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ABSTRACT. — We characterize the number of points for which there exist non-empty Terracini
sets of points in P”. Then, we study minimally Terracini finite sets of points in P”, and we
obtain a complete description, in the case of P3, when the number of points is less than twice
the degree of the linear system.
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1. INTRODUCTION

The notion of Terracini locus in projective spaces has been recently introduced in [3]
and then extended to other projective varieties and investigated in [2,4, 5, 10]. This
property encodes the fact that a set of double points imposes dependent conditions
to a linear system; hence, it gives information for interpolation problems over double
points in special position.

Moreover, it can be interpreted in terms of special loci contained in higher secant
varieties to projective varieties as follows. Recall that the k-th higher secant variety
0% (X) of a projective variety X C PV is the Zariski closure of the union of all the
linear spaces spanned by k independent points of X. The variety X is called k-defective
if it has dimension less than the expected one, i.e. min(N, k dim(X) + k — 1). By the
famous Terracini lemma [13], a variety is k-defective if the tangent spaces to X at k
general points span a linear space of dimension less than the expected one. Even when
the variety is not k-defective, there may be special sets of points such that the span of
the tangent spaces drops dimension. We call Terracini such special sets of points. For
non-defective varieties, we can see the Terracini sets as the points of the abstract secant
variety for which the differential of the map to the secant variety is not injective; see
e.g. [3] for more details.

The interest in this subject is also motivated by the connection with the theory of
tensors; see e.g. [6, 12] for general reference. In particular, since symmetric tensors can
be identified with homogeneous polynomials, the development of geometric methods
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in projective spaces can give contribution to the study of the rank and decompositions
of symmetric tensors.

In this paper, we focus on the case of P”, and we say that a finite set of points .S of
P”" is Terracini with respect to Opn (d) if

h°(I2s(d)) >0, h'(I»s(d)) >0, and (S)=P".

We denote by T (n, d; x) the sets of all subsets S C P” of cardinality x which are
Terracini with respect to Opn (d).

In the language of secant varieties, the first condition means that the secant variety
ox(X) C PV does not fill the ambient space since dimo(X) = N — h°(Iz(d))
(see e.g. [6, Corollary 1]). On the other hand, if h°(I,5(d)) > 0, then the number
h'(I,s5(d)) equals the so-called x-defect; that is, x(n + 1) — dim o, (X) — 1 (see
Lemma 2.5).

Notice that there are no Terracini sets in P!; see Lemma 3.3. The first result of this
paper characterizes the triples n, d, x such that the Terracini locus is non-empty, as
follows.

TueOREM 1.1. Fix positive integers n, d and x.

(1) Ifeithern =1ord =2, thenT(n,d;x) = @ for any x.

(i) T(2,3;x) = @ forany x.

(i) Ifn>2,d >3and (n,d) # (2,3), then T(n,d; x) # @ if and only if x >
n+ [d/2].

In order to make a finer description, it is very useful to study minimally Terracini
loci. The minimally Terracini property has been introduced in [2, Definition 2.2] for any
projective variety. A Terracini set of points S C P” is said to be minimally Terracini
with respect to Opn (d) if

h'(I24(d)) =0 forall 4 < S.

We denote by T (1, d; x)’ the set of all S € T (, d; x) which are minimally Terracini
with respect to Opn (d).

In Theorem 3.1, we see thatif S € S(P”, x) is minimally Terracini for some Opn (d),
then such d is unique and it is the maximal integer ¢ such that 2! (I,s(¢)) > 0.

Note that, for fixed n, d, we know that T (n, d; x) is not empty for infinitely many x,
by Theorem 1.1. On the other hand, T (n,d; x)’ € T (n,d; x) is not empty only for
finitely many x, as proved in Proposition 3.4. In other words, the minimality property
is a strong condition which allows us to prove interesting bounds and characterizations
of the triples n, d, x for which T (n, d; x)’ is or is not empty.
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In Section 4, we investigate the sets of points on rational normal curves and on
their degenerations (reducible rational normal curves). In particular, Theorem 4.2
and Proposition 4.7 completely describe the minimal Terracini sets contained in such
curves. Since rational normal curves contain elements of T (n,d; 1 + [nd/2]), we
may formulate the following conjecture.

CoNJECTURE 1.2. Forany x < L&;lj we have T (n,d; x) = 0.

Here we prove the conjecture for P2, Proposition 5.2, and for P3, Theorem 1.3.

After the easy description of the situation in the plane (see Section 5), we focus on
the case of P3, and we obtain the following three results, which are the main results of
this paper.

TueoRrREM 1.3. Fixintegers d > 4 and x such that 2x <3d + 1. Then, T (3,d;x) = @.

TueoreM 1.4. Fix integersd > 7 and x = 1+ [3d/2]. Then, S € T (3,d;x)" if and
only if S is contained in a rational normal curve.

TueOREM 1.5. Fix integers d > 17 and x such that 1 + [3d /2] < x < 2d. Then,
T@3,d;x) =4a.

The bound in Theorem 1.5 is sharp, as shown in Example 6.2, where 2d points lie
on an elliptic curve.

Summing up, our results prove that, given d > 0 and x < 2d, the minimal Terracini
loci T (3, d; x)’ are empty except for

+ either x = 1 4 [3d/2], and in this case the points lie on a rational normal curve,
or x = 2d, and in this case the points may lie on an elliptic curve.

We call (0,1 4 [3d/2]), (1 + [3d/2],2d) the first two gaps where the minimal
Terracini loci are empty.

The situation is completely analogous in P2, where the first two gaps are (0,d + 1)
and (d + 1, |3d/2]); see Section 5.

We expect that a similar behavior happens also in any dimension n > 2.

The paper is organized as follows: in Section 2, we present the preliminary results,
and in particular we introduce the notion of critical scheme, which is a crucial tool in
our proofs. Section 3 contains the first properties of Terracini and minimal Terracini
sets and the proof of Theorem 1.1. In Section 4, we characterize the minimally Terracini
sets of points on rational normal curves and their degenerations. Section 5 is devoted
to the plane, and Section 6 to the case of P3 and to the proofs of Theorems 1.3, 1.4
and 1.5.

We thank the referee for many useful suggestions that improved our presentation.
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2. PRELIMINARIES AND NOTATION

We work over an algebraically closed field K of characteristic 0. For any x € N, let
S(P", x) denote the set of all subsets of cardinality x of a projective space P”. For
any set £ C P”", let (E) denote the linear span of E in P”.

REMARK 2.1. It is well known that the set of configurations of n + 2 points of P” in
linear general position is an open orbit for the action of Aut(IP”).

DeriniTION 2.2. We denote by T (n, d; x) the set of all S € S(PP”, x) such that
h®(I3s(d)) > 0and h'(I,5(d)) > 0.
We denote by T (n,d; x) € T1(n,d; x) the set of all S € T;(n, d; x) such that
(S) =P".
We call Terracini locus the set T (n, d; x), and we say that a finite set S is Terracini
with respect to Opn(d) if S € T(n,d; x).

Obviously, T(n,d; x) = @ for all x < n since every S € T (n,d; x) spans P”".
We recall from [2, Definition 2.2] the following important definition; it applies to
any projective variety, but we write it now only in the case of P”.

DeFINITION 2.3. A set S is said to be minimally Terracini with respect to Opn (d) if it
is Terracini and moreover

« h'(I,4(d)) =0forall A < S.

We denote by T (n,d; x) the set of all S € T (n, d; x) which are minimally Terracini
with respect to Opn (d).

In the next remark, we recall the exceptional cases of the Alexander—Hirschowitz
theorem, which are all the cases when any general set of points is minimally Terracini.

RemMARrk 2.4. Assume (n,d;x) € {(2,4;5),(3,4;9), (4,4;14), (4,3;7)}. Then, by
the Alexander—Hirschowitz theorem [1], we know that the Veronese variety vy (P") is
x-defective.

Fix a general S € S(P", x). We have that #°(I,5(d)) > 0 because the x-secant
variety does not fill the ambient space, and h!(I,5(d)) > 0 because it is defective.
Moreover, since x > n + 1, we have (S) = P” and hence S € T (n,d; x).

We prove now that S is minimal. Indeed, since S is general, then any subset S’ C S
of cardinality y < x is general in S(IP", y). Since the secant variety o, (v (P")) is
not defective for any y < x — 1, then h'(I,s/(d)) = 0. Then, we have proved that
SeTm,.d;x).
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We collect here some preliminary results we will use in the sequel.

LemMA 2.5. For any zero-dimensional scheme Z C P" and any integer t > 0, we
have h' (I7(t)) =0 foralli > 2, and
n—+t
RO (Iz(t)) —h'(Iz(t)) = ( . ) —deg(Z).

ProoF. Since Z is zero-dimensional, we have h (9z(t)) = 0 for all i > 0. Obviously,
h'(Opn(t)) = 0 for all i > 0. Then, from the exact sequence

0— Iz(t) > Opn(t) > Oz(t) —> 0,
we obtain the formulas in the statement. n

LEMMA 2.6. Let W C Z C P" be zero-dimensional schemes and t > 0. Then, we have
RO(Iz(t)) <h°(Iw()) and h'(Iw(t)) <h'(Iz(1))
and
RO(Iz@) <h°(Iz@+1) and h'(Iz(t+ 1)) <h'(Iz(1)).
Proor. Since W C Z, then we have the exact sequences
0—> Iwz()—> Ow() —> Oz(1) >0

and
0—>Iz(t) > Iw(@)— Iwz(t)—0.

Since Z is zero-dimensional, then 4 (I, z(d)) = O for all i > 1. Then, we get
h°(Iz(d)) <h°(Iw(d)) and h'(Iw(d)) <h'(Iz(d)).
From the exact sequence
0> Iz(t)—>Izt+1)—>0Oxg(t+1)—0,
where H C IP" is a hyperplane, it follows that
h°(Iz(d)) <h®(Iz(d +1)) and h'(Iz(d +1)) <h'(Iz()). "
Lemma 2.7. Given a hyperplane H C P" and any finite set S C H, we have

h' (Iasna,a(d)) < h' (T2s(d)) < h' (Zasnaa(d)) + ' (Is(d —1)).
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Proor. From the residual exact sequence with respect to H
0—> Is(d—1)— Ixs(d) = Iosnua,u(d) =0,
and by Lemma 2.5, the statement follows. ]

We recall from [7] the following useful lemma.

LemmA 2.8 ([7, Lemma 34]). Let Z be a zero-dimensional scheme in P", such that
h'(Iz(d)) > 0. Ifdeg(Z) < 2d + 1, then there is a line L such that deg(Z N L) >
d + 2. In particular, it follows that deg(Z) > d + 2.

We recall the following lemma which we learned from K. Chandler [8,9].

LemMma 2.9. Let W be an integral projective variety, £ a line bundle on W with
h'(£) = 0and S C Wi a finite collection of points. Then, h* (I as,.wy ® £) > 0 if
and only if there is a scheme Z C 2§ such that any connected component of Z has
degree < 2 and such that h' (17 ® £) > 0.

The schemes Z appearing in Lemma 2.9 are a curvilinear subscheme of a collection
of double points. More precisely, in the following definition, we introduce the notion
of critical schemes, which are the crucial tools in our proofs.

DEeriniTION 2.10. Given S acollection of x points in IP”, we say that a zero-dimensional
scheme Z is d-critical for S if

« Z C 2§ and any connected component of Z has degree < 2,
h'(Iz(d)) >0,
h'(Iz/(d)) =0forany Z' ¢ Z.
Note that Lemma 2.9 implies that for every S € T (n, d; x), there exists a d -critical

scheme for S.
The next lemmas describe the properties of a critical scheme.

LemMa 2.11. Let Z be a zero-dimensional scheme such that h'(Iz(d)) > 0 and
h'(Iz:/(d)) =0forany Z' C Z. Then, h'(Iz(d)) = 1.

Proor. Assume h!(Iz(d)) > 2 and take a subscheme Z’ C Z such that deg(Z’) =
deg(Z) — 1. We have h!' (I z:(d)) > h'(Iz(d)) — deg(Z) + deg(Z’) > 0. Thus, Z
is not critical, a contradiction. n

LemMma 2.12. Fix S € T(n,d; x)' and take Z critical for S. Then, Z.q = S.



MINIMAL TERRACINI LOCI IN PROJECTIVE SPACE 181

ProoF. Assume S’ := Zq # S. Lemma 2.9 gives h!(I,s/(d)) > 0. Thus, S does
not belong to T (n, d; , x)’, a contradiction. ]

LemMA 2.13. Fixintegersn>2,d>t>1andx>1.Take S €T (n,d; x)’ and acritical
scheme Z for S. Take D € |Opn (t)| with Z € D. Then, h' (Ires,,(z)(d — 1)) > 0.

Proor. Since Z € D and it is critical, then Definition 2.10 gives h! (I znp(d)) = 0.
Thus, the residual exact sequence with respect to D gives h' (Ires,(z)(d —1)) > 0. m

3. FIRST RESULTS ON MINIMALLY TERRACINI SETS OF POINTS

We now prove the fact that if S € S(IP”, x) is minimally Terracini for some Op»(d),
then such d is unique and it is the maximal integer ¢ such that 2! (1,5 (1)) > 0.

TueoreM 3.1. Fixn >2and S € T (n,d; x). Then,
(i) h'(Is(d+1) =0,

i) Sé¢Tm,t;x)foranyt >d + 1,

Gii) S & T(n,t;x) foranyt <d — 1.

Proor. We now prove (i) by contradiction. Assume 1! (Z55(d +1))>0.By Lemma 2.9,
there is a (d + 1)-critical scheme Z for S. Recall that, in particular, every component
of Z has degree < 2. Moreover, by Lemma 2.12, we have S C Z C 2§, whereas from
Lemma 2.11, we know that h' (I z(d + 1)) = 1.

Fix p € Zq and call Z(p) the connected component of Z supported at p. Set
L := (Z(p)). Then, L is either a line, or a point L = Z(p) = {p}.

Let H C P" be a general hyperplane containing L. Since Z is curvilinear, by
generality of H, we can assume that the scheme Z N H is equal to the scheme Z N L.
Letus denote { = Z N H = Z N L. We will consider separately two possibilities:
W' (Zep(d+1))>0and h'(Ie g (d + 1)) =0.

(a) Assume first hl(I;,H(d 4+ 1)) > 0. Then, L is a line. Since { C L, then we
have the following diagram, whose rows and columns are exact sequences:

IL’H(d +1) —— I;,H(d +1) — I;-,L(d +1)

| | |

Irud+1) —— Oud+1) —— Or(d +1)

| |

O(d +1) — Op(d + 1).

From the diagram, we get h! (I¢ 1 (d + 1)) > 0, which implies 2! (I¢(d + 1)) > 0.
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Since (S)=P”" and n>2, the set S" =S N L is different from S. Now by Lemma 2.9,
we have that h'(I55/(d + 1)) > 0, and Lemma 2.6 implies that 1! (I,5/(d)) > 0.
Hence, we have S ¢ T (n,d; x)’, a contradiction.

(b) Now assume h' (I¢ g (d + 1)) = 0. In this case, the residual exact sequence with
respect to H gives h! (IResy(z)(d)) > 0. Since Resgg (Z)rea S \ {p}, by Lemma 2.9,
we have that h'(I5(s\(p})(d)) > 0. This contradicts the minimality of S; that is,
S ¢ T(n,d,x),acontradiction.

Now it is easy to prove (ii). Indeed by using (i) and Lemma 2.6, we get, for any
t>d+1,that i (I,5(t)) < h'(I25(d + 1)) = 0. Hence, S ¢ T (n,t; x).

We prove (iii) by contradiction. Indeed assume ¢t < d — 1 and S € T(n, ¢; x)'.
But then by (i), we have 2! (I,s(t + 1)) = 0. Then, since t + 1 < d by Lemma 2.6,
we have ' (I5(d)) > h'(I25(t + 1)) = 0, which contradicts the assumption S €
T,d;x). m

The following result is a kind of concision or autarky for Terracini loci of Veronese
varieties.

ProposiTiON 3.2. Take a finite set of points S C P" such that M := (S) C P". Then,
h' (M, Insamm(d)) > 0 ifand only if h* (I25(d)) > O.

Proor. By Lemma 2.6, we have i (I25(d)) > h'(I2snm(d)). Since M is arithmeti-
cally Cohen-Macaulay, we get h' (M, Tosnapm (d)) = h'(I2snm(d)). Hence, the
only if part is obvious.

Now assume h!(I,5(d)) > 0. Take a hyperplane H C P” such that H © M and
use induction on n — dim M. It is sufficient to prove that h' (H, Iosnm,m(d)) > 0.

Take a critical scheme Z for S. In order to conclude by Lemma 2.9, it is enough to
find a zero-dimensional scheme W C H such that A'(H, T w.HzH(d)) >0, Weed = Zred
and for each p € Z.q the connected components Z, and W), of Z and W containing p
have the same degree. Fix a generalo € P" \ H.Leth, : P" \ {0} — H denote the linear
projection from o. Since o is general, o is not contained in one of the finitely many lines
spanned by the degree 2 connected components of Z. Since Z.q C H, 0 is not contained
in a line spanned by 2 points of Zq. Thus, /|7 is an isomorphism. Set W := h,(Z).
By the semicontinuity theorem for cohomology to prove that A (H, Ty g (d)) > 0,
it is sufficient to prove that W is a flat limit of a flat family {W, }.cxk\ {0} of schemes
projectively equivalent to Z. Fix a system xo, . . ., x,, of homogeneous coordinates of P”
suchthat H = {xg =0}ando =[1:0:...:0]. Forany c € K \ {0}, let &, denote the

Note that i,y : H — H is the identity map. Set W, := h.(W). ]

We start now the classification of Terracini and minimal Terracini sets of points
in P”. Obviously, T (n, d; x) =9 for all x <n since every S €T (n, d; x) spans P”.
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Lemma 33. T(1,d;x) =T1(1,d;x) =@ foralld > 0 and x > 0.

ProoF. Assume by contradiction the existence of S € T;(1,d; x). Then, h! (I,5(d)) >
Oand hence 2x > d +2and h°(I,5(d)) > 0 and hence 2x < d + 1,acontradiction. m

The following proposition shows a key difference between T (1, d; x) and its subset
T (n,d;x). In particular for fixed n and d, we have T (n,d; x)’ # @ for only finitely
many integers x.

ProrosiTION 3.4. Fix integersn > 2 and d > 3. Set

e {(”:;d) + 11

n+1
and then T (n,d; x) = @ for all x > p.

Proor. Letx > pand assume by contradiction S € T (n,d; x)'. Then, h°(I,s(d)) > 0,
and, by Lemma 2.6, h°(I7(d)) > Oforall T € S.Take T C S with#(T) = x — 1 > p.
Then, we have 4! (I,7(d)) > 0 by Lemma 2.5. Then, S is not minimally Terracini. m

Lemma 3.5. T(n,2;x) = @ forall x > 0 and alln > 0.

Proor. Assume by contradiction that S € T (n,2; x). Since (S) = P”, we have x >
n+ 1.

First assume x = n + 1. Since (S) = P”, then the points of S are linearly inde-
pendent. Recall that all the quadrics with the same rank are projectively equivalent.
Since a general quadric form in P” has rank n + 1, we have that the (n + 1)-secant
variety to v, (P") fills the ambient space; hence, h°(I,5(2)) = 0, and this contradicts
the fact that S is Terracini.

Now assume x > n + 2. Since (S) = IP", there exists a subset " C S of cardinality
n + 1 and such that (S’) = P". We just proved that #°(Z,s/(2)) = 0. By Lemma 2.6,
we deduce that 1°(I,5(2)) = 0. n

The following result shows that many elements of T;(n,d; x) \ T (n,d; x) are
easily produced and not interesting.

Lemma 3.6. Fixn >2,d >2and x > [d/2] + 1. Let S be a collection of x points
onaline L CP". Then, S € Ty(n,d;x).

Proor. We need to prove that 41 (I25(d)) > 0 and h°(I,s5(d)) > 0. Fix a hyperplane
H containing L. Take G:=2H if d =2 and call G the union of 2 H and a hypersurface of
degree d —2 if d > 2. Since S C Sing(G), we have h°(I,5(d))>0. Since deg(2S N L)
=2x>d +2,h'(IrsnL(d)) > 0. Thus, h'(I25(d)) > 0, by Lemma 2.6. [ ]
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LemMma 3.7. For any x > 0, we have T (3,3;x) = @.

Proor. The case x < 4 will be treated in Proposition 3.10.

Fix now x > 5 and assume by contradiction that there exists S € T (3, 3; x)’. If four of
the points of S are in a plane H , then S is not minimal. Indeed if A is the union of the four
points in the plane, then h' (124(3)) = h'(I2anm,m(3)) > deg2A N H) — (*17) =
12 — 10 = 2 by Proposition 3.2 and Lemma 2.5.

Therefore, the points of S are in a linearly general position. Consider S” C S of
cardinality 5. The points of S’ are in a linearly general position and, by Remark 2.1,
they are projectively equivalent to a general set of five points A of P3.

Since the Veronese variety v3(IP3) is not defective, by the Alexander—Hirschowitz
theorem, we know that o4 (v3(IP?)) fills the ambient space. Hence, h°(I54(3)) = 0.
Then, h°(I55/(3)) = 0, and by Lemma 2.6, we get 1°(I55(3)) = 0, and this contradicts
the fact that S is Terracini. |

3.1. Proof of Theorem 1.1

We are now in position to give the proof of Theorem 1.1 which classifies Terracini loci.
We start with the following lemma.

LemMma 3.8. Assumen > 1 and d > 2. Let Z C P" be a zero-dimensional scheme
such that deg(Z) <d +n + 1, h"(Iz(d)) > 0 and (Z) = P". Then, there is a line
L suchthatdeg(LNZ)>d +2anddeg(Z) =d +n + 1.

Proor. The lemma is trivial forn = 1.

We prove the statement by induction on n > 2. First we assume n = 2. Since
deg(Z) < 2d + 1, there is a line L such that deg(Z N L) > d + 2, by Lemma 2.8.
Clearly, since (Z) = P2, we getdeg(Z) = d + 3.

Now assume n > 2. Take a hyperplane H C P” such that w := deg(Z N H) is
maximal. Since (Z) = P", wehaven <w <zand (ZNH) = H.

If h'(Iznm m(d)) > 0, then by induction, we have that there is a line L such
that deg(L N (Z N H)) > d + 2 and deg(Z N H) = d + n. Hence, it follows that
deg(LNZ)>d +2anddeg(Z) >d +n+ 1; hence,deg(Z) =d +n + 1.

Now assume h! (I zng. 1 (d)) = 0, and by the residual exact sequence with respect
to H

)] 0= Iresyyzy(d —1) = Iz(d) = Iznm,Ha(d) = 0,

we have 1! (Iges;, (z)(d — 1)) > 0. By Lemma 2.8, since deg(Resy (Z)) <z —w <
d +1<2d + 1,wehave aline L withdeg(L NResy(Z)) > d + 2. Since (Z) = P",
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we must have deg(Z) > deg(Z N L) +n —1>d + n + 1. Hence, the assumption
deg(Z) <d + n + 1implies thatdeg(Z) =d +n + landdeg(LNZ)>d +2. =

The following Proposition 3.10 proves the emptiness of the Terracini locus for small
number of points. We give first a numerical lemma which will be used in the proof of
the proposition.

LemMma 3.9. Givenx,y,m,n,d € N, suchthatd >3, n >3, m<n, x>y +n—m,
x§n+[%]—1,y(m+l)> (m+d) then we have m = 1.

Proor. Using the assumptions, in particular, y < x — (n —m) < x — 1, we have

(m+d)f(x—l)(m—i-l)f(m+’ri—‘—2)(m+1)§(m—l—l—i)(m%—l).
m 2 2

We prove now by induction on m > 2 that

@) (m;;d)>( —1—|—d)(m+1)

It is easy to check that (2) is true for m = 2 and any d > 3. Now we assume (2) for m
and we have, by using the induction hypothesis,

(m+1+d) (m+d) (m+d) (m—|—d)( d )

= + = — +

m+1 m+1 m m m+1
>( —1+d)(m+1)(%+1)
=(m—l+%)(d+m+l)

:(m—1+%)(m+2)+( —1+d)(d—1)

> (m + %)(m +2),

where the last inequality holds because (m — 1 + %)(d —1)>(m+2)foranyd >3
and m > 1.
Hence, since we have proved (2) for any m > 2, we conclude that m = 1. u

ProrosiTioN 3.10. Assume n,d > 2 and fix an integer x such that

<n+ d 1
xX=<n — | =1
- 2

Then, T (n,d;x) = 0.
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Proor. The case d = 2 is true by Lemma 3.5; hence, we can assume d > 3.

Assume n = 2. Assume by contradiction that S € T (2,d; x). Let Z be a critical
scheme for S’; then, we have deg(Z) < 2x < d + 3. Hence, by Lemma 3.8, there exists
a line L such that deg(Z N L) > d +2and hence x > #(SNL) > [d/2]+1,a
contradiction.

Assume n > 3 and use now induction on n. By contradiction, assume S € T (n,d; x).
Let S’ C S be the minimal subset such that 2! (Z55/(d)) > 0.Set y := #S', M := (S’)
and m := dim M . Proposition 3.2 gives /! (T2s'nm,m(d)) > 0. Notice that Lemmas 2.9
and 2.8 imply that 2y > d + 2.

(I) If m < n, then we consider two cases.

(@) Ifh°(M, I,5:nm(d)) > 0,then we have y > m + [d /2] by the induction assump-
tion. Then, x > y + (n —m) = n + [d /2], a contradiction.

(b) If (M, Ir5:am(d)) = 0, then y(m + 1) > (m;:d). Since S spans P”, then
X >y + (n —m). Hence, by Lemma 3.9, we get m = 1. Then, M is a line and in
this case we have again a contradiction because, since 2y > d + 2, we have

d+2

d
+n—1=n+ —.

x>y+m-1)> 5

(II) Thus, we may assume m = n. Let H C P" be any hyperplane such that H is
spannedby S’ N H.Let S” = S' N H.Then,n <#(S”) < y. Since Resy (2S") = S”,
we have the exact sequence:

3) 0—>Is//(d—1)—>Izsf/(d)—>I2S”ﬂH,H(d)_>O-

The minimality of S’ and Proposition 3.2 give h'(H, Iosrnm,a(d)) =0.
(a) Now,if h!(Is»(d —1)) > 0, then
(a.1) either #(S”) > n + d, which gives a contradiction with x < n + f%1 —-1;
(a.2) or #(S”) < n + d — 1. In the latter case, Lemma 3.8 applied to S” C H
gives #(S”) = n + d — 1, which also contradicts x <n + [d/2] — 1.
(b) Hence, we may assume h!(Is»(d — 1)) = 0. From the exact sequence (3), we
geth'(I2s7(d)) = 0.
We consider now the residual exact sequence with respect to the quadric hypersur-
face 2H:
0— Isnsr(d—2)— Ips/(d) — Ias72m(d) — 0,
where Res, g (28') = S"\ S”.
Since the quadric hypersurface 2H in P” is arithmetically Cohen—Macaulay, we get
h'(I2s72m(d)) = 0, whichimplies h' (I s\ s7(d —2)) > 0. Then, by Lemma 2.8, we
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have deg(S’\ S”) > d. Butsince deg(S’ \ ") =#(S'\ S")<y—-n<[d/2] -1,
we have a contradiction, since [d/2] — 1 < d foralld > 2. [

We now give the proof of the main result of this section.

Proor oF THEOREM 1.1. Part (i) is true by Lemmas 3.3 and 3.5.

We prove now part (ii). Assume n = 2 and d = 3. A singular plane cubic C with
at least 3 singular points is either the union of 3 lines or a triple line or the union of
a double line and another line. Thus, if Sing(C) spans P2, then # Sing(C) = 3 and
Sing(C) is projectively equivalent to any configuration of 3 non-collinear points. Hence,
T(2,3;x) = @ for all x > 4. Thus, we have proved (ii) because clearly T (2, 3;3) = 0.

For part (iii), assume thatn > 2, d > 3 and (n,d) # (2, 3). By Proposition 3.10,
we have that if x < n 4+ [d/2], then T (n, d; x) = @. Hence, it is enough to prove that
T(n,d;x) #@forx >n+ [d/2].

We now analyze three different cases separately.

() Consider first the case n = 2 and d > 4. We assume x > [d/2] + 2. Let
L, M, N be three distinct lines and G := (d —2)L U M U N. Take as S the union
of the point M N N and x — 1 points on L \ (M U N). Since S C Sing(G), then
h®(I3s5(d)) > 0. Furthermore, we claim that 2'(Z,5(d)) > 0. Indeed L contains
at least [d/2] + 1 points of L; hence, deg(2S N L) > d + 2 and by Lemma 2.7
we have h!(I25(d)) > h'(I2snL.1(d)) > 0. Summing up, since (S) = P2, we get
SeT,d;x),ie,T2,d;x) #0.

(II) Now assume n > 3, d = 3 and x > n + 2. Fix hyperplanes H, K, U of P" such
thatdimH N K NU =n —3.Since H N K and H N U are 2 different codimension
1 subspaces of H, their union spans H.

Let S be the union of n general points in (H N K), one point in (H N U) \
(HNKNU)andapointin(KNU)\ (H N KNU).Then, (S) =P" h°(I,5(3)) #
0 and it is easy to show (by induction on n) that 2! (Z,5(3)) # 0. Hence, by Lemma 2.6,
for any configuration S’ of points such that S C S” C Sing(L U M U N), we have
S" € T(n,d;#(S’)). In consequence, T (n,3;x) # @ forall x > n + 2 and n > 3.

(IIT) Now assume n > 3,d > 4 and x > n + [d/2]. As before, fix hyperplanes
H,K,U withdim(H N KNU) =n—3andtake aline L C H and set

G:=(d-2)HUKUU.

Consider a collection E of x —n + 1 points on the line L. Since #E > [d /2] + 1, by
Lemma 3.6, we have h!(I,£(d)) > 0. Let A C H be a collection of n — 2 general
points. Note that (£ U A) = H . Take as .S the union of A U E and a point of (U N K) \
(H N K NU).Obviously, S spans P" and ' (I25(d)) > 0 by Lemma 2.6. Moreover,
h®(I3s(d)) > 0 by construction, and in consequence, S € T (n,d; x) # 0. [
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Notice that the set of points S € T (3, 3; 5) produced in the previous proof is not
minimally Terracini because 4 points belong to a plane. Indeed by Lemma 3.7, we
already know that T (3, 3;5)" = @.

4. RATIONAL NORMAL CURVES

We start now to analyze the set of points lying on a rational normal curve. For each
n > 1, we denote by €, the set of all rational normal curves of P”.

LemMma 4.1. Fixintegersn > 2, d > 4 and x < [nd/2]. Take a rational normal curve
C €€, andlet S C C be a collection of x points on C. Then, h' (I,s(d)) = 0.

ProoF. Assume by contradiction that h!(I,5(d)) > 0. By Lemma 2.9, there exists a
d ~critical scheme Z for S. Since C is scheme-theoretically cut-out by quadrics, there
isQ €|Ic(2)|suchthat QN Z = C N Z := ¢ and we have

0— Ico(d)— I¢o(d)— Iec(d)—0.

Since deg(Z) < 2x < nd + 1, we have h!(I¢ ¢ (d)) = 0, and since C is projectively
normal, we get h!(I¢,0(d)) = 0. Thus, the residual exact sequence with respect to Q
and the fact that h'(Iz(d)) > 0 give h' (Tresp(2)(d —2)) > 0.

Since Resp(Z) € S C C, we have

0— Ic(d—=2) = Irespz)(d —2) > Iresp(z),c(d —2) = 0.

We have 7! (I¢(d —2)) = 0 because C is projectively normal.
Note that deg(Resg (Z)) < n(d —2) + 2; indeed

d
deg (Resp(Z)) <x < ’7%—‘ <n(d-2)+1,
where the last inequality is true for d > 4. Then, we have
7 (Ireso(2).c (d = 2)) = b (Op:1 (n(d —2) — deg (Res(2)))) = 0.
and we have a contradiction with A1 (Iges oz)(d —2)) > 0. [

THeEOREM 4.2. Fix integersn > 2, d > 3 and assume (n,d) # (2, 3). Given a rational
normal curve C € €, and a collection S C C of x points on the curve. Then,

1) ifn=>3d=>4andx > 1+ [nd/2], then S € T(n,d; x);
(i) ifn>4d=3andx =14 [nd/2],then S € T(n,d; x);
(i) ifn>2,d>4andx =1+ [nd/2], then S € T(n,d;x).
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Proor. By the exact sequence
0— ICUZS(d) d Izs(d) d IzSﬂC’C(d) -0

since h! (ZI2snc.c(d)) = h'(Opi1(nd —2x)) > 0 whenever x > 1 + [nd /2], we have
h'(I,5(d)) > 0. Since x > n + 1 and C is a rational normal curve, then (S) = P”".
If n > 3, then h1°(I¢(2)) > 2; hence, C is contained in a quadric hypersurface.
Thus, if d >4, we have h°(I,5(d))>0. Hence, S €T (n,d; x) and we have proved (i).
Assume now x = 1 + [nd/2]. Fix a collection A of x general points on C and
note that by generality, h°(I25(d)) > h®(I24(d)).
Hence, assuming d = 3, we have

n+3

1 (125 (3) = ( !

) —(m+1x >0,
where the last inequality is true for any n > 5. If n = 4 and x = 7, we have
R (I25(3)) = h°(124(3)) = 1,

by the Alexander—Hirschowitz theorem. In consequence, S € T (n, 3 : x), which ends
the proof of (ii).

Now assume n =2 and x = d + 1. We have h°(I,5(d)) > (d;rz) —3(d+1)>0,
ford > 5.1f d = 4 and x = 5, then h°(I25(4)) > h°(I1,4(4)) = 1, again by the
Alexander—Hirschowitz theorem. Hence, S € T (n,d; x) forn =2 and d > 4.

In order to complete the proof of (iii), we need to prove the minimality of .S, and
this follows by Lemma 4.1. |

Remark 4.3. Recall that by Theorem 1.1, we know that T (2, 3; x) = @ for all x > 0.
Moreover, in the proof of Lemma 3.7, we have seen that a set of x > 5 points in a
linearly general position in P? is not Terracini. Hence, if S is a collection of x > 5
points on a rational normal cubic curve, we have S & T (3, 3; 5).

4.1. Degenerations of rational normal curves

We introduce now the notion of reducible rational normal curves.

DeriNITION 4.4. A reduced, connected and reducible curve T C P”, for n > 2, such
that deg(T') = n and (T') = P" is called reducible rational normal curve.

Of course, in P2, a reducible rational normal curve is a reducible conic.

Since T is connected, there is an ordering 71, . .., Ty of the irreducible component
such thateach T'[i] ;= Ty U---UT;, 1 <i <, is connected. We say that each such
ordering of the irreducible components of 7 is a good ordering.
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Set n; := deg(7;). Note thatn = ny + --- + ny and dim(7;) < n; with equality if
and only if 7; is a rational normal curve in its linear span. Fori = 1,...,5s — 1, we
have the following Mayer—Vietoris exact sequence

“4) 0 — Or(i+11(t) = O () ® Or; | (1) = OrpinT;,, (1) — 0,

in which T'[i] N T; 41 is the scheme-theoretic intersection. Since 7'[i + 1] is connected,
deg(T[i] N T[i + 1]) > 0. Thus, (4) gives dim(T[i + 1]) < dim(T'[i]) + n; with
equality if and only if deg(T'[i] N T[i + 1]) = 1, T;+; is a rational normal curve in
its linear span and (T'[i]) N (7T;41) is the point T[i] N T;41.

Since n = ny + -+ + ng, by induction on i, we get p,(7) = 0 and each 7; is a
rational normal curve in its linear span. Using (4) and induction on ¢, we also get
h'(O7(t)) = 0 and h°(O7(t)) = nt + 1 for all ¢ > 0, and that the restriction map
H%Opn(t)) — H°(O7(1)) is surjective; i.e., T is arithmetically Cohen—-Macaulay.
In the same way, we see that each 7'[i] is arithmetically Cohen—Macaulay in its linear

span.
Recall that each T; is smooth. For any p € T;, let L; (p) denote the tangent line
of T; at (p). Take p € Sing(T) and let T;,, ..., T;., k > 2, be the irreducible compo-

nents of 7" passing through p. Since n = n; + --- + ng and p,(T) = 0, the k lines
Liy(p)....,Li (p) through p span a k-dimensional linear space (such a singularity
is often called a seminormal or a weakly normal curve singularity).

An irreducible component 7; of T is said to be a final component if #(T; NSing(7T'))
= 1. Since s > 2, T has at least 2 final components (e.g. 71 and Ty for any good
ordering of the irreducible components of 7'), but it may have many final components
(e.g. for some T with s > 3, we may have

#(Ti N Sing(T)) =1 foralli >2

and there is one 7', unique up to a projective transformation, formed by n lines through
the same point).

REMARK 4.5. Take a (reducible) rational normal curve 7 C P”. Since h1(O1) = 0,
the exact sequence
O—)IT—>(9Pn—>(9T—>O

gives h2(I1) =0.Since h' (I7(1)) = 0, the Castelnuovo-Mumford lemma implies that
the homogeneous ideal of 7 is generated by quadrics. Thus, T is scheme-theoretically
cut out by quadrics.

LeEMMA 4.6. Fixn > 2,d > 4. Let T be a reducible rational normal curve in P" and
S € S(P",x) suchthat S C Tyeg and (S) = P". If2x > dn + 2, then S € T (n,d; x).
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Proor. Since h°(I7(2)) = (g), we have that h°(I,5(d)) > 0ifd > 4.

Set Z :=2S N T.Since S N Sing(T) = @, deg(Z) = 2x and Z is a Cartier divisor
of T. Since h°(O7(d)) = nd + 1, then h'(Iz 7(d)) > 1. Hence, h' (Iz(d)) > 1
since T is arithmetically Cohen—Macaulay, and S € T;(n, d; x). Finally, since by
assumption (S) = P”, we conclude that S € T (n, d; x). ]

ProposITION 4.7. Assume n > 2 and d > 5 and set

x=1+ ﬁ
= > |-

Fix a reducible rational normal curve T = T1 U ---U Ty C P", s > 2. Assume the
existence of S € T(n,d;x) suchthat S C T. Setn; := deg(T;) and x; := #(S N T).
Then,

(1) §C Treg;

(i) nisevenandd is odd;

(iii) every final component T; of T has n; odd and 2x; = n;d + 1.

Proor. Set W :=2S NT.Notethat x; +---+ xg > x andthat x; +--- + x5y = x
ifand only if S C Teo. Wehaven = ny + -+- +ng, 2x = nd + 2if nd is even and
2x = nd + 3 if n and d are odd. Obviously, s < d and hence s — 1 < x.

Step 1. We prove first of all that, for any i,
) 2x; <njd + 1.

Assume, by contradiction, that there exists i such that 2x; > n;d + 1 and set S’ =
S N T;. Note that h'(I25/(d)) = h'(I2s/,1,(d)) since T; is arithmetically Cohen—
Macaulay. Then, since 1°(Or,(d)) = n;d + 1 and deg(2S’) > n;d + 2, we have
h'(I5s/(d)) > 0andhence S ¢ T (n,d;x), a contradiction.

Step 2. We prove now (i) by contradiction. Set S; := S N Sing(7') and S, := S \ ;.
Since T has at most s — 1 singular points, S» # . We assume by contradiction that
S # 0.

For each o € Sing(T'), let m(0) denote the number of irreducible components of T
passing through o. We saw that T has Zariski tangent of dimension m (o) and hence
the connected component W (o) of W supported at the point o has degree m (o) + 1.
Thus, denoting w = deg(W), we have

(©6) w =2#(S2) + »_ (m(o) + 1) = 2x +#(Sy).

0€S]
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If deg(W) > nd + 4, then fix u € S, and set S' := § \ {u}. Note that
h' (I2s/(d)) = h' (I2s/,7(d))

since T is arithmetically Cohen—-Macaulay. Then, since #°(O7(d)) = nd + 1 and
deg(2S') > w —2 > nd + 2, we have h' (I,5/(d)) > 0and hence S ¢ T (n,d; x)’,
a contradiction.

Then, we can assume

@) deg(W) < nd + 3.

(a) Assume first nd even. Hence, we have 2x =nd + 2. Then, it follows that #S1 =1,
say S1 ={u},and T isnodal atu. Since p,(T) = 0, T is connected, the irreducible
components of 7 are smooth and T is nodal at u, T \ {u} has 2 connected
components. Call 7’ and T the closures in P” of the two connected components of
T \ {u}. Note that deg(W) = deg(W N T’) + deg(W N T”) and n = dim{T") +
dim(T"), either deg(W N T’) > dim(T’) + 2 or deg(W N T") > dim(T") + 2.
Thus, S ¢ T(n,d;x)’, and we have a contradiction. We have proved (i) in this
case.

(b) Now assume d odd and n odd. Then, 2x = nd + 3, and by using (6) and (7), we
get S1 = 0. We have proved (i) in this case.

Step 3. Since d > 5, a good ordering of the irreducible components of 7" and s — 1
Mayer—Vietoris exact sequences give h'(Is(d —2)) = 0. Let Z be a critical scheme
for S; that is, A (Iz(d)) > 0. Since ' (I7(1)) = 0 and h>(I7) = h*>(O7 (1)) =0,
the Castelnuovo-Mumford lemma gives that I7(2) is globally generated. Since I7(2)
is globally generated and every connected component of Z has degree <2, Q N Z =
T N Z for a general Q € |I7(2)|. Since Resg(Z) € S and h!(Is(d —2)) = 0 and
Q is arithmetically Cohen—Macaulay, the residual exact sequence with respect to Q
gives 1! (Izno(d)) = 0 and hence Z C T. Thus, Z C W. Since T is arithmetically
Cohen-Macaulay, we get 4! (Iz 7(d)) > 0 and hence

®) h' (Iw,r(d)) > 0.

Step 4. We prove now (ii). Recall that, since S C Tieg, we have x; + -+- + x5 = x
andny +---+ng =n.

Assume by contradiction that d is even. Recall the inequality (5) from Step 1. If d
is even, 2x; < n;d + 11is equivalent to 2x; < n;d, and this implies 2x < nd which
contradicts the assumption 2x = nd + 2. We have proved that d is odd.

From now on, we assume d odd. Recall (5), and in particular, 2x; < n;d + 1 for
all odd n; and 2x; < n;d for all even n;.
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Now assume n odd by contradiction. In particular, since 2x = nd + 3, by (5)
we have s > 3, and there are at least three odd n; with 2x; = n;d + 1. Let T’ be a
minimal connected subcurve of 7' such that deg(7' N W) > 2 + d dim({T")). Since
2x; <n;d + 1 for all i, by (5), and each subcurve T"” of T has at least one final
component (a final component of 7", not necessarily of 7'), the minimality of 7’
givesdeg(T' N W) =2+ d dim({T")). It follows that S N T’ € T (n, d; x) and, since
SNT <8, weconclude that S ¢ T (n, d; x)’, a contradiction.

Then, we have proved (ii).

Step 5. We finally prove (iii). We know that d is odd and # is even by (ii).

Let 7; any final component of 7. Let Y be the union of all other components of 7.
Since Tj; is a final component, Y is connected. Then, deg(Y) = dim(Y'), and hence Y
is a, possibly reducible, rational normal curve in (Y'), (Y') N (T;) is a point, p, and {p}
is the scheme-theoretic intersection of 7; and Y. We proved in Step 2 that p ¢ S. Since
(S)=P"and p ¢ S, then (S NT;) =(T;) and (S NY) = (Y) and in particular
SNT; #@and S NY # @. Since S is minimal and 7T is arithmetically Cohen—
Macaulay, 7' (I zn7,(d)) = h' (I zay,r(d)) = 0. The following Mayer—Vietoris type
sequence on T’

&) 0= Iwr(d)— Iwnr,,1;(d) ® Iwny,y(d) = Op(d) — 0

is exact because p ¢ S. We proved that 1" (I zar, 1, (d)) = h' (I zay,y (d)) = 0.

Assume by contradiction that n; is even. Then, we have 2x; < n;d. The restriction
map

H(Iwar,1,(d)) — H°(0p(d))

is surjective because 7; = P! and deg(W N T;) < deg(97,(d)). Thus, (9) gives
h'(Iw.r(d)) = 0, a contradiction with (8). Then, we have proved that n; is even
for every final component 7; of T'. Hence, we also have 2x; = n;d + 1 and this
concludes the proof. ]

5. MINIMALLY TERRACINI FINITE SETS IN THE PLANE

In this section, we focus on the case of the plane. We deduce from [11] the following
result, which we will need in the sequel.

RemMARrK 5.1. Fix positive integers d, z such that z < 3d. Let Z C P2 be a zero-
dimensional scheme, Z # 0. If deg(Z) = z and d is the maximal integer ¢ such that
h'(Iz(t)) > 0, then either there is line L such that deg(L N Z) > d + 2 or there is a
conic such that deg(Z N D) > 2d + 2 or z = 3d and Z is the complete intersection
of a plane cubic and a degree d plane curve (see [11, Remarque (i), p. 116]).



E. BALLICO AND M. C. BRAMBILLA 194

ProPosITION 5.2. Fix integers x > 0 and d > 4.

(@ Ifx <d,thenT(Q2,d;x) =0.

(b) Let S € S(P2,d +1). Then, S € T(2,d,d + 1) ifand only if S is contained in
a reduced conic D. Moreover, if D = R U L is reducible (with L and R lines),
thend isodd, # S N R) =#(SNL)=(d +1)/2and SN RN L = 0.

(¢) Assume d > 5. Then, T(2,d;x) = @ forall x suchthatd +2 < x < 3d/2.

Proor. We prove (a) by contradiction. Assume x < d and consider S € T (2,d;x)’.
Let Z be a critical scheme for S. We have deg(Z) < 2x and d is the maximal integer
such that 21 (Iz(d)) > 0 by Theorem 3.1. Then, deg(Z) < 2d and, by Lemma 2.8,
there is a line L such that deg(Z N L) > d + 2. Thus, h'(Iznr(d)) > 0. Since
(S) = P2, S is not minimal, a contradiction.

The if implication of part (b) follows from Theorem 4.2 (iii).

We prove now the other implication of (b). Take S € T(2,d;d + 1)’ andlet Z be a
critical scheme for S. By Lemma 2.12, Z..q = S. Assume that S is not contained in a
reduced conic. Since (S) = P2, S is not contained in a double line; therefore, S is not
contained in a conic. Hence, Remark 5.1 implies that there is a line L C P2 such that
deg(L N Z) > d + 2 and hence h' (I zn(d)) > 0. Hence, S is not minimal. Finally,
Proposition 4.7 gives the last part of (b).

We prove finally (c) by contradiction. Assume d +2 < x < 3d/2 and let S €
T (2,d; x) with Z critical for S. Since S is minimal, #(S N L) < (d + 1)/2 for all lines
Land#(S N D) <2d + 1 for each conic. Since Z is critical, deg(Z N L) <d + 1 for
each line L and deg(D N Z) < 2d + 1 for any conic D. Thus, since deg(Z) < 3d — 1,
by Remark 5.1, we have 1! (Iz(d)) = 0, a contradiction. ]

Just above the range covered by Proposition 5.2, we have the following examples.

ExaMPLE 5.3. Assume d = 2k, fork € N, d > 6, and take x := 3k.Let C C P?
be a smooth plane cubic and 7" a smooth plane curve of degree k. Take as S the
complete intersection C N T.Set Z := C N 2T =285 N C. Since deg(Z) = 3d and
h°(Oc¢(d)) = 3d, then

h'(Iz,c(d)=h"(Izc(d))=1.
Since h°(O¢c(d —3)) = 3d — 9 > 3k = #S, we get h! (I5.c(d —3)) = 0. Since C

is arithmetically normal, h!(Is(d — 3)) = 0. Thus, the residual exact sequence with
respect to C gives

hl(Izs(d)) = hl(Izjc(d)) =1.
We also get h' (I2s/nc.c(d)) = 0forall S” S since deg(2S’ N C) < 3d — 2. Thus,
SeT(2,d;3d/2).
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ExampLE5.4. Taked odd,d >7,andset x := (3d + 1)/2.Let C C P? asmooth plane
cubic. Take S C C suchthat #S =(3d 4 1) /2. By assumption, S is a Cartier divisor of C.
Since p,(C)=1 and deg(Oc(d—3))=3d—9 > #S, then h!(C, Isc(d—3))=0.
Since C is arithmetically normal, 4! (Is (d — 3)) = 0. Thus, the residual exact sequence
with respect to C gives h' (I25(d)) = h'(I2snc.c(d)). Since pa(C) = 1, we get

h' (I2snc.c(d)) = 1.

We also have h!'(I25/nc.c(d)) = 0 for all S’ € S since deg(2S’ N C)t < 3d — 1;
hence, S € T(2,d; (3d +1)/2)'.

6. MINIMALLY TERRACINI FINITE SETS IN P3

Now we consider the case of finite sets of points in P3. The following proposition
extends Remark 5.1 to the case of schemes of P3.

ProPOSITION 6.1. Fix a positive integer d. Let Z C P> be a zero-dimensional scheme
such that (Z) = P3, its connected components have degree < 2 and z := deg(Z) <
3d + 1. We have

ht (Iz(d )) >0

if and only if one of the following cases occur:
(i) thereis aline L C P> such that deg(L N Z) > d + 2;
(ii)  there is a conic D such that deg(D N Z) > 2d + 2;

(iii) there is a plane cubic T such that deg(T N Z) = 3d and T N Z is the complete
intersection of T and a degree d plane curve.

Proor. Set S := Zeq.
Since the if part is trivial, we only need to prove the only if part.
We use induction on d. The case d = 1 is obvious since conditions deg(Z) < 4
and (Z) = P3 imply that Z is linearly independent and hence h!(Iz(1)) = 0.
Assume d > 2 and that the proposition is true for lower degrees. If there is a plane
H such that h' (I zng (d)) > 0, then we may use Remark 5.1 and we conclude.
Now we assume that

(10) hl(IzmH(d)) =0 forany plane H C P>,

Take a plane H C PP such that w := deg(Z N H) is maximal. Since (Z) = P3,
then we have z > 4, and w > 3, and hence deg(Resg (Z)) =z —w <3(d — 1) + 1.
Since K (Iznm(d)) = 0 by (10), then the residual exact sequence with respect to
H gives h'(Ires;; (z)(d — 1)) > 0. The inductive assumption applied to the scheme
Resg (Z) implies that we are in one of the following cases:
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(i)  either there is a line R such that deg(R N Resgy(Z)) > d + 1,
(ii")  or there is a conic E such that deg(E N Resy (Z)) > 2d,

(iii") orthereisaplane cubic C such thatdeg(C NResy (Z)) =3d —3andResy (Z) N
C is the complete intersection of C and a degree d — 1 plane curve.

We analyze separately the three cases in the following three steps (a), (b), (c).

SteP (a). Assume first that we are in case (iii’). Since deg(Resg (Z) N C) = 3d — 3,
then z — w = deg(Resy (Z)) > 3d — 3. On the other hand, since Resgy (Z) N C is
contained in a plane, we also have w > 3d — 3 and hence z > 6d — 6. Now since
z<3d+1,wegetd =2.

Since d = 2, we have z < 7. Moreover, since 4! (IResyy (2)(1)) > 0, then the scheme
Resy (Z) is linearly dependent and so we have w > deg(Resg (Z)), by the maximality
assumption on w. Sowe have z — w <3 = 2(d — 1) + 1, and by Lemma 2.8, it follows
that there is a line J such that deg(J NResg(Z)) =(d —1) +2 = 3.

Take now a plane M D J such that w’:=deg(M N Z) is maximal. Since dim |1 ; (1)]
=1,wehave w’ > 4. We getw = w’ = 4 and z = 7. Taking M instead of H and repeat-
ing the argument above, we have ' (IRes,, (z)(1)) > 0, and again by Lemma 2.8, it fol-
lows that there exists a line K such that deg(K NResys (Z)) =3; hence, Resys (Z) C K.

If deg(K N Z) = 4 or deg(J N Z) = 4, then we are in case (i) and the theorem is
proved.

Now we exclude the remaining case which is

arn deg(Z N K) =deg(ZNJ)=3.

Assume by contradiction (11) and consider separately the following three possibilities:
either JNK #@PandJ # K,orKNJ =0@,orJ =K.

(al) Assume that J/ N K # @ and J # K. Recall that any connected component of
Z has degree < 2, and clearly we have deg(J N K) = 1. Hence, the plane spanned by
J UK givesw > deg(J N Z) + deg(J N K) — 1 = 5, a contradiction with w = 4.

(a2) Assume K N J = @. Since deg(Z) = 7 and h'(Iz(2)) > 0, by Lemma 2.5,
we have dim | Zz(2)| = h°(Zz(2)) — 1 > 3. Take a general Q € |Iz(2)|. The theorem
of Bézout and the assumptions (11) imply that J/ U K C Q. Since J N K =@, Q is
not an irreducible quadric cone or double points. Moreover, since Q is general, then
Q is not the union of a plane containing J and a plane containing K. Thus, Q is a
smooth quadric. Since J N K = @, then J and K are contained in the same ruling
of Q,say J,K € |0g(1,0)|. We have h1(Q, I7,0(2,2)) = h'(I2(2)) > 0.

Note that, by using (11), we have

h' (K. Iznk.x(2) =h'(J.Izn7,5(2)) =0.

Since deg(Z) = 7, then the degree of Resyux(Z) is 1, and hence it follows that



MINIMAL TERRACINI LOCI IN PROJECTIVE SPACE 197

'Y (Q, Ires, x(2).0(0,2)) = 0. Now, taking the cohomology of the residual exact
sequence

0= ITRes;ux(2),000,2) = I702.2) = Iznruiznk),0(2.2) = 0,

we obtain 11 (Q, Iz,0(2,2)) = 0, which is a contradiction.

(a3) Assume finally that J = K. Recall that all the connected components of Z
have degree < 2 and S = Z,eq. From (11) we deduce the following facts: #(S N J) = 3,
each connected component of Z supported at J has degree 2 and none of them is
contained in J. Moreover, since deg(Z) = 7, we have that S \ (S N J) is a simple
point p. Let H; be a plane containing J and not containing p. Set @ := 2H; and
consider the residual exact sequence with respect to Q1,

0 = ITReso,(2) = I2(2) = Izn0,,0,(2) = 0.

Since J C Sing(Q1) and each connected component of Z has degree < 2, we have
Z,:=ZNQ; =Z\{p}andResg,(Z) = {p}. Hence, we have hl(IResQl(Z)) =
h'(I,) = 0. It follows from the exact sequence that k' (I z, 0, (2)) > h'(I2(2)) > 0
and hence ' (Iz,(2)) > 0.

Fix now p; € S\ {p} and let A be the connected component of Z; supported at p;.
Take a plane U containing A U J. Since w = 4, by maximality, we have

deg(UNZ;y) <deg(UNZ) <4,

and hence deg(U N Z;) = 4. Since deg(Resy (Z1)) = 2, then 7! (Iges,, (z,)(1)) = 0.
Thus, taking the cohomology of the residual exact sequence with respect to U,

0= Iresyzn(1) = I2,2) = Iz,nvu(2) =0,

we obtain 1! (I z,nv,u(2)) > h'(Iz,(2)) > 0. This implies, by Lemma 2.6, that there
is a plane U such that 2! (I zny (2)) > 0, and this contradicts our assumption (10).

Step (b). Assume now that we are in case (ii’). Since there is a conic E such that
deg(E NResy(Z)) > 2d, we get w > 2d and z — w > 2d. It follows that z > 4d,
which contradicts the assumptions z < 3d + 1 and d > 2.

SteP (¢). Assume finally that we are in case (i’); i.e., assume that there is a line R such
that deg(R NResyg(Z)) > d + 1. If deg(R N Z) > d + 2, then we may take L = R
and we are in case (i) and the theorem is proved.

Now we assume that deg(R N Z) = d + 1 and we will prove that either we are
again in case (i), or we have a contradiction.

Since deg(R N Z) = d + 1, then we have RN Z = R N Resy (Z). By the maxi-
mality assumption on H, we also know that w = deg(Z N H) > d + 1.
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Take a general plane M D R and consider the scheme X := Z N (H U M). Since
deg(M NResy(Z)) > deg(R NResy(Z)) = d + 1, we have

deg(X)>w+d+1>2d +2.

Hence, the hypothesis deg(Z) < 3d + 1 implies that deg(Resgua(Z)) <d — 1. Then,
by Lemma 2.8, we get 1! (IResy 5 (2)(d —2)) = 0.
The residual exact sequence of Z with respectto H U M,

0= Iresyopz)d —2) = Iz(d) = Ix.gum(d) — 0,

gives h' (Ix(d)) = h' (Ix,mum(d)) = h' (Iz(d)) > 0.
Since ! (I zna (d)) = 0, by assumption (10), then we have also A (Ixnpr(d)) =0,
by Lemma 2.6. The residual exact sequence of X with respect to M,

0= Tresyyx)(d —1) = Ix(d) = Ixamm(d) — 0,

gives h! (Tresy, x)(d — 1)) > 0.

We consider now separately the two following cases: either the line R is contained
in H, or it is not contained.

(c1) Assume H D R.Recall that S = Z,4. Since each connected component of Z
has degree < 2, we deduce the following facts: #(S N R) = d + 1, each connected
component of Z supported at a point of S N R has degree 2 and no connected component
of Z is contained in R.

Take general planes Hy, H € | Tg(1)|. Since R = Sing(H; U H,) and Hy, H; are
general, Z' = Z N (Hy U H,) is the union of the connected components of Z which
are supported at a point of S N R. Since deg(Resg,um,(Z)) <3d +1-2(d +1) =
d — 1, by Lemma 2.8, we have h! (IR,:SHl UH, z)(d —2)) = 0. Then, the residual exact
sequence of Z with respect to H, U H>,

0 = ITResyy,um,(2)(d —2) > Iz(d) - Iz/,10H,(d) — 0,

gives h1(Z7/(d)) = h' (L2 mums(d)) = h1(I7(d)) > 0.

Take a connected component A of Z’. Since deg(4) = 2 and deg(4A N R) = 1,
there is a unique plane H3 containing A U R. Since 1" (I zn 5 (d)) = 0 by assumption
(10), we have h!' (I z/nm5(d)) = 0 by Lemma 2.6. Since deg(Resp,(Z')) < d, we
have A (Iges H3(2) (d — 1)) = 0 by Lemma 2.8. Thus, the residual exact sequence of
Z' with respect to Hs,

0 = IResyyy(z)(d —1) = Iz/(d) — Iz:nms,H5(d) — 0,

gives h'(Iz/(d)) = 0, a contradiction.
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(c2) We assume now H 2 R. Thus, H contains at most one point of S N R. For
any p € RN S, let A, denote the connected component of Z supported at p.

Since M is general and S N R is finite, M 2 Ap, forany p € § N R. Recall that X =
ZN(HUM). Thus,if SN HNR=0,thenwehavethat X = (ZNH)U(RNJS)
(as schemes), while if RN H NS = {p}, then X is the union of A, the points
(S\ {p}) N R and the scheme (Z N H) \ {p}.

Since deg(X) > 2d + 2 > d + 1 = deg(Z N R), there is a plane U D R such
thatdeg(X NU) > d +2.1f p € S N R with deg(A4,) = 2, we take as U the plane
spanned by R U A4,,.

We have

deg (Resy (X)) = deg(X) —deg(X NU) <3d +1—(d +2)=2(d — 1) + 1.

By Lemma 2.8, there is a line J such that deg(Resy (X) N J) > d + 1.

Since by construction we know that Resyy(Z) N R = @, then J # R.

If deg(J N Z) > d + 2, we take L = J and we are in case (i) and the theorem is
proved. Thus, we may assume deg(J N Z) = d + 1 and we will find a contradiction.

If J N R # @, the plane N spannedby J U R proves that w > deg(N N X) >2d +2
and hence deg(Resgy(Z)) =z —w <d — 1 < deg(Z N R) — 1, which is impossible
sincedeg(ZNRNH) <1.

Now assume J N R = @. Fix a general Q € | I ;yr(2)|. Since any 2 pairs of 2 skew
lines are projectively equivalent, Q is smooth. Since I jyg(2) is globally generated,
Q is general, each connected component of Z has degree at most 2 and Z is finite,
ZNQ =ZnN(JUR) (as schemes). Since deg(Resp(Z)) <3d +1—-2d -2 =
d — 1, we have by Lemma 2.8 that h' (Ires,, (2)(d — 2)) = 0.

Hence, the residual exact sequence with respect to Q,

0 = ITresp(z)(d —2) > Iz(d) = I(znnuznr).(d) =0,

gives h' (Zznnuznr)(d)) = h' (Lznnuznr),e(d)) > 0.
Taking a plane N; containing the line J and exactly one point of R N §, we get
deg(Resy, (ZNJ)U(ZNR))<2d +2—(d+2)=d; hence, by Lemma 2.8, we have
hl(IRele(ZﬂJ)U(ZnR)(d -1)) =0;

on the other hand, by assumption (10), we know that 2! (Ix,nz(d)) = 0 and by
Lemma 2.6 we get h' (I y,n(znuznry(d)) = 0.
Hence, from the following residual exact sequence,
0 = Iresy, znnuEznr)(d — 1) = Izanuznr(d)

= Innznnuznry),n, (d) =0,

we obtain 2! (I znryuznr)y(d)) =0, which is a contradiction. This ends the proof. m
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Notice that if z < 3d, case (iii) of the previous theorem never occurs since (Z) = IP3.
Thanks to Proposition 6.1, we can easily prove Theorem 1.3 which states the
emptiness of the minimal Terracini loci T (3, d; x)’ for 0 < 2x < 3d + 1.

Proor oF THEOREM 1.3. Consider S € T (3,d; x)" and let Z be a critical scheme for S
By Lemma 2.12, we know that Z,.q = S and hence (Z) = P3. Since deg(Z) < 2x <
3d + 1, we can apply Proposition 6.1.

In any of the three cases, there is a plane H and a subset " = S N H which
contradicts the minimality of S. |

Now we will prove Theorem 1.4, which characterizes the elements of T (3, d;
1+ [3d/2]), i.e. the sets of minimal cardinality which are minimal Terracini with
respect to Opn (d) in P3. Notice that one implication follows from Theorem 4.2 (iii).
By Proposition 4.7, we also know that if S is contained in a reducible rational normal
curve, then S &€ T(3,d;1 + [3d/2]).

Proor oF THEOREM |.4. We only need to prove that any S € T (3,d; 1 + [3d/2])
is contained in a rational normal curve.

Givend > 7and x = 1 4+ [3d/2],wesete :=1ifd isevenand ¢ := 0 if d is
odd. Given S € T(3,d; x)’, let Z be a critical scheme for S and z := deg(Z). Recall
that Z,oq = Sandz <3d +3 —¢.

Take a quadric Q € |Op3(2)| such that w := deg(Z N Q) is maximal.

SteP (a). In this step we want to prove that Z C Q. Assume by contradiction that
Z Z Q. Since h°(Op3(2)) = 10, h°(14(2)) > 0 for every zero-dimensional scheme
A C IP3 such that deg(A) < 9. Thus, w > 9. By the minimality of S, we also have
h'(Izno(d)) = 0;hence, h' (Iresy(z)(d —2)) > 0.

Since deg(Resp(Z)) <z —w < 3(d — 2) — &, then Proposition 6.1 implies that
we are in one of the following cases:
(i) thereisaline L such that deg(Resg(Z) N L) > d,
(ii) there is a plane conic D such that deg(Resp(Z) N D) > 2d —2,

(iii) =0,z =3d + 3, w = 9and Resgp(Z) is the complete intersection of a plane
cubic and a plane curve of degree d — 2.

(al) First we exclude cases (ii) and (iii). Indeed, in both cases (ii) and (iii), there is a
plane U such thatdeg(U N Z) > deg(U NResg(Z)) > 2d —2.Since h°(Iy(2)) =4,
we have w > deg(U N Z) 4+ 3 > 2d + 1 and hence we have deg(Resp(Z)) =z —w <
3d +3—(2d + 1) < 2d — 2, which is a contradiction.

(a2) We assume now that we are in case (i); i.e., there is a line L such that

deg (L NResp(Z)) = d.
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Note that, since Z ¢ Q, there is a plane H such that L C H anddeg(H N Z) >
deg(ZNR) +1>d + 1. We have h' (Ies;, (z)(d — 1)) > 0, by the minimality of S,
and deg(Resy (Z)) <3d +3—d —1=2d +2<3(d —1). By applying Proposition 6.1
to Resy (Z), we are in one of the following cases:

(1) there is a line R such that deg(R NResgy(Z)) > d + 1;
(2) there is a conic D such that deg(D N Resy (Z)) > 2d.

Now we consider separately these two possibilities (il) and (i2).

(a2.1) Assume we are in case (1); that is, assume the existence of a line R such that
deg(R NResy(Z)) > d + 1. The minimality of S gives deg(R N Z) = d + 1 and
RNZ = RNResy(2).

Now we study the following cases: either R = L,or R # L and RN L # @, or
RNL =4

(a2.1.1) First assume R = L C H. Since Z is critical, every connected component
of Resgr (Z) supported at a point of R is a simple point. Thus, we get#(S N R) >d + 1.
Thus, A (I2snr)(d)) = h'(I2(snr).r(d)) > 0, contradicting the minimality of S.

(a2.1.2) Now assume R # L and R N L # 0. Consider the plane M = (L U R).
Since deg(L N R) = 1, thendeg(Z N M) > 2d. Since ' (Iges,, (z)(d — 1)) > 0 and
deg(Respr(Z)) < d + 3, there is a line E such that deg(E N Resps(Z)) > d + 1. As
above we get E # L and E # R. Take Q' € [Tgurur(2)]. Since Z £ Q and w is
maximal, we have Z Z Q’. Hence, hl(IResQ,(z)(d —2)) > 0 and, by Lemma 2.8,
we have deg(Resp/(Z)) > d —1.Hence,z > (d — 1) +deg(ZN(LURUE)) =
(d—-1)+@2d +d +1—-3) =4d — 3, a contradiction since d > 7.

(a2.1.3) Now assume R N L = @. Take Q" € |I grur(2)] such that deg(Z N Q")
is maximal. The maximality of w gives Z € Q". Thus, hl(IResQ,,(z) d-2)>0
and deg(Resg») <3d +3—(d +1+d) =d +2 <2(d —2) + 1. Hence, there is
aline F such that deg(F N Resg~(Z)) > d. We conclude as in case (a2.1.2), using
L, Rand F instead of L, R and E.

(a2.2) Assume that we are in case (2); that is, there exists a conic D such that
deg(Resy (Z)) > 2d, and call (D) the plane spanned by D. Since Z is minimally
Terracini, hl(I(D)mZ(d)) = 0 and hence hl(IReS(D)(Z)(d — 1)) > 0. Since

deg (Respy(Z)) <d +3 —¢,

Lemma 2.8 gives the existence of a line R such that deg(R N Res(py(Z)) > d + 1.
Thus, the minimality of S implies deg(J N Z) = d + 1. The steps (a2.1.1), (a2.1.2)
and (a2.1.3) work verbatim taking J instead of R.

Step (b). In Step (a), we proved that Z C Q; hence, we have | z(2)| # @. In this step
we prove that every quadric in | z(2)| is integral.
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Assume by contradiction that Z is contained in a quadric which is either not reduced,
or reducible. We consider separately the following two cases.

(b1) Assume first Z C 2H where H is a plane. Thus, since S C Z, we would have
S C H, contradicting our definition of Terracini set.

(b2) Assume now Z C H U M where H and M are planes and H # M. With no
loss of generality we may assume deg(Z N H) > deg(Z N M). The minimality of S
gives ! (Iges;; (z)(d — 1)) > 0. Since deg(Resy (Z)) < |z/2] <2(d — 1) + 1, then
Lemma 2.8 implies that there is a line L such that deg(L N Resgy(Z)) > d + 1.

Let N be a general plane containing L. Since deg(Resgun(Z)) <z —d — 1,
we have h!(Ires,,y(z)(d — 2)) = 0, again by Lemma 2.8. The minimality of S
gives Z C H U N. Taking different planes N and N’ containing L, we get S C
(HUN)N(HUN')=H U L. The minimality of S implies 2#(L N S) < d + 1;
ie., #( SN L) < [(d + 1)/2]. Since deg(Resg(Z) N L) = d + 1, we get d odd,
HNZNL=0and Resg(Z) C L. Since #(SNR)>land HNZNL = 0,
LZH.

Recall that NV is a general plane containing L. Again by the minimality of .S, we have
I (IResy (z)(d — 1)) > 0. Since deg(Resy (Z)) <3d +3—d —1, then Proposition 6.1
implies that

) either there is a line R such that deg(R N Resy (Z)) > d + 1,
(II)  or there is a conic D with deg(D N Resy (Z)) > 2d.

We analyze separately the two cases and we will show a contradiction in both cases.

(b2.1) Assume first the existence of a conic D as in case (II).

Since | Ip(2)| is globally generated and each connected component of Z has degree
atmost2,then Q1 N Z = D N Z forageneral O € |.Ip(2)|. Since deg(Resyug, (Z))
<z—(d+1)—2d <2,wehave hl(IResNUQl (z)(d —3)) = 0. The minimality of S
givesZ C Q1 UN.SinceNNZNH=@,andQNZ=DNZandZNN =
ZNL,wegetZ C DUL.

By the minimality of S, we have that #(S N D) < d on the conic and 2#(S N L) <
d + 2 on the line, which implies #(S N L) < [(d + 1)/2]. Then, we would have

3d d+1
SRRt

(b2.2) Assume now the existence of a line R as in case (I).

Since S is minimal, then deg(Z N R) = deg(Z N L) =d + 1. Since L € H, and
SCHUL,wehave R# L.Since HNZ NS =0, wehave RN L NS = @. Thus,
deg(Z N(RU L)) =2d + 2. Since (S) = IP3 and Z is minimal, R U L is not a conic;
ie, RNL =0.

which is false.
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Take a general Q' € |ITrur(2)]. Since I gyr(2) is globally generated, then Q’ is
smoothand ZN Q' =ZN(RUL). Sincehl(IReSQ, (d —2)) > 0anddeg(Resp/(Z))
<d + 1, Lemma 2.8 implies that there is a line £ such that deg(E£ N Z) > d. Since
disodd, we get# ENS)=(d +1)/2.Since Z C H U L and L C H, then we get
L N E # @. The conic L U E contradicts the minimality of S.

Step (c). In Steps (a) and (b), we proved that Z is contained in a quadric Q and
that each quadric containing Z is integral. Since h°(Op3(2)) = 10, for any degree 8
scheme W C Z, we have h°(Iy (2)) > 2. Thus, there is quadric 7 C P3 such that
deg(TNZ)>8—cand T # Q. In this step we prove that Z C T.

Assume by contradiction that Z € T. Since deg(Res7(Z)) < 3(d —2) + 1, the
residual exact sequence of T gives ' (Ires,(z)(d — 2)) > 0. First assume

deg (ResT(Z)) =3d -5

and that (Res7(Z)) is contained in a plane M. Since Q is irreducible, Q N M is a
conic containing at least [(3d — 5)/2] points of S, contradicting the minimality of S.

Since Res7(Z) is not a scheme of degree 3d — 5 contained in a plane, then Propo-
sition 6.1 implies that we have the following cases:

(o) either there is a line L; such that deg(L; N Res7(Z)) > d,
(B) or there is a conic D such that deg(Dq N Resp(Z)) > 2d — 2,
(y) or there is a plane cubic C; such that deg(Cy N Resr(Z)) > 3d — 6.

Now we analyze separately the three cases and we will get to a contradiction in any
case.

(c1) Assume first the existence of the plane cubic C; as in case (y).

Since Z is contained in an integral quadric Q, then we have (C;) ¢ Q. Then,
deg(C; N Q) < 6 and this gives a contradiction because 6 < 3d — 6.

(c2) Assume now the existence of the conic D as in case ().

The scheme Res(p,)(Z) has degree < d + 5 — ¢ and hl(IReswl)(Z)(d —-1))>0
because Z is critical. Thus, by Lemma 2.8, there is a line L, such that

deg (Res(p)(Z) N L) >d + 1.

Take a general plane M D L,. We have deg(Respru(p,)(Z)) < 4 — . The minimality
of S gives Z C M U (D). Then, we proved that Z is contained in a reducible quadric,
which is impossible by step (b).

(c3) Assume finally the existence of the line L as in case ().

Bézout’s theorem gives L; C Q. Take a general plane U D L;. Since each con-
nected component of Z hasdegree < 2,then L1 N Z = U N Z. Since deg(Resy (Z2)) <
2d + 3 —eand d > 6, by Proposition 6.1, it follows that either there is a line L3 such that
deg(Resy (Z)NL3)>d +1,orthereis aconic D3 suchthatdeg(D3; N Resy (Z))>2d.
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We can again exclude the existence of D3 following the same argument used in
step (c2).

Now assume that there exists L3 such that deg(Resy7(Z) N L3) > d + 1. In this
case we have

#(SN(L1UL3) > EW + {#W =d+1

we also get that d is odd. Since S is minimal, then L N L3 = @. Thus, the integral
quadric Q is not a cone; i.e., Q is smooth.

Then, following the same argument used in step (a2.1.3), we get a contradiction (note
that both steps (a2.1.2) and (a2.1.3) do not use the assumption Z Z Q made in step (a)).

SteP (d). By the previous steps, we know that Z is contained in no reducible quadric
and in infinitely many integral quadrics. Moreover, every quadric containing a degree
8 — & subscheme of Z contains Z.

Let O be a general element of | Iz(2)].

Since in every pencil of quadrics at least one is singular, we can assume that 7" is a
quadric cone containing Z. Since Q is general, we may take T such that T % Q. Call
o its vertex. Every line L such that deg(L N Z) > 3 is contained in 7" and any union
of 2 lines of T is a reducible conic because they contain o.

Set £ := Q N T as a scheme-theoretic intersection. Since Z C T and Z C Q,
then Z C E. Since E is the complete intersection of 2 quadric surfaces, the adjunction
formula gives wg = Og. The Koszul complex of the equations of Q and T gives
h°(Ofg) = 1. Hence, by duality, we have h!(Og) = 1.

First assume E integral; i.e., E is an irreducible quartic curve. Since the rank 1
torsion-free sheaf Iz g (d) has degree 4d — deg(Z) > 0, then h'(E, Iz g(d)) = 0.
Since E is arithmetically Cohen-Macaulay, 2! (I z(d)) = 0, which is a contradiction.

Then, we may assume that E is not integral. If £ is not reduced, it may have multiple
components, but no embedded point. If E..q # E, then Eq is a reduced curve of
degree < 3 containing S. Since h°(Og) = 1, Eq is connected; hence, Proposition
4.7 gives a contradiction.

Thus, the curve E = E}q is reduced and reducible. Each irreducible component of
E is either a line, or a smooth conic, or a rational normal curve.

First assume £ = E{ U E, with E; and E, reduced conics. Since Z is critical
and S is minimal, then hl(IResw[)(z) (d — 1)) > 0fori = 1,2, and hence we have
deg(ZNE))+deg(ZNEy)—deg(ZNE{NE)>2d +2)+ (2d +2)—4=4d,
which contradicts the assumption z < 3d + 3, since d > 4.

Thus, E has at most one smooth conic among its irreducible components and it
is not formed by 4 lines through o. Hence, there is a connected degree three curve
C C E, which is either a rational normal curve, or a reducible rational normal curve.
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We consider now the following two cases: either Z £ C,or Z C C.

(d1) First we assume that Z < C. Since I¢(2) is globally generated and every
connected component of Z has degree < 2, for a general Q' € |I¢(2)|, we have
Q'NZ = C N Z. Hence, it follows that hl(IResQ,(Z) (d —2)) > 0. We write E =
L4 U C with Ly aline. We have Resg/(Z) C L4 and deg(Resg/(Z)) > d. Take a
general plane M D Ly.

Since h!(IResy, (z)(d — 1)) > 0 by minimality of S, and deg(Resp (Z)) < 2d +
3 — & < 3d, then by Proposition 6.1, we have that

(d1.1) either there is a line Ls C C such that deg(Ls N Resys(Z)) > d + 1, and this
is impossible because E would be a union of 2 reduced conics;

(d1.2) orthereis aconic D4 such that deg(Resps (Z) N Dy4) > 2d, and also in this case
E would be a union of 2 reduced conics. In both cases we find a contradiction
and this completes the case Z < C.

(d2) Now we assume Z C C. By Proposition 4.7, we obtain that C is a rational
normal curve and this ends the proof of the theorem. ]

We are going finally to prove our last main result, which is Theorem 1.5. We point
out that the bound in Theorem 1.5 is sharp, as shown in the following example, which
implies that T (3,d;2d) # @ forall d > 5.

ExaMPLE 6.2. Take d > 5. Let C C PP3 be a smooth linearly normal elliptic curve.
Let &£ be a line bundle on C such that £®2 =~ O¢ (d). Since deg(£) = 2d and C has
genus 1, £ is very ample.

Fix any S C |£| formed by 2d points. We will show that S € T (3,d;2d)’. Obvi-
ously, (S) = P3. Since 25 N C € |Oc(d)|, we have h' (I,snc.c(d)) =1,i =0, 1.

The curve C is the smooth complete intersection of 2 quadric surfaces, say C =
0 N Q. Clearly, Q and Q' are smooth at each point of S and Resp(25) = S and
Resp/(2S N Q) = S; hence, the residual exact sequence with respect to Q in P2 and
of C in Q gives

(12) 0— Is(d—2)— I>s(d) = I2sng,0(d) >0,
(13) 0— Is,o(d—2)— Isng,0(d) = Tasnc.c(d) — 0.
Since d > 5, we have
#S =2d < 4d — 8 = deg (Oc(d —2)).

Thus, ' (Is.c(d —2)) = 0. Since C is arithmetically Cohen—Macaulay, we have
h'(Is(d —2)) =0, and hence h'(Is,0(d —2)) = 0. Using (13) and (12), we get
h'(I2s(d)) = 1and h°(I2s(d)) = 1.
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Take now S’ € S. Since deg(2S’ N C) < 4d, we have h!(I,s'nc.c(d)) = 0.
Moreover, 11 (Q, Is/.0(d —2)) = 0, by Lemma 2.6. Hence, using again (13) and (12)
(with S’ instead of S), we get h!(I25/(d)) = 0.

Thus, S € T(3,d;2d) .

From the previous example, we can deduce the following remark.

REMARK 6.3. Fix integers x < 2d. Let E C IP3 be an integral complete intersection
of two quadric surfaces. Let S be a collection of x points on E; then, A (I25(d)) = 0.

The following technical lemma generalizes Remark 6.3 to reducible quartic curves
satisfying further suitable conditions.

LeEMMA 6.4. Fixd > 5. Let T C P3 be a reduced curve with deg(T) < 4 and such
that any irreducible component of T is a line or a conic or a rational normal cubic.
Assume also that no plane contains a subcurve of T of degree > 3. Let S C T be a
collection of points such that #(S) <2d — 1 and

#(SNL)<[d/2] foranyline L C T,
#(S N C) <d for any conicC C T,
#(S N D) < (3d + 1)/2 for any rational normal cubic D C T.

Let Z C T be a zero-dimensional scheme such that Z.q = S, any connected component
of Z has degree < 2, Z is contained in an integral quadric surface and Z is not
contained in any reducible quadric. Then, h' (I z(d)) = 0.

ProoF. Since h!(I7(t)) =0forallz > 5,itis sufficient to prove that k! (I z r(d)) = 0.
We already analyzed all cases with deg(7") < 3 and T connected. Thus, we may assume
that T is connected and deg(7) = 4.

Consider a good ordering 71, ..., Ts of the irreducible components of 7" and set
Y =T, U.--UTs_;. The components 7} and T are final components, and for every
final component 7; of T, there is a good ordering with 7; as its first component. Thus,
changing if necessary the good ordering, we may assume deg(77) > deg(7Ts). Thus,
deg(Ts) < 2 and deg(Ts) = 2 if and only if s = 2 and deg(7;) = 2. This case is
excluded because T would be contained in a reducible quadric.

Hence, deg(T7) > deg(Ts) = 1. Set E := Ty N Y (scheme-theoretic intersection).
Since T contains no plane subcurves of degree > 3, then we can assume, up to choosing
a good ordering, that deg(7Ts N Y) <2.Sete :=#(S N E) and z := deg(Z) < 2(#S).
Note that #S = #(S N Ts) + #(S N Y) — e. We have the following Mayer—Vietoris
type sequence on 7':

(14) 0—->Iz71d)— Izar,,1,(d)® Iznv,y(d) —> I2nE,E(d) — 0.
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(a) Assume #(S N Ty) < [d/2] — 1. Thus, K (L guznry).1, (d)) = 0 since

deg (EU(ZNTy)) < 2+2(E—‘ - 1).

Then, the restriction map H°(I znr, 1,(d)) — H°(IznE E(d)) is surjective. Thus,
the exact sequence (14) gives h!'(Iz,7(d)) = 0 and we conclude.

(b) Assume #(S N Ts) = [d/2]. 1t S NY NTs; = @, then we have T zng g(d) =
Ok (d) and we conclude as in step (a). Thus, from now on we assume S N Ts NY # @.
Let M be a plane containing L such that deg(Z N M) is maximal.

(b1) Assume that M contains another irreducible component, 7;, of T. Since T
contains no planar subcurve of degree > 3, deg(7;) = 1 and 7; is unique in M. Since
Ts U T; is a conic, #(S N (Ts U T;)) < d. The closure A of T \ (Ts U T;) is either a
reduced conic or the union of 2 disjoint lines. The first case is excluded because T is
not contained in a reducible quadric. Now assume that A is the union of 2 disjoint lines,
say A = L U R. The lines L and R are the final components of 7. By step (a), we
may assume #(S N L) =#(S N R) = [d/2]. Thus, LN Ty = LN R =0.Let Q be
the unique quadric containing L U R U T§. Since L N R = @, Q is a smooth quadric.
Changing if necessary the names of the 2 rulings of Q, we may assume L U R U T €
|00 (3.0)|. Since 7; meets each connected component of L U R U T, Bézout’s theorem
gives T; C Q and T; € |Op(0,1)|. Let Z’ C Q be the residual of Z with respect to
the divisor L U R U Tj. It is sufficient to prove that /' (Q, Iz/(d — 3,d)) = 0. Since
T; U Ty is a reducible conic, #(S N T; U Ty) < d and hence #( S N T;) <d — [d /2]
with strict inequality if S N 7; N Ty # @. Thus, deg(Z’') <4d —2—6[d/2] <d -2
and hence h'(Iz/,0(d —3,d)) = 0, and we conclude that 1! (I z,7(d)) = 0.

(b2) Assume that Ty is the unique connected component of 7" contained in M . Thus,
deg(Y N (M \ Ty)) < 3.Hence, h' (I zna(d)) = 0. By the residual exact sequence
with respect to M, it is sufficient to prove that h!(Ies,, (z)(d — 1)) = 0. Assume
by contradiction that &' (Iges,, (z)(d — 1)) > 0. Since deg(M N Z) > deg(Z N Ty),
we have deg(Resps(Z)) <4d —2—2[d/2] —1 < 3(d — 1). Since T contains no
plane curve of degree > 3, Proposition 6.1 gives that either there is a line L such that
deg(L1NResps(Z))>d +1 orthereisaconic Dq such thatdeg(D,NResp(Z))>2d.

(b2.1) Assume first the existence of the line L ;. Since #(S N L) < [d /2], we getd
oddanddeg(Z N L1) =d + 1.Since #(S N J) < d forall conics J C T and d is odd,
L1 N Ts=@.Let Ay denote the closure of T\ (L; U Ty). Either A; is a reduced conic
or it is the union of 2 disjoint lines. We have #(S N (T \ (Ts U L1))) <d — 2. There is
an integral quadric Q containing T U L; and at least one pointof S N (T \ (75 U Ry))
for each component of A;. Thus, hl(IResQ(z) (d —2)) = 0. Thus, it is sufficient to
prove that h!'(Izng.0(d)) = 0. Since L; N Ty = @, Q is a smooth quadric. We
get h'(Iznp,0(d)) = 0, unless Q contains another irreducible component of 7.
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First assume A; C Q. Since Q is a smooth quadric, we get (for a suitable choice
of the 2 rulings of Q) that either 7 € |O (4, 0)| (excluded, because 7 is reduced
and connected) or T € |Op(3,1)| or T € |O¢(2,2)|, which are also excluded. Now
assume that Q only contains one component, R, of A;. Write A} = R U R, and
Ay := Ly UTg U R.Either A € |0g(3,0)| or A2 € |09 (2,1)|. In both cases we get
h'(Q,Izn4,,0(d,d)) = 0. To conclude the proof we need to consider R, N Z N Q.
We have deg(R> N Z N Q) < 4 and hence h'(Q, Izngp,0(d,d)) = 0.

(b2.2) Assume the existence of the conic D;. Since #(S N D) < d, we get
#(S N Dy) = d and hence deg(Z N D) = 2d. By step (bl), we may assume that
if Dy is reducible, then none of its component contains [d /2] points of S. We get
T=DiURUTswith Ralineand#(SN(T \D1UTy))<d—-1—-[d/2].IfRis
a final component of 7', then we use step (a) and that #( R N S) < [d/2]. Now assume
that R is not a final component of 7. Assume for the moment 75 N Dy # @. Since T
contains no degree 3 planar subcurve, D1 U T is a reducible rational normal curve
and we may find a quadric Q containing D; U Ty, but not R. To conclude in this case
we need deg(Resgp,(Z)) <d —1.Wehave #(SN R) <2d —1—d —[d/2], and we
can conclude. Now assume D; N Ty = @. Since T is connected, R meet T and D at
a different point. In this case 7T is contained in the reducible quadric (R U Ts) U (D),
a contradiction. ]

We give now the proof of Theorem 1.5, which states that T (3, d; x)’ is empty if
14+ [3d/2] <x <2d.

ProoF oF THEOREM 1.5. Assume by contradiction the existence of S € T (3,d; x)’
and fix a critical scheme Z of S. Set z := deg(Z) < 4d — 2.

Set Zo=Z.Foranyi >0, let Q; be aquadric surface such that z; :=deg(Z;_1 N Q;)
is maximal and set Z; := Resg, (Z;—1). The sequence {z; };>1 is weakly decreasing.
Let e be the maximal i such that z; # 0. Then, z = z; + --- + z, and Z, = @. Since
h%(Op3(2)) =10, z; > 9foralli < e, hence we have e < (4d + 6)/9, forz < 4d —2.
By Lemma 2.13, since Z is critical and S € T (3, d; x)’, we have

h'(Iz,_,(d —2e+2)>0.
(D) Assume first e > 2; i.e., Z is not contained in any quadric surface. Since
h'(Iz,_,(d —2e+2)) >0,

then Proposition 6.1 implies that either z, > 3(d — 2e + 2) + 1 or there is a line
L such that deg(Z.—1 N L) > d — 2e + 4 or there is a plane conic D such that
deg(Z.—1 N D) >2d —4e + 6.
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(I.a) First assume z, > 3(d —2e + 2) + 1. Since the sequence z; is weakly decreas-
ing, we get z > e(3d — 6e + 0). It is easy to check that e(3d — 6e + 6) > 4d — 2 for
any d > 13and 2 < e < (4d + 6)/9. This contradicts our hypothesis.

(I.b) Now assume the existence of a plane conic D such that deg(Z.,_1 N D) >
2d —4e + 6. Since h°(Ip(2)) =5, we get z; > (2d — 4e + 6) + 4foralli < e. Thus,
z > e(2d — 4e + 10) — 4. It is easy to check that e(2d — 4e + 10) — 4 > 4d — 2 for
any 2 < e < (4d + 6)/9, and this gives again a contradiction.

(I.c) Finally, assume the existence of aline L such thatdeg(Z,—1 N L) >d —2e + 4.
Since h°(I7(2)) = 7, we have z; > (d — 2e + 4) + 6 for all i < e. Hence, z <
e(d —2e 4+ 10) — 6. It is easy to check that e(2d — 4e + 11) — 6 > 4d — 2 for any
4 <e < (4d + 6)/9. Hence, we get e € {2, 3}.

Let H be a general plane containing L. Since each connected component of Z has
degree < 2, wemay assume ZNL =2ZNH.

(I.cl) First assume e = 3. Since z; > z5 > z3 > d —2and z; + z5 > [2z/3], we
have deg(Resp,ug,un(Z)) <z—1[2z/3]1-(d -2)=|z/3] —d +2<d -3 =
(d —5) + 2,since d > 7. Since S is minimally Terracini, we get Z C Q; U O, U L.
Since e > 2 and H is contained in a quadric surface, Z € Q1 U H. Since S is minimally
Terracini, hl(IReSQ1UH(Z) (d —3)) > 0. We have

deg (ResQlUH(Z))

IA

(z—zl)—(d—z)sz—m—du
<5d+2

<2(d-3)+1, ford >17.

Hence, there is a line R such that deg(R N Resg,un(Z)) > d — 1. Taking a general
plane containing R and taking again the residual, we get Z C Q1 U L U R. But since
h°(ITrur(2)) > 0and e < 2, we have a contradiction.

(I.c2) Now assume e = 2 and hence z; > [z/2]. We have deg(Resg(Z)) <z —d
and hl(IRCSH(z)(d — 1)) > 0.

First assume (Resy (Z)) = IP3. Since z — d < 3(d — 1) + 1, Proposition 6.1 implies
that either there is a plane cubic 75 with 75 N Resy (Z) the complete intersection of 73
and adegree d — 1 plane curve or there is a conic T, such thatdeg(7; NResy (Z)) > 2d
or there is a line 77 such that deg(7; N Resgy(Z)) > d + 1.

First assume the existence of 73. Since deg(Resgy(r3)(Z)) < 1, by minimality of
S we get Z C H U (T3), contradicting the assumption e > 1.

Assume the existence of T5. Since deg(Respy(r,)(Z)) <z —3d <d — 1, we get
Z C H U (T,), again a contradiction.

Now assume the existence of 7. Take a general quadric U € |Irur, (2)|. Since
deg(Resy(Z)) <z—2d —1<2(d—2)+1, by Lemma 2.8, there is a line R; such that

deg (R1 NResy(Z)) = d.
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Take a general U’ € | I ur,ur, (2)]. Since deg(Resy/(Z)) <z—3d —1 <d and S
is minimally Terracini, Z C U’, contradicting the assumption e > 1.

Now assume dim(Resg (Z)) < 2. The only new case is if deg(Resg (Z)) = 3d — 2
and Resy (Z) is contained in a plane cubic C. Since deg(Res(c)(Z)) < d, S is not
minimally Terracini.

(IT) Assume now e = 1; thatis, Z is contained in a quadric Q.

If Q is reducible, we argue as in step (b) of the proof of Theorem 1.4 and we get a
contradiction. So we can assume that Z is not contained in any reducible quadric. In
particular, Q is irreducible and reduced.

Set Wy := Z. Take Dy € |Og(2)|, such that w; = deg(Wp N D;) is maximal,
and set W; := Resp, (Wp). For i > 2, we iterate the construction: choose divisors
D; €09 (2)| suchthat w; := deg(W;—1 N D;)is maximal and set W; := Resp, (W;_1).
The sequence {w; };>1 is weakly decreasing. Let ¢ > 1 be the maximal i such that
w; # 0;ie., W =0@andz = wy +--- + we.

By Lemma 2.13, since Z is critical for S minimal, we have

h'(Iw,_,(d —2c +2)) > 0.

Since dim |@o(2)| = 8, if w; < 7, then w; 41 = 0 and W4 = @. Thus, w; > 8 for
1 <i < c;hence, we getc < 4‘{% since z < 4d — 2.

(ILa) If ¢ = 1, then we have Z C Dy = Q N Q’ where Q' is an integral quadric.
Hence, D; is a complete intersection of two quadrics. If D; is integral, then by
Remark 6.3, we have h'(Iz(d)) = 0, a contradiction. If D is reducible, we have
again a contradiction by Lemma 6.4 and by the minimality of S.

(IL.b) Now we assume ¢ = [d/2]. Hence, either d is even and ' (Iw,_,(2)) > 0,
ord is odd and h'(Iw,_, (1)) > 0.

First assume d odd and ¢ = [d/2]. Then, we have 8([d /2] — 1) + deg(W.—1) <
4d — 2, and then deg(W,—_1) < 2, which is a contradiction.

Now assume d even and ¢ = d/2. Since 8(d/2 — 1) + deg(W,—1) < 4d — 2,
then deg(W,—1) < 6. Thus, either there is a line L such that deg(W,—; N L) > 4 or
deg(W,—1) = 6 and W,_; is contained in a conic D.

First assume the existence of the line L such that deg((W,—;) N L) > 4. Bézout’s
theorem implies L C Q. Since h°(I1,0(2)) = 6, the maximality of the integer we—;
implies we—1 > we + 5> 9. Thus, 4d —2 > (d/2 — 1)9 + 4, a contradiction, since
d=>1.

Now assume deg(W,.—_1) = 6 and that W,_; is contained in a conic D. If D is
reducible, we may assume that no irreducible component J of D satisfied

deg(J N W,_p) > 4.

With these assumptions, Bézout’s theorem implies D C Q. Since h1°(Ip o (2)) = 4,
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the maximality of the integer w,—; gives w.—1 > w, + 3 = 9, which leads again to a
contradiction.

(II.c) Now we may assume 2 < ¢ < d /2.

Assume for the moment w. > 3(d — 2¢ + 2). Since the sequence {w; } is weakly
decreasing, 4d —2 >z > 3c(d —2c 4 2). Since ¢ < d /2, we getc = 1, a contradiction.

Now assume w. < 3(d — 2¢ + 2). By applying Proposition 6.1, we know that either
there is a conic D such that deg(D N W._1) > 2(d —2c¢ +2)+2=2d —4c + 6,
or there is a line L such that deg(L N W,_1) > d —2c + 4.

(ILc1) In the first case, since h°(Ip,o(2)) = 4, we have w; > (2d — 4¢ + 6) + 3
foralli < c¢. Hence, z > c¢(2d — 4c¢ + 9) — 3. Since z < 4d — 2, then we have again
a contradiction.

(IL.c2) Assume now the existence of L. Since h°(I1,0(2)) = 6, we get

w; > (d—-2c+4)+5 foralli <c.

Thus, z > c¢(d —2c¢ 4+ 9) — 5. Itis easy to check that 2 < ¢ < 3; hence, deg(L N Z) >
d—2.

Take a quadric U € |@O¢(2)| containing L and such that deg(Z N U) is maxi-
mal. Since h°(I1,0(2)) = 6, we have deg(L N U) > (d —2) + 5 = d + 3. Thus,
deg(Resy(Z)) <4d —2—d —3 =3(d —2) + 1. By Proposition 6.1, either there is a
plane cubic E such that deg(E N Resy (Z)) > 3(d — 2) or there is a conic F such that
deg(Resy(Z) N F) > 2d — 2 or there is a line R such that deg(Resy(Z) N R) > d.
In all cases (since d > 5), Bézout’s theorem implies that R, F and E are contained in
Q (or at least all the components supporting Z). Since Q is an integral quadric, we
exclude the plane cubic E.

(IL.c2.1) Assume the existence of a conic F. Even if Q is not assumed to be smooth,
F is a plane section of Q and F' U L is a reducible rational normal curve.

Thus, Z £ F U L.

Since I Fur(2) is globally generated, a general Q' € [T Fyr(2)] has

O'NZ=(FUL)YNZ,

and hence Resg/(Z) # @. Since hl(IReSQ,(Z)(d —2)) > 0 and deg(Resp’(Z)) <
4d —2—3d + 4 and d > 7, there is a line R’ such that deg(Resp/(Z) N R') > d.
Since I pururs(t) is globally generated for, say, t = 4, we get Z C F U L U R’. Hence,
we conclude by Lemma 6.4.

(I1.c2.2) Assume finally the existence of the line R. Since each connected component
of Z has degree < 2 and no line contains d — 2 points of S, R # L.

(I.c2.2.1) First assume R N L # @. Thus,

H:=(RUL)
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is a plane. Since deg(Resy (Z)) < 4d —2 —2d + 2 and h' (IRes;; (z)(d — 1)) > 0,
either deg(Resy (Z)) = 2d and Resg (Z) is contained in a conic F; or there is a line
R such that deg(R; N Resg (Z)) > 2. In the first case we get Z C L U R U Fy, and
we conclude by Lemma 6.4.

(IL.c2.2.2) Now assume R N L = @. Take a general Q; € |Trur(2)]. Thus, Q1 N
Z=(RUL)NZ. We get hl(IReSQI(z)(d —2)) > 0 with deg(Resg, (Z)) < 2d.
We get that either there is a conic F, with deg(F> N Resg,(Z)) > 2d —2 or a line
R such that deg(R, N Resp,(Z)) > d. If F, exist, we get Z C RU L U F, and we
use Lemma 6.4. If R, exists, we take a general U; € |Irurur,(3)| and get that Z is
contained in the union of 4 lines. Hence, we conclude again by Lemma 6.4. u

Funping. — This work is partially supported by GNSAGA of INdAM.
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