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On the Cahn–Hilliard equation with kinetic rate
dependent dynamic boundary conditions and non-smooth

potentials: Well-posedness and asymptotic limits

Maoyin Lv and Hao Wu

Abstract. We analyze a class of Cahn–Hilliard equations with kinetic rate dependent dynamic
boundary conditions that describe possible short-range interactions between the binary mixture and
the solid boundary. In the presence of surface diffusion on the boundary, the initial boundary value
problem can be viewed as a transmission problem consisting of Cahn–Hilliard-type equations both
in the bulk and on the boundary. We first establish the existence, uniqueness, and continuous depen-
dence of global weak solutions. In the construction of weak solutions, an explicit convergence rate
in terms of the parameter for the Yosida approximation is obtained. Under some additional assump-
tions, we further prove the existence and uniqueness of global strong solutions. Next, we study the
asymptotic limit as the coefficient of the boundary diffusion goes to zero and show that the limit
problem with a forward-backward dynamic boundary condition is well posed in a suitable weak for-
mulation. At last, we investigate the asymptotic limits as the kinetic rate tends to zero and infinity,
respectively. Our results are valid for a general class of bulk and boundary potentials with double-
well structure, including the physically relevant logarithmic potential and the non-smooth double
obstacle potential.
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1. Introduction

The Cahn–Hilliard equation was proposed in [8] as a phenomenological model to describe
spinodal decomposition in binary alloys. It characterizes the fundamental process of phase
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separation due to certain non-Fickian diffusion driven by the gradient of chemical poten-
tial. The Cahn–Hilliard equation belongs to the so-called diffuse interface models, in
which the free interface between two components of the mixture is represented by a
thin layer with finite thickness. The diffuse interface methodology avoids tracking free
interfaces explicitly as in the classical free boundary problems, and it provides a thermo-
dynamically consistent description for the evolution of complex geometries. In particular,
topological changes in free interfaces can be captured in a natural and efficient way. For
further information, we refer to, e.g., [1, 2, 25] and the references therein. As a represen-
tative of the diffuse interface models, the Cahn–Hilliard equation has become a useful
tool for the study of a wide variety of segregation-like phenomena arising, for instance, in
material science, image inpainting, biology, and fluid mechanics. In recent years, the study
of boundary effects in the phase separation process of binary mixtures has attracted a lot
of attention. To describe short-range interactions of the binary mixture with the solid wall,
several types of dynamic boundary conditions for the Cahn–Hilliard equation have been
proposed and investigated in the literature; see, for instance, [40,53,63] and the references
therein.

1.1. Model description

Let T 2 .0;C1/ be an arbitrary but fixed final time and � � Rd (d 2 ¹2; 3º) a smooth
bounded domain with boundary � WD @�. In this study, we consider the following ini-
tial boundary value problem of the Cahn–Hilliard equation subject to a class of dynamic
boundary conditions [38, 42, 49]:

@t' D ��; in � � .0; T /; (1.1)

� D ��' C F 0.'/; in � � .0; T /; (1.2)´
L@n� D � � � if L 2 Œ0;C1/;

@n� D 0 if L D C1;
on � � .0; T /; (1.3)

@t' D ��� � @n�; on � � .0; T /; (1.4)

� D @n' � ı��' CG
0.'/; on � � .0; T /; (1.5)

'jtD0 D '0; in x�: (1.6)

Here, the phase function ' W x� � .0; T / ! R is related to local concentrations of the
two components of a binary mixture. The total free energy functional associated with the
system (1.1)–(1.5) is given by

E.'/ WD

Z
�

�
1

2
jr'j2 C F.'/

�
dx„ ƒ‚ …

bulk free energy

C

Z
�

�
ı

2
jr�'j

2
CG.'/

�
dS„ ƒ‚ …

surface free energy

: (1.7)

In particular, the surface free energy on the boundary is introduced to describe possible
short-range interactions between the solid wall and components of the mixture [27]. The
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nonlinear potential functions F and G denote free energy densities in the bulk and on the
boundary, respectively. To describe the phase separation process, they usually present a
double-well structure, that is, with two minima and a local unstable maximum in between.
Typical and physically significant examples of such potentials include the logarithmic
potential [8] and the double obstacle potential [5]:

Flog.r/ WD .1C r/ ln.1C r/C .1 � r/ ln.1 � r/ � c1r2; r 2 .�1; 1/; (1.8)

F2obs.r/ WD

´
c2.1 � r

2/ if jr j � 1;

C1 if jr j > 1;
(1.9)

where the constants satisfy c1 > 1 and c2 > 0 so that Flog, F2obs are nonconvex. In practice,
regular double-well potential of polynomial type such as

Freg.r/ WD
1

4
.r2 � 1/2; r 2 R; (1.10)

and its generalizations are widely used (see [53]). In (1.2), � W � � .0; T /! R stands for
the chemical potential in the bulk, while in (1.5), � W � � .0;T /!R stands for the chemi-
cal potential on the boundary. They can be expressed as Fréchet derivatives of the bulk and
surface free energies in (1.7), respectively. The symbol � denotes the Laplace operator in
�, �� denotes the Laplace–Beltrami operator on � , r denotes the gradient operator in
the bulk, and r� denotes the tangential (surface) gradient operator. In the boundary condi-
tions (1.3)–(1.5), the symbol n denotes the outward normal vector on � and @n means the
outward normal derivative on � . The nonlinearities F 0 and G0 in (1.2) and (1.5) simply
denote derivatives of the related potentials. Nevertheless, when non-smooth potentials are
taken into account, F 0 andG0 correspond to the subdifferential of the convex part (may be
multivalued graphs) plus the derivative of the smooth concave contribution. For example,
we have F 02obs.r/D @IŒ�1;1�.r/� 2c2r , where @IŒ�1;1�.r/ is the subdifferential of the indi-
cator function of Œ�1; 1�. In this case, one should replace the equality in (1.2) and (1.5) by
inclusion. The boundary conditions (1.3)–(1.5) allow descriptions of the physically realis-
tic scenario with possible mass transfer between bulk and boundary as well as a dynamic
angle between the free interface (separating components of the binary mixture) and the
solid boundary at the contact line. In this aspect, we refer to [37], where a general ther-
modynamically consistent Navier–Stokes–Cahn–Hilliard system with dynamic boundary
conditions for incompressible two-phase flows with non-matched densities was introduced
and analyzed (see [30] for the existence of global weak solutions in a more general setting
with singular potentials). Besides, we refer to [23] for a related Cahn–Hilliard–Brinkman
model on incompressible creeping two-phase flows through a porous medium.

In our problem (1.1)–(1.6), we maintain two parametersL 2 Œ0;C1� and ı 2 Œ0;C1/
that are important in the subsequent analysis. Other coefficients are set to be one for the
sake of simplicity.

We first explain the role ofL2 Œ0;C1�. The bulk and boundary chemical potentials�,
� are coupled through the boundary condition (1.3), which accounts for possible adsorp-
tion or desorption processes between the materials in the bulk and on the boundary [42].
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The mass flux @n�, which describes the motion of materials towards and away from the
boundary, is driven by the difference in the chemical potentials. In this sense, the coeffi-
cient 1=L can be interpreted as a kinetic rate. The value of L distinguishes different types
of bulk-boundary interactions. The case L D 0 was introduced by Goldstein, Miranville,
and Schimperna [38] (GMS in short) for the phase separation of a binary mixture con-
fined to a bounded domain with porous walls. The GMS model extends the Cahn–Hilliard
equation with Wentzell-type boundary conditions proposed by Gal [29] (see [31, 62] for
related mathematical analysis). Taking L D 0 in (1.3), we obtain the Dirichlet boundary
condition � D � on � � .0; T /, which implies that the chemical potentials � and � are
always in the chemical equilibrium (see [38] for more general situations with a factor that
can be a uniformly bounded positive function). The case LDC1 was introduced by Liu
and Wu [49] (LW in short) based on an energetic variational approach that combines the
least action principle and Onsager’s principle of maximum dissipation. Then, the homoge-
neous Neumann boundary condition for � implies that there is no mass transfer between
the bulk and boundary. In such a situation, the chemical potentials � and � are not directly
coupled. Nevertheless, interactions between the bulk and the surface materials take place
through the phase function '. Indeed, let us introduce a new unknown

 D 'j� ; on � � .0; T /; (1.11)

where 'j� denotes the trace of ' (cf., [53, 55]). Then, we find that the system (1.1)–(1.5)
yields a sort of transmission problem between the dynamics in the bulk � and the one
on the boundary � . Finally, the case L 2 .0;C1/ was recently introduced by Knopf,
Lam, Liu, and Metzger [42] (KLLM in short). The corresponding Robin-type boundary
condition (1.3) describes the situation that the chemical potentials � and � are not in
equilibrium and they are related through the mass flux. Formally speaking, the KLLM
model (with 0 < L < C1) can be regarded as an interpolation between the GMS model
(L D 0, instantaneous mass transfer) and the LW model (L D C1, no mass transfer) via
a finite, positive relaxation parameter L (see [42] for a rigorous verification).

Next, let us comment on the parameter ı 2 Œ0;C1/, which acts as a weight for surface
diffusion effects on the boundary � . When ı > 0, (1.4) together with (1.5) leads to a
Cahn–Hilliard-type dynamic boundary condition. The case ı D 0 is closely related to the
evolution of a free interface in contact with the solid boundary, that is, the moving contact
line problem [11,57]. From the mathematical point of view, without surface diffusion, the
boundary conditions (1.4)–(1.5) (formally) reduce to

@t' �G
00.'/��' D G

.3/.'/jr�'j
2
C��.@n'/ � @n�; on � � .0; T /: (1.12)

In the regime that the potential G is non-convex, in particular, G00.'/ � 0, we obtain
a backward heat equation on � , whose well-posedness is usually a delicate issue. As
pointed out in [18, 19], (1.12) yields a forward-backward dynamic boundary condition,
complemented with a Cahn–Hilliard equation (1.1)–(1.2) in the bulk.

The values of L and ı also lead to differences in some basic properties for the ther-
modynamically consistent problem (1.1)–(1.6), such as mass conservation and energy
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dissipation (see [38, 42, 49, 63]). For a sufficiently regular solution, we have the energy
dissipation law

d
dt
E.'.t//C

Z
�

jr�.t/j2 dx C
Z
�

jr��.t/j
2 dS C �.L/

Z
�

j�.t/ � �.t/j2 dS D 0

for all t 2 .0; T /, where �.L/ D 1=L if L 2 .0;C1/ and �.L/ D 0 if L D 0 or C1.
This implies that, for all L 2 Œ0;C1�, the total free energy E.'/ is decreasing as time
evolves. Nevertheless, the form of the free energy E depends on ı (recall (1.7)) and the
energy dissipation varies according to L. On the other hand, we obtain the conservation
of total mass for L 2 Œ0;C1/,Z

�

'.t/ dx C
Z
�

'.t/ dS D
Z
�

'0 dx C
Z
�

'0 dS 8t 2 Œ0; T �;

while for L D C1, mass conservation laws hold in the bulk and on the boundary sepa-
rately: Z

�

'.t/ dx D
Z
�

'0 dx;
Z
�

'.t/ dS D
Z
�

'0 dS 8t 2 Œ0; T �:

1.2. A brief overview of related literature

The Cahn–Hilliard equation with different types of dynamic boundary conditions has been
extensively studied from various viewpoints [53, 63]. For the case with a dynamic bound-
ary condition of Allen–Cahn type, that is, @t' � ı��'CG0.'/C @n' D 0 on � � .0;T /,
we quote [11, 13, 17, 21, 34, 35, 56, 58, 64] among the vast literature. We note that the
dynamic boundary condition of Allen–Cahn type corresponds to an L2-relaxation of the
surface energy (see [57]), while in our problem (1.1)–(1.6), the dynamic boundary condi-
tion of Cahn–Hilliard type accounts for the mass transport on � with a .H 1/0-relaxation
dynamics.

For mathematical analysis of the GMS model (L D 0), we refer to [12, 14, 16, 18,
22, 28, 38] and the references therein. In [38], existence, uniqueness, regularity, and long-
time behavior of global weak solutions were established under general assumptions on
the nonlinearities, with G being regular. On the other hand, well-posedness of the GMS
model with non-smooth bulk and boundary potentials was proved in [16], where the
boundary potential was assumed to dominate the bulk one. See also [28] for the strict
separation property and long-time behavior, and [22] when convection effects were taken
into account. In [18], the asymptotic analysis as ı ! 0, i.e., the surface diffusion term
on the dynamic boundary condition tends to 0, was carried out in a very general setting
with nonlinear terms admitting maximal monotone graphs both in the bulk and on the
boundary.

Concerning the LW model (L D C1), well-posedness and long-time behavior were
first established in [49] when F and G are suitable regular potentials. By introducing
a slightly weaker notion of the solution, the authors of [32] proved existence of global
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weak solutions via a gradient flow approach, removing the additional geometric assump-
tion imposed in [49] for the case ı D 0. Well-posedness for the LW model with general
non-smooth potentials has been obtained in [20]. In [19], the asymptotic analysis as ı! 0

was investigated with non-smooth potentials in the bulk and on the boundary. A recent
work [51] established the strict separation property and showed that every global weak
solution will converge to a single equilibrium. We also mention [54] for the existence of
global attractors and [52] for the numerical analysis.

For the KLLM model .0 < L < C1/, weak and strong well-posedness results were
established in [42] with suitable regular potentials F and G. Under a similar setting,
long-time behaviors, such as existence of a global attractor/exponential attractors and con-
vergence to a single equilibrium, were obtained in [33]. Asymptotic limits as L! 0 and
L!C1 were rigorously verified in [42] with regular potentials; see also [33] for further
properties in the limit L! 0. A nonlocal variant of the KLLM model (including a non-
local dynamic boundary condition) was proposed and investigated in [44]. Besides, for
simulations and numerical analysis, we refer to [3, 42]. In the recent contribution [46],
a class of more general bulk-surface convective Cahn–Hilliard systems with dynamic
boundary conditions and regular potentials F , G were investigated. Therein, the trace
relation (1.11) for the phase function is further relaxed as follows (cf., (1.3) for the chem-
ical potentials): ´

J@n' D  � 'j� if J 2 Œ0;C1/;

@n' D 0 if J D C1;
on � � .0; T /:

The Robin approximation with J 2 .0;C1/ describes a scenario, where the boundary
phase variable and the trace of the bulk phase variable are not proportional (see [41] for a
similar consideration for the LW model). Existence of weak solutions for J;L 2 .0;C1/
was proved [46] by means of a Faedo–Galerkin approach. For other cases, existence
results were obtained by studying the asymptotic limits as sending J; L to 0 and C1,
respectively. It is worth mentioning that all the related results mentioned above for the
KLLM model were achieved for regular potentials F , G, singular potentials, such as the
logarithmic potential (1.8) and the double-obstacle potential (1.9), are unfortunately not
admissible. The only known result on the existence of weak solutions to the KLLM model
with singular potentials including (1.8) can be obtained as a consequence of [30] on
a generalized Navier–Stokes–Cahn–Hilliard system with dynamic boundary conditions.
However, uniqueness and regularity properties were not available therein due to the pres-
ence of fluid interaction.

1.3. Goal of the paper

In this paper, we aim to study well-posedness and asymptotic limits as ı ! 0, L! 0,
or L ! C1 of the initial boundary value problem (1.1)–(1.6) with a wide class of
bulk/boundary potentials F , G that have a double-well structure, in particular, including
the non-smooth logarithmic potential (1.8) and the double-obstacle potential (1.9).
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(1) Well-posedness of the KLLM model (0 <L<C1) with surface diffusion (ı > 0).
We prove the existence of global weak solutions (see Theorem 2.7) and their continu-
ous dependence on the data that yields the uniqueness (see Theorem 2.9). Thanks to the
solvability of a second-order elliptic problem with bulk-surface coupling [43], we are
allowed to apply the approach in [16] for the GMS model to conclude the existence result.
To this end, we consider a regularized problem by adding viscous terms in the Cahn–
Hilliard equation as well as the dynamic boundary condition and substituting the maximal
monotone graphs with their Yosida regularizations. The resulting regularized problem can
be solved by the abstract theory of doubly nonlinear evolution inclusions (see Proposi-
tion 3.1). After that, we derive suitable estimates for the approximating solutions, which
are uniform with respect to the parameter " for the Yosida regularization. Passing to the
limit as "! 0, we can construct a global weak solution by the compactness argument.
The continuous dependence estimate can be proved by the energy method. Moreover, we
establish an O."1=2/-estimate for the convergence of approximating phase functions in
L1.0; T I .H1/0/ \ L2.0; T IV1/ (see Proposition 3.7), which seems to be the first result
of this kind for problem (1.1)–(1.6). Finally, after deriving some higher-order (in time)
uniform estimates for the approximating solutions, we obtain the existence of a unique
global strong solution (see Theorem 2.11). Our contribution extends previous works on
well-posedness of the KLLM model with regular potentials [42, 46].

(2) Asymptotic limit as ı ! 0 for the KLLM model with fixed L 2 .0;C1/. We
show that weak solutions to problem (1.1)–(1.6) obtained in Theorems 2.7, 2.9 converge
as ı! 0 (in the sense of a subsequence) and thus prove the existence of weak solutions to
the limit problem in which the boundary condition (1.5) is replaced by the one with ı D 0
(see Theorem 2.15). Besides, we establish a continuous dependence result for the phase
function with respect to the data (see Theorem 2.17). This implies that the coupling of a
forward-backward-type boundary condition with the Cahn–Hilliard equation in the bulk
can be well posed in a suitable sense. Analogous conclusions have been obtained for the
GMS model and the LW model with general bulk/boundary potentials, respectively, in [18]
and [19]. Hence, our results fill the gap left by [18, 19]. Like in [18, 19], the solution of
the limit problem with vanishing surface diffusion loses some spatial regularity, so several
terms on the boundary including @n' should be understood in a weaker sense.

(3) Asymptotic limit as L ! 0 or L ! C1 for the KLLM model with fixed ı 2
.0;C1/. In presence of the surface diffusion in the KLLM model, we rigorously jus-
tify the limit case of instantaneous reaction as L ! 0 (see Theorem 2.20), where the
chemical potentials are in equilibrium, and a vanishing reaction rate as L! C1 (see
Theorem 2.23), where the chemical potentials are not directly coupled. Comparing with
the previous results in [42] that are only valid for suitable regular potentials, the main
novelty in our analysis is the treatment of non-smooth bulk and boundary potentials that
include the logarithmic potential (1.8) and the double obstacle potential (1.9). In order to
derive uniform estimates with respect to the parameter L, different approaches have to be
applied in the regime of vanishing (or large) kinetic rate. We remark that the asymptotic
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limit with respect to L turns out to be more involved in the case of vanishing surface
diffusion and general potentials. This issue will be studied in a future work.

Plan of the paper. The remaining part of this paper is organized as follows. In Section 2,
we introduce our notation and assumptions and then state the main results. In Section 3,
we consider the KLLM model with surface diffusion, proving the existence of global
weak solutions, the continuous dependence, and the existence of global strong solutions.
Besides, we obtain a convergence rate for the approximating phase functions. In Section 4,
we investigate the asymptotic limit as ı ! 0, which yields the existence of global weak
solutions to the limit problem with vanishing surface diffusion. A continuous dependence
estimate is also derived. In Section 5, we study the asymptotic limits with respect to the
kinetic rate as L! 0, L! C1, in presence of the surface diffusion. In the Appendix,
we list some useful tools that are frequently used in this paper.

2. Main results

In this section, we first recall some notation for the functional settings; then, we describe
our problem and state the main results.

2.1. Preliminaries

For any real Banach space X , we denote its norm by k � kX , its dual space by X 0, and
the duality pairing between X 0 and X by h�; �iX 0;X . If X is a Hilbert space, its inner
product will be denoted by .�; �/X . The space Lq.0; T IX/ (1 � q � C1) denotes the
set of all strongly measurable q-integrable functions with values in X , or, if q D C1,
essentially bounded functions. The space C.Œ0; T �IX/ denotes the Banach space of all
bounded and continuous functions u W Œ0; T � ! X equipped with the supremum norm,
while Cw.Œ0; T �IX/ denotes the topological vector space of all bounded and weakly con-
tinuous functions.

Let� be a bounded domain in Rd (d 2 ¹2;3º) with sufficiently smooth boundary � WD
@� (at least Lipschitz). The associated outward unit normal vector field on � is denoted by
n. We use j�j and j�j to denote the Lebesgue measure of� and the Hausdorff measure of
� , respectively. For any 1 � q � C1, k 2 N, the standard Lebesgue and Sobolev spaces
on � are denoted by Lq.�/ and W k;q.�/. Here, we use N for the set of natural numbers
including zero. For s � 0 and q 2 Œ1;C1/, we denote by H s;q.�/ the Bessel-potential
spaces and byW s;q.�/ the Slobodeckij spaces. If q D 2, it holdsH s;2.�/DW s;2.�/ for
all s and these spaces are Hilbert spaces. We will use the notation H s.�/ D H s;2.�/ D

W s;2.�/ andH 0.�/ can be identified withL2.�/. The Lebesgue spaces, Sobolev spaces,
and Slobodeckij spaces on the boundary � can be defined analogously, provided that � is
sufficiently regular. We write

H s.�/ D H s;2.�/ D W s;2.�/
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and identify H 0.�/ with L2.�/. Hereafter, the following shortcuts will be applied:

H WD L2.�/; H� WD L
2.�/; V WD H 1.�/; V� WD H

1.�/:

For every y 2 .H 1.�//0, we denote by hyi� D j�j�1hy; 1i.H1.�//0;H1.�/ its generalized
mean value over �. If y 2 L1.�/, then its spatial mean is given by

hyi� D j�j
�1

Z
�

y dx:

The spatial mean for a function y� on � , denoted by hy�i� , can be defined in a similar
manner. Then, we introduce the spaces for functions with zero mean:

V0 WD
®
y 2 V W hyi� D 0

¯
; V �0 WD

®
y� 2 V 0 W hy�i� D 0

¯
;

V�;0 WD
®
y� 2 V� W hy�i� D 0

¯
; V ��;0 WD

®
y�� 2 V

0
� W hy

�
�i� D 0

¯
:

The following Poincaré–Wirtinger inequalities in � and on � hold (see, e.g., [26, Theo-
rem 2.12] for the case on �):

ku � hui�kH � C�krukH 8u 2 V; (2.1)

ku� � hu�i�kH� � C�kr�u�kH� 8u� 2 V� ; (2.2)

where C� (resp., C� ) is a positive constant depending only on� (resp., �). For basic facts
of calculus on surfaces, see, e.g., [26, Section 2].

Consider the Neumann problem´
��u D y; in �;

@nu D 0; on �:
(2.3)

Owing to the Lax–Milgram theorem, for every y 2 V �0 , problem (2.3) admits a unique
weak solution u 2 V0 satisfyingZ

�

ru � r� dx D hy; �iV 0;V 8� 2 V:

Thus, we can define the solution operator N� WV
�
0 !V0 such that uDN�y. Analogously,

let us consider the surface Poisson equation

���u� D y� ; on �; (2.4)

where �� D div� r� denotes the Laplace–Beltrami operator on � . For every y� 2 V ��;0,
problem (2.4) admits a unique weak solution u� 2 V�;0 satisfyingZ

�

r�u� � r��� dS D hy� ; ��iV 0� ;V� 8�� 2 V� :
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Then, we can define the solution operator N� W V
�
�;0 ! V�;0 such that u� D N�y� . By

virtue of these definitions, we can introduce the following equivalent norms:

kykV �0 WD

�Z
�

jrN�yj
2 dx

�1=2
8y 2 V �0 ;

kykV 0 WD
�
ky � hyi�k

2
V �0
C jhyi�j

2
�1=2

8y 2 V 0;

ky�kV ��;0 WD

�Z
�

jr�N�y� j
2 dS

�1=2
8y� 2 V

�
�;0;

ky�kV 0� WD
�
ky� � hy�i�k

2
V ��;0
C jhy�i� j

2
�1=2

8y� 2 V
0
� :

Next, we introduce the product spaces

Lq
WD Lq.�/ � Lq.�/ and Wk;q

WD W k;q.�/ �W k;q.�/

for q 2 Œ1;C1� and k 2 N. In particular, we use the notation

Hk
WD H k.�/ �H k.�/ D Wk;2:

Like before, we can identify H0 with L2. For any k 2 N, Hk is a Hilbert space endowed
with the standard inner product

..y; y�/; .z; z�//Hk WD .y; z/Hk.�/ C .y� ; z�/Hk.�/ 8.y; y�/; .z; z�/ 2 Hk

and the induced norm k � kHk WD .�; �/
1=2

Hk . We introduce the duality pairing

h.y; y�/; .�; ��/i.H1/0;H1D.y; �/L2.�/C.y� ; ��/L2.�/ 8.y; y�/2L2; .�; ��/2H1:

By the Riesz representation theorem, this product can be extended to a duality pairing on
.H1/0 �H1.

For any k 2 ZC, we introduce the Hilbert space

Vk
WD
®
.y; y�/ 2 Hk

W yj� D y� a.e. on �
¯
;

endowed with the inner product .�; �/Vk WD .�; �/Hk and the associated norm k � kVk WD

k � kHk . Here, yj� stands for the trace of y 2 H k.�/ on the boundary � , which makes
sense for k 2 ZC. The duality pairing on .V1/0 � V1 can be defined in a similar manner.
For convenience, we also use the notation

zVk
WD
®
.y; y�/ 2 H

k.�/ �H k�1=2.�/ W yj� D y� a.e. on �
¯
; k 2 ZC:

Thanks to the trace theorem, for every y 2 H k.�/, k 2 ZC, it holds .y; yj�/ 2 zVk .
For any given m 2 R, we set

L2
.m/ WD

®
.y; y�/ 2 L2

W j�jhyi� C j�jhy�i� D m
¯
:
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The closed linear subspaces

Hk
.0/ D Hk

\L2
.0/; Vk

.0/ D Vk
\L2

.0/; k 2 ZC;

are Hilbert spaces endowed with the inner products .�; �/Hk and the associated norms
k � kHk , respectively. For L 2 Œ0;C1/ and k 2 ZC, we introduce the notation

Hk
L WD

´
Hk if L 2 .0;C1/;

Vk if L D 0;
Hk
L;0 WD

´
Hk
.0/

if L 2 .0;C1/;

Vk
.0/

if L D 0:

Consider the bilinear form

aL..y; y�/; .z; z�//

WD

Z
�

ry � rz dx C
Z
�

r�y� � r�z� dS C �.L/
Z
�

.y � y�/.z � z�/ dS

for all .y; y�/; .z; z�/ 2 H1, where

�.L/ D

´
1=L if L 2 .0;C1/;

0 if L D 0:

For any .y; y�/ 2 H1
L;0, L 2 Œ0;C1/, we define

k.y; y�/kH1
L;0
WD ..y; y�/; .y; y�//

1=2

H1
L;0

D ŒaL..y; y�/; .y; y�//�
1=2: (2.5)

We note that, for .y; y�/ 2 V1
.0/
� H1

L;0, k.y; y�/kH1
L;0

does not depend on L, since the
third term in aL simply vanishes. The following Poincaré type inequality has been proved
in [43, Lemma A.1].

Lemma 2.1. There exists a constant cP > 0 depending only on L 2 Œ0;C1/ and� such
that

k.y; y�/kL2 � cP k.y; y�/kH1
L;0
8.y; y�/ 2 H1

L;0: (2.6)

Hence, for everyL 2 Œ0;C1/, H1
L;0 is a Hilbert space with the inner product .�; �/H1

L;0
.

The induced norm k � kH1
L;0

prescribed in (2.5) is equivalent to the standard one k � kH1 on

H1
L;0. Besides, for any fixed ı > 0, we define the bilinear form

bı..y; y�/; .z; z�// WD

Z
�

ry � rz dx C ı
Z
�

r�y� � r�z� dS 8.y; y�/; .z; z�/ 2H1:

It is easy to check that

k.y; y�/kV1
.0/
WD Œbı..y; y�/; .y; y�//�

1=2
8.y; y�/ 2 V1

.0/ (2.7)

yields a norm equivalent to k � kH1 on V1
.0/

.
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For L 2 Œ0;C1/, let us consider the following elliptic boundary value problem:8̂̂<̂
:̂
��u D y in �;

���u� C @nu D y� on �;

L@nu D u� � uj� on �:

(2.8)

Define the space

H�1.0/ WD
®
.y; y�/ 2 .H

1/0 W j�jhyi� C j�jhy�i� D 0
¯
:

The chain of inclusions holds

H1
L;0 � H1

.0/ � L2
.0/ � H�1.0/ � .H

1/0 � .H1
L/
0
� .H1

L;0/
0:

It has been shown in [43, Theorem 3.3] that, for every .y; y�/ 2 H�1
.0/

, problem (2.8)
admits a unique weak solution .u; u�/ 2 H1

L;0 satisfying the weak formulation

aL..u; u�/; .�; ��// D h.y; y�/; .�; ��/i.H1
L/
0;H1

L
8.�; ��/ 2 H1

L

and the estimate
k.u; u�/kH1 � Ck.y; y�/k.H1

L/
0 (2.9)

for some constant C > 0 depending only on L and �. Furthermore, if the domain � is of
class C kC2 and .y; y�/ 2 Hk

L;0, k 2 N, the following regularity estimate holds:

k.u; u�/kHkC2 � Ck.y; y�/kHk : (2.10)

The above facts enable us to define the solution operator

SL
W H�1.0/ ! H1

L;0; .y; y�/ 7! .u; u�/ D SL.y; y�/ D
�
SL
�.y; y�/;S

L
� .y; y�/

�
:

We mention that similar results for the special caseLD 0 have also been presented in [16].
A direct calculation yields that

..u; u�/; .z; z�//L2 D ..u; u�/;S
L.z; z�//H1

L;0
8.u; u�/ 2 H1

.0/; .z; z�/ 2 L2
.0/:

Thanks to [43, Corollary 3.5], we can introduce the inner product on H�1
.0/

as

..y; y�/; .z; z�//0;� WD .S
L.y; y�/;S

L.z; z�//H1
L;0
8.y; y�/; .z; z�/ 2 H�1.0/ :

The associated norm k.y; y�/k0;� WD ..y; y�/; .y; y�//
1=2
0;� is equivalent to the standard

dual norm k � k.H1
L/
0 on H�1

.0/
. For any .y; y�/ 2 .H1/0, we define the generalized mean

Nm.y; y�/ WD
j�jhyi� C j�jhy�i�

j�j C j�j
: (2.11)
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Then, it follows that

k.y; y�/k� WD
�
k.y; y�/ � Nm.y; y�/1k20;� C j Nm.y; y�/j

2
�1=2

8.y; y�/ 2 .H
1/0

is equivalent to the usual dual norm k � k.H1
L/
0 on .H1/0.

Define the closed linear subspaces zVk
.0/
WD zVk \ L2

.0/
. The following Poincaré-type

inequality has been proved in [18, Lemma A.1].

Lemma 2.2. There exists a constant QcP > 0 depending only on � such that

kykH � QcP krykH 8.y; y�/ 2 zV
1
.0/: (2.12)

Moreover, we have the following interpolation inequality (see [42, Lemma 2.3]).

Lemma 2.3. For any  > 0, there exists a constant C depending only on L 2 Œ0;C1/,
 , and � such that

kykH C ky�kH� � krykH C Ck.y; y�/k0;� 8.y; y�/ 2
zV1
.0/: (2.13)

Throughout the paper, the symbol C stands for generic positive constants that may
depend on�, the final time T , and the coefficients and the norms of functions involved in
the assumptions of either our statements or our approximation. Specific dependence will
be pointed out if necessary. Besides, we use different symbols to denote precise constants
that we would refer to.

2.2. Problem setting

In what follows, we assume that � � Rd (d 2 ¹2; 3º) is a bounded domain of class C 2,
T 2 .0;C1/ is an arbitrary but fixed final time, and we set

Q WD � � .0; T /; † WD � � .0; T /:

For L 2 Œ0;C1�, ı 2 Œ0;C1/, using (1.11), we can rewrite our target problem (1.1)–
(1.6) as follows:

@t' D �� in Q; (2.14)

� D ��' C � C �.'/ � f; � 2 ˇ.'/ in Q; (2.15)

@t D ��� � @n� on †; (2.16)

� D @n' � ı�� C �� C ��. / � f� ; �� 2 ˇ�. / on †; (2.17)

' D  on †; (2.18)´
L@n� D � � � if L 2 Œ0;C1/;

@n� D 0 if L D C1;
on †; (2.19)

'jtD0 D '0 in �; (2.20)

 jtD0 D  0 on �; (2.21)
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where f WQ!R, f� W†!R, '0 W�!R, 0 W �!R are given data. For convenience,
we denote (2.14)–(2.21) by problem .SL;ı/.

Hereafter, we consider the nonlinear bulk and boundary potentials F and G that can
be decomposed as

F D y̌C y�; G D y̌� C y�� :

Besides, we make the following assumptions:

(A1) y̌; y̌� W R ! Œ0;C1� are lower semicontinuous and convex functions with
y̌.0/ D y̌�.0/ D 0. Their subdifferentials

ˇ WD @ y̌; ˇ� WD @ y̌�

are maximal monotone graphs in R � R, with effective domains D.ˇ/ and
D.ˇ�/, respectively. Since 0 is a minimum point of both y̌, y̌� , it follows that
0 2 ˇ.0/ and 0 2 ˇ�.0/.

(A2) D.ˇ�/ � D.ˇ/ and there exist positive constants %, c0 > 0 such that

jˇı.r/j � %jˇı�.r/j C c0 8r 2 D.ˇ�/; (2.22)

where ˇı denotes the minimal section of the graph ˇ, i.e., ˇı.r/ WD ¹r� 2 ˇ.r/ W
jr�j D infs2ˇ.r/ jsjº and the same definition applies to ˇı� .

(A3) y�; y�� 2 C 1.R/ and their derivatives � WD y� 0, �� WD y� 0� are globally Lipschitz
continuous with Lipschitz constants denoted by K and K� , respectively.

(A4) .f; f�/ 2 L2.0; T IV1/.

(A5) .'0;  0/ 2 V1 satisfying y̌.'0/ 2 L1.�/, y̌�. 0/ 2 L1.�/ as well as

h'0i�; h 0i� 2 IntD.ˇ�/:

In order to obtain some further regularity properties of the weak solution, that is, (2.29),
we need the following additional assumption on the singular potentials F and G.

(A1)0 The nonlinear convex functions satisfy y̌, y̌� 2 C.Œ�1; 1�/\ C 2.�1; 1/. Their
derivatives ˇ D y̌0, ˇ� D y̌0� satisfy ˇ, ˇ� 2 C 1.�1; 1/ and are monotone
increasing functions such that

lim
r!�1

ˇ.r/ D �1; lim
r!1

ˇ.r/ D C1;

lim
r!�1

ˇ�.r/ D �1; lim
r!1

ˇ�.r/ D C1:

We also extend y̌.r/ D y̌�.r/ D C1 for any r … Œ�1; 1�. Without loss of
generality, we assume y̌.0/ D y̌�.0/ D ˇ.0/ D ˇ�.0/ D 0. This also entails
that y̌.r/, y̌�.r/ � 0 for all r 2 Œ�1; 1�.

Remark 2.4. All the typical examples of potentials given in (1.8)–(1.10) fulfill the as-
sumptions (A1)–(A3), provided that the boundary potential dominates the one in the bulk
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as demanded in (2.22). The condition (2.22) follows the setting in [9, 15, 16, 20, 21, 49,
59]. An alternative choice is that the bulk potential dominates the boundary one (see,
e.g., [34, 35]). These compatibility conditions are useful when we deal with the bulk-
surface interaction and derive necessary a priori estimates. Here, we take the classical
choice of a dominating boundary potential in order to avoid further technicalities. From
(A2) and (A5), we find Nm.'0;  0/ 2 IntD.ˇ�/. Besides, we note that, for non-smooth
potentials (1.8) and (1.9), only the logarithmic potential (1.8) satisfies .A1/0, but the dou-
ble obstacle potential (1.9) does not.

For convenience, below we will use the bold notation

'D .'; /; �D .�;�/; �D .�;��/; �D .�;��/; f D .f;f�/; '0D .'0; 0/;

and also for generic elements y D .y; y�/ in the product spaces L2, H1, .H1/0, etc.
Owing to the solvability of the elliptic problem (2.8) for L 2 .0;C1/, inspired by [15,
16, 47], we can formally write our problem .SL;ı/ into a suitable abstract formulation. To
this end, we define the projection operator

P W L2
! L2

.0/; .y; y�/ 7! .y � Nm.y; y�/; y� � Nm.y; y�//;

where Nm is the generalized mean given by (2.11). Then, for any functions z 2 L2 and
y 2 L2

.0/
, it holds

.Pz;y/L2 D

Z
�

.z � Nm.z//y dx C
Z
�

.z� � Nm.z//y� dS D .z;y/L2 : (2.23)

Concerning the equations (2.14), (2.16), (2.19), using (2.8), we can (formally) write

P� D SL.�@t'/ in H1
.0/:

On the other hand, consider the lower semicontinuous and convex functionalˆı WL2
.0/
!

Œ0;C1� given by

ˆı.z/ WD

8̂<̂
:
1

2

Z
�

jrzj2 dx C
ı

2

Z
�

jr�z� j
2 dS if z 2 V1

.0/;

C1 otherwise:

For any z2V1
.0/

, we have 2ˆı.z/D bı.z;z/. Thanks to [16, Lemma C], the subdifferential
@ˆı on L2

.0/
fulfills

@ˆı.z/ D .��z; @nz � ı��z�/ 8z 2 D.@ˆı/ D H2
\ V1

.0/: (2.24)

Set

! D .!; !�/ WD ' � Nm01 with Nm0 D Nm.'0/ D
j�jh'0i� C j�jh 0i�

j�j C j�j
:
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Then, our target problem .SL;ı/ with L; ı 2 .0;C1/ is equivalent to the Cauchy problem
for a suitable evolution equation:8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

SL.!0.t//C P�.t/ D 0 in H1
.0/

for a.a. t 2 .0; T /;

�.t/ D @ˆı.!.t//C �.t/

C�.!.t/C Nm01/ � f .t/ in L2 for a.a. t 2 .0; T /;

�.t/ 2 ˇ.!.t/C Nm01/ in L2 for a.a. t 2 .0; T /;

!jtD0 D !0 D .!0; !�0/ in L2
.0/
;

(2.25)

where ˇ.z/ WD .ˇ.z/; ˇ�.z�// and !0 WD '0 � Nm01.

2.3. Statement of results

In this subsection, we summarize the main results of this paper.

2.3.1. Well-posedness for L; ı 2 .0;C1/. Let us start with the case L; ı 2 .0;C1/.
First, we give the definition of weak solutions.

Definition 2.5. Let L; ı 2 .0;C1/ be fixed parameters. Suppose that the assumptions
(A1)–(A5) are satisfied. The triplet .';�; �/ is called a weak solution to problem .SL;ı/

on Œ0; T �, if the following conditions are fulfilled.

(1) The functions ';�; � have the regularity properties

! D ' � Nm01 2 H
1
�
0; T IH�1.0/

�
\ L1

�
0; T IV1

.0/

�
\ L2.0; T IV2/;

� 2 L2.0; T IH1/; � 2 L2.0; T IL2/:

(2) The variational formulation

h@t'.t/;yi.H1/0;H1 C aL.�.t/;y/ D 0 8y 2 H1 (2.26)

holds for almost all t 2 .0; T / and we have

� D ��' C � C �.'/ � f a.e. in Q; (2.27)

� D @n' � ı�� C �� C ��. / � f� a.e. on †; (2.28)

with
� 2 ˇ.'/ a.e. in Q; �� 2 ˇ�. / a.e. on †:

(3) The initial conditions are satisfied:

'jtD0 D '0 a.e. in �;  jtD0 D  0 a.e. on �:

Remark 2.6. The regularity of ' implies that ' 2 Cw.Œ0; T �IV1/ \ C.Œ0; T �IL2/. The
variational equality (2.26) provides a representation of the time derivative @t' as an ele-
ment of the dual space L2.0; T I .H1/0/.
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Theorem 2.7 (Existence of weak solution for L; ı 2 .0;C1/). Suppose that the assump-
tions (A1)–(A5) are satisfied. For any given L; ı 2 .0;C1/, problem .SL;ı/ admits a
weak solution .';�; �/ on Œ0; T � in the sense of Definition 2.5. Moreover, if the assump-
tion (A1)0 is fulfilled, we have the following additional regularity,

' 2 L2.0; T IW2;p/; .ˇ.'/; ˇ�. // 2 L
2.0; T ILp/; (2.29)

where p 2 Œ1; 6� if d D 3 and p 2 Œ1;C1/ if d D 2.

Remark 2.8. When .f; f�/ � .0; 0/, we can conclude the energy equality

E.'.t/;  .t//C

Z t

0

Z
�

jr�.s/j2 dx ds C
Z t

0

Z
�

jr��.s/j
2 dS ds

C �.L/

Z t

0

Z
�

j�.s/ � �.s/j2 dS ds D E.'0;  0/ 8t 2 Œ0; T �;

where E.';  / is given by (1.7) (recalling that  D 'j� ). The energy equality presents
the dissipative nature of the bulk-surface coupled system (2.14)–(2.21). Besides, the map-
ping t 7! E.'.t// is absolutely continuous for all t 2 Œ0; T �. This fact allows us to further
conclude ' 2 C.Œ0; T �IV1/. For the derivation of the energy equality, we refer to [50,
Proposition 3.2] for the case that F , G satisfy (A1)0. For the general case under the
assumption (A1), including double obstacle potentials, the proof can be carried out in
the same way.

Uniqueness of the phase function ' associated with problem .SL;ı/ is guaranteed by
the following continuous dependence estimate.

Theorem 2.9 (Continuous dependence forL;ı 2 .0;C1/). Suppose that the assumptions
(A1)–(A5) are satisfied. Let .'i ;�i ; �i /, i 2 ¹1; 2º, be two weak solutions to problem
.SL;ı/ corresponding to the data .'0;i ;fi / obtained in Theorem 2.7, with

Nm.'0;1/ D Nm.'0;2/ D Nm0:

Then, there exists a constant C > 0, depending only on K, K� , �, and T , such that

k'1.t/ � '2.t/k
2
0;� C

Z t

0

k'1.s/ � '2.s/k
2
V1
.0/

ds

� C

�
k'0;1 � '0;2k

2
0;� C

Z t

0

kf1.s/ � f2.s/k
2
.V1/0

ds
�
8t 2 Œ0; T �: (2.30)

In order to prove the existence of strong solutions, some additional regularity assump-
tions on '0 and f are needed:

(A6) f WD .f; f�/ 2 H 1.0; T IL2/.

(A7) '0 2 V2 and the family®
@ˆı.'0 � Nm01/C ˇ".'0/C �.'0/ � f .0/ W " 2 .0; "0�

¯
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is bounded in H1 for some "0 2 .0; 1/. Here, ˇ" D .ˇ"; ˇ�;"/ denotes the Yosida
regularization for maximal monotone operators ˇ D .ˇ; ˇ�/; see (3.1)–(3.2) in
Section 3.

Definition 2.10. Let L; ı 2 .0;C1/ be fixed parameters. Suppose that the assumptions
(A1)–(A7) are satisfied. The triplet .';�; �/ is called a strong solution to problem .SL;ı/

on Œ0; T �, if the following additional regularity properties

' 2 W 1;1.0; T I .H1/0/ \H 1.0; T IV1/ \ L1.0; T IH2/;

� 2 L1.0; T IH1/ \ L2.0; T IH2/;

� 2 L1.0; T IL2/

are satisfied, and it holds

@t' D ��; a.e. in Q;

� D ��uC � C �.'/ � f; � 2 ˇ.'/; a.e. in Q;

' D  ; L@n� D � � �; a.e. on †;

@t D ��� � @n�; a.e. on †;

� D @n' � ı�� C �� C ��. / � f� ; �� 2 ˇ�. /; a.e. on †;

'jtD0 D '0; a.e. in �;

 jtD0 D  0; a.e. on �:

Theorem 2.11 (Existence and uniqueness of strong solution forL;ı 2 .0;C1/). Suppose
that the assumptions (A1)–(A7) are satisfied. For any given L; ı 2 .0;C1/, problem
.SL;ı/ admits a unique strong solution on Œ0; T � in the sense of Definition 2.10.

Remark 2.12. With minor modifications in the proof (cf., [16,18]), we can still obtain the
conclusions of Theorems 2.7, 2.9, and 2.11, if (A4) is replaced by the following alternative
assumption:

(A4)0 f D .f; f�/ 2 W 1;1.0; T IL2/.

Note that (A6) implies (A4)0.

2.3.2. Asymptotic limit:L 2 .0;C1/ fixed, ı! 0. In the case ofL 2 .0;C1/ and ıD
0 (i.e., without surface diffusion), well-posedness of problem .SL;0/ can be established via
the asymptotic limit of problem .SL;ı/ as ı! 0. To this end, we first introduce the notion
of weak solutions to problem .SL;0/.

Definition 2.13. Let L 2 .0;C1/ be a fixed parameter, ı D 0. Suppose that the assump-
tions (A1)–(A4) are satisfied. Besides, we assume that

(A5)0 .'0;  0/ 2 zV1 satisfying y̌.'0/ 2 L1.�/, y̌�. 0/ 2 L1.�/ as well as

h'0i�; h 0i� 2 IntD.ˇ�/:
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The triplet .';�;�/ is called a weak solution to problem .SL;0/ on Œ0; T �, if the following
conditions are fulfilled.

(1) The functions ';�; � have the regularity properties

! D ' � Nm01 2 H
1
�
0; T IH�1.0/

�
\ L1

�
0; T I zV1

.0/

�
\ Cw.Œ0; T �I zV

1/;

�' 2 L2.0; T IH/; � 2 L2.0; T IH1/;

� 2 L2.0; T IH � .H 1=2.�//0/

such that 'jtD0 D '0 in zV1 (by weak continuity).
(2) The variational formulations

h@t'.t/;yi.H1/0;H1 C aL.�.t/;y/ D 0 8y 2 H1 (2.31)

and

.�.t/; z/L2 D

Z
�

r'.t/ � rz dx C .�.t/; z/H C h��.t/; z�i.H1=2.�//0;H1=2.�/

C .�.'.t// � f .t/; z/L2 8z 2 zV1 (2.32)

are satisfied almost everywhere in .0; T /, and

� 2 ˇ.'/; a.e. in Q; (2.33)Z
†

y̌
�. / dS dt C

Z T

0

h�� ; �� �  i.H1=2.�//0;H1=2.�/ dt �
Z
†

y̌
�.��/ dS dt (2.34)

for all �� 2 L2.0; T IH 1=2.�//, where the last integral is intended to be C1 whenever
y̌
�.��/ … L

1.†/.

Remark 2.14. We can deduce that

� D ��' C � C �.'/ � f a.e. in Q; (2.35)

� D @n' C �� C ��. / � f� in .H 1=2.�//0 a.e. in .0; T /: (2.36)

Indeed, (2.35) follows from the fact �' 2 L2.0; T IH/ and the weak formulation (2.32).
Concerning (2.36), since for almost all t 2 .0;T / it holds that '.t/2 V and�'.t/2H , we
deduce from [7, Theorem 2.27] that @n'.t/ is well defined in .H 1=2.�//0. Hence, (2.36)
can be deduced from (2.32) by using (2.35).

Theorem 2.15 (Asymptotic limit:L 2 .0;C1/ fixed, ı! 0). LetL 2 .0;C1/ be given.
Suppose that the assumptions (A1)–(A4) together with (A5)0 are satisfied. We consider a
family of data ¹'ı0; f

ıºı2.0;1/ that satisfy the assumptions (A4) and (A5). Assume in
addition that there exists a constant M > 0 such that, for all ı 2 .0; 1/,

ıkr� 
ı
0k
2
H�
C k y̌.'ı0/kL1.�/ C k

y̌
�. 

ı
0 /kL1.�/ �M; (2.37)

kf ıkL2.0;T IH1/ �M; (2.38)
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and as ı ! 0,

'ı0 ! '0 weakly in zV1; f ı ! f weakly in L2.0; T IL2/: (2.39)

Let ¹.'ı ; �ı ; �ı/ºı2.0;1/ be weak solutions to problem .SL;ı/ corresponding to data
¹'ı0;f

ıºı2.0;1/ that are determined by Theorem 2.7. Then, problem .SL;0/ admits a weak
solution .';�; �/ in the sense of Definition 2.13 such that as ı ! 0 (in the sense of a
subsequence),

'ı ! ' weakly in H 1.0; T I .H1/0/;

weakly star in L1.0; T I zV1/;

strongly in C.Œ0; T �IL2/;

�'ı ! �' weakly in L2.0; T IH/;

�ı ! � weakly in L2.0; T IH1/;

�ı ! � weakly in L2.0; T IH � .H 1.�//0/;

�ı�� 
ı
C �ı� ! �� weakly in L2.0; T I .H 1=2.�//0/;

ı'ı ! 0 strongly in L1.0; T IV1/:

Remark 2.16. For any initial data '0 satisfying (A5)0, the existence of an approximating
sequence ¹'ı0ºı2.0;1/ as in Theorem 2.15 is guaranteed by [18, Proposition A.2].

Uniqueness of the phase function ' associated with problem .SL;0/ is ensured by the
following continuous dependence estimate.

Theorem 2.17 (Continuous dependence,L2 .0;C1/, ıD 0). LetL2 .0;C1/ be given.
Suppose that the assumptions (A1)–(A3) are satisfied. Let .'i ;�i ; �i /, i 2 ¹1; 2º, be two
weak solutions to problem .SL;0/ corresponding to the data ¹.'0;i ; fi /ºiD1;2 satisfying
(A4) and (A5)0 with Nm.'0;1/ D Nm.'0;2/ D Nm0. Then, there exists a constant C > 0,
depending only on K, K� , �, and T , such that

k'1.t/ � '2.t/k
2
0;� C

Z t

0

k'1.s/ � '2.s/k
2
zV1
.0/

ds

� C

�
k'0;1 � '0;2k

2
0;� C

Z t

0

kf1.s/ � f2.s/k
2

. zV1/0
ds
�
8t 2 Œ0; T �: (2.40)

Remark 2.18. Thanks to Theorem 2.17, every convergent subsequence ¹'ık º in Theo-
rem 2.15 converges to the same limit '. In the case when the two graphs ˇ, ˇ� exhibit the
same growth, we can obtain further results on refined convergence and error estimate; see
Corollary 4.7.

2.3.3. Asymptotic limits: ı 2 .0;C1/ fixed,L! 0 orL! C1. Problem .SL;ı/with
L 2 .0;C1/ can be viewed as an interpolation of the GMS model (with L D 0) and the
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LW model (with L D C1). Assuming ı > 0, below we provide a rigorous investigation
of the asymptotic limits as L! 0 and L!C1, respectively.

First, we introduce the definition of weak solutions to the GMS model (cf., [16, Defi-
nition 2.1]).

Definition 2.19. Let ı 2 .0;C1/ be a fixed parameter, L D 0. Suppose that (A1)–(A5)
are satisfied. The triplet .';�; �/ is called a weak solution of problem .S0;ı/ on Œ0; T �, if
the following conditions are fulfilled.

(1) The functions ';�; � have the regularity properties

' D !C Nm01 2 H
1.0; T I .V1/0/ \ L1.0; T IV1/ \ L2.0; T IV2/;

� 2 L2.0; T IV1/; � 2 L2.0; T IL2/:

(2) The variational formulation

h@t'.t/;yi.V1/0;V1 C a0.�.t/;y/ D 0 8y 2 V1 (2.41)

holds for almost all t 2 .0; T / and we have

� D ��' C � C �.'/ � f a.e. in Q; (2.42)

� D @n' � ı�� C �� C ��. / � f� a.e. on † (2.43)

with
� 2 ˇ.'/ a.e. in Q; �� 2 ˇ�. / a.e. on †:

(3) The initial conditions are satisfied

'jtD0 D '0 a.e. in �;  jtD0 D  0 a.e. on �:

Theorem 2.20 (Asymptotic limit: ı 2 .0;C1/ fixed, L! 0). Let ı 2 .0;C1/ be given.
Suppose that the assumptions (A1)–(A5) are satisfied. For everyL2.0;1/, let .'L;�L;�L/
be a weak solution to problem .SL;ı/ corresponding to the data .'0;f /. Then, there exists
a triplet .'0;�0; �0/ such that as L! 0 (in the sense of a subsequence),

'L ! '0 weakly in H 1.0; T I .V1/0/ \ L2.0; T IV2/; (2.44)

weakly star in L1.0; T IV1/; (2.45)

strongly in C.Œ0; T �IL2/; (2.46)

�L ! �0 weakly in L2.0; T IH1/; (2.47)

�L ! �0 weakly in L2.0; T IL2/ (2.48)

with
k�L � �Lj�kL2.0;T IH� / � C

p
L: (2.49)

The limit triplet .'0;�0; �0/ is a weak solution of the GMS model .S0;ı/ corresponding
to the data .'0;f / in the sense of Definition 2.19.
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Remark 2.21. Thanks to [16, Theorem 2.1], the limit function '0, as a solution to prob-
lem .S0;ı/, is unique. Hence, every convergent subsequence ¹'Lk º in Theorem 2.20 con-
verges to the same limit '0.

Next, we introduce the definition of weak solutions to the LW model (cf., [20, Defini-
tion 2.1]).

Definition 2.22. Let ı 2 .0;C1/ be a fixed parameter, L D C1. Suppose that the
assumptions (A1)–(A5) are satisfied. The triplet .';�; �/ is called a weak solution to
problem .S1;ı/ on Œ0; T �, if the functions ', �, � have the regularity properties

' 2 H 1.0; T IV 0/ \ L1.0; T IV / \ L2.0; T IH 2.�//;

 2 H 1.0; T IV 0�/ \ L
1.0; T IV�/ \ L

2.0; T IH 2.�//;

� 2 L2.0; T IV /; � 2 L2.0; T IH/;

� 2 L2.0; T IV�/; �� 2 L
2.0; T IH�/;

and they satisfy

h@t'; ziV 0;V C

Z
�

r� � rz dx D 0 8z 2 V; a.e. in .0; T /;

� D ��' C � C �.'/ � f; � 2 ˇ.'/; a.e. in Q;

' D  ; a.e. on †;

h@t ; z�iV 0� ;V� C

Z
�

r�� � r�z� dS D 0 8z� 2 V� ; a.e. in .0; T /;

� D @n' � ı�� C �� C ��. / � f� ; �� 2 ˇ�. /; a.e. on †;

'jtD0 D '0; a.e. in �;  jtD0 D  0; a.e. on �:

Theorem 2.23 (Asymptotic limit: ı 2 .0;C1/ fixed, L! C1). Let ı 2 .0;C1/ be
given. Suppose that the assumptions (A1)–(A5) are satisfied with � , �� being differen-
tiable on R. For every L 2 .1;C1/, let .'L;�L; �L/ be a weak solution to problem
.SL;ı/ corresponding to the data .'0;f /. Then, there exists a triplet .'1;�1; �1/ such
that as L!C1 (in the sense of a subsequence),

'L ! '1 weakly in H 1.0; T IV 0/ \ L2.0; T IH 2.�//;

weakly star in L1.0; T IV /;

strongly in C.Œ0; T �IH/;

 L !  1 weakly in H 1.0; T IV 0�/ \ L
2.0; T IH 2.�//;

weakly star in L1.0; T IV�/;

strongly in C.Œ0; T �IH�/;

�L ! �1 weakly in L2.0; T IH1/;

�L ! �1 weakly in L2.0; T IL2/;
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and
1

L
k�L � �Lj�kL2.0;T IH� / �

C
p
L
:

The limit triplet .'1;�1; �1/ is a weak solution of the LW model corresponding to the
data .'0;f / in the sense of Definition 2.22.

Remark 2.24. Thanks to [20, Theorem 2.4], the limit function '1, as a solution to prob-
lem .S1;ı/, is unique. Hence, every convergent subsequence ¹'Lk º in Theorem 2.23
converges to the same limit '1.

3. Well-posedness in the presence of surface diffusion

In this section, we focus on the case when the surface diffusion on � is present, that is,
ı > 0. Then, we prove Theorems 2.7, 2.9, and 2.11 on the well-posedness of problem
.SL;ı/ for any given L; ı 2 .0;C1/.

3.1. Approximation via Yosida regularization

To prove the existence of weak solutions to problem .SL;ı/ with general potentials, we
approximate the maximal monotone operators ˇ and ˇ� by means of suitable Yosida
regularizations; see, e.g., [16, 20] for the case of Cahn–Hilliard equations with dynamic
boundary conditions. For each " 2 .0; 1/, we define ˇ", ˇ�;" W R ! R, along with the
associated resolvent operators J", J�;" W R! R by

ˇ".r/ WD
1

"
.r � J".r// WD

1

"
.r � .I C "ˇ/�1.r//; (3.1)

ˇ�;".r/ WD
1

"%
.r � J�;".r// WD

1

"%
.r � .I C "%ˇ�/

�1.r// (3.2)

for all r 2 R, where % > 0 is the constant given in the condition (2.22). The related
Moreau–Yosida regularizations y̌", y̌�;" of y̌, y̌� W R! R are given by (cf., e.g., [60])

y̌
".r/ WD inf

s2R

²
1

2"
jr � sj2 C y̌.s/

³
D

1

2"
jr � J".r/j

2
C y̌.J".r// D

Z r

0

ˇ".s/ ds;

y̌
�;".r/ WD inf

s2R

²
1

2"%
jr � sj2 C y̌�.s/

³
D

Z r

0

ˇ�;".s/ ds 8r 2 R:

From (A1), (A2), we find ˇ".0/D ˇ�;".0/D 0. Besides, ˇ", ˇ�;" are Lipschitz continuous
with Lipschitz constants 1=" and 1="%, respectively (see [6, Propositions 2.6 and 2.7]).
Thus, it follows that y̌" and y̌�;" are nonnegative convex functions with (at most) quadratic
growth. Moreover, it holds (cf., e.g., [4, 60])

jˇ".r/j � jˇ
ı.r/j for r 2 D.ˇ/; jˇ�;".r/j � jˇı�.r/j for r 2 D.ˇ�/; (3.3)

0 � y̌".r/ � y̌.r/; 0 � y̌�;".r/ � y̌�.r/ 8r 2 R: (3.4)
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Thanks to [9, Lemma 4.4], we keep the compatibility condition

jˇ".r/j � %jˇ�;".r/j C c0 8r 2 R; (3.5)

with the same constants % and c0 as in (2.22). Additionally, the following inequalities hold
for " 2 .0; 1/ (see [34, Section 5]): for any given r0 2 IntD.ˇ�/,

ˇ".r/.r � r0/ � ı0jˇ".r/j � c1; ˇ�;".r/.r � r0/ � ı0jˇ�;".r/j � c1 (3.6)

for all r 2 R, where ı0, c1 are positive constants depending on r0 but independent of ".
Recalling the abstract formulation (2.25) for problem .SL;ı/, it is straightforward to

check that the first and second equations in (2.25) yield the single evolution equation:

SL.!0.t//C @ˆı.!.t// D P.��.t/ � �.!.t/C Nm01/C f .t// in L2
.0/ (3.7)

for almost all t 2 .0; T /, where

�.t/ 2 ˇ.!.t/C Nm01/ in L2 for a.a. t 2 .0; T /:

For each " 2 .0; 1/, let us consider the following approximating problem for (3.7): find
!" WD .!"; !�;"/ satisfying

"!0".t/CSL.!0".t//C @ˆı.!".t//

D P.�ˇ".!".t/C Nm01//
C P.��.!".t/C Nm01//C P.f .t// in L2

.0/ for a.a. t 2 .0; T /; (3.8)

!"jtD0 D !0 WD '0 � Nm01; in L2
.0/: (3.9)

Proposition 3.1. Assume that the assumptions (A1)–(A5) are satisfied. For each " 2
.0; 1/, problem (3.8)–(3.9) admits a unique solution

!" 2 H
1
�
0; T IL2

.0/

�
\ C

�
Œ0; T �IV1

.0/

�
\ L2

�
0; T IV2

.0/

�
:

Proof. The proof mainly follows the argument for [16, Proposition 4.1], which is based
on the abstract theory of doubly nonlinear evolution inclusions [24] combined with the
contraction mapping principle.

By the definition of SL, it is straightforward to check that

.."I CSL/z; z/L2 D "kzk2
L2 C .S

Lz; z/L2

D "kzk2
L2 C .S

Lz;SLz/H1
L;0

� "kzk2
L2 8z 2 L2

.0/:

On the other hand, thanks to (2.9), we find

k."I CSL/zkL2 � "kzkL2 C kSLzkL2 � ."C C/kzkL2 8z 2 L2
.0/:
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As a consequence, for each " 2 .0; 1/, the operator "I CSL is coercive and with linear
growth in L2

.0/
. These facts enable us to apply the abstract theory [24, Theorem 2.1] with

the particular choices AD "I CSL, B D @ˆı ,H DL2
.0/

, and V D V1
.0/

therein. Hence,
for any given function z! 2 C.Œ0; T �IL2

.0/
/, we can conclude that there exists a unique

! 2 H 1
�
0; T IL2

.0/

�
\ L1

�
0; T IV1

.0/

�
� C

�
Œ0; T �IL2

.0/

�
satisfying @ˆı.!/ 2 L2.0; T IL2

.0/
/ and

."I CSL/!0.t/C @ˆı.!.t//

D P.�ˇ".z!.t/C Nm01/ � �.z!.t/C Nm01/C f .t// in L2
.0/ for a.a. t 2 .0; T /;

!jtD0 D !0 in L2
.0/:

In this way, we can define the map ‰ W z! 7! ! from C.Œ0; T �IL2
.0/
/ into itself. Next, for

given z!.i/ 2 C.Œ0; T �IL2
.0/
/, i 2 ¹1; 2º, we set !.i/ WD ‰.z!.i//. Consider the equation of

their differences

"..!.1//0 � .!.2//0/CSL..!.1//0 � .!.2//0/C @ˆı.!
.1/
�!.2//

D P
�
�ˇ".z!

.1/
C Nm01/C ˇ".z!

.2/
C Nm01/ � �.z!

.1/
C Nm01/C �.z!

.2/
C Nm01/

�
:

Taking the L2 inner product with !.1/ � !.2/ and using the monotonicity of @ˆı , we
obtain

"

2

d
dt
k!.1/ �!.2/k2

L2
.0/

C
1

2

d
dt
k!.1/ �!.2/k20;�

�
�
�ˇ".z!

.1/
C Nm01/C ˇ".z!

.2/
C Nm01/;!

.1/
�!.2/

�
L2

C
�
��.z!.1/ C Nm01/C �.z!

.2/
C Nm01/;!

.1/
�!.2/

�
L2

� C"kz!
.1/
� z!.2/kL2

.0/
k!.1/ �!.2/kL2

.0/
; (3.10)

where the last inequality follows from the fact that ˇ", ˇ�;", � , �� are Lipschitz con-
tinuous, and C" > 0 depends on K, K� , ". Using the Cauchy–Schwarz inequality and
Grönwall’s lemma, we deduce from (3.10) that

k!.1/.t/ �!.2/.t/k2
L2
.0/

� C"

Z t

0

kz!.1/.s/ � z!.2/.s/k2
L2
.0/

ds 8t 2 Œ0; T �;

which implies

k!.1/.t/ �!.2/.t/k2
L2
.0/

� C"tkz!
.1/
� z!.2/k2

C.Œ0;T �IL2
.0/
/
8t 2 Œ0; T �:

For k 2 ZC, we set!.i/
k
WD‰k.z!.i//. By iteration, we infer from the above estimates that

!.1/
k
.t/ �!

.2/

k
.t/
2

L2
.0/

� C"

�
tk

kŠ

�
kz!.1/ � z!.2/k2

C.Œ0;T �IL2
.0/
/
8t 2 Œ0; T �:



M.-Y. Lv and H. Wu 26

Hence, there exists some k0 2 ZC large enough such that!.1/
k0
�!

.2/

k0

2
C.Œ0;T �IL2

.0/
/
�
1

2
kz!.1/ � z!.2/k2

C.Œ0;T �IL2
.0/
/
:

This yields that ‰k0 is a contraction mapping from C.Œ0; T �IL2
.0/
/ into itself.

Therefore, thanks to the contraction mapping principle, ‰k0 admits a unique fixed
point !" 2 C.Œ0; T �IL2

.0/
/. It follows that

‰.!"/ D ‰.‰
k0.!"// D ‰

k0.‰.!"//:

Hence, we find ‰.!"/ D !" because of the uniqueness of !". By the definition of ‰, !"
is indeed a solution to problem (3.8)–(3.9). Its uniqueness easily follows from an estimate
similar to (3.10) and Grönwall’s lemma.

For every " 2 .0; 1/, we have shown that problem (3.8)–(3.9) admits a unique solution
such that

!" 2 H
1
�
0; T IL2

.0/

�
\ L1

�
0; T IV1

.0/

�
with @ˆı.!"/ 2 L2

�
0; T IL2

.0/

�
:

In view of (2.24), we can apply the elliptic estimate [43, Theorem 3.3] to conclude that
!" 2 L

2.0; T IV2
.0/
/. Finally, observing that

H 1.0; T IL2
.0// \ L

2.0; T IV2
.0// � C.Œ0; T �IV

1
.0//;

we arrive at the conclusion of Proposition 3.1.

3.2. Uniform estimates

For every " 2 .0; 1/, in view of Proposition 3.1, we set '" WD !" C Nm01 and

�".t/ WD "!
0
".t/C @ˆı.!".t//C ˇ".'".t//C �.'".t// � f .t/ for a.a. t 2 .0; T /:

Then, the evolution equation (3.8) can be written as

SL.!0".t//C �".t/ �m".t/1 D 0 in L2
.0/ for a.a. t 2 .0; T / (3.11)

with
m".t/ WD Nm.ˇ".'".t//C �.'".t// � f .t// for a.a. t 2 .0; T /: (3.12)

It follows that

P�" D �" �m"1 2 L2.0; T IH1
.0// and m" 2 L

2.0; T /:

As a consequence, �" D .�"; �"/ 2 L2.0; T IH1/ and the following weak formulations
hold:Z

�

@t!".t/y dx C
Z
�

@t!�;".t/y� dS C
Z
�

r�".t/ � ry dx C
Z
�

r��".t/ � r�y� dS

C
1

L

Z
�

.�".t/ � �".t//.y � y�/ dS D 0 8y 2 H1
.0/ (3.13)
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and Z
�

�".t/z dx C
Z
�

�".t/z� dS

D "

Z
�

@t!".t/z dx C "
Z
�

@t!�;".t/z� dS C
Z
�

r!".t/ � rz dx

C ı

Z
�

r�!�;".t/ � r�z� dS C
Z
�

Œˇ".'".t//C �.'".t// � f .t/�z dx

C

Z
�

Œˇ�;". ".t//C ��. ".t// � f�.t/�z� dS 8z 2 V1 (3.14)

for almost all t 2 .0; T /. In particular, it follows from (3.14) that

�" D "@t!" ��!" C ˇ".'"/C �.'"/ � f; a.e. in Q; (3.15)

�" D "@t!�;" C @n!" � ı��!�;" C ˇ�;". "/C ��. "/ � f� ; a.e. on †: (3.16)

Besides, since !0" 2 L
2.0; T IL2

.0/
/, we infer from (3.11) and the elliptic estimate (2.10)

that �" 2 L2.0; T IH2/. This allows us to deduce from (3.13) the following pointwise
relations:

@t!" D ��"; a.e. in Q; (3.17)

@t!�;" D ���" � @n�"; a.e. on †; (3.18)

L@n�" D �" � �"; a.e. on †: (3.19)

Now, we proceed to derive uniform estimates with respect to the approximating param-
eter " 2 .0; 1/.

Lemma 3.2. The mass is conserved in time, that is,

Nm.'".t// D Nm.'0/ D Nm0 8t 2 Œ0; T �: (3.20)

Proof. The conclusion (3.20) easily follows from the definition of '" and the fact that
!" 2 C.Œ0; T �IL

2
.0/
/.

Lemma 3.3. There exists a positive constant M1, independent of ", ı 2 .0; 1/, such that

"1=2k!"kL1.0;T IL2
.0/
/ C k!"kL1.0;T IH�1

.0/
/ C k!"kL2.0;T IV1

.0/
/

C kˇ".'"/kL1.0;T IL1.�// C kˇ�;". "/kL1.0;T IL1.�// �M1; (3.21)

where the norm k � kV1
.0/

is defined as in (2.7).

Proof. We adopt the same strategy as in [9, 15, 16]. Testing (3.8) at time s 2 .0; T / by
!", using (2.23) and the definition of the subdifferential @ˆı with the fact ˆı.0/ D 0, we
obtain

".!0".s/;!".s//L2 C .SL.!0".s//;!".s//L2 Cˆı.!".s//

C .ˇ".'".s//;!".s//L2 � .f .s/ � �.'".s//;!".s//L2 (3.22)
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for almost all s 2 .0;T /. Recalling the assumptions (A2) and (A5), we find Nm02IntD.ˇ�/.
Then, we can apply the inequalities in (3.6) with r0 D Nm0 to get

.ˇ".'".s//;!".s//L2

D

Z
�

ˇ".'".s//.'".s/ � Nm0
�

dx C
Z
�

ˇ�;". ".s//. ".s/ � Nm0/ dS

� ı0

Z
�

jˇ".'".s//j dx � c1j�j C ı0

Z
�

jˇ�;". ".s//j dS � c1j�j (3.23)

for almost all s 2 .0; T /. Furthermore, owing to the assumption (A3) and the interpolation
inequality (2.13), there exists a positive constant zM1, depending only on K, K� , �. Nm0/,
��. Nm0/, j�j, and j�j, such that

.f .s/ � �.'".s//;!".s//L2

�
1

2

Z
�

jf .s/j2 dx C
1

2

Z
�

j!".s/j
2 dx CK

Z
�

j!".s/j
2 dx

C
1

2

Z
�

jf�.s/j
2 dS C

1

2

Z
�

j!�;".s/j
2 dS CK�

Z
�

j!�;".s/j
2 dS

C j�. Nm0/j

Z
�

j!".s/j dx C j��. Nm0/j
Z
�

j!�;".s/j dS

� zM1.1C kf .s/k
2
L2 C k!".s/k

2
0;�/C

1

4
kr!".s/k

2
H for a.a. s 2 .0; T /: (3.24)

From (3.22)–(3.24), we obtain

"
d
ds
k!".s/k

2
L2 C

d
ds
k!".s/k

2
0;� C

1

2
kr!".s/k

2
H C ıkr�!�;".s/k

2
H�

C 2ı0

Z
�

jˇ".'".s//j dx C 2ı0

Z
�

jˇ�;". ".s//j dS

� 2c1.j�j C j�j/C 2 zM1.1C kf .s/k
2
L2 C k!".s/k

2
0;�/ for a.a. s 2 .0; T /;

which combined with Grönwall’s lemma leads to the conclusion (3.21).

Lemma 3.4. There exists a positive constant M2, independent of "; ı 2 .0; 1/, such that

k!"kL1.0;T IV1
.0/
/ C "

1=2
k!0"kL2.0;T IL2

.0/
/ C k!

0
"kL2.0;T IH�1

.0/
/

C k y̌".'"/kL1.0;T IL1.�// C k
y̌
�;". "/kL1.0;T IL1.�// �M2; (3.25)

where the norm k � kV1
.0/

is defined as in (2.7).

Proof. Testing (3.8) at time s 2 .0; T / by !0" D '
0
", using (2.23) and the chain rule for

subdifferentials (see, e.g., [60, Lemma 4.3], and also [23, Proposition A.1]), we find

d
ds

�
ˆı.!".s//C

Z
�

. y̌".'".s//C y�.'".s/// dx C
Z
�

. y̌�;". ".s//C y��. ".s/// dS
�

C "k!0".s/k
2
L2 C k!

0
".s/k

2
0;�

D .Pf .s/;!0".s//L2 for a.a. s 2 .0; T /: (3.26)
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Since SL.!0".s// 2 V1
.0/

for almost all s 2 .0; T /, we observe that

.Pf .s/;!0".s//L2 D .Pf .s/;SL.!0".s///H1
L;0
�
1

2
k!0".s/k

2
0;� C

1

2
kf .s/k2

V1 : (3.27)

Integrating (3.26) over .0; t/ with respect to s, we infer from (A3) (i.e., y� , y�� are at most
with quadratic growth), Lemma 3.2, (3.27), and (3.4) that

1

2
kr!".t/k

2
H C

ı

2
kr!�;".t/k

2
H�
C

Z
�

y̌
".'".t// dx C

Z
�

y̌
�;". ".t// dS

C "

Z t

0

k!0".s/k
2
L2 ds C

1

2

Z t

0

k!0".s/k
2
0;� ds

�
1

2
k!0k

2
V1
.0/

C

Z
�

y̌.'0/ dx C
Z
�

y̌
�. 0/ dS C

Z
�

y�.'0/ dx �
Z
�

y�.'".t// dx

C

Z
�

y��. 0/ dS �
Z
�

y��. ".t// dS C
1

2

Z t

0

kf .s/k2
V1 ds

�
1

2
k!0k

2
V1
.0/

C

Z
�

y̌.'0/ dx C
Z
�

y̌
�. 0/ dS

C C
�
1C k'0k

2
L2 C k!".t/C Nm01k

2
L2

�
C
1

2

Z t

0

kf .s/k2
V1 ds 8t 2 Œ0; T �: (3.28)

The interpolation inequality (2.13) implies

k!".t/k
2
L2 � kr!".t/k

2
H C Ck!".t/k

2
0;� 8 > 0:

Then, taking  sufficiently small (independent of ı), we infer from (3.21), (3.28) and (A5)
that

1

4
kr!".t/k

2
H C

ı

2
kr!�;".t/k

2
H�
C

Z
�

y̌
".'".t// dx C

Z
�

y̌
�;". ".t// dS

C "

Z t

0

k!0".s/k
2
L2 ds C

1

2

Z t

0

k!0".s/k
2
0;� ds

� C C
1

2

Z t

0

kf .s/k2
V1 ds 8t 2 Œ0; T �; (3.29)

which gives the estimate (3.25).

Lemma 3.5. There exist positive constantsM3 andM4, independent of "; ı 2 .0; 1/, such
that

kˇ".'"/kL2.0;T IL1.�// C kˇ�;". "/kL2.0;T IL1.�// �M3; (3.30)

km"kL2.0;T / C k�"kL2.0;T IH1/ �M4: (3.31)
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Proof. We can deduce from (3.22), (3.23) that

ı0

Z
�

jˇ".'".s//j dx C ı0

Z
�

jˇ�;". ".s//jdS

� c1.j�j C j�j/C .f .s/ � �.'".s// � "!
0
".s/;!".s//L2

� .SL.!0".s//;!".s//L2

� c1.j�j C j�j/C .kf .s/kL2 C k�.'".s//kL2 C "k!0".s/kL2/k!".s/kL2

C k!0".s/k0;�k!".s/k0;� for a.a. s 2 .0; T /: (3.32)

Due to Lemma 3.4 and (A4), the right-hand side of (3.32) is uniformly bounded in
L2.0; T /. This yields the estimate (3.30). Next, by the definition of m".s/ (recall (3.12)),
we have

jm".s/j
2
�

6

.j�j C j�j/2

�
kˇ".'".s/

�
k
2
L1.�/

C k�.'".s//k
2
L1.�/

C j�jkf .s/k2H

C kˇ�;". ".s//k
2
L1.�/

C k��. ".s//k
2
L1.�/

C j�jkf�.s/k
2
H�

�
for almost all s 2 .0; T /. Integrating over .0; T /, using Lemma 3.4, (3.30) and (A3), (A4),
we obtain the first estimate in (3.31). On the other hand, it follows from (3.11) that

kP�".s/kH1
L;0
D k!0".s/k0;�: (3.33)

This fact combined with Poincaré’s inequality (2.6) yields

k�".s/kH1 � kP�".s/kH1 C km".s/1kH1 � CkP�".s/kH1
L;0
C km".s/1kL2

� Ck!0".s/k0;� C .j�j C j�j/
1=2
jm".s/j for a.a. s 2 .0; T /:

Recalling (3.25), we obtain the second estimate in (3.31).

Lemma 3.6. There exist positive constants M5, M6, and M7, independent of " 2 .0; 1/,
such that

kˇ".'"/kL2.0;T IH/ C kˇ". "/kL2.0;T IH� / �M5; (3.34)

kˇ�;". "/kL2.0;T IH� / �M6; (3.35)

k!"kL2.0;T IH2/ �M7: (3.36)

Proof. The proof of (3.34) follows the argument for [16, Lemma 4.4]; we sketch it here
for completeness. Testing (3.15) by ˇ".'"/ 2 L2.0; T I V /, using (3.16) and noting that
.ˇ".'"//j� D ˇ". "/ 2 L

2.0; T IV�/, we findZ
�

ˇ0".'".s//jr!".s/j
2 dx C kˇ".'".s//k2H

C ı

Z
�

ˇ0". ".s//jr�!�;".s/j
2 dS C

Z
�

ˇ�;". ".s//ˇ". ".s// dS

D .f .s/C �".s/ � "@t!".s/ � �.'".s//; ˇ".'".s///H

C .f�.s/C �".s/ � "@t!�;".s/ � ��. ".s//; ˇ". ".s///H� (3.37)
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for almost all s 2 .0; T /. Recalling the compatibility condition (3.5) and noticing that
ˇ".r/, ˇ�;".r/ have the same sign for all r 2 R, we getZ

�

ˇ�;". ".s//ˇ". ".s// dS D
Z
�

jˇ�;". ".s//jjˇ". ".s//j dS

�
1

%

Z
�

jˇ". ".s//j
2 dS �

c0

%

Z
�

jˇ". ".s//j dS

�
1

2%

Z
�

jˇ". ".s//j
2 dS �

c20
2%
j�j:

On the other hand, we observe thatZ
�

ˇ0".'".s//jr!".s/j
2 dx � 0;

Z
�

ˇ0". ".s//jr�!�;".s/j
2 dS � 0:

By Young’s inequality and the Lipschitz continuity of � and �� , we can find a positive
constant zM5, independent of " 2 .0; 1/, such that

.f .s/C �".s/ � "@t!".s/ � �.'".s//; ˇ".'".s///H

�
1

2
kˇ".'".s//k

2
H C

zM5

�
1C kf .s/k2H C k�".s/k

2
H C k!".s/k

2
H C "k@t!".s/k

2
H

�
and

.f�.s/C �".s/ � "@t!�;".s/ � ��. ".s//; ˇ". ".s///H�

�
1

4%
kˇ". ".s//k

2
H�

C % zM5

�
1C kf�.s/k

2
H�
C k�".s/k

2
H�
C k!�;".s/k

2
H�
C "k@t!�;".s/k

2
H�

�
:

Combining the above inequalities, integrating (3.37) in .0; T / with respect to s, we infer
from Lemmas 3.4, 3.5 that

1

2

Z T

0

kˇ".'".s//k
2
H ds C

1

4%

Z T

0

kˇ". ".s//k
2
H�

ds � C; (3.38)

where C > 0 is independent of " 2 .0; 1/. This yields the estimate (3.34).
By comparison in (3.15) and the estimates just proved, we have

k�!"kL2.0;T IH/ � C; (3.39)

where C > 0 is independent of " 2 .0; 1/. Next, testing (3.16) by ˇ�;". "/ 2L2.0;T IV�/,
we can deduce that

ı

Z
�

ˇ0�;". ".s//jr�!�;".s/j
2 dS C kˇ�;". ".s//k2H�

D .f�.s/C �".s/ � "@t!�;".s/ � @n!".s/ � ��. ".s//; ˇ�;". ".s///H�

�
1

2
kˇ�;". ".s//k

2
H�
C 3

�
kf�.s/k

2
H�
C k�".s/k

2
H�

C "k@t!�;".s/k
2
H�
C k@n!".s/k

2
H�
C k��. ".s//k

2
H�

�
(3.40)
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for almost all s 2 .0; T /. Integrating (3.40) over .0; T /, we infer from Lemmas 3.4, 3.5
that

kˇ�;". "/kL2.0;T IH� / � C.1C k@n!"kL2.0;T IH� //: (3.41)

By comparing the terms in (3.16), we infer that

k@n!" ���!�;"kL2.0;T IH� / � C

�
1C

1

ı

�
.1C k@n!"kL2.0;T IH� //; (3.42)

where the constant C > 0 is independent of " 2 .0; 1/. Combining (3.39) and (3.42), we
can apply the elliptic estimate (2.10) (with L D 0, k D 0) to get

k!"kL2.0;T IH2/ � C.1C k@n!"kL2.0;T IH� //; (3.43)

where the constant C > 0 is independent of " but depends on ı. Thanks to the trace
theorem and the Ehrling lemma (see Lemma A.2), we have

k@n!"kL2.0;T IH� / � Ck!"kL2.0;T IH2�r .�// for some r 2 .0; 1=2/

� �k!"kL2.0;T IH2.�// C C�k!"kL2.0;T IV /:

Hence, taking � > 0 sufficiently small, we can conclude (3.36) from (3.43), with some
constant M7 > 0 independent of " (but depends on ı). Finally, this estimate together
with (3.41) easily yields the estimate (3.35).

3.3. Existence and uniqueness of weak solutions

Proof of Theorem 2.7. We are in a position to prove the existence of weak solutions to
problem .SL;ı/. This can be done by passing to the limit in the approximating problem
as "! 0, applying a standard compactness argument as in [16]. Owing to the uniform
estimates derived in Lemmas 3.2–3.6, there exist a subsequence of " (not relabeled) and
some limit functions ! D .!; !�/, � D .�; �/, � D .�; ��/ and Qm such that

!" ! ! weakly star in L1.0; T IV1
.0//; (3.44)

!" ! ! weakly in H 1.0; T IH�1.0/ / \ L
2.0; T IV2/; (3.45)

"!" ! 0 strongly in H 1.0; T IL2/; (3.46)

�" ! � weakly in L2.0; T IH1/; (3.47)

ˇ".'"/! � weakly in L2.0; T IH/; (3.48)

ˇ�;". "/! �� weakly in L2.0; T IH�/; (3.49)

m" ! Qm weakly in L2.0; T /: (3.50)

From (3.45), due to the Aubin–Lions–Simon lemma (see Lemma A.1), we find

!" ! ! strongly in C
�
Œ0; T �IL2

.0/

�
\ L2

�
0; T IV1

.0/

�
; (3.51)
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which implies

'" ! ' D !C Nm01 strongly in C.Œ0; T �IL2/ \ L2.0; T IV1/: (3.52)

The above facts also imply that

'jtD0 D '0 a.e. in �;  jtD0 D  0 a.e. on �:

Moreover, (3.52) and the Lipschitz continuity of � , �� ensure that

�.'"/! �.'/ strongly in C.Œ0; T �IL2/;

and Qm D Nm.� C �.'/� f / with � D .�; ��/. Due to the maximal monotonicity of ˇ and
ˇ� , by applying [4, Proposition 2.2] and (3.48), (3.49), (3.52), we obtain

� 2 ˇ.'/ a.e. in Q; �� 2 ˇ�. / a.e. on †: (3.53)

Now, we are able to pass to the limit in the weak formulations (3.13), (3.14) to recover
(2.26) and

.�.t/; z/L2 D bı.'.t/; z/C .�.t/C �.'.t// � f .t/; z/L2 8z 2 V1 (3.54)

for almost all t 2 .0; T /. Since z 2 V1 is arbitrary, we can conclude that the limit triplet
.';�; �/ is indeed a weak solution to problem .SL;ı/.

Finally, we establish the additional regularity (2.29) under the assumption (A1)0. The
estimate for nonlinearities .ˇ; ˇ�/ is similar to [28] for the case L D 0 and we just sketch
it. As in [36], for each k 2 N n ¹1º, we introduce the Lipschitz continuous function hk W
R! R by

hk.r/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�1C

1

k
if r < �1C

1

k
;

r if � 1C
1

k
� r � 1 �

1

k
;

1 �
1

k
if r > 1 �

1

k
:

We define 'k WD hk ı ',  k WD hk ı  and denote 'k WD .'k ;  k/ for all k 2 N n ¹1º. It
follows that 'k 2 L1.0; T IV1/ and

r'k D r' �Œ�1C 1
k
;1� 1

k
�; r� k D r� �Œ�1C 1

k
;1� 1

k
�;

where the function �Œ�1C 1
k
;1� 1

k
� is the characteristic function of interval Œ�1C 1

k
; 1� 1

k
�.

For k 2 N n ¹1º and p � 2, we see that

ˇk WD jˇ.'k/j
p�2ˇ.'k/ 2L

1.0;T IV /; ˇ�;k WD jˇ�. k/j
p�2ˇ�. k/ 2L

1.0;T IV�/

are well defined, and

rˇk D .p � 1/jˇ.'k/j
p�2ˇ0.'k/r'k ; r�ˇ�;k D .p � 1/jˇ�. k/j

p�2ˇ0�. k/r� k :



M.-Y. Lv and H. Wu 34

Besides, ˇkj� D jˇ. k/jp�2ˇ. k/ 2 L1.0; T IV�/. Define

z� WD � � �.'/ � f and z� WD � � ��. / � f� :

Then, it holds .z�; z�/ 2L2.0;T ILp/, where p 2 Œ2; 6� if d D 3 and p 2 Œ2;C1/ if d D 2.
By a similar process as in [28], we can deduce that

kˇ.'k/kL2.0;T ILp.�// C kˇ�. k/kL2.0;T ILp.�//

� Cp.kz�kL2.0;T ILp.�// C k
z�kL2.0;T ILp.�// C 1/:

Passing to the limit as k !C1, owing to Fatou’s lemma, we conclude that

.ˇ.'/; ˇ�. // 2 L
2.0; T ILp/;

´
p 2 Œ2; 6� if d D 3;

p 2 Œ2;C1/ if d D 2:
(3.55)

Next, since ' satisfies the following bulk-surface elliptic problem8̂̂<̂
:̂
��' D z� � ˇ.'/; a.e. in �;

' D  ; a.e. on �;

��� C @n' D z� � ˇ�. /; a.e. on �;

applying (3.55) and the Lp-regularity theory for the bulk-surface elliptic system (see [45,
Proposition A.1]), we find

' 2 L2.0; T IW2;p/;

´
p 2 Œ2; 6� if d D 3;

p 2 Œ2;C1/ if d D 2:
(3.56)

The case p 2 Œ1; 2/ follows from (3.55), (3.56) and Hölder’s inequality.
Hence, we finish the proof of Theorem 2.7.

Proof of Theorem 2.9. In what follows, we prove the continuous dependence on the initial
data and the force terms. This can be done by the standard energy method. For i 2 ¹1; 2º,
let .'i ;�i ; �i / be a weak solution to problem .SL;ı/ corresponding to the data .'0;i ;fi /
with

Nm.'0;1/ D Nm.'0;2/ D Nm0:

Set !i WD 'i � Nm01. We consider the difference between (3.7), at the time s 2 .0; T /, for
!1.s/ D .!1.s/; !�;1.s// and !2.s/ D .!2.s/; !�;2.s//, that is,

SL.!01.s/ �!
0
2.s//C @ˆı.!1.s/ �!2.s//

D P.��1.s/C �2.s//
C P.��.!1.s/C Nm01/C �.!2.s/C Nm01//C P.f1.s/ � f2.s//:
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Taking L2 inner product with !1.s/ � !2.s/, by the Lipschitz continuity of � , �� , we
obtain

1

2

d
ds
k!1.s/ �!2.s/k

2
0;� C k!1.s/ �!2.s/k

2
V1
.0/

C .�1.s/ � �2.s/;!1.s/ �!2.s//L2

D �.�.!1.s/C Nm01/ � �.!2.s/C Nm01/;!1.s/ �!2.s//L2

C .f1.s/ � f2.s/;!1.s/ �!2.s//L2

� .K CK�/k!1.s/ �!2.s/k
2
L2

C kf1.s/ � f2.s/k.V1/0k!1.s/ �!2.s/kV1 (3.57)

for almost all s 2 .0; T /. Since !1.s/ � !2.s/ 2 V1
.0/

for almost all s 2 .0; T /, by the
Ehrling lemma (see Lemma A.2) and Poincaré’s inequality (2.6), we get

k!1.s/ �!2.s/k
2
L2 � �k!1.s/ �!2.s/k

2
V1
.0/

C C�k!1.s/ �!2.s/k
2
0;�

for any � > 0. Besides, it follows from (3.53) and the monotonicity of ˇ, ˇ� that

.�1.s/ � �2.s/;!1.s/ �!2.s//L2

D .�1.s/ � �2.s/;'1.s/ � '2.s//L2 � 0 for a.a. s 2 .0; T /:

Inserting the above inequalities into (3.57), taking � > 0 sufficiently small and applying
Young’s inequality, we obtain

1

2

d
ds
k!1.s/ �!2.s/k

2
0;� C k!1.s/ �!2.s/k

2
V1
.0/

�
1

2
k!1.s/ �!2.s/k

2
V1
.0/

C Ck!1.s/ �!2.s/k
2
0;� C Ckf1.s/ � f2.s/k

2
.V1/0

for almost all s 2 .0; T /. Then, by Grönwall’s lemma, we arrive at the conclusion (2.30).

Thanks to the uniqueness of the phase function ' associated with problem .SL;ı/,
we are able to provide an estimate on the convergence rate for '" ! ' in terms of the
parameter " of the Yosida approximation.

Proposition 3.7 (Convergence rate). Suppose that the assumptions of Theorem 2.7 are
satisfied. Let '" be the unique solution to the approximating problem (3.8)–(3.9) and '
the unique weak solution to problem .SL;ı/. Then, we have

k'" � 'kL1.0;T I.H1/0/ C k'" � 'kL2.0;T IV1/ � C
p
" 8" 2 .0; 1/;

where the constant C > 0 depends on y� , y�� , y̌, y̌� , and the V1-norm of the initial data
'0, but not on ".
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Proof. For any "1; "2 2 .0; 1/, let !"1 and !"2 be the corresponding solutions to the
approximating problem (3.8)–(3.9), respectively. Recalling the relation

'"i D !"i C Nm01; i 2 ¹1; 2º;

we consider their difference '� D '"1 � '"2 . It follows from (3.8) that

SL.'0�/C @ˆı.'�/

D �"1'
0
"1
C "2'

0
"2
C P.�ˇ"1.'"1/C ˇ"2.'"2//

C P.��.'"1/C �.'"2// in L2
.0/: (3.58)

Testing (3.58) by '� and integrating in Œ0; t � � Œ0; T �, we obtain

1

2
k'�.t/k

2
0;� C

Z t

0

k'�.s/k
2
V1
.0/

ds

D

Z t

0

.�"1'
0
"1
.s/C "2'

0
"2
.s/;'�.s//L2 ds

C

Z t

0

.�ˇ"1.'"1.s//C ˇ"2.'"2.s//;'�.s//L2 ds

C

Z t

0

.��.'"1.s//C �.'"2.s//;'�.s//L2 ds

DW J1 C J2 C J3: (3.59)

Using Lemma 3.4, we obtain that

J1 D

Z t

0

�
�"1S

L.'0"1.s//C "2S
L.'0"2.s//;'�.s/

�
H1
L;0

ds

� C

Z t

0

."1k'
0
"1
.s/k0;� C "2k'

0
"2
.s/k0;�/k'�.s/kV1 ds

� C."1 C "2/: (3.60)

Concerning J2, we apply the argument in [10]. It follows from the definition of the Yosida
approximation that J"'" D '" � "ˇ".'"/. From this, we find

�

Z t

0

Z
�

.ˇ"1.'"1/ � ˇ"2.'"2//'� dx ds

D �

Z t

0

Z
�

.ˇ"1.'"1/ � ˇ"2.'"2//.J"1.'"1/ � J"2.'"2// dx ds

�

Z t

0

Z
�

.ˇ"1.'"1/ � ˇ"2.'"2//."1ˇ"1.'"1/ � "2ˇ"2.'"2// dx ds: (3.61)

The first term on the right-hand side of (3.61) is nonpositive by the monotonicity of ˇ and
the fact that ˇ".'"/ 2 ˇ.J".'"// (cf., [39, (2.7)]). On the other hand, the second term on
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the right-hand side of (3.61) can be estimated by Hölder’s inequality and (3.34), that is,

�

Z t

0

Z
�

.ˇ"1.'"1/ � ˇ"2.'"2//."1ˇ"1.'"1/ � "2ˇ"2.'"2// dx ds

D �"1kˇ"1.'"1/k
2
L2.0;T IH/

� "2kˇ"2.'"2/k
2
L2.0;T IH/

C ."1 C "2/

Z t

0

Z
�

ˇ"1.'"1/ˇ"2.'"2/ dx ds

� ."1 C "2/kˇ"1.'"1/kL2.0;T IH/kˇ"2.'"2/kL2.0;T IH/

� C."1 C "2/:

Similarly, by the monotonicity of ˇ� and (3.35), we can obtain the following estimate for
boundary potentials:

�

Z t

0

Z
�

.ˇ�;"1. "1/ � ˇ�;"2. "2// � dS ds � C."1 C "2/:

The above estimates provide the control of J2:

J2 � C."1 C "2/: (3.62)

To handle J3, using (A3) and the Ehrling lemma (see Lemma A.2), we find

J3 � max¹K;K�º
Z t

0

k'�.s/k
2
L2 ds

� max¹K;K�º�
Z t

0

k'�.s/k
2
V1
.0/

ds Cmax¹K;K�ºC�

Z t

0

k'�.s/k
2
0;� ds: (3.63)

Combining (3.59), (3.60), (3.62), (3.63), and taking � > 0 sufficiently small, we obtain

k'�.t/k
2
0;� C

Z t

0

k'�.s/k
2
V1
.0/

ds � C."1 C "2/C C
Z t

0

k'�.s/k
2
0;� ds 8t 2 Œ0; T �:

Then, we deduce from Grönwall’s lemma that

k'�k
2
L1.0;T IH�1

.0/
/
C k'�k

2
L2.0;T IV1

.0/
/
� C."1 C "2/; (3.64)

where the constant C > 0 is independent of "1 and "2.
The estimate (3.64) implies that

¹'"º is a Cauchy sequence in L1
�
0; T IH�1.0/

�
\ L2.0; T IV1/

as "! 0. Denote its limit by '. Recalling Theorems 2.7, 2.9, we find '" ! ' strongly
in L2.0; T IV1/ \ C.Œ0; T �IL2/ and ' is the unique weak solution to problem .SL;ı/.
Hence, we can pass to the limit "2 ! 0 in (3.64) and obtain

k'"1 � 'k
2
L1.0;T I.H1/0/

C k'"1 � 'k
2
L2.0;T IV1/

� C"1;

which completes the proof.
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Remark 3.8. In the recent work [39], the authors studied the nonlocal Cahn–Hilliard
equation

@t' D �� in Q;

� D B.'/C ˇ.'/C �.'/ in Q;

@n� D 0 on †;

with B'.x/ WD
R
�
J.x � y/.'.x/ � '.y// dy and J 2 L2loc.R

d /. Assuming some addi-
tional assumptions on the nonlinearity � and applying the theory of Hilbert–Schmidt
operator for the nonlocal term, they proved the convergence rate

k'" � 'kL2.0;T IH/ � C
p
";

where " is the parameter of the Yosida approximation.

3.4. Existence and uniqueness of strong solutions

Proof of Theorem 2.11. Now, let us consider strong solutions to problem .SL;ı/. The
uniqueness is guaranteed by Theorem 2.9. As in [16], we can prove the existence by
deriving some uniform estimates for higher-order norms of the approximating solutions.
For any h 2 .0; 1/ sufficiently small, we consider the difference between (3.8), at time s
and s C h, that is,

".!0".s C h/ �!
0
".s//CSL.!0".s C h/ �!

0
".s//C @ˆı.!".s C h/ �!".s//

D P.�ˇ".!".s C h/C Nm01/C ˇ".!".s/C Nm01//
C P.��.!".s C h/C Nm01/C �.!".s/C Nm01//
C P.f .s C h/ � f .s//

for almost all s 2 .0; T � h�. Taking L2 inner product with !".s C h/ � !".s/, then
integrating from 0 to t with respect to s, and dividing the resultant by h2, using the mono-
tonicity of ˇ" and ˇ�;", we obtain

"

2

!".t C h/ �!".t/h

2
L2

C
1

2

!".t C h/ �!".t/h

2
0;�

C
1

2

Z t

0

!".s C h/ �!".s/h

2
V1
.0/

ds

�
"

2

!".h/ �!0h

2
L2

C
1

2

!".h/ �!0h

2
0;�

C

�
K CK� C

1

2

�Z t

0

!".s C h/ �!".s/h

2
L2

ds

C
1

2

Z t

0

f .s C h/ � f .s/h

2
L2

ds
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�
"

2

!".h/ �!0h

2
L2

C
1

2

!".h/ �!0h

2
0;�

C
1

4

Z t

0

!".s C h/ �!".s/h

2
V1
.0/

ds

C C

Z t

0

!".s C h/ �!".s/h

2
0;�

ds C
1

2

Z t

0

f .s C h/ � f .s/h

2
L2

ds:

The first two terms on the right-hand side can be controlled as in [16, (4.35)]. Integrat-
ing (3.8) from 0 to h, taking the inner product with .!".h/ �!0/=h2, we obtain

"

2

!".h/ �!0h

2
L2

C
1

2

!".h/ �!0h

2
0;�

� �

�
!".h/ �!0

h
;
1

h

Z h

0

P.@ˆı.'".s//C ˇ".'".s//C �.'".s// � f .s// ds
�

L2

D �aL

�
SL

�
!".h/ �!0

h

�
;
1

h

Z h

0

P.@ˆı.'".s//Cˇ".'".s//C�.'".s//�f .s// ds
�

�
1

4

!".h/ �!0h

2
0;�

C C

1h
Z h

0

P.@ˆı.'".s//C ˇ".'".s//C �.'".s// � f .s// ds
2

H1

: (3.65)

Thanks to the additional assumptions (A6), (A7), the last term on the right-hand side
of (3.65) is bounded for all " 2 .0; "0�. Then, by Grönwall’s lemma, we obtain that

t 7!
!".t C h/ �!".t/

h
are bounded in L1

�
0; T � hIH�1.0/

�
\ L2

�
0; T � hIV1

.0/

�
;

and

t 7! "1=2
!".t C h/ �!".t/

h
are bounded in L1.0; T � hIL2/;

uniformly with respect to " 2 .0; "0�. Passing to the limit as h! 0, we obtain

"1=2k!0"kL1.0;T IL2/ C k!
0
"kL1.0;T IH�1

.0/
/ C k!

0
"kL2.0;T IV1/ �M8; (3.66)

where the constant M8 > 0 is independent of " 2 .0; "0�.
Keeping the improved estimate (3.66) and the assumption (A7) in mind, arguing as

in Lemmas 3.5–3.6, without integration in time over .0; T / but taking the L1-norm on
.0; T /, we obtain

km"kL1.0;T / C k�"kL1.0;T IH1/ �M9;

kˇ".'"/kL1.0;T IH/ C kˇ�;". "/kL1.0;T IH� / �M9;

k!"kL1.0;T IH2/ �M9;

where the constantM9 > 0 is independent of " 2 .0; "0�. Passing to the limit as "! 0, we
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obtain the following additional regularities for the solution .!;�; �/:

! 2 W 1;1
�
0; T IH�1.0/

�
\H 1

�
0; T IV1

.0/

�
\ L1.0; T IH2/;

� 2 L1.0; T IH1/; � 2 L1.0; T IL2/:

Since!02L2.0;T IV1
.0/
/ and P�DSL.�!0/, we can infer from the elliptic estimate (2.10)

that � 2 L2.0; T IH2/.
Applying the above regularity properties and integration by parts, the weak formula-

tion (2.26) can be rewritten as

0 D

Z
�

.@t!.t/ ���.t//y dx C
Z
�

.@t!�.t/ ����.t/C @n�.t//y� dS

C
1

L

Z
�

.�.t/ � �.t/ � L@n�.t//.y� � y/ dS 8y 2 H1; a.a. t 2 .0; T /: (3.67)

Since y 2 H1 is arbitrary, it easily follows from (3.67) that

@t! D ��; a.e. in Q;

@t!� D ��� � @n�; a.e. on †;

L@n� D � � �; a.e. on †:

In summary, .';�;�/ is a strong solution to problem .SL;ı/ in the sense of Definition 2.10.
The proof is complete.

4. Asymptotic limit as ı ! 0 and well-posedness without surface
diffusion

In this section, we investigate the asymptotic behavior of weak solutions to problem .SL;ı/

as ı! 0, with L 2 .0;C1/ being fixed. Our goal is to show that the limit problem .SL;0/

without surface diffusion is still well posed.

4.1. Uniform estimates

Let the assumptions of Theorem 2.15 be satisfied. For any ı; " 2 .0; 1/, we consider the
approximating problem (3.8)–(3.9) with data ¹'ı0;f

ıºı2.0;1/. Let !ı" be the unique solu-
tion given by Proposition 3.1. Besides, we set

'ı" D !
ı
" C Nm

ı
01; �ı" WD "@t!

ı
" C @ˆı.!

ı
"/C ˇ".'

ı
"/C �.'

ı
"/ � f

ı ;

where Nmı0D Nm.'
ı
0/. Then, .'ı" ;�

ı
"/ is also uniquely determined and satisfies (3.13)–(3.19)

with ¹'ı0;f
ıºı2.0;1/.

As in the proof of Theorem 2.7, when "! 0, .'ı" ;�
ı
" ;ˇ".'

ı
"// converges (up to a sub-

sequence) to some limit triplet .'ı ;�ı ; �ı/, which is a weak solution to problem .SL;ı/
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with data ¹'ı0;f
ıºı2.0;1/. Since the uniqueness of �ı , �ı is not clear (cf., Theorem 2.9),

the related convergence should always be understood in the sense of a suitable subse-
quence. Below we will not relabel the convergent subsequence for the sake of simplicity.

We now derive uniform estimates of the solutions .'ı ;�ı ; �ı/ with respect to the
parameter ı 2 .0; 1/.

Lemma 4.1. There exists zı 2 .0; 1/ such that

sup
t2Œ0;T �

j Nm.'ı.t//j �M10 8ı 2 .0; zı�; (4.1)

where M10 > 0 is independent of ı 2 .0; zı�.

Proof. Recalling the mass conservation property (3.20), we have Nm.'ı".t// D Nm.'
ı
0/ for

t 2 Œ0; T �. This together with (3.52) implies

Nm.'ı.t// D Nm.'ı0/ 8t 2 Œ0; T �: (4.2)

On the other hand, it follows from (2.39) that limı!0 Nm.'
ı
0/D Nm.'0/ 2 IntD.ˇ�/. Then,

the conclusion (4.1) easily follows.

Lemma 4.2. There exists a positive constant M11, independent of ı 2 .0; zı�, such that

k'ıkL1.0;T I.H1/0/ C k'
ı
kL2.0;T IV / C ı

1=2
kr� 

ı
kL2.0;T IH� /

C k�ıkL1.0;T IL1.�// C k�
ı
�kL1.0;T IL1.�// �M11: (4.3)

Proof. Recalling (3.21), we have

k!ı"kL1.0;T IH�1
.0/
/ C kr!

ı
" kL2.0;T IH/ C ı

1=2
kr�!

ı
�;"kL2.0;T IH� /

C kˇ".'
ı
" /kL1.0;T IL1.�// C kˇ�;". 

ı
" /kL1.0;T IL1.�// � C;

where C > 0 is independent of ı; ", thanks to the assumptions (2.37), (2.38). By the weak
lower semicontinuity as "! 0, we find

k!ıkL1.0;T IH�1
.0/
/ C kr!

ı
kL2.0;T IH/ C ı

1=2
kr�!

ı
�kL2.0;T IH� /

C k�ıkL1.0;T IL1.�// C k�
ı
�kL1.0;T IL1.�// � C;

where !ı D 'ı � Nmı01 and C > 0 is independent of ı.
The above estimate combined with (4.1) and Poincaré’s inequality (2.12) yields the

conclusion (4.3).

Lemma 4.3. There exists a positive constant M12, independent of ı 2 .0; zı�, such that

k'ıkL1.0;T IV / C ı
1=2
kr� 

ı
kL1.0;T IH� / C k

y̌.'ı/kL1.0;T IL1.�//

C k y̌�. 
ı/kL1.0;T IL1.�// C k@t'

ı
kL2.0;T IH�1

.0/
/ C kP�

ı
kL2.0;T IH1

L;0/
�M12: (4.4)
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Proof. Recalling (3.29) and using the assumptions (2.37), (2.38), we get

1

4
kr!ı" .t/k

2
H C

ı

2
kr!ı�;".t/k

2
H�
C
1

2

Z t

0

k@t!
ı
".s/k

2
0;� ds

C

Z
�

y̌
".'

ı
" .t// dx C

Z
�

y̌
�;". 

ı
" .t// dS � C 8t 2 Œ0; T �;

where C > 0 is independent of ı, ". Using (3.33) and passing to the limit as "! 0, we
deduce from the weak lower semicontinuity of norms that

kr'ı.t/k2H C ıkr ı.t/k
2
H�
C

Z t

0

k@t'
ı.s/k20;� ds C

Z t

0

kP�ı.s/k2
H1
L;0

ds

C

Z
�

y̌.'ı.t// dx C
Z
�

y̌
�. 

ı.t// dS � C for a.a. t 2 Œ0; T �:

The above estimate combined with (4.1) and Poincaré’s inequality (2.12) yields the con-
clusion (4.4).

Remark 4.4. From (4.4), we easily obtain the uniform estimate

k'ık
L1.0;T I zV1/

C ı1=2k'ıkL1.0;T IV1/ � C:

Lemma 4.5. There exists a positive constant M13, independent of ı 2 .0; zı� such that

k�ıkL2.0;T IL1.�// C k�
ı
�kL2.0;T IL1.�// C k�

ı
kL2.0;T IH1/ �M13: (4.5)

Proof. Using the estimates obtained in Lemmas 4.1–4.3, we can get the conclusion (4.5)
by the same argument for Lemma 3.5 and passing to the limit as "! 0.

Lemma 4.6. There exists a positive constant M14, independent of ı 2 .0; zı�, such that

k�'ıkL2.0;T IH/ C k@n'
ı
kL2.0;T I.H1=2.�//0/ C ı

1=2
k�� 

ı
kL2.0;T IV 0� /

C k�ıkL2.0;T IH/ C k�
ı
�kL2.0;T IV 0� /

�M14: (4.6)

Proof. By the same argument for (3.38) and using the assumptions (2.37), (2.38), we can
deduce that

kˇ".'
ı
" /kL2.0;T IH/ C %

�1=2
kˇ". 

ı
" /kL2.0;T IH� / � C;

where C > 0 is independent of ı, ". Passing to the limit as "! 0, we get

k�ıkL2.0;T IH/ C %
�1=2
k�ıkL2.0;T IH� / � C: (4.7)

By comparison in (2.27), we infer from the above estimates and the assumption (2.38) that

k�'ıkL2.0;T IH/ � C; (4.8)
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where C > 0 is independent of ı. Thanks to the trace theorem [7, Theorem 2.27] and the
elliptic regularity theorem [7, Theorem 3.2], we infer from the estimates (4.4), (4.8) that

k@n'
ı
kL2.0;T I.H1=2.�//0/ � C: (4.9)

By comparison in (2.28), we infer from the estimates (4.4), (4.5), (4.9) and the assump-
tion (2.38) that

k � ı�� 
ı
C �ı�kL2.0;T I.H1=2.�//0/

� k�ıkL2.0;T IH� / C k@n'
ı
kL2.0;T I.H1=2.�//0/ C k��. 

ı/kL2.0;T IH� /

C kf ı� kL2.0;T IH� /

� C: (4.10)

Since ı1=2�� ı is uniformly bounded in L2.0; T I V 0�/ by the estimate (4.3), a direct
comparison in (4.10) yields

k�ı�kL2.0;T IV 0� / � C: (4.11)

Collecting the estimates (4.7), (4.8), (4.9), and (4.11), we arrive at the conclusion (4.6).

4.2. Passage to the limit as ı ! 0

Proof of Theorem 2.15. From the uniform estimates obtained in Lemmas 4.1–4.6, we find
that there exists a triplet .';�; �/ satisfying the regularity properties

' 2 H 1.0; T I .H1/0/ \ L1.0; T I zV1/; �' 2 L2.0; T IH/;

� 2 L2.0; T IH1/;

� 2 L2.0; T IH � .H 1=2.�//0/;

and the following convergence results hold as ı ! 0 (in the sense of a subsequence):

'ı ! ' weakly star in L1.0; T I zV1/; (4.12)

'ı ! ' weakly in H 1.0; T I .H1/0/; (4.13)

�'ı ! �' weakly in L2.0; T IH/; (4.14)

�ı ! � weakly in L2.0; T IH1/; (4.15)

�ı ! � weakly in L2.0; T IH � V 0�/; (4.16)

ı'ı ! 0 strongly in L1.0; T IV1/; (4.17)

�ı�� 
ı
C �ı� ! �� weakly in L2.0; T I .H 1=2.�//0/: (4.18)

Here, we note that (4.17) implies ı�� ı ! 0 in L2.0; T IV 0�/; thus, (4.16) and (4.18) are
consistent. Next, by Lemma A.1, we can conclude

'ı ! ' strongly in C.Œ0; T �IL2/: (4.19)
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This implies 'jtD0 D '0 thanks to the assumption (2.39). Besides, it follows from (4.2)
that

Nm.'.t// D Nm.'0/ 8t 2 Œ0; T �:

The strong convergence (4.19) combined with the assumption (A3) also gives

�.'ı/! �.'/ strongly in C.Œ0; T �IH/;

��. 
ı/! ��. / strongly in C.Œ0; T �IH�/:

Passing to the weak limit as ı ! 0 in (2.26) yields the variational formulation (2.31).
Next, we write (3.54) as

.�ı.t/; z/L2 D .r'ı.t/;rz/H C .�
ı ; z/H C

˝
� ı�� 

ı
C �ı� ; z�

˛
.H1=2.�//0;H1=2.�/

C .�.'ı.t// � f ı.t/; z/L2 8z 2 V1

for almost all t 2 .0; T /. Letting ı ! 0, we easily recover (2.32). Thanks to the clas-
sical results in [4, 6], the weak convergence (4.16) and the strong convergence (4.19)
combined with the demi-closedness of the maximal monotone operator ˇ yield (2.33),
that is, � 2 ˇ.'/ almost everywhere in Q. Moreover, by exactly the same argument as
in [18, Section 3.2], we can justify the variational inequality (2.34) for �� . According
to (4.18) and [18, Remark 2.6], we have �� 2 @J†. /, where

J† W L
2.0; T IH 1=2.�//! Œ0;C1�; J† WD

´R
†
y̌
�. / dS dt if y̌�. / 2 L1.†/;

C1 otherwise:

In summary, the limit .';�; �/ is a weak solution to the system .SL;0/ in the sense of
Definition 2.13. The proof of Theorem 2.15 is complete.

4.3. Uniqueness and further properties

Proof of Theorem 2.17. The proof is similar to that for Theorem 2.9. Keeping in mind that
ı D 0, in analogy to (3.57), we obtain

1

2

d
ds
k!1.s/ �!2.s/k

2
0;� C kr.!1.s/ � !2.s//k

2
H

C

Z
�

.�1.s/ � �2.s//.!1.s/ � !2.s// dx

C h��;1.s/ � ��;2.s/; !�;1.s/ � !�;2.s/i.H1=2.�//0;H1=2.�/

� .K CK�/k!1.s/ �!2.s/k
2
L2 C kf1.s/ � f2.s/k. zV1/0

k!1.s/ �!2.s/k zV1 ;

(4.20)

which holds for almost all s 2 .0;T /. Since!1.s/�!2.s/ 2 zV1
.0/

for almost all s 2 .0;T /,
from Poincaré’s inequality (2.12) and the interpolation inequality (2.13), we get

k!1.s/ �!2.s/k zV1 � Ckr.!1.s/ � !2.s//kH ;

k!1.s/ �!2.s/k
2
L2 � kr.!1.s/ � !2.s//k

2
H C Ck!1.s/ �!2.s/k

2
0;�
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for any  > 0 and almost all s 2 .0; T /. Besides, it follows from the monotonicity of ˇ,
ˇ� thatZ

�

.�1.s/ � �2.s//.!1.s/ � !2.s// dx

C h��;1.s/ � ��;2.s/; !�;1.s/ � !�;2.s/i.H1=2.�//0;H1=2.�/ � 0 for a.a. s 2 .0; T /:

Inserting the above inequalities into (4.20), taking  sufficiently small, then by Grönwall’s
lemma, the fact Nm.'1/D Nm.'2/, Young’s inequality, and Poincaré’s inequality (2.12), we
can conclude (2.40).

Finally, if the bulk and boundary potentials exhibit the same growth, some further
properties of the asymptotic limit as ı ! 0 can be obtained. More precisely, we have the
following corollary.

Corollary 4.7. Let the assumptions of Theorem 2.15 be satisfied. In addition, we assume
that

(A8) D.ˇ/ D D.ˇ�/ and there exists a constant M � 1 such that

1

M
jˇı�.r/j �M � jˇ

ı.r/j �M jˇı�.r/j CM 8r 2 D.ˇ/:

(1) Improved regularity: the limit triplet .';�; �/ obtained in Theorem 2.15
satisfies

' 2 L2.0; T IH 3=2.�//; @n' 2 L
2.0; T IH�/;  2 L2.0; T IV�/;

�� 2 L
2.0; T IH�/; �� 2 ˇ�. / a.e. on †:

(2) Refined convergence (in the sense of a subsequence): it holds

�ı� ! � weakly in L2.0; T IH�/;

ı ı ! 0 weakly in L2.0; T IH 3=2.�//;

@n'
ı
� ı�� 

ı
! @n' weakly in L2.0; T IH�/

as ı! 0 and (2.36) can be replaced by � D @n'C �� C��. /� f� almost
everywhere on †.

(3) Convergence rate: if Nm.'ı0/ � Nm.'0/ for ı 2 .0; 1/, then: for all ı 2 .0; 1/,
it holds

k'ı � 'kL1.0;T IH�1
.0/
/ C k'

ı
� 'k

L2.0;T I zV1/

� C
�
ı1=2 C k'ı0 � '0k0;� C kf

ı
� f kL2.0;T IL2/

�
:

Since the proof of Corollary 4.7 follows the same arguments for [18, Theorems 2.10,
2.12], we leave the details to interested readers.
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5. Asymptotic limits with respect to kinetic rate: L ! 0 or L ! C1

In this section, we study the asymptotic limit of solutions to problem .SL;ı/ as L! 0 or
L!C1, with ı 2 .0;C1/ being fixed.

For any " 2 .0; 1/, we consider the approximating problem (3.8)–(3.9) with data
.'0;f /. Let !L" be the unique solution given by Proposition 3.1. We set

'L" D !
L
" C Nm01; �L" WD "@t!

L
" C @ˆı.!

L
" /C ˇ".'

L
" /C �.'

L
" / � f ;

where Nm0 D Nm.'0/. Then, .'L" ;�
L
" / is uniquely determined and satisfies (3.13)–(3.19)

with data .'0;f /.
As in the proof of Theorem 2.7, when "! 0, .'L" ;�

L
" ;ˇ".'

L
" // converges to certain

limit triplet .'L;�L; �L/, which is a weak solution to problem .SL;ı/ with data .'0;f /.
Since the uniqueness of �L, �L is not clear (cf., Theorem 2.9), the related convergence
should always be understood in the sense of a suitable subsequence. Below we will not
relabel the convergent subsequence for the sake of simplicity.

The proofs of Theorems 2.20 and 2.23 rely on uniform estimates with respect to the
kinetic rate L. The first estimate comes from the mass conservation. Recalling (3.20) and
passing to the limit "! 0, we get

Nm.'L.t// D Nm.'0/ D Nm0 8t 2 Œ0; T �: (5.1)

Nevertheless, further uniform estimates have to be derived separately for the two different
cases L! 0 and L!C1.

5.1. The case L ! 0

We now proceed to derive uniform estimates for L 2 .0; 1�.

Lemma 5.1. There exists a positive constant C1, independent of L 2 .0; 1�, such that

k!LkL1.0;T IH�1
.0/
/ C k!

L
kL2.0;T IV1

.0/
/

C k�LkL1.0;T IL1.�// C k�
L
� kL1.0;T IL1.�// � C1; (5.2)

where !L D 'L � Nm01.

Proof. Recalling the derivation of (3.21), we have

k!L" k
2
L1.0;T IH�1

.0/
/
C k!L" k

2
L2.0;T IV1

.0/
/
C kˇ".'

L
" /kL1.0;T IL1.�//

C kˇ�;". 
L
" /kL1.0;T IL1.�//

� C."k!0k
2
L2 C k!0k

2
0;� C 1/;

where C > 0 is independent of L, ". By the weak lower semicontinuity as "! 0, we find

k!Lk2
L1.0;T IH�1

.0/
/
C k!Lk2

L2.0;T IV1
.0/
/
C k�LkL1.0;T IL1.�// C k�

L
� kL1.0;T IL1.�//

� C.k!0k
2
0;� C 1/: (5.3)
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Recall that, for any fixed L 2 .0;C1/, the norms k � kH1 and k � kH1
L;0

are equivalent on

H1
L;0. This fact yields

kykL2 � kykH1 � yCkykH1
1;0
� yCkykH1

L;0
8y 2 H1

L;0 8L 2 .0; 1�; (5.4)

where yC > 0 is independent of L 2 .0; 1�. As a consequence, it holds

k!0k
2
0;� D kS

L!0k
2
H1
L;0

D .!0;S
L!0/L2

� k!0kL2kSL!0kL2 � yCk!0kL2kSL!0kH1
L;0
D yCk!0kL2k!0k0;�:

Hence, k!0k0;� � yCk!0kL2 , and thus, it is uniformly bounded for L 2 .0; 1�. This
together with (5.3) yields the conclusion (5.2).

Lemma 5.2. There exists a positive constant C2, independent of L 2 .0; 1�, such that

k'LkL1.0;T IV1/ C k
y̌.'L/kL1.0;T IL1.�// C k

y̌
�. 

L/kL1.0;T IL1.�//

C k@t'
L
kL2.0;T IH�1

.0/
/ C kP�

L
kL2.0;T IH1

L;0/
� C2: (5.5)

Proof. Recalling (3.29) and (3.33), passing to the limit as " ! 0, we can deduce the
uniform estimate (5.5) from the weak lower semicontinuity, (5.1), (5.2), and Poincaré’s
inequality (2.12).

Lemma 5.3. There exists a positive constant C3, independent of L 2 .0; 1�, such that

k@t'
L
kL2.0;T I.V1/0/ � C3: (5.6)

Proof. From (5.5) and the definition of k � kH1
L;0

, we find

kr�LkL2.0;T IH/ C kr��
L
kL2.0;T IH� / C

1
p
L
k�L � �LkL2.0;T IH� / � C; (5.7)

where C > 0 is independent of L 2 .0; 1�. Taking z D .z; z�/ 2 V1 in the weak formula-
tion (2.26), we get

h@t'
L.t/; zi.V1/0;V1 C

Z
�

r�L.t/ � rz dx C
Z
�

r�L.t/ � r�z� dS D 0

for almost all t 2 .0; T /. Then, it follows that

jh@t'
L.t/; zi.V1/0;V1 j � kr�L.t/kHkrzkH C kr�

L.t/kH�kr�z�kH�

� .kr�L.t/kH C kr�
L.t/kH� /kzkV1 ;

which together with (5.7) implies the estimate (5.6).
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Lemma 5.4. There exists a positive constant C4, independent of L 2 .0; 1�, such that

k�LkL2.0;T IL1.�// C k�
L
� kL2.0;T IL1.�// C k�

L
kL2.0;T IH1/ � C4: (5.8)

Proof. Keeping the estimates (5.1), (5.2), (5.4), (5.5) in mind, we can obtain the uniform
estimate (5.8) with respect to L 2 .0; 1� by the same argument for Lemma 3.5 and passing
to the limit as "! 0.

Lemma 5.5. There exists a positive constant C5, independent of L 2 .0; 1�, such that

k�LkL2.0;T IH/ C k�
L
� kL2.0;T IH� / C k'

L
kL2.0;T IV2/ � C5:

Proof. To conclude, we apply the same argument for Lemma 3.6 and then pass to the limit
as "! 0. The estimate for k'LkL2.0;T IV2/ follows from the estimate for k!LkL2.0;T IV2/,
(5.1), and Poincaré’s inequality (2.12).

Proof of Theorem 2.20. The existence of a limit triplet .'0;�0; �0/ with expected reg-
ularity properties and the (sequential) convergence results (2.44)–(2.48) are guaranteed
by (5.1), Lemmas 5.1–5.5, and the same compactness argument as in the proof of Theo-
rem 2.15. By (2.46), (2.48) and the maximal monotonicity of ˇ and ˇ� , we find

�0 2 ˇ.'0/ a.e. in Q; �0� 2 ˇ�. 
0/ a.e. on †:

Then, taking limit L! 0 in (2.26), (3.54), we recover (2.41) and

.�0.t/; z/L2 D bı.'
0.t/; z/C .�0.t/C �.'0.t// � f .t/; z/L2 8z 2 V1 (5.9)

holds for almost all t 2 .0;T /. Since z 2V1 is arbitrary, we can conclude (2.42) and (2.43)
from (5.9). The inequality (2.49) follows from (5.7). This also implies

�0j� D �
0 a.e. on †:

Hence, .'0;�0;�0/ is a weak solution of GMS model in the sense of Definition 2.19. The
uniqueness of '0 has been established in [16, Theorem 2.1]. The proof of Theorem 2.20
is complete.

5.2. The case L ! C1

We now derive uniform estimates for L � yL, where yL � 1 is a constant to be determined
later.

Lemma 5.6. There exists a positive constant C6, independent of L � 1, such that

k@t!
L
kL2.0;T IH�1

.0/
/ C k'

L
kL1.0;T IV1/

C k y̌.'L/kL1.0;T IL1.�// C k
y̌
�. 

L/kL1.0;T IL1.�// � C6: (5.10)
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Proof. Testing (3.8) at time s 2 .0; T / by @t!L" 2 L2
.0/

, with the help of (2.23), we obtain

d
ds

�
ˆı.!

L
" .s//C

Z
�

y̌
".'

L
" .s// dx C

Z
�

y̌
�;". 

L
" .s// dS

�
C "k@t!

L
" .s/k

2
L2 C k!

L
" .s/k

2
0;�

D �.P�.'L" .s//; @t!
L
" .s//L2 C .Pf .s/; @t!L" .s//L2 for a.a. s 2 .0; T /: (5.11)

Similar to (3.27), it holds

.Pf .s/; @t!L" .s//L2 D .Pf .s/;SL.@t!
L
" .s///H1

L;0

�
1

4
k@t!

L
" .s/k

2
0;� C kf .s/k

2
V1 ; (5.12)

and ˇ̌
.P�.'L" .s//; @t!

L
" .s//L2

ˇ̌
D
ˇ̌
.P�.'L" .s//;S

L.@t!
L
" .s///H1

L;0

ˇ̌
� kP�.'L" .s//kH1

L;0
k@t!

L
" .s/k0;�

�
1

4
k@t!

L
" .s/k

2
0;� C kP�.'

L
" .s//k

2
H1
L;0

: (5.13)

Thanks to the additional assumption that � , �� are differentiable on R, we deduce from
(A3), 'L" D !

L
" C Nm01, and Poincaré’s inequality (2.12) for all L � 1, it holds

kP�.'L" .s//k
2
H1
L;0

� kr�.'L" .s//k
2
H C kr���. 

L
" .s//k

2
H�

C k�.'L" .s// � ��. 
L
" .s//k

2
H�

� K2kr!L" .s/k
2
H CK

2
�kr�!

L
�;".s/k

2
H�
C 3K2k!L" .s/k

2
H

C 3K2�k!
L
�;".s/k

2
H�
C 6j�j.j�. Nm0/j

2
C j��. Nm0/j

2/

� Ck!L" .s/k
2
V1
.0/

C C; (5.14)

where C > 0 is independent of L � 1. In view of (5.12), (5.13), (5.14), and (A4), we infer
from (5.11) and Grönwall’s lemma that, for all L � 1, it holds

1

2
k!L" .t/k

2
V1
.0/

C

Z
�

y̌
".'

L
" .t// dx C

Z
�

y̌
�;". 

L
" .t// dS

C "

Z t

0

k@t!
L
" .s/k

2
L2 ds C

1

2

Z t

0

k@t!
L
" .s/k

2
0;� ds � C 8t 2 Œ0; T �;

where C > 0 depends on k!0k2V1
.0/

, Nm0,
R
�
y̌.'0/ dx,

R
�
y̌
�. 0/ dS , kf kL2.0;T IV1/, �,

and T . Passing to the limit as "! 0, by the weak lower semicontinuity and 'L D !L C
Nm01, we obtain the estimate (5.10).

Lemma 5.7. There exists a positive constant C7, independent of L � 1, such that

k@t'
L
kL2.0;T IV 0/ � C7; (5.15)

k@t 
L
kL2.0;T IV 0� /

� C7: (5.16)
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Proof. From (5.10) and the definition of k � kH1
L;0

, we see that, for L � 1, it holds

kr�LkL2.0;T IH/ C kr��
L
kL2.0;T IH� / C

1
p
L
k�L � �LkL2.0;T IH� / � C; (5.17)

where C > 0 is independent of L. For any z 2 V , taking z D .z; 0/ 2 H1 in (2.26), we
obtain

h@t'
L.t/; ziV 0;V C

Z
�

r�L.t/ � rz dx C
1

L

Z
�

.�L.t/ � �L.t//z dS D 0 (5.18)

for almost all t 2 .0; T /. It follows that

jh@t'
L.t/; ziV 0;V j � kr�

L.t/kHkrzkH C
1

L
k�L.t/ � �L.t/kH�kzkH�

� C

�
kr�L.t/kH C

1
p
L
�
1
p
L
k�L.t/ � �L.t/kH�

�
kzkV ;

which implies

k@t'
L.t/kV 0 � C

�
kr�L.t/kH C

1
p
L
�
1
p
L
k�L.t/ � �L.t/kH�

�
:

Then, by (5.17), we get (5.15). Analogously, for any z� 2 V� , taking z D .0; z�/ 2 H1

in (2.26), we obtain

h@t 
L.t/; z�iV 0� ;V� C

Z
�

r��
L.t/ � r�z� dS �

1

L

Z
�

.�L.t/ � �L.t//z� dS D 0:

By the same reasoning, we arrive at (5.16).

Lemma 5.8. There exists a large constant yL � 1 such that, for all L � yL, it holds

k�LkL2.0;T IL1.�// C k�
L
� kL2.0;T IL1.�// � C8.1C k@n'

L
kL2.0;T IH� //; (5.19)

where C8 > 0 is independent of L.

Proof. Taking the test function

y D .N�.'
L
� h'Li�/;N�. 

L
� h Li�// 2 H1

in (2.26), then we obtain

0 D h@t'
L;N�.'

L
� h'Li�/iV 0;V C h@t 

L;N�. 
L
� h Li�/iV 0� ;V�

C

Z
�

r�L � rN�.'
L
� h'Li�/ dx C

Z
�

r��
L
� r�N�. 

L
� h Li�/ dS

C
1

L

Z
�

.�L � �L/ŒN�.'
L
� h'Li�/ �N�. 

L
� h Li�/� dS
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D h@t'
L;N�.'

L
� h'Li�/iV 0;V C h@t 

L;N�. 
L
� h Li�/iV 0� ;V�

C

Z
�

�L.'L � h'Li�/ dx C
Z
�

�L. L � h Li�/ dS

C
1

L

Z
�

.�L � �L/ŒN�.'
L
� h'Li�/ �N�. 

L
� h Li�/� dS

DW

5X
jD1

Rj : (5.20)

It follows from the definition of N�, N� , Hölder’s inequality, and Poincaré’s inequali-
ties (2.1), (2.2) that

jR1j C jR2j � jh@t'
L;N�.'

L
� h'Li�/iV 0;V j C

ˇ̌
h@t 

L;N�. 
L
� h Li�/iV 0� ;V�

ˇ̌
� Ck@t'

L
kV 0kr'

L
kH C Ck@t 

L
kV 0�
kr� 

L
kH� : (5.21)

Next, by the trace theorem and the elliptic estimates, we find

jR5j D

ˇ̌̌̌
1

L

Z
�

.�L � �L/ŒN�.'
L
� h'Li�/ �N�. 

L
� h Li�/�dS

ˇ̌̌̌
�
C

L
k�L � �LkH�

�
k'L � h'Li�kV �0 C k 

L
� h Li�kV ��;0

�
�

C
p
L

�
1
p
L
k�L � �LkH�

�
.k'LkH C k 

L
kH� /: (5.22)

The estimates for R3, R4 are more involved. By (2.27) and (2.28), we get

R3 CR4 D

Z
�

�L.'L � h'Li�/ dx C
Z
�

�L. L � h Li�
�

dS

D

Z
�

jr'Lj2 dx C ı
Z
�

jr� 
L
j
2 dS

C

Z
�

�L.'L � h'Li�/ dx C
Z
�

�L� . 
L
� h Li�/ dS

C

Z
�

.�.'L/ � f /.'L � h'Li�/ dx

C

Z
�

.��. 
L/ � f�/. 

L
� h Li�/ dS

C .h'Li� � h 
L
i�/

Z
�

@n'
L dS: (5.23)

Consider the third and fourth terms on the right-hand side of (5.23):Z
�

�L.'L � h'Li�/ dx C
Z
�

�L� . 
L
� h Li�/ dS

D

Z
�

�L.'L � h'0i�/ dx C
Z
�

�L� . 
L
� h 0i�/ dS

C .h'0i� � h'
L
i�/

Z
�

�L dx C .h 0i� � h Li�/
Z
�

�L� dS: (5.24)
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It follows from (5.17) and (5.18) that

jh'0i� � h'
L.t/i�j D

1

j�j

ˇ̌̌̌Z t

0

h@t'
L.s/; 1iV 0;V ds

ˇ̌̌̌
�

1

j�j

1

L

Z t

0

k�L.s/ � �L.s/kL1.�/ ds

�
j�j1=2jT j1=2

j�j

1
p
L

�
1
p
L
k�L � �LkL2.0;T IH� /

�
�
C 0j�j1=2jT j1=2

j�j

1
p
L
8t 2 Œ0; T �; (5.25)

and in a similar manner,

jh 0i� � h 
L.t/i� j �

C 00jT j1=2

j�j1=2
1
p
L
8t 2 Œ0; T �; (5.26)

where the constants C 0; C 00 > 0 in (5.25), (5.26) are independent of L. Since h'0i�,
h 0i� 2 IntD.ˇ�/, recalling (3.6), we can first work with the approximating solutions
'L" and then pass to the limit as "! 0 to getZ

�

�L.'L � h'0i�/ dx � ı.1/0 k�
L
kL1.�/ � c

.1/
1 j�j;Z

�

�L� . 
L
� h 0i�/ dS � ı.2/0 k�

L
� kL1.�/ � c

.2/
1 j�j:

Set yı0 D min¹ı.1/0 ; ı
.2/
0 º, Oc1 D max¹c.1/1 ; c

.2/
1 º. There exists some yL � 1 sufficiently large

such that
C 0j�j

1
2 jT j

1
2

j�j

1
p
L
�

yı0

2
;

C 00jT j
1
2

j�j
1
2

1
p
L
�

yı0

2
8L � yL:

Then, it follows from (5.24)–(5.26) thatZ
�

�L.'L � h'Li�/ dx C
Z
�

�L� . 
L
� h Li�/ dS

�

yı0

2
.k�LkL1.�/ C k�

L
� kL1.�// � Oc1.j�j C j�j/: (5.27)

Concerning the last three terms on the right-hand side of (5.23), from (A3) and Hölder’s
inequality, we getˇ̌̌̌Z

�

.�.'L/ � f /.'L � h'Li�/ dx
ˇ̌̌̌
C

ˇ̌̌̌Z
�

.��. 
L/ � f�/. 

L
� h Li�/ dS

ˇ̌̌̌
C

ˇ̌̌̌
.h'Li� � h 

L
i�/

Z
�

@n'
L dS

ˇ̌̌̌
� Ck'LkL2.1C k'LkL2 C kf kL2 C k@n'

L
kH� /: (5.28)
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Returning to (5.20), owing to the estimates (5.21)–(5.28), we infer from (5.10), (5.15),
(5.16), (5.17), and (A4) that

yı0

2

�
k�LkL2.0;T IL1.�// C k�

L
� kL2.0;T IL1.�//

�
� CT 1=2
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�
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where C > 0 is independent of L 2 ŒyL;C1/. Thus, the conclusion (5.19) follows.

Lemma 5.9. There exists a positive constant C9, independent of L � yL, such that

k�LkL2.0;T IH1/ � C9
�
1C k@n'

L
kL2.0;T IH� /

�
: (5.29)

Proof. From (2.27) and (2.28), we find
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which together with (5.10), (5.19) and (A4) imply

kh�Li�kL2.0;T / C kh�
L
i�kL2.0;T / � C

�
1C k@n'

L
kL2.0;T IH� /

�
: (5.30)

By (5.17), (5.30) and Poincaré’s inequalities (2.1), (2.2), we obtain (5.29).

Lemma 5.10. There exists a positive constant C10, independent of L � yL, such that

k�LkL2.0;T IH/ C k�
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L
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� C10
�
1C k@n'
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�
: (5.31)

Proof. To conclude, we apply the same argument for Lemma 3.6 and then pass to the limit
as "! 0. The estimate for k'LkL2.0;T IV2/ follows from the estimate for k!LkL2.0;T IV2/,
(5.1) and Poincaré’s inequality (2.12).

Proof of Theorem 2.23. To complete the proof, it remains to control k@n'
LkL2.0;T IH� /.

Thanks to the trace theorem and the Ehrling lemma (see Lemma A.2), we find

k@n'
L
kL2.0;T IH� / � Ck'

L
kL2.0;T IH2�r .�// for some r 2 .0; 1=2/

� �k'LkL2.0;T IH2.�// C C�k'
L
kL2.0;T IV /:
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Hence, taking � > 0 sufficiently small, we can deduce from (5.10) and (5.31) that

k'LkL2.0;T IH2/ �
1

2
k'LkL2.0;T IH2.�// C C 8L � yL:

This yields the uniform bound of k'LkL2.0;T IH2/ for allL�yL, and thus, k@n'
LkL2.0;T IH� /

is bounded as well.
Keeping the above uniform estimates in mind, we can take the limit as L ! C1

(in the sense of a subsequence) and prove Theorem 2.23 in the same way as for Theorem
2.20.

A. Appendix

We report some technical lemmas that have been frequently used in our analysis.
First, we recall the compactness lemma of Aubin–Lions–Simon type (see, for instance,

[48] in the case q > 1 and [61] when q D 1).

Lemma A.1. Let X0
c
,! X1 � X2, where Xj are (real) Banach spaces (j D 0; 1; 2). Let

1 < p � C1, 1 � q � C1 and I be a bounded subinterval of R. Then, the sets

¹' 2 Lp.I IX0/ W @t' 2 L
q.I IX2/º

c
,! Lp.I IX1/ if 1 < p < C1;

and

¹' 2 Lp.I IX0/ W @t' 2 L
q.I IX2/º

c
,! C.I IX1/ if p D C1; q > 1:

The following Ehrling lemma can be found in [48].

Lemma A.2. Let B0, B1, B be three Banach spaces so that B0 and B1 are reflexive.
Moreover,

B0 ,!,! B ,! B1:

Then, for each � > 0, there exists a positive constant C� depending on � such that

kzkB � �kzkB0 C C�kzkB1 8z 2 B0:
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