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Optimal agnostic control of unknown linear dynamics
in a bounded parameter range

Jacob Carruth, Maximilian F. Eggl, Charles Fefferman and
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Abstract. Here and in a follow-on paper, we consider a simple control problem in
which the underlying dynamics depend on a parameter a that is unknown and must
be learned. In this paper, we assume that a is bounded, i.e., that jaj � aMAX, and
we study two variants of the control problem. In the first variant, Bayesian control,
we are given a prior probability distribution for a and we seek a strategy that min-
imizes the expected value of a given cost function. Assuming that we can solve a
certain PDE (the Hamilton–Jacobi–Bellman equation), we produce optimal strate-
gies for Bayesian control. In the second variant, agnostic control, we assume nothing
about a and we seek a strategy that minimizes a quantity called the regret. We
produce a prior probability distribution dPrior.a/ supported on a finite subset of
Œ�aMAX; aMAX� so that the agnostic control problem reduces to the Bayesian control
problem for the prior dPrior.a/.
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1. Introduction

Here and in [7, 8, 17], we explore a new flavor of adaptive control theory, which we call
“agnostic control”. Our introduction borrows heavily from that of the follow-on paper [7].

Mathematics Subject Classification 2020: 49N30.
Keywords: optimal control, adaptive control, agnostic control.
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Many works in adaptive control theory attempt to control a system whose underlying
dynamics are initially unknown and must be learned from observation. The goal is then to
bound REGRET, a quantity defined by comparing our expected cost with that incurred by
an opponent who knows the underlying dynamics. Typically, one tries to achieve a regret
whose order of magnitude is as small as possible after a long time. Adaptive control theory
has extensive practical applications; see, e.g., [4, 5, 9, 22, 30].

In some applications, we do not have the luxury of waiting for a long time. This is the
case, e.g., for a pilot attempting to land an airplane following the sudden loss of a wing,
as in [6]. Our goal, here and in the follow-on paper [7], is to achieve the absolute mini-
mum possible regret over a fixed, finite time horizon. This poses formidable mathematical
challenges, even for simple model systems.

We will study a one-dimensional, linear model system whose dynamics depend on
a single unknown parameter a. When a is large positive, the system is highly unstable.
(There is no “stabilizing gain” for all a.) Here, we suppose that the unknown a is confined
to a known interval Œ�aMAX; aMAX� and we do not assume that we are given a Bayesian
prior probability distribution for it. In [7], we extend our results to deal with the case in
which a may be any real number.

Modulo an arbitrarily small increase in regret, we reduce the problem, here and in [7],
to a Bayesian variant in which the unknown a is confined to a finite set and governed by a
prior probability distribution.

For the Bayesian problem, our task is to find a strategy that minimizes the expected
cost. This leads naturally to a PDE, the Bellman equation. We prove here that the opti-
mal strategy for Bayesian control is indeed given in terms of the solution of the Bellman
equation, and that any strategy significantly different from that optimum incurs a signifi-
cantly higher cost. We proceed modulo assumptions about existence and regularity of the
relevant PDE solutions, for which we lack rigorous proofs. (However, we have obtained
numerical solutions,1 which seem to behave as expected.)

Let us now explain the above in more detail.

The model system. Our system consists of a particle moving in one dimension, influ-
enced by our control and buffeted by noise. The position of our particle at time t is denoted
by q.t/ 2 R. At each time t , we may specify a “control” u.t/ 2 R, determined by history
up to time t , i.e., by .q.s//s2Œ0;t�. A “strategy” (aka “policy”) is a rule for specifying u.t/
in terms of .q.s//s2Œ0;t� for each t . We write �; � 0; ��; etc. to denote strategies. The noise
is provided by a standard Brownian motion .W.t//t�0.

The particle moves according to the stochastic ODE

(1.1) dq.t/ D .aq.t/C u.t// dt C dW.t/; q.0/ D q0;

where a and q0 are real parameters. Due to the noise in (1.1), q.t/ and u.t/ are random
variables; these random variables depend on our strategy � , and we often write q� .t/
and u� .t/ to make that dependence explicit.

1For details on all of the numerical simulations referenced in this paper, we refer the reader to the supple-
mentary material available on our website: httpsW//github.com/meggl23/NumericalAgnosticControl (visited on
November 20, 2024).

https://github.com/meggl23/NumericalAgnosticControl
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Over a time horizon T > 0, we incur a COST, given2 by

(1.2) COST D

Z T

0

¹.q.t//2 C .u.t//2º dt:

This quantity is a random variable determined by a; q0; T and our strategy � . Here, the
starting position q0 and time horizon T are fixed and known, but we do not know the
parameter a.

We would like to keep our cost as low as possible. We write ECOST.�; a/ to denote
the expected value of the COST (1.2) for the given a in (1.1).

In this paper, we study two variants of the above control problem, which we call
Bayesian control and agnostic control.

For Bayesian control, we are given a prior probability distribution dPrior.a/ for the
unknown a in (1.1). We assume that dPrior is supported in an interval Œ�aMAX; aMAX�. Our
task is to pick the strategy � to minimize

(1.3) ECOST.�; dPrior/ D
Z aMAX

�aMAX

ECOST.�; a/ dPrior.a/:

For agnostic control, we are given that a belongs to a known interval Œ�aMAX; aMAX�,
but we are not given a prior probability distribution dPrior.a/, so we cannot define an
expected cost by (1.3). Instead, our goal will be to minimize worst-case regret, defined
by comparing the performance of our strategy with that of an opponent who knows the
value of a and plays optimally. Let �opt.a/ be the optimal strategy for known a. Thus
ECOST.�; a/ is minimized over all � by taking � D �opt.a/.3 We will introduce several
variants of the notion of regret.

To a given strategy � , we associate the following functions on Œ�aMAX; aMAX�:
• Additive regret, defined as

AReg.�; a/ D ECOST.�; a/ � ECOST.�opt.a/; a/ � 0:

• Multiplicative regret (aka “competitive ratio”), defined as

MReg.�; a/ D
ECOST.�; a/

ECOST.�opt.a/; a/
� 1:

• Hybrid regret, defined in terms of a parameter  > 0 by setting

HReg .�; a/ D
ECOST.�; a/

ECOST.�opt.a/; a/C 
�

See [7] for a discussion of the regimes in which these three notions provide useful infor-
mation.

Writing REGRET.�; a/ to denote any one of the above three functions on the interval
Œ�aMAX;CaMAX�, we define the worst-case regret:

(1.4) REGRET�.�/ D sup¹REGRET.�; a/ W a 2 Œ�aMAX; aMAX�º:

We seek a strategy � having the least possible worst-case regret.

2By rescaling, we can consider seemingly different cost functions of the form
R T
0 .q

2 C �u2/ for � > 0.
3See standard textbooks (e.g., [3]) for the computation of �opt.a/ and its expected cost.
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Thus, we have posed two problems: for Bayesian control, find the strategy that mini-
mizes expected cost; for agnostic control, find a strategy that minimizes worst-case regret.

To prepare to present our results, we next discuss a relevant PDE, the Bellman equa-
tion.

We will see that the problem of Bayesian control is intimately connected to the fol-
lowing PDE for an unknown function S.q; t; �1; �2/ of four variables:

(1.5)
0 D @tS C . Na.�1; �2/q C uopt/ @qS C Na.�1; �2/q

2 @�1S C q
2 @�2S C

1

2
@2qS

C q@2q�1S C
1

2
q2 @2�1S C .q

2
C u2opt/;

where

(1.6) uopt D �
1

2
@qS;

with terminal condition

(1.7) S jtDT D 0:

Here, Na.�1; �2/ is a known, smooth function of two variables.
We have succeeded in finding numerical solutions of (1.5)–(1.7), but we lack rigorous

proofs of existence and smoothness of solutions. Accordingly, we impose a PDE assump-
tion to the effect that (1.5)–(1.7) admit a solution S satisfying plausible estimates (see
Section 4.3). Our numerics suggest that the PDE assumption is correct. Our results below
are conditional on the PDE assumption.

We are ready to state our main results. We begin with Bayesian control. For a func-
tion Na.�1; �2/ given in terms of dPrior by an elementary formula, we define a function
uopt.q; t; �1; �2/ as in (1.5)–(1.7), and then specify a strategy � D �Bayes.dPrior/ by set-
ting

u� .t/ D uopt.q
� .t/; t; �1.t/; �2.t//; with(1.8)

�1.t/ D

Z t

0

q� .s/ Œdq� .s/ � u� .s/ds� and �2.t/ D

Z t

0

.q� .s//2 ds:(1.9)

Note that �1.t/ and �2.t/ are determined by past history up through time t , hence so
is u� .t/ in (1.8). As explained in [7], heuristic reasoning suggests that �Bayes.dPrior/ is
the optimal strategy for Bayesian control with prior belief dPrior. Our rigorous result
confirms this intuition. Recall that q0 is our starting position.

Theorem 1.1. Fix a probability distribution dPrior on Œ�aMAX; aMAX�, and let S , uopt and
� D �Bayes.dPrior/ be as above. Then the following hold.

(A) ECOST.�; dPrior/ D S.q0; 0; 0; 0/.
(B) Let � 0 be any other strategy. Then

ECOST.� 0; dPrior/ � ECOST.�; dPrior/:

For a class of “tame strategies” � 0, we can sharpen (B) above to a quantitative result.
A tame strategy � 0 satisfies the estimate

ju�
0

.t/j � OC Œjq�
0

.t/j C 1� (all t 2 Œ0; T �/
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with probability 1, for a constant OC , called a tame constant for � 0. The quantitative version
of (B) is as follows.

Theorem 1.2 (Quantitative uniqueness). Let dPrior and � D �Bayes.dPrior/ be as in The-
orem 1.1. Given " > 0 and given a constant OC , there exists ı > 0 for which the following
holds.

Let � 0 be a tame strategy with tame constant OC .
If ECOST.� 0; dPrior/ � ECOST.�; dPrior/C ı, then the expected value ofZ T

0

¹jq� .t/ � q�
0

.t/j2 C ju� .t/ � u�
0

.t/j2º dt

is less than ".

Quantitative uniqueness will play a crucial rôle in our analysis of agnostic control.
Our main result for agnostic control is as follows.

Theorem 1.3. Fix Œ�aMAX; aMAX�, q0, T (and  , if we use hybrid regret). Then there exist
a probability measure dPrior, a finite subset E � Œ�aMAX; aMAX�, and a strategy � , for
which the following hold.

(I) � is the optimal Bayesian strategy for the prior probability distribution dPrior.
(II) dPrior is supported in the finite set E.

(III) E is precisely the set of points a 2 Œ�aMAX; aMAX� at which the function

Œ�aMAX; aMAX� 3 a 7! REGRET.�; a/

achieves its maximum.

(IV) REGRET�.�/ � REGRET�.� 0/ for any other strategy � 0.

So, for optimal agnostic control, we should pretend to believe that the unknown a is
confined to a finite set E and governed by the probability distribution dPrior, even though
in fact we know nothing about a except that it lies in Œ�aMAX; aMAX�.

Let dPrior, � and E be as in (I), (II) and (III) of Theorem 1.3. Since � is the optimal
Bayesian strategy for dPrior (by (I)), and since dPrior is supported on the finite set E
(by (II)), we have for any other strategy � 0 that

ECOST.�; a0/ � ECOST.� 0; a0/ for some a0 2 E:

In particular, we have

REGRET.�; a0/ � REGRET.� 0; a0/ for some a0 2 E:

Combining this with (III), we see that for any a 2 Œ�aMAX; aMAX�, we have

REGRET.�; a/ � REGRET.� 0; a0/:

Therefore (I), (II) and (III) of Theorem 1.3 easily imply (IV). The hard part of Theorem 1.3
is the assertion that there exist dPrior, E and � satisfying (I), (II) and (III).
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Theorem 1.3 lets us search for optimal agnostic strategies: We first guess a finite set E
and a probability measure dPrior concentrated on E. By solving the Bellman equation,
we produce the optimal Bayesian strategy � D �Bayes.dPrior/, which allows us to com-
pute the function Œ�aMAX; aMAX� 3 a 7! REGRET.�; a/. If the maximum of that function
occurs precisely at the points of E, then � is the desired optimal agnostic strategy. Other-
wise, we modify our guess .E; dPrior/. We have carried this out numerically for several
Œ�aMAX; aMAX�, q0 and T .

This concludes our introductory discussion of agnostic control for bounded a (i.e.,
for a 2 Œ�aMAX; aMAX�).

We briefly touch on another variant of the control problem (1.1): agnostic control for
unbounded a.

Suppose we assume absolutely nothing about our unknown a; it might be any real
number. For any strategy � , we define REGRET�.�/ as in (1.4), except that now the sup is
taken over all a 2 R. Our task is to pick � to minimize REGRET�.�/.

Our companion paper [7] analyzes this problem by comparing optimal agnostic control
for arbitrary a with the case in which a is confined to a large interval Œ�aMAX."/; aMAX."/�,
depending on a small parameter " > 0. Roughly speaking, [7] shows that any strategy for a
confined to Œ�aMAX."/;CaMAX."/� may be modified to produce a strategy for arbitrary
a 2 R, with an increase in worst-case hybrid regret of at most ". (See [7] for precise
statements.)

Recap. Let us summarize what we have achieved. Suppose our goal is to minimize worst-
case hybrid regret in the setting in which a may be any real number. Modulo an arbitrarily
small increase in regret, we may reduce matters to the case in which a is confined to a
bounded interval Œ�aMAX; aMAX�. We then look for a probability measure dPrior living on
a finite set E � Œ�aMAX; aMAX�, such that the regret of the optimal Bayesian strategy for
dPrior is maximized precisely on E. We can calculate the optimal Bayesian strategy for
a given prior probability measure by solving a Bellman equation. However, our results
are conditional; we have to make an assumption on the existence, smoothness, and size of
solutions to the Bellman equation. In numerical simulations, we have produced evidence
for our PDE assumptions, and we have produced optimal agnostic strategies for cases in
which the unknown a is confined to an interval.

Ideas from the proofs. We mention one significant technical point regarding the proofs
of Theorems 1.1, 1.2 and 1.3: we need a rigorous definition of a strategy. Certainly the
phrase “a rule for determining u.t/ from past history” is not precise.

We want to allow u.t/ to depend discontinuously on past history .q.s//s2Œ0;t�. For
instance, we should be allowed to set

u.t/ D

²
�q.t/ if jq.t/j > 1;
0 otherwise:

On the other hand, we had better make sure that we can produce solutions of our stochastic
ODE

dq D .aq C u/dt C dW:

We proceed as follows.
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At first we fix a partition

(1.10) 0 D t0 < t1 < � � � < tN D T

of the time interval Œ0; T �. We restrict ourselves to strategies � in which the control u.t/
is constant in each interval Œt� ; t�C1/, and in which, for each �, u.t�/ is determined by
q.t1/; : : : ; q.t�/, together with “coin flips” E� D .�1; �2; � � � / 2 ¹0;1ºN . For all �, we assume
that u.t�/ is a Borel measurable function of .q.t1/; : : : ; q.t�/; E�/, and that

ju.t�/j � CTAME Œjq.t�/j C 1�:

A strategy as above is called a tame strategy associated to the partition (1.10), with a tame
constant CTAME. For such strategies, it is easy to define the solutions q� .t/, u� .t/ of our
stochastic ODE (1.1).

Most of our work lies in controlling and optimizing tame strategies associated to a suf-
ficiently fine partition. In particular, we will prove approximate versions of Theorems 1.1
and 1.2 in the setting of such strategies (see Lemmas 4.6 and 4.9, respectively).

We will then define a tame strategy (not associated to any partition) by considering a
sequence �1; �2; : : : of ever-finer partitions of Œ0; T �. To each partition �n we associate
a tame strategy �n with a tame constant CTAME independent of n. If the resulting q�n.t/
and u�n.t/ tend to limits, in an appropriate sense, as n!1, then we declare these lim-
its q.t/ and u.t/ to arise from a tame strategy � with a tame constant CTAME.

Finally, we drop the restriction to tame strategies and consider general strategies. To
do so, we consider a sequence .�n/nD0;1;2;::: of tame strategies, not assumed to have a
tame constant independent of n. If the relevant q�n.t/ and u�n.t/ converge, in a suitable
sense, as n!1, then we say that the limits q.t/ and u.t/ arise from a strategy � .

It is not hard to pass from tame strategies associated to partitions of Œ0; T � to general
tame strategies, and then to pass from such tame strategies to general strategies. The work
in proving Theorems 1.1 and 1.2 lies in our close study of tame strategies associated to
fine partitions.

We provide only a few comments on the proof of Theorem 1.3. The main work lies
in proving an analogue of Theorem 1.3 in which the unknown a is confined to a finite set
A � Œ�aMAX; aMAX�, rather than to the whole of Œ�aMAX; aMAX�. We apply that analogue to
a sequence A1; A2; : : : of fine nets in Œ�aMAX; aMAX�, e.g., An D Œ�aMAX; aMAX� \ 2

�n
Z,

and pass to the limit as n ! 1 using a weak compactness argument. To establish the
result for finite A, we proceed by induction on the number of elements of A. Details may
be found in Section 6.

Future directions. Our work suggests several unsolved problems, among which we men-
tion:

• Prove (or disprove) the PDE assumption.
• Consider problems in which the particle lives in RN , not just in R1; and in which the

dynamics of the particle depend on more than one unknown parameter. Can that be
done without rendering the relevant numerics hopelessly impractical?

• Even for the model problem considered in this paper, improve the numerics to let us
produce optimal agnostic strategies for a larger range of aMAX and T than we can deal
with today.
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We speculate briefly on a particular model problem in which we do not know a priori
what our control does.

Consider a particle governed by the stochastic ODE

(1.11) dq.t/ D au.t/ dt C dW.t/; q.0/ D 0:

As usual, q.t/ denotes position, u.t/ is our control, W.t/ is Brownian motion, and we
incur a cost Z T

0

¹.q.t//2 C .u.t//2º dt:

In the simplest case, suppose we know a priori that a D 1 or a D �1, each with prob-
ability 1=2. We write ECOST.�/ to denote the expected cost incurred by executing a
strategy � , and we set

(1.12) ECOST� D inf¹ECOST.�/ W all strategies �º:

For this simple model problem, we conjecture that the inf in (1.12) is not achieved by
any strategy � , because heuristic reasoning suggests that there is a regime in which we
would like to set u D ˙1 to gain instant information about a.

Clearly, there is much to be done before we can claim to understand agnostic control
theory.

Survey of prior literature. Literature that considers adaptive control of a simple linear
system similar to the one considered in this paper commonly consists of one or more of the
following features: (i) unknown governing dynamics, (ii) unknown cost function, and (iii)
adversarial noise. Examples of such work include [12, 15, 19, 25–27, 34], as well as our
own prior work [8, 17].

Initial work in obtaining regret bounds in the infinite time horizon for the related LQR
(linear-quadratic regulator) problem was undertaken in [1], which proved that under cer-
tain assumptions, the expected additive regret of the adaptive controller is bounded by
QO.
p
T /. Further progress was made on this problem in [10]. Assuming controllability

of the system, the authors gave the first efficient algorithm capable of attaining sublinear
additive regret in a single trajectory in the setting of online nonstochastic control. See
also the related [29], which obtained sublinear adaptive regret bounds, a stronger met-
ric than standard regret and more suitable for time-varying systems. Additional adaptive
control approaches include [13, 14] using the system level synthesis. This expands on
ideas in [32], which showed that the ordinary least-squares estimator learns a linear sys-
tem nearly optimally in one shot. Other work uses Thompson sampling [2, 24] or deep
learning [11]. Perhaps most related to the work performed in this study is [23], which
designed an online learning algorithm with sublinear expected regret that moves away
from episodic estimates of the state dynamics (meaning that no boundedness or initially
stabilizing control needed to be assumed).

In [17], the third and fourth authors of the present paper, along with B. Guillén Pegue-
roles and M. Weber, found regret minimizing strategies for a problem with simple un-
known dynamics (a particle moving in one-dimension at a constant, unknown velocity
subject to Brownian motion). In [21], along with D. Goswami and D. Gurevich, they gen-
eralized these results to an analogous, higher-dimensional system with the addition of
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sensor noise. In [17], they also posed the problem of finding regret minimizing strate-
gies for the more complicated dynamics (1.1). In [8], the authors of the present paper,
along with M. Weber, took the first steps toward resolving this problem. Specifically, we
exhibited a strategy for the dynamics (1.1) with bounded multiplicative regret.

Historically, significant work has been undertaken in the closely related “multi-armed
bandit” problem; see, for instance, the classic papers [31, 33]. Recent work considering
this paradigm includes [35], which used reinforcement learning to obtain dynamic regret
whose order of magnitude is optimal, and [16], which studied the more general generalized
linear bandits (GLBs) and obtained similar regret bounds.

We finally want to point out the parallel field of adversarial control, where the noise
profile is chosen by an adversary instead of randomly. This includes [28], which attained
minimum dynamic regret and guaranteed compliance with hard safety constraints in the
face of uncertain disturbance realizations using the system level synthesis framework,
and [20], which studied the problem of competitive control.

As this list of references is by no means exhaustive and does not do justice to the
wealth of studies in the literature, we point the reader to the book [22] and the references
therein for a more thorough overview of online control.

We emphasize that our approach in [7,8,17], and in the present paper, differs from the
other work cited above in that
• we seek strategies that minimize the worst-case regret for a fixed time horizon T ,

whereas the literature is mainly concerned with T !1.
• Typically, in the literature one assumes either that the dynamics are bounded or that

one is given a stabilizing control. We make no such assumptions in [7], and so we
must control a system that is arbitrarily unstable.

• However, we achieve the above ambitious goals only for a simple model system.

2. The game

We will deal with random variables

aTRUE 2 Œ�aMAX;CaMAX�;(2.1)

“Coin flips” �1; �2; : : : 2 ¹0; 1º (we write E� for .�1; �2; : : : //; and(2.2)
Brownian motion W.t/; starting at W.0/ D 0:(2.3)

The random variable aTRUE is deterministic and known in Section 3, unknown but
subject to a known prior in Sections 4 and 5, and unknown without a known prior in
Section 6.

The �� , the real number aTRUE, and the Brownian motion are mutually independent.
The variable aTRUE has a prior probability distribution given by the measure dPrior.a/ in
Sections 4 and 5; and each �� is equal to 0 with probability 1=2, and to 1 with probabil-
ity 1=2.

When aTRUE has a prior probability distribution, we write ProbŒE� to denote the proba-
bility of an event E with respect to the above probability space, and we write EŒX� for the
expected value of X with respect to that probability space.
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Given a 2 Œ�aMAX;CaMAX�, we write ProbaŒE� for the probability of event E condi-
tioned on the event aTRUE D a, and we write Ea ŒX� for the expectation of X conditioned
on aTRUE D a; ProbaŒ� � � � and Ea Œ� � � � make sense without an assumed prior for a.

Similarly, given a 2 Œ�aMAX;CaMAX� and E� D .�1; �2; : : : / 2 ¹0; 1ºN , we shall write
Proba;E�ŒE� and Ea;E�ŒX� to denote the probability and expectation, respectively, condi-
tioned on the event aTRUE D a and �� D �� for all �.

Also, we write EE�ŒX� and ProbE�ŒE� to denote expectation and probability, respectively,

conditioned on E� D E�.
The above conditional expectations make sense even if, for instance, a is not in the

support of dPrior.
Fix a terminal time T > 0 and a partition

0 D t0 < t1 < � � � < tN D T of Œ0; T �:

Fix a starting position q0 2 R. A tame rule at time t� is a Borel measurable function
�t� WR

� � ¹0; 1ºN ! R, satisfying the estimate

(2.4) j�t� .q1; : : : ; q� ;
E�/j � CTAME Œjq� j C 1�

for all .q1; : : : ; q� ; E�/ 2 R� � ¹0; 1ºN : If � D 0, then �t� is simply a function on ¹0; 1ºN .
(We use the product topology on R� � ¹0; 1ºN to define Borel measurability. We require
Borel measurability to avoid technicalities. In particular, the composition of Borel mea-
surable functions is Borel measurable, whereas the composition of Lebesgue measurable
functions need not be Lebesgue measurable.)

A tame strategy is an array � D .�t� /�D0;1;:::;N�1, where, for each �, �t� is a tame
rule at time t� with the same CTAME serving in (2.4) for all the t� . We call CTAME a tame
constant for the strategy � . Until further notice, we say simply “strategy” in place of “tame
strategy”. If the �t� do not depend on the coin flips E� , we call � a deterministic strategy.
We will often write �� in place of �t� .

Given a strategy � D .�t� /�D0;1;:::;N�1, we define random variables q� .t/ for t 2 Œ0;T �
and u� .t/ for t 2 Œ0; T /, as follows.

By induction on �, we define q� .t/ for t 2 Œ0; t� � and u� .t/ for t 2 Œ0; t�/.
In the base case � D 0, we set q� .t/ D q0 for t 2 Œ0; t� � D ¹0º. Since Œ0; t�/ D Œ0; 0/

is empty, there is no need to define u� in the base case.
For the induction step, we fix � � 0, and assume that we have defined q� .t/ for t 2

Œ0; t� � and u� .t/ for t 2 Œ0; t�/. We extend the definition of q� .t/ to t 2 Œ0; t�C1�, and that
of u� .t/ to t 2 Œ0; t�C1/, as follows:

• for t 2 Œt� ; t�C1/, we set

u� .t/ D �t� .q
� .t1/; : : : ; q

� .t�/; E�/I

• for t 2 Œt� ; t�C1�, we define q� .t/ as the solution of the stochastic ODE

dq� .t/ D .aTRUE q
� .t/C u� .t// dt C dW.t/;

with the initial value q� .t�/ already given by our induction hypothesis.
This completes our induction on �, so we have defined the random variables q� .t/; u� .t/.
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In addition to q� .t/ and u� .t/, we define random variables ��1 .t�/ and ��2 .t�/ .0 �
� < N/ by the following induction.

��1 .t0/ D �
�
2 .t0/ D 0 (recall, t0 D 0);

��1 .t�C1/ D �
�
1 .t�/C q

� .t�/ � Œ�q
�
� � u

� .t�/�t� �;

where �q�� D q
� .t�C1/ � q

� .t�/ and �t� D t�C1 � t� I

��2 .t�C1/ D �
�
2 .t�/C .q

� .t�//
2�t� :

Thus,

��1 .t�/ D
X
0��<�

q� .t�/.�q
�
� � u

� .t�/�t�/ and ��2 .t�/ D
X
0��<�

.q� .t�//
2�t�:

We will try to pick our strategy � to make the expected value ofZ T

0

Œ.q� .t//2 C .u� .t//2� dt

as small as possible.

3. Tame strategies associated to partitions

3.1. Setup

In this section, we take aTRUE to be fixed, aTRUE D a, and we suppose that our strategy
makes no use of coin flips.

We fix a partition

(3.1) 0 D t0 < t1 < � � � < tN D T

of a time interval Œ0; T �.
We fix a (deterministic) strategy � for the game with starting position q0. We assume

that our strategy is tame, i.e.,

(3.2) ju� .t�/j � CTAME Œjq
� .t�/j C 1�

for a constant CTAME.
We write c, C , C 0, etc., to denote constants determined by

• CTAME in (3.2),
• an upper bound for the time horizon T ,
• an upper bound for aTRUE,
• an upper bound for jq0j.

These symbols may denote different constants in different occurrences.
We define

�t� WD t�C1 � t� for all � .0 � � < N/;

and we assume that

(3.3) .�tMAX/ WD max
�
�t� is less than a small enough constant c:
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We write X D O.Y / to denote the estimate jX j � CY .
We write q� to denote q� .t�/, u� to denote u� .t�/, and �q� to denote q�C1 � q� .
Note that

(3.4) u� D ��.q1; : : : ; q�/;

where �� is given by the strategy � for decisions at time t� .
Thanks to (3.2), we have

(3.5) ju� j � C Œjq� j C 1�:

Recall that the q� evolve as follows.
The random variable q0 is given, and u0 is specified by the strategy � . The random

variables q�C1 and u�C1 are then determined from q� and u� as follows.
• We solve the stochastic ODE

(3.6) dq.t/ D .aq.t/C u�/ dt C dW.t/ for t 2 Œt� ; t�C1�;

with initial condition q.t�/ D q� . Here, a is the (given) value of aTRUE, and W.t/
denotes Brownian motion at time t .

• We set q�C1 D q.t�C1/.
• We set u�C1 D ��C1.q1; : : : ; q�C1/ (compare with (3.4)).

Thus, the q� , u� are random variables defined by induction on �.
Solving the ODE (3.6) using an integrating factor, we find that

(3.7) q.t/ � q.t�/ D .aq� C u�/
hea.t�t�/ � 1

a

i
C

Z t

t�

ea.t�s/ dW.s/

for t 2 Œt� ; t�C1�. In particular,

(3.8) �q� D q�C1 � q� D .aq� C u�/�t
�
� C�W� ;

where

(3.9) �t�� D
hea�t� � 1

a

i
and

(3.10) �W� D

Z t�C1

t�

ea.t�C1�s/ dW.s/:

(If a D 0, we interpret the above fractions in square brackets as .t � t�/ in (3.7), and �t�
in (3.9).) We warn the reader that �W� ¤ W.t�C1/ �W.t�/.

Note that �W� is a normal random variable with mean 0 and variance

(3.11) �Qt� D
he2a�t� � 1

2a

i
(again, equal to �t� if a D 0).

Note that

(3.12) �Qt� ; �t
�
� D �t� CO..�t�/

2/:

Note also that �Qt� , �t�� and �W� depend on a.
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We introduce the sigma algebras F� , defined as the algebra of events determined by
the�W� for 0 � � < �. Note that q� , u� and�W� (� < �) are F�-measurable (i.e., they
are deterministic once we condition on F�), while the �W� for � � � are independent
of F� .

Remark 3.1. Thanks to equation (3.8), the sigma algebra F� may be equivalently defined
to consist of all events determined by q1; : : : ; q� . This equivalence holds because aTRUE

has been fixed .aTRUE D a/.

3.2. Estimates for probabilities of outliers

We suppose

(3.13) Q > C for a large enough C;

and we estimate the probability that max� jq� j > Q. To do so, we set

u1� D u�=q� and u0� D 0 if jq� j > 1I

u1� D 0 and u0� D u� otherwise:

Thus,

(3.14) u� D u
1
�q� C u

0
�

and

(3.15) ju1� j; ju
0
� j � C:

Also, u1� and u0� are F�-measurable.
Thanks to (3.14), we can rewrite (3.8) in the form

�q� D .aC u
1
�/ q�.�t

�
� /C u

0
�.�t

�
� /C�W� ;

or equivalently,

Œe�at�C1 q�C1� D .1C e
�a�t� �t�� u

1
�/ Œe

�at�q� �C e
�at�C1�t�� u

0
� C e

�at�C1�W� :

(See (3.9).)
Setting

M� D

Y
0��<�

.1C e�a�t��t��u
1
�/
�1;(3.16)

m� D e
�at�C1�t�� u

0
� ; and(3.17)

q�� DM� e
�at� q� ;(3.18)

we see that

(3.19) q��C1 D q
�
� CM�C1m� CM�C1 e

�at�C1�W� ;

and that

(3.20) q�0 D q0:
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Since
je�a�t� ui�j � C .i D 0; 1/ and

X
�

.�t��/ � C;

we have

(3.21) c < M� < C and jm� j < C�t� :

Moreover, M�C1 is F�-measurable.
Let � 2 R, to be fixed below. From (3.19) and (3.21), we have

(3.22) exp.�q��C1/ � ¹exp.�q�� / � exp.C j�j�t�/º exp.¹M�C1 e
�at�C1º��W�/:

Here, the quantities in curly brackets are F�-measurable, while�W� is independent of F� .
Recalling that �W� is a normal random variable, with mean 0 and variance O.�t�/,

we deduce from (3.21) and (3.22) that

EŒexp.�q��C1/ jF� � � exp.�q�� / exp.C j�j�t�/ exp.C�2�t�/:

Thus, the random variables

(3.23) Z� D exp.�C Œj�j C �2� t�/ exp.�q�� / .0 � � � N/

form a supermartingale, with

Z0 D exp.�q0/ � exp.C j�j/:

Consequently, for any Q > 0 we have

Prob
�

max
�
Z� > exp.j�jQ/

�
� exp.j�j.C �Q//:

By definition (3.23), this means that

(3.24) ProbŒ�q�� � C Œj�j C �
2� t� > j�jQ for some �� � exp.j�j.C �Q//:

TakingQ greater that 2C in (3.24) (see (3.13)), and picking �D˙Q, we learn from (3.24)
that

ProbŒjq�� j > CQ for some �� � C exp.�cQ2/:

Recalling (3.18) and (3.21), we conclude that

(3.25) Prob
�

max
�
jq� j > Q

�
� C exp.�cQ2/

if Q satisfies (3.13).
Thus, we have succeeded in estimating the probability that max� jq� j is large.
Immediately from (3.5) and (3.25), we have also

(3.26) Prob
�

max
�
ju� j > Q

�
� C exp.�cQ2/

if Q satisfies (3.13).
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We now turn our attention to

(3.27) �1.t�/ D
X
0��<�

q� Œ�q� � u��t��

and

(3.28) �2.t�/ D
X
0��<�

q2��t�:

Note that �1.t�/ can be rewritten as

(3.29)

�1.t�/ D
X
0��<�

°1
2
.q2�C1 � q

2
�/ �

1

2
.�q�/

2
±
�

X
0��<�

u�q��t�

D
1

2
q2� �

1

2
q20 �

1

2

��1X
�D0

.�q�/
2
�

X
0��<�

u�q��t�:

Now suppose that

(3.30) max
�
jq� j;max

�
ju� j � CQ; with Q as in (3.13):

Then from (3.28) and (3.29), we have

(3.31) j�2.t�/j � CQ
2 (all �/;

and

(3.32) j�1.t�/j � CQ
2
C

ˇ̌̌ X
0��<�

¹.�q�/
2
��Qt�º

ˇ̌̌
(all �/;

since also
NX
�D0

.�Qt�/ � C

NX
�D0

�t� � C
0:

We will show that

(3.33) Prob
h

max
�

ˇ̌̌ X
0��<�

®
.�q�/

2
��Qt�

¯ˇ̌̌
> CQ2.�tMAX/

1=2
i
� C exp.�cQ2/:

In view of (3.25), (3.26), and (3.33), estimates (3.31) and (3.32) imply the inequalities

Prob
�

max
�
j�1.t�/j > CQ

2
�
� C exp.�cQ2/;(3.34)

Prob
�

max
�
j�2.t�/j > CQ

2
�
� C exp.�cQ2/;(3.35)

for Q as in (3.13). Thus, to prove (3.34) and (3.35), it remains only to prove (3.33).
Estimate (3.33) will have further applications in a later section.

We now prove (3.33).
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From (3.8) and (3.12), we have

(3.36)

X
�<�

¹.�q�/
2
��Qt�º D

X
�<�

.aq� C u�/
2 .�t��/

2

C 2
X
�<�

.aq� C u�/.�t
�
�/�W� C

X
�<�

¹.�W�/
2
��Qt�º

� TERM 1.�/C TERM 2.�/C TERM 3.�/;

with

(3.37) 0 � TERM 1.�/ � C max
�
¹jq�j C ju�jº

2
� .�tMAX/; all �:

To estimate TERM 2.�/, we fix Q > C as in (3.13) and study the random variables

Y� D exp.� OC �2Q2 .�tMAX/
2 t�/(3.38)

� exp
�
�
X
�<�

.aq� C u�/ � 1jaq�Cu�j<CQ .�t
�
�/�W�

�
for a large enough constant OC , and for � 2 R to be picked below. Since .aq� C u�/ �
1jaq�Cu�j<CQ is F�-measurable for � � �, we have

(3.39)

EŒY�C1 jF� � D Y� � exp.� OC �2Q2 .�tMAX/
2�t�/

� E
�

exp.Œ�.aq� C u�/ � 1jaq�Cu� j<CQ � .�t
�
� /��W� jF�

�
� Y� � exp.� OC�2Q2 .�tMAX/

2�t�/

� exp
�
C Œ�.aq� C u�/ � 1jaq�Cu� j<CQ � .�t

�
� /�

2�Qt�
�
:

(Here, we use the fact that �W� is independent of F� , and normal with mean 0 and vari-
ance �Qt� .)

If we take OC large enough, then the product of the exponentials on the right in (3.39)
is less than 1. Thus,

EŒY�C1 jF� � � Y� ; with Y0 � 1:

So the Y� form a supermartingale. Consequently,

(3.40) Prob.9� such that Y� > exp.cQ2// � exp.�cQ2/:

We now pick � D Œsgn� Qc Œ.�tMAX/�
�1, with sgn D ˙1 and Qc > 0 a small enough constant.

Combining (3.38) and (3.40) then yields the estimate

Prob
�
9� such that Œ.�tMAX/�

�1
ˇ̌̌X
�<�

.aq�C u�/ � 1jaq�Cu�j<CQ.�t
�
�/�W�

ˇ̌̌
> CQ2

�
� exp.�cQ2/:

Consequently,

Prob
�
9� such that

ˇ̌̌X
�<�

.aq� C u�/.�t
�
�/�W�

ˇ̌̌
> CQ2.�tMAX/

�
� exp.�cQ2/C Prob.9� such that jaq� C u�j > CQ/:
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Recalling (3.36), we have

Prob
�

max
�
jTERM 2.�/j > CQ2.�tMAX/

�
(3.41)

� exp.�cQ2/C Prob
�

max
�
¹jq�j C ju�jº > cQ

�
:

We turn our attention to TERM 3.�/. Let

(3.42) Z� D exp.� OC �2 .�tMAX/ t�/ � exp
�
�
X
�<�

¹.�W�/
2
��Qt�º

�
for a large enough constant OC , and for � 2 R to be picked below.

Then Z0 � 1, and

(3.43) EŒZ�C1 jF� � D Z� exp.� OC�2 .�tMAX/�t�/ � EŒexp.�¹.�W�/2 ��Qt�º/�:

For j�j < c.�tMAX/
�1, we have

(3.44)

EŒexp.�¹.�W�/2 ��Qt�º/� D exp.���Qt�/ �
1p
2��Qt�

Z 1
�1

e�x
2

e�x
2=2�Qt� dx

D exp.���Qt�/ � .1 � 2�.�Qt�//�1=2

� exp.C�2 .�t�/2/ � exp.C�2.�tMAX/�t�/:

Substituting (3.44) into (3.43), and taking OC large enough, we find that

EŒZ�C1 jF� � � Z� ;

i.e., the Z� form a supermartingale. This holds for j�j < c.�tMAX/
�1. Since Z0 � 1, it

follows that
Prob.9� such that Z� > exp.cQ2// � exp.�cQ2/:

Taking � D .�tMAX/
�1=2 � Œsgn�, with sgn D ˙1, we conclude that

Prob
�
9� such that exp

�
� OCt� C .�tMAX/

�1=2
ˇ̌̌X
�<�

¹.�W�/
2
��Qt�º

ˇ̌̌�
> exp.cQ2/

�
� exp.�cQ2/;

so that

Prob
�

max
�

ˇ̌̌X
�<�

¹.�W�/
2
��Qt�º

ˇ̌̌
> CQ2.�tMAX/

1=2
�
� exp.�cQ2/:

Recalling (3.36), we conclude that

(3.45) Prob
�

max
�
jTERM 3.�/j > CQ2.�tMAX/

1=2/
�
� exp.�cQ2/:



J. Carruth, M. F. Eggl, C. Fefferman and C. W. Rowley 18

Estimates (3.37), (3.41) and (3.45) control TERM 1.�/, TERM 2.�/ and TERM 3.�/. Sub-
stituting these estimates into (3.36), we learn that

Prob
�

max
�

ˇ̌̌X
�<�

¹.�q�/
2
��Qt�º

ˇ̌̌
> C 0Q2.�tMAX/

1=2
�

� C exp.�cQ2/C CProb
�

max
�
¹jq�j C ju�jº > cQ

�
:

Finally, recalling (3.25) and (3.26), we see that

Prob
�

max
�

ˇ̌̌X
�<�

¹.�q�/
2
��Qt�º

ˇ̌̌
> C 00Q2.�tMAX/

1=2
�
� C exp.�cQ2/;

completing the proof of (3.33).
Next, we estimate

�q�� D q
� .t�C1/�q

� .t�/; ���1;� D �
�
1 .t�C1/��

�
1 .t�/; ���2;� D �

�
2 .t�C1/��

�
2 .t�/:

Recall that

�q�� D .aq
�
� C u

�
� /�t

�
� C�W� ; ���1;� D q

�
� .�q

�
� � u

�
��t�/; ���2;� D .q

�
� /
2�t� :

Let Q � C for large enough C , and suppose jq�� j � Q: Then also ju�� j � C Œjq
�
� j C 1� �

C 0Q, so

j�q�� j � CQ.�t�/C j�W� j;

j���1;� j � Q.j�q
�
� j C CQ�t�/ � C

0Q2.�t�/CQj�W� j; and

j���2;� j � Q
2.�t�/;

hence for p � 1, we have

.j�q�� j C j��
�
1;� j C j��

�
2;� j/

p
� CpQ

2p.�t�/
p
C CpQ

p
j�W� j

p:

Recall that �W� is independent of F� and normal, with mean 0 and variance at
most C�t� . It follows that, for any p � 1, we have

(3.46) EŒ.j�q�� j C j��
�
1;� j C j��

�
2;� j/

p
jF� � � CpQ

2p.�t�/
p
C CpQ

p.�t�/
p=2

whenever jq�� j � Q. (Recall, q�� is deterministic once we condition on F� .) In particu-
lar, (3.46) implies that

(3.47) ProbŒj�q�� j C j��
�
1;� j C j��

�
2;� j > .�t�/

2=5
jF� � � C.�t�/

1000

if jq�� j � Q and C � Q � .�t�/�1=1000.
Together with (3.46) for p D 2; 4 and Cauchy–Schwarz, (3.47) implies the estimate

E
�
.j�q�� j C j��

�
1;� j C j��

�
2;� j/

p
� 1j�q�� jCj��

�
1;� jCj��

�
2;� j>.�t�/

2=5 jF�
�

� C.�t�/
100 for p D 1; 2;

provided jq�� j � Q and C 0 � Q � .�t�/�1=1000 for large enough C 0.
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Next, we estimate jq� .t/ � q�� j D jq
� .t/ � q� .t�/j for t 2 Œt� ; t�C1�.

Recall that

q� .t/ � q�� D .aq
�
� C u

�
� / �

hea.t�t�/ � 1
a

i
C

Z t

t�

ea.t�s/ dW.s/ for t 2 Œt� ; t�C1�.

If jq�� j � Q with Q � C (for large enough C ), then also ju�� j � CQ, hence

jq� .t/ � q�� j � CQ.�t�/C
ˇ̌̌ Z t

t�

ea.t�s/ dW.s/
ˇ̌̌

for t 2 Œt� ; t�C1�.

Applying the reflection principle [18] to the Gaussian process

W #.t/ D

Z t

t�

e�as dW.s/ .t � t�/;

we see that

Prob
h

max
t2Œt� ;t�C1�

ˇ̌̌ Z t

t�

ea.t�s/ dW.s/
ˇ̌̌
> CQ.�t�/

1=2
i
� C exp.�cQ2/:

Since
R t
t�
ea.t�s/ dW.s/ .t � t�/ is independent of F� , it now follows that

Prob
h

max
t2Œt� ;t�C1�

jq� .t/ � q�� j > C
0Q.�t�/

1=2
ˇ̌̌
F�

i
� C exp.�cQ2/

provided jq�� j � Q and C � Q for large enough C . Taking

Q D
.�t�/

2=5

C 0.�t�/1=2
,

we find that

(3.48) Prob
h

max
t2Œt� ;t�C1�

jq� .t/ � q�� j > .�t�/
2=5
ˇ̌̌
F�

i
� C.�t�/

1000

provided jq�� j � c � .�t�/
�1=10.

Let us summarize the results of the above discussion.

Lemma 3.2 (Lemma on rare events). We condition on aTRUE D a and E� D E�. Fix a strat-
egy � . For constants c and C depending only on upper bounds for jq0j, aMAX, CTAME,
and T , the following holds.

Suppose �tMAX � max�.t�C1 � t�/ < c. Then, for Q > C , the following hold with
probability > 1 � exp.�cQ2/:
• jq� .t�/j; ju� .t�/j � Q for all �.

• j��1 .t�/j; j�
�
2 .t�/j � Q

2 for all �.

•
ˇ̌P

0��<�.q
� .t�C1/ � q

� .t�//
2 � t�

ˇ̌
� Q2.�tMAX/

1=2 for all �.

Moreover, suppose we fix � and condition on F� , the sigma algebra of events deter-
mined by the q� .t�/ .0 � � � �/. Suppose that jq� j < .�t�/�1=1000.
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Then

E
�
.j�q�� j C j��

�
1;� j C j��

�
2;� j/

p
� 1j�q�� jCj��

�
1;� jCj��

�
2;� j>.�t�/

2=5 jF�
�
� C.�t�/

100

for p D 1; 2, and

Prob
�
j�q�� j C j��

�
1;� j C j��

�
2;� j > .�t�/

2=5
jF�

�
� C.�t�/

1000:

Also, we have

Prob
h

max
t2Œt� ;t�C1�

jq� .t/ � q�� j > .�t�/
2=5
jF�

i
� C.�t�/

1000

provided jq�� j � c � .�t�/
�1=10. Finally, for Q � C , we have

Prob
h

max
t2Œt� ;t�C1�

jq� .t/ � q�� j > C
0Q.�t�/

1=2
jF�

i
� C exp.�cQ2/ if jq� j � Q:

Proof. To deduce the third bullet point from (3.33), we note thatX
0��<�

.�Qt�/ D
X
0��<�

Œ.�t�/CO..�t�/
2/� D t� � .1CO.�tMAX//:

The remaining assertions of the lemma have already been proved as stated.

3.3. The probability density

We continue to adopt the assumptions and notation of Section 3.2. Our goal is to derive, for
fixed NN � N , an approximate formula for the joint probability density of .q1; : : : ; q NN / D
.q� .t1/; : : : ; q

� .t NN //. Let us denote this joint probability density byˆ. Nq1; : : : ; Nq NN /: Thus,

(3.49) Prob..q� .t1/; : : : ; q� .t NN // 2 E/ D
Z
E

ˆ. Nq1; : : : ; Nq NN / d Nq1 � � � d Nq NN

for measurable sets E � R NN .
By formula (3.8),

�q� D .aq� C u�/�t
�
� C�W�

with�W� mutually independent and normal, with mean 0 and variance�Qt� ; consequently,
the joint probability ˆ is given by

(3.50) ˆ. Nq1; : : : ; Nq NN / D

NN�1Y
�D0

��

with

(3.51) �� D
1p
2��Qt�

exp
�
�

1

2�Qt�
Œ� Nq� � .a Nq� C Nu�/�t

�
� �
2
�
:

Here, � Nq� � Nq�C1 � Nq� , Nq0 � q0, and Nu� denotes the control exercised by the strategy �
at time t� given that q� .t�/D Nq� for 0 � � � � and E� D E�. Note that Nu� is determined by
Nq1; : : : ; Nq� (and q0/.
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We make the following assumptions on . Nq1; : : : ; Nq NN /:

max
�
.j Nq� j C j Nu� j/ � Q;(3.52) ˇ̌̌X

�

.� Nq�/
2
� t NN

ˇ̌̌
� Q2 .�tMAX/

1=4;(3.53)

with Q � C given.
Thanks to Lemma 3.2, (3.52) and (3.53) are very likely true for . Nq1; : : : ; Nq NN / D

.q� .t1/; : : : ; q
� .t NN //: Under assumptions (3.52) and (3.53), we will simplify the expres-

sions (3.50) and (3.51).
First of all, since �t�� D �t� CO..�t�/

2/ we have

Œ� Nq� � .a Nq� C Nu�/�t
�
� � D Œ� Nq� � .a Nq� C Nu�/�t� �C ERR� ;

with
ERR� D O.Q.�t�/

2/

thanks to (3.52). Hence,

Œ� Nq� � .a Nq� C Nu�/�t
�
� �
2

D Œ� Nq� � .a Nq� C Nu�/
2�t� �

2
C ERR2� C 2 ERR� Œ� Nq� � .a Nq� C Nu�/�t� �

D Œ� Nq� � .a Nq� C Nu�/�t� �
2
CO.Q2.�t�/

3/C 2 ERR�.� Nq�/:

Therefore,X
�

1

2�Qt�
Œ� Nq� � .a Nq� C Nu�/�t

�
� �
2

D

X
�

1

2�Qt�
Œ� Nq� � .a Nq� C Nu�/�t� �

2
C

X
�

O.Q2.�t�/
2/C

X
�

ERR�

�Qt�
.� Nq�/:(3.54)

The last sum has absolute value at most

(3.55) C
X
�

.�t�/
�1=2

°ERR�

�Qt�

±2
C C

X
�

.�t�/
1=2.� Nq�/

2:

The expression (3.55) is, in turn, at mostX
�

O.Q2.�t�/
3=2/C C.�tMAX/

1=2
X
�

.� Nq�/
2

D O.Q2.�tMAX/
1=2/C C.�tMAX/

1=2
ˇ̌̌X
�

.� Nq�/
2
� t NN

ˇ̌̌
C Ct NN .�tMAX/

1=2

D O.Q2.�tMAX/
1=2/;

thanks to (3.53). Therefore, (3.54) implies that

(3.56)
X
�

1

2�Qt�
Œ� Nq� � .a Nq� C Nu�/�t

�
� �
2

D

X
�

1

2�Qt�
Œ� Nq� � .a Nq� C Nu�/�t� �

2
CO.Q2.�tMAX/

1=2/:
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We want to replace �Qt� by �t� on the right in (3.56). To do so, note that

1

2�Qt�
�

1

2�t�
D �

a

2
CO.�t�/;

thanks to (3.11). Consequently,

(3.57)

X
�

� 1

2�Qt�
�

1

2�t�

�
Œ� Nq� � .a Nq� C Nu�/�t� �

2

D

X
�

ŒaCO.�t�/� .a Nq� C Nu�/�t�.� Nq�/C
X
�

h
�
a

2
CO.�t�/

i
.� Nq�/

2

C

X
�

h
�
a

2
CO.�t�/

i
.a Nq� C Nu�/

2.�t�/
2

� TERM ˛ C TERM ˇ C TERM 

Now

TERM ˇ D �
a

2

X
�

.� Nq�/
2
CO.�tMAX/

X
�

.� Nq�/
2
D �

a

2
t NN CO.Q

2.�tMAX/
1=4/

by (3.53), while

TERM  D
X
�

O.Q2.�t�/
2/ D O.Q2.�tMAX//

by (3.52). To estimate TERM ˛, we apply (3.52) and (3.53) to write

jTERM ˛j � C
X
�

.a Nq� C Nu�/
22.�t�/

3=2
C C

X
�

.�t�/
1=2 .� Nq�/

2

� O.Q2.�tMAX/
1=2/C C.�tMAX/

1=2
X
�

.� Nq�/
2

D O.Q2.�tMAX/
1=2/CC.�tMAX/

1=2
hX

�

.� Nq�/
2
� t NN

i
DO.Q2.�tMAX/

1=2/:

Combining our estimates for Terms ˛, ˇ and  , and recalling (3.57), we learn thatX
�

� 1

2�Qt�
�

1

2�t�

�
Œ� Nq� � .a Nq� C Nu�/�t� �

2
D �

a

2
t NN CO.Q

2.�tMAX/
1=4/:

Consequently, (3.56) implies that

(3.58)
X
�

1

2�Qt�
Œ� Nq� � .a Nq� C Nu�/�t

�
� �
2

D �
a

2
t NN C

X
�

1

2�t�
Œ� Nq� � .a Nq� C Nu�/�t� �

2
CO.Q2.�tMAX/

1=4/:

Again applying (3.11), we see that

1p
2��Qt�

D
1

p
2��t�

�
1�

1

2
a�t�CO.�t�/

2
�
D

1
p
2��t�

exp
�
�
1

2
a�t�CO.�t�/

2
�
;
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so that

(3.59)

NN�1Y
�D0

1p
2��Qt�

D

� NN�1Y
�D0

1
p
2��t�

�
exp

�
�
a

2

X
�

¹.�t�/CO.�t�/
2
º

�
D

� NN�1Y
�D0

1
p
2��t�

�
exp

�
�
a

2
t NN CO.�tMAX/

�
:

Putting (3.58) and (3.59) into (3.50) and (3.51), we find that

(3.60)
ˆ. Nq1; : : : ; Nq NN / D

NN�1Y
�D0

° 1
p
2��t�

exp
�
�

1

2�t�
Œ� Nq� � .a Nq� C Nu�/�t� �

2
�±

� .1CO.Q2.�tMAX/
1=4//:

In particular, the factors exp.a
2
t NN / arising from (3.58) and (3.59) cancel.

We record our result (3.60) as a lemma.

Lemma 3.3 (Lemma on the probability distribution). We condition on aTRUEDa and E�DE�.
Then, for constants c and C determined by q0, aMAX, CTAME; and an upper bound

for T , the following holds.
Suppose �tMAX D max�.t�C1 � t�/ < c. Fix NN � N . Let ˆ. Nq1; : : : ; Nq NN / be the joint

probability density for .q� .t1/; : : : ; q� .t NN //.
Let Q > C , and suppose . Nq1; : : : ; Nq NN / satisfies

max
�
.j Nq� j C j Nu� j/ � Q and

ˇ̌̌X
�

. Nq�C1 � Nq�/
2
� t NN

ˇ̌̌
� Q2.�tMAX/

1=4;

where Nu� is the control exercised by the strategy � at time t� when

.q� .t1/; : : : ; q
� .t�// D . Nq1; : : : ; Nq�/ and E� D E�:

Then

ˆ. Nq1; : : : ; Nq NN / D

NN�1Y
�D0

° 1
p
2��t�

exp
�
�

1

2�t�
Œ� Nq� � .a Nq� C Nu�/�t� �

2
�±

� .1CO.Q2.�tMAX/
1=4//:

Here,� Nq� D Nq�C1 � Nq� (with Nq0 D q0/,�t� D t�C1 � t� , andO.Q2.�tMAX/
1=4/ denotes

a quantity whose absolute value is at most CQ2.�tMAX/
1=4.

3.4. Analytic continuation

In this section, we prepare to make an analytic continuation of the function mapping a 2
Œ�aMAX;CaMAX� to the expected cost incurred by a strategy � assuming that aMAX D a.
We set up notation.

We fix a tame strategy � D .��/0��<N and coin flips E�; we write Nu� to denote the
control exercised by the strategy � at time t� assuming that q� .t�/ D Nq� for 1 � � � �
and E� D E� (i.e., Nu� D u� .t�/ D ��. Nq1; : : : ; Nq� ; E�/).
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We define functions

(3.61)  �.� Nq; Nq; Nu; a/ WD
1

p
2��t�

exp
�
�
Œ� Nq � .a Nq C Nu/�t� �

2

2�t�

�
and

(3.62) ‰. Nq1; : : : ; NqN ; a/ D

N�1Y
�D0

 �.� Nq� ; Nq� ; Nu�. Nq1; : : : ; Nq�/; a/:

In (3.61), � Nq, Nq and Nu are real variables, while a 2 C. In (3.62), � Nq� WD Nq�C1 � Nq� , with
Nq0 WD q0. Again, in (3.62), a 2 C.

We introduce a set

(3.63)
E D

°
. Nq1; : : : ; NqN / 2 RN Wmax

�
j Nq� j � .�tMAX/

�1=16

and j
X
�

. Nq�C1 � Nq�/
2
� T j � .�tMAX/

1=8
±
:

We denote by

ˆ. Nq1; : : : ; NqN ; a/ .a 2 Œ�aMAX;CaMAX�/

the probability density for .q� .t1/; : : : ; q� .tN // assuming that aTRUE D a and E� D E�.
According to Lemmas 3.2 and 3.3, we have

(3.64) ˆ. Nq1; : : : ; NqN ; a/ D ‰. Nq1; : : : ; NqN ; a/ � .1C ERR. Nq1; : : : ; NqN ; a//

for . Nq1; : : : ; NqN / 2 E and a 2 Œ�aMAX; aMAX�, with

jERR. Nq1; : : : ; NqN ; a/j � .�tMAX/
1=8;(3.65)

Ea;E� Œ1.q� .t1/;:::;q� .tN //…E � � C exp.�c.�tMAX/
�1=8/:(3.66)

Since ju� j � C Œjq� j C 1� for a tame rule � , we have, for a 2 Œ�aMAX; aMAX�,

(3.67)
X
�

¹.u�� /
2
C .q�� /

2
º�t� � C max

�
jq� j

2
C C:

By Lemma 3.2, we have

(3.68) Ea;E� Œ¹max
�
jq� .t�/j

2
C ju� .t�/j

2
º
2� � C:

We study the function

Œ�aMAX;CaMAX� 3 a 7! Ea;E�
hN�1X
�D0

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
I

we denote this function by ECOST.a/.
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The above definitions and estimates yield:

(3.69)
ECOST.a/ D Ea;E�

hN�1X
�D0

¹.q� .t�//
2
C .u� .t�//

2
º�t� � 1.q� .t1/;:::;q� .tN //2E

i
C ERROR 1.a/;

with

(3.70)

jERROR 1.a/j � Ea;E� ŒC max
�
¹jq� .t�/j

2
C ju� .t�/j

2
º � 1.q� .t1/;:::;q� .t�//…E �

�

�
Ea;E� ŒC max¹jq� .t�/j2 C ju� .t�/j2º2�/1=2

�
�
Proba;E�..q

� .t1/; : : : ; q
� .tN // … E/

�1=2
� C 0 exp.�c0.�tMAX/

�1=8/:

Moreover,

Ea;E�
hX

�

¹.q� .t�//
2
C .u� .t�//

2
º�t� � 1.q� .t1/;:::;q� .t�//2E

i
D

Z
. Nq1;:::; NqN /2E

�X
�

¹ Nq2� C Nu
2
�º�t�

�
ˆ. Nq1; : : : ; NqN ; a/ d Nq1 � � � d NqN

D

Z
. Nq1;:::; NqN /2E

°�X
�

¹ Nq2� C Nu
2
�º�t�

�
‰. Nq1; : : : ; NqN ; a/

� .1C ERR. Nq1; : : : ; NqN ; a// d Nq1 � � � d NqN

±
D .1CERROR 2.a//

Z
. Nq1;:::; NqN /2E

°�X
�

¹ Nq2�C Nu
2
�º.�t�/

�
‰. Nq1; : : : ; NqN ; a/d Nq1 � � � d NqN

±
;

with

(3.71) jERROR 2.a/j � C.�tMAX/
1=8;

thanks to (3.64) and (3.65). Together with (3.69) and (3.70), this yields

ECOST.a/ D ERROR 1.a/

C .1C ERROR 2.a// �
Z
E

°�X
�

¹ Nq2� C Nu
2
�º�t�

�
‰. Nq1; : : : ; NqN ; a/

±
d Nq1 � � � d NqN ;

with ERROR 1.a/ and ERROR 2.a/ controlled by (3.70) and (3.71). Since also

0 � ECOST.a/ � C

by Lemma 3.2, it follows that

(3.72)
ECOST.a/ D

Z
. Nq1;:::; NqN /2E

°�X
�

¹ Nq2� C Nu
2
�º�t�

�
�‰. Nq1; : : : ; NqN ; a/

±
d Nq1 � � � d NqN C ERROR 3.a/;
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with

(3.73) jERROR 3.a/j � C.�tMAX/
1=8:

Equation (3.72) and estimate (3.73) hold for a 2 Œ�aMAX;CaMAX�. We make an analytic
continuation of the integral in (3.72) from a 2 Œ�aMAX;CaMAX� to a D aR C iaI in the
rectangle

R D ¹aR C iaI W aR 2 Œ�aMAX; aMAX�; aI 2 Œ�ı; ı�º;

for a small ı > 0 to be picked below.
We write I.a/ to denote the integral in (3.72). Thus,

(3.74) I.a/ D

Z
E

�X
�

¹ Nq2� C Nu
2
�º�t�

�
‰. Nq1; : : : ; NqN ; a/ d Nq1 � � � d NqN

for a D aR C iaI 2 R, and

(3.75) jECOST.a/ � I.a/j � C.�tMAX/
1=8 for a 2 Œ�aMAX;CaMAX�:

A glance at (3.61) and (3.62) shows that the integrand in (3.74) has the form

B. Nq1; : : : ; NqN / exp.a2G2. Nq1; : : : ; NqN /C aG1. Nq1; : : : ; NqN /CG0. Nq1; : : : ; NqN //;

where B , G0, G1 and G2 are bounded measurable functions of . Nq1; : : : ; NqN / on E. More-
over, the region of integration, E, is bounded; see (3.63). Therefore, I.a/ is an analytic
function on R.

Next, we estimate

(3.76)
Z
E

�X
�

¹ Nq2� C Nu
2
�º�t�

�
j‰. Nq1; : : : ; NqN ; aR C iaI /j d Nq1 � � � d NqN

for aR C iaI 2 R. From (3.61), we have

j �.� Nq; Nq; Nu; aR C iaI /j D exp
�a2I
2
Nq2�t�

�
 �.� Nq; Nq; Nu; aR/;

hence (3.62) implies that

j‰. Nq1; : : : ; NqN ; aR C iaI /j D exp
�X

�

a2I
2
Nq2��t�

�
‰. Nq1; : : : ; NqN ; aR/:

Moreover, for . Nq1; : : : ; NqN / 2 E and aR 2 Œ�aMAX;CaMAX�, (3.64) and (3.65) yield

‰. Nq1; : : : ; NqN ; aR/ � 2ˆ. Nq1; : : : ; NqN ; aR/:

Consequently, for aR 2 Œ�aMAX; aMAX�, the integrand in (3.76) is at most

2
�X

�

¹ Nq2� C Nu
2
�º�t�

�
exp

�a2I
2

X
�

Nq2��t�

�
ˆ. Nq1; : : : ; NqN ; aR/:
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Since ˆ. Nq1; : : : ; NqN ; aR/ is the probability density for .q� .t1/; : : : ; q� .tN // assuming
aTRUE D aR and E� D E�, it follows that the integral (3.76) is at most

2EaR;E�
h
1.q� .t1/;:::;q� .tN //2E �

�X
�

¹q� .t�//
2
C .u� .t�//

2
º�t�

�
� exp

�a2I
2

X
�

.q� .t�//
2�t�

�i
for a 2 R:

Recall that ju� .t�/j � C Œjq� .t�/j C 1� and that jaI j � ı for a D aR C iaI 2 R.
Consequently, for aR C iaI 2 R, we have�X
�

¹.q� .t�//
2
C .u� .t�//

2
º�t�

�
exp

�a2I
2

X
�

.q� .t�//
2�t�

�
� Cı � exp

�
Cı2 max

�
jq� .t�/j

2
�
:

So the integral (3.76) is at most

(3.77) Cı EaR;E�
�

exp
�
Cı2 max

�
jq� .t�/j

2
��

for a 2 R:

On the other hand, Lemma 3.2 gives

(3.78) EaR;E� Œexp.cmax
�
jq� .t�/j

2/� � C

for aR 2 Œ�aMAX; aMAX� and c > 0 small enough.
We now fix ı D Oc small enough that Cı2 < c with C and c as in (3.77) and (3.78). We

conclude that the integral (3.76) is less than a large constant C , independent of a 2 R.
So we have shown that I.a/ is analytic and bounded for

a 2 .�aMAX;CaMAX/ � .�ı; ı/:

Recalling that we have taken ı D Oc and that (3.75) holds, we obtain the following result.

Lemma 3.4 (Analytic continuation lemma). Let � be a tame strategy, and let E� 2 ¹0; 1ºN .
Then there exists an analytic function IE�.a/ on the rectangle

R D ¹aR C iaI W aR 2 .�aMAX; aMAX/; aI 2 .�Oc; Oc/º

such that
jIE�.a/j � C on R

and ˇ̌̌
Ea;E�

hN�1X
�D0

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� IE�.a/

ˇ̌̌
� C.�tMAX/

1=8

for a 2 .�aMAX;CaMAX/. Explicitly,

IE�.a/ D

Z
E

�N�1X
�D0

¹q2� C u
2
�º�t�

�
�

N�1Y
�D0

° 1
p
2��t�

exp
�
�
Œq�C1 � q� � .aq� C u�/�t� �

2

2�t�

�±
dq1 � � � dqN ;
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where

(3.79)
E D

°
. Nq1; : : : ; NqN / 2 RN Wmax

�
j Nq� j � .�tMAX/

�1=16

and
ˇ̌̌X
�

. Nq�C1 � Nq�/
2
� T

ˇ̌̌
� .�tMAX/

1=8
±
:

and u� denotes the value assigned by � to the control at time t� assuming that q� .t�/D q�
for 0 � � � � and E� D E�.

3.5. Moments of increments

We retain the assumptions and notation of Section 3.2. Recall that F� is the sigma algebra
of events determined by q� .t�/ (0 � � � �/, and that

�t� D t�C1 � t� ; �q� D q
� .t�C1/ � q

� .t�/;

��1;� D �
�
1 .t�C1/ � �

�
1 .t�/; ��2;� D �

�
2 .t�C1/ � �

�
2 .t�/:

We suppose that aTRUE D a and E� D E�.
Recall also that

�q� D .aq� C u�/�t
�
� C�W� ;(3.80)

��1;� D q�.�q� � u��t�/ D aq
2
��t

�
� C q�u�.�t

�
� ��t�/C q��W� ;(3.81)

��2;� D q
2
��t� :(3.82)

We condition on F� ; thus, q� and u� are deterministic, while �W� is normal, with
mean 0 and variance �Qt� . We suppose that

(3.83) jq� j; ju� j � Q; with Q � C given:

Then

�q� D O.Q/�t� C�W� ; ��1;� D O.Q
2/�t� C q��W� ; ��2;� D O.Q

2/�t� ;

so that

.�q�/
2
D O.Q2/.�t�/

2
C 2O.Q/�t��W� C .�W�/

2;(3.84)

.��1;�/.�q�/ D O.Q
3/.�t�/

2
CO.Q2/�t��W� C q�.�W�/

2;(3.85)

.��2;�/.�q�/ D O.Q
3/.�t�/

2
CO.Q2/�t��W� ;(3.86)

.��1;�/
2
D O.Q4/.�t�/

2
CO.Q3/.�t�/.�W�/C q

2
� .�W�/

2;(3.87)

.��2;�/.��1;�/ D O.Q
4/.�t�/

2
CO.Q3/.�t�/.�W�/(3.88)

.��2;�/
2
D O.Q4/.�t�/

2:(3.89)

Moreover, all the quantities O.Qpower/ above are deterministic once we condition on F� .
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Therefore, (3.80)–(3.82) and (3.84)–(3.89) yield the following:

EŒ�q� jF� � D .aq� C u�/�t� CO.Q.�t�/2/;(3.90)

EŒ��1;� jF� � D aq2� .�t�/CO.Q
2.�t�/

2/;(3.91)

EŒ��2;� jF� � D q2��t� ;(3.92)

EŒ.��1;�/2 jF� � D q2��t� CO.Q
4.�t�/

2/;(3.93)

EŒ.��1;�/.��2;�/ jF� � D O.Q4.�t�/
2/; ;(3.94)

EŒ.��2;�/2 jF� � D O.Q4.�t�/
2/;(3.95)

EŒ.�q�/2 jF� � D �t� CO.Q2.�t�/
2/;(3.96)

EŒ.�q�/.��1;�/ jF� � D q��t� CO.Q3.�t�/
2/;(3.97)

EŒ.�q�/.��2;�/ jF� � D O.Q3.�t�/
2/:(3.98)

(Here we have used the fact that �t�� and �Qt� are �t� CO..�t�/2/:)
We define an event

(3.99) TAME� D ¹j�q� j � 2.�t�/
2=5; j��1;� j � 2.�t�/

2=5; j��2;� j � 2.�t�/
2=5
º:

From Lemma 3.2, we obtain the estimate

EŒ.�q�/˛0.��1;�/˛1.��2;�/˛2 � 1NOT TAME� jF� � D O..�t�/
100/

for integers ˛0; ˛1; ˛2 � 0 with ˛0 C ˛1 C ˛2 � 2. Also from Lemma 3.2, we recall that

ProbŒNOT TAME� jF� � � C � .�t�/
1000:

Consequently, (3.90)–(3.98) imply the conclusions of the following lemma.

Lemma 3.5 (Lemma on moments of increments). We fix aTRUED a and E� D E�. We suppose
that

Q � C and .�tMAX/ < Q
�1000:

Define the event

TAME.�/ D ¹j�q�� j � 2.�t�/
2=5; j���1;� j � 2.�t�/

2=5; j���2;� j � 2.�t�/
2=5
º:

Let F� be the sigma algebra of events determined by q� .t�/ (0 � � � �/.
Fix �, and suppose that

jq� .t�/j; ju
� .t�/j � Q:

Then the following hold:

EŒ.�q�� /1TAME.�/ jF� � D .aq
�
� C u

�
� /.�t�/C ERR1;

EŒ.���1;�/1TAME.�/ jF� � D a.q
�
� /
2 .�t�/C ERR2;

EŒ.���2;�/1TAME.�/ jF� � D .q
�
� /
2 .�t�/C ERR3

EŒ.�q�� /
2
1TAME.�/ jF� � D .�t�/C ERR4;

EŒ.�q�� /.��
�
1;�/1TAME.�/ jF� � D q

�
� .�t�/C ERR5;
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EŒ.�q�� /.��
�
2;�/1TAME.�/ jF� � D ERR6;

EŒ.���1;�/
2
1TAME.�/ jF� � D .q

�
� /
2.�t�/C ERR 7;

EŒ.���1;�/.��
�
2;�/1TAME.�/ jF� � D ERR8;

EŒ.���2;�/
2
1TAME.�/ jF� � D ERR9;

where
jERR1j; : : : ; jERR9j � C 0Q4.�t�/

2:

Also, under the above assumptions, we have

ProbŒNOT TAME.�/ jF� � � .�t�/
20:

Here, of course,

q�� D q
� .t�/; u�� D u

� .t�/;

�t� D t�C1 � t� ; �q�� D q
� .t�C1/ � q

� .t�/;

���1;� D �
�
1 .t�C1/ � �

�
1 .t�/; ���2;� D �

�
2 .t�C1/ � �

�
2 .t�/:

The constants C and C 0 are determined by q0, aMAX, CTAME and an upper bound for T .

3.6. Stability under change of assumption

Let f . Nq1; : : : ; NqN / be a nonnegative function on RN . For E� 2 ¹0; 1ºN and for a1; a2 2
Œ�aMAX;CaMAX�, we compare

Ea1;E� Œf .q
� .t1/; : : : ; q

� .tN //�

with
Ea2;E� Œf .q

� .t1/; : : : ; q
� .tN //�

for a tame strategy � .
To do so, let ˆ. Nq1; : : : ; NqN ; a/ denote the probability density of

.q� .t1/; : : : ; q
� .tN //

assuming that E� D E� and aTRUE D a.
According to Lemma 3.3, the following holds for a D a1; a2. Let Q > C and Q �

.�tMAX/
�1=1000, and suppose that

(3.100)

max
�
.j Nq� j C j Nu� j/ � Q;ˇ̌̌ X

0��<N

. Nq�C1 � Nq�/
2
� T

ˇ̌̌
� Q2.�tMAX/

1=4;

where Nu� denotes the value of u� .t�/ assuming q� .t�/D Nq� for �� �. (Recall that the Nu�
do not depend on a.) Then

(3.101)

ˆ. Nq1; : : : ; NqN ; a/

D

Y
0��<N

° 1
p
2��t�

exp
�
�

1

2�t�
Œ. Nq�C1 � Nq�/ � .a Nq� C Nu�/�t� �

2
�±

� .1C ERR. Nq1; : : : ; NqN ; a/
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with

(3.102) jERR. Nq1; : : : ; NqN ; a/j � CQ
2.�tMAX/

1=4

and Nq0 � q0.
Applying (3.101) and (3.102) with a D a1 and with a D a2, we see that if (3.100)

holds, then

(3.103)

ˆ. Nq1; : : : ; NqN ; a2/ D ˆ. Nq1; : : : ; NqN ; a1/

� exp
�
�
1

2
Œa22 � a

2
1�
N��2 .T /C Œa2 � a1�

N��1 .T /
�

� .1C ERR. Nq1; : : : ; NqN ; a1; a2//;

with

(3.104) N��1 .T / WD
X

0��<N

Nq� .Œ Nq�C1 � Nq� � � Nu��t�/; N��2 .T / WD
X

0��<N

Nq2��t� ;

and

(3.105) jERR. Nq1; : : : ; NqN ; a1; a2/j � CQ
2.�tMAX/

1=4:

If (3.100) holds, then

(3.106) j N��1 .T /j; j
N��2 .T /j � CQ

2

(see (3.29)).
Letting E denote the event that .q� .t1/; : : : ; q� .tN // satisfies (3.100), we conclude

from (3.103), (3.105) and (3.106) that

(3.107)
Ea2;E� Œf .q

� .t1/; : : : ; q
� .tN // � 1E �

� Ea1;E� Œf .q
� .t1/; : : : ; q

� .tN // � 1E � � exp.CQ2
ja2 � a1j/ .1CERRf .a1; a2//;

with

(3.108) jERRf .a1; a2/j � CQ
2.�tMAX/

1=4:

On the other hand, Lemma 3.2 shows that the complement of E , denoted cE , satisfies

Proba2;E� Œ
cE� � exp.�cQ2/;

and therefore, by Cauchy–Schwarz, we have

(3.109)
Ea2;E� Œf .q

� .t1/; : : : ;q
� .tN // � 1cE �

� exp.�c0Q2/
�

Ea2;E� Œf
2.q� .t1/; : : : ; q

� .tN //�
�1=2

:

Combining (3.108) and (3.109), we obtain the following result.
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Lemma 3.6 (Lemma on change of assumption). Suppose Q � C for a large enough
constant C . Let a1; a2 2 Œ�aMAX;CaMAX�, let E� 2 ¹0; 1ºN , and let f . Nq1; : : : ; NqN / be a
nonnegative function on RN . Let � be a tame strategy. Assume thatQ � .�tMAX/

�1=1000.
Then

Ea2;E� Œf .q
� .t1/; : : : ; q

� .tN //�

� exp.CQ2
ja2 � a1j/.1C CQ

2.�tMAX/
1=4/Ea1;E� Œf .q

� .t1/; : : : ; q
� .tN //�

C exp.�cQ2/
�

Ea2;E� Œf
2.q� .t1/; : : : ; q

� .tN //�
�1=2

:

3.7. Disasters due to undercontrol

Our tame strategies � are defined to guarantee that

(3.110) ju� .t�/j � C Œjq
� .t�/j C 1�;

which is reasonable, given our assumption that aTRUE2Œ�aMAX;aMAX�. However, if aTRUE�

aMAX, then we expect (3.110) to undercontrol, leading to exponentially large expected cost.
The following lemma confirms that intuition.

Lemma 3.7 (Lemma on undercontrol). Let � be a deterministic strategy satisfying (3.110),
and suppose aTRUE D a, where a exceeds a large enough constant C�. Write EaŒ: : : � for
the corresponding expectation. Assume that �tMAX is less than a small enough positive
number determined by a and T . Then

Ea
h X
0��<N

¹q� .t�//
2
C .u� .t�//

2
º�t�

i
� cT 2 exp.caT /:

Proof. We write q� for q� .t�/, �q� for q�C1 � q� , u� for u� .t�/, and �t� for t�C1 � t� .
We let F� denote the sigma algebra of events determined by q1; : : : ; q� . Thus, q� and u�
are deterministic once we condition on F� .

Recall that

(3.111) �q� D .aq� C u�/.�t
�
� /C�W� ;

where �W� is normal with mean 0 and variance

�Qt� D
exp.2a�t�/ � 1

2a
I

moreover, �W� is independent of F� . Here,

�t�� D
exp.a�t�/ � 1

a
�

Since �t� < �tMAX is less than a small enough positive number determined by a and T ,
we have

(3.112) j�Qt� ��t� j; j�t
�
� ��t� j < 10

�3�t� :
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From (3.111) we have

q2�C1 D q
2
� C 2q� Œ.aq� C u�/.�t

�
� /C�W� �C .aq� C u�/

2.�t�� /
2

C 2.aq� C u�/.�t
�
� /�W� C .�W�/

2

� q2� .1C 2a�t
�
� /C 2q�u�.�t

�
� /C Œ2q� C 2.aq� C u�/.�t

�
� /��W� C .�W�/

2:

Consequently,

(3.113) Ea Œq2�C1 jF� � � q
2
� .1C 2a�t

�
� /C 2q� u� .�t

�
� /C .�Qt�/:

For ı > 0 to be picked in a moment, we have

j2q� u� j � ı
�2q2� C ı

2u2� � Cı
�2q2� C Cı

2;

thanks to (3.110).
Putting this inequality into (3.113), we find that

(3.114) Ea Œq2�C1 jF� � � q
2
� .1C Œ2a � Cı

�2��t�� /C .�Qt� � Cı
2�t�� /:

We take ı to be a small enough constant c such that

�Qt� � Cı
2�t�� �

1

2
�t� I

see (3.112). Since a exceeds a large enough constant C , we then have

Œ2a � Cı�2� > a;

so from (3.114) we obtain

Ea Œq2�C1 jF� � � q
2
� .1C a�t

�
� /C

1

2
�t� :

Again applying (3.112), and recalling that �t� < �tMAX is less than a small enough posi-
tive number determined by a and T , we conclude that

Ea Œq2�C1 jF� � � exp
�1
2
a�t�

�
q2� C

1

2
�t� ;

and therefore

(3.115) Ea Œq2�C1� � exp
�1
2
a�t�

�
Ea Œq2� �C

1

2
�t� :

Since (3.115) implies that

Ea Œq2�C1� � Ea Œq2� �C
1

2
�t� for each �;

we conclude that
Ea Œq2� � �

1

2
t� for each �:

We pick �0 so that
1

2
T < t�0 <

2

3
T:

(Our smallness assumption on �tMAX implies that such a �0 exists.) Then

Ea Œq2�0 � �
1

2
t�0 >

1

4
T:
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Returning to (3.115), we have

Ea Œq2�C1� � exp
�1
2
a�t�

�
Ea Œq2� � for each �;

hence for � � �0 we have

Ea Œq2� � � exp
�1
2
aŒt� � t�0 �

�
EŒq2�0 � �

1

4
T exp

�1
2
aŒt� � t�0 �

�
:

In particular,

Ea Œq2� � �
1

4
T exp.caT / for t� 2

h3
4
T; T

i
:

Consequently,

Ea
h X
0��<N

¹q2� C u
2
�º�t�

i
� Ea

h X
t�2Œ

3
4T;T �

q2��t�

i
�
1

4
T exp.caT / �

X
t�2Œ

3
4T;T �

�t�

� cT 2 exp.caT /;

since each �t� < �tMAX is less than a small enough positive number determined by a
and T . The proof of the lemma is complete.

3.8. Costing by integrals

Let � be a deterministic tame strategy. We condition on

aTRUE D a 2 Œ�aMAX;CaMAX�;

and write ProbaŒ�� and EaŒ�� to denote the corresponding probability and expectation.
We want to compare

COST.�/ D

Z T

0

¹.q� .t//2 C .u� .t//2º dt

with
COSTD.�/ D

X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

(“D” for “discrete”).

Lemma 3.8 (Lemma on costing by integrals). For any m � 1, we have

Ea ŒjCOST.�/ � COSTD.�/j
m� � Cm.�tMAX/

m=2:

Proof. Recall that u� .t/ D u� .t�/ for t 2 Œt� ; t�C1�. Hence,

COST.�/�COSTD.�/ D
X

0��<N

Z t�C1

t�

¹.q� .t//2 � .q� .t�//
2
º dt

D

X
0��<N

Z t�C1

t�

®
Œq� .t/ � q� .t�/�

2
C 2q� .t�/ Œq

� .t/ � q� .t�/�
¯
dt:



Optimal agnostic control of unknown linear dynamics 35

Setting
OSC.�/ D max

t2Œt� ;t�C1�
jq� .t/ � q� .t�/j;

we therefore have

jCOST.�/ � COSTD.�/j �
X

0��<N

¹.OSC.�//2 C 2 jq� .t�/j.OSC.�//º�t� ;

so that by Hölder’s inequality,

jCOST.�/ � COSTD.�/j
m
� Cm

X
0��<N

¹.OSC.�//2m C jq� .t�/j
m .OSC.�//mº�t� :

Consequently,

(3.116)

Ea ŒjCOST.�/�COSTD.�/j
m�

� Cm
X

0��<N

Ea Œ.OSC.�/2m� .�t�/

C Cm
X

0��<N

.Ea Œjq� .t�/j2m�/1=2 .Ea Œ.OSC.�//2m�/1=2�t� :

We now estimate the right-hand side of (3.116).
Fix a large enough constant C�, and let F� denote the sigma algebra of events deter-

mined by q� .t�/ for � D 1; : : : ; �.
Lemma 3.2 shows that

(3.117) Ea Œjq� .t�/j2m� � Cm

and that, given Q2 � Q1 � C�, we have

(3.118) ProbaŒOSC.�/ > Q2.�t�/
1=2
jF� � � C exp.�cQ2

2/ if jq� .t�/j � Q1:

From (3.118), we see that

Ea Œ.OSC.�//2m jF� � � CmQ
2m
1 .�t�/

m if jq� .t�/j � Q1:

In particular,

(3.119) Ea Œ.OSC.�//2m � 1jq� .t�/j�C� � � Cm.�t�/
m

and, for k � 0,

(3.120) Ea Œ.OSC.�//2m � 1jq� .t�/j2ŒC�2k ;C�2.kC1//�

� Cm � .C�2
.kC1//2m .�t�/

m
� Proba Œjq� .t�/j > C�2k �:

Another application of Lemma 3.2 gives

Proba Œjq� .t�/j > C�2k � � C exp.�c22k/;
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so that (3.120) implies that

Ea Œ.OSC.�//2m � 1jq� .t�/j2ŒC�2k ;C�2.kC1//� � Cm � .2
2mk/.�t�/

m
� exp.�c22k/:

Summing over k � 0, and combining the result with (3.119), we learn that

(3.121) EaŒ.OSC.�//2m� � Cm.�t�/
m:

From (3.116), (3.117), and (3.121) we conclude that

Ea ŒjCOST.�/ � COSTD.�/j
m� � Cm

X
0��<N

.�t�/
m=2C1

� C 0m.�tMAX/
m=2;

which is the conclusion of the lemma.

3.9. Continuous vs discrete

Let � be a tame strategy, possibly depending on coin flips E�. In this section, we compare
the following random functions of time:

q�C .t/ D q
� .t/ for t 2 Œ0; T �;

q�D.t/ D q
� .t�/ for t 2 Œt� ; t�C1/; each � < N;

��1;C .t/ D
1

2
.q� .t//2 �

1

2
q20 �

1

2
t �

Z t

0

u� .s/q� .s/ ds for t 2 Œ0; T �;

��1;D.t/ D
1

2
.q� .t�//

2
�
1

2
q20 �

1

2

X
0��<�

.�q� .t�//
2
�

X
0��<�

u� .t�/q
� .t�/ �t�

for t 2 Œt� ; t�C1/; each � < N;

��2;C .t/ D

Z t

0

.q� .s//2 ds for t 2 Œ0; T �;

��2;D.t/ D
X
0��<�

.q� .t�//
2�t� for t 2 Œt� ; t�C1/; each � < N:

We recall that u� .t/ is constant on Œt� ; t�C1/ for each �, so there is no need to introduce
analogous quantities for u� .

We establish the following result.

Lemma 3.9 (Lemma on continuous variants). LetQ be greater than a large enough con-
stant C . Then there exists an event BAD.�;Q/ with the following properties.

• For each a 2 Œ�aMAX;CaMAX� and E� 2 ¹0; 1ºN , we have

Proba;E� ŒBAD.�;Q/� � C exp.�cQ2/:

• If BAD.�;Q/ does not occur, then

max
t2Œ0;T /

jq�C .t/ � q
�
D.t/j � CQ.�tMAX/

1=4

max
t2Œ0;T /

j��1;C .t/ � �
�
1;D.t/j � CQ

2.�tMAX/
1=4;

max
t2Œ0;T /

j��2;C .t/ � �
�
2;D.t/j � CQ

2.�tMAX/
1=4:
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Proof. From Lemma 3.2, the following have probability at most C exp.�cQ2/when con-
ditioned on aTRUE D a, E� D E� (any a 2 Œ�aMAX; aMAX�, E� 2 ¹0; 1ºN/:

max
�

ˇ̌̌ X
0��<�

.�q��/
2
� t�

ˇ̌̌
> Q2.�tMAX/

1=2;(3.122)

max
�
jq��j > Q;(3.123)

max
�
ju��j > Q:(3.124)

Moreover, with
OSC.�/ WD max

t2Œt� ;t�C1�
jq� .t/ � q� .t�/j

and F �
� defined as the sigma algebra of events determined by the q� .t�/ for � � �,

Lemma 3.2 gives also the following, for each fixed �:

Proba;E� ŒOSC.�/ > CQ.�t�/
1=2
jF� � � C exp.�cQ2/ if jq� j � Q:

This implies that

Proba;E� ŒOSC.�/ > CQ.�t�/
1=2 and jq� j � Q� � C exp.�cQ2/:

Since also
Proba;E� Œjq� j > Q� � C exp.�cQ2/;

it follows that
Proba;E� ŒOSC.�/ > CQ.�t�/

1=2� � C exp.�cQ2/

for each fixed �, and for all Q � C .
Taking Q.�t�/�1=4 in place of Q here, we find that

Proba;E� ŒOSC.�/ > CQ.�t�/
1=4� � C exp.�cQ2.�t�/

�1=2/ � C 0 exp.�cQ2/.�t�/:

Summing over �, we find that the event

(3.125) OSC.�/ > CQ.�t�/
1=4 for some �;

conditioned on aTRUE D a and E� D E�, has probability at most C exp.�cQ2/.
We now define BAD.Q; �/ to be the event that at least one of the conditions (3.122)–

(3.125) holds. Then, as claimed,

Proba;E� ŒBAD.Q; �/� � C exp.�cQ2/

for any a 2 Œ�aMAX;CaMAX� and any E� 2 ¹0; 1ºN .
We now suppose that BAD.Q; �/ does not occur, and compare q�C .t/ with q�D.t/,

��1;C .t/ with ��1;D.t/, and ��2;C .t/ with ��2;D.t/.
Since BAD.Q; �/ does not occur, we have

max
�
jq� .t�/j;max

�
ju� .t�/j � Q;(3.126)

max
�

ˇ̌̌ X
0��<�

.�q�� /
2
� t�

ˇ̌̌
� Q2.�tMAX/

1=2;(3.127)

max
�

OSC.�/ � CQ.�tMAX/
1=4:(3.128)
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For any �, and any t 2 Œt� ; t�C1/, we have

jq�C .t/ � q
�
D.t/j D jq

� .t/ � q� .t�/j � OSC.�/ � CQ.�tMAX/
1=4:

Thus,
max
t2Œ0;T �

jq�C .t/ � q
�
D.t/j � CQ.�tMAX/

1=4;

as claimed. Next, for any � and any t 2 Œt� ; t�C1/, we have

��1;C .t/ � �
�
1;D.t/ D

1

2
Œ.q� .t//2 � .q� .t�//

2�C
1

2

h X
0��<�

.�q��/
2
� t�

i
�
1

2
.t � t�/ �

X
0��<�

Z t�C1

t�

¹u� .t�/Œq
� .s/ � q� .t�/�º ds

�

Z t

t�

u� .t�/q
� .s/ ds

� TERM1C TERM2 � TERM3 � TERM4 � TERM5:

(Here, we have used the fact that u� .s/ D u� .t�/ for s 2 Œt�; t�C1/.) We note that

(3.129) max
t2Œ0;T �

jq� .t/j � max
0��<N

¹jq� .t�/j C OSC.�/º � CQ;

by (3.126) and (3.128). Hence, for t 2 Œt� ; t�C1/, we have

jTERM1j � max
Qt2Œ0;T �

jq� .Qt /j � jq� .t/ � q� .t�/j � CQOSC.�/ � CQ2.�tMAX/
1=4:

So
jTERM1j � CQ2.�tMAX/

1=4 for all t 2 Œ0; T /:

Next, (3.127) tells us that

jTERM2j � Q2.�tMAX/
1=2 for all t 2 Œ0; T /:

Clearly
jTERM3j � .�tMAX/:

Furthermore,

jTERM4j �
X

0��<N

ju� .t�/j

Z t�C1

t�

jq� .s/ � q� .t�/j ds

� CQ
X

0��<N

OSC.�/�t� � CQ �max
�

OSC.�/ � CQ2.�tMAX/
1=4

thanks to (3.126) and (3.128). Finally,

jTERM5j � max
�
ju� .t�/j � max

Qt2Œ0;T �
jq� .Qt /j � .�tMAX/ � CQ

2.�tMAX/;
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by (3.126) and (3.129). Combining our estimates for TERMS 1–5, we find that

j��1;C .t/ � �
�
1;D.t/j � CQ

2.�tMAX/
1=4;

as claimed. We pass to ��2;C and ��2;D . For t 2 Œt� ; t�C1/, we have

j��2;C .t/ � �
�
2;D.t/j D

ˇ̌̌ X
0��<�

Z t�C1

t�

¹.q� .s//2 � .q� .t�//
2
º ds C

Z t

t�

.q� .s//2 ds
ˇ̌̌

�

X
0��<�

C
�

max
Qt2Œ0;T �

jq� .Qt /j
� Z t�C1

t�

jq� .s/ � q� .t�/j ds C max
Qt2Œ0;T �

jq� .Qt /j2 ��tMAX

� CQ
X
0��<�

OSC.�/�t� C CQ
2�tMAX � C

0Q max
0��<N

OSC.�/C CQ2�tMAX

� C 00Q2.�tMAX/
1=4; thanks to (3.128) and (3.129):

The proof of the lemma is complete.

3.10. Refining a partition

Let � be a tame strategy � D .�t� /0��<N associated to a partition

(3.130) 0 D t0 < t1 < � � � < tN D T:

Suppose

(3.131) 0 D Ot0 < Ot1 < � � � < Ot ON D T

is a refinement of the partition (3.130).
We would like to associate a tame strategy O� D . O�Ot�/0��< ON to the partition (3.131) in

such a way that

(3.132)
q O� .t/ D q� .t/ for all t 2 Œ0; T �; and

u O� .t/ D u� .t/ for all t 2 Œ0; T /:

That would tell us that refining the partition (3.130) allows additional tame strategies, but
does not rule out any tame strategies � .

Unfortunately, no such O� exists. The problem is that, in order to be a tame strategy, O�
must satisfy

(3.133) ju O� .Ot�/j � CTAME Œjq
O� .Ot�/j C 1� with probability 1:

It may happen that

ju� .Ot�/j D ju
� .t�/j � CTAME � Œjq

� .Ot�/j C 1�

for some Ot� 2 .t� ; t�C1/, in which case (3.133) contradicts (3.132). Accordingly, we mod-
ify (3.132), as follows.

For each � (0 � � < ON ), define N�.�/ to be the index � for which t� � Ot� < t�C1.
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Define a stopping time � by setting

� D

²
least Ot� such that ju� .t N�.�//j > 2CTAME Œjq

� .Ot�/j C 1�; if such a Ot� exists;
T; otherwise:

Then define random processes Oq.t/, Ou.t/ (t 2 Œ0; T �) by setting²
Oq.t/ D q� .t/ and Ou.t/ D u� .t/; for 0 � t < �;
Ou.t/ D 0; for � � t � T;

and on Œ�; T � defining Oq by²
d Oq.t/ D .aTRUE � Oq.t// dt C dW.t/;

with initial condition Oq.�/ D q� .�/:

Note that

(3.134) j Ou.Ot�/j � 2CTAME Œj Oq.Ot�/j C 1� for all Ot�:

It is a tedious exercise (left to the reader) to exhibit a tame strategy O� D . O�Ot�/0��< ON
associated to the partition (3.131), such that Oq.t/ D q O� .t/ for all t 2 Œ0; T � and Ou.t/ D
u O� .t/ for all t 2 Œ0; T /.

Whereas our original tame strategy � satisfies

(3.135) j�t� .q1; : : : ; q� ;
E�/j � CTAME Œjq� j C 1�;

the strategy O� satisfies instead

(3.136) j O�Ot�.q1; : : : ; q�;
E�/j � 2CTAME Œjq�j C 1�I

compare with (3.134).
In place of (3.132), we will show that q O� .t/ and u O� .t/ are likely very close to q� .t/

and u� .t/, respectively. To see this, we fix a 2 Œ�aMAX; aMAX� and E� 2 ¹0; 1ºN , and condi-
tion on aTRUE D a and E� D E�.

We define random variables

(3.137) OSC.�/ D max
t2Œt� ;t�C1�

jq� .t/ � q� .t�/j

and an event

(3.138) DISASTER W OSC.�/ � 1 for some �:

In Section 3.8, we proved that

(3.139) Ea;E� Œ.OSC.�//m� � Cm.�t�/
m=2 for all m � 1:

Hence,
Proba;E� ŒOSC.�/ � 1� � C Nm.�t�/

Nm for all Nm � 1;
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and consequently

(3.140) Proba;E� ŒDISASTER� �
X

0��<N

C Nm.�t�/
Nm
� C 0Nm�1.�tMAX/

Nm�1

for any Nm � 1.
Next, we prepare to estimateZ T

0

¹jq O� .t/ � q� .t/jm C ju O� .t/ � u� .t/jmº dt:

Let
q�0 .t/ D q

� .t�/ for t 2 Œt� ; t�C1/; 0 � � < N:

Then Z t�C1

t�

jq�0 .t/ � q
� .t/j2m dt � .OSC.�//2m�t� ;

hence

(3.141)
Ea;E�

h Z T

0

jq�0 .t/ � q
� .t/j2m dt

i
�

X
�

Ea;E� Œ.OSC.�//2m��t�

� Cm.�tMAX/
m;

thanks to (3.139). Similarly,

(3.142) Ea;E�
h Z T

0

jq O�0 .t/ � q
O� .t/j2m dt

i
� Cm.�tMAX/

m;

where q O�0 .t/ D q
O� .Ot�/ for t 2 ŒOt�; Ot�C1/, 0 � � < ON . We have also

(3.143) Ea;E�
h Z T

0

jq�0 .t/j
2m dt

i
D Ea;E�

h X
0��<N

jq� .t�/j
2m�t�

i
� Cm;

thanks to Lemma 3.2. Similarly,

(3.144) Ea;E�
h Z T

0

jq O�0 .t/j
2m dt

i
� Cm:

From (3.141) and (3.143), we obtain

(3.145) Ea;E�
h Z T

0

jq� .t/j2m dt
i
� Cm for m � 1:

Similarly, from (3.142) and (3.144), we have

(3.146) Ea;E�
h Z T

0

jq O� .t/j2m dt
i
� Cm for m � 1:

Turning to u� and u O� , we recall that u� .t/ D u� .t�/ for t 2 Œt� ; t�C1/, 0 � � < N ;
hence,

(3.147) Ea;E�
h Z T

0

ju� .t/j2m dt
i
D Ea;E�

h X
0��<N

ju� .t�/j
2m�t�

i
� Cm .m � 1/;
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by Lemma 3.2. Similarly,

(3.148) Ea;E�
h Z T

0

ju O� .t/j2m dt
i
� Cm .m � 1/:

From (3.145)–(3.147), we see that

(3.149) Ea;E�
h Z T

0

¹jq O� .t/ � q� .t/j C ju O� .t/ � u� .t/jº2m dt
i
� Cm .m � 1/:

Moreover, unless DISASTER occurs, we have � D T , hence

(3.150) q O� .t/ D q� .t/ and u O� .t/ D u� .t/ for all t 2 Œ0; T �:

Indeed, if DISASTER does not occur, then for 0 � � < N and t 2 Œt� ; t�C1/ we have

jq� .t/ � q� .t�/j � 1;

hence Œjq� .t/j C 1� and Œjq� .t�/j C 1� differ by at most a factor of 2. Since ju� .t�/j �
CTAMEŒjq

� .t�/j C 1�, it follows that ju� .t�/j � 2CTAMEŒjq
� .t/j C 1� for t 2 Œt� ; t�C1/, 0 �

� < N . In particular,

(3.151) ju� .t N�.�//j � 2CTAME Œjq
� .t�/j C 1� for all � .0 � � < ON/:

Comparing (3.151) with the definition of � , we see that, as claimed, � D T unless DISAS-
TER occurs.

Thus (3.150) holds unless DISASTER occurs.
From (3.149), (3.150) and (3.140), we now have

(3.152)

Ea;E�
h Z T

0

¹jq O� .t/ � q� .t/j C ju O� .t/ � u� .t/jºm dt
i

D Ea;E�
h Z T

0

¹jq O� .t/ � q� .t/j C ju O� .t/ � u� .t/jºm 1DISASTER dt
i

�

�
Ea;E�

h Z T

0

¹jq O� .t/ � q� .t/j C ju O� .t/ � u� .t/jº2m dt
i�1=2

� .Proba;E� ŒDISASTER�/1=2

� Cm; Nm � .�tMAX/
. Nm�1/=2 for any m; Nm � 1:

We record this result as a lemma.

Lemma 3.10 (Refinement lemma). Let � be a tame strategy associated to a partition

0 D t0 < t1 < � � � < tN D T;(A)

and let

0 D Ot0 < Ot1 < � � � < Ot ON D T(B)

be a refinement of the partition (A).
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Then there exists a tame strategy O� associated to the partition (B), such that

Ea;E�
h Z T

0

¹jq O� .t/ � q� .t/j C ju O� .t/ � u� .t/jºm dt
i
� Cm; Nm.�tMAX/

Nm

for all m; Nm � 1 and all a 2 Œ�aMAX;CaMAX�, E� 2 ¹0; 1ºN .
The strategy O� satisfies the same estimates as we assumed for � (see 3.110), except

that CTAME is replaced by 2CTAME.

4. Bayesian strategies associated to partitions

4.1. Setup

In this section, we take aTRUE to be governed by a known prior probability distribution
dPrior.a/, concentrated on an interval Œ�aMAX;CaMAX�.

We fix a partition

(4.1) 0 D t0 < t1 < � � � < tN D T

of the time interval Œ0; T �.
We fix a deterministic strategy � for the game starting at position q0.
We assume that our strategy � is tame, i.e.,

(4.2) ju� .t�/j � C
�
TAME Œjq

� .t�/j C 1�

for a constant C �TAME. We call C �TAME the tame constant for � .
We write

q�� D q
� .t�/; �q�� D q

�
�C1 � q

�
� ;

��1;� D �
�
1 .t�/; ���1;� D �

�
1;�C1 � �

�
1;� ;

��2;� D �
�
2 .t�/; ���2;� D �

�
2;�C1 � �

�
2;� ;

u�� D u
� .t�/:

Until further notice, c; C; C 0; etc., will denote constants determined by C �TAME in (4.2)
together with aMAX and upper bounds for T and jq0j. The symbols c; C; C 0; etc., may
denote different constants in different occurrences. We assume that

(4.3) �tMAX � max
0��<N

.t�C1 � t�/ < c for a small enough constant c:

We write X D O.Y / to indicate that jX j � CY . We write F �
� to denote the sigma

algebra of events determined by q� .t�/ for � D 0; 1; : : : ; �. Note that F �
� depends on � ,

because aTRUE is not deterministic.
We write ProbŒ: : : � to denote probability, and we write EŒ: : : � to denote expectation.
If we condition on aTRUE D a, then we write ProbaŒ: : : � and Ea Œ: : : � to denote the

corresponding probability and expectation. Thus, for instance, Ea ŒX jF �
� � denotes the

expected value of X conditioned on F �
� , given that aTRUE D a.
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For any event E , we have

ProbŒE� D
Z aMAX

�aMAX

ProbaŒE� dPrior.a/(4.4)

ProbŒEjF �
� � D

Z aMAX

�aMAX

ProbaŒE jF �
� � dPost.a jF �

� /;(4.5)

where dPost.a jF �
� / is the posterior probability distribution for aTRUE conditioned on F �

� .
Similarly, for any random variable X , we have

EŒX� D
Z aMAX

�aMAX

Ea ŒX� dPrior.a/(4.6)

EŒX jF �
� � D

Z aMAX

�aMAX

Ea ŒX jF �
� � dPost.a jF �

� /:(4.7)

Thanks to (4.4)–(4.7), the following results are immediate from Lemma 3.2.

Lemma 4.1 (Bayesian lemma on rare events). Suppose Q > C for a large enough C .
Then the following hold with probability > 1 � exp.�cQ2/:

• jq� .t�/j; ju� .t�/j � Q, for all �.

• j��1 .t�/j; j�
�
2 .t�/j � Q

2, for all �.

• j
P
0��<�.q

� .t�C1/ � q
� .t�//

2 � t� j � Q
2.�tMAX/

1=2, for all �.

Moreover, suppose we fix � and condition on F �
� , the sigma algebra of events deter-

mined by q� .t�/ for 0 � � � �. Suppose jq� .t�/j � Q, where C � Q � .�t�/�1=1000

( for large enough C/.
Then for p D 1; 2, we have

EŒ.j�q�� j C j��
�
1;� j C j��

�
2;� j/

p
� 1j�q�� jCj��

�
1;� jCj��

�
2;� j>.�t�/

2=5 jF �
� � � C � .�t�/

100
I

also
Prob

h
max

t2Œt� ;t�C1�
jq� .t/ � q�� j > .�t�/

2=5
jF �
�

i
� C � .�t�/

1000

and
Prob Œj�q�� j C j��

�
1;� j C j��

�
2;� j > .�t�/

2=5
jF �
� � � C � .�t�/

1000:

4.2. Posterior probabilities and expectations

FixQ>C for large enoughC . For each �, let OK.�/ denote the set of all . Nq1; : : : ; Nq�/2R�

such that

(4.8) max
���
j Nq�j C j Nu�j � Q

and

(4.9)
ˇ̌̌X
�<�

.� Nq�/
2
� t�

ˇ̌̌
� Q2.�tMAX/

1=4;

where � Nq� D Nq�C1 � Nq�, Nq0 � q0, and Nu� is defined to be the value assigned to u� .t�/
provided q� .t / D Nq for  � �.
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According to the Bayesian lemma on rare events, we have

(4.10) Prob ŒNOT OK.�/� � exp.�cQ2/:

Now, thanks to (4.3) and Lemma 3.3, the following holds for a 2 Œ�aMAX; aMAX� and
. Nq1; : : : ; Nq�/ 2 OK.�/:

ProbŒaTRUE 2 Œa; aC da� and q� .t�/ 2 Œ Nq�; Nq� C d Nq�� for � � ��

D .1CO.Q2.�tMAX/
1=4// � .?/ � d Nq1 � � � d Nq� ;

where

.?/ D
h
dPrior.a/ �

Y
0��<�

° 1p
2��t�

exp
�
�

1

2�t�
.� Nq� � .a Nq� C Nu�/�t�/

2
�±i

:

Note that

.?/ D dPrior.a/ � exp
�
�
1

2
N�2;� a

2
C N�1;� a

�
� ¹Factor independent of aº;

where

N�2;� D N�2;�. Nq1; : : : ; Nq�/ D
X
0��<�

Nq2��t�;(4.11)

N�1;� D N�1;�. Nq1; : : : ; Nq�/ D
X
0��<�

Nq� .� Nq� � Nu��t�/:(4.12)

Hence, for
. Nq1; : : : ; Nq�/ 2 OK.�/;

the posterior probability distribution for aTRUE; given that q� .t�/ D Nq� for � D 1; : : : ; �;
is given by

(4.13) dPost.aj Nq1; : : : ; Nq�/

D .1CO.Q2.�tMAX/
1=4// �

dPrior.a/ � exp
�
�
1
2
N�2;�a

2 C N�1;�a
�

Z

for a normalizing constant Z. SinceZ aMAX

�aMAX

dPost.aj Nq1; : : : ; Nq�/ D 1;

equation (4.13) holds with

(4.14) Z D

Z aMAX

�aMAX

dPrior.a/ � exp
�
�
1

2
N�2;� a

2
C N�1;� a

�
:

We have thus proven the following result.
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Lemma 4.2 (Lemma on posterior probabilities). Suppose Q � C for a large enough C .
Fix �, and suppose .q� .t1/; : : : ; q� .t�// satisfy

max
���
jq� .t�/j C ju

� .t�/j � Q;(4.15) ˇ̌̌X
�<�

.�q� .t�//
2
� t�

ˇ̌̌
� Q2.�tMAX/

1=4:(4.16)

Then the posterior probability distribution for aTRUE conditioned on F �
� is given by

(4.17)

dPost.a jF �
� / D .1CO.Q

2.�tMAX/
1=4//

�

exp
�
�
1
2
��2 .t�/a

2 C ��1 .t�/a
�
� dPrior.a/

Z
,

with

(4.18) Z D

Z aMAX

�aMAX

exp
�
�
1

2
��2 .t�/b

2
C ��1 .t�/b

�
dPrior.b/:

Corollary 4.3. Under the assumption of the above lemma, we have

(4.19) EŒaTRUE jF
�
� � D O.Q

2.�tMAX/
1=4/C Na.��1 .t�/; �

�
2 .t�//;

where

(4.20) Na. N�1; N�2/ �

R aMAX

�aMAX
a exp

�
�
a2

2
N�2 C a N�1

�
dPrior.a/R aMAX

�aMAX
exp

�
�
a2

2
N�2 C a N�1

�
dPrior.a/

for . N�1; N�2/ 2 R2.

Thanks to the above corollary, formula (4.7), and Lemma 3.5, we now have the fol-
lowing results.

Lemma 4.4 (Lemma on posterior expectations). Suppose Q � C for large enough C ,
and assume that �tMAX � Q

�1000.
Define the event

TAME.�/ D ¹j�q�� j � 2.�t�/
2=5; j���1;� j � 2.�t�/

2=5; j���2;� j � 2.�t�/
2=5
º:

Fix �, and suppose we have

max
���
jq� .t�/j C ju

� .t�/j � Q

and ˇ̌̌ X
0��<�

.�q� .t�//
2
� t�

ˇ̌̌
� Q2.�tMAX/

1=4:
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Then the following hold:

EŒ.�q�� / � 1TAME.�/ jF
�
� � D Œ Na.�

�
1 .t�/; �

�
2 .t�//q

�
� C u

�
� � .�t�/C ERR1;

EŒ.���1;�/ � 1TAME.�/ jF
�
� � D Na.�

�
1;�.t�/; �

�
2;�.t�// � .q

�
� /
2 .�t�/C ERR2;

EŒ.���2;�/ � 1TAME.�/ jF
�
� � D .q

�
� /
2.�t�/C ERR3;

EŒ.�q�� /
2
� 1TAME.�/ jF

�
� � D .�t�/C ERR4;

EŒ.�q�� / � .��
�
1;�/ � 1TAME.�/ jF

�
� � D q

�
� .�t�/C ERR5;

EŒ.�q�� / � .��
�
2;�/ � 1TAME.�/ jF

�
� � D ERR6;

EŒ.���1;�/
2
� 1TAME.�/ jF

�
� � D .q

�
� /
2.�t�/C ERR7;

EŒ.���1;�/.��
�
2;�/ � 1TAME.�/ jF� � D ERR8;

EŒ.���2;�/
2
� 1TAME.�/ jF

�
� � D ERR9;

where
jERR1j; : : : ; jERR9j � C 0Q4.�tMAX/

1=4�t� :

Moreover, under the above assumptions on .q� .t1/; : : : ; q� .t�//, we have

ProbŒNOT TAME.�/ jF �
� � � .�t�/

20:

Here,

Na.�1; �2/ WD

R aMAX

�aMAX
a exp

�
�
a2

2
�2 C a�1

�
dPrior.a/R aMAX

�aMAX
exp

�
�
a2

2
�2 C a�1

�
dPrior.a/

�

4.3. The PDE assumption

For our given probability distribution dPrior.a/, we fix the function Na.�1; �2/ given in
the preceding section, and we introduce the following PDE for an unknown function
S.q; t; �1; �2/ defined on R � Œ0; T � �R � Œ0;1/:

(4.21)
0 D @tS C . Na.�1; �2/q C uopt/@qS C Na.�1; �2/q

2 @�1S C q
2 @�2S C

1

2
@2qS

C q@q�1S C
1

2
q2 @2�1S C .q

2
C u2opt/;

where

(4.22) uopt D �
1

2
@qS:

We assume the existence of a solution of the above PDE, satisfying the following addi-
tional conditions.

The TERMINAL CONDITION:

(4.23) S.q; t; �1; �2/ D 0 at t D T:

POSITIVITY:

(4.24) S.q; t; �1; �2/ � 0:
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ESTIMATES: We assume S 2 C 2;1. For j˛j � 3, we have almost everywhere that

(4.25) j@˛S.q; t; �1; �2/j � K � Œ1C jqj C j�1j C j�2j�
m0

for constants K, m0 � 1. Moreover,

(4.26) juopt.q; t; �1; �2/j � C
opt
TAME Œjqj C 1�:

Note that (4.25) holds everywhere, not just almost everywhere, when j˛j � 2.
We call K, m0, C opt

TAME, aMAX, and our upper bounds for T and jq0j the BOILERPLATE
CONSTANTS. We now broaden our definition of constants c, C , C 0, etc., to allow them to
depend on the BOILERPLATE CONSTANTS. As usual, these symbols may denote different
constants in different occurrences.

We strengthen our large Q assumption. More precisely, we assume from now on that
Q � C for a large enough constant C . Since the meaning of the constant C has changed,
the above is stronger than our previous large Q assumption.

We assume that
�tMAX � Q

�1000:

4.4. The allegedly optimal strategy

Let uopt D uopt.q; t; �1; �2/ be as in Section 4.3. We define a strategy Q� based on the
function uopt.

Given � (1 � � � N/ and given real numbers q1; : : : ; q� , we define numbers u�, �1;�
and �2;� by induction on � D 0; 1; : : : ; � so that �1;0 D �2;0 D 0, and, for each �,

u� D uopt.q�; t�; �1;�; �2;�/;

�1;� D
X

0�<�

q .ŒqC1 � q � � u�t /;

�2;� D
X

0�<�

q2�t ;

We then set Q��.q1; : : : ; q�/ equal to the above u� for � D �.
We define our ALLEGEDLY OPTIMAL STRATEGY Q� to be the collection of tame rules

Q� D . Q��/�D0;1;:::;N�1:

Thanks to our PDE assumption (see (4.26)), each Q�� is indeed a tame rule with tame
constant C opt

TAME, hence Q� is a strategy.

4.5. Performance of competing strategies

We have just defined the allegedly optimal strategy Q� , that is based on the functions
uopt.q; t; �1; �2/, S.q; t; �1; �2/, and Na.�1; �2/.

In this section, we compare the performance of Q� with that of an arbitrary competing
(deterministic, tame) strategy � , also defined with respect to the given partition 0 D t0 <
t1 < � � � < tN D T . We assume that

(4.27) .�tMAX/ � Q
�2000m0 :
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(See Section 4.3 for m0.) Thanks to our assumption 4.26, the strategy Q� satisfies

juQ� .t�/j � C
opt
TAME Œjq

Q� .t�/j C 1�;

i.e., Q� is tame with constant C opt
TAME. We assume that the strategy � is tame with con-

stant C �TAME, i.e., we assume that

ju� .t�/j � C
�
TAME Œjq

� .t�/j C 1�:

In this section, we write c, C , C 0, etc., to denote constants determined by C �TAME and the
BOILERPLATE CONSTANTS (one of which is C opt

TAME). We strengthen our large Q assump-
tion by supposing that Q > C for a large enough C . Since the meaning of constants C
has changed, this indeed strengthens our previous large Q assumption.

We define

U D ¹.q; �1; �2/ 2 R3 W jqj; j�1j; j�2j � Qº;(4.28)

UC D ¹.q; �1; �2/ 2 R3 W jqj; j�1j; j�2j � 2Qº:(4.29)

For each � (0 � � � N ) we introduce the event
(4.30)

OK� D
°
.q� .t�/; �

�
1 .t�/; �

�
2 .t�// 2 U;

ˇ̌̌ X
0�<�

.�q� .t //
2
� t�

ˇ̌̌
� Q2.�tMAX/

1=4
±
:

We define the event

(4.31) DISASTER D ¹OK� fails for some � � N º

and the stopping time

(4.32) � D

²
t� for the least � for which OK� fails, if there is such a �;
T D tN otherwise:

Note that � is indeed a stopping time with respect to the F �
� , i.e., the event � > t� is

F �
� -measurable, for each �.

We define a cost-to-go by setting

(4.33) CTG� .t�/ D
X

t��t�<�

Œ.q� .t�//
2
C .u� .t�//

2��t�:

To measure the difference between the strategies � and Q� , we introduce the random vari-
able

(4.34) DISCREP� .t�/ D u
� .t�/ � uopt.q

� .t�/; t�; �
�
1 .t�/; �

�
2 .t�//:

Note that
uopt.q

� .t�/; t�; �
�
1 .t�/; �

�
2 .t�//

is not the same as
uQ� .t�/ D uopt.q

Q� .t�/; t�; �
Q�
1 .t�/; �

Q�
2 .t�//:

In the next lemma, we compare the cost-to-go of � with that of Q� . We will be con-
ditioning on F �

� , so the quantities q� .t�/, u� .t�/, ��1 .t�/ and ��2 .t�/ may be regarded as
deterministic.
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Lemma 4.5 (Main lemma on competing strategies). Fix � .0 � � � N/. Suppose

.q� .t�/; �
�
1 .t�/; �

�
2 .t�// 2 U:(?)

Then

EŒCTG� .t�/ jF
�
� �C

OCQ2m0 Prob ŒDISASTER jF �
� �

� S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//C E

h X
t��t�<�

.DISCREP� .t�//
2�t� jF

�
�

i
�Q2m0.T � t�/ � .�tMAX/

1=20:

(A)

If � D Q� , then

EŒCTG� .t�/ jF
�
� � � S.q

� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//

C OCQ2m0 Prob ŒDISASTER jF �
� �CQ

2m0.T � t�/ � .�tMAX/
1=20:

(B)

We fix the large constant OC throughout this section.

Proof. We proceed by downward induction on �.
In the base case, � D N . Since � � T D tN , we have CTG� .t�/ D 0. Also,

S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�// D 0

by the terminal condition for our PDE. Moreover, the sumX
t��t�<�

.DISCREP� .t�//
2�t�

is empty, and T � t� D 0. Therefore, (A) asserts that

OCQ2m0 ProbŒDISASTER jF �
� � � 0;

while (B) asserts that if � D Q� , then

0 � OCQ2m0 ProbŒDISASTER jF �
� �:

These two (equivalent) inequalities are obviously correct, so our lemma holds in the base
case � D N .

For the induction step, we fix � < N , and assume that (A) and (B) hold with .� C 1/
in place of �. We will deduce (A) and (B) for the given �. To do so, we first dispose of a
trivial case.

Suppose for a moment that OK� fails for some � � �. Then DISASTER occurs, and
� � t� ; consequently, CTG� .t�/ D 0, andX

t��t�<�

.DISCREP� .t�//
2�t� D 0:

Therefore, (A) asserts that

OCQ2m0 � S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�// �Q

2m0.T � t�/ � .�tMAX/
1=2;
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while (B) asserts that if � D Q� then

0 � S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//C

OCQ2m0 CQ2m0 � .T � t�/ � .�tMAX/
1=20:

These inequalities are immediate from our assumptions on the PDE solution S , together
with our hypothesis

.q� .t�/; �
�
1 .t�/; �

�
2 .t�// 2 U:

Thus, our induction step is complete in the trivial case in which OK� fails for some � � �.
From now on, we assume that

(4.35) OK� holds for all � � �:

Thus,

(4.36) � � t�C1

For the moment, we condition on F �
�C1; and distinguish two cases:

Case I. .q� .t�C1/; �
�
1 .t�C1/; �

�
2 .t�C1// 2 U;

Case II. .q� .t�C1/; �
�
1 .t�C1/; �

�
2 .t�C1// … U:

In Case I, our inductive hypothesis tells us the following:

EŒCTG� .t�C1/ jF
�
�C1�C

OCQ2m0 ProbŒDISASTER jF �
�C1�

� S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1//C E

h X
t�C1�t�<�

.DISCREP� .t�//
2�t� jF

�
�C1

i
�Q2m0.T � t�C1/ � .�tMAX/

1=20
I

and if � D Q� then

EŒCTG� .t�C1/ jF
�
�C1�

� S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1//C

OCQ2m0 ProbŒDISASTER jF �
�C1�

CQ2m0.T � t�C1/ � .�tMAX/
1=20:

Since
CTG� .t�/ D CTG� .t�C1/C Œ.q

� .t�//
2
C .u� .t�//

2��t� ;

thanks to (4.36), the above inequalities yield at once that

EŒCTG� .t�/ jF
�
�C1�C

OCQ2m0 ProbŒDISASTER jF �
�C1�

�S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1//C Œ.q

� .t�//
2
C .u� .t�//

2��t�

C E
h X
t�C1�t�<�

.DISCREP� .t�//
2�t� jF

�
�C1

i
�Q2m0 � .T � t�C1/ � .�tMAX/

1=20
I

(AI)
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and if � D Q� , then

EŒCTG� .t�/ jF
�
�C1�

� S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1//C Œ.q

� .t�//
2
C .u� .t�//

2��t�

C OCQ2m0 ProbŒDISASTER jF �
�C1�CQ

2m0.T � t�C1/ � .�tMAX/
1=20:

(BI)

Estimates (AI) and (BI) hold in Case I.
We turn to Case II. In that case, OK�C1 fails, DISASTER occurs, and � D t�C1, hence

CTG� .t�/ D Œ.q
� .t�//

2
C .u� .t�//

2��t� ; ProbŒDISASTER jF �
�C1� D 1; andX

t�C1�t�<�

.DISCREP� .t�//
2�t� D 0:

So we have the following estimates:

EŒCTG� .t�/ jF
�
�C1�C

OCQ2m0 ProbŒDISASTER jF �
�C1�

� OCQ2m0 C E
h X
t�C1�t�<�

.DISCREP� .t�//
2�t� jF

�
�C1

i
�Q2m0 .T � t�C1/ � .�tMAX/

1=20
I

(AII)

and if � D Q� then

EŒCTG� .t�/ jF
�
�C1�

� Œ.q� .t�//
2
C .u� .t�//

2��t� C OCQ
2m0 ProbŒDISASTER jF �

�C1�

CQ2m0 � .T � t�C1/ � .�tMAX/
1=20:

(BII)

Estimates (AII) and (BII) hold in Case II.
Combining estimates (AI), (BI), (AII) and (BII), we obtain the following inequalities,

which hold in both Cases I and II:

EŒCTG� .t�/ jF
�
�C1�C

OCQ2m0 ProbŒDISASTER jF �
�C1�

� S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1// � 1CASE I

C C OQ2m01CASE II C Œ.q
� .t�//

2
C .u� .t�//

2��t� � 1CASE I

C E
h X
t�C1�t�<�

.DISCREP� .t�//
2�t� jF

�
�C1

i
�Q2m0 � .T � t�C1/ � .�tMAX/

1=20
I

and if � D Q� , then

EŒCTG� .t�/ jF
�
�C1� � S.q

� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1// � 1CASE I

C Œ.q� .t�//
2
C .u� .t�//

2��t� C OCQ
2m0 ProbŒDISASTER jF �

�C1�

CQ2m0 � .T � t�C1/ � .�tMAX/
1=20:
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We now cease conditioning on F �
�C1 and instead condition on F �

� . From the two
preceding inequalities we obtain the following estimates, valid whenever (4.35) holds:

EŒCTG� .t�/ jF
�
� �C

OCQ2m0 ProbŒDISASTER jF �
� �

� EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1CASE I jF

�
� �

C EŒ OCQ2m01CASE II jF
�
� �C Œ.q

� .t�//
2
C .u� .t�//

2��t� � EŒ1CASE I jF
�
� �

C E
h X
t�C1�t�<�

.DISCREP� .t�//
2�t� jF

�
�

i
�Q2m0 � .T � t�C1/ � .�tMAX/

1=20
I

(A*)

and if � D Q� , then

EŒCTG� .t�/ jF
�
� � � EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �

�
2 .t�C1//� � 1CASE I jF

�
� �

C Œ.q� .t�//
2
C.u� .t�//

2��t�C OCQ
2m0 ProbŒDISASTER jF �

� �

CQ2m0 � .T � t�C1/ � .�tMAX/
1=20:

(B*)

Next, from Lemma 4.4, recall the event

(4.37) TAME.�/ D ¹j�q� .t�/j; j��
�
1 .t�/j; j��

�
2 .t�/j � 2.�t�/

2=5
º;

and the estimate

(4.38) ProbŒNOT TAME.�/ jF �
� � � .�t�/

20:

(Note that Lemma 4.4 applies, thanks to (4.35).) If TAME.�/ occurs, then, since

.q� .t�/; �
�
1 .t�/; �

�
2 .t�// 2 U

(by the hypothesis of the present lemma), we have

.q� .t�C1/; �
�
1 .t�C1/; �

�
2 .t�C1// 2 UC;

hence
0 � S.q� .t�C1/; t�C1; �

�
1 .t�C1/; �

�
2 .t�C1// � CQ

m0 :

Therefore, if we take OC large enough, then

(4.39) S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1// � 1CASE I C

1

2
OCQ2m0 � 1CASE II

� S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1// � 1TAME.�/

and

(4.40)
1

2
OCQ2m0 � 1CASE II � Œ.q

� .t�//
2
C .u� .t�//

2��t� � 1TAME.�/ � 1CASE II:
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Putting (4.39) and (4.40) into (A*), we learn that

EŒCTG� .t�/ jF
�
� �C

OCQ2m0ProbŒDISASTER jF �
� �

� EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1TAME.�/ jF

�
� �

C Œ.q� .t�//
2
C .u� .t�//

2��t� ProbŒTAME.�/ jF �
� �

C E
h X
t�C1�t�<�

.DISCREP� .t�//
2�t�

ˇ̌̌
F �
�

i
�Q2m0 � .T � t�C1/ � .�tMAX/

1=20:

(A#)

To obtain an analogous result from (B*), we note that

S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1// � 1CASE I

� S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1// � 1.q� .t�C1/;��1 .t�C1/;�

�
2 .t�C1//2UC

� S.q� .t�C1/; t�C1; �
�
1 .t�C1/; �

�
2 .t�C1// � 1TAME.�/ C CQ

2m0 � 1NOT TAME.�/;

and therefore,

EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1CASE I jF

�
� �

� EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1TAME.�/ jF

�
� �C CQ

2m0.�t�/
20;(4.41)

thanks to (4.38).
Putting (4.41) into (B*), we obtain for � D Q� the inequality

EŒCTG� .t�/ jF
�
� � � EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �

�
2 .t�C1// � 1TAME.�/ jF

�
� �

C CQ2m0.�t�/
20
C Œ.q� .t�//

2
C .u� .t�//

2��t�

C OCQ2m0 ProbŒDISASTER jF �
� �

CQ2m0.T � t�C1/ � .�tMAX/
1=20:

(B#)

Estimates (A#) (for general � ) and (B#) (for � D Q� ) hold whenever (4.35) is satisfied.
We next study the quantity

EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1TAME.�/ jF

�
� �;

which appears in (A#) and (B#).
Thanks to conditions (4.35), (4.30) and (4.37), the points .q� .t�/; ��1 .t�/; �

�
2 .t�// and

.q� .t�C1/; �
�
1 .t�C1/; �

�
2 .t�C1// both lie in UC provided TAME.�/ holds; see (4.29). Recall

that the third derivatives of S are assumed to be bounded a.e. by CQm0 on UC. Therefore,
if TAME.�/ holds, then
(4.42)ˇ̌̌
S.q� .t�C1/; t�C1; �

�
1 .t�C1/; �

�
2 .t�C1//

�

X
p1Cp2Cp3Cp4�2

° .@p1t @p2q @p3�1 @p4�2 S/
p1Šp2Šp3Šp4Š

.�t�/
p1.�q� .t�//

p2.���1 .t�//
p3.���2 .t�//

p4
±ˇ̌̌

� CQm0 max¹.�t�/; j�q� .t�/j; j���1 .t�/j; j��
�
2 .t�/jº

3
� C 0Qm0 Œ.�t�/

2=5�3;

where the partials of S are evaluated at .q� .t�/; t� ; ��1 .t�/; �
�
2 .t�//, and we have made use

of (4.37).
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Moreover, the summands in (4.42) satisfy

j.@
p1
t � � � @

p4
�2
S/.�t�/

p1 .�q� .t�//
p2 .���1 .t�//

p3 .���2 .t�//
p4 j

� CQm0 .�t�/
p1C

2
5 Œp2Cp3Cp4�

whenever (4.35) and TAME.�/ hold.
Consequently, (4.42) implies that

(4.43)

ˇ̌̌
S.q� .t�C1/; t�C1; �

�
1 .t�C1/; �

�
2 .t�C1// � 1TAME.�/

�

X
p1Cp2Cp3Cp4�2

p1C
2
5 .p2Cp3Cp4/�1

° .@p1t @p2q @p3�1 @p4�2 S/
p1Šp2Šp3Šp4Š

.�t�/
p1.�q� .t�//

p2

� .���1 .t�//
p3.���2 .t�//

p4 � 1TAME.�/

±ˇ̌̌
� CQm0.�t�/

6=5:

The summands entering into (4.43) arise from S , @tS , @qS , @�1S , @�2S , @2qS , @q�1S ,
@q�2S , @2

�1
S , @�1�2S and @2

�2
S . We conclude that

(4.44)
ˇ̌̌
S.q� .t�C1/; t�C1; �

�
1 .t�C1/; �

�
2 .t�C1// �1TAME.�/ �

10X
iD0

TERM i
ˇ̌̌
�CQm0 .�t�/

6=5

whenever (4.35) holds, where

TERM0 D S � 1TAME.�/;(4.45)
TERM1 D .@tS/ � .�t�/ � 1TAME.�/;(4.46)
TERM2 D .@qS/ � .�q

� .t�// � 1TAME.�/;(4.47)
TERM3 D .@�1S/ � .��

�
1 .t�// � 1TAME.�/;(4.48)

TERM4 D .@�2S/ � .��
�
2 .t�// � 1TAME.�/;(4.49)

TERM5 D
1

2
.@2qS/ � .�q

� .t�//
2
� 1TAME.�/;(4.50)

TERM6 D .@q�1S/ � .�q
� .t�//.��

�
1 .t�// � 1TAME.�/;(4.51)

TERM7 D .@q�2S/ � .�q
� .t�//.��

�
2 .t�// � 1TAME.�/;(4.52)

TERM8 D
1

2
.@2�1S/ � .��

�
1 .t�//

2
� 1TAME.�/;(4.53)

TERM9 D .@�1�2S/ � .��
�
1 .t�//.��

�
2 .t�// � 1TAME.�/;(4.54)

TERM10 D
1

2
.@2�2S/ � .��

�
2 .t�//

2
� 1TAME.�/:(4.55)

Here, again, S and its partial derivatives are evaluated at

.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//I
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hence these .@˛S/ are deterministic once we condition on F �
� . Consequently,

EŒTERM0 jF �
� � D S � ProbŒTAME.�/ jF �

� �;

EŒTERM1 jF �
� � D .@tS/ � .�t�/ � ProbŒTAME.�/ jF �

� �;

EŒTERM2jF �
� � D .@qS/ � EŒ�q

� .t�/ � 1TAME.�/ jF
�
� �;

EŒTERM3 jF �
� � D .@�1S/ � EŒ��

�
1 .t�/ � 1TAME.�/ jF

�
� �;

EŒTERM4 jF �
� � D .@�2S/ � EŒ��

�
2 .t�/ � 1TAME.�/ jF

�
� �;

EŒTERM5 jF �
� � D

1

2
.@2qS/ � EŒ.�q

� .t�//
2
� 1TAME.�/ jF

�
� �;

EŒTERM6 jF �
� � D .@q�1S/ � EŒ.�q

� .t�//.��
�
1 .t�// � 1TAME.�/ jF

�
� �;

EŒTERM7 jF �
� � D .@q�2S/ � EŒ.�q

� .t�//.��
�
2 .t�// � 1TAME.�/ jF

�
� �;

EŒTERM8 jF �
� � D

1

2
.@2�1S/ � EŒ.��

�
1 .t�//

2
� 1TAME.�/ jF

�
� �;

EŒTERM9 jF �
� � D .@�1�2S/ � EŒ.��

�
1 .t�//.��

�
2 .t�// � 1TAME.�/ jF

�
� �;

EŒTERM10 jF �
� � D

1

2
.@2�2S/ � EŒ.��

�
2 .t�//

2
� 1TAME.�/ jF

�
� �:

The expectations on the right-hand sides have been computed modulo a small error in
Lemma 4.4. Applying that lemma, recalling that j@˛S j � CQm0 for j˛j � 2, and substi-
tuting the results into (4.44), we find that

(4.56)

EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1TAME.�/ jF

�
� �

D S C .�t�/¹@tS C Œ Naq
� .t�/C u

� .t�/�@qS C Na � .q
� .t�//

2 @�1S

C.q� .t�//
2@�2SC

1

2
@2qSCq

� .t�/@q�1SC
1

2
.q� .t�//

2@2�1SºCERROR;

where S and its derivatives are evaluated at the point .q� .t�/; t� ; ��1 .t�/; �
�
2 .t�//; Na denotes

Na.��1 .t�/; �
�
2 .t�//; and

(4.57) jERRORj � CQm0 .�t�/
6=5
CCQm0C4.�tMAX/

1=4�t� � CQ
m0 .�tMAX/

1=5�t� :

(We have used our assumption (4.27).) Since S satisfies our PDE (4.21), equation (4.56)
may be rewritten in the equivalent form

(4.58)

EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1TAME.�/ jF

�
� �

D S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//

C .�t�/ �
®
.@qS/ � Œu

� .t�/ � uopt.q
� .t�/; t� ; �

�
1 .t�/; �

�
2 .t�//�

� Œ.q� .t�//
2
C .uopt.q

� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�///

2�
¯

C ERROR;

with

(4.59) jERRORj � CQm0 .�tMAX/
1=5�t� :
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Recalling that @qS D �2uopt (see (4.22)), we see that the expression in curly brackets
in (4.58) is equal to

¹�2uopt � Œu
�
� uopt� � .q

� /2 � u2optº D ¹.u
�
� uopt/

2
� .q� /2 � .u� /2º;

where we have written u� for u� .t�/, and uopt for uopt.q
� .t�/; t� ; �

�
1 .t�/; �

�
2 .t�//. More-

over,

u� � uopt D u
� .t�/ � uopt.q

� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�// � DISCREP� .t�/

(see (4.34)). Therefore, (4.58) and (4.59) are equivalent to

(4.60)

EŒS.q� .t�C1/; t�C1; ��1 .t�C1/; �
�
2 .t�C1// � 1TAME.�/ jF

�
� �

D S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//

C .�t�/¹.DISCREP� .t�//
2
� .q� .t�//

2
� .u� .t�//

2
º C ERROR;

with

(4.61) jERRORj � CQm0 .�tMAX/
1=5�t� :

Here, (4.60) and (4.61) are valid wherever (4.35) holds.
We now substitute (4.60), (4.61) into (A#) and (B#), to obtain the following results,

valid whenever (4.35) holds:

EŒCTG� .t�/ jF
�
� �C

OCQ2m0 ProbŒDISASTER jF �
� �

� ¹S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//C .�t�/.DISCREP� .t�//

2

� Œ.q� .t�//
2
C .u� .t�//

2��t� � CQ
m0.�tMAX/

1=5�t�º

C Œ.q� .t�//
2
C .u� .t�//

2��t� � ProbŒTAME.�/ jF �
� �

C E
h X
t�C1�t�<�

.DISCREP� .t�//
2�t� jF

�
�

i
�Q2m0.T � t�C1/ � .�tMAX/

1=20
I

(A##)

and if � D Q� , then (since DISCREP� .t�/ D 0/ we have

EŒCTG� .t�/ jF
�
� � � ¹S.q

� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//

C CQm0 .�tMAX/
1=5�t�º C CQ

2m0.�t�/
20

C OCQ2m0 ProbŒDISASTER jF �
� �CQ

2m0.T � t�C1/ � .�tMAX/
1=20:(B##)

In (A##), we note that

Œ.q� .t�//
2
C .u� .t�//

2�ProbŒNOT TAME jF �
� � � CQ

2.�t�/
20
I

see hypothesis (?) of this lemma. Therefore, in (A##), the terms

Œ.q� .t�//
2
C .u� .t�//

2��t� � ProbŒTAME.�/� and � Œ.q� .t�//
2
C .u� .t�//

2��t�
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nearly cancel: they produce a term dominated byCQ2.�t�/
20. Moreover, thanks to (4.36),

we have

.�t�/.DISCREP� .t�//
2
C E

h X
t�C1�t�<�

.DISCREP� .t�//
2�t�

ˇ̌̌
F �
�

i
D E

h X
t��t�<�

.DISCREP� .t�//
2�t�

ˇ̌̌
F �
�

i
:

(We have also used the fact that DISCREP� .t�/ is deterministic when conditioned on F �
� .)

Finally, our assumptions that�tMAX �Q
�2000m0 andQ > C (C large enough) imply

that

CQ2.�t�/
20
C CQm0 .�tMAX/

1=5�t� CQ
2m0.T � t�C1/ � .�tMAX/

1=20

� Q2m0 .�tMAX/
1=20
� .t�C1 � t�/CQ

2m0.T � t�C1/ � .�tMAX/
1=20

D Q2m0.T � t�/ � .�tMAX/
1=20;

and also that the sum of terms

CQm0.�tMAX/
1=5.�t�/C CQ

2m0 .�t�/
20
CQ2m0.T � t�C1/.�tMAX/

1=20

is at most

Q2m0 .�tMAX/
1=20�t� CQ

2m0.T � t�C1/ � .�tMAX/
1=20
DQ2m0.T � t�/ � .�tMAX/

1=20:

In view of the above remarks, (A##) and (B##) imply the following results, valid when-
ever (4.35) holds:

EŒCTG� .t�/ jF
�
� �C

OCQ2m0 ProbŒDISASTER jF �
� �

� S.q� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//C E

h X
t��t�<�

.DISCREP� .t�//
2�t�

ˇ̌̌
F �
�

i
�Q2m0 � .T � t�/ � .�tMAX/

1=20
I

and if � D Q� , then

EŒCTG� .t�/ jF
�
� � � S.q

� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//C

OCQ2m0 ProbŒDISASTER jF �
� �

CQ2m0 � .T � t�/ � .�tMAX/
1=20:

These are precisely our desired conclusions (A) and (B). Our downward induction on � is
complete, thus proving Lemma 4.5.

We now draw conclusions from Lemma 4.5. Setting � D 0, we obtain the following
results, comparing the allegedly optimal strategy Q� to the competing strategy � .

E
h X
0�t�<�

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
C OCQ2m0 ProbŒDISASTER�

� S.q0; 0; 0; 0/C E
h X
0�t�<�

.DISCREP� .t�//
2�t�

i
�Q2m0.�tMAX/

1=20T I(4.62)
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and if � D Q� , then

(4.63)
E
h X
0�t�<�

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� S.q0; 0; 0; 0/C OCQ

2m0 ProbŒDISASTER�CQ2m0.�tMAX/
1=20T:

From (4.28), (4.30), (4.31) and Lemma 4.1, we have

(4.64) ProbŒDISASTER� � C exp.�cQ/:

Let us investigate what happens if DISASTER occurs.
Since

ju� .t�/j � C Œjq
� .t�/j C 1�;

we have X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t� � C

�
max
�
jq� .t�/j

�2
C C:

Also,

jDISCREP� .t�/j D ju
� .t�/ � uopt.q

� .t�/; t�; �
�
1 .t�/; �

�
2 .t�//j

� ju� .t�/j C C Œjq
� .t�/j C 1�

by our PDE assumption (see (4.26)). Hence,X
0��<N

.DISCREP� .t�//
2�t� � C

�
max
�
jq� .t�/j

�2
C C:

The above remarks and Lemma 4.1 yield the estimates

E
h� X

0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

�2i
� C

and
E
h� X

0��<N

.DISCREP� .t�//
2�t�

�2i
� C:

Consequently, Cauchy–Schwarz and (4.64) imply that

(4.65)
E
h� X

0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

�
� 1DISASTER

i
� C � .ProbŒDISASTER�/1=2 � C 0 exp.�c0Q/

and

(4.66)
E
h� X

0��<N

.DISCREP� .t�//
2�t�

�
� 1DISASTER

i
� C � .ProbŒDISASTER�/1=2 � C 0 exp.�cQ/:

So we have controlled the consequences of DISASTER.
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On the other hand, if DISASTER does not occur, then � D T ; see (4.31) and (4.32).
Therefore,

(4.67)

E
h� X

0��<N

¹.q� .t�//
2
C.u� .t�//

2
º�t�

�
� 1NON-DISASTER

i
� E

h X
0�t�<�

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
and

(4.68)

E
h� X

0��<N

.DISCREP� .t�//
2�t�

�
� 1NON-DISASTER

i
� E

h X
0�t�<�

.DISCREP� .t�//
2�t�

i
:

Also, obviously,

(4.69)

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� E

h X
0�t�<�

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
:

Substituting (4.69), (4.68) and (4.64) into (4.62), we find that

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
C CQ2m0 exp.�cQ/

� S.q0; 0; 0; 0/CE
h� X

0��<N

.DISCREP� .t�//
2
�
� 1NON-DISASTER

i
�Q2m0 .�tMAX/

1=20T:

Together with (4.66), this in turn yields:

(4.70)

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� S.q0; 0; 0; 0/C E

h X
0��<N

.DISCREP� .t�//
2
�i

� CQ2m0 exp.�cQ/ �Q2m0.�tMAX/
1=20T:

Similarly, suppose � D Q� . Then, substituting (4.67) and (4.64) into (4.63), we find that

E
h� X

0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

�
� 1NON-DISASTER

i
� S.q0; 0; 0; 0/C CQ

2m0 exp.�cQ/CQ2m0.�tMAX/
1=20T:

Together with (4.65), this implies that

(4.71)
E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� S.q0; 0; 0; 0/C CQ

2m0 exp.�cQ/CQ2m0.�tMAX/
1=20T:
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We have proven (4.70) forQ�C and�tMAX �Q
�2000m0 ; see (4.27). Similarly, (4.71)

holds for Q � C , �tMAX � Q
�2000m0 , � D Q� .

Now suppose " > 0 is given. We pick Q � C so large that

CQ2m0 exp.�cQ/ < "=2

in (4.70) and (4.71), and also so large that

Q2m0.Q�2000m0/1=20T < "=2:

Then, if �tMAX < Q
�2000m0 , we obtain from (4.70) and (4.71) the estimates

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� S.q0; 0; 0; 0/C E

h X
0��<N

.DISCREP� .t�//
2�t�

i
� ";

and if � D Q� , then

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� S.q0; 0; 0; 0/C ":

Thus, we have proven the following result, modulo our PDE assumption.

Lemma 4.6 (First Bayesian main lemma). Let Q� be the ALLEGEDLY OPTIMAL STRAT-
EGY for the partition 0 D t0 < t1 < � � � < tN D T , and let " > 0 be given.

Let � be another tame deterministic strategy for the same partition. Assume that �
satisfies

ju� .t�/j � C
�
TAME Œjq

� .t�/j C 1�:

Suppose that
�tMAX D max

�
.t�C1 � t�/

is less than a small enough ı > 0, determined by ", C �TAME, and the BOILERPLATE CON-
STANTS. Then

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� S.q0; 0; 0; 0/C E

h X
0��<N

.DISCREP� .t�//
2�t�

i
� "

and
E
h X
0��<N

¹.q Q� .t�//
2
C .uQ� .t�//

2
º�t�

i
� S.q0; 0; 0; 0/C ";

where
DISCREP� .t�/ D u

� .t�/ � uopt.q
� .t�/; t� ; �

�
1 .t�/; �

�
2 .t�//:
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Corollary 4.7. Let � and Q� be as above. If

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� E

h X
0��<N

¹.q Q� .t�//
2
C .uQ� .t�//

2
º�t�

i
C ";

then
E
h X
0��<N

.DISCREP� .t�//
2�t�

i
� 3":

4.6. Stability of the allegedly optimal strategy

We begin by setting up the notation for this section.
• Q� denotes the ALLEGEDLY OPTIMAL STRATEGY.
• � denotes some other tame deterministic strategy based on the same partition 0D t0 <
t1 < � � � < tN D T as Q� .

• q�� denotes q� .t�/, and �q�� denotes q� .t�C1/ � q� .t�/.
• q Q�� denotes q Q� .t�/, and �q Q�� denotes q Q� .t�C1/ � q Q� .t�/.
• ��1;� denotes ��1 .t�/, and ���1;� denotes ��1 .t�C1/ � �

�
1 .t�/.

• � Q�1;� denotes � Q�1;�.t�/, and �� Q�1;� denotes � Q�1 .t�C1/ � �
Q�
1 .t�/.

• ��2;� denotes ��2 .t�/, and ���2;� denotes ��2 .t�C1/ � �
�
2 .t�/.

• � Q�2;� denotes � Q�2;�.t�/, and �� Q�2;� denotes � Q�2 .t�C1/ � �
Q�
2 .t�/.

• u�� denotes u� .t�/, and uQ�� denotes uQ� .t�/.
We recall that

ju� .t�/j � C
�
TAME Œjq

� .t�/j C 1� and juQ� .t�/j � C
opt
TAME Œjq

Q� .t�/j C 1�:

In this section, c,C ,C 0, etc., denote constants determined byC �TAME and the BOILERPLATE
CONSTANTS (one of which is C opt

TAME). As usual, these symbols may denote different con-
stants in different occurrences.

We fix a 2 Œ�aMAX;CaMAX�, and condition on aTRUE D a. We write ProbaŒ� � � � and
Ea Œ� � � � to denote the corresponding probability and expectation, respectively. We write F�
to denote the sigma algebra of events determined by the Brownian motion .W.t//t2Œ0;t� �
(and by aTRUE D a).

Recall that

�q�� D .aq
�
� C u

�
� /.�t

�
� /C�W� ;(4.72)

�q Q�� D .aq
Q�
� C u

Q�
� /.�t

�
� /C�W� ;(4.73)

���1;� D q
�
� .�q

�
� � u

�
��t�/;(4.74)

�� Q�1;� D q
Q�
� .�q

Q�
� � u

Q�
��t�/;(4.75)

���2;� D .q
�
� /
2�t� ;(4.76)

�� Q�2;� D .q
Q�
� /
2�t� ;(4.77)
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and that

(4.78) q�0 D q
Q�
0 D q0; ��1;0 D �

Q�
1;0 D �

�
2;0 D �

Q�
2;0 D 0:

In (4.72) and (4.73), �t�� D �t� C O..�t�/
2/; and �W� is a normal random variable

with mean 0 and variance O.�t�/, independent of F� .
The quantities q�� , q Q�� , u�� , uQ�� , ��1;� , � Q�1;� , ��2;� and � Q�2;� are deterministic once we con-

dition on F �
� .

As in Section 4.5, we define

(4.79) DISCREP� .t�/ D u
� .t�/ � uopt.q

� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//:

Our goal is to show that if

(4.80) Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
is smallI

then also

(4.81) Ea
h X
0��<N

¹jq� .t�/ � q
Q� .t�/j

2
C ju� .t�/ � u

Q� .t�/j
2
º�t�

i
is small:

Here, (4.80) asserts that � does something close to what Q� would do in the circumstances
encountered by � . On the other hand, (4.81) asserts that � and Q� produce nearly equal
outcomes. To show that (4.80) implies (4.81), we introduce the vector

(4.82) X� D

0B@ q�� � q
Q�
�

��1;� � �
Q�
1;�

��2;� � �
Q�
2;�

1CA �
0@X�;1

X�;2

X�;3

1A 2 R3:

Thanks to (4.78), we have

(4.83) X0 D 0:

For a large enough C , we introduce a positive number Q satisfying

(4.84) Q � C:

Under the assumption

(4.85) jq�� j; jq
Q�
� j; j�

�
1;� j; j�

Q�
1;� j; j�

�
2;� j; j�

Q�
2;� j � Q;

we will estimate

�X� �

0@�X�;1

�X�;2

�X�;3

1A � X�C1 �X� :

Until further notice, we fix � and assume (4.85).
We write G1; G2; : : : to denote random variables satisfying

Gi is deterministic once we condition on F� ; and(4.86)
jGi j � CQ

m0 ; with m0 as in our PDE assumption (see (4.25).(4.87)
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To estimate �X� , we first apply our PDE assumption (see (4.25)) to show that

uopt.q
� .t�/; t� ;�

�
1 .t�/; �

�
2 .t�// � u

Q� .t�/

D uopt.q
� .t�/; t� ; �

�
1 .t�/; �

�
2 .t�// � uopt.q

Q� .t�/; t� ; �
Q�
1 .t�/; �

Q�
2 .t�//

D G1 Œq
�
� � q

Q�
� �CG2 Œ�

�
1;� � �

Q�
1;� �CG3 Œ�

�
2;� � �

Q�
2;� �

with G1, G2 and G3 as in (4.86) and (4.87).
Consequently, (4.79) implies that

(4.88) u� .t�/ � u
Q� .t�/ D DISCREP� .t�/CG1X�;1 CG2X�;2 CG3X�;3:

We subtract (4.73) from (4.72) and apply (4.88). Thus,

�X�;1 D aX�;1.�t
�
� /C DISCREP� .t�/.�t

�
� /

CG1X�;1.�t
�
� /CG2X�;2.�t

�
� /CG3X�;3.�t

�
� /;

which implies that

(4.89)
�X�;1 D G4X�;1.�t�/CG5X�;2.�t�/

CG6X�;3.�t�/C DISCREP� .t�/ � .�t
�
� /

with G4, G5 and G6 satisfying (4.86) and (4.87). Next, we deduce from (4.72) and (4.74)
that

���1;� D q
�
� �
�
Œ.aq�� C u

�
� /.�t

�
� /C�W� � � u

�
��t�

�
D a.q�� /

2 .�t�� /C q
�
� �W� C q

�
� � u

�
� � .�t

�
� ��t�/;

and similarly,

�� Q�1;� D a.q
Q�
� /
2.�t�� /C q

Q�
��W� C q

Q�
� � u

Q�
� � .�t

�
� ��t�/:

Subtracting, and recalling our assumptions (4.85), we find that

(4.90) �X�;2 D G7X�;1.�t�/CX�;1�W� CG8 .�t�/
2;

with G7 and G8 as in (4.86) and (4.87). (Here, we use also the estimate

ju� .t�/j � C Œjq
� .t�/j C 1�;

as well as the corresponding estimate for uQ� and q Q� .)
Again recalling (4.85), we see from (4.76) and (4.77) that

(4.91) �X�;3 D G9X�;1.�t�/;

with G9 as in (4.86) and (4.87).
Equations (4.89), (4.90) and (4.91) tell us that

(4.92) �X� D GX�.�t�/CHX�.�W�/C F� ;

where
• the entries of the matrix G satisfy (4.86) and (4.87),



Optimal agnostic control of unknown linear dynamics 65

• H is the constant matrix �
0 0 0
1 0 0
0 0 0

�
;

• and the vector F� satisfies

jF� j � C jDISCREP� .t�/j � .�t�/C CQ
m0 .�t�/

2:

We now estimate

(4.93)
Ea ŒjX�C1j

2
� jX� j

2
jF� � D 2Ea Œ.�X�/ �X� jF� �C Ea Œj�X� j

2
jF� �

� 2 � TERM1C TERM2:

Recall that G and X� are deterministic once we condition on F� , while �W� is inde-
pendent of F� , with mean 0 and variance � C.�t�/. Hence, from (4.92) we have the
following estimates:

TERM1 D Ea ŒX� � .�X�/ jF� �

� CQm0 .�t�/jX� j
2
C C jDISCREP� .t�/j � jX� j.�t�/C C jX� jQ

m0 .�t�/
2;

TERM2 D Ea Œj�X� j
2
jF� �

� C jGX�.�t�/j
2
C C jHX� j

2 Ea Œj�W� j2�

C C.DISCREP� .t�//
2 .�t�/

2
C CQ2m0 .�t�/

4:

Our assumption (4.85) implies that jX� j � CQ, hence the above estimates imply that

(4.94) TERM1 � CQm0 .�t�/jX� j
2
C C.DISCREP� .t�//

2.�t�/C CQ
m0C1.�t�/

2

and

(4.95)
TERM2 � CQ2m0C2.�t�/

2
C C jX� j

2.�t�/

C C.DISCREP� .t�//
2.�t�/

2
C CQ2m0.�t�/

4:

Putting (4.94) and (4.95) into (4.93), we learn that

(4.96)
Ea ŒjX�C1j

2
jF� � � .1C CQ

m0.�t�// jX� j
2
C C.DISCREP� .t�//

2�t�

C CQ2m0C2 .�t�/
2:

We have proven (4.96) under the assumption (4.85). We now drop assumption (4.85),
and let E� denote the event®

jq��j; jq
Q�
�j; j�

�
1;�j; j�

Q�
1;�j; j�

�
2;�j; j�

Q�
2;�j � Q for all � � �

¯
:

Note that 1E�C1 � 1E� , and that (4.85) holds whenever E� occurs. Moreover, E� is deter-
ministic once we condition on F� . Therefore, from (4.96) we deduce that

Ea ŒjX�C1j
2
1E�C1 jF� � � Ea ŒjX�C1j

2
� 1E� jF� �

� .1C CQm0.�t�//jX� j
2
1E� C C.DISCREP� .t�//

2�t� C CQ
2m0C2.�t�/

2:(4.97)
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We now cease conditioning on F� , and condition merely on aTRUE D a. From (4.97) we
learn that

(4.98)
Ea ŒjX�C1j

2
1E�C1 � � .1C CQ

m0 .�t�//EaŒjX� j
2
1E� �

C CEa Œ.DISCREP� .t�//
2� .�t�/C CQ

2m0C2 .�t�/
2:

Recall that X0 D 0.
We impose the smallness assumption

(4.99) .�tMAX/
1=2
� Q�.2m0C2/:

Then (4.98) implies that

Ea ŒjX� j
2
� 1E� � � C exp.CQm0 t�/

°
Ea
h X
0��<�

.DISCREP� .t�//
2�t�

i
C C.�tMAX/

1=2
±

for 0 � � � N . Since 1EN � 1E� , it follows that

(4.100)
EaŒjX� j

2
1EN �

� C exp.CQm0/
°

Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
C .�tMAX/

1=2
±
:

In particular, since q�� � q
Q�
� is the first component of X� , we have

(4.101)
Ea Œjq�� � q

Q�
� j
2
� 1EN �

� C exp.CQm0/
°

Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
C .�tMAX/

1=2
±
:

Moreover, (4.88) and (4.100) together yield

(4.102)

Ea Œju�� � u
Q�
� j
2
� 1EN �

� CQ2m0 exp.CQm0/
°

Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
C .�tMAX/

1=2
±

C CEa Œ.DISCREP� .t�//
2�:

Summing (4.101) and (4.102) against �t� , we find that

(4.103)

Ea
h X
0��<N

®
jq�� � q

Q�
� j
2
C ju�� � u

Q�
� j
2
¯
�t� � 1EN

i
� CQ2m0 exp.CQm0/

°
Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
C .�tMAX/

1=2
±
:

We now turn to the case in which EN does not occur. Recall that EN fails precisely when,
for some �, we have

max¹jq�� j; jq
Q�
� j; j�

�
1;� j; j�

Q�
1;� j; j�

�
2;� j; j�

Q�
2;� jº > Q:

Thanks to Lemma 3.2, applied to the strategies � and Q� , we have

(4.104) Proba ŒEN fails� � C exp.�cQ/
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and also that
Ea Œ.max

�
¹jq�� j C jq

Q�
� j C ju

�
� j C ju

Q�
� jº/

4� � C;

hence

(4.105) Ea
h� X

0��<N

®
jq�� � q

Q�
� j
2
C ju�� � u

Q�
� j
2
¯
�t�

�2i
� C:

From (4.104), (4.105), and Cauchy–Schwarz, we obtain the estimate

(4.106) Ea
h X
0��<N

®
jq�� � q

Q�
� j
2
C ju�� � u

Q�
� j
2
¯
�t� � 1EN fails

i
� C exp.�cQ/:

Finally, combining (4.103) and (4.106), we find that

(4.107)

Ea
h X
0��<N

®
jq�� � q

Q�
� j
2
C ju�� C u

Q�
� j
2
¯
�t�

i
� CQ2m0 exp.CQm0/

°
Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
C .�tMAX/

1=2
±

C C exp.�cQ/:

We have proven (4.107) under the assumption (4.99).
Now let " > 0 be given.
We take Q in (4.107) large enough so that C exp.�cQ/ < "=3.
Having picked Q, we strengthen our smallness assumption (4.99) by demanding that

CQ2m0 exp.CQm0/ � .�tMAX/
1=2
�
"

3
�

If also
Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
�
"

3
ŒCQ2m0 exp.CQm0/��1;

then (4.107) implies that

Ea
h X
0��<N

®
jq�� � q

Q�
� j
2
C ju�� � u

Q�
� j
2
¯
�t�

i
< ":

Thus, we have proven the following result.

Lemma 4.8 (Stability lemma). Let " > 0, let Q� be the ALLEGEDLY OPTIMAL STRATEGY
for the partition 0 D t0 < t1 < � � � < tN D T , and let � be another tame deterministic
strategy for that same partition. Assume that � satisfies

ju� .t�/j � C
�
TAME Œjq

� .t�/j C 1�:

Fix a 2 Œ�aMAX;CaMAX�. Suppose that

�tMAX D max
�
.t�C1 � t�/ < ı
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and
Ea
h X
0��<N

.u� .t�/ � uopt.q
� .t�/; t� ; �

�
1 .t�/; �

�
2 .t�//

2�t�

i
< ı

for a small enough ı > 0 determined by ", C �TAME, and the BOILERPLATE CONSTANTS.
Then

Ea
h X
0��<N

®
ju� .t�/ � u

Q� .t�/j
2
C jq� .t�/ � q

Q� .t�/j
2
¯
�t�

i
< ":

4.7. The second Bayesian main lemma

Lemma 4.9 (The second Bayesian main lemma). Let " > 0, let Q� be the ALLEGEDLY
OPTIMAL STRATEGY for a partition of Œ0; T �, and let � be another deterministic tame
strategy for that same partition. Assume that � satisfies

ju� .t�/j � C
�
TAME Œjq

� .t�/j C 1�:

Suppose that
�tMAX < ı

and that

(4.108)

E
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� E

h X
0��<N

¹.q Q� .t�//
2
C .uQ� .t�//

2
º�t�

i
C ı;

for a small enough ı > 0 determined by ", C �TAME, and the BOILERPLATE CONSTANTS.
Then, for every a 2 Œ�aMAX;CaMAX�, we have

Ea
h X
0��<N

¹jq� .t�/ � q
Q� .t�/j

2
C ju� .t�/ � u

Q� .t�/j
2
º�t�

i
< ":

Proof. First, we notice that we can replace the BOILERPLATE CONSTANT C
opt
TAME by the

constant max¹C �TAME; C
opt
TAMEº.

Observe that

DISCREP� .t�/ WD u
� .t�/ � uopt.q

� .t�/; t� ; �
�
1 .t�/; �

�
2 .t�//

satisfies
jDISCREP� .t�/j � ju

� .t�/j C C Œjq
� .t�/j C 1�;

hence X
0��<N

.DISCREP� .t�//
2�t� � C

0 max
0��<N

¹jq� .t�/j
2
C ju� .t�/j

2
C 1º:

Lemma 3.2 therefore yields the estimate

(4.109) Ea
h° X

0��<N

.DISCREP� .t�//
2�t�

±pi
� Cp

for any p � 1 and any a 2 Œ�aMAX; aMAX�.
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Now let " > 0 be given. We pick a small enough "1 > 0, depending on ", then we pick
a large enough Q > 1, depending on "1, next we pick a small enough "2 > 0, depending
onQ, and finally we pick a small enough ı > 0 depending on "2. We then argue as follows.

Suppose that�tMAX < ı, and suppose (4.108) holds. Since ı > 0 has been picked small
enough, depending on "2, Corollary 4.7 tells us that

(4.110) E
h X
0��<N

.DISCREP� .t�//
2�t�

i
< 3"2:

For any random variable X , the expected value EŒX� is an average of Ea ŒX� over a 2
Œ�aMAX;CaMAX� with respect to our given prior probability distribution for aTRUE. There-
fore, (4.110) implies that for some a1 2 Œ�aMAX; aMAX�, we have

Ea1
h X
0��<N

.DISCREP� .t�//
2�t�

i
< 4"2:

Consequently, for any a 2 Œ�aMAX;CaMAX�, Lemma 3.6 and estimate (4.109) with p D 2
give

(4.111) Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
� exp.CQ2/ � 4"2 C C exp.�cQ2/:

Since "2 has been picked small enough depending on Q, while Q has been picked large
enough depending on "1, the right-hand side of (4.111) is less than C 0 exp.�cQ2/ < "1.
Thus, for any a 2 Œ�aMAX; aMAX�, we have

(4.112) Ea
h X
0��<N

.DISCREP� .t�//
2�t�

i
< "1:

Since "1 has been picked small enough depending on ", estimate (4.112) and Lemma 4.8
imply that

Ea
h X
0��<N

¹ju� .t�/ � u
Q� .t�/j

2
C jq� .t�/ � q

Q� .t�/j
2
º�t�

i
< "

for all a 2 Œ�aMAX; aMAX�, completing the proof of the lemma.

Corollary 4.10. Under the assumptions of Lemma 4.9 we haveˇ̌̌
Ea
h X
0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t�

i
� Ea

h X
0��<N

¹.q Q� .t�//
2
C .uQ� .t�//

2
º�t�

iˇ̌̌
� C"1=2

for each a 2 Œ�aMAX; aMAX�.

Proof. The corollary follows from Lemma 4.9, together with Minkowski’s inequality and
the estimate

Ea
h X
0��<N

¹.q Q� .t�//
2
C .uQ� .t�//

2
º�t�

i
� C;

which in turn follows from Lemma 3.2.
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4.8. Allowing for dependence on coin flips

Let Q� be the ALLEGEDLY OPTIMAL STRATEGY associated to a partition of Œ0;T �, and let �
be a tame strategy associated to the same partition. In this section, we allow � to depend
on the coin flips E� . For fixed E� 2 ¹0; 1ºN , we write �E� for the strategy prescribed by � in

case E� D E�. We write ProbB Œ: : : � and EB Œ: : : � (“B” for “Bernoulli”) to denote probability
and expectation with respect to the natural (product) probability measure on ¹0; 1ºN , in
which each �� is equal to 0 with probability 1=2:

Our goal here is to extend Lemma 4.9 to the case of the E�-dependent strategy � .
To do so, we denote

COSTD.�/ D
X

0��<N

¹.q� .t�//
2
C .u� .t�//

2
º�t� ;

and similarly for COSTD. Q�/ and COSTD.�E�/.
Because � is tame, we have

(4.113) ju� .t�/j � C
�
TAME � Œjq

� .t�/j C 1�

for a constant C �TAME.
Let " > 0 be given, and let ı > 0 be less than a small enough positive number deter-

mined by ", C �TAME, and the BOILERPLATE CONSTANTS.
Suppose that �tMAX < ı, and that

(4.114) EŒCOSTD.�/� � EŒCOSTD. Q�/�C ı:

We want to show that

Ea
h X
0��<N

¹jq� .t�/ � q
Q� .t�/j

2
C ju� .t�/ � u

Q� .t�/j
2
º�t�

i
< "

for all a 2 Œ�aMAX;aMAX�. To see this, we first pick Oı small enough, determined by ",C �TAME,
and the BOILERPLATE CONSTANTS; then we pick ı small enough, determined by Oı,C �TAME,
and the BOILERPLATE CONSTANTS.

Lemma 4.6, with Oı2 in place of ", shows that

(4.115) EŒCOSTD.�E�/� � EŒCOSTD. Q�/� � Oı
2 for all E� 2 ¹0; 1ºN :

On the other hand, (4.114) shows that

(4.116) EB Œ¹EŒCOSTD.�E�/� � EŒCOSTD. Q�/�C Oı
2
º� � ı C Oı2 < 2 Oı2;

since ı is less than a small enough constant depending on Oı. The quantity in curly brackets
in (4.116) is nonnegative, thanks to (4.115). Therefore, if we set

GOODFLIPS D
®
E� 2 ¹0; 1ºN W EŒCOSTD.�E�/� � EŒCOSTD. Q�/�C Oı

¯
;(4.117)

BADFLIPS D
®
E� 2 ¹0; 1ºN W EŒCOSTD.�E�/� > EŒCOSTD. Q�/�C Oı

¯
;(4.118)

then

(4.119) ProbB ŒBADFLIPS� < 10 Oı:
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Moreover, since �E� and Q� are tame for each E�, Lemma 3.2 implies that for each a 2
Œ�aMAX; aMAX�, we have

Ea
h° X

0��<N

Œjq�E� .t�/ � q
Q� .t�/j

2
C ju�E� .t�/ � u

Q� .t�/j
2��t�

±2i
� C;

where we allow constants C to depend on C �TAME in (4.113). Consequently,

Ea
h° X

0��<N

Œjq� .t�/ � q
Q� .t�/j

2
C ju� .t�/ � u

Q� .t�/j
2��t�

±2i
� C:

Together with (4.119) and Cauchy–Schwarz, this implies that

(4.120) Ea
h° X
0��<N

Œjq� .t�/�q
Q� .t�/j

2
Cju� .t�/�u

Q� .t�/j
2��t�

±
�1BADFLIPS.E�/

i
�C Oı1=2:

On the other hand, if E� 2 GOODFLIPS, then Lemma 4.9 tells us that

Ea
h X
0��<N

¹jq�E� .t�/ � q
Q� .t�/j

2
C ju�E� .t�/ � u

Q� .t�/j
2
º�t�

i
<
"

2
�

Consequently,

(4.121) Ea
h° X

0��<N

Œjq� .t�/�q
Q� .t�/j

2
Cju� .t�/�u

Q� .t�/j
2��t�

±
�1GOODFLIPS.E�/

i
�
"

2
�

We learn from (4.120) and (4.121) that

(4.122) Ea
h X
0��<N

¹jq� .t�/ � q
Q� .t�/j

2
C ju� .t�/ � u

Q� .t�/j
2
º�t�

i
< ":

Thus, we have shown that (4.113), (4.114) and �tMAX < ı imply (4.122).
That is, Lemma 4.9 holds without the assumption that � is deterministic. From now

on, when we apply that lemma, we need not check that � is deterministic.

4.9. Reformulating the main Bayesian results

Let � be a tame strategy. Recall, from Section 3.9, that q�C .t/D q
� .t/ and q�D.t/D q

� .t�/

for t 2 Œt� ; t�C1/, 0� � <N . Also, u� .t/D u� .t�/ for t 2 Œt� ; t�C1/, 0� � <N . Therefore,X
0��<N

¹ju� .t�/ � u
Q� .t�/j

2
C jq� .t�/ � q

Q� .t�/j
2
º�t�

D

Z T

0

¹ju� .t/ � uQ� .t/j2 C jq�D.t/ � q
Q�
D.t/j

2
º dt;

where Q� is the ALLEGEDLY OPTIMAL STRATEGY for some Bayesian prior. Similarly,X
0��<N

¹ju� .t�/j
2
C jq� .t�/j

2
º�t� D

Z T

0

¹ju� .t/j2 C jq�D.t/j
2
º dt;

and the analogous formula holds for Q� .
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From Section 3.9, we have

Ea
h

max
t2Œ0;T �

jq� .t/ � q�D.t/j
m
i
� Cm.�tMAX/

m=4 for any m � 1

and any a 2 Œ�aMAX; aMAX�; the analogous estimate holds for Q� in place of � .
In view of the above remarks, we can reformulate our main previous results, replac-

ing q�D.t/ by q� .t/. We define

COST.�/ D

Z T

0

¹.u� .t//2 C .q� .t//2º dt:

We combine the above discussion with Lemmas 3.4, 3.7, 4.6, and 4.9 to deduce the
following.

Theorem 4.11 (Main theorem on Bayesian strategies). Let � be a tame strategy, satisfying

ju� .t�/j < C
�
TAME Œjq

� .t�/j C 1�:

Fix a Bayesian prior dProb.a/ on Œ�aMAX;CaMAX�, and suppose our PDE assumption
holds for the PDE arising from that prior. Let Q� denote the ALLEGEDLY OPTIMAL STRAT-
EGY for the same partition of Œ0; T � used to define � .

Then given " > 0, there exists ı > 0 determined by ", together with the BOILERPLATE
CONSTANTS and the constant C �TAME, such that the following holds. Suppose �tMAX < ı.
Then:

(1) There holds
jEŒCOST. Q�/� � S.q0; 0; 0; 0/j < ";

where S is our PDE solution.

(2) If
EŒCOST.�/� < EŒCOST. Q�/�C ı;

then for any a 2 Œ�aMAX;CaMAX�, we have

Ea
h Z T

0

¹ju� .t/ � uQ� .t/j2 C jq� .t/ � q Q� .t/j2º dt
i
< ":

(3) There exists an analytic function I.a/, defined on R � .�aMAX;CaMAX/ � .�Oc; Oc/

for some Oc, such that jI.a/j � C on R, and

jI.a/ � EaŒCOST.�/� j < " for a 2 .�aMAX;CaMAX/:

(4) If a exceeds a large enough constant C , then

EaŒCOST.�/� > cT 2 exp.caT /:

Note that strictly speaking, we proved (3) and (4) for deterministic strategies, so they
hold for � once we condition on E� D E� for a fixed E� 2 ¹0; 1ºN . Integrating over E�, we
obtain (3) and (4) as stated.
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4.10. Comparing the allegedly optimal strategies for two partitions

Let � be a partition 0D t0 < t1 < � � � < tN D T , and let � 0 be a refinement of � , given by
0 D t 00 < t

0
1 < � � � < t

0
N D T . Let Q� and Q� 0 be the corresponding ALLEGEDLY OPTIMAL

STRATEGIES. We set�tMAX D max�.t�C1 � t�/ and�t 0MAX D max�.t 0�C1 � t
0
�/ � �tMAX:

We will prove the following result.

Lemma 4.12. Given " > 0, there exists ı > 0 such that if �tMAX < ı, then

Ea
h Z T

0

¹jq Q� .t/ � q Q�
0

.t/j2 C juQ� .t/ � uQ�
0

.t/j2º dt
i
< "

for all a 2 Œ�aMAX;CaMAX�.

Proof. Given " > 0, we pick Oı > 0 small enough, and then pick ı > 0 small enough,
depending on Oı.

Suppose �tMAX < ı; then also �t 0MAX < ı. Theorem 4.11 givesˇ̌̌
E
h Z T

0

¹jq Q� .t/j2 C juQ� .t/j2º dt
i
� S.q0; 0; 0; 0/

ˇ̌̌
< Oı;(4.123) ˇ̌̌

E
h Z T

0

¹jq Q�
0

.t/j2 C juQ�
0

.t/j2º dt
i
� S.q0; 0; 0; 0/

ˇ̌̌
< Oı:(4.124)

In particular,

E
h Z T

0

¹jq Q� .t/j2 C juQ� .t/j2º dt
i
< C;(4.125)

E
h Z T

0

¹jq Q�
0

.t/j2 C juQ�
0

.t/j2º dt
i
< C:(4.126)

Lemma 3.10 gives a tame strategy O� associated to the partition � 0 for which

(4.127) Ea
h Z T

0

¹jq Q� .t/ � q O� .t/j2 C juQ� .t/ � u O� .t/j2º dt
i
� Oı2

for every a 2 Œ�aMAX;CaMAX�, hence

E
h Z T

0

¹jq Q� .t/ � q O� .t/j2 C juQ� .t/ � u O� .t/j2º dt
i
� Oı2:

Together with (4.125), this implies that

E
h Z T

0

¹jq O� .t/j2 C ju O� .t/j2º dt
i
� E

h Z T

0

¹jq Q� .t/j2 C juQ� .t/j2º dt
i
C C Oı:

Thanks to (4.123) and (4.124), this in turn implies that

(4.128) E
h Z T

0

¹jq O� .t/j2 C ju O� .t/j2º dt
i
� E

h Z T

0

¹jq Q�
0

.t/j2 C juQ�
0

.t/j2º dt
i
C C Oı:

Recall that Q� 0 is the ALLEGEDLY OPTIMAL STRATEGY associated to the partition � 0,
while O� is another tame strategy associated to � 0.
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Consequently, by virtue of Theorem 4.11, (4.128) implies that

(4.129) Ea
h Z T

0

¹jq O� .t/ � q O�
0

.t/j2 C ju O� .t/ � u O�
0

.t/j2º dt
i
<
"

2

for every a 2 Œ�aMAX;CaMAX�.
From (4.127) and (4.129), we have

Ea
h Z T

0

¹jq Q� .t/ � q Q�
0

.t/j2 C juQ� .t/ � uQ�
0

.t/j2º dt
i
< ";

completing the proof of the lemma.

Corollary 4.13. Given " > 0 there exists ı > 0 for which the following holds. Let

� W 0 D t0 D t0 < t1 < � � � < tN D T and � 0 W 0 D t 00 < t
0
1 < � � � < t

0
N 0 D T

be partitions, let

�tMAX D max
�
.t�C1 � t�/ and �t 0MAX D max

�
.t 0�C1 � t

0
�/;

and let Q� and Q� 0 be the ALLEGEDLY OPTIMAL STRATEGIES associated to � and � 0,
respectively.

If �tMAX; �t
0
MAX < ı, then

Ea
h Z T

0

¹jq Q� .t/ � q Q�
0

.t/j2 C juQ� .t/ � uQ�
0

.t/j2º dt
i
< "

for every a 2 Œ�aMAX;CaMAX�.

Proof. Compare both Q� and Q� 0 to the ALLEGEDLY OPTIMAL STRATEGY arising from a
common refinement of � and � 0.

5. Decisions in continuous time

5.1. Tame strategies with decisions in continuous time

Suppose that for each n D 1; 2; 3; : : :, we are given a tame strategy �n associated to a
partition �n of the time interval Œ0; T �. Say �n is given by

(5.1) 0 D tn0 < t
n
1 < � � � < t

n
N.n/ D T;

and �n is given by the collection of tame rules

�n D .�ntn� /�D0;1;:::;N.n/�1;

where each �n
tn�

is a function of � real variables Nq1; : : : ; Nq� and the coin flips E� .
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We assume that

(5.2) �tnMAX WD max
�
.tn�C1 � t

n
� /! 0 as n!1;

and that

(5.3) j�ntn� . Nq1; : : : ; Nq� ;
E�/j � C E�TAME Œj Nq� j C 1� for all Nq1; : : : ; Nq�

for all n; �, with C E�TAME independent of n; �; Nq1; : : : ; Nq� .
Each �n gives rise to control trajectories and particle trajectories u�

n; a.t/ and q�
n; a.t/,

respectively, for t 2 Œ0; T �, once we specify that aTRUE D a. Here, a is an arbitrary real
number, not necessarily belonging to the interval Œ�aMAX;CaMAX�. We define the expected
cost of �n by

ECOST.�n; a/ D Ea
h Z T

0

®
.u�

n; a.t//2 C .q�
n; a.t//2

¯
dt
i
:

We say that .�n/n�1 is a Cauchy sequence of uniformly tame strategies if (5.2) and (5.3)
hold, and

(5.4) lim
n;m!1

Ea
h Z T

0

®
ju�

n; a.t/ � u�
m; a.t/j2 C jq�

n; a.t/ � q�
m; a.t/j2

¯
dt
i
D 0;

uniformly for a in any bounded subset of R.
If .�n/n�1 and . O�n/n�1 are two Cauchy sequences of uniformly tame strategies, then

we call those sequences equivalent if we have

(5.5) lim
n!1

Ea
h Z T

0

®
ju�

n; a.t/ � u O�
n; a.t/j2 C jq�

n; a.t/ � q O�
n; a.t/j2

¯
dt
i
D 0

for each a 2 R.
If .�n/n�1 is a Cauchy sequence of uniformly tame strategies, then for each a 2 R,

there exist random functions ua.t/ and qa.t/ such that

(5.6) lim
n!1

Ea
h Z T

0

®
ju�

n; a.t/ � ua.t/j2 C jq�
n; a.t/ � qa.t/j2

¯
dt
i
D 0;

uniformly for a in any bounded subset of R.
Moreover, if two Cauchy sequences .�n/n�1 and . O�n/n�1 are equivalent, then for each

a 2R, the ua and qa defined by those sequences are equal, for a.e. t 2 Œ0;T �, almost surely
with respect to Proba.

We define a tame strategy (for decisions in continuous time) to be an equivalence
class of Cauchy sequences of uniformly tame strategies, with respect to the equivalence
relation (5.5). We denote a tame strategy by E� D ŒŒ.�n/n�1��, and we say thatC E�TAME in (5.3)
is a tame constant for E� . If E� D ŒŒ.�n/n�1�� is a tame strategy, then we write q E�; a.t/
and uE�; a.t/ to denote the functions qa.t/ and ua.t/ in (5.6).

If E� D ŒŒ.�n/n�1�� is a tame strategy, then we define

ECOST.E�; a/ D lim
n!1

ECOST.�n; a/:
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This quantity is well defined, since the limit exists and two equivalent Cauchy se-
quences produce the same expected cost. Immediately from our results on tame strate-
gies associated to partitions of Œ0; T �, we have the following results, for any tame strat-
egy E� D ŒŒ.�n/n�1��.

Note that

ECOST.E�; a/ D Ea
h Z T

0

¹.q E�;a.t//2 C .uE�;a.t//2º dt
i

for any tame strategy E� and any a 2 R. For large enough a > 0, we have

(5.7) ECOST.E�; a/ � cT 2 exp.caT /:

Moreover, we will see that the function

(5.8)
Œ�aMAX;CaMAX� 3 a 7! ECOST.E�;a/ continues to a bounded analytic func-
tion on .�aMAX;CaMAX/ C i.�Oc; Oc/ for some Oc > 0 determined by the
BOILERPLATE CONSTANTS and the constant C E�TAME.

Moreover, we may replace aMAX by any OaMAX > aMAX, and the assumptions of the pre-
ceding sections are still valid; the constants determined by the BOILERPLATE CONSTANTS
will now depend on OaMAX. In particular, (5.8) immediately implies that the function

Œ�OaMAX;COaMAX� 3 a 7! ECOST.E�; a/

continues to a bounded analytic function on

.�OaMAX;COaMAX/C i.�Oc. OaMAX/;COc. OaMAX//I

the bound for that analytic function depends on OaMAX. This implies that the function

R 3 a 7! ECOST.E�; a/

continues to an analytic function on a neighborhood of the real axis in C. In other words,

(5.9) ECOST.E�; a/ is a real-analytic function of a 2 R:

Let us check our assertion (5.8). Recall our previous result on analytic continuation:
given " > 0, there exists ı > 0 such that whenever �tnMAX < ı, we have

(5.10) ECOST.�n; a/ D I n.a/C ERRORn.a/

on .�aMAX;CaMAX/, where

(5.11) jERRORn.a/j < " for a 2 .�aMAX; aMAX/;

and

(5.12) I n.a/ is analytic on R � .�aMAX;CaMAX/C i.�Oc; Oc/;

with jI n.a/j � C everywhere on that rectangle. In particular, (5.10), (5.11) and (5.12)
hold for all large enough n, since �tnMAX ! 0 as n!1.
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Since the I n.a/ are uniformly bounded analytic functions on the rectangle R, we
may pick out a subsequence I nj .a/ that converges to a bounded analytic function I1.a/
uniformly on compact subsets of R. Applying (5.10) and (5.11) to �nj , and passing to the
limit as j !1, we find that ECOST.E�;a/D I1.a/ for all a 2 .�aMAX;aMAX/, completing
the proof of (5.8).

Next, we construct an ALLEGEDLY OPTIMAL STRATEGY with decisions in continuous
time.

Fix a prior probability distribution dProb.a/ on Œ�aMAX;CaMAX�. Given a tame strat-
egy E�D ŒŒ.�n/n�1��, we define

ECOST.�n/ D

Z aMAX

�aMAX

ECOST.�n; a/ dProb.a/;

ECOST.E�/ D

Z aMAX

�aMAX

ECOST.E�; a/ dProb.a/:

Let �n be a sequence of partitions of Œ0; T � (as in (5.1)), with �tnMAX ! 0 as n!1.
For each n, let Q�n denote the allegedly optimal strategy associated to the partition �n.

Corollary 4.13 tells us that . Q�n/n�1 satisfies condition (5.4). Moreover, we have assumed
condition (5.2), and our PDE assumption (see (4.26)) tells us that (5.3) holds. Thus,
the . Q�n/n�1 form a Cauchy sequence of uniformly tame strategies.

We write E�opt D ŒŒ. Q�n/n�1�� to denote the resulting continuous tame strategy. Note
that E�opt is independent of the sequence of partitions used to define it. We will show that
it is optimal for Bayesian control.

Let E� D ŒŒ.�n/n�1�� be a tame strategy with tame constant C E�TAME. Then

ECOST.E�/ D

Z aMAX

�aMAX

ECOST.E�; a/ dProb.a/ D lim
n!1

Z aMAX

�aMAX

ECOST.�n; a/ dProb.a/

D lim
n!1

ECOST.�n/:

Here, the interchange of limit and integral is justified by the uniform convergence in a that
we assumed in our definition of Cauchy sequences.

Let " > 0 be given. For n large enough, condition (5.2) for the �n allows us to apply
Theorem 4.11; we conclude that

ECOST.�n/ � ECOST. Q�n/ � "

for n large enough. Here, Q�n denotes the ALLEGEDLY OPTIMAL STRATEGY associated to
the partition relevant to �n.

Passing to the limit as n!1, we see that

ECOST. ŒŒ.�n/n�1�� / � ECOST.E�opt/:

Thus, indeed, E�opt is the optimal tame Bayesian strategy; any competing tame Bayesian
strategy has an expected cost at least that of E�opt.

Next, we compare the cost of E�opt with that of another tame strategy E� D ŒŒ.�n/n�1��
conditioned on aTRUE D a for a given a 2 Œ�aMAX; aMAX�.
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We will prove the following assertion:

(5.13)
Given " > 0, there exists ı, depending on the BOILERPLATE CONSTANTS and
the constant C E�TAME, such that if ECOST.E�/� ECOST.E�opt/C ı, then, for every
a 2 Œ�aMAX;CaMAX�, we have jECOST.E�; a/ � ECOST.E�opt; a/j < ".

To prove (5.13), we recall that E�opt D ŒŒ. Q�n/n�1��, with Q�n the allegedly optimal strategy
associated to the partition associated to �n. Then

ECOST.E�/ D lim
n!1

ECOST.�n/;(5.14)

ECOST.E�opt/ D lim
n!1

ECOST. Q�n/;(5.15)

ECOST.E�; a/ D lim
n!1

ECOST.�n; a/;(5.16)

ECOST.E�opt; a/ D lim
n!1

ECOST. Q�n; a/:(5.17)

If ECOST.E�/ � ECOST.E�opt/C ı, then by (5.14) and (5.15), we have

ECOST.�n/ � ECOST. Q�n/C 2ı for large enough n:

Also, for large enough n, the partition of Œ0; T � associated to �n, Q�n has mesh less than 2ı.
It therefore follows from Theorem 4.11 that

jECOST.�n; a/ � ECOST. Q�n; a/j �
"

2

for all a 2 Œ�aMAX;CaMAX� and all large enough n.
From (5.16) and (5.17), we now see that

jECOST.E�; a/ � ECOST.E�opt; a/j � "

for all a 2 Œ�aMAX;CaMAX�, completing the proof of (5.13).

5.2. Not-necessarily-tame strategies

In this section, we drop the restriction to tame strategies.
Let E�1; E�2; E�3; : : : be tame strategies in the sense of Section 5.1. We do not assume

the E�n have a tame constant independent of n.
We say that the sequence .E�n/n�1 is Cauchy if

lim
m;n!1

Ea
h Z T

0

®
jq E�n; a.t/ � q E�m; a.t/j2 C juE�n; a.t/ � uE�m; a.t/j2

¯
dt
i
D 0;

uniformly for a in any bounded subset of R. Two Cauchy sequences .E�n/n�1 and .E�#
n/n�1

will be called equivalent if

lim
n!1

Ea
h Z T

0

®
jq E�n; a.t/ � q E�

#
n; a.t/j2 C juE�n; a.t/ � uE�

#
n; a.t/j2

¯
dt
i
D 0

for each a 2 R.
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To a Cauchy sequence .E�n/n�1 as above, we associate the trajectories qa.t/ and ua.t/,
for which we have

lim
n!1

Ea
h Z T

0

®
jq E�n; a.t/ � qa.t/j2 C juE�n; a.t/ � ua.t/j2

¯
dt
i
D 0:

Two equivalent Cauchy sequences yield the same qa and ua. We define a strategy to be an
equivalence class of Cauchy sequences under the above equivalence relation. We denote

strategies by EE� D ŒŒ.E�n/n�1��, and we write q
EE�;a.t/ and u

EE�;a.t/, respectively, to denote the
above functions qa.t/ and ua.t/. We define

ECOST.EE�; a/ D lim
n!1

ECOST.�n; a/ D Ea
h Z T

0

®
.q
EE�; a.t//2 C .u

EE�; a.t//2
¯
dt
i
:

These limits converge uniformly for a in any bounded subset of R. Note that every tame
strategy E� may also be regarded as a strategy as defined just above, namely the equivalence
class associated with the constant sequence E�; E�; E�; : : :.

Suppose we are given a prior probability distribution dPrior on Œ�aMAX; aMAX�. We
define

ECOST.EE�; dPrior/ D
Z aMAX

�aMAX

ECOST.EE�; a/ dPrior.a/:

If EE� D ŒŒ.E�n/n�1��, then

ECOST.EE�; dPrior/ D
Z aMAX

�aMAX

lim
n!1

ECOST.E�n; a/ dPrior.a/

D lim
n!1

Z aMAX

�aMAX

ECOST.E�n; a/ dPrior.a/D lim
n!1

ECOST.E�n; dPrior/I

the interchange of limit and integral is justified by the uniform convergence noted above.
Now let E�Bayes.dPrior/ be the optimal Bayesian strategy for dPrior, given in Sec-

tion 5.1. For any tame strategy E� , we have seen that

ECOST.E�; dPrior/ � ECOST.E�Bayes.dPrior/; dPrior/:

In particular, if EE� D ŒŒ.E�n/n�1��, then

ECOST.E�n; dPrior/ � ECOST.E�Bayes.dPrior/; dPrior/;

hence

ECOST.EE�; dPrior/ D lim
n!1

ECOST.E�n; dPrior/ � ECOST.E�Bayes.dPrior/; dPrior/:

So we see that the strategy E�Bayes.dPrior/ has expected cost less than or equal to that of

any competing strategy EE� .
From now on, we drop the arrows from our notation. When we mention a strategy,

we will make clear whether it is a general strategy, a tame strategy, or a tame strategy
associated to a partition of Œ0; T �.

Combining the results of this section with Theorem 4.11, we deduce Theorems 1.1
and 1.2 from the introduction.
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6. Agnostic control

Throughout this section, the random variable aTRUE 2 Œ�aMAX; aMAX� is unknown and we
do not assume that we have a prior belief about aTRUE.

6.1. Mixed strategies

Let
� W .�1; �2; �3; : : : / 7! .�1; �3; �5; : : : /

be the map from ¹0; 1ºN ! ¹0; 1ºN that erases every other bit. Fix a partition

(6.1) 0 D t0 < t1 < � � � < tN D T;

and let � D .�t� /0��<N be a tame strategy associated to the partition (6.1). Since � is
tame, we have

(6.2) ju� .t�/j � C
�
TAME � Œjq

� .t�/j C 1� for each �:

We can pass from � to the morally equivalent strategy

�#
D .�#

t�
/0��<N

by setting
�#
t�
.q1; : : : ; q� ; E�/ D �t� .q1; : : : ; q� ; �.

E�//:

Thus, the strategy �# does precisely what � does, except that whereas � makes use of the
bits �1; �2; �3; : : :, �# makes use only of the bits �1; �3; �5; : : :.

Now let �0 D .�0t� /0��<N and �1 D .�1t� /0��<N be two tame strategies, both asso-
ciated to the partition (6.1), and let � 2 Œ0; 1� be given. We define a mixed strategy ��

as follows. First, we pass from �0 and �1 to the strategies �0# and �1# as above. These
strategies make use of the bits �1; �3; �5; : : :, but ignore the bits �2; �4; �6; : : : We regard
�2; �4; �6; : : : as the binary digits of a random variable Y taking values in Œ0; 1�. If Y � � ,
then we play the strategy �1# at all times t� . If instead Y > � , then we play the strategy �0#

at all times t� .
Evidently,

ECOST.�0#; a/ D ECOST.�0; a/ and ECOST.�1#; a/ D ECOST.�1; a/

for all a 2 Œ�aMAX; aMAX�; and

(6.3) ECOST.�� ; a/ D � ECOST.�1; a/C .1 � �/ ECOST.�0; a/

for all a 2 Œ�aMAX; aMAX�, since Y � � with probability � . Note that �� is a tame strategy,
with

(6.4) C �
�

TAME � max
®
C �

0

TAME; C
�1

TAME

¯
:

We have defined the intermediate strategy �� when �0 and �1 are tame strategies associ-
ated to the same partition (6.1) of Œ0; T �.

We next extend our definition to tame strategies with decisions in continuous time. Fix
a sequence �1; �2; : : : of partitions of Œ0; T �, with mesh.�i /! 0 as i !1. Let � 2 Œ0; 1�
be given. Let �01 ; �

0
2 ; �

0
3 ; : : : and �11 ; �

1
2 ; �

1
3 ; : : : be tame strategies, where, for each i , the

strategies �0i and �1i are associated to the partition �i of Œ0; T �:
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Suppose that .�0i /iD1;2;::: and .�1i /iD1;2;::: are Cauchy sequences, in the sense of Sec-
tion 5.1. Thus, E�0 D ŒŒ.�0i /i�1�� and E�1 D ŒŒ.�1i /i�1�� are tame strategies in the sense of
that section. For each i , we pass from �0i and �1i to the mixed strategy ��i associated to
the partition �i of Œ0; T �. Then ��1 , ��2 ; : : : is again a Cauchy sequence in the sense of
Section 5.1. We write E�� to denote the tame strategy ŒŒ.��i /i�1��. Then we have

ECOST.E�� ; a/ D � ECOST.E�1; a/C .1 � �/ ECOST.E�0; a/

for all a 2 Œ�aMAX; aMAX�, and

C
��i
TAME � max

®
C
�0i
TAME; C

�1i
TAME

¯
;

as follows easily from (6.3) and (6.4).
Note that we have restricted attention to tame strategies ŒŒ.�0i /i�1�� and ŒŒ.�1i /i�1�� in

which, for each i , �0i and �1i are associated to the same partition of Œ0; T �. It would be
natural to dispense with this restriction, but for our purposes that will not be necessary.

6.2. Efficient strategies are Bayesian

In this section, we deal with tame strategies in the sense of Section 5.1 of Section 5.
Suppose we are given a class of strategies, which we call the LEGAL STRATEGIES.
Assume that given two LEGAL STRATEGIES �0 and �1, and given � 2 Œ0; 1�, there

exists a LEGAL STRATEGY �� for which we have

(6.5) ECOST.�� ; a/ D .1 � �/ ECOST.�0; a/C � ECOST.�1; a/

for all a 2 Œ�aMAX; aMAX�.
For example, suppose we fix a constant OC and a sequence of partitions .�i /i�1 of the

interval Œ0; T �, with mesh.�i /! 0 as i !1.
Then the class of all tame strategies ŒŒ.�i /i�1��with �i associated to �i and C �iTAME �

OC

satisfies (6.5), thanks to our discussion of mixed strategies in Section 6.1.
Fix a finite set A � Œ�aMAX; aMAX�, and let " � 0 be given. (Note that we allow "D 0.)
A LEGAL STRATEGY � will be said to be efficient with tolerance " if there does not

exist another LEGAL STRATEGY � 0 such that

(6.6) ECOST.� 0; a/ < ECOST.�; a/ � "

for all a 2 A. This notion depends on the set A and the class of LEGAL STRATEGIES.
In this section, we use a simple convexity argument to prove the following result.

Lemma 6.1 (Efficient strategies are Bayesian). Fix A; " and a class of LEGAL STRATE-
GIES as above, and let O� be a LEGAL STRATEGY. Suppose O� is efficient with tolerance ".
Then there exists a prior probability distribution .p.a//a2A such that for all other LEGAL
STRATEGIES � 0, we have

(6.7)
X
a2A

p.a/ ECOST. O�; a/ �
X
a2A

p.a/ ECOST.� 0; a/C ":

Proof. For any strategy � , define the cost vector to be the vector .ECOST.�;a//a2A 2RA.
Thanks to (6.5), the set K of all cost vectors of legal strategies is convex. Define another
convex set K� �RA to consist of all vectors .va/a2A such that va < ECOST. O�;a/� " for
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all a 2 A. Because O� is efficient with tolerance ", the convex sets K and K� are dis-
joint. Hence there exists a nonzero linear functional �WRA ! R such that �.v/ � �.v�/
whenever v 2K� and v� 2K . The functional � has the form

�..va/a2A/ D
X
a2A

p.a/va;

with at least one nonzero coefficient p.a0/. By definition of K�, K , and �, the following
holds:

(6.8)
Let � 0 be a LEGAL STRATEGY, and let .va/a2A satisfy va < ECOST. O�; a/� "
for all a 2 A. Then

P
a2A p.a/va �

P
a2A p.a/ECOST.� 0; a/.

We claim that the p.a/ are all nonnegative. Indeed, suppose p. Oa/ < 0 for some Oa 2 A.
We take � 0 D O� , va D ECOST. O�; a/� "� 1 for a 2 An¹ Oaº, and v Oa D �V for some large
positive V . If V is large enough, then the above � 0 and .va/a2A violate (6.8). So, as
claimed, the p.a/ are all nonnegative.

Since also the p.a/ are not all zero, we may multiply the p.a/ by a positive normaliz-
ing constant to preserve (6.8) and achieve also

(6.9)
X
a2A

p.a/ D 1:

Thus, .p.a//a2A is a probability distribution.
Now let ı > 0, and let va D ECOST. O�; a/� "� ı for a 2 A. Thanks to (6.8) and (6.9),

we have X
a2A

p.a/ ECOST. O�; a/ � " � ı �
X
a2A

p.a/ ECOST.� 0; a/

for every legal strategy � 0. Since ı > 0 may be taken arbitrarily small, inequality (6.7)
follows, completing the proof of the lemma.

6.3. Regret

We fix continuous functions �0; �1WR! R. We suppose that

j�0.a/j � QC and 0 < Qc < �1.a/ < QC for a 2 Œ�aMAX; aMAX�:

For any strategy � and any a 2 R, we define

REGRET.�; a/ D �0.a/C �1.a/ � ECOST.�; a/:

We add the above Qc and QC to our list of BOILERPLATE CONSTANTS. As usual, c, C ,
C 0, etc., denote constants depending only on the BOILERPLATE CONSTANTS. These sym-
bols may denote different constants in different occurrences. The above notion of regret
includes as special cases our earlier notions of additive, multiplicative, and hybrid regret.

6.4. The main lemma on agnostic control

Suppose our PDE assumption holds (with the same constants K, m0 and C opt
TAME) for every

prior probability distribution on a given interval Œ�aMAX; aMAX�. Under that assumption
(see Section 4.3), we prove the following result.
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Lemma 6.2. Let " > 0, and let A � Œ�aMAX; aMAX� be finite. Then there exist a subset
A0 � A, a probability measure �, and a strategy Q� , with the following properties.

(1) The measure � is concentrated on A0.

(2) Q� is the optimal Bayesian strategy for the prior �.

(3) For a 2 A and a0 2 A0, we have

REGRET. Q�; a/ � REGRET. Q�; a0/C ":

In particular,

(4) jREGRET. Q�; a0/ � REGRET. Q�; a00/j � " for a0; a00 2 A0.

For the proof of the above lemma, we first fix a class of strategies that we call OK.
For i D 1; 2; 3; : : : ; let �i be a tame strategy arising from the partition Œ0; T � \ 2�iT Z
of the time interval Œ0; T �. Suppose that the �i form a Cauchy sequence in the sense
of Section 5.1, and that the tame constants C �iTAME are all less than or equal to the con-
stant C opt

TAME in our PDE assumption (see Section 4.3, inequality (4.26)). Then the strategy
E� D ŒŒ.�i /iD1;2;:::�� will be called OK.

We make two crucial observations regarding OK strategies:
(1) For any prior � on Œ�aMAX; aMAX�, the optimal Bayesian strategy Q� is OK.
(2) If � and � 0 are OK strategies, then so is the mixed strategy that plays strategy � with

probability � and strategy � 0 with probability .1 � �/ (for 0 � � � 1).
If A is any finite subset of Œ�aMAX; aMAX� and � is any strategy, we write MR.�; A/ to

denote the quantity max¹REGRET.�; a/ W a 2 Aº. For any strategy � and any prior � on a
finite set A, we write

ECOST.�; �/ D
X
a2A

ECOST.�; a/�.a/:

We now begin the proof of Lemma 6.2.

Proof. We proceed by induction on #A, the number of elements of A.
In the base case, #AD 1, i.e.,AD¹a0º for some a0 2 Œ�aMAX;aMAX�. We takeA0DA,

� D point mass at a0, Q� D optimal known-a strategy for a D a0. The conclusions of the
lemma are obvious.

For the induction step, we fix k � 2 and assume the:
INDUCTION HYPOTHESIS. Our lemma holds whenever #A < k.
We fix A with #A D k, and prove the lemma for A.
Let " > 0 be given. We pick "0; "1; : : : ; "7 > 0, with "0 D "; and with "iC1 small

enough, depending on "0; : : : ; "i and the BOILERPLATE CONSTANTS.
Let MR� D inf¹MR.�;A/ W � any OK strategyº and let �� be an OK strategy such that

MR.��; A/ � MR� C "7:

For any other OK strategy � 0, we have

(6.10) MR.��; A/ � MR.� 0; A/C "7:
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If some OK strategy � 0 satisfied

ECOST.� 0; a/ � ECOST.��; a/ � C"7

for all a 2 A and a large enough constant C , then � 0 would violate (6.10). Therefore,
�� is C"7-efficient on A for the class of OK strategies. Thanks to observation (2) and
Lemma 6.1, there exists a probability measure � on A such that

(6.11) ECOST.��; �/ � ECOST.� 0; �/C "6

for any OK strategy � 0. In particular, (6.11) holds for the optimal Bayesian strategy for �,
denoted Q� . (Here we use observation (1).) It therefore follows from Theorem 4.11 that

jECOST.��; a/ � ECOST. Q�; a/j � "5 for all a 2 A:

Together with (6.10), this shows that

(6.12) MR. Q�;A/ � MR.� 0; A/C C"5

for all OK strategies � 0. It may happen that

(6.13) REGRET. Q�; a/ � MR. Q�;A/ � "3 for all a 2 A:

In that case, the conclusions of our lemma hold for Q� , � and A0 D A. Hence, we may
assume that (6.13) is false. Let

(6.14) A0 D ¹a 2 A W MR. Q�;A/ � "3 � REGRET. Q�; a/ � MR. Q�; a/º:

Thus,

MR. Q�;A/ � "3 � REGRET. Q�; a/ � MR. Q�;A/ for a 2 A0(6.15)
REGRET. Q�; a/ < MR. Q�;A/ � "3 for a 2 AnA0:(6.16)

Since (6.13) is false, we have #A0 < #A, so our INDUCTIVE HYPOTHESIS applies, i.e.,
our lemma holds for A0.

Thus, there exist a subset A00 � A0, a probability measure �0, and a strategy Q�0, with
the following properties.

�0 is concentrated on A00:(6.17)
Q�0 is the optimal Bayesian strategy for the prior �0:(6.18)
REGRET. Q�0; a/ � REGRET. Q�0; a0/C "7 for a 2 A0; a0 2 A00:(6.19)

In particular,

(6.20) jREGRET. Q�0; a0/ � REGRET. Q�0; a
0
0/j � "7 for a0; a00 2 A00:

From (6.19) and (6.20), we see that

(6.21) MR. Q�0; A0/ � "6 � REGRET. Q�0; a0/ � MR. Q�0; A0/ for a0 2 A00:
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Our plan is to prove that the conclusions of Lemma 6.2 for A hold for the set A00,
the measure �0, and the strategy Q�0; that will complete our induction on #A and prove
Lemma 6.2. To carry out our plan, we first prove that

(6.22) jMR. Q�;A/ � MR. Q�0; A0/j � "2:

To see (6.22), we recall that

REGRET.�; a/ D �0.a/C �1.a/ � ECOST.�; a/

with c < �1.a/ < C .
For a0 2 A00 � A0, estimates (6.15) and (6.21) therefore imply the inequalitieshMR. Q�;A/ � �0.a/

�1.a/

i
� C"3 � ECOST. Q�; a/ �

hMR. Q�;A/ � �0.a/

�1.a/

i
;(6.23) hMR. Q�0; A0/ � �0.a/

�1.a/

i
� C"6 � ECOST. Q�0; a/ �

hMR. Q�0; A0/ � �0.a/

�1.a/

i
:(6.24)

Let

(6.25) H1 D
X
a2A00

�0.a/

�1.a/
and H0 D

X
a2A00

�0.a/�0.a/

�1.a/
�

Since �0 is a probability measure concentrated onA00, and since c < �1.a/ < C , we have

(6.26) c0 < H1 < C
0:

Multiplying (6.23) and (6.24) by �0.a/, and summing over a 2 A00, we obtain the
inequalities

H1MR. Q�;A/ �H0 � C"3 � ECOST. Q�; �0/ � H1MR. Q�;A/ �H0;(6.27)
H1MR. Q�0; A0/ �H0 � C"6 � ECOST. Q�0; �0/ � H1MR. Q�0; A0/ �H0:(6.28)

Moreover, since Q�0 is the optimal Bayesian strategy for the prior �0, we have

(6.29) ECOST. Q�0; �0/ � ECOST. Q�; �0/:

From (6.27), (6.28) and (6.29), we see that

H1MR. Q�0; A0/ �H0 � C"6 � ECOST. Q�0; �0/ � ECOST. Q�; �0/ � H1MR. Q�;A/ �H0:

Thus,
H1MR. Q�0; A0/ � H1MR. Q�;A/C C"6:

Thanks to (6.26), this tells us that

MR. Q�0; A0/ � MR. Q�;A/C C"6:

So we have proven half of (6.22). In particular, (6.22) holds unless we have

(6.30) MR. Q�0; A0/ � MR. Q�;A/ � "2:

To complete the proof of (6.22), we assume (6.30) and derive a contradiction as fol-
lows. Observation (1) tells us that both strategies Q� and Q�0 are OK. We form a mixed
strategy �MIX by playing the strategy Q� with probability .1 � "4/ and the strategy Q�0 with
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probability "4. Observation (2) tells us that �MIX is an OK strategy. We will see that (6.30)
implies that �MIX outperforms Q� , contradicting (6.12). To see this, we first recall that
since Q� and Q�0 are tame strategies, we have COST. Q�; a/, COST. Q�0; a/ � C for all a 2 A,
hence

(6.31) REGRET. Q�0; a/ � REGRET. Q�; a/C C for any a 2 A:

Now suppose a 2 A0. Then (6.30) yields the inequalities

REGRET.�MIX; a/ D .1 � "4/REGRET. Q�; a/C "4 REGRET. Q�0; a/

� .1 � "4/MR. Q�;A/C "4 MR. Q�0; A0/

� .1 � "4/MR. Q�;A/C "4 ŒMR. Q�;A/ � "2� D MR. Q�;A/ � "4 "2:

On the other hand, for a 2 AnA0, inequalities (6.16) and (6.31) imply that

REGRET.�MIX; a/ D .1 � "4/REGRET. Q�; a/C "4 REGRET. Q�0; a/

� .1 � "4/ ŒMR. Q�;A/ � "3�C "4 ŒMR. Q�;A/C C �

D MR. Q�;A/C C"4 � .1 � "4/"3 � MR. Q�;A/ �
1

2
"3

(since "4 � "3 � 1/. Thus, for all a 2 A, we have

REGRET.�MIX; a/ � MR. Q�;A/ �min
°1
2
"3; "4 "2

±
D MR. Q�;A/ � "2 "4:

In other words,
MR.�MIX; A/ � MR. Q�;A/ � "4 "2:

As promised, this contradicts (6.12), completing the proof of (6.22).
Returning to (6.27) and (6.28), we now see that

(6.32) jECOST. Q�; �0/ � ECOST. Q�0; �0/j � C"3;

thanks to (6.22) and (6.26).
Since Q�0 is the optimal Bayesian strategy for �0, and since Q� is tame with tame con-

stant at most C , (6.32) and Theorem 4.11 together imply that

(6.33) jECOST. Q�; a/ � ECOST. Q�0; a/j � "1 for all a 2 A:

We are ready to show that A00, �0 and Q�0 satisfy the conclusions of Lemma 6.2 for A.
Indeed, we know that �0 is a probability measure concentrated on A00, and that Q�0 is the
optimal Bayesian strategy for the prior �0. It remains only to show that

(6.34) REGRET. Q�0; a/ � REGRET. Q�0; a0/C " for any a0 2 A00; a 2 A:

However, (6.33) yields

(6.35) REGRET. Q�0; a/ � REGRET. Q�; a/C C"1 � MR. Q�;A/C C"1 for a 2 A;

while (6.21) and (6.22) yield

(6.36) REGRET. Q�0; a0/ � MR. Q�0; A0/ � "6 � MR. Q�;A/ � C"2

for a0 2 A00.
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The desired estimate (6.34) is immediate from (6.35) and (6.36). Thus, as promised,
the conclusions of our lemma hold, with A00, �0 and Q�0 in place of A0, � and Q� . Our
induction on #A is complete, and Lemma 6.2 is proven.

6.5. An interval of allowed parameters

The previous section produced nearly optimal agnostic strategies when the parameter a is
known to belong to a finite set. In this section, we pass to the case in which a is known
merely to belong to a given interval Œ�aMAX;CaMAX�. We continue to suppose our PDE
assumption (from Section 4.3) holds for every prior probability distribution on the interval
Œ�aMAX; aMAX�. Under this assumption, we will prove the following result.

Theorem 6.3. There exists a Bayesian prior probability measure �1 supported on a
subset A1 � Œ�aMAX;CaMAX�, for which the optimal Bayesian strategy �1 satisfies

(A) the function a 7! REGRET.�1; a/ is constant on A1, and

(B) the function Œ�aMAX; aMAX� 3 a 7! REGRET.�1; a/ is maximized on A1.

Proof. Let A1; A2; A3; : : : be a sequence of sets of the form

AN D Œ�aMAX; aMAX� \ 2
�mNZ; with mN !1 as N !1I and let(6.37)

"1; "2; "3; : : : be a sequence of positive numbers tending to zero.(6.38)

Applying Lemma 6.2 to each AN , we obtain a probability measure �N , concentrated on
a subset A0N � AN , such that the optimal Bayesian strategy �N for the prior �N satisfies

MRN � "N � REGRET.�N ; a
0/ � MRN for all a0 2 A0N ; where(6.39)

MRN D max¹REGRET.�N ; a/ W a 2 AN º:(6.40)

Passing to a subsequence, we may assume that the �N converge weakly to a probability
measure �1 on Œ�aMAX;CaMAX�. Again passing to a subsequence, we may assume that
the MRN converge to a limit MR1 as N !1. (Here we use the fact that the MRN are
bounded, thanks to Lemma 3.2.)

Let �1 be the optimal Bayesian strategy for the prior �1. After again passing to a
subsequence, we will show that

(6.41) REGRET.�N ; a/! REGRET.�1; a/ as N !1;

uniformly for a 2 Œ�aMAX;CaMAX�. The proof of (6.41) is the main step in our argument.
Let us recall how REGRET.�N ; a/ and REGRET.�1; a/ are defined. Starting from the

prior �N , we form the functions

NaN .�1; �2/ D

R aMAX

�aMAX
a exp

�
�
a2

2
�2 C a�1

�
d�N .a/R aMAX

�aMAX
exp

�
�
a2

2
�2 C a�1

�
d�N .a/

,

and similarly define Na1.�1; �2/.
Using NaN in place of Na in (4.21), we then obtain a PDE solution SN .q; t; �1; �2/ 2

C
2;1
loc .R � Œ0; T � �R � Œ0;1//; satisfying the conditions given in Section 4.3. Thanks to
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the estimates on @˛SN (j˛j � 3/ in that section, we may again pass to a subsequence, and
assume that

(6.42) @˛SN ! @˛S1 as N !1 for j˛j � 2;

uniformly on compact subsets of R � Œ0; T � � R � Œ0;1/. Here, S1 2 C
2;1
loc satisfies all

the estimates given in Section 4.3. Since the �N converge weakly to �1, it follows that
NaN .�1; �2/! Na1.�1; �2/ asN !1 for each .�1; �2/ 2 R� Œ0;1/. Together with (6.42)
and the PDE satisfied by the SN , this proves that S1 satisfies the PDE (4.21) for the
Bayesian prior �1.

Now define

uN .q; t; �1; �2/D �
1

2
@qSN .q; t; �1; �2/ and u1.q; t; �1; �2/D �

1

2
@qS1.q; t; �1; �2/

for .q; t; �1; �2/ 2 R � Œ0; T � �R � Œ0;1/. From (6.42) we have

(6.43) uN ! u1 as N !1;

uniformly on compact subsets of R � Œ0; T � �R � Œ0;1/.
For each k � 1, we introduce the partition �k of Œ0; T � given by

(6.44) 0 D tk0 < t
k
1 < � � � < t

k
k D T; with tk� D

�

k
T:

Let �.N; k/ be the ALLEGEDLY OPTIMAL STRATEGY for the Bayesian prior �N and the
partition �k . Thus,

(6.45) u�.N;k/.tk� / D uN .q
�.N;k/.tk� /; t

k
� ; �

�.N;k/
1 .tk� /; �

�.N;k/
2 .tk� // for 0 � � < k:

Similarly, let �.1;k/ be the ALLEGEDLY OPTIMAL STRATEGY for the Bayesian prior�1
and the partition �k . Thus,

(6.46) u�.1;k/.tk� / D u1.q
�.1;k/.tk� /; t

k
� ; �

�.1;k/
1 .tk� /; �

�.1;k/
2 .tk� // for 0 � � < k:

By definition,

ECOST.�N ; a/ D lim
k!1

ECOST.�.N; k/; a/;(6.47)

ECOST.�1; a/ D lim
k!1

ECOST.�.1; k/; a/;(6.48)

for a 2 Œ�aMAX; aMAX�. Finally,

REGRET.�N ; a/ D �0.a/C �1.a/ECOST.�N ; a/;(6.49)
REGRET.�1; a/ D �0.a/C �1.a/ECOST.�1; a/;(6.50)

for a 2 Œ�aMAX; aMAX�. This concludes our review of the definition of REGRET.�N ; a/ and
REGRET.�1; a/.

For large enough N and k, we will apply Lemma 4.8 of Section 4.6 to the Bayesian
prior �1, the ALLEGEDLY OPTIMAL STRATEGY �.1; k/, and the alternative strategy
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�.N;k/. Thus, u1 will play the rôle of uopt in Section 4.6, while u�.N;k/, given by (6.45),
will play the rôle of u� in Section 4.6. The rôle of the quantity DISCREP� in Section 4.6
will therefore be played by

(6.51)
DISCREP.N; k; tk� / D uN .q

�.N;k/.tk� /; t
k
� ; �

�.N;k/
1 .tk� /; �

�.N;k/
2 .tk� //

� u1.q
�.N;k/.tk� /; t

k
� ; �

�.N;k/
1 .tk� /; �

�.N;k/
2 .tk� //:

To apply Lemma 4.8, we must estimate

(6.52) Ea
h X
0��<k

jDISCREP.N; k; tk� /j
2�tk�

i
for a 2 Œ�aMAX; aMAX�;

with �tk� D t
k
�C1 � t

k
� D T=k (see (6.44)). To estimate the quantity in (6.52), we recall

that
juN .q; t; �1; �2/j; ju1.q; t; �1; �2/j � C Œjqj C 1�;

and, consequently,

(6.53) jDISCREP.N; k; tk� /j � C Œjq
�.N;k/.t�� /j C 1�:

For Q � C , define the events

BAD.N; k;Q/ WD
®

max
0��<k

¹jq�.N;k/.tk� /j C j�
�.N;k/
1 .tk� /j C j�

�.N;k/
2 .tk� /jº > Q

±
;

GOOD.N; k;Q/ WD
°

max
0��<k

¹jq�.N;k/.tk� /j C j�
�.N;k/
1 .tk� /j C j�

�.N;k/
2 .tk� /jº � Q

±
:

We take k � C for a large C , so that our partition of Œ0; T � is fine enough to allow us to
apply Lemma 3.2. Lemma 3.2 then tells us that

Ea
�

max
0��<k

¹jq�.N;k/.tk� /j C 1º
2
� 1BAD.N;k;Q/

�
� CQ�1

for a 2 Œ�aMAX; aMAX�. Hence, by (6.53),

(6.54) Ea
h X
0��<k

.DISCREP.N; k; tk� //
2�tk� � 1BAD.N;k;Q/

i
� CQ�1

for a 2 Œ�aMAX; aMAX�. On the other hand, let ı > 0 be given, and suppose

N � Nmin.ı;Q/ for a large enough Nmin.ı;Q/:

Then, by comparing (6.43) with (6.51), we see that

jDISCREP.N; k; tk� /j � ı for all �;

provided GOOD.N; k;Q/ occurs. Therefore,

Ea
h X
0��<k

.DISCREP.N; k; tk� //
2�tk� � 1GOOD.N;k;Q/

i
� Cı
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for all a 2 Œ�aMAX; aMAX�. Together with (6.54), this implies that

Ea
h X
0��<k

.DISCREP.N; k; tk� //
2�tk�

i
� Cı C CQ�1

for all a 2 Œ�aMAX; aMAX� providedN �Nmin.ı;Q/ and k � C . TakingQD ı�1, we have

(6.55) Ea
h X
0��<k

.DISCREP.N; k; tk� //
2�tk�

i
� Cı

for a 2 Œ�aMAX; aMAX�, N � N 0min.ı/, and k � C . Also, recalling (6.44), we see that

(6.56) �tkMAX � max
0��<k

.tk�C1 � t
k
� / �

C

k
< ı; provided k >

C

ı
�

Now let " > 0 be given, and let ı be small enough, depending on ". Our results (6.55)
and (6.56) are the hypotheses of Lemma 4.8, with�1 in place of dPrior, and with �.N;k/
in place of � . Applying that lemma, we learn that

jECOST.�.N; k/; a/ � ECOST.�.1; k/; a/j � ";

all a 2 Œ�aMAX; aMAX�, for k � kmin."/ and N � N 00min."/. Passing to the limit as k !1
for fixed N , and recalling (6.47) and (6.48), we see that

jECOST.�N ; a/ � ECOST.�1; a/j � "

for N � N 00."/ and for all a 2 Œ�aMAX; aMAX�. Since " > 0 is arbitrary, we conclude that

ECOST.�N ; a/! ECOST.�1; a/ as N !1;

uniformly for a 2 Œ�aMAX; aMAX�. Thanks to (6.49) and (6.50), this in turn implies that

REGRET.�N ; a/! REGRET.�1; a/ as N !1;

uniformly for a 2 Œ�aMAX; aMAX�. So, at last, we have proven (6.41).
Notice that the functions REGRET.�N ; a/ and REGRET.�1; a/ are continuous on

Œ�aMAX; aMAX�. Thanks to (6.41), they have a common modulus of continuity, i.e.,

(6.57) jREGRET.�N ; a1/ � REGRET.�N ; a2/j � !.ja1 � a2j/

for a1; a2 2 Œ�aMAX; aMAX� and for all N � 1, for a function !.t/ satisfying

(6.58) !.t/! 0 as t ! 0C:

We have defined the probability measure �1 and its optimal Bayesian strategy �1. To
complete the proof of our theorem, we must define a set A1 � Œ�aMAX; aMAX� and prove
that

• �1 is supported on A1,
• REGRET.�1; a/ is constant on A1, and
• REGRET.�1; a/ is maximized on A1 over all a 2 Œ�aMAX; aMAX�.

We define A1 to consist of all a 2 Œ�aMAX; aMAX� such that for all � > 0 and all N� � 1
there exists a0 2 A0N \ .a � �; a C �/ for some N > N�. (Recall A0N from the defining
conditions for the �N .)
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Let us check that �1 is supported in A1. Thus, let a 2 Œ�aMAX; aMAX�nA1. Then for
some open interval I 3 a and someN� � 1, we have A0N \ I D ; forN > N�. Since �N
is supported in A0N , we have �N .I / D 0. Since the probability measures �N converge
weakly to �1 as N !1, it follows that �1.I / D 0. So a … support.�1/, completing
the proof that �1 is supported in A1.

Next, suppose a0 2A1. Then there exist sequencesN�!1 and a�! a0 as �!1,
with a� 2 A0N� . From (6.39) we have

MRN� � "N� � REGRET.�N ; a�/ � MRN� ;

hence, thanks to (6.57),

(6.59) MRN� � "N� � !.ja� � a
0
j/ � REGRET.�N ; a

0/ � MRN� C !.ja� � a
0
j/:

As � !1, we have MRN� ! MR1, "N� ! 0, and !.ja� � a0j/! 0 thanks to (6.58).
Therefore, (6.59) implies that

lim
N!1

REGRET.�N ; a
0/ D MR1:

Recalling (6.41), we see that

(6.60) REGRET.�1; a
0/ D MR1 for all a0 2 A1:

On the other hand, let a 2 Œ�aMAX; aMAX�. From (6.37) we obtain a sequence aN 2 AN
(N � 1) such that aN ! a as N !1. Thanks to (6.40), we have

REGRET.�N ; aN / � MRN for each N;

hence

(6.61) REGRET.�N ; a/ � MRN C !.jaN � aj/;

by (6.57). As N !1, we have MRN ! MR1 and !.jaN � aj/! 0 by (6.58). There-
fore, (6.61) and (6.41) yield the inequality

(6.62) REGRET.�1; a/ � MR1 for all a 2 Œ�aMAX; aMAX�:

From (6.60) and (6.62), we see that REGRET.�1; a/ is constant on A1, and that the
maximum of REGRET.�1; a/ over all a 2 Œ�aMAX; aMAX� is achieved on A1. The proof
of our theorem is complete.

Under additional assumptions on the functions �0.a/ and �1.a/ in Section 6.3, we can
easily deduce that the set A1 in the above theorem is finite. Indeed, suppose �0 and �1
are real-analytic on R, and suppose that for all " > 0 we have

(6.63) �0.t/ � � exp."t/ and �1.t/ � exp.�"t/ for large positive t:

Recall that the function a 7! ECOST.�1; a/ is real-analytic on R and grows exponentially
as a!1. (See Theorem 4.11.)

Under our assumptions on �0 and �1, it follows that the function

a 7! REGRET.�1; a/ D �0.a/C �1.a/ ECOST.�1; a/

is again real-analytic on R and exponentially large as a!1.



J. Carruth, M. F. Eggl, C. Fefferman and C. W. Rowley 92

In particular, Œ�aMAX; aMAX� 3 a 7! REGRET.�1; a/ is a nonconstant real-analytic
function. Since REGRET.�1;a/ is constant onA1, it follows thatA1 is finite, as claimed.

Combining Theorem 6.3 with the fact that A1 is finite establishes parts (I), (II)
and (III) of Theorem 1.3 in the introduction.
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