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Controlling unknown linear dynamics
with almost optimal regret
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Abstract. Here and in a companion paper, we consider a simple control problem in
which the underlying dynamics depend on a parameter a that is unknown and must
be learned. In this paper, we assume that a can be any real number and we do not
assume that we have a prior belief about a. We seek a control strategy that minimizes
a quantity called the regret. Given any " > 0, we produce a strategy that minimizes
the regret to within a multiplicative factor of .1C "/.

1. Introduction

Continuing from [7, 8, 17], we explore a new flavor of adaptive control theory, which we
call “agnostic control”.

Many works in adaptive control theory attempt to control a system whose underlying
dynamics are initially unknown and must be learned from observation. The goal is then to
bound REGRET, a quantity defined by comparing our expected cost with that incurred by
an opponent who knows the underlying dynamics. Typically, one tries to achieve a regret
whose order of magnitude is as small as possible after a long time. Adaptive control theory
has extensive practical applications; see, e.g., [4, 5, 9, 22, 30].

In some applications, we do not have the luxury of waiting for a long time. This is the
case, e.g., for a pilot attempting to land an airplane following the sudden loss of a wing,
as in [6]. Our goal, here and in the companion paper [7], is to achieve the absolute mini-
mum possible regret over a fixed, finite time horizon. This poses formidable mathematical
challenges, even for simple model systems.

We will study a one-dimensional, linear model system whose dynamics depend on
a single unknown parameter a. When a is large positive, the system is highly unstable.
(There is no “stabilizing gain” for all a.) We suppose that the unknown a may be any real
number and we do not assume that we are given a Bayesian prior probability distribution
for it.
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Modulo an arbitrarily small increase in regret, we reduce the problem to a Bayesian
variant in which the unknown a is confined to a finite set and governed by a prior proba-
bility distribution.

For the Bayesian problem, our task is to find a strategy that minimizes the expected
cost. This leads naturally to a PDE (a Bellman equation).

In the companion paper [7], we prove that the optimal strategy for Bayesian control
is indeed given in terms of the solution of the Bellman equation, and that any strategy
significantly different from that optimum incurs a significantly higher cost. We proceed
modulo assumptions about existence and regularity of the relevant PDE solutions, for
which we lack rigorous proofs. (However, we have obtained numerical solutions, which
seem to behave as expected.)

Let us now explain the above in more detail.

1.1. The model system

Our system consists of a particle moving in one dimension, influenced by our control
and buffeted by noise. The position of our particle at time t is denoted by q.t/ 2 R. At
each time t , we may specify a “control” u.t/ 2 R, determined by history up to time t ,
i.e., by .q.s//s2Œ0;t�. A “strategy” (aka “policy”) is a rule for specifying u.t/ in terms of
.q.s//s2Œ0;t� for each t . We write �; � 0; ��; etc. to denote strategies. The noise is provided
by a standard Brownian motion .W.t//t�0.

The particle moves according to the stochastic ODE

(1.1) dq.t/ D .aq.t/C u.t// dt C dW.t/; q.0/ D q0;

where a and q0 are real parameters. Due to the noise in (1.1), q.t/ and u.t/ are random
variables.

Over a time horizon T > 0, we incur a COST, given1 by

(1.2) COST D

Z T

0

¹.q.t//2 C .u.t//2º dt:

This quantity is a random variable determined by a, q0, T and our strategy � . Here, the
starting position q0 and time horizon T are fixed and known.

We would like to keep our cost as low as possible. We examine several variants of the
above control problem, making successively weaker assumptions regarding our knowl-
edge of the parameter a. Those variants are as follows.

Variant I: Classical control

We suppose first that the parameter a is known. We write J.�; aI T; q0/ to denote the
expected COST incurred by executing a given strategy � . Our task is to pick � to minimize
J.�; aIT; q0/. As shown in textbooks (e.g., [3]), the optimal strategy � is given by

u.t/ D ��.T � t; a/q.t/

1By rescaling, we can consider seemingly different cost functions of the form
R T
0 .q

2 C �u2/ for � > 0.



Controlling unknown linear dynamics with almost optimal regret 3

for a known elementary function �; see also Section 2 below. We denote this strategy
by �opt.a/. It will be important later to note that �opt.a/ satisfies the inequality

(1.3) ju.t/j � C max¹a; 1º � jq.t/j for an absolute constant C:

Variant II: Bayesian control

Next, suppose that the parameter a is unknown, but is subject to a given prior probability
distribution dProb.a/ supported in an interval Œ�A; A�. Our goal is now to pick a strat-
egy � to minimize our expected cost, given by

(1.4)
Z A

�A

J.�; aIT; q0/ dProb.a/:

To solve this problem, we first note a major simplification: in principle, a strategy �
is a one-parameter family of functions on an infinite-dimensional space, because it speci-
fies u.t/ in terms of the path .q.s//s2Œ0;t� for each t . However, one computes (for details,
see [7]) that the posterior probability distribution for the unknown a, given past history
.q.s//s2Œ0;t�, is determined by the prior dProb.a/, together with the two observable quan-
tities

(1.5) �1.t/ D

Z t

0

q.s/ dq.s/ �

Z t

0

q.s/u.s/ ds and �2.t/ D

Z t

0

.q.s//2 ds:

Therefore, it is natural to suppose that our optimal strategy �Bayes.dProb/ takes the form

(1.6) u.t/ D Qu.q.t/; �1.t/; �2.t/; t/

for a function Qu on R4.
So, instead of looking for a one-parameter family of functions on an infinite-dimen-

sional space, we merely have to specify a function Qu of four variables. It is not hard to
derive a PDE (the Bellman equation) for the function Qu.q; �1; �2; t / that, according to
heuristic reasoning, minimizes our expected cost. We have produced approximate solu-
tions Qu to the Bellman equation in numerical simulations2, but we do not have rigorous
proofs of existence or regularity. We proceed by imposing the

PDE ASSUMPTION: The Bellman equation has a smooth solution, and the resulting
control strategy satisfies the estimate

(1.7) ju.t/j � C0A
m0 Œjq.t/j C 1�;

for constants C0 and m0 independent of A.
Since our prior distribution dProb.a/ is supported in Œ�A; A�, a glance at (1.3) sug-

gests that the optimal Bayesian strategy should satisfy

ju.t/j � C max¹A; 1º � jq.t/j:

Our numerical simulations appear to confirm this belief. Accordingly, (1.7) seems to be a
very safe assumption.

2For details on all of the numerical simulations referenced in this paper, we refer the reader to the supple-
mentary material available on our website: https://github.com/meggl23/NumericalAgnosticControl (visited on
November 20, 2024).

https://github.com/meggl23/NumericalAgnosticControl
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Under the above PDE Assumption, we prove in [7] that the natural result that the
strategy �Bayes.dProb/ arising from the Bellman equation indeed minimizes the expected
cost given by (1.4). Moreover, any strategy that differs significantly from �Bayes.dProb/
incurs a significantly higher expected cost.

Our results on Bayesian control pave the way for our analysis of agnostic control.

Variant III: Agnostic control for bounded a

We suppose that our parameter a is confined to a bounded interval Œ�A; A�, but is oth-
erwise unknown. In particular, we do not assume that we are given a Bayesian prior
probability distribution dProb.a/. Consequently, we cannot define a notion of expected
cost by formula (1.4).

Instead, our goal will be to minimize worst-case regret, defined by comparing the
performance of our strategy with that of the optimal known-a strategy �opt.a/. We will
introduce several variants of the notion of regret.

Let us fix a starting position q0, a time horizon T , and an interval Œ�A;A� guaranteed
to contain the unknown a. To a given strategy � , we associate the following functions
on Œ�A;A�:
• Additive Regret, defined as

AR.�; a/ D J.�; aIT; q0/ � J.�opt.a/; aIT; q0/ � 0:

• Multiplicative Regret (aka “competitive ratio”), defined as

MR.�; a/ D
J.�; aIT; q0/

J.�opt.a/; aIT; q0/
� 1:

• Hybrid Regret, defined in terms of a parameter 
 > 0 by setting

HR
 .�; a/ D
J.�; aIT; q0/

J.�opt.a/; aIT; q0/C 

�

Writing REGRET.�; a/ to denote any one of the above three functions on Œ�A;A�, we
define the worst-case regret

(1.8) REGRET�.�/ D sup¹REGRET.�; a/ W a2 Œ�A;A�º:

We seek a strategy � that minimizes worst-case regret.
The above notions are useful in different regimes. If we expect to pay a large cost, then

we care more about multiplicative regret than about additive regret. (If we have to pay 109

dollars, we are unimpressed by a saving of 105 dollars.) Similarly, if our expected cost
is small, then we care more about additive regret than about multiplicative regret. (If we
pay only 10�5 dollars, we do not care that we might instead pay 10�9 dollars.) If we fix 

to be a cost we are willing to neglect, then hybrid regret HR
 .�; a/ provides meaningful
information regardless of the order of magnitude of our expected cost.

So far, we have defined three flavors of worst-case regret, and posed the problem
of minimizing that regret. The solution to our agnostic control problem is given by the
following result, proved in [7].
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Theorem 1.1. Fix Œ�A; A�, q0 and T (and 
 , if we use hybrid regret). Assume the PDE
Assumption. Then

(I) There exists a probability measure dProb� on Œ�A; A� for which the optimal Ba-
yesian strategy �Bayes.dProb�/ minimizes the worst-case regret among all possible
strategies.

Moreover,

(II) The measure dProb� is supported on a finite set E � Œ�A;A�, where

(III) E is precisely the set of points a2 Œ�A; A� at which the function Œ�A; A� 3 a 7!
REGRET.�Bayes.dProb�/; a/ achieves its maximum.

So, for optimal agnostic control, we should pretend to believe that the unknown a is
confined to a finite setE and governed by the probability distribution dProb�, even though
in fact we know nothing about a except that it lies in Œ�A;A�.

It is easy to see that a probability distribution dProb� satisfying (II) and (III) gives
rise to a Bayesian strategy satisfying (I). The hard part of Theorem 1.1 is the assertion that
such a probability measure exists.

Theorem 1.1 lets us search for optimal agnostic strategies: we first guess a finite set E
and a probability measure dProb concentrated on E. By solving the Bellman equation,
we produce the strategy � D �Bayes.dProb/, which allows us to compute the function
Œ�A;A� 3 a 7! REGRET.�; a/. If the maxima of that function occur precisely at the points
of E, then � is the desired optimal agnostic strategy. If the maxima of that function do not
occur at the points of E, then we update our guess for E and try again. We have carried
this out numerically for several Œ�A;A�, q0and T .

This concludes our discussion of agnostic control for bounded a. Finally, we pass to
the most general case.

Variant IV: Fully agnostic control

We make no assumption whatever regarding the unknown a; our a may be any real num-
ber, and we are not given a Bayesian prior distribution for it.

Our goal is again to find a strategy that minimizes the worst-case regret, defined as
in (1.8), except that the sup is now taken over all a2 R.

The main result of this paper is that, with negligible increase in regret, we can reduce
matters to agnostic control for bounded a. More precisely, we will prove the following
result.

Theorem 1.2. Fix a time horizon T and a nonzero starting position q0, as well as con-
stants C0 and m0 (for which, see (1.7)). Then, given " > 0, there exists A > 0 for which
the following holds.

Let � be a strategy for the starting position q0 and time horizon T C ". Suppose �
satisfies estimate (1.7) for the given C0, m0 and A.

Then there exists a strategy �� for the starting position q0 and the time horizon T ,
satisfying the following estimates.

(A) For a2 Œ�A;A�, we have

J.��; aIT; q0/ � "C .1C "/ sup¹J.�; a0IT C "; q0/ W ja0 � aj � " jajº:
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(B) For a… Œ�A;A�, we have

J.��; aIT; q0/ � "C .1C "/J.�opt.a/; aIT; q0/:

So, if a2 Œ�A;A�, then �� performs almost as well as � ; and if a… Œ�A;A�, then ��
performs almost as well as the optimal known-a strategy �opt.a/.

To apply Theorem 1.2, we take � to be an optimal agnostic strategy for the start-
ing position q0 and the time horizon T C ", assuming a to be confined to the interval
Œ�.1C"/A;C.1C"/A�.

If our PDE Assumption holds, then � satisfies the hypothesis of Theorem 1.2. It’s easy
to deduce from Theorem 1.2 that the worst-case hybrid regret of the strategy �� (for fully
agnostic control) is at most O."/ percent worse than that of � (for agnostic control with a
confined to Œ�.1C "/A; .1C "/A�).

For any 
 > 0 and any strategy � for time horizon T and starting position q0, we
let HR�
 .� I T / denote the worst-case hybrid regret (over all a2 R) of � . The above dis-
cussion then implies the following.

Corollary 1.3. Fix constants T > 0, � > 0 and q0 ¤ 0. Assume the PDE Assumption.
Then for any " > 0, we can construct a strategy �Ag for time horizon T and starting
position q0 satisfying

HR�
 .�AgIT / � .1C C"/ � HR�
 .� IT C "/

for any strategy � for time horizon T C " and starting position q0.

There are variants of Theorem 1.2 and Corollary 1.3 for the case of starting posi-
tion q0 D 0; see Corollary 2.2.

Recap

Let us summarize what has been achieved.
Our goal is to minimize worst-case regret in the setting where a may be any real

number. Modulo an arbitrarily small increase in regret, we may reduce matters to the
case in which a is confined to a bounded interval Œ�A;A�. We then look for a probability
measure dProb� living on a finite subset E � Œ�A;A� such that the regret of the optimal
Bayesian strategy for dProb� is maximized precisely on E. We can calculate the optimal
Bayesian strategy for a given prior probability measure by solving a Bellman equation.
However, our results are conditional; we have to make an assumption on the existence,
size, and smoothness of solutions to the Bellman equation. In numerical simulations, we
have produced evidence for our PDE Assumption, and we have produced optimal agnostic
strategies for cases in which the unknown a is confined to a bounded interval.

1.2. Ideas from the proof of Theorem 1.2

Recall that, in Theorem 1.2, we are given a strategy � , a small positive ", and a large
positive A depending on ". The strategy � applies to a starting position q0 ¤ 0, and to a
time horizon T C ". Our task is to find a strategy �� satisfying conditions (A) and (B).

In this introduction, we allow ourselves some inaccuracy in the interest of simplicity.
See Sections 5–7 for correct details.
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A recurring theme in the proof of Theorem 1.2 is that because the unknown a may
be arbitrarily large and positive, the system may be arbitrarily unstable. Consequently,
disasters of exponentially small probability may lead to exponentially large expected cost.
To prepare the way for the proof of Theorem 1.2, we first examine two regimes in which
we can do almost as well as if we knew the value of a.

The large q regime

Suppose q0 is very large. A glance at (1.1) suggests that the noise dW.t/ has only a small
effect compared to that of the term .aq C u/dt . Therefore, after initially setting u � 0
and observing q.t/ for small t , we quickly arrive at a guess Na for the unknown a. That
guess is probably highly accurate. Moreover, the larger a is, the sooner we can arrive at
the guess Na.

Once we have found Na, we can simply play the known-a strategy �opt. Na/ until the end
of the game at time T . (If Na is large positive, then in place of �opt. Na/, we use the strategy
in which u.t/ D �2 Naq.t/, which is equivalent to �opt. Na/ asymptotically for Na� 1.)

This “Large q strategy” incurs an expected cost almost as small as that of an opponent
who knows a.

A crucial point is that for large positive a, the probability of a significantly inac-
curate guess Na is O.exp.�cq20a//, while the expected cost if such an error occurs is
O.q20 exp.CTa//. Hence, for large q0, the exponentially tiny probability of disaster over-
whelms the exponentially large resulting cost.

The large a regime

As in our discussion of the Large q strategy, a glance at (1.1) suggests that the nosie dW.t/
will have negligibly small effect compared to that of the term .aq C u/dt , provided a is
large positive, say, a � A. This leads to a “naïve large a strategy” in which we initially set
u � 0, observe q.t/ for small t , arrive at a guess Na for the unknown a, and then play the
known-a strategy �opt. Na/ until the game ends at time T .

This time, however, the exponentially small probability of an error of the form Na� a

is dominated by the exponentially large cost of the ensuing disaster. Consequently, the
naïve large a strategy fails. The cure is to pick some q�0 , big but not too big, and execute
the naïve large a strategy only until the first moment we encounter jq.t/j D q�0 . At that
moment, we switch over to the Large q strategy. If we never encounter jq.t/j D q�0 , then
we continue with the naïve large a strategy until the end of the game.

The above modification limits the damage arising from the event Na� a. We have thus
produced a “Large a strategy” whose expected cost is close to that of the optimal known-a
strategy �opt.a/ whenever a � A. When a < A, the expected cost of our Large a strategy
is O.A2/. That is bigger than we would like, but it is not exponentially large.

Strengthening the given strategy

Next, we consider the strategy � given in the statement of Theorem 1.2. Recall that � is
assumed to satisfy the estimate (1.7). From that estimate, we see at once that � disastrously
undercontrols in case a � Am0 , leading to exponentially large expected cost. We can
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remedy this defect by modifying � the same way we modified the naïve large a strategy.
We pick a q�0 , large but not too large, and switch over from � to the Large q strategy as
soon as we encounter jq.t/j D q�0 . Thus, we obtain a strategy Q� that performs almost as
well as � for a 2 Œ�A;A�, and avoids exponentially large expected cost if a > A.

Like � , the strategy Q� starts at position q0. By rescaling Q� slightly, we arrive at a
strategy N� with starting position .1C "/q0. Like Q� , the strategy N� performs almost as well
as � when a2 Œ�A;A�, and avoids exponentially large expected cost when a > A.

Armed with the Large q and Large a strategies, and the modified strategy N� , we can
now describe the strategy �� whose existence is asserted by Theorem 1.2. Without loss of
generality, we suppose that our nonzero starting position q0 is positive.

In the strategy ��, there are two epochs, a Prologue and a Main Act. During the Pro-
logue, we set u � 0. The Prologue ends as soon as we encounter one of the three events
(a) q.t/ D .1C "/q0,
(b) q.t/ D �qrare for a suitable qrare > 0 (big but not too big),
(c) the end of the game at time T (in which case there is no Main Act).

Event (b) occurs with small probability, regardless of the unknown a. If it does occur,
then during the Main Act we play a slight variant of the Large q strategy to bound our
losses.

If instead we enter the Main Act via case (a), then by observing how long it took to
pass from the initial position q0 to the position .1 C "/q0, we obtain a guess Na for the
unknown a. If a is large positive, then as in our discussion of the Large a strategy, our
guess Na is probably highly accurate. Otherwise, Na is likely not so close to a, but at least
Na probably will not be large positive. Therefore, for large A, our guess Na will at least tell
us whether a & A or a � A. Accordingly, in case (a) we proceed as follows during the
Main Act.

• If Na > A, then during the Main Act, we execute the Large a strategy.
• If Na � A, then during the Main Act, we execute N� , the improved version of the given

strategy � .
The Main Act lasts until the end of the game at time T .
This completes our description of the strategy ��. We hope the reader finds it plausible

that our �� satisfies conditions (A) and (B) in Theorem 1.2.
We again warn the reader that our discussion in this introduction is somewhat over-

simplified. For instance, our basic stochastic ODE (1.1) is not obviously well defined if
our strategy allows u.t/ to be a discontinuous function of t . We have not even given a
rigorous definition of a strategy. Our rigorous discussion starts from scratch in Section 2.

Survey of prior literature

Literature that considers adaptive control of a simple linear system similar to the one
considered in this paper commonly consists of one or more of the following features:
(i) unknown governing dynamics, (ii) unknown cost function, and (iii) adversarial noise.
Examples of such work include [12,15,19,25–27,34] as well as our own prior work [8,17].

Initial work in obtaining regret bounds in the infinite time horizon for the related
LQR (linear-quadratic regulator) problem was undertaken in [1], which proved that under
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certain assumptions, the expected additive regret of the adaptive controller is bounded
by QO.

p
T /. Further progress was made on this problem in [10]. Assuming controllability

of the system, the authors gave the first efficient algorithm capable of attaining sublinear
additive regret in a single trajectory in the setting of online nonstochastic control. See
also the related [29], which obtained sublinear adaptive regret bounds, a stronger met-
ric than standard regret and more suitable for time-varying systems. Additional adaptive
control approaches include [13, 14] using the system level synthesis. This expands on
ideas in [32], which showed that the ordinary least-squares estimator learns a linear sys-
tem nearly optimally in one shot. Other work uses Thompson sampling [2, 24] or deep
learning [11]. Perhaps most related to the work performed in this study is [23], which
designed an online learning algorithm with sublinear expected regret that moves away
from episodic estimates of the state dynamics (meaning that no boundedness or initially
stabilizing control needed to be assumed).

In [17], the third and fourth authors of the present paper, along with B. Guillén Pegue-
roles and M. Weber, found regret minimizing strategies for a problem with simple un-
known dynamics (a particle moving in one-dimension at a constant, unknown velocity
subject to Brownian motion). In [21], along with D. Goswami and D. Gurevich, they gen-
eralized these results to an analogous, higher-dimensional system with the addition of
sensor noise. In [17], they also posed the problem of finding regret minimizing strate-
gies for the more complicated dynamics (1.1). In [8], the authors of the present paper,
along with M. Weber, took the first steps toward resolving this problem. Specifically, we
exhibited a strategy for the dynamics (1.1) with bounded multiplicative regret.

Historically, significant work has been undertaken in the closely related “multi-armed
bandit” problem; see, for instance, the classic papers [31, 33]. Recent work considering
this paradigm includes [35], which used reinforcement learning to obtain dynamic regret
whose order of magnitude is optimal, and [16], which studied the more general generalized
linear bandits (GLBs) and obtains similar regret bounds.

We finally want to point out the parallel field of adversarial control, where the noise
profile is chosen by an adversary instead of randomly. This includes [28], which attained
minimum dynamic regret and guaranteed compliance with hard safety constraints in the
face of uncertain disturbance realizations using the system level synthesis framework,
and [20], which studied the problem of competitive control.

As this list of references is by no means exhaustive and does not do justice to the
wealth of studies in the literature, we point the reader to the book [22] and the references
therein for a more thorough overview of online control.

We emphasize that our approach in [17], [8], and the present paper differs from the
other work cited above in that
• we seek strategies that minimize the worst-case regret for a fixed time horizon T ,

whereas the literature is mainly concerned with T !1.
• Typically, in the literature one assumes either that the dynamics are bounded or that

one is given a stabilizing control. We make no such assumptions, and so we must
control a system that is arbitrarily unstable.

• However, we achieve the above ambitious goals only for a simple model system.
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2. Setup

Except for where we explicitly state otherwise, we adopt the following conventions regard-
ing constants throughout this paper. We write C; C 0; C 00; : : : to denote positive absolute
constants. When we wish to specify that a positive absolute constant is smaller than 1,
we write c; c0; c00; : : :. Finally, if a constant depends on some quantity X , then we write
CX ; C

0
X ; cX ; c

0
X ; : : :. The values of these constants may change from line to line.

Whenever we say that a parameter/constant depends on other parameters/constants,
we assume that the dependence is continuous unless we explicitly state otherwise.

We let W.t/ denote Brownian motion starting at W.0/ D 0 and normalized so that
EŒ.W.t//2�D t . We write .�;F ;Prob/ for the corresponding probability space, and EŒX�
for the expected value of a random variable X . We write ! to denote an arbitrary element
of �. For t 2 Œ0; T �, we write Ft to denote the sigma algebra determined by the history of
the Brownian motion from time 0 until time t .

We introduce a time horizon T > 0 and a starting position q0 ¤ 0. We define a strategy
(for time horizon T and starting position q0) to be a collection of random variables q.t; a/,
u.t; a/ defined for all t 2 Œ0; T � and a 2 R and satisfying the following:

(S.1) For every a2R, q.t; a/ is a continuous function of t with probability 1 and u.t; a/
is an L2 function of t with probability 1.

(S.2) For every a2R and t 2 Œ0;T �, the maps .s;!/ 7! q.s;a;!/ and .s;!/ 7! u.s;a;!/,
defined on Œ0; t � ��, are measurable as functions on Œ0; t � � .�;Ft ; Prob/. Intu-
itively, this means that q and u are determined by the past.

(S.3) For every a2 R,

E
h Z T

0

.q.t; a//2 C .u.t; a//2 dt
i
<1:

(S.4) For almost all ! 2 �, we have that for all a; b 2 R, and for all t 2 Œ0; T �, if
q.s; a; !/ D q.s; b; !/ for all s 2 Œ0; t �, then u.s; a; !/ D u.s; b; !/ for almost
all s 2 Œ0; t �. This tells us that u does not depend on the unknown a.

(S.5) For every a2 R and t 2 Œ0; T �, we have

q.t; a/ D q0 CW.t/C

Z t

0

Œaq.�; a/C u.�; a/� d�

with probability 1.
For a given a2R, we refer to q.t;a/ and u.t;a/, respectively, as the particle trajectory

and the control variable for a at time t .
We remark that any strategy for time horizon T and starting position q0 gives rise to

a strategy for time horizon T 0 and starting position q0 for any T 0 2 .0; T / (simply by
restricting the time domain).

We will use � to denote an arbitrary strategy. We then write q� and u� to denote the
families of particle trajectories and control variables associated with � .

For any strategy � , we define a random variable

COST.�; a/ D

Z T

0

�
.q� .t; a//2 C .u� .t; a//2

�
dt:
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This random variable is well-defined because, with probability 1, q.t; a/ is a continuous
function of t and u.t; a/ is an L2 function of t . We then define the expected cost of � by

J.�; aIT; q0/ D EŒCOST.�; a/�:

For any smooth function vW Œ0; T �! R, we define a strategy �v by setting

q�v .t; a/ D q0 CW.t/C

Z t

0

.a � v.�//q�v .�; a/ d�;(2.1)

u�v .t; a/ D �v.t/q�v .t; a/:(2.2)

We refer to �v as a simple feedback strategy with gain function v.
For ˛ 2 R and s � 0, we define

�.s; ˛/ D
tanh.s

p
˛2 C 1/

p
˛2 C 1 � ˛ tanh.s

p
˛2 C 1/

�

We let �opt.˛/ denote the simple feedback strategy with gain function t 7! �.T � t; ˛/. In
Section 3, we will show that for any a2 R, the strategy �opt.a/ minimizes the quan-
tity J.�; aI T; q0/ over all strategies � . We therefore refer to the family of strategies
.�opt.˛//˛2R as optimal known-a (or just known-a) strategies. For ease of notation, we
define

J0.aIT; q0/ D J.�opt.a/; aIT; q0/I

we refer to J0.aIT; q0/ as the optimal expected cost for known a (for time horizon T and
starting position q0).

Fix a real number C0 and an integer m0 � 1. We say that a strategy � (for time hori-
zon OT ) is A-bounded for some A > 0 if

ju� .t; a/j � C0A
m0 Œjq� .t; a/j C 1� for all a 2 R; t 2 Œ0; OT �:

Recall that we assume that our starting position q0 is nonzero.

Theorem 2.1. Let " > 0. Then for A > 0 sufficiently large depending on ", T , q0, C0
and m0, the following holds.

Let � be an A-bounded strategy for time horizon T C " and starting position q0. Then
the strategy �� for time horizon T and starting position q0 specified in Section 5.2 satisfies
the following.

(1) If a2 Œ�A;A�, then

J.��; aIT; q0/ < "C .1C "/ � sup¹J.�; bIT C "; q0/ W ja � bj < "jajº:

(2) If jaj > A, then

J.��; aIT; q0/ < "C .1C "/ � J0.aIT; q0/:
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We now state a corollary of Theorem 2.1; this is the variant of Theorem 1.2 for starting
position q0 D 0 mentioned in the introduction. The proof of this corollary is given in
Section 5.4.

Corollary 2.2. Let " > 0. Then forA> 0 sufficiently large depending on ", T , C0 andm0,
the following holds.

Let � be an A-bounded strategy for time horizon T C " and starting position ". Then
the strategy O�� for time horizon T and starting position 0 specified in Section 5.4 satisfies
the following.

(1) If a2 Œ�A;A�, then

J. O��; aIT; 0/ < "C .1C "/ � sup¹J.�; bIT C "; "/ W ja � bj < "jajº:

(2) If jaj > A, then

J. O��; aIT; 0/ < "C .1C "/ � J0.aIT; 0/:

We remark that Corollary 2.2 implies a variant of Corollary 1.3 for q0 D 0, but we do
not state it here.

Our proof of Theorem 2.1 makes use of two additional strategies. These strategies,
defined in Sections 6 and 7, respectively, are almost optimal when jq0j and a are large.
Specifically, we prove the following theorems.

Theorem 2.3. Let " > 0. Then there exists qbig � 1, depending (continuously) on " and T ,
such that the following is true. For any q0 � qbig, let LqS be the strategy for time horizon T
and starting position q0 defined in Section 6 depending on ", T and q0. Then

J.LqS; aIT; q0/ � .1C "/ � J0.aIT; q0/ for any a2 R:

In our previous paper [8], we exhibited a strategy BR0 satisfying

J.BR0; aIT; 0/ < CT � J0.aIT; 0/ for any a2 R:

By making a simple modification to the strategy LqS in Theorem 2.3, we can produce, for
any q0 2 R, a strategy BR satisfying

J.BRI a; T; q0/ < CT;q0 � J0.aIT; q0/ for any a 2 RI

we refer to this as a bounded regret strategy for starting position q0.

Theorem 2.4. Let " > 0 and let LaS be the strategy for time horizon T and starting
position q0 defined in Section 7 depending on ", T and q0. Then for anyA�Amin.";T;q0/,
we have

J.LaS; aIT; q0/ � .1C "/ � J0.aIT; q0/ for any a � A

and
J.LaS; aIT; q0/ � CT;q0 � A

2 for any a � A:
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3. Preliminary results on strategies

We begin this section by stating some properties of strategies.

Remark 3.1. By symmetry, any strategy � for time horizon T and starting position q0
gives rise to a strategy �� for time horizon T and starting position �q0 defined by

q��.t; a/ D �q� .t; a/ and u��.t; a/ D �u� .t; a/;

and satisfying
J.�; aIT; q0/ D J.��; aIT;�q0/:

For the remainder of this paper we assume, without loss of generality, that q0 > 0; this
is justified by Remark 3.1.

Remark 3.2 (Rescaling property). Let � be a strategy for time horizon T and starting
position q0 with particle trajectories q� .t; a/ and control variables u� .t; a/. Let � > 0,
and define the rescaled random variables

Qq.t; a/ D � � q�
� t
�2
; �2a

�
; Qu.t; a/ D

1

�
� u�

� t
�2
; �2a

�
; QW .t/ D � �W

� t
�2

�
:

Note that QW .t/ is a standard Brownian motion and that for any a2 R, t 2 Œ0; �2T �, we
have

Qq.t; a/ D �q0 C QW .t/C

Z t

0

Œa Qq.�; a/C Qu.�; a/� d�

with probability 1. It follows that Qq.t; a/ and Qu.t; a/ determine a strategy for time hori-
zon �2T and starting position �q0. Denoting this strategy by ��, we have

J.��; aI�
2T; �q0/ D E

h Z �2T

0

�
Qq 2.t; a/C Qu2.t; a/

�
dt
i

D E
h Z T

0

�
�4 � .q� .t; �2a//2 C .u� .t; �2a//2

�
dt
i
� max¹�4; 1º � J.�; �2aIT; q0/:

We say that �� is a rescaling of the strategy � . Note that the rescaled strategy �1 is equal
to the original strategy � .

3.1. Branching strategies

We will often decide to switch from one strategy to another.
To explain how we do that, recall that we denote strategies by � , � 0, O� , etc. We intro-

duce the notion of a parametrized strategy, denoted �.�/. For each parameter value ˛2Rd

(some d � 0), �.˛/ is a strategy. (When d D 0, a parametrized strategy is just a strat-
egy.) For instance, the strategy �opt.ˇ/ for time horizon T and starting position q0 is a
parametrized strategy; ˇ, T and q0 are the parameters. We remark that the parameter ˛
will often include our guess for the unknown a.

Now suppose we are given parametrized strategies �0.�/; �1.�/; : : : ; �N .�/. We will
combine the � ’s into a new parametrized strategy �# (a branching strategy). Suppose we
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are given a parameter value ˛ and that �0.˛/ is a strategy for some time horizon T and
starting position q0. The strategy �#.˛/ is then also a strategy for time horizon T and
starting position q0.

For each a2 R, we pick a stopping time �.a; ˛/ � T depending on ˛ and satisfying
the following: for any a; b 2 R, t 2 Œ0; T �, and ! 2 �, if q�0.˛/.s; a; !/ D q�0.˛/.s; b; !/
for all s 2 Œ0; t �, then �.a; ˛; !/ > t if and only if �.b; ˛; !/ > t . Note that this condition
ensures that the stopping times are defined only in terms of q and cannot use knowledge
of the unknown a. The strategy �#.˛/ proceeds as follows.

Until time �.a; ˛/, we execute the strategy �0.˛/. If �.a; ˛/ D T , then we are done.
If �.a; ˛/ < T , then we will pick a new parametrized strategy O�.�/ and a new param-

eter Ǫ . The O�.�/ will be one of our given parametrized strategies �1.�/; : : : ; �N .�/. Our
choice of O�.�/ and Ǫ is determined by ˛, the history up to time �.a; ˛/, and the require-
ment that O�. Ǫ / is a strategy for starting position Oq0 D q.�.a; ˛// and some time horizon
OT � .T � �.a; ˛//.

Once we have picked O�.�/ and Ǫ , we forget the past, regard t D �.a; ˛/ as if we were
at t D 0, and execute the strategy O�. Ǫ /, starting at position Oq0. We stop playing at time T .

Thus, we have combined our parametrized strategies �0.�/; �1.�/; : : : ; �N .�/ into a
branching (parametrized) strategy �#.�/.

We may then combine our �#.�/with additional parametrized strategies to form further
branching strategies.

We note that the strategies �� and Q� constructed in Section 5, the strategy LqS con-
structed in Section 6, and the strategy LaS constructed in Section 7 are all examples of
branching strategies.

3.2. Optimal known-a strategies

Let a2 R. In Section 2, we defined the optimal expected cost for known a by

J0.aIT; q0/ D J.�opt.a/; aIT; q0/;

where �opt.a/ is the simple feedback strategy with gain function

(3.1) �.T � t; ˛/ D
tanh..T � t /

p
˛2 C 1/

p
˛2 C 1 � ˛ tanh..T � t /

p
˛2 C 1/

I

recall that we refer to �opt.a/ as an optimal known-a strategy. Observe that, for fixed ˛,
the function � solves a Riccati equation:

d�

dt
.t; ˛/ D Œ1C 2a�.t; ˛/ � �2.t; ˛/�:

For t 2 Œ0; T �, we define

(3.2) K.t; ˛/ D

Z t

0

�.s; ˛/ ds:

Clearly, we have (again for fixed ˛)

dK

dt
.t; ˛/ D �.t; ˛/:
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It is well known (see, for example, [3]) that

(3.3) J0.aIT; q0/ D �.T; a/ � q
2
0 CK.T; a/:

This implies the following remark.

Remark 3.3. Let 0 < q00 < q
00
0 . Then

J0.aIT; q
0
0/ < J0.aIT; q

00
0/ <

�q000
q00

�2
J0.aIT; q

0
0/ for any a2 R:

Combining (3.1) and (3.2) and evaluating the resulting integral, we get

K.T; a/ D
�
aC

p
a2 C 1

�
T C log

�pa2 C 1 � a
2
p
a2 C 1

�
C log

�
1C e�2T

p
a2C1

�pa2 C 1C a
p
a2 C 1 � a

��
:

Note that for any " > 0, there exists A > 0, depending on " and the time horizon T ,
such that:

• For a > A, we have

j�.T; a/ � 2aj < "a;(3.4)
jK.T; a/ � 2aT j < "aT:(3.5)

• For a < �A, we have ˇ̌̌
�.T; a/ �

1

2jaj

ˇ̌̌
�

"

jaj
,(3.6) ˇ̌̌

K.T; a/ �
T

2jaj

ˇ̌̌
�
"T

jaj
�(3.7)

From (3.3)–(3.7), we deduce that for any " > 0, there exists A > 0, depending on "
and T , such that

jJ0.aIT; q0/ � 2a.q
2
0 C T /j < "a.q

2
0 C T / when a > A; and(3.8) ˇ̌̌

J0.aIT; q0/ �
1

2jaj
.q20 C T /

ˇ̌̌
<

"

jaj
.q20 C T / when a < �A:(3.9)

Now let " > 0 be arbitrary and introduce ı > 0 sufficiently small depending on ";T;q0.
Suppose that T 0 > 0 and q00 2 R satisfy jT � T 0j; jq0 � q00j < ı. We claim that

(3.10) jJ0.a0IT 0; q00/� J0.aIT; q0/j < " � J0.aIT; q0/ for any a2 R; ja � a0j < jajı:

By (3.8) and (3.9) above, there exists A > 0, depending on " and T , such that:
(1) For any a; a0 > A, we have

jJ0.a
0
IT 0; q00/ � 2a

0..q00/
2
C T 0/j < "a0..q00/

2
C T 0/;(3.11)

jJ0.aIT; q0/ � 2a.q
2
0 C T /j < "a.q

2
0 C T /:(3.12)
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(2) For any a; a0 < �A, we haveˇ̌̌
J0.a

0
IT 0; q00/ �

1

2ja0j
..q00/

2
C T 0/

ˇ̌̌
<

"

ja0j
..q00/

2
C T 0/;(3.13) ˇ̌̌

J0.aIT; q0/ �
1

2jaj
.q20 C T /

ˇ̌̌
<

"

jaj
.q20 C T /:(3.14)

Combining (3.11) and (3.12), and using the assumptions jT � T 0j < ı and jq0 � q00j < ı,
we get

jJ0.a
0
IT 0; q00/ � J0.aIT; q0/j < CT;q0 � a � ."C ı/ for any a � 2A; ja � a0j < ıa:

Taking ı sufficiently small depending on ", we use (3.12) to deduce that (forA sufficiently
large depending on " and T ) we have

(3.15)
jJ0.a

0
IT 0; q00/ � J0.aIT; q0/j < C

0
T;q0
� " � J0.aIT; q0/

for any a � 2A; ja � a0j < ıa.

Similarly, we use (3.13) and (3.14) to deduce that

(3.16)
jJ0.a

0
IT 0; q00/ � J0.aIT; q0/j < C

0
T;q0
� " � J0.aIT; q0/

for any a � �2A; ja � a0j < ıjaj.

Note that (3.15) and (3.16) imply that for a sufficiently large number QA>A depending
on ", T and q0, we have

(3.17) jJ0.a0IT 0; q00/�J0.aIT;q0/j<" �J.aIT;q0/ for any jaj � 2 QA; ja� a0j< ıjaj:

Next, we note that (3.3) implies that J0.aIT; q0/ is of the form

J0.aIT; q0/ D f1.a; T / q
2
0 C f2.a; T /;

for smooth functions f1; f2WR � .0;1/! .0;1/ independent of q0. Therefore (since QA
is determined by ", T and q0), we have

jJ0.a
0
IT 0; q00/ � J0.aIT; q0/j < C";T;q0 � ı for any jaj; ja0j � 3 QA and ja � a0j < ıjaj

and
J0.aIT; q0/ > c";T;q0 for any jaj � 3 QA:

Combining the last two inequalities gives

(3.18)
jJ0.a

0
IT 0; q00/ � J0.aIT; q0/j < C";T;q0 � ı � J0.aIT; q0/

for any jaj � 2 QA; ja � a0j < ıjaj:

Combining (3.15), (3.16), (3.18), and taking ı sufficiently small depending on ", T and q0
proves (3.10).

We summarize the above discussion (specifically (3.3), (3.8), (3.9), and (3.10)) as a
lemma.
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Lemma 3.4. The optimal expected cost for known a, J0, has the following properties:
(1) We have

J0.aIT; q0/ D �.T; a/ � q
2
0 CK.T; a/:

(2) For any " > 0, there exists A > 0, depending on " and T , such that

jJ0.aIT; q0/ � 2a.q
2
0 C T /j < "a.q

2
0 C T / when a > A; and(3.19) ˇ̌̌

J0.aIT; q0/ �
1

2jaj
.q20 C T /

ˇ̌̌
<

"

jaj
.q20 C T / when a < �A:(3.20)

(3) Let " > 0. Let ı > 0 be sufficiently small depending on ", T and q0, and suppose that
T 0 > 0 and q00 2 R satisfy jT � T 0j < ı and jq0 � q00j < ı. Then, for any a2 R,

jJ0.a
0
IT 0; q00/ � J0.aIT; q0/j < " � J0.aIT; q0/ for any ja � a0j < jajı:

The next lemma says that the strategy �opt.a/ is indeed optimal for known a, i.e., for
fixed a2 R, the strategy �opt.a/ minimizes the quantity J.�; aIT; q0/.

Lemma 3.5. Let � be an arbitrary strategy for time horizon T and starting position q0.
Then

J.�; aIT; q0/ � J0.aIT; q0/ for any a2 R:

Proof. Let N � 1 be a sufficiently large integer depending on a and T ; we shall write
c; c0; C; C 0; : : : to denote constants determined by a and T . The symbols c; c0; C; C 0; : : :
may denote different constants in different occurrences.

We set h D T=N , and for � D 0; : : : ; N , we set t� D �h.
By downward induction on �, we will show that

E
h Z T

t�

..q.s//2 C .u.s//2/ ds
ˇ̌̌
Ft�

i
� .1C h1=100/(3.21)

� �.T � t� ; a/.q.t�//
2
CK.T � t� ; a/ � h

1=100 .T � t�/:

Once we prove (3.21), we take � D 0 and let N ! 1 to derive the conclusion of the
lemma. So our task is to prove (3.21). We begin our induction on �.

In the base case � D N , (3.21) holds since �.0; a/ D K.0; a/ D 0.
For the induction step, we fix � (0 � � < N/, and assume the inductive hypothesis

(3.22) E
h Z T

t�C1

..q.s//2 C .u.s//2/ ds
ˇ̌̌
Ft�C1

i
� .1C h1=100/

� �.T � t�C1; a/ � .q.t�C1//
2
CK.T � t�C1; a/ � h

1=100.T � t�C1/:

Our goal is then to prove (3.21) assuming (3.22).
Recall that our Brownian motion is denoted by .W.t//t�0. We set

�W� D W.t�C1/ �W.t�/;(3.23)
!.�/ D sup¹jW.t/ �W.t�/j W t 2 Œt� ; t�C1�º;(3.24)

kuk� D
� Z t�C1

t�

u2 ds
�1=2

; Nu� D
1

h

Z t�C1

t�

uds:(3.25)
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For the rest of the proof, we condition on Ft� , and we write EŒ� � � � to denote the expectation
conditioned on Ft� .

We have

(3.26) EŒ�W� � D 0; EŒ.�W�/2� D h; EŒ.!.�//2� � Ch;

and

(3.27) hj Nu� j
2
� kuk2� I

more generally,

(3.28)
ˇ̌̌ Z t

t�

uds
ˇ̌̌
� h1=2 kuk� for t 2 Œt� ; t�C1�:

By the definition of a strategy, we have

(3.29)
q.t/ � q.t�/ D ŒW.t/ �W.t�/�C aq.t�/.t � t�/C

Z t

t�

aŒq.s/ � q.t�/� ds

C

Z t

t�

uds; for t 2 Œt� ; t�C1�:

Setting

(3.30) osc.�/ D sup¹jq.t/ � q.t�/j W t 2 Œt� ; t�C1�º;

we deduce that

osc.�/ � !.�/C jaq.t�/jhC jajosc.�/ � hC h1=2 kuk� :

Since h is less than a small enough constant determined by a, we may absorb the term
jajosc.�/h into the left-hand side above, to conclude that

(3.31) osc.�/ � C!.�/C Ch � jaq.t�/j C Ch1=2 kuk� :

From (3.30) and (3.31), we see that

jq.t/ � q.t�/j � C!.�/C Ch jq.t�/j C Ch
1=2
kuk� for t 2 Œt� ; t�C1�;

hence

(3.32)
Z t�C1

t�

q2 ds � .1 � Ch1=10/.q.t�//
2h � Ch9=10 .!.�//2 � Ch19=10 kuk2� :

Also, (3.29), (3.30) and (3.31) yield

q.t�C1/ D .1C ah/q.t�/C�W� C Nu� hC ERR.�/; with(3.33)

jERR.�/j � Ch!.�/C Ch2 jq.t�/j C Ch
3=2
kuk� :(3.34)

Using (3.33) and (3.34), we estimate

(3.35)
.q.t�C1//

2
D
�
.1C ah/q.t�/C�W� C Nu� h�

2
C .ERR.�//2

C 2Œ.1C ah/q.t�/C�W� C Nu� h
�
� .ERR.�//:



Controlling unknown linear dynamics with almost optimal regret 19

We have

(3.36)

jŒ.1C ah/q.t�/C�W� C Nu� h� � .ERR.�//j

� C
�
jq.t�/j C !.�/C h

1=2
kuk�

�
�
�
h!.�/C h2 jq.t�/j C Ch

3=2
kuk�

�
� Ch2 jq.t�/j

2
C Ch.!.�//2 C Ch2 kuk2� C Ch

3=2
jq.t�/j � kuk�

C Ch jq.t�/j!.�/C Ch
3=2
kuk�!.�/:

Into (3.36) we substitute the estimates

h3=2 jq.t�/j � kuk� � Ch
3=2
jq.t�/j

2
C Ch3=2 kuk2� ;

h jq.t�/j!.�/ � Ch
5=4
jq.t�/j

2
C Ch3=4 .!.�//2; and

h3=2 kuk�!.�/ � Ch
3=2
kuk2� C Ch

3=2 .!.�//2:

We find thatˇ̌
Œ.1Cah/q.t�/C�W�C Nu� h� �ERR.�/

ˇ̌
�Ch5=4 jq.t�/j

2
CCh3=2kuk2�CCh

3=4.!.�//2:

Consequently, (3.35) implies the estimate

(3.37)

.q.t�C1//
2
� Œ.1C ah/q.t�/C�W� C Nu� h�

2
� Ch5=4 jq.t�/j

2

� Ch3=2 kuk2� � Ch
3=4 .!.�//2

D ¹.1C ah/2 � Ch5=4º.q.t�//
2
C .�W�/

2
C Nu2� h

2

C 2.1C ah/q.t�/�W� C 2.1C ah/q.t�/ Nu� hC 2�W� Nu� h

� Ch3=2 kuk2� � Ch
3=4.!.�//2:

Since

j�W� Nu� hj � j�W� j � h
1=2
kuk� � Ch

1=2
j�W� j

2
C Ch1=2 kuk2�

� Ch1=2 .!.�//2 C Ch1=2 kuk2� ;

estimate (3.37) implies the following:

(3.38)

.q.t�C1//
2
� ¹.1C ah/2 � Ch5=4º.q.t�//

2
C .�W�/

2

C 2.1C ah/q.t�/�W� C 2.1C ah/q.t�/ Nu� h � Ch
1=2
kuk2�

� Ch1=2 .!.�//2:

Recall that we are conditioning on Ft� , so that q.t�/ is deterministic. From (3.26)
and (3.38), we therefore learn that

(3.39)
EŒ.q.t�C1//2� � .1C 2ah � Ch5=4/.q.t�//2 C hC 2h.1C ah/q.t�/EŒ Nu� �

� Ch1=2 EŒkuk2� � � Ch
3=2;

while (3.26) and (3.32) yield

(3.40) E
h Z t�C1

t�

q2 ds
i
� h.1 � Ch1=10/.q.t�//

2
� Ch19=10 EŒkuk2� � � Ch

19=10:
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We bring the inductive assumption (3.22) into play. Thanks to (3.22), (3.39) and (3.40),
we have

E
h Z T

t�

.q2 C u2/ ds
i
� .1C h1=100/

D E
h Z t�C1

t�

q2 ds
i
� .1C h1=100/C E

h Z t�C1

t�

u2 ds
i
� .1C h1=100/

C E
h
E
h Z T

t�C1

.q2 C u2/ ds
ˇ̌̌
Ft�C1

i
� .1C h1=100/

i
� ¹h.1 � Ch1=10/.1C h1=100/.q.t�//

2
� Ch19=10 EŒkuk2� � � Ch

19=10
º

C ¹EŒkuk2� �.1C h
1=100/º

C ¹�.T � t�C1; a/EŒ.q.t�C1//2�CK.T � t�C1; a/ � h1=100 .T � t�C1/º

� h
�
1C

1

2
h1=100

�
.q.t�//

2
C E

h
kuk2�

�
1C

1

2
h1=100

�i
� Ch19=10

C �.T � t�C1; a/
°
.1C 2ah � Ch5=4/.q.t�//

2
C hC 2h.1C ah/q.t�/EŒ Nu� �

� Ch1=2 EŒkuk2� � � Ch
3=2
±
CK.T � t�C1; a/ � h

1=100 .T � t�C1/;

and consequently,

E
h Z T

t�

.q2Cu2/ ds
i
.1C h1=100/

�

°
�.T � t�C1; a/C hŒ2a�.T � t�C1; a/C 1�C

1

4
h101=100

±
.q.t�//

2(3.41)

C EŒkuk2� C 2h.1C ah/�.T � t�C1; a/q.t�/ Nu� �

C ¹K.T � t�C1; a/ � h
1=100 .T � t�C1/C �.T � t�C1; a/h � Ch

3=2
º

Now, recalling (3.27), we see that

kuk2� C 2h.1C ah/�.T � t�C1; a/q.t�/ Nu�

� Nu2� hC 2h.1C ah/�.T � t�C1; a/q.t�/ Nu�

D h. Nu� C .1C ah/�.T � t�C1; a/q.t�//
2
� h.1C ah/2 �2 .T � t�C1; a/.q.t�//

2

� �h.1C ah/2 �2 .T � t�C1; a/.q.t�//
2:

Therefore, from (3.41), we have

(3.42)

E
h Z T

t�

.q2 C u2/ ds
i
� .1C h1=100/

�

°
�.T � t�C1; a/C hŒ1C 2a�.T � t�C1; a/

� .1C ah/2 �2 .T � t�C1; a/�C
1

4
h101=100

±
.q.t�//

2

C ¹K.T � t�C1; a/ � h
1=100 .T � t�C1/C �.T � t�C1; a/h � Ch

3=2
º:
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Recall that
d

dt
Œ�.T � t; a/� D �Œ1C 2a�.T � t; a/ � �2.T � t; a/�

and that
d

dt
ŒK.T � t; a/� D ��.T � t; a/:

Therefore, the expressions in curly brackets on the right in (3.42) are bounded below,
respectively, by �.T � t� ; a/ and by

K.T � t�/ � h
1=100 .T � t�C1/ � Ch

3=2:

Consequently, (3.42) implies the estimate

E
h Z T

t�

.q2Cu2/ ds
i
� .1C h1=100/

� �.T � t� ; a/ � .q.t�//
2
CK.T � t� ; a/ � h

1=100 .T � t�C1/ � Ch
3=2(3.43)

� �.T � t� ; a/ � .q.t�//
2
CK.T � t� ; a/ � h

1=100 .T � t�/:

Recalling that E Œ� � � � here denotes expectation conditioned on Ft� , we see that (3.43) is
precisely our desired inequality (3.21).

This completes our downward induction on �, proving the lemma.

3.3. The expected cost of simple feedback strategies

Let vW Œ0; T �!R be a smooth function, and let �v denote the simple feedback strategy for
time horizon T and starting position q0 with gain function vW Œ0; T �! R (see Section 2
for the definition of a simple feedback strategy). We fix some a 2 R and let q denote the
particle trajectory q�v .�; a/. Note that q solves the stochastic ODE

(3.44) dq D .a � v/q dt C dW; q.0/ D q0;

and that

(3.45) J.�v; aIT; q0/ D E
h Z T

0

q2.�/.1C v2.�// d�
i
:

Define a (smooth) function �W Œ0; T �! R by

�.t/ D

Z T

t

.1C v2.�// exp
�
2

Z �

t

�
a � v.s/

�
ds
�
d� I

the function � solves the ODE

(3.46) ��0.t/ D 2�.t/.a � v.t//C 1C v2.t/; �.T / D 0:

By Itô’s lemma, we have

d.q2�/ D Œ�0q2 C �� dt C .2q�/ dq:

Combining this with (3.44) and (3.46) gives

(3.47) d.q2�/ D Œ�.1C v2/q2 C �� dt C .2�q/ dW:
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With probability 1, we haveZ T

0

d.q2�/ D q2.T / �.T / � q2.0/ �.0/ D �q20 �.0/I

combining this with (3.47) gives

(3.48)
Z T

0

q2.�/.1C v2.�// d� D �.0/ q20 C

Z T

0

�.�/ d� C

Z T

0

2�.�/q.�/ dW� :

Taking expectation and using (3.45), we get

J.�v; aIT; q0/ D �.0/q
2
0 C

Z T

0

�.�/ d�:

We summarize the above result as a lemma.

Lemma 3.6. Let vW Œ0; T �! R be a smooth function, and let �v be the simple feedback
strategy with gain function v. Then

J.�v; aIT; q0/ D �.0/ � q
2
0 C

Z T

0

�.s/ ds;

where

�.t/ D

Z T

t

.1C v2.s// exp
�
2

Z s

t

.a � v.r// dr
�
ds:

Let ˛ � 0 be a real number. We define the constant gain strategy CG.˛/ to be the
simple feedback strategy with the constant gain function v.t/� ˛. We remark that CG.˛/
is independent of the time horizon T and the starting position q0.

Lemma 3.6 then implies that for any a2 R, we have

(3.49)
J.CG.˛/; aIT; q0/ D .1C ˛2/

h 1

2.a � ˛/

h�e2T.a�˛/ � 1
2.a � ˛/

�
� T

i
C

�e2T.a�˛/ � 1
2.a � ˛/

�
q20

i
for any ˛ � 0; ˛ ¤ a;

and for any a � 0, we have

(3.50) J.CG.a/; aIT; q0/ D .1C a2/ T
�
q20 C

1

2
T
�
:

Using (3.49) and (3.50), we deduce the following corollary.

Corollary 3.7. For ˛ � 0 and a2 R we have

J.CG.˛/; aIT; q0/ �

8̂̂<̂
:̂
CT .1C ˛

2/.1C q20/ e
2T.a�˛/ when .a � ˛/ > 1=T;

CT .1C ˛
2/.1C q20/ when ja � ˛j � 1=T;

.1C˛2/
2ja�˛j

.q20 C T / when .a � ˛/ < �1=T:

For any ˛ 2 R, the strategy �opt.˛/ is a simple feedback strategy with gain func-
tion �.T � t; ˛/. Note that this strategy depends on T , but is independent of q0. By
Lemma 3.4, and because �.T � t; a/ � C max¹1; aº for all a2 R and t 2 Œ0; T �, we
have J0.aI T; q0/ � C max¹1; aº.q20 C T /. We combine this with Lemma 3.6 to deduce
the following corollary.
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Corollary 3.8. For any a2 R, the following holds:

J.�opt.˛/; aIT; q0/ �

´
C max¹1; aº.q20 C T / if ˛ D a;

CT .1C ˛
2/ e2jajT .1C q20/ for any ˛ 2 R:

We remark that the first upper bound in Corollary 3.8 (for ˛ D a) is sharp when a is
large. The second upper bound is far from sharp unless a� ˛ � 1.

4. The uncontrolled system

Let T > 0, q0 > 0, and let a2 R be arbitrary. In this section, we consider the dynamics

(4.1) dq D .aq/ dt C dWt ; q.0/ D q0:

We define a random process

(4.2) Xt D e
�atq.t/ � q0 D

Z t

0

e�as dWs :

If a D 0, then Xt is standard Brownian motion. If a ¤ 0, then Xt is a normal random
variable with

(4.3) EŒXt � D 0 and VarŒXt � D
1 � e�2at

2a
�

For the remainder of this paper, we adopt the convention that .1 � e�2at /=.2a/ is equal
to t when aD 0. With this convention in place, (4.3) holds for all a2R. As a consequence
of the above, for any ı > 0 we have

(4.4) Prob.jXt j > ı/ �
²
C exp.�cı2a/ for any a � 0, t � 0;
C exp.�cı2=t/ for any jaj t � 1=10:

Note that these two cases are not mutually exclusive.
We also note that Xt satisfies the reflection principle, i.e., for any M > 0 we have

(4.5) Prob
�

sup
0�s�t

Xs �M
�
D 2 � Prob.Xt �M/:

This is true because
(1) Xt has almost surely continuous paths,
(2) Xt satisfies the strong Markov property, and
(3) the random variable .XtCt 0 �Xt / is equal in distribution to e�atXt 0 , which is sym-

metric.
Examining the proof of the reflection principle for Brownian motion in [18], one sees that
properties (1)–(3) are sufficient to prove (4.5).
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4.1. Stopping times

We let " > 0 be a given parameter. We define two stopping times.

• �C is equal to the first time t2 .0; T / for which q.t/D .1C "/q0 if such a time exists,
and equal to T if no such time exists.

• �� is equal to the first time t 2 .0; T / for which q.t/D .1� "/q0 if such a time exists,
and equal to T if no such time exists.

We will make use of the following claim throughout this section.

Claim 4.1. Let a¤ 0 and let �� �0, where �0 >1 is a sufficiently large absolute constant.
Define

t0 D
�"

jaj
�

Suppose that t0 <T and that t0jaj<1=10. Then, provided " is sufficiently small depending
on T , the following hold.

(i) If a > 0, then
Prob.�C > t0/ � C exp.�c"�q20a/:

(ii) If a < 0, then
Prob.�� > t0/ � C exp.�c"�q20 jaj/:

Proof. We will only prove (i); the proof of (ii) is nearly identical. Assume that a > 0. By
our assumption that t0 < T , we have

(4.6)
Prob.�C > t0/ D Prob.q.t/ < .1C "/q0 for all t 2 Œ0; t0�/

� Prob.q.t0/ < .1C "/q0/:

Let Xt be as in (4.2). If q.t0/ < .1C "/q0, then (since we assume at0 D �" < 1=10) we
have

Xt0 < e
�at0 .1C "/q0 � q0 � .1 � c�"/ .1C "/q0 � q0 � �c

0�"q0

provided � is larger than an absolute constant and " is smaller than an absolute constant.
This shows that

Prob.�C > t0/ � Prob.Xt0 � �c
0�"q0/I

applying (4.4) (and again using the assumption t0jaj < 1=10) proves (i).

Lemma 4.2. Let c0 > 0 be a sufficiently small absolute constant. Define

tmax D c0 "
1=2; atiny D "

1=2 and asmall D "
1=4:

Then, provided " is sufficiently small depending on T , the following hold.

(i) For any a � atiny,

Prob..�C < tmax/ AND .�C < ��// � C exp.�c"q20 .jaj C 1//:

(ii) For any a � �atiny,

Prob..�� < tmax/ AND .�� < �C// � C exp.�c"q20 .jaj C 1//:
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(iii) For any jaj � asmall,

Prob..�C � tmax/ AND .�� � tmax// � C exp.�c"q20 jaj/:

(iv) Define a stopping time Q� Dmin¹�C; ��; tmaxº. Then, provided q0 is sufficiently large
depending on " and T , we have

E
h Z Q�

0

q2.t/ dt
i
< C"1=2 J0.aIT; q0/ for any a2 R:

Proof. We note that by taking " sufficiently small depending on T , we can assume that
tmax < T .

We first claim that

Prob.�C < tmax/ � C exp.�c "3=2q20/ for any 0 � a � atiny;(4.7)

Prob.�� < tmax/ � C exp.�c "3=2q20/ for any � atiny � a � 0:(4.8)

Assume that 0 � a � atiny. Since tmax < T , we have

Prob.�C < tmax/ D Prob.9 t 2 .0; tmax/ W q.t/ � .1C "/q0/:

Note that we have 0� at � c0 ", and thus e�at � .1� c0 "/ for any t2 .0; tmax/. Therefore,
if q.t/ � .1C "/q0 for any t 2 .0; tmax/, then

Xt D e
�atq.t/ � q0 � .1 � c0 "/ .1C "/q0 � q0 > "q0=2

provided c0 and " are smaller than certain absolute constants. We have shown that

Prob.�C < tmax/ � Prob.9 t 2 .0; tmax/ W Xt > "q0=2/:

Applying (4.5) and then (4.4) (we use that tmaxa � c0 " < 1=10) proves (4.7). We omit the
proof of (4.8), as it can be easily inferred from the proof of (4.7).

We now claim that

Prob.�� < tmax/ � C exp.�c "3=2q20/ for any 0 � a � asmall;(4.9)

Prob.�C < tmax/ � C exp.�c "3=2q20/ for any � asmall � a � 0:(4.10)

Assume that 0 � a � asmall. If q.t/ � .1 � "/q0 for some t 2 .0; tmax/, then

Xt � e
�at .1 � "/q0 � q0 � �"q0:

This implies that

Prob.�� < tmax/ � Prob.9 t 2 .0; tmax/ W Xt � �"q0/:

Applying (4.5) and then (4.4) (note that tmaxa < c0 "
3=4 < 1=10 for any 0 � a � asmall)

proves (4.9). The proof of (4.10) is very similar; we omit it.
Now assume that a � asmall. We claim that the following estimates hold:

Prob.�C � tmax/ < C exp.�c"q20 a/;(4.11)

Prob..�� < tmax/ AND .�� < �C// < C exp.�c"2q20 a/:(4.12)
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Let �0 > 0 be the absolute constant in Claim 4.1, and define

Qt0 D
�0 "

a
�

By our assumption that a � asmall, we have

(4.13) Qt0 � �0 "
3=4 < c0 "

1=2
D tmax < T

provided " is smaller than an absolute constant. Therefore

(4.14) Prob.�C � tmax/ � Prob.�C � Qt0/:

Provided " is smaller than an absolute constant we have Qt0a D �0 " < 1=10. Together with
Claim 4.1, (4.14) implies (4.11).

Define
t�0 D min

°
tmax , 1

10a

±
:

Observe that t�0 < T , and so we have

Prob.�� < t�0 / D Prob.9 t 2 .0; t�0 / W q.t/ < .1 � "/q0/:

If q.t/ < .1 � "/q0 for some t 2 .0; t�0 /, then (since a > 0)

Xt < e
�at .1 � "/q0 � q0 < �"q0:

Therefore
Prob.�� < t�0 / � Prob.9 t 2 .0; t�0 / W Xt < �"q0/:

Combining this with (4.5) gives

Prob.�� < t�0 / � 2 � Prob.Xt�0 < �"q0/

Using (4.4) and the fact that at�0 < 1=10 gives

(4.15) Prob.�� < t�0 / � C exp.�c"2q20=t
�
0 /:

We claim that (4.15) implies (4.12) under the assumption that

(4.16) asmall � a �
1

10c0 "1=2
�

To see this, note that (4.16) implies that t�0 D tmax, and therefore (4.15) gives

(4.17) Prob.�� < tmax/ � C exp.�c"3=2q20/:

We then use (4.16) to deduce that

Prob.�� < tmax/ � C exp.�c"2q20 a/:

This proves (4.12) assuming (4.16).
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We now prove (4.12) assuming that

(4.18) a >
1

10c0 "1=2
�

Note that this assumption implies that t�0 < tmax. We have

(4.19) Prob..�� < tmax/ AND .�� < �C// � Prob.�� < t�0 /C Prob.�C > t�0 /:

By (4.15) (and using that assumption (4.18) implies that t�0 D .10a/
�1), we have

(4.20) Prob.�� < t�0 / � C exp.�c"2q20 a/:

Observe that t�0 < T and that t�0 a D 1=10. We can therefore apply Claim 4.1 with � D
1=.10"/ to get

(4.21) Prob.�C > t�0 / � C exp.�cq20 a/:

Combining (4.19)–(4.21) proves (4.12) under assumption (4.18). This completes the proof
of (4.12).

By mirroring the proofs of (4.11) and (4.12), we can show that for a ��asmall we have

Prob.�� � tmax/ < C exp.�c"q20 jaj/;(4.22)

Prob..�C < tmax/ AND .�C < ��// < C exp.�c"2q20 jaj/:(4.23)

Combining (4.7), (4.10), (4.23) proves (i). Similarly, combining (4.8), (4.9), (4.12)
proves (ii). Equations (4.11) and (4.22) prove (iii).

We now prove (iv). Note that with probability 1 we have that Q� � tmax D c0 "
1=2 and

that jq.t/j � .1C "/q0 for all t 2 .0; Q�/. Therefore

(4.24) E
h Z Q�

0

q2.t/ dt
i
< Cq20 "

1=2:

By Lemma 3.4, there exists QA > 0 depending only on T such that

J0.aIT; q0/ >
q20

100 jaj
for any a < � QA;(4.25)

J0.aIT; q0/ > cT q
2
0 for any a > � QA:(4.26)

Combining (4.24) and (4.26) gives

(4.27) E
h Z Q�

0

q2.t/ dt
i
< CT "

1=2 J0.aIT; q0/ for any a > � QA:

This proves (iv) when a > � QA.
Now assume that a < � QA. Let �0 be as in Claim 4.1 and define

Nt0 D
�0 "

jaj
�
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By taking " smaller than an absolute constant, we can ensure that Nt0 < tmax and that Nt0 jaj<
1=10. Therefore we can apply Claim 4.1 to get

Prob. Q� > Nt0/ � Prob.�� > Nt0/ � C exp.�c"q20 jaj/:

Recall that with probability 1 we have jq.t/j � .1C "/q0 for all t 2 Œ0; Q��. Therefore

E
h Z Q�

0

q2.t/ dt
i
< Cq20 Nt0 C Cq

2
0 tmax Prob. Q� > Nt0/

<
Cq20 "

jaj
C Cq20 tmax exp.�c"q20 jaj/:

Taking q0 sufficiently large depending on " and using (4.25) gives

(4.28) E
h Z Q�

0

q2.t/ dt
i
< C"J0.a; T; q0/ for any a < � QA:

Combining (4.27) and (4.28) proves (iv).

We now let q�0 > q0 be a real number, and we define two additional stopping times:
• ��C is equal to the first time t 2 .0; T / for which q.t/ D q�0 if such a time exists, and

equal to T if no such time exists.
• ��� is equal to the first time t 2 .0; T / for which q.t/ D �q�0 if such a time exists, and

equal to T if no such time exists.

Lemma 4.3. Provided " is sufficiently small depending on T , the following hold.

(i) For any a � �"�1=2,
Prob.��� < �C/ � Cq0 "

1=4:

(ii) Define a stopping time
N� D min¹�C; ���º:

Then

E
h Z N�

0

q2.t/ dt
i
< CT;q0;q�0 "

1=4 for any a2 R:

Proof. We first prove a claim. Define

Qt1 D "min¹1; 1=jajº

(when a D 0, we set Qt1 D "). We claim that

(4.29) Prob.�C > Qt1/ � Cq0 "1=4 for any jaj � "�1=2:

Assume that jaj � "�1=2. By taking " sufficiently small depending on T , we can
assume that Qt1 < T . We have

Prob.�C > Qt1/ D Prob.q.t/ < .1C "/q0 for all t 2 Œ0; Qt1�/:

Note that jaj Qt1 < ", so if q.t/ < .1C "/q0 for any t 2 Œ0; Qt1�, then

(4.30) Xt < e
�at .1C "/q0 � q0 < C"q0:
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Therefore

Prob.�C > Qt1/ � Prob.Xt < C"q0 for all t 2 Œ0; Qt1�/
D 1 � Prob.9 t 2 Œ0; Qt1� W Xt > C"q0/ D 1 � 2 � Prob.XQt1 > C"q0/;(4.31)

where the last equality follows from (4.5). Recall (see (4.3)) that XQt1 is a normal random
variable with mean 0 and variance .1 � e�2aQt1/=2a. Also recall that jajQt1 < ", so pro-
vided " is smaller than some absolute constant, the variance of XQt1 is bounded above and
below by constant multiples of Qt1. Therefore

(4.32) Prob.XQt1 > C"q0/ �
1

2
� C

Z C"q0=Qt
1=2
1

0

e�t
2=2 dt �

1

2
�
C"q0

Qt
1=2
1

,

so
Prob.�C > Qt1/ �

C"q0

Qt
1=2
1

�

Using the assumption jaj � "�1=2 and the definition of Qt1 implies (4.29).
We now prove (i). Note that for any t� 2 .0; T /, we have

(4.33) Prob.��� < �C/ � Prob.��� < t
�/C Prob.�C > t�/:

In the event that q.t/ D �q�0 for some t 2 .0; T /, then

Xt D �e
�at q�0 � q0 < �q0:

Therefore,

Prob.��� < t
�/ D Prob.9 t 2 .0; t�/ W q.t/ D �q�0 / � Prob.9 t 2 .0; t�/ W Xt < �q0/:

Equation (4.5) implies

(4.34) Prob.��� < t
�/ � 2 � Prob.Xt� < �q0/:

We let Qt1 be as above; note that by definition Qt1jaj < " and 1=Qt1 > 1=". Combin-
ing (4.34) and (4.4) gives

Prob.��� < Qt1/ � C exp.�cq20="/ for jaj � "�1=2:

Combining this with (4.33) and (4.29) proves (i) for jaj � "�1=2.
Assume that a � "�1=2. Define

Nt1 D
1

10a
�

Let �0 be as in Claim 4.1. Taking " sufficiently small depending on T ensures that Nt1 < T
and that .10"/�1 > �0. We can therefore apply Claim 4.1 with � D .10"/�1 to get

(4.35) Prob.�C > Nt1/ � C exp.�cq20 a/:

Taking " smaller than an absolute constant gives 1=Nt1 >1. Combined with (4.34) and (4.4),
this gives

Prob.��� < Nt1/ � C exp.�cq20 a/:
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By (4.33), we have therefore shown that

Prob.��� < �C/ � C exp.�cq20 a/ for any a > "�1=2:

This implies (i) for a > "�1=2 (here we use the assumption that q0 is nonzero).
We now prove (ii). We split the analysis into cases.
Case I (Large negative a).
Assume that a < �"�1=2. Note that the system (4.1) satisfies

q.t/ D q0 CW.t/C

Z t

0

aq.�/ d�;

with probability 1. Therefore the expected value of the integral of q2 from time 0 to time T
is equal to the expected cost incurred from time 0 to time T by the constant gain strat-
egy CG.0/, i.e., the strategy that sets u D 0 (see Section 3). Applying Corollary 3.7 with
˛D 0, taking " sufficiently small depending on T , and using that N� � T with probability 1,
we have

E
h Z N�

0

q2.t/ dt
i
�
q20 C T

2 jaj
for any a < �"�1=2;

and therefore,

(4.36) E
h Z N�

0

q2.t/ dt
i
< CT;q0 "

1=2 for any a < �"�1=2:

Case II (Large positive a).
Assume that a > "�1=2 and let Nt1 be as above. Since N� < T and since jq.t/j �min¹.1C

"/q0; q
�
0 º for all t 2 .0; N�/ with probability 1, we have

(4.37) E
h Z N�

0

q2.t/ dt
i
� Cq0;q�0 .

Nt1 C T � Prob. N� > Nt1//:

Note that our assumption that a > "�1=2 implies that Nt1 < c"1=2. The event N� > Nt1 implies
the event �C > Nt1, and therefore we combine (4.37) with (4.35) to get

(4.38) E
h Z N�

0

q2.t/ dt
i
< CT;q0;q�0 "

1=2 for any a > "�1=2

(note that we also use the assumption that q0 is nonzero).
Case III (Bounded a).
Let Qt1 be as above. Then

E
h Z N�

0

q2.t/ dt
i
< Cq0;q�0 .

Qt1 C T � Prob. N� > Qt1// for any jaj � "�1=2:

The event N� > Qt1 implies the event �C > Qt1. Therefore, by (4.29), we have

(4.39) E
h Z N�

0

q2.t/ dt
i
< CT;q0;q�0 "

1=4 for any jaj � "�1=2:

Combining (4.36), (4.38), and (4.39) proves (ii).
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Lemma 4.4. Assume a < 0 and define � D q�0=q0 (recall that q�0 > q0, and so � > 1/.
Then

Prob..��C < T / OR .��� < T // � CT;� .1C q
�2
0 / exp.�c� q20 jaj/:

Proof. Let N be the smallest positive integer such that

10 jajT � N:

Note that

(4.40) N < .1C 10jajT /:

Define �t D T=N (observe that our choice of N ensures that �t jaj � 1=10) and Ij D
Œj�t; .j C 1/�t� for j D 0; : : : ; N � 1. Note that

(4.41) Prob..��C < T / OR .��� < T // �

N�1X
jD0

Prob.9 t 2 Ij W jq.t/j � q�0 /:

We claim that

(4.42) Prob.9 t 2 Ij W jq.t/j � q�0 / � C exp.�c� q20 jaj/ for any j D 0; : : : ; N � 1:

Combining (4.40)–(4.42) proves the lemma. Therefore, it just remains to establish (4.42).
Since a < 0, we have that e�at � e�aj�t for all t 2 Ij . Therefore, in the event that

q.t/ � q�0 ,

(4.43) Xt D q.t/ e
�at
� q0 � q

�
0 e
�at

�
1 �

1

�
eat
�
� c� q

�
0 e
�aj�t

(we have used that � > 1 and eat � 1). In the event that q.t/ � �q�0 ,

(4.44) Xt D q.t/ e
�at
� q0 � �q

�
0 e
�aj�t :

Combining (4.43) and (4.44) implies that

(4.45) Prob.9 t 2 Ij W jq.t/j � q�0 / � Prob.9 t 2 Ij W jXt j � c� q�0 e
�aj�t /:

Since Ij � Œ0; .j C 1/�t�, we have

Prob.9 t 2 Ij W jXt j � c� q�0 e
�aj�t /(4.46)

� Prob.9 t 2 Œ0; .j C 1/�t� W jXt j � c� q�0 e
�aj�t /:

Equation (4.5) implies that

Prob.9 t 2 Œ0; .j C 1/�t� W jXt j � c� q�0 e
�aj�t /(4.47)

D 2 � Prob
�
jX.jC1/�t j � c� q

�
0 e
�aj�t

�
:

Recall that X.jC1/�t is a normal random variable with mean 0 and standard deviation�e2 jaj.jC1/�t � 1
2 jaj

�1=2
:
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Recall also that our choice ofN ensures that�t jaj< 1=10. Therefore c < e�jaj�t < 1,
and we have

c� q
�
0 e
jajj�t jaj1=2

.e2jaj.jC1/�t � 1/1=2
D

c� q
�
0 e
�jaj�t jaj1=2

.1 � e�2jaj.jC1/�t /1=2
� c0� q0 jaj

1=2:

Therefore, when jX.jC1/�t j � c� q�0 e
�aj�t , the normal random variable X.jC1/�t is at

least c0� q0 jaj
1=2 standard deviations from its mean of 0. Thus

(4.48) Prob
�
jX.jC1/�t j � c� q

�
0 e
�aj�t

�
� C exp.�c0� q

2
0 jaj/:

Combining (4.45)–(4.48) proves (4.42), finishing the proof of the lemma.

4.2. Estimating the parameter a

We remain in the setting of the previous section.
In the event that �C < T , we define a random variable

NaC D
log.1C "/

�C
�

Note that NaC is an estimate for the parameter a in (4.1). Similarly, in the event that �� <T ,
we define a random variable

Na� D
log.1 � "/

��
�

Let X � .0;1/ be a subset. We will be interested in estimating the probability of
events of the form “�C < T and NaC 2 X”. We will abbreviate such events to “ NaC 2 X”;
note that when �C D T , the random variable NaC is undefined, and so the event NaC 2 X
is meaningless. Similarly, for Y � .�1; 0/, we let “ Na� 2 Y ” denote the event “�� < T
and Na� 2 Y ”.

Lemma 4.5. Let A# > 1. Then provided " is sufficiently small depending on T , we have

Prob. NaC > A#/ � C exp.�c"q20A
#/

for any jaj � A#=10.

Proof. Define

(4.49) t2 D
log.1C "/

A# �

By taking " sufficiently small depending on T , we ensure that t2 < T . Therefore,

(4.50) Prob. NaC > A#/ D Prob.�C < t2/:

Suppose that 0 � a � A#=10. Note that for any t 2 Œ0; t2/, we have

ta <
a

A# log.1C "/ <
"

10
,

and thus
e�at � .1 � "=10/:

Consequently, if q.t/ > .1C "/q0 for any t 2 Œ0; t2/, then

Xt D e
�at q.t/ � q0 > e

�at .1C "/q0 � q0 � c"q0:
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Now suppose that �A#=10 � a < 0. If q.t/ > .1C "/q0 for some t 2 Œ0; t2/, then

Xt D e
jajt q.t/ � q0 > "q0:

We have shown that

Prob.�C < t2/ � Prob.9 t 2 Œ0; t2/ W Xt � c"q0/ for any jaj �
A#

10
�

Combining this with (4.50) and (4.5), we deduce that

(4.51) Prob. NaC � A#/ � Prob.9 t 2 Œ0; t2/ W Xt � c"q0/ D 2 � Prob.Xt2 � c"q0/:

Since t2 jaj < C", we apply (4.4) to get

Prob.Xt2 � c"q0/ � C exp.�c"2q20=t2/ � exp.�c" q20A
#/:

Combining this with (4.51) proves the lemma.

Lemma 4.6. Let ı > 0. Then provided " is sufficiently small depending on T , the following
hold.

(i) Prob.ja � NaCj > ıa/ � C exp.�c";ı q20 a/ for any a � "1=2.

(ii) Prob.ja � Na�j > ı jaj/ � C exp.�c";ı q20 jaj/ for any a � �"1=2.

Proof. We will just prove (i), as essentially the same argument can be used to prove (ii).
Without loss of generality‘, we assume that ı < 1=10. Note that

(4.52) Prob.ja � NaCj > ıa/ D Prob. NaC > .1C ı/a/C Prob.0 < NaC < .1 � ı/a/:

Now define

t3 D
log.1C "/
.1C ı/a

�

By taking " sufficiently small depending on T , we ensure that t3 < T , and therefore

Prob. NaC > .1C ı/a/ D Prob.�C < t3/:

For any t 2 Œ0; t3/, we have

at � at3 �
log.1C "/
1C ı

�

Therefore, in the event that q.t/ > .1C "/q0 for some t 2 Œ0; t3/, we have

Xt D e
�at q.t/ � q0 � q0

�
.1C "/1�1=.1Cı/ � 1

�
D c";ı q0:

This implies that

Prob. NaC > .1C ı/a/ � Prob.9 t 2 .0; t3/ W Xt > c";ı q0/:

We use (4.5) to deduce that

Prob. NaC > .1C ı/a/ � 2 � Prob.Xt3 > c";ı q0/I
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we then note that t3a < C"1=2 < 1=10 and apply (4.4) to get

(4.53) Prob. NaC > .1C ı/a/ � C exp.�c";ı q20 a/:

Now define

t4 D
log.1C "/
.1 � ı/a

�

By taking " sufficiently small depending on T , we ensure that t4 < T , and therefore

Prob.0 < NaC < .1 � ı/a/ � Prob.�C > t4/:

If q.t4/ < .1C "/q0, then

Xt4 < e
�at4 .1C "/q0 � q0 D q0 ..1C "/

�ı=.1�ı/
� 1/ < �c";ı q0:

Therefore,
Prob.0 < NaC < .1 � ı/a/ � Prob.Xt4 < �c";ı q0/I

applying (4.4) gives

(4.54) Prob.0 < NaC < .1 � ı/a/ � C exp.�c";ı q20 a/:

Combining (4.52), (4.53) and (4.54) proves (i).

5. The almost optimal strategy

Throughout this section, we fix a time horizon T > 0 and a starting position q0 > 0.
We fix constants C0 andm0 as in the definition of an A-bounded strategy in Section 2.

Recall that a strategy � (for time horizon T ) is A-bounded for some A > 0 if

ju� .t; a/j � C0A
m0 Œjq� .t; a/j C 1� for all a2 R; t 2 Œ0; T �:

Throughout this section, we allow all constants and parameters to depend on C0 and m0.
In this section, we prove the following theorem.

Theorem 5.1. Let " > 0. Then for "0 > 0 sufficiently small depending on ", and for A > 0
sufficiently large depending on " and "0, the following holds.

Let � be an A-bounded strategy for time horizon T C "0 and starting position q0.
Then the strategy �� for time horizon T and starting position q0 specified in Section 5.2
satisfies the following.

(1) If a2 Œ�A;A�, then

J.��; aIT; q0/ < "C .1C "/ � sup¹J.�; bIT C "0; q0/ W ja � bj < " jajº:

(2) If jaj > A, then

J.��; aIT; q0/ < "C .1C "/ � J0.aIT; q0/:
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We now show that Theorem 5.1 implies Theorem 2.1. Let " > 0. Let "0 be sufficiently
small (depending on ") and let A be sufficiently large (depending on ","0) so that the
conclusion of Theorem 5.1 holds. Note that we can assume that "0 < ".

Let � be an A-bounded strategy for time horizon T C " and starting position q0.
Since "0 < ", � is also an A-bounded strategy for time horizon T C "0 and starting posi-
tion q0. Moreover,

(5.1) J.�; aIT C "0; q0/ � J.�; aIT C "; q0/ for any a2 R:

Let �� denote the strategy defined in Section 5.2. Observe that part (2) of Theorem 2.1
follows immediately from part (2) of Theorem 5.1. To prove part (1) of Theorem 2.1, we
simply combine equation (5.1) with Part (2) of Theorem 5.1. This proves Theorem 2.1.

The remainder of Section 5 is devoted to proving Theorem 5.1. For the remainder of
Section 5, we assume that we are given " > 0 smaller than some constant. We let "0 > 0 be
sufficiently small depending on ", and A > 0 be sufficiently large depending on " and "0.

In Section 5.2, we define the strategy ��. First, in Section 5.1, we establish some
preliminary results. In Section 5.3, we prove Theorem 5.1.

5.1. Preliminaries

5.1.1. Averting disaster when a is large. Let � be an A-bounded strategy for time hori-
zon T C "0 and starting position q0. Because � is A-bounded, if a� A, then with high
probability the control u� will fail to control the particle, and so the expected cost of �
will be much larger than J0.aI T; q0/ (see [7]). We now show how to use Theorem 2.3
to obtain a strategy Q� that performs almost as well as � when jaj � A, and much better
than � when a� A.

By Theorem 2.3, there exists a number q�0 > max¹1; 2jq0jº, depending on ", "0, T
and q0, but independent of A, such that for any T 0 2 Œ"0; 2T �, there exists a strategy
LqS.T 0/ for time horizon T 0 and starting position q�0 satisfying

(5.2) J.LqS.T 0/; aIT 0; q�0 / < .1C "/ � J0.aIT
0; q�0 / for any a2 R:

We now define the strategy Q� for time horizon T and starting position q0.
We execute the strategy � from time 0 until time t�, where t� is equal to the first time

t 2 .0; T / for which jq� .t/j D q�0 , if such a time exists, and t� is equal to T if no such
time exists. Note that t� is a stopping time.

If t� D T , then Q� exercises the same control variable as � at all times t 2 Œ0; T �.
If t� < T , then we execute the strategy LqS.T C "0 � t�/ (from (5.2)) starting from

time t� and position jq Q� .t�/j D q�0 . For any s 2 .0; T /, we have .T C "0 � s/ > "0. By
taking "0 sufficiently small depending on T we ensure that .T C "0/ < 2T and therefore
that the strategy LqS.T C "0 � s/ is well-defined for any s 2 .0; T /.

This concludes the definition of the strategy Q� . We now estimate its expected cost.
If we never encounter jq Q� j D q�0 , i.e., if t� D T , then the strategies � and Q� exercise

the same control from time 0 to time T , hence they incur the same cost.
Suppose instead that we first encounter jq Q� j D q�0 at some time t� < T . Until time t�,

the strategies � and Q� exercise the same control and incur the same cost. Let S denote
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the expected cost of � starting from position q�0 and time t� and continuing until time
T C "0, and let QS denote the expected cost of Q� starting from position q�0 and time t� and
continuing until time T . Note that

QS D J.LqS.T C "0 � t�/; aIT � t�; q0/ < J.LqS.T C "0 � t�/; aIT C "0 � t�; q0/:

Therefore, by (5.2),
QS < .1C "/ � J0.aIT C "0 � t

�; q0/:

By Lemma 3.5,
J0.aIT C "0 � t

�; q0/ � S;

and therefore QS � .1C "/ � S .
As a consequence of the above discussion, we have

(5.3) J. Q�; aIT; q0/ < .1C "/ � J.�; aIT C "0; q0/ for any a2 R:

We now derive another estimate on the expected cost of Q� – this one is much sharper
than (5.3) when jaj � A.

From time 0 until time t�, we execute the strategy � and, by construction, have
jq Q� .t/j � q�0 for all t 2 Œ0; t��. Since � is A-bounded, we therefore have

juQ� .t/j < C0A
m0 .jq.t/j C 1/ for any t 2 Œ0; t�/:

Therefore, from time 0 until time t�, we incur a cost of at most CTA2m0.q�0 /
2 with prob-

ability 1.
In the event that t� < T , then from time t� until time T , we execute the strategy

LqS.T C "0 � t�/ (starting from position ˙q�0 ). Therefore, from time t� until time T ,
we incur an expected cost that is at most .1C "/ times the expected cost of the optimal
known-a strategy �opt.a/ for time horizon .T C "0 � t�/ and starting position q�0 . By
Corollary 3.8, this is at most CT .q�0 /

2 max¹a; 1º. We therefore have

J. Q�; aIT; q0/ < CT .q
�
0 /
2 max¹A; aº2m0 for any a 2 R:

Since q�0 is determined by ", "0, T and q0, we have

(5.4) J. Q�; aIT; q0/ < CT;q0;";"0 max¹A; aº2m0 for any a 2 R:

5.1.2. Rescaling strategies. Remark 3.2 implies the following: given � > 1 and a strat-
egy � for time horizon T and starting position q0, we can define a strategy �� for time
horizon �2T and starting position �q0 that satisfies

(5.5) J.��; aI�
2T; �q0/ � �

4
� J.�; �2aIT; q0/ for any a2 R:

Moreover, since T < �2T , �� is also a strategy for time horizon T and starting posi-
tion �q0, and we have

(5.6) J.��; aIT; �q0/ � J.��; aI�
2T; �q0/ for any a2 R:
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Combining (5.5) and (5.6), we deduce that

(5.7) J.��; aIT; �q0/ � �
4
� J.�; �2aIT; q0/ for any a2 R:

Let � be an A-bounded strategy for time horizon T C "0 and starting position q0.
By the results of the previous section (specifically, see (5.3) and (5.4)), there exists a

strategy Q� for time horizon T and starting position q0 satisfying

(5.8) J. Q�; aIT; q0/ < .1C "/ � J.�; aIT C "0; q0/ for any a2 R

and

(5.9) J. Q�; aIT; q0/ < CT;q0;";"0 �max¹A; aº2m0 for any a2 R:

By the discussion above, there then exists a strategy Q�1C"0 for time horizon T and
starting position .1C "0/q0 satisfying

(5.10) J. Q�1C"0 ; aIT; .1C"0/q0/<.1CC"/J.�; .1C"0/
2aITC"0; q0/ for any a2R

(recall that "0 is sufficiently small depending on "; in particular, to deduce (5.10) we
assume that "0 < ") and

(5.11) J. Q�1C"0 ; aIT; .1C "0/q0/ < CT;q0;";"0 �max¹A; aº2m0 for any a2 R:

From equation (5.10), we deduce that

(5.12) J. Q�1C"0 ; aIT; .1C "0/q0/

< .1C C"/ � sup¹J.�; bIT C "0; q0/ W ja � bj < " jajº for any a2 R

(again taking "0 sufficiently small depending on ").

5.2. Definition of the almost optimal strategy

Let � be an A-bounded strategy for time horizon T C "0 and starting position q0.
To prove Theorem 5.1, we must exhibit a strategy �� for time horizon T and starting

position q0 satisfying

(5.13) J.��; aIT; q0/ < "C .1C C"/ � sup¹J.�; bIT C "0; q0/ W jb � aj < "jajº
for any a2 Œ�A;A�

and

(5.14) J.��; aIT; q0/ < "C .1C C"/ � J0.aIT; q0/ for any jaj > A:

The definition of �� requires a bit of setup.
By Theorem 2.4, provided A is sufficiently large depending on "; T; q0; there exists a

strategy LaS for time horizon T and starting position .1C "0/q0 such that

(5.15) J.LaS; aIT; .1C "0/q0/ < .1C "/ � J0.aIT; .1C "0/q0/ for any a >
1

100
A;



J. Carruth, M. F. Eggl, C. Fefferman and C. W. Rowley 38

and

(5.16) J.LaS; aIT; .1C "0/q0/ < CT;q0 A
2 for any a <

1

100
A:

By Lemma 3.4, provided "0 is sufficiently small depending on ", T and q0, we have

(5.17) jJ0.aIT; .1C "0/q0/ � J0.aIT; q0/j < " � J0.aIT; q0/ for any a 2 R:

Combining (5.15) and (5.17) gives

(5.18) J.LaS; aIT; .1C "0/q0/ < .1C C"/ � J0.aIT; q0/ for any a >
1

100
A:

By Section 5.1.2 (see equations (5.11) and (5.12)), provided "0 is sufficiently small
depending on ", T and q0; there exists a strategy N� for time horizon T and starting position
.1C "0/q0 such that

(5.19) J. N�; aIT; .1C "0/q0/

< .1C C"/ � sup¹J.�; bIT C "0; q0/ W ja � bj < " jajº for any a2 R

and

(5.20) J. N�; aIT; .1C "0/q0/ < CT;q0;";"0 max¹A; aº2m0 for any a2 R:

Last, we introduce a constant qrare > q0, depending on T and q0, and a strategy BR
(“BR” for bounded regret) for time horizon T and starting position �qrare satisfying

J.BR; aIT;�qrare/ < C � J0.aIT;�qrare/ for any a2 R:

This is possible due to Theorem 2.3; see, in particular, the discussion of bounded regret
strategies following the statement of Theorem 2.3. We then observe, by Remark 3.3, that

J0.aIT;�qrare/ < CT;q0 � J0.aIT; q0/ for any a2 R:

This implies that the strategy BR satisfies

(5.21) J.BR; aIT;�qrare/ < CT;q0 � J0.aIT; q0/ for any a2 R:

We fix the strategies LaS, N� and BR for the remainder of Section 5. We are now ready
to define the strategy ��.

The strategy �� consists of two epochs: the Prologue and the Main Act. Only the
Prologue is guaranteed to occur. In fact, for large negative a, we do not expect the Main
Act to occur.

For the remainder of Section 5 we write q and u to denote, respectively, the particle
trajectories q�� and the control variables u�� .

PROLOGUE.
During the Prologue, we set u D 0. We define a stopping time �1 by setting �1 equal

to the first time t 2 .0; T / for which either q.t/ D .1C "0/q0 or q.t/ D �qrare if such a
time exists, and setting �1 to be equal to T if no such time exists. The Prologue lasts from
time 0 until time �1. If �1 D T , then at time �1, the game ends along with the Prologue.
If �1 < T , then at time �1, we enter the Main Act.
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MAIN ACT.
Suppose that we enter the Main Act at some time �1 2 .0; T /. We either have q.�1/ D

.1C "0/q0 or q.�1/D �qrare; we proceed differently in each case. If q.�1/D .1C "0/q0,
then we define

Na D
log.1C "0/

�1
�

The value of Na then determines our strategy during the Main Act. Note that in the event
that Na is defined (i.e., �1 < T and q.�1/ D .1C "0/q0), we have that Na > 0 with prob-
ability 1. If Na � A=10, then we play strategy LaS beginning at time �1 and position
q.�1/ D .1C "0/q0 until the game ends at time T . If Na < A=10, then we play strategy N�
beginning at time �1 and position q.�1/ D .1 C "0/q0 until the game ends at time T .
This completes the description of our strategy during the Main Act in the event that
q.�1/ D .1 C "0/q0. If q.�1/ D �qrare, then we play strategy BR beginning at time �1
and position q.�1/ D �qrare until the end of the game at time T .

This concludes the definition of the strategy ��.

5.3. Proof of Theorem 5.1

Recall that the Prologue ends at time �1, and that during the Prologue, we set u D 0. We
define a random variable COSTP to be the cost incurred during the Prologue for a given
realization of the noise, i.e.,

COSTP D

Z �1

0

q2.t/ dt:

Note that COSTP depends on a.
Taking "0 sufficiently small depending on T , we see from Lemma 4.3 that

(5.22) EŒCOSTP � < CT;q0 "
1=4
0 for any a2 R

(recall that qrare is determined by T; q0) and that

(5.23) Prob.q.�1/ D �qrare/ � Cq0 "
1=4
0 for any a � �"�1=20 :

Recall that, if it occurs, the Main Act begins at time �1 < T , in which case we have
either q.�1/ D .1C "0/q0 or q.�1/ D �qrare. In the event that the Main Act occurs and
q.�1/ D .1C "0/q0, we define the random variable

Na D
log.1C "0/

�1
I

the value of Na then determines our strategy during the Main Act. We will consider events of
the form “ Na 2X” forX �R. This is shorthand for the event “�1 < T;q.�1/D .1C "0/q0,
and Na 2 X” (recall that Na is not defined unless �1 < T and q.�1/ D .1C "0/q0).

Let ˛ > 1. We claim that, provided "0 is sufficiently small depending on T , we have
the following estimates:

If a > 10˛; then Prob. Na < ˛/ < C exp.�c"0 q
2
0 a/:(5.24)

If jaj < ˛=10; then Prob. Na > ˛/ < C exp.�c"0 q
2
0 ˛/:(5.25)

If a < 0; then Prob. Na > 0/ < CT;q0;"0 exp.�c"0 q
2
0 jaj/:(5.26)



J. Carruth, M. F. Eggl, C. Fefferman and C. W. Rowley 40

These estimates follow, respectively, from Lemmas 4.6, 4.5, and 4.4 in Section 4.
We define a random variable COSTM to be the cost incurred during the Main Act for

a given realization of the noise, i.e.,

COSTM D

Z T

�1

..q.t//2 C .u.t//2/ dt:

We use the remainder of this section to prove the estimates

(5.27) EŒCOSTM � < C"C .1C C"/ � sup¹J.�; bIT C "0; q0/ W jb � aj < "jajº
for any jaj � A

and

(5.28) EŒCOSTM � < C"C .1C C"/ � J0.aIT; q0/ for any jaj > A:

Combining (5.27), (5.28) with the fact that

J.��; aIT; q0/ D EŒCOSTP �C EŒCOSTM �

and the estimate (5.22) above, and taking "0 sufficiently small depending on ", T and q0,
we deduce (5.13) and (5.14), which in turn imply the conclusion of Theorem 5.1.

Note that

(5.29) EŒCOSTM � D EŒCOSTM � 1 Na>0�C EŒCOSTM � 1q.�1/D�qrare �:

In the event that we enter the Main Act at some time �1 2 .0; T / for which q.�1/ D
�qrare, we execute the strategy BR starting from time �1 and position �qrare. Combin-
ing (5.21) and (5.23) gives

(5.30) EŒCOSTM � 1q.�1/D�qrare � < CT;q0 � "
1=4
0 � J0.aIT; q0/ for any a � �"�1=20 :

Provided "0 is sufficiently small (depending on T ), Lemma 3.4 implies that

J0.aIT; q0/ < CT;q0 "
1=2
0 for any a < �"�1=20 I

combining this with (5.21) gives

(5.31) EŒCOSTM � 1q.�1/D�qrare � < CT;q0 "
1=2
0 for any a < �"�1=20 :

We combine (5.30) and (5.31), and take "0 sufficiently small depending on ", T and q0,
to get

(5.32) EŒCOSTM � 1q.�1/D�qrare � < "C " � J0.aIT; q0/ for any a2 R:

Throughout the remainder of this section, we will make use of the fact that

(5.33) J0.aIT; q0/ < J.�; aIT C "0; q0/ for any a2 RI

this is a consequence of Lemma 3.5. We note that (5.32) and (5.33) imply that

(5.34) EŒCOSTM � 1q.�1/D�qrare �

< "C " � sup¹J.�; bIT C "0; q0/ W jb � aj < "jajº for any a2 R:
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It remains to control the expected value of COSTM when Na > 0. We will consider four
cases.

Case I: a is large, positive.
Suppose that a > A. In the event that Na � A=10, we execute the strategy LaS during

the Main Act. Therefore, by (5.18), we have

(5.35) EŒCOSTM � 1 Na�A=10� < J.LaS; aIT; .1C "0/q0/ < .1C C"/ � J0.aIT; q0/:

In the event that 0 < Na < A=10, we execute the strategy N� during the Main Act. There-
fore, by (5.20) and (5.24), we have

(5.36)
EŒCOSTM � 10< Na<A=10� < J. N�; aIT; .1C "0/q0/ � Prob. Na < A=10/

< CT;q0;";"0 a
2m0 exp.�c"0 q

2
0 a/:

Combining (5.35) and (5.36) and taking A sufficiently large, depending on T , q0, "
and "0, gives

(5.37) EŒCOSTM � 1 Na>0� < .1C C"/ � J0.aIT; q0/C " for any a > A:

Case II: a is positive, medium-sized.
Suppose that 1

100
A < a < A.

If the event Na � A=10 occurs, then during the Main Act we execute the strategy LaS.
By (5.18), we then have

(5.38)
EŒCOSTM � 1 Na>A=10� < J.LaS; aIT; .1C "0/q0/ � Prob. Na � A=10/

< .1C C"/ � J0.aIT; q0/ � Prob. Na � A=10/:

In the event that 0 < Na < A=10, we execute the strategy N� during the Main Act.
By (5.19), we then have

(5.39)

EŒCOSTM � 10< Na<A=10� < J. N�; aIT; .1C "0/q0/ � Prob. Na < A=10/
< .1C C"/ � sup¹J.�; bIT C "0; q0/ W ja � bj < "jajº
� Prob. Na < A=10/:

Combining (5.38), (5.39) and (5.33), we get

(5.40) EŒCOSTM � 1 Na>0� < .1C C"/ � sup¹J.�; bIT C "0; q0/ W ja � bj < "jajº

for any 1
100
A < a < A.

Case III: a is bounded.
Suppose that jaj < 1

100
A.

In the event that 0 < Na < A=10, we execute the strategy N� during the Main Act.
By (5.19), we have

(5.41)
EŒCOSTM � 10< Na<A=10� < J. N�; aIT; .1C "0/q0/

< .1C C"/ � sup¹J.�; bIT C "0; q0/ W ja � bj < "jajº:
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In the event that Na�A=10, we execute the strategy LaS during the Main Act. By (5.16)
and (5.25), we therefore have

(5.42) EŒCOSTM � 1 Na>A=10� < CT;q0A
2 exp.�c"0 q

2
0A/:

Combining (5.41) and (5.42), and taking A sufficiently large, depending on T , q0, "
and "0, gives

(5.43) EŒCOSTM � 1 Na>0� < "C .1C C"/ � sup¹J.�; bIT C "0; q0/ W ja � bj < "jajº

for any jaj < A=100.

Case IV: a is large, negative.
Suppose that a < � 1

100
A.

In the event that Na > 0, we execute either the strategy LaS or the strategy N� during the
Main Act. Combining (5.16), (5.20) and (5.26) gives

EŒCOSTM � 1 Na>0� < CT;q0; ";"0 jaj
2m0 exp.�c"0 q

2
0 jaj/:

Taking A sufficiently large depending on T , q0, " and "0 then gives

(5.44) EŒCOSTM � 1 Na>0� < " for any a < �
A

100
�

Combining (5.37), (5.40), (5.43) and (5.44) with (5.29), (5.32) and (5.34) proves (5.27)
and (5.28).

5.4. Proof of Corollary 2.2

Let " > 0 be given, and let A be sufficiently large so that the conclusion of Theorem 1.2
holds. Let � be an A-bounded strategy for time horizon T C " and starting position ".

Then the strategy �� (as in Theorem 1.2) for time horizon T and starting position "
satisfies

(5.45) J.��; aIT; "/ < "C .1C "/ � sup¹J.�; bIT C "; "/ W ja � bj < "jajº
for any a2 Œ�A;A�

and

(5.46) J.��; aIT; "/ < "C .1C "/ � J0.aIT; "/ for any jaj > A:

Combining (5.46) with Lemma 3.4 (specifically, parts (1) and (2) of Lemma 3.4), we
deduce that, provided A is sufficiently large depending on " and T , we have

(5.47) J.��; aIT; "/ < "C .1C C"/ � J0.aIT; 0/ for any jaj > A:

By Remark 3.1, �� gives rise to a strategy for time horizon T and starting position �"; we
also denote this strategy by ��, and recall that

J.��; aIT; "/ D J.��; aIT;�"/:
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We now construct the strategy O�� for time horizon T and starting position 0. We
set u O��.t/ D 0 from time 0 until time Ot , where Ot is equal to the first time t 2 .0; T / for
which jq O��.t/j D " if such a time exists, and Ot is equal to T if no such time exists.

If Ot D T , then we set u O�� � 0 until the game ends at time T . In this case, we incur a
cost of at most T" with probability 1.

If Ot < T , then we execute the strategy �� starting from time Ot and position jq.Ot /j D "
until the game ends at time T . In this case, our expected cost from time 0 until time T is
at most T"C J.��; aIT; "/.

We have defined the strategy O�� and shown that

J. O��; aIT; 0/ < T"C J.��; aIT; "/:

Combining this with (5.45) and (5.47) implies the conclusion of the corollary.

6. The large q strategy

In this section, we prove Theorem 2.3.
Fix a time horizon T > 0. Let " > 0 be given. Note that it suffices to prove Theorem 2.3

under the assumption that " is sufficiently small depending on T .
We let tmax 2 .0;T / denote a real number that we will choose in Section 6.1 depending

on ".
Let A1 � 1 be a sufficiently large real number depending on " and T .
We let qbig � 1 be a sufficiently large real number depending on ", A1 and T . Note

that since A1 is determined by " and T , qbig depends only on " and T . We fix a starting
position q0 � qbig.

For ˛ 2 R, recall that �opt.˛/ denotes the known-a strategy for time horizon T (recall
that this strategy is independent of the starting position; see Section 2). The corresponding
control variable is

u�opt.˛/.t; a/ D ��.T � t; ˛/ q�opt.˛/.t; a/

for any a2 R, t 2 Œ0; T �, where

�.T � t; ˛/ D
tanh..T � t /

p
˛2 C 1/

p
˛2 C 1 � ˛ tanh..T � t /

p
˛2 C 1/

�

We will occasionally refer to the known-a strategy for an arbitrary time horizon T 0 2
.0; T �; we denote this strategy by �opt.˛I T

0/ for ˛ 2 R. We note that �.T 0 � t; ˛/ is the
gain function corresponding to �opt.˛IT

0/, and we remark that

(6.1) 0 � �.T 0 � t; ˛/ � C �max¹˛; 1º for all t 2 Œ0; T 0�; ˛ 2 R;

with the constant C independent of T 0.
We are now ready to define the strategy LqS. For the remainder of Section 6, we

write q and u to denote, respectively, the particle trajectories qLqS and the control vari-
ables uLqS.

We note that the strategy LqS consists of two epochs: the Prologue and the Main Act.
Both epochs are guaranteed to occur.
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PROLOGUE.
We define a stopping time �M by setting �M equal to the first time t 2 .0; tmax/ for

which q.t/ … ..1 � "/q0; .1C "/q0/ if such a time exists, and �M D tmax if no such time
exists.

The Prologue lasts from time 0 to time �M . During the Prologue, we exercise no con-
trol, i.e., we set u � 0. At time �M , we enter the Main Act.

MAIN ACT.
The Main Act lasts from time �M until the end of the game at time T . Our strategy

during the Main Act depends on what happens during the Prologue. We define some events
that capture the possible outcomes of the Prologue:

PROC D ¹q.�M / D .1C "/q0º;

PRO� D ¹q.�M / D .1 � "/q0º;

PROmax D ¹�M D tmaxº:

The events PROC, PRO� and PROmax partition our probability space.
If the event PROC occurs with �M D s for some s 2 .0; tmax/, then we define

Na D
log.1C "/

s
�

If the event PRO� occurs with �M D s for some s 2 .0; tmax/, then we define

Na D
log.1 � "/

s
�

If PROC (respectively, PRO�) occurs, then we have Na > 0 (respectively, Na < 0) with prob-
ability 1.

If the event PROmax occurs, then we leave Na undefined.
For X � .0;1/, we will sometimes write “ Na 2 X” as shorthand for the event “ Na 2 X

and PROC”. Similarly, for Y � .�1;0/we write “ Na 2 Y ” for the event “ Na 2 Y and PRO�”.
We now specify our strategy during the Main Act.
Case I (We believe a is small).
If the event PROmax occurs, then we set

u.t/ D ��.T � t; 0/ � q.t/

during the Main Act. In this case, the expected cost incurred during the Main Act is equal
to the expected cost of the known-a strategy �opt.0IT � tmax/ for time horizon .T � tmax/

and starting position q.tmax/.
Case II (We believe a is large, positive).
If the event PROC occurs and Na � A1, then we set

u.t/ D �2 Naq.t/

during the Main Act. Note that this is the control variable corresponding to the constant
gain strategy CG.2 Na/ (see Section 3) with starting position .1C "/q0.
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Case III (We believe that a is bounded, positive).
If the event PROC occurs and 0 < Na < A1 and �M D s for some s 2 .0; tmax/, then

we set
u.t/ D ��.T � t; Na/ � q.t/

during the Main Act. In this case, the expected cost incurred during the Main Act is equal
to the expected cost of the optimal known-a strategy �opt. NaIT � s/ for time horizon T � s
and starting position .1C "/q0.

Case IV (We believe that a is large, negative).
If the event PRO� occurs and Na � �A1, then we set

u.t/ D 0

during the Main Act. Note that this is the control variable corresponding to the constant
gain strategy CG.0/ with starting position .1 � "/q0.

Case V (We believe that a is bounded, negative).
If the event PRO� occurs and �A1 < Na < 0 and �M D s for some s 2 .0; tmax/, then

we set
u.t/ D ��.T � s; Na/ � q.t/

during the Main Act. In this case, the expected cost incurred during the Main Act is equal
to the expected cost of the optimal known-a strategy �opt. NaIT � s/ for time horizon T � s
and starting position .1 � "/q0.

This concludes the definition of the strategy LqS.

6.1. The parameter tmax

We will now choose the parameter tmax. We set

tmax D c0 "
1=2;

where c0 is a sufficiently small absolute constant. We define

atiny D "
1=2 and asmall D "

1=4:

Provided " is sufficiently small depending on T , we apply Lemma 4.2 to deduce the fol-
lowing:

Prob.PROC/ � C exp.�c"q20 .jaj C 1// for any a � atiny;(6.2)

Prob.PRO�/ � C exp.�c"q20 .jaj C 1// for any a � �atiny;(6.3)

Prob.PROmax/ � C exp.�c"q20 jaj/ for any jaj � asmall:(6.4)

6.2. Bounding the expected cost

Define random variables

COSTP D

Z �M

0

q2.t/ dt and COSTM D

Z T

�M

..q.t//2 C .u.t//2// dt;

that are, respectively, the costs incurred during the Prologue and Main Act for a given
realization of the noise. Note that both random variables depend on a.
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Provided qbig is sufficiently large depending on " and T , Lemma 4.2 implies that

(6.5) EŒCOSTP � < C"
1=2J0.aIT; q0/ for any a2 R:

Our goal in the remainder of this section is to control the expected value of COSTM .
Recall that we play a different strategy during the Main Act depending on which one
of five events occur during the Prologue. We analyze each of these cases separately in
Sections 6.2.1–6.2.5. In Section 6.2.6, we prove Theorem 2.3.

6.2.1. COSTM when we believe that a is small. Recall that if the event PROmax occurs,
then the Main Act begins at time tmax, and we set

u.t/ D ��.T � t; 0/ � q.t/

during the Main Act. In this case, our expected cost during the Main Act is equal to the
expected cost of the optimal known-a strategy �opt.0IT � tmax/ for time horizon T � tmax
starting from position q.tmax/ D Qq0 for some Qq0 2 ..1 � "/q0; .1 C "/q0/. By Corol-
lary 3.8, we thus have

(6.6) EŒCOSTM jPROmax� � CT q
2
0 e

2jajT for any a 2 R:

Combining (6.4) and (6.6) gives

EŒCOSTM � 1PROmax � < CT q
2
0 � exp.2 jajT � c"q20 jaj/ for any jaj � asmall:

Taking qbig sufficiently large depending on " and T , we get

(6.7) EŒCOSTM � 1PROmax � < " �min¹1; 1=jajº for any jaj � asmall:

By Lemma 3.4, there exists a constant QA > 1, depending only on T , such that

J0.aIT; q0/ >
cT

jaj
for any a < � QA;(6.8)

J0.aIT; q0/ > cT for any a > QA:(6.9)

Again by Lemma 3.4,

(6.10) J0.aIT; q0/ �

Z T

0

�.t; a/ dt > cT for any jaj � QA:

Combining (6.7)–(6.10) gives

(6.11) EŒCOSTM � 1PROmax � � "CT J0.aIT; q0/ for any jaj � asmall:

By Lemma 3.6, we have

J.�opt.˛/; aIT; q0/ D h.˛; a/ q
2
0 C j.˛; a/ for any ˛ 2 R; a 2 R;

where h;j WR2! .0;1/ are smooth functions depending on T but not on q0. This implies
that

EŒCOSTM jPROmax� � h.0; a/.1C "/
2q20 C j.0; a/



Controlling unknown linear dynamics with almost optimal regret 47

and

(6.12) J0.aIT; q0/ D h.a; a/ q
2
0 C j.a; a/:

Therefore,

EŒCOSTM jPROmax� � J0.aIT; q0/C jj.a; a/ � j.0; a/j C h.a; a/C "q
2
0

C Cq20 jh.a; a/ � h.0; a/j:

Since h and j are smooth functions (depending on T ), we have

EŒCOSTM jPROmax�(6.13)

� J0.aIT; q0/C CT q
2
0 jaj C h.a; a/C"q

2
0 for any jaj � asmall:

We combine this with (6.12) to get

EŒCOSTM jPROmax� < .1C C"/ � J0.aIT; q0/C CT q
2
0 "
1=4 for any jaj � asmall:

Equation (6.12) also implies that

J0.aIT; q0/ � cT q
2
0 for any jaj � asmall:

We have therefore shown that

(6.14) EŒCOSTM � 1PROmax �

� J0.aIT; q0/ � .1C CT "
1=4/ � Prob.PROmax/ for any jaj � asmall:

6.2.2. COSTM when we believe that a is large, positive. Let ˛ � 0 be a positive real
number. Recall that CG.˛/ denotes the simple feedback strategy with constant gain func-
tion ˛ (see Section 3).

Suppose that the event PROC occurs and that we have Na D Qa for some Qa � A1. In this
case, we set u D �2 Qaq during the Main Act. We therefore have

(6.15) EŒCOSTM j Na D Qa� � J.CG.2 Qa/; aIT; .1C "/q0/ for any Qa � A1; a2 R:

Define
A� D max¹jaj; A1º:

Combining (6.15) with Corollary 3.7 implies the following estimates:

(6.16) EŒCOSTM j10
nA� < Na < 10nC1A�� < CT 10

2n.A�/2q20 for any a2 R; n � 0;

and

(6.17) EŒCOSTM jA1 � Na < 10jaj� < CT jaj
2q20 for any a < �A1=10:

Now let 0 < ı� 1 be a sufficiently small parameter depending on ". Using Corollary 3.7
again, we get

EŒCOSTM j.A1 � Na < 10a/ AND .ja � Naj > ıa/�(6.18)

< CT a
2 e2aT q20 for any a � A1=10;
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and

EŒCOSTM j. Na � A1/ AND .j Na � aj < ıa/�(6.19)

< .1C 4a2.1C ı/2/
q20 C T

2a.1 � Cı/
for any a � A1=10:

We assume for now that a > A1=10. Taking A1 sufficiently large and ı sufficiently
small (both depending on ") in (6.19) gives

EŒCOSTM j. Na � A1/ AND .j Na � aj < ıa/� < 2a.q20 C T /.1C "/:

Combining this with Lemma 3.4 gives

EŒCOSTM j. Na � A1/ AND .j Na � aj < ıa/� < .1C C"/J0.a; T; q0/

provided A1 is sufficiently large depending on " and T . This implies

(6.20) EŒCOSTM � 1 Na�A1 � 1ja�Naj<ıa�

< .1C C"/ � J0.aIT; q0/ � Prob. Na � A1/ for any a > A1=10:

We continue to assume that a > A1=10. Taking " sufficiently small depending on T ,
we apply Lemma 4.6 to get

(6.21) Prob.ja � Naj > ıa/ � C exp.�c";ı q20 a/:

Combining (6.21) and (6.18) gives

EŒCOSTM � 1A1�Na<10a � 1j Na�aj>ıa� � CT a
2q20 exp.2a.T � c";ı q20//:

Taking qbig sufficiently large depending on " and T (recall that ı is determined by "),
we get

(6.22) EŒCOSTM � 1A1�Na<10a � 1j Na�aj>ıa� < " for any a � A1=10:

We continue to assume that a > A1=10. Provided " is sufficiently small depending
on T , Lemma 4.5 gives

Prob. Na > 10na/ � C exp.�c"q20 10
na/ for any n � 1:

Combining this with (6.16) gives

EŒCOSTM � 110nC1a> Na>10na � 1 Na�A1 � � CT 10
2na2q20 exp.�c"q20 10

na/ for any n � 1:

Taking qbig to be sufficiently large depending on " and T and summing over n gives

(6.23) EŒCOSTM � 1 Na>10a � 1 Na�A1 � < " for any a > A1=10:

Combining (6.20), (6.22), (6.23), and (6.9), we get

(6.24) EŒCOSTM � 1 Na�A1 � < J0.aIT;q0/ � .Prob. Na >A1/CCT "/ for any a >A1=10:
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We now assume that jaj � A1=10. Lemma 4.5 implies that

(6.25) Prob. Na � 10nA1/ � C exp.�c"q20 10
nA1/ for any n � 0

provided " is sufficiently small depending on T . We combine (6.25) and (6.16) to get

(6.26)

EŒCOSTM � 1 Na�A1 � D
X
n�0

EŒCOSTM � 110nC1A1> Na�10nA1 �

� CT
X
n�0

102nA21 q
2
0 exp.�c"q20 10

nA1/:

Taking qbig sufficiently large depending on " and T gives

(6.27) EŒCOSTM � 1 Na�A1 � �
"

A1
for any jaj � A1=10:

Lemma 3.4 implies that there exists QA, depending only on T , such that

J0.aIT; q0/ > cT jaj
�1 for any a < � QA;(6.28)

J0.aIT; q0/ > cT for any a > � QA:(6.29)

Combining (6.27)–(6.29) gives

(6.30) EŒCOSTM � 1 Na�A1 � � CT "J0.aIT; q0/ for any jaj � A1=10:

We now assume that a < �A1=10. Combining (6.16) with Lemma 4.5, we have

EŒCOSTM � 110nC1jaj� Na>10njaj�

� CT 10
2n
jaj2q20 exp.�c"q20 10

n
jaj/ for any n � 1:

Taking qbig sufficiently large depending on " and T and summing over n � 1 gives

(6.31) EŒCOSTM � 1 Na>10jaj� �
"

jaj
�

Combining (6.17) with Lemma 4.2 gives

EŒCOSTM � 1A1� Na<10jaj� < CT;" jaj
2q20 exp.�c"q20 jaj/:

Taking qbig sufficiently large depending on " and T gives

(6.32) EŒCOSTM � 1A1� Na<10jaj� <
"

jaj
�

Combining (6.28), (6.31) and (6.32) gives

(6.33) EŒCOSTM � 1 Na�A1 � < CT "J0.aIT; q0/ for any a < �A1=10

provided A1 is sufficiently large depending on T .
Combining (6.30) and (6.33) gives

(6.34) EŒCOSTM � 1 Na�A1 � < CT "J0.aIT; q0/ for any a � A1=10:
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6.2.3. COSTM when we believe that a is bounded, positive. Suppose that the
event PROC occurs and that Na D Qa for some 0 < Qa < A1. This determines the time at
which the Main Act begins; denote this time by s, and note that q.s/ D .1C "/q0. In this
case, we set as our control variable

u.t/ D ��.T � t; Qa/ � q.t/

during the Main Act (which lasts from time s until time T ), and thus

(6.35) EŒCOSTM j Na D Qa� � J.�opt. Qa/; aIT; .1C "/q0/ for any a2 R; 0 < Qa < A1:

By Lemma 3.6, we have

J.�opt. Qa/; aIT; .1C "/q0/ D h. Qa; a/.1C "/
2q20 C j. Qa; a/ for any a; Qa 2 R

and

(6.36) J0.aIT; q0/ D h.a; a/ q
2
0 C j.a; a/ for any a2 R;

where h and j are smooth, positive functions (depending on T ). We therefore have

J.�opt. Qa/; aIT; .1C "/q0/ � J0.aIT; q0/C jj. Qa; a/ � j.a; a/j C Ch.a; a/"q
2
0

C Cq20 jh. Qa; a/ � h.a; a/j:

Since h and j are smooth functions, we have

J.�opt. Qa/; aIT; .1C "/q0/ � J0.aIT; q0/C CA1;T q
2
0 ja � Qaj

C C"q20 h.a; a/ for any a; Qa 2 Œ0; 10A1�

and
h.a; a/ > cA1;T for any a2 Œ0; 10A1�:

Taking 0 < ı � 1 to be sufficiently small depending on ", A1 and T gives

J.�opt. Qa/; aIT; .1C "/q0/

< J0.aIT; q0/C C"q
2
0 h.a; a/ for any ja � Qaj < ıa; a2 Œatiny; 10A1�:

Combining this with (6.35), (6.36) gives

(6.37)
EŒCOSTM j0 < Na < A1 AND ja � Naj < ıa�

� .1C C"/ � J0.aIT; q0/ for any a2 Œatiny; 10A1�:

We have therefore shown

EŒCOSTM � 10< Na<A1 � 1ja�Naj<ıa�(6.38)

< .1C C"/J0.aIT; q0/Prob.0 < Na � A1/ for any a2 Œatiny; 10A1�:

We combine (6.35) and Corollary 3.8 to get

(6.39) EŒCOSTM j Na D Qa� � CT A
2
1 e
2jajT q20 for any a2 R; 0 < Qa < A1:

By Lemma 4.6, we have

Prob.ja � Naj > ıa/ � C exp.�c";ı q20 a/ for any a > atiny;(6.40)

Prob.0 < Na < A1/ � C exp.�c" q20 a/ for any a � 10A1:(6.41)



Controlling unknown linear dynamics with almost optimal regret 51

By (6.2), we have

(6.42)
Prob.0 < Na � A1/ � Prob.PROC/

� C exp.�c"q20 .jaj C 1// for any a � atiny:

Combining (6.39), (6.41), and (6.42) gives

EŒCOSTM � 10< Na<A1 �

< C A21q
2
0 exp.2jajT � c"q20 .jaj C 1// for any a… Œatiny; 10A1�:

Combining (6.39) and (6.40) gives

EŒCOSTM � 10< Na<A1 � 1ja�Naj>ıa�

< CA21q
2
0 exp.2aT � c";ı q20 a/ for any a2 Œatiny; 10A1�:

Taking qbig to be sufficiently large depending on " and T (recall thatA1 is determined by "
and T , and ı is determined by ", A1 and T ), we get

EŒCOSTM � 10< Na<A1 � < " �min¹1; jaj�1º for any a… Œatiny; 10A1�;(6.43)
EŒCOSTM � 10< Na<A1 � 1ja�Naj>ıa� < " for any a2 Œatiny; 10A1�:(6.44)

As a consequence of Lemma 3.4, we have

min¹jaj�1; 1º < CT � J0.aIT; q0/ for any a2 R;(6.45)
1 < CT � J0.aIT; q0/ for any a � 0:(6.46)

Therefore (6.43) implies

(6.47) EŒCOSTM � 10< Na<A1 � < CT "J0.aIT; q0/ for any a… Œatiny; 10A1�;

and (6.38) and (6.44) imply

EŒCOSTM � 10< Na<A1 �(6.48)
< J0.aIT; q0/.Prob.0 < Na < A1/C CT "/ for any a2 Œatiny; 10A1�:

6.2.4. COSTM when we believe that a is large, negative. Recall that CG.0/ denotes
the simple feedback strategy with constant gain function 0. This is simply the strategy in
which we set the control variable equal to zero for the entire game.

In the event that Na D Qa for some Qa � �A1, we play the strategy CG.0/ during the
Main Act. We therefore have

(6.49) EŒCOSTM j Na � �A1� � J.CG.0/; aIT; q0/ for any a2 R:

Taking A1 to be sufficiently large depending on T , we apply Corollary 3.7 to get

(6.50) EŒCOSTM j Na � �A1� �
1

2 jaj
.q20 C T / for any a � �A1=10:
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By Lemma 3.5,

(6.51)
1

2jaj
.q20 C T / � .1C "/J0.aIT; q0/ for any a � �A1=10

provided A1 is sufficiently large depending on " and T .
Combining (6.50) and (6.51) gives

EŒCOSTM � 1 Na��A1 �(6.52)
� .1C "/ � J0.aIT; q0/ � Prob. Na � �A1/ for any a � �A1=10:

Combining (6.49) and Corollary 3.7 gives

(6.53) EŒCOSTM j Na � �A1� � CT e
2jajT q20 for any a > �A1=10:

Combining Lemma 4.6 and (6.3) gives

(6.54) Prob. Na � �A1/ � C exp.�c" q20 .jaj C 1// for any a > �A1=10:

Inequalities (6.53) and (6.54) imply that

EŒCOSTM � 1 Na��A1 � � CT q
2
0 exp.2 jajT � c" q20 .jaj C 1// for any a > �A1=10:

Taking qbig sufficiently large depending on " and T , we get

EŒCOSTM � 1 Na��A1 � � "min¹1; jaj�1º for any a > �A1=10:

Combining this with (6.45) gives

(6.55) EŒCOSTM � 1 Na��A1 � � CT "J0.aIT; q0/ for any a > �A1=10:

6.2.5. COSTM when we believe that a is bounded, negative. Proceeding as in the
proofs of equations (6.47) and (6.48) in Section 6.2.3, we can show that

(6.56) EŒCOSTM � 1�A1< Na<0� < CT "J0.aIT; q0/ for any a… Œ�10A1;�atiny�

and

EŒCOSTM � 1�A1< Na<0�(6.57)
� J0.aIT; q0/.Prob.�A1 � Na < 0/C CT "/ for any a2 Œ�10A1;�atiny�:

6.2.6. Proof of Theorem 2.3. We collect the estimates (6.14), (6.11), (6.24), (6.34),
(6.48), (6.47), (6.52), (6.55), (6.57), and (6.56) from Section 6.2. We assume that qbig
and A1 are large enough depending on " and T for all of these estimates to hold.

EŒCOSTM � 1PROmax � � J0.aIT; q0/.Prob.PROmax/C CT "
1=4/ for any jaj � asmall;

EŒCOSTM � 1PROmax � � "CT J0.aIT; q0/ for any jaj � asmall;

EŒCOSTM � 1 Na�A1 � � J0.aIT; q0/.Prob. Na > A1/C CT "/ for any a > A1=10;
EŒCOSTM � 1 Na�A1 � � CT "J0.aIT; q0/ for any a � A1=10;
EŒCOSTM � 10< Na<A1 �

� J0.aIT; q0/.Prob.0 < Na � A1/C CT "/ for any a2 Œatiny; 10A1�;
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EŒCOSTM � 10< Na<A1 � � CT "J0.aIT; q0/ for any a… Œatiny; 10A1�;

EŒCOSTM � 1 Na��A1 � � J0.aIT; q0/.Prob. Na < �A1/C "/ for any a � �A1=10;
EŒCOSTM � 1 Na��A1 � � CT "J0.aIT; q0/ for any a > �A1=10;
EŒCOSTM � 1�A1< Na<0�

� J0.aIT; q0/.Prob.�A1 � Na < 0/C CT "/ for any a2 Œ�10A1;�atiny�;

EŒCOSTM � 1�A1< Na<0� < CT "J0.aIT; q0/ for any a… Œ�10A1;�atiny�:

Combining these estimates proves

(6.58) EŒCOSTM � � J0.aIT; q0/.1C CT "
1=4/ for any a2 R:

Combining (6.58) with (6.5) and taking qbig to be large enough so that (6.5) holds proves
that

J.LqS; aIT;q0/D EŒCOSTP �CEŒCOSTM ��J0.aIT;q0/.1CCT "
1=4/ for any a2R:

This proves Theorem 2.3.

7. The large a strategy

In this section we prove Theorem 2.4.
We fix a time horizon T > 0 and a starting position q0 > 0.
Let " > 0 be given and let A � 1 be a sufficiently large number depending on "; T; q0.

Without loss of generality we assume that " is sufficiently small depending on T; q0.
By Theorem 2.3, there exists a number q�0 � 2q0 depending on q0 and T and a strategy

BR (here “BR” stands for Bounded Regret) such that

J.BR; aIT; q�0 / � 2 � J0.aIT; q
�
0 / for any a2 R:

By Remark 3.3, we have

(7.1) J.BR; aIT; q�0 / � CT;q0 � J0.aIT; q0/ for any a2 R:

The strategy BR for time horizon T and starting position q�0 gives rise to a strategy BR�
for time horizon T and starting position �q�0 satisfying

J.BR�; aIT;�q�0 / D J.BR; aIT; q�0 /

(see Section 2 for details). For the remainder of Section 7 we will write BR to denote both
of these strategies; it will be clear from context which strategy we are referring to.

We now define the strategy LaS. For the remainder of Section 7, we write q and u to
denote qLaS and uLaS.

TESTING EPOCH.
We let �C denote the first time t 2 .0; T / for which q.t/ D .1C "/q0 or q.t/ D �q�0 ,

if such a time exists. If no such time exists we set �C D T . The Testing Epoch ends when
we reach time �C . During the Testing Epoch we set u D 0. If �C D T , then the game is
over when we reach time �C . If �C < T , then at time �C we enter the Control Epoch.
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CONTROL EPOCH.
In a moment, we will define a stopping time �D . With probability 1 we have �D 2

.�C ; T �. If the Control Epoch occurs, then it lasts from time �C until time �D .
In the event that we enter the Control Epoch at some time �C 2 .0; T / for which

q.�C / D �q
�
0 , we set �D D T so that the Control Epoch begins at time �C and position

�q�0 and lasts until the game ends at time T . In this case, during the Control Epoch we
execute the strategy BR.

In the event that we enter the Control Epoch at some time �C 2 .0; T / for which
q.�C / D .1C "/q0, we define a random variable

Na D
log.1C "/

�C
�

We then set
u.t/ D �2 Naq.t/

during the Control Epoch. In this case, we define the stopping time �D to be equal to the
first time t 2 .�C ; T / for which jq.t/j D q�0 if such a time exists and equal to T if no such
time exists.

In either case, if �D D T , then the Control Epoch ends along with the game at time T .
If �D < T , then at time �D we enter the Disaster Mitigation Epoch.

DISASTER MITIGATION EPOCH.
If we enter the Disaster Mitigation Epoch at some time �D 2 .�C ; T /, then we have

jq.�D/j D q�0 . We then execute the strategy BR from time �D until the game ends at
time T .

This concludes the definition of the strategy LaS.
We define three random variables:

COSTT D

Z �C

0

q2.t/ dt; COSTC D

Z �D

�C

.q2.t/C u2.t// dt;

and

COSTD D

Z T

�D

.q2.t/C u2.t// dt:

These are, respectively, the costs incurred during the Testing Epoch, the Control Epoch,
and the Disaster Mitigation Epoch for a given realization of the noise. Note that they all
depend on a.

Let X � .0;1/ be an arbitrary subset. We will be interested in events of the form
“�C < T and q.�C / D .1 C "/q0 and Na 2 X”. We will abbreviate this by writing just
“ Na 2 X”; note that Na is undefined if either �C D T or if q.�C / D �q�0 .

By Lemma 3.4, provided A is sufficiently large depending on T we have

(7.2) cT;q0 � J0.aIT; q0/ for any a � A:

We will make use of this fact throughout this section.
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7.1. The cost during the Testing Epoch

By Lemma 4.3, provided " is sufficiently small depending on T we have

(7.3) EŒCOSTT � < CT;q0 � "
1=4 for any a2 R

(recall that q�0 is determined by T; q0). Combining this with (7.2) gives

(7.4) EŒCOSTT � < CT;q0 � "
1=4
� J0.aIT; q0/ for any a � A:

7.2. The cost during the Control Epoch

Our goal in this section is to control the expected value of the random variable COSTC ,
defined above.

Observe that

(7.5) EŒCOSTC � D EŒCOSTC � 1 Na>0�C EŒCOSTC � 1q.�C /D�q�0 �:

In the event that we enter the Control Epoch at some time �C 2 .0; T / for which
q.�C / D �q

�
0 , we play the strategy BR starting from position �q�0 and time �C until the

game ends at time T . By (7.1), we therefore have

(7.6) EŒCOSTC j.q.�C / D �q
�
0 /� � CT;q0 � J0.aIT; q0/ for any a2 R:

ProvidedA is sufficiently large depending on ", and " is sufficiently small depending on T ,
Lemma 4.3 implies

Prob.q.�C / D �q�0 / � Cq0 � "
1=4 for any a � A:

Therefore,

(7.7) EŒCOSTC � 1q.�C /D�q�0 � � CT;q0 � "
1=4
� J0.aIT; q0/ for any a � A:

By Corollary 3.8,
J0.aIT; q0/ � CT;q0 � A for any a � A:

Combining this with (7.6) gives

(7.8) EŒCOSTC � 1q.�C /D�q�0 � � CT;q0 � A for any a � A:

We will make use of the following two observations throughout the remainder of this
section. First, we note that

(7.9) EŒCOSTC j Na D Qa� � CT;q0 . Qa
2
C 1/ for any Qa > 0; a2 R:

This follows by observing that, in the event that we enter the Control Epoch, we have
jqj � q�0 and u D �2 Naq during the Control Epoch with probability 1. Second, we define

A� D max¹A; jajº:

Taking " sufficiently small depending on T , Lemma 4.5 implies that

(7.10) Prob. Na > 10nA�/ � C exp.�c"q20 10
nA�/ for any n � 1; a2 R:
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We now introduce a parameter 1� ı > 0 that will be chosen below to be sufficiently
small depending on ". Note that since ı is determined by ", we are allowed to take A
sufficiently large depending on ı.

Assume that a � A. Observe that

(7.11)
EŒCOSTC � 1 Na>0� D EŒCOSTC � 1ja�Naj<ı a�C EŒCOSTC � 1 Na<.1�ı/a�

C EŒCOSTC � 1 Na>.1Cı/a�:

In the event that NaD Qa for some Qa > 0, then during the Control Epoch we play the constant
gain strategy CG.2 Qa/ (see Section 3, specifically the discussion before Corollary 3.7, for
the definition of the strategy CG). Therefore, by Corollary 3.7,

EŒCOSTC j.ja � Naj < ıa/� < .1C 4a
2.1C ı/2/

q20 C T

2a.1 � Cı/
�

Taking A sufficiently large and ı sufficiently small, both depending on ", we have

EŒCOSTC j.ja � Naj < ıa/� < 2a.1C "/.q
2
0 C T /:

By Lemma 3.4, provided A is sufficiently large depending on " and T , we have

J0.aIT; q0/ � 2a.1 � "/.q
2
0 C T /:

We deduce that

(7.12) EŒCOSTC � 1ja�Naj<ıa� < .1C C"/ � J0.aIT; q0/ for any a � A:

We continue to assume that a � A. By (7.9), we have

EŒCOSTC j Na < .1 � ı/a� � CT;q0 � a
2:

ProvidedA is sufficiently large depending on ", and " is sufficiently small depending on T ,
Lemma 4.6 implies that

(7.13) Prob.j Na � aj � ıa/ � C exp.�c";ı q20 a/:

Therefore,
EŒCOSTC � 1 Na<.1�ı/a� < CT;q0 � a

2
� exp.�c";ı q20 a/:

Taking A sufficiently large depending on ", ı, q0 and T gives

(7.14) EŒCOSTC � 1 Na<.1�ı/a� < " for any a � A:

We continue to assume that a � A. By (7.9), we have

EŒCOSTC j.1C ı/a < Na < 10a� < CT;q0 � a
2;(7.15)

EŒCOSTC j10
na < Na < 10nC1a� < CT;q0 � 10

2na2 for any n � 1:(7.16)

Since

EŒCOSTC � 1 Na>.1Cı/a�D EŒCOSTC � 1.1Cı/a< Na<10a�C

1X
nD1

EŒCOSTC � 110na< Na<10nC1a�;
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equations (7.10) (our assumption that a�A implies thatA�D a), (7.13), (7.15) and (7.16)
imply that

EŒCOSTC � 1 Na>.1Cı/a� < CT;q0 � a
2 exp.�c";ı q20 a/

C

1X
nD1

CT;q0 � 10
2na2 exp.�c" q20 10

na/:

Taking A sufficiently large depending on ", ı, T and q0 gives

(7.17) EŒCOSTC � 1 Na>.1Cı/a� < " for any a � A:

Combining (7.11), (7.12), (7.14) and (7.17) gives

EŒCOSTC � 1 Na>0� < .1C C"/ � J0.aIT; q0/C C
0" for any a � AI

the inequality (7.2) then implies that

(7.18) EŒCOSTC � 1 Na>0� < .1C CT;q0 � "/ � J0.aIT; q0/ for any a � A:

We now suppose that jaj < A. Note that

(7.19)

EŒCOSTC � 1 Na>0� D EŒCOSTC � 1 Na<10A�

C

1X
nD1

EŒCOSTC � 110nA< Na<10nC1A�:

Equation (7.9) implies

EŒCOSTC j Na < 10A� < CT;q0A
2;(7.20)

EŒCOSTC j10
nA < Na < 10nC1A� � CT;q0 10

2nA2 for any n � 1:(7.21)

We combine (7.19)– (7.21) with (7.10) (our assumption jaj < A implies that A� D A) to
deduce that

(7.22) EŒCOSTC � 1 Na>0� � CT;q0A
2
C

1X
nD1

CT;q0 10
2nA2 exp.�c" q20 10

nA/:

Taking A sufficiently large depending on " and q0 gives

(7.23) EŒCOSTC � 1 Na>0� < CT;q0 � A
2 for any jaj < A:

We now assume that a < �A. Note that

Prob. Na < 10jaj/ D Prob.0 < Na < 10jaj/ � Prob. Na > 0/:

Applying Lemma 4.4, we get

(7.24) Prob. Na < 10jaj/ � C";T;q0 � exp.�c"q20 jaj/:



J. Carruth, M. F. Eggl, C. Fefferman and C. W. Rowley 58

Note that

EŒCOSTC � 1 Na>0� D EŒCOSTC � 1 Na<10jaj�C

1X
nD1

EŒCOSTC � 110njaj< Na<10nC1jaj�:

We combine this with (7.9), (7.10) and (7.24) to get

EŒCOSTC �1 Na>0��C";T;q0 jaj
2 exp.�c"q20 jaj/CCT;q0

1X
nD1

102n jaj2 exp.�c"q20 10
n
jaj/:

Taking A sufficiently large depending on ", T and q0 gives

(7.25) EŒCOSTC � 1 Na>0� < " for any a < �A:

We combine (7.5), (7.7) and (7.18) to get that

(7.26) EŒCOSTC � < .1C CT;q0 � "
1=4/J0.aIT; q0/ for any a � A;

and we combine (7.5), (7.8), (7.23) and (7.25) to get

(7.27) EŒCOSTC � < CT;q0 � A
2 for any a � A:

7.3. The cost during the disaster mitigation epoch

Our goal in this section is to control the expected value of the random variable COSTD .
Let D denote the event that we reach the Disaster Mitigation Epoch, i.e., D is the event

that �C < T , q.�C / D .1C "/q0, and �D < T . For a subset X � .0;1/, we let D.X/

denote the event that D occurs and Na 2 X . Note that D D D..0;1//.
We remark that

EŒCOSTD� D EŒCOSTD � 1D �:

Suppose that we enter the Disaster Mitigation Epoch at some time �D 2 .0; T /, and
suppose that Na D Qa for some Qa > 0. Starting from position jqj D q�0 and time �D until
time T , we execute the strategy BR. Therefore, by (7.1), we have

(7.28) EŒCOSTD jD AND Na D Qa� � CT;q0 � J0.aIT; q0/ for any a2 R; Qa > 0:

We remark that the right-hand side of (7.28) is independent of Qa, and so we have

EŒCOSTD jD.X/� � CT;q0 � J0.aIT; q0/ for any a2 R; X � .0;1/:

Combining this with Corollary 3.8 gives

(7.29) EŒCOSTD jD.X/� � CT;q0 �max¹a; 1º for any a2 R; X � .0;1/:

In particular, taking X D .0;1/ implies that

(7.30) EŒCOSTD� � CT;q0 � A for any a � A:
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We now show that the probability of reaching the Disaster Mitigation Epoch is small
when a � A.

Assume a � A. Observe that

Prob.D..0; 3a=4/// � Prob.0 < Na < 3a=4/:

ProvidedA is sufficiently large depending on ", and " is sufficiently small depending on T ,
Lemma 4.6 implies that

(7.31) Prob.D..0; 3a=4/// � C exp.�c"q20 a/:

Now suppose that the event Na D Qa occurs for some Qa > 3a=4. In this case, the proba-
bility that we enter the Disaster Mitigation Epoch is less than or equal to

Prob.9 t 2 Œ0; T � W j Nq.t/j � q�0 /;

where NqW Œ0; T �! R is governed by

d Nq D .a � 2 Qa/ Nq dt C dWt ; Nq.0/ D .1C "/q0:

Since a � 2 Qa < 0, we apply Lemma 4.4 to get

Prob.9 t 2 Œ0; T � W j Nq.t/j � q�0 / � CT;q0 � exp.�cT;q0 a/:

This holds for any Qa > 3a=4; we deduce that

(7.32) Prob.D..3a=4;1/// � CT;q0 � exp.�cT;q0a/:

Combining (7.29), (7.31) and (7.32) gives

EŒCOSTD� D EŒCOSTD � 1D..0;3a=4//�C EŒCOSTD � 1D..3a=4;1//�

� CT;q0 � a � exp.�c"q20 a/C CT;q0 � a � exp.�cT;q0 a/

for any a � A. Taking A sufficiently large depending on ", T and q0 gives

EŒCOSTD� < " for any a � A:

Combining this with (7.2) gives

(7.33) EŒCOSTD� < " � CT;q0 � J0.aIT; q0/ for any a � A:

7.4. Proof of Theorem 2.4

Note that

(7.34) J.LaS; aIT; q0/ D EŒCOSTT �C EŒCOSTC �C EŒCOSTD�:

By (7.4), (7.26) and (7.33), we have

J.LaS; aIT; q0/ < .1C CT;q0 � "
1=4/ � J0.aIT; q0/ for any a � A:
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By (7.3), (7.27) and (7.30), we have

J.LaS; aIT; q0/ < CT;q0 � A
2 for any a � A:

This proves Theorem 2.4.
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