpp to show that the contribution
to (5.3) of the event ¹maxi k�i;n� 1k1> cn

2
º is null (if we also requireKnc2n >2pC 20

in order to satisfy (2.16) with cn

2
and k D p

2
), and in the complementary event, we can

use Theorem 1.2 to conclude.
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