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Projective representation theory for compact quantum
groups and the quantum Baum–Connes assembly map

Kenny De Commer, Rubén Martos, and Ryszard Nest

Abstract. We study the theory of measurable projective representations for a compact quantum
group G, i.e., actions of G on B.H/ for some Hilbert space H . We show that any such measurable
projective representation is inner, and is hence induced by an �-twisted representation for some
measurable 2-cocycle � on G. We show that a projective representation is continuous, i.e., restricts
to an action on the compact operators K.H/, if and only if the associated 2-cocycle is regular,
and that this condition is automatically satisfied if G is of Kac type. This allows in particular to
characterise the torsion of projective type of bG in terms of the projective representation theory
of G. For a given regular 2-cocycle �, we then study �-twisted actions on C�-algebras. We define
deformed crossed products with respect to �, obtaining a twisted version of the Baaj–Skandalis
duality and the Green–Julg isomorphism, and a quantum version of the Packer–Raeburn’s trick.

1. Introduction

Let G be a compact group. Let H be a (possibly infinite dimensional) Hilbert space,
and K.H/ the C�-algebra of compact operators on H . An action G ıÕK.H/ is usually
referred to as a continuous projective representation of G on H . Such a ı is always of
the form ıg.T / D �.g/T�.g/� for all g 2 G and T 2 K.H/, where � W G ! U.H/

is a measurable map and ! W G � G ! S1 � C is a measurable 2-cocycle such that
�.x/�.y/ D !.x; y/�.xy/, for all x; y 2 G. Such a map � is called a !-representation
of G on H . One can similarly consider actions G ıÕ B.H/ of G on the von Neumann
algebra B.H/, but this does not give anything new: any such action necessarily restricts
to K.H/, and conversely any action of G on K.H/ extends to B.H/.

An extension of projective representation theory to compact quantum groups was
introduced in [14] by the first author. For G a compact quantum group, a measurable
projective representation was introduced as an action G

ıÕ B.H/. It was then shown
that the obstruction for ı to be inner is related to the theory of Galois co-objects for G,
which are regarded as generalised 2-cocycle functions on G. Particular instances of Galois
co-objects can be defined in terms of (measurable) 2-cocycles � on G, extending the
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classical setting described above. Such Galois co-objects are called von Neumann cleft. It
was left open in [14] whether there exist Galois co-objects which are not von Neumann
cleft. We completely resolve this problem in this article: a Galois co-object for a compact
quantum group is automatically cleft. We can hence restrict to projective representations
defined through a measurable 2-cocycle �. See Section 3.1. For the sake of complete-
ness of the present article, we have included an explicit development of the corresponding
�-representation theory for G in Section 3.2.

In spite of the above positive result, there is however an important new phenomenon
arising for projective representations of compact quantum groups: Contrary to the case
of classical compact groups, an action of a compact quantum group G on B.H/ does
not automatically restrict to a continuous action on the C�-algebra of compact operators
K.H/. If this is the case, we call the projective representation continuous, and the asso-
ciated 2-cocycle of finite type. In general, not all 2-cocycles are of finite type. We show
however that if G is of Kac type, then all projective representations are continuous, and
all 2-cocycles are of finite type. See Section 3.3.

In [32] (see also [44] for the von Neumann algebra setting, and [37] for the classical
setting of locally compact groups), it was shown how a 2-cocycle � on a locally compact
quantum group allows to form �-twisted actions of G on C�-algebras, in case the 2-
cocycle satisfies a particular regularity condition. This then allows to define also twisted
crossed products for which a twisted version of the Baaj–Skandalis duality holds. We
show that in the setting of compact quantum groups, regularity of � is equivalent to �
being of finite type. We then revisit some of the results of [32] in the technically simpler
setting of compact quantum groups, and obtain in particular a quantum version of the
Packer–Raeburn’s trick [35]. See Section 4.

The theory of projective representations for G is closely related to the theory of torsion
for the dual (discrete) quantum group bG. A general theory of torsion for discrete quantum
groups was introduced first by R. Meyer and R. Nest (see [30] and [28]) in terms of ergodic
actions of G, and re-interpreted later by Y. Arano and K. De Commer in terms of fusion
rings and module C�-categories [1]. Basically, the torsion of bG is described by the non-
trivial ergodic actions of G on finite dimensional C�-algebras. In case the latter is simple,
we obtain an ergodic action of G on some B.H/ for H finite dimensional, i.e., a finite
dimensional irreducible projective representation of G.

The study of such torsion was the original motivation for this article, more precisely
with respect to the Baum–Connes conjecture for discrete quantum groups. The original
Baum–Connes conjecture for (second countable) locally compact groups had been for-
mulated in 1982 by P. Baum and A. Connes. We still do not know any counterexample
to the original conjecture, but it is known that the one with coefficients is false. For this
reason we refer to the Baum–Connes conjecture with coefficients as the Baum–Connes
property. The goal of the conjecture is to understand the link between two operator K-
groups of different nature that would establish a strong connection between geometry and
topology in a more abstract and general index-theory context. More precisely, if G is
a (second countable) locally compact group and A is a (separable) G-C�-algebra, then
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the Baum–Connes property for G with coefficients in A claims that the assembly map
�GA W K

top
� .GIA/! K�.G Ër A/ is an isomorphism, where K top

� .GIA/ is the equivariant
K-homology with compact support of G with coefficients in A and K�.G Ër A/ is the K-
theory of the reduced crossed product G Ë

r
A. This property has been proved for a large

class of groups; let us mention the remarkable work of N. Higson and G. Kasparov [23]
about groups with Haagerup property and the one of V. Lafforgue [25] about hyperbolic
groups.

The equivariant K-homology with compact support K top
� .GI A/ is the geometrical

object obtained from the classifying space of proper actions of G, thus it is, a priori,
easier to calculate than the group K�.G Ër A/, which is the one of analytical nature and
less flexible in its structure. Nevertheless, sometimes the group K top

� .GIA/ creates non-
trivial troubles. This is why R. Meyer and R. Nest provide in 2006 a new formulation
of the Baum–Connes property in a well-suited category framework, using the language
of triangulated categories and derived functors [29]. More precisely, if KKG is the G-
equivariant Kasparov category and F.A/ WD K�.G Ër A/ is the homological functor KKG

!AbZ=2 defining the right hand side of the Baum–Connes assembly map, they show that
the assembly map �GA is equivalent to the natural transformation �GA W LF.A/! F.A/,
where LF is the localisation of the functor F with respect to an appropriated comple-
mentary pair of (localizing) subcategories .LG ;NG/. Here LG is the subcategory of KKG

of compactly induced G-C�-algebras, and NG is the subcategory of KKG of compactly
contractible G-C�-algebras. We say that G satisfies the strong Baum–Connes property
if LG D KKG , which corresponds, in usual terms, to the existence of a 
 -element that
equals 1C . This approach yields as well a characterization of the Baum–Connes property
only in terms of compact subgroups, K-theory and crossed products.

The above reformulation allows in particular to avoid any geometrical construction,
and thus seems (at least in principle) better suited to apply also when G is replaced by a
locally compact quantum group G. For instance, this approach has already been imple-
mented by R. Meyer and R. Nest [30] by proving that duals of compact connected1 groups
satisfy the strong Baum–Connes property. Also, for genuine discrete quantum groups bG
the strong Baum–Connes property has been studied, leading to explicit K-theory compu-
tations of the C�-algebra C.G/ in remarkable examples: [20, 46, 48].

A major problem when studying the quantum counterpart of the Baum–Connes prop-
erty in the particular setting of discrete quantum groups is the torsion structure of a
discrete quantum group bG. Indeed, if G is an ordinary discrete group, its torsion phe-
nomena are completely described in terms of the finite subgroups of G and encoded
in the localizing subcategory LG using the Meyer–Nest reformulation. More precisely,
induction and restriction functors provide a pair of adjoint functors allowing to apply the
general Meyer–Nest machinery to define the complementary pair encoding the Baum–
Connes property. Hence if we want to follow the Meyer–Nest approach, we need for

1In an upcoming paper, the second author (together with P. Fima) has extended this result by removing
the connectedness assumption.
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discrete quantum groups bG an analogous complementary pair of localizing subcategor-
ies .LbG;NbG/, where LbG must encode the torsion phenomena of bG. In this case, the
induction-restriction approach is no longer valid since finite discrete quantum groups do
not exhaust the torsion phenomena for bG.

A candidate for LbG had been apparent for specific examples [30, Section 1] and [48,
Section 5] (see also [26, Section 4.1.2] for a description for general discrete quantum
groups), but it was not at all clear if .LbG;L`bG/ formed a complementary pair.

This was completely resolved by Arano and Skalski [2]. Their key insight concerned
a direct description of N D L`bG in terms of a double crossed product construction. The
results of [2] hence allow to define a quantum assembly map for every discrete quantum
group bG (torsion-free or not).

In Section 5, we will revisit this result from a different perspective in the case when
there is only projective torsion, i.e., any finite dimensional C�-algebra carrying an ergodic
action of G is simple. More precisely, having defined a “twisted” descent map Fı WD
jG;T W KKG ! KK for each projective torsion action .T; ı/ and with �T W KK! KKG

given by making the tensor product by T on the right, we re-prove the adjointness between
jG;T and �T , formulated as a twisted Green–Julg isomorphism, by explicit use of the
specific structure of cocycle crossed products. Such results can be seen as a first step
towards spectra computations in the quantum Kasparov category in the realm of tensor
triangular geometry [6, 17].

2. Preliminaries

2.1. Conventions and notations

Let us fix the notations and the conventions that we use throughout the whole article.
If E is a C-vector space and � is a subset of vectors of E, then we write span � for the

corresponding C-vector subspace generated by � . If .E; k�k/ is a normed C-vector space
and F � E is a vector subspace, we write ŒF � WD F

k�k
for the k�k-closure of F in E. We

then also write span � D Œspan � � for � � E. If V;W are subspaces inside an algebra A,
we denote V W D V �W WD span¹vw j v 2 V;w 2 W º.

Let H be a Hilbert space. We denote by B.H/ (resp. K.H/) the space of all lin-
ear bounded (resp. compact) operators on H . If � is a subset of B.H/, then we write
span� -weak� for the closure of the linear subspace generated by � with respect to the � -
weak topology. We denote by B.H/� the space of normal functionals on B.H/, and for
�; � 2H we denote by !�;� 2B.H/� the linear form defined by !�;�.T / WD h�;T .�/i, for
all T 2B.H/. If V 2B.H ˝H/ is a unitary operator, we put C.V / WD Œ¹.id˝ �/.†V / j
� 2B.H/�º�. Observe that .id˝ �/.†V /D ..�˝ id/ ıAd†/.†V /D .�˝ id/.V †/, for
all � 2 B.H/�. Also, we clearly have C.V / D span¹.id˝ !�;�/.†V / j �; � 2 H º.

If A is a C�-algebra and H a Hilbert A-module, we denote by LA.H/ (resp. KA.H/)
the space of all (resp. compact) adjointable operators on H . Hilbert A-modules are con-
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sidered to be right A-modules, so that the corresponding inner products are considered to
be conjugate-linear on the left and linear on the right. Given a Hilbert A-module H and
�; � 2H we denote by ��;� 2LA.H/ the rank one operator defined by ��;�.�/ WD �h�; �i,
for all � 2 H . Then KA.H/ D span¹��;� j �; � 2 H º.

All our C�-algebras (except for obvious exceptions such as multiplier C�-algebras
and von Neumann algebras) are supposed to be separable and all our Hilbert modules are
supposed to be countably generated. If A is a C�-algebra and � is a subset of elements
inA, we writeC �h�i WDC �h� [ ��i for the corresponding C�-subalgebra ofA generated
by � , that is, the intersection of all C�-subalgebras of A containing � . In this case, the
elements of � are called generators of C �h�i.

The symbol ˝ stands for the minimal tensor product of C�-algebras and the exterior
tensor product of Hilbert modules depending on the context. The symbol ˝

max
stands for

the maximal tensor product of C�-algebras. The symbol ˝ stands for the tensor product
of von Neumann algebras. In any of the previous cases, the elementary tensors in the
corresponding tensor product are denoted simply by˝ and the context will distinguish the
specific situation. IfH is a HilbertA-module and .K;�/ is a Hilbert .A;B/-bimodule, the
interior tensor product of H and K with respect to � is denoted by H ˝

�
K or H ˝

A
K. If

A and B are two C�-algebras, † W A˝ B ! B ˝ A denotes the flip map. The symbol †
is used as well for the suspension functor in the framework of triangulated categories. The
context will distinguish the specific situation. We use systematically the leg numbering,
so if H is a Hilbert space then X12 D X ˝ 1 2 B.H˝3/ for X 2 B.H˝2/, etc..

If S;A are C�-algebras, we denote byM.A/DLA.A/ the multiplier algebra of A and
we put�M.A˝ S/ WD ¹x 2M.A˝ S/ j x.idA ˝ S/ � A˝ S and .idA ˝ S/x � A˝ Sº;

which contains A ˝M.S/. If H is a Hilbert A-module, we put M.H/ WD LA.A; H/,
which contains canonically H Š KA.A;H/. We put �M.H ˝ S/ WD ¹X 2M.H ˝ S/ j

X.idA ˝ S/ � H ˝ S and .idH ˝ S/X � H ˝ Sº, which contains H ˝M.S/.
If T WD B.H/ is a type I -factor, we denote by Tr the usual trace on T . If ' is any

state on T , we denote by % 2 T the density matrix (i.e., the positive matrix with trace 1)
such that ' D Tr.% �/.

Given a state ' on T , we denote by .L2.T /;�T ;ƒT ; �T / the corresponding GNS con-
struction, but we drop the notation �T when it is clear from the context. If T op denotes the
opposite von Neumann algebra of T , then the modular properties for ' yield a �-represen-
tation �T of T op on L2.T / determined by the formula �T .sop/.t�T / WD t%

1=2s%�1=2�T
for all s; t 2 T of finite rank with respect to an eigenbasis of �. We consider the anti
�-homomorphism .�/ı W T ! B.L2.T // defined by sı WD �T .s

op/ D JT s
�JT for all

s 2 T , where JT t�T WD �1=2t���1=2�T is the modular conjugation on L2.T /. We then
have T ı D T 0. In the following, we will also identify j W B.H/op Š B.H/ through the
�-isomorphism T 7! T �.

Whenever C denotes a category, we shall assume that C is essentially small, so morph-
isms HomC.�; �/ form sets. Given a category C, we denote by Cop its opposite category. We
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say that C is countable additive if it is additive and it admits countable direct sums. If F is
an additive functor on an additive category, it is, by definition, compatible with finite direct
sums. The categories considered in the present paper are assumed to be countable addit-
ive. Whenever we require an additive functor to be compatible with infinite (countable)
direct sums, it will be explicitly indicated.

We denote by Ab the abelian category of abelian groups and by AbZ=2 the abelian
category of Z=2-graded abelian groups.

2.2. Compact/discrete quantum groups

In this section, we recall elementary and fundamental facts concerning compact quantum
groups and their corresponding duality theory. We refer to the books [31, 42] or to the
original papers [5, 50] for more details.

Definition 2.1. A compact quantum group G is the data .C.G/; �/ where C.G/ is a
unital C�-algebra and� W C.G/! C.G/˝ C.G/ is a unital �-homomorphism such that

(i) � is co-associative meaning that .id˝�/� D .�˝ id/� and

(ii) � satisfies the cancellation property meaning that Œ�.C.G//.C.G/ ˝ 1/� D
C.G/˝ C.G/ D Œ�.C.G//.1˝ C.G//�.

A compact quantum group has a unique Haar state hG such that .hG ˝ id/�.x/ D
hG.x/1C.G/ D .id˝ hG/�.x/ for all x 2 C.G/. We will make the standing assumption
that hG is faithful, so we only work with the reduced form C.G/ of a compact quantum
group.

The GNS construction corresponding to hG is denoted by .L2.G/; �; �G/. We also
write ƒ.x/ D �.x/�G for x 2 C.G/. We adopt the standard convention for the inner
product on L2.G/, which means that hƒ.x/;ƒ.y/i WD hG.x

�y/ for all x; y 2 C.G/. We
suppress the notation � in computations so that we simply write xƒ.y/ D ƒ.xy/ for all
x; y 2 C.G/.

Theorem-Definition 2.2 (Regular representation). Let G D .C.G/; �/ be a compact
quantum group.

(i) There exists a unique unitary operator VG 2M.K.L2.G//˝ C.G// such that
VG.ƒ.x/˝ �/ D �.x/.�G ˝ �/, for all x 2 C.G/ and � 2 L2.G/.

(ii) For all x 2 C.G/ we have � D �VG where �VG .x/ D VG.x ˝ 1/V
�

G .

(iii) The following identity holds: .id˝�/.VG/ D .VG/12.VG/13.

(iv) The following pentagonal equation holds:

.VG/12.VG/13.VG/23 D .VG/23.VG/12:

So VG is a multiplicative unitary on L2.G/ in the sense of Baaj–Skandalis [5].

(v) We have that C.G/ D SVG WD span¹.�˝ id/.VG/ j � 2 B.L2.G//�º.
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The unitary VG is called right regular representation of G on L2.G/ or fundamental
unitary of G.

Remark 2.3. In a similar way, we can define the left regular representation of G: there
exists a unique multiplicative unitaryWG 2M.C.G/˝K.L2.G/// such that .WG/

�.�˝

ƒ.x// D �.x/.� ˝ �G/, for all x 2 C.G/ and � 2 L2.G/. For all x 2 C.G/ we have
�.x/DW �G.1˝ x/WG and the following identity holds: .�˝ id/.WG/D.WG/13.WG/23.

The coproduct on C.G/ can be extended to L1.G/ D C.G/00 using Theorem-Defi-
nition 2.2 (ii), obtaining the normal map � W L1.G/ ! L1.G/ ˝ L1.G/. The Haar
state extends uniquely to a normal faithful state on L1.G/, and we denote by JG the
associated modular conjugation on L2.G/.

Conversely, ifL1.G/ is a von Neumann algebra with a coassociative normal �-homo-
morphism � W L1.G/! L1.G/˝ L1.G/ and admitting an invariant normal faithful
state hG , then .L1.G/;�/ arises from a (reduced) compact quantum group G in a unique
way.

Definition 2.4. A unitary representation of G on a Hilbert space H D Hu is a unitary
element u inM.K.H/˝ C.G// with .id˝�/.u/ D u12u13. For u; v unitary represent-
ations, we denote HomG.u;v/D ¹T WHu!Hv j T bounded and .T ˝ 1/uD v.T ˝ 1/º.
One calls u irreducible if EndG.u/ D HomG.u; u/ D CidHu .

In the following, all representations will be assumed unitary.
Any irreducible representation u has finite dimensional H , so then u 2 B.H/ ˝

C.G/. The set of all equivalence classes of irreducible representations of G is denoted
by Irr.G/. If x 2 Irr.G/ is such a class, we write ux 2 B.Hx/˝ C.G/ for a represen-
tative of x and Hx for the finite dimensional Hilbert space on which ux acts. We write
dim.x/ WD nx for the dimension of Hx . The trivial representation of G is denoted by �,
and we put u� D 1C.G/. Given x; y 2 Irr.G/, the tensor product of x and y is denoted by
x ˝ y. Given x 2 Irr.G/, there exists a unique class x of irreducible representations of G
such that HomG.�; u

x ˝ ux/ ¤ 0 ¤ HomG.�; u
x ˝ ux/. It is called the contragredient

or conjugate representation of x.
The linear span of matrix coefficients of all finite dimensional representations of G

is denoted by Pol.G/. It is a �-Hopf algebra by restriction of the co-multiplication �,
and we denote its co-unit by " and its antipode by S . Let I0 be the anti-linear involutive
map ƒ.Pol.G// ! L2.G/ defined by ƒ.x/ 7! ƒ.S.x/�/ for x 2 Pol.G/. Then I0 is
closeable, and we denote I D yJGjI j for the polar decomposition of its closure. The map
R.x/ D yJGx

� yJG , for all x 2 C.G/, is a well-defined anti-multiplicative and anti-co-
multiplicative map on C.G/ preserving Pol.G/, called unitary antipode.

Theorem-Definition 2.5 (Discrete quantum group). Let G D .C.G/; �/ be a compact
quantum group. We switch between the following notations for the same space c0.bG/ D
C �r .G/ D ySVG WD Œ¹.id ˝ �/.VG/ j � 2 B.L2.G//�º� � B.L2.G//. Then c0.bG/ is a
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C�-algebra, and we denote also the identity map by

y� W c0.bG/! B.L2.G//:

Furthermore, we have the following:

(i) The formula y�.x/ D y�cop
VG
.x/ WD †V �G.1˝ x/VG† defines a non-degenerate �-

homomorphism c0.bG/! �M.c0.bG/˝ c0.bG// such that the pair bGD .c0.bG/; y�/
is a locally compact quantum group. One calls bG the (Pontryagin) dual discrete
quantum group of G.

(ii) There exists a natural isomorphism c0.bG/ ŠLc0
x2Irr.G/ B.Hx/.

(iii) We have VG 2M.c0.bG/˝ C.G//.
(iv) We have Œ.�˝ id/.W �G/ j � 2 B.L2.G//�� D yJGc0.bG/ yJG � B.L2.G//.

We denote l1.bG/ for the � -weak closure of c0.bG/. It is a von Neumann algebra
with coproduct y� given by extending the formula in item (i) above. It has a left, resp.
right invariant normal, semifinite faithful weight yhL, resp. yhR. We can identify L2.G/
with the standard space of l1.bG/ in such a way that yJG becomes the associated modular
conjugation. We further have inside c0.bG/ the dense 2-sided ideal

c00.bG/ Š algM
x2Irr.G/

B.Hx/;

contained in the set of integrable elements for yhL and yhR.

Theorem-Definition 2.6 (Kac system associated to G). Let GD .C.G/;�/ be a compact
quantum group. Then UG D JG yJG D yJGJG 2 B.L2.G// is a symmetry, and we call the
pair .VG; UG/ the standard Kac system associated to G. We then denote

�.a/ D UG�.a/UG; y�.x/ D UG
y�.x/UG; a 2 C.G/; x 2 c0.bG/:

Moreover, we have WG D {VG where

{VG WD †.UG ˝ 1/VG.UG ˝ 1/† � .UG/2.VG/21.UG/2 2M.C.G/˝ y�.c0.G///;

and VG , {VG together with

zVG WD †.1˝ UG/VG.1˝ UG/† � .UG/1.VG/21.UG/1 2M.�.C.G//˝ c0.G//;

zzVG D .UG ˝ UG/VG.UG ˝ UG/ 2M.�.C.G//˝ y�.c0.G///

(i) are multiplicative on L2.G/ in the sense of Baaj–Skandalis,

(ii) are regular, meaning that K.L2.G// D C.VG/ D C. zVG/ D C. {VG/ D C.
zzVG/,

(iii) satisfy the following identity in V W .†.1˝ UG/V /
3 D id.
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Moreover, the following properties hold:

(i) .VG/13.VG/23. zVG/12 D . zVG/12.VG/13 and . {VG/23.VG/12.VG/13 D .VG/13
. {VG/23.

(ii) .c0.bG/; y�cop/ D .S zVG
; � zVG

/; in particular, y�cop.x/ D zVG.x ˝ 1/ zV
�

G , for all

x 2 c0.bG/.
(iii) .C.G/;�/ D . yS {VG

; y� {VG
/; in particular, �.a/ D {V �G.1˝ a/ {VG , for all a 2

C.G/.

(iv) .VG/12. zVG/23 D . zVG/23.VG/12; in particular, zVG.a ˝ 1/ zV
�

G D a ˝ 1, for all
a 2 C.G/.

(v) .VG/23. {VG/12 D . {VG/12.VG/23; in particular, {VG.1˝ x/ {V
�

G D 1˝ x, for all
x 2 c0.bG/.

(vi) . zVG/12.
zzVG/23 D .

zzVG/23. zVG/12; in particular, VG.x ˝ 1/V
�

G D x ˝ 1, for all
x 2 UGc0.bG/UG .

(vii) .UGC.G/UG/;�UG / D .
yS zVG

; y� zVG
/, where

�UG .UGaUG/ WD AdUG˝UG .�.a//;

for all a 2C.G/; in particular, VG.1˝ a/V
�

G D 1˝ a, for all a 2UGC.G/UG .

(viii) ŒC.G/ � c0.bG/� DK.L2.G//.

We refer to [42] or [5] for more details about these computations.

2.3. Actions of compact and discrete quantum groups

In this section, we recall elementary notions and results concerning actions of quantum
groups.

Definition 2.7. Let G D .C.G/;�/ be a compact quantum group and A a C�-algebra. A
left (continuous) action of G onA (or a right co-action of C.G/ onA) is a non-degenerate
�-homomorphism ı W A! A˝ C.G/ such that

(i) ı intertwines the co-multiplication, meaning that .ı˝ idC.G// ı ıD .idA˝�/ ı ı
and

(ii) ı satisfies the density condition Œı.A/.1˝ C.G//� D A˝ C.G/.

We write G
ıÕ A. We say that .A; ı/ is a left G-C�-algebra if moreover ı is injective.

IfM is a von Neumann algebra, then a left (measurable) action of G onM is a normal
unital �-homomorphism ı W M ! M ˝ L1.G/ intertwining the co-multiplication (the
density condition being superfluous in this case).

Example 2.8. The co-multiplication of any compact quantum group G defines an action
of G on its defining C�-algebra. This action is called the regular action of G.
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Similarly, we can define a right action of G onA (or a left co-action ofC.G/ onA) as a
non-degenerate �-homomorphism ı W A! C.G/˝A satisfying the analogous properties
of the preceding definition. In the present article, an action of a compact quantum group G
is supposed to be a left one unless the contrary is explicitly indicated. Hence, we refer to
such actions simply as actions of G. Observe however that if .A; ı/ is a left G-C�-algebra,
then .Aop; ı/ is a right G-C�-algebra where Aop denotes the opposite C�-algebra of A and
ı W Aop ! C.G/˝ Aop is defined by

ı WD .R˝ id/ ı† ı ı; (2.1)

where R denotes the unitary antipode of G.

Remark 2.9. Our conventions for the left/right terminology are motivated by the follow-
ing: when G D G for an ordinary compact group G, we obtain an honest left action of G
on A from a right coaction ı W A! A˝ C.G/ by evaluating the second leg in g 2 G,

G � A! A; .g; a/ 7! ıg.a/ WD .id˝ evg/ı.a/:

Definition 2.10. If .A; ı/ is a G-C�-algebra, we denote Aı D ¹a 2 A j ı.a/ D a ˝ 1º.
We call .A; ı/ ergodic if A is unital and Aı D C1A.

In general, we denote Eı W A! Aı for the ı-invariant conditional expectation given
by Eı.a/ D .idA ˝ hG/ı.a/, for all a 2 A.

Remark 2.11. Recall that we assume G to be a reduced compact quantum group, so Eı
is automatically faithful. Moreover, if .ui /i is a (bounded) approximate unit forA, then by
non-degeneracy of ı we have that .ı.ui //i is an approximate unit forA˝C.G/. Thanks to
the continuity of id˝ hG , the operators vi WD .id˝ hG/.ı.ui // form an approximate unit
forA insideAı , and we have ŒAAı �D ŒAAı �DA. In particular, ifA acts non-degenerately
on a Hilbert space H , then also Aı acts non-degenerately on H .

Given a G-C�-algebra A, we can equip A with the pre-Hilbert Aı -module structure
given by ha;biEı WDEı.a

�b/, for all a;b 2A. We denote byL2.A;Eı/ the completion of
A with respect to the inner product h�; �iEı . When ı is ergodic, we have Eı.a/ D 'ı.a/1A
for 'ı a (unique) ı-invariant state on A. We then write L2.A/ D L2.A; '/ for the Hilbert
space completion ofAwith respect to the inner product ha;bi' WD '.a�b/, for all a;b 2A.

The notion of action of G can be defined also for Hilbert modules.

Definition 2.12. Let G D .C.G/; �/ be a compact quantum group and .A; ı/ a G-C�-
algebra. Let E be a Hilbert A-module. A left action of G on E (or a right co-action of
C.G/ on E) is a linear map ıE W E ! E ˝ C.G/ such that

(i) ıE .� � a/ D ıE .�/ı.a/ for all � 2 E, a 2 A;

(ii) ı.h�; �i/ D hıE .�/; ıE .�/i for all �; � 2 E;

(iii) ıE intertwines the co-multiplication meaning that .ıE ˝ idC.G// ı ıE D .idA˝
�/ ı ıE ;
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(iv) the density conditions ŒıE .E/.1˝C.G//�D Œ.1˝C.G//ıE .E/�DE˝C.G/
are satisfied.

We write G
ıEÕ E. We say that .E; ıE / is a left G-equivariant Hilbert A-module if more-

over ıE is injective.

If .E; ıE / is a G-equivariant Hilbert A-module as above, then KA.E/ is a G-C�-
algebra with action ıKA.E/ defined by ıKA.E/.��;�/ D ıE .�/ıE .�/

� 2 KA.E/˝ C.G/,
for all �; � 2 E where ��;� denotes the corresponding rank one operator in E. By abuse
of notation, we still denote by ıKA.E/ the extension of this homomorphism to LA.E/ D

M.KA.E//!M.KA.E/˝ C.G//. The latter is however not in general an action of G
on LA.E/.

Recall further that giving an action ıE is equivalent to giving a unitary operator
VE 2 LA˝C.G/.E ˝

ı
.A˝ C.G//; E ˝ C.G// such that ıE .�/ D VE ı T� for all � 2

E where T� 2 LA˝C.G/.A˝ C.G/; E ˝
ı
.A˝ C.G/// is such that T�.x/ D � ˝

ı
x, for

all x 2 A˝ C.G/. One calls VE the admissible operator for .E; ıE /. Moreover, we have
ıKA.E/ D AdVE . We refer to [4] for more details.

Next, we recall the following useful result (recall the notations from Definition 2.10).

Proposition 2.13. Let G be a compact quantum group. Let .A; ı/ be a unital G-C�-
algebra. If ı is ergodic, then there exists a representation VA 2 M.K.L2.A//˝ C.G//
of G such that ı.a/ D VA.a˝ 1/V �A , for all a 2 A.

Proof. Consider the map A˝ C.G/
VA
�! A˝ C.G/ such that a ˝ x 7! ı.a/.1A ˝ x/.

By ı-invariance of 'ı , this map is isometric with respect to the natural pre-Hilbert C.G/-
module structure on A˝ C.G/. Moreover, since ı is an action of G on A, we know that
Œı.A/.1˝ C.G//� D A˝ C.G/, that is, VA has dense range. Accordingly, VA extends to
a unitary operator in M.K.L2.A//˝ C.G//, which we still denote by VA.

The relation ı.a/VA D VA.a ˝ 1/, for all a 2 A is obvious. The coaction property
for ı straightforwardly leads to .VA/12.VA/13.VG/23 D .VG/23.VA/12, so .id˝�/VA D
.VA/12.VA/13 and VA is a representation of G on L2.A/ (see [9] for more details).

Remark 2.14. A similar result can be obtained when ı is not ergodic by considering
instead the Hilbert Aı -module L2.A; Eı/. One also has a corresponding result in the
von Neumann algebraic setting: if M ! M ˝ L1.G/ on a von Neumann algebra (say
with separable predual), we can find a G-invariant state on M leading to a unitary VM W
L2.M/˝ L2.G/! L2.M/˝ L2.G/ as above. This map is independent of the chosen
state [43].

We also recall the notion of action for discrete quantum groups.

Definition 2.15. Let G be a compact quantum group and A a C�-algebra. A left action
of bG on A (or a right co-action of c0.bG/ on A) is a non-degenerate �-homomorphism
ı W A! �M.A˝ c0.bG// such that

(i) ı intertwines the co-multiplication meaning that .ı ˝ id/ı D .id˝ y�/ı and
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(ii) ı satisfies the cancellation property meaning that Œı.A/.1˝ c0.bG//�DA˝ c0.bG/.
We say that .A; ı/ is a left bG-C�-algebra if moreover ı is injective.

Again, one has the analogous notion of a right action of bG. In the following, an action
of a discrete quantum group bG is supposed to be a left one unless the contrary is explicitly
indicated.

2.4. Torsion phenomena for discrete quantum groups

In this section, we recall elementary notions and results concerning the notion of torsion-
freeness for discrete quantum groups. It was initially introduced by R. Meyer and R. Nest
and it can be characterized as in Theorem-Definition 2.19 below (see [28,30] and [48] for
more details).

Definition 2.16. Let G D .C.G/;�/ be a compact quantum group. A torsion action of G
or a torsion for bG is a left G-C�-algebra .A; ı/ with A finite dimensional and ı ergodic.
We say that .A; ı/ is a torsion action of permutation type if A is not simple. We say that
.A; ı/ is a torsion action of projective type if A is simple. The set of all equivariant Morita
equivalence classes of torsion actions of G is denoted by Tor.bG/.
Remark 2.17. If bG is a classical discrete group � , then Tor.�/ detects the torsion in � ,
hence the notational use in general of the dual discrete quantum group.

Examples 2.18. (1) The trivial action .C; trv:/ is of course a torsion action of any
compact quantum group G.

(2) If bH < bG is a discrete quantum subgroup of bG, we have by definition an inclusion

of C�-algebras C.H/
�
� C.G/ intertwining the corresponding co-multiplications.

Therefore, if .B;ˇ/ is a H-C�-algebra, we can obviously extend ˇ (by composing
with �) into an action of G on B , which is denoted by ž. We denote by IndG

H.B;ˇ/

the same C�-algebra B but equipped with the composition ž WD .idB ˝ �/ ı ˇ as
an action of G. Observe that if .B; ˇ/ is a torsion action of H, then IndG

H.B; ˇ/ is
a torsion action of G.

(3) Let bG be a discrete quantum group that has a non-trivial finite discrete quantum
subgroup, say bH< bG. Then .C.H/;�H/ defines a non-trivial torsion action of G.

(4) If u 2 B.Hu/ ˝ C.G/ is a representation of G on a finite dimensional Hilbert
space Hu, then it defines an action of G on B.Hu/ given by

Adu W B.Hu/! B.Hu/˝ C.G/; T 7! Adu.T / WD u.T ˝ 1C.G//u�:

It is clear that B.H/Adu D EndG.u/. Hence, the pair .B.Hu/;Adu/ is a torsion
action of G if and only if u is irreducible.

(5) Consider the rotation group SO.3/. Recall that SO.3/ Š SU.2/=Z2, where Z2 Š
Z.SU.2// is the centre of SU.2/. Then the conjugation action of SU.2/ on M2.C/
descends to a torsion action of projective type ı of SO.3/ on M2.C/. Similar



Projective representation theory for compact quantum groups and Baum–Connes 13

considerations can be made for SOq.3/ with q 2 .�1; 1/n¹0º (see [39] for more
details).

The following characterisation of torsion-freeness for discrete quantum groups is well-
known. A full proof can be found in [26, Theorem 1.6.1.4].

Theorem-Definition 2.19. Let G be a compact quantum group. We say that bG is torsion-
free if one of the following equivalent conditions hold:

(i) Any torsion action of G is G-equivariantly Morita equivalent to the trivial G-
C�-algebra C.

(ii) Every finite dimensional G-C�-algebra is G-equivariantly isomorphic to a dir-
ect sum of G-C�-algebras which are G-equivariantly Morita equivalent to the
trivial G-C�-algebra C.

(iii) Every torsion action of G of permutation type and every torsion action of G
of projective type is G-equivariantly Morita equivalent to the trivial G-C�-
algebra C.

In view of characterisation (iii) of the previous theorem, we give the following defini-
tion.

Definition 2.20. Let G be a compact quantum group. We say that bG is permutation
torsion-free if every torsion action of G of permutation type is G-equivariantly Morita
equivalent to the trivial G-C�-algebra C. We say that bG is projective torsion-free if every
torsion action of G of projective type is G-equivariantly Morita equivalent to the trivial
G-C�-algebra C.

Example 2.21. The SO.3/-C�-algebra .M2.C/; ı/ introduced in Examples 2.18 is a tor-
sion action of SO.3/ of projective type. Notice that .M2.C/; ı/ is not SO.3/-equivariantly
Morita equivalent to C, as there are no irreducible 2-dimensional SO.3/-representations
to implement this equivalence. Hence, 1SO.3/ is not torsion-free. Moreover, .M2.C/; ı/ is
the only, up to equivariant Morita equivalence, non-trivial torsion action of SO.3/. Sim-
ilar considerations can be made for SOq.3/ with q 2 .�1; 1/n¹0º; namely 2SOq.3/ is not
torsion-free and SOq.3/ has only one, up to equivariant Morita equivalence, non-trivial
torsion action, which is of projective type (see for instance [48]).

3. Projective representation theory for compact quantum groups

In this section, we develop the theory of projective representations for compact quantum
groups based on the notion of (measurable) 2-cocycle. We obtain a projective representa-
tion theory analogous to the one for classical compact groups. Namely, given a 2-cocycle,
we construct the associated projective regular representation containing all irreducible �-
twisted representations and reaching thus a twisted version of the Peter–Weyl theorem.
The content of this section concerns a particular case of the more general framework
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developed in [14] by the first author, but we give more attention here to the associated
C�-algebraic theory.

3.1. Projective representations of compact quantum groups

Definition 3.1. Let G be a compact quantum group. A measurable left projective repres-
entation of G consists of a Hilbert spaceH and a (measurable) right coaction ı WB.H/!
B.H/˝ L1.G/. A continuous left projective representation of G consists of a Hilbert
space H and a (continuous) right coaction ı WK.H/!K.H/˝ C.G/.

Note that any continuous coaction ı W K.H/! K.H/˝ C.G/ extends uniquely to
a (normal) coaction ı W B.H/ D M.K.H//! B.H/˝ L1.G/. Indeed, since ı is by
definition non-degenerate, and since K.H/�� D B.H/, we have ([19]) a unique normal
unital �-homomorphism

B.H/ DK.H/�� ! .K.H/˝ C.G//�� ! B.H/˝ L1.G/;

which extends ı. Hence a continuous projective representation can be seen as a special
type of measurable projective representation. On the other hand, any measurable left
projective representation ı on a finite dimensional Hilbert space H is automatically con-
tinuous: We can endow B.H/ with a Hilbert space structure for which ı becomes a finite
dimensional representation, hence its matrix coefficients lie in Pol.G/ � C.G/. On the
other hand, it is not true that a general measurable left projective representation is auto-
matically continuous, as we will comment on later.

Remark 3.2. There is also an obvious notion of right projective representation. Identify-
ing j W B.H/op Š B.H/ via j.x/ D x�, there is a natural correspondence between left
and right measurable/continuous projective representations by ı$ ı WD †.j ˝R/ıj�1,
so we consider ı as a right continuous projective representation of G onH . More directly,
one can also view a left projective representation of G as a right projective representation
of Gcop.

Recall from the introduction that any continuous action of a classical compact groupG
on K.H/, for some Hilbert space H , is implemented by an !-representation of G on H ,
where ! is a measurable 2-cocycle on G. The same in fact holds for measurable actions
ofG on B.H/. The main goal of this section will be to show that these statements are still
true for compact quantum groups. This will in particular justify the terminology projective
torsion action (recall Theorem 2.19).

Definition 3.3. Let ı be a measurable left projective representation. We say that ı is cleft
if there exists a unitary u 2 B.H/˝ L1.G/ such that ı.a/ D u.a˝ 1/u�.

Similarly, we say that a measurable right projective representation ı is cleft if there
exists a unitary u 2 B.H/˝ L1.G/ such that ı.a/ D †.u�.a˝ 1/u/. Clearly ı is cleft
if and only if ı is cleft. We call u an implementing unitary.
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We will show in Theorem 3.15 that all measurable projective representations are cleft.
We start with the following elementary well-known result, which is a version of the
Skolem–Noether theorem in the setting of von Neumann algebras.

Lemma 3.4. Let M be a von Neumann algebra and k 2 N. If ¹eij ºi;jD1;:::;k and
¹fij ºi;jD1;:::;k are the matrix units of two unital copies of Mk.C/ inside M , then there
exists a unitary U in M such that UeijU � D fij , for all i; j D 1; : : : ; k. Moreover, U is
unique up to a unitary in ¹eij º0i;jD1;:::;k \M .

Proof. Let p be the maximal properly infinite projection of M , and put q WD 1 � p. We
split M into its finite and its properly infinite part, M D qM ˚ pM . Next, note that e11
and f11 have central support 1 and kŒe11� D Œ1� D kŒf11� in K0.M/. Then, by taking
the centre valued trace on qM , we deduce that qe11 and qf11 are Murray–von Neumann
equivalent in qM (cf. [40, Corollary 2.8], for instance). It is obvious that pe11 and pf11
are equivalent in pM . Hence e11 and f11 are Murray–von Neumann equivalent by a partial
isometry u 2M . Then U D

P
s fs1ue1s is the sought-after unitary. The stated uniqueness

of U is clear.

Theorem 3.5. Let G be a compact quantum group. Then any finite dimensional projective
representation is cleft.

Proof. Let ı W B.H/! B.H/˝ L1.G/ be a right coaction with H finite dimensional.
Applying Lemma 3.4 with respect to the matrix units ı.eij / and eij ˝ 1 provides a unitary
u 2 B.H/˝ L1.G/ implementing the coaction ı, hence ı is cleft.

To extend this result to arbitrary projective representations, we first take a further look
at implementing unitaries. Note that if ı W B.H/ ! B.H/ ˝ L1.G/ is a measurable
projective representation implemented by u 2 B.H/˝ L1.G/, then

.ı ˝ id/ı.a/ D .ı ˝ id/.u.a˝ 1/u�/ D u12.u.a˝ 1/u�/13u�12
D u12u13.a˝ 1˝ 1/u

�
13u
�
12;

while

.id˝�/ı.a/ D .id˝�/.u.a˝ 1/u�/ D .VG/23.u.a˝ 1/u
�/12.VG/

�
23

D .VG/23u12.a˝ 1˝ 1/u
�
12.VG/

�
23:

Hence by the coaction property .ı ˝ id/ı D .id˝�/ı, we obtain

u12u13.a˝ 1˝ 1/u
�
13u
�
12 D .VG/23u12.a˝ 1˝ 1/u

�
12.VG/

�
23;

for all a 2 B.H/. In other words,

u�13u
�
12.VG/23u12 2 .B.H/˝C ˝ L1.G/0/0 D C ˝B.L2.G//˝ L1.G/;
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so there exists a unitary X 2 B.L2.G//˝ L1.G/ such that .VG/23u12 D u12u13X23.
This relation allows to write the following:

.id˝�/.u/ D .VG/23u12.VG/
�
23 D u12u13X23.VG/

�
23:

Since the left hand side is an element of B.H/ ˝ L1.G/ ˝ L1.G/ and u is a
unitary, then z� WD u�13u

�
12�23.u12/ 2 C ˝ L1.G/ ˝ L1.G/ and z� D 1 ˝ � with

� 2 L1.G/ ˝ L1.G/ unitary. Moreover, we have �23.u12/ � ��23 D u12u13. Apply-
ing this equation to the identity .u12u13/u14 D u12.u13u14/, we obtain that �� satisfies
the 2-cocycle relation

.�˝ id/.��/��12 D .id˝�/.�
�/��23:

Let us formalize this in the following definition.

Definition 3.6. Let G be a compact quantum group. A (measurable, unitary) 2-cocycle
on G is a unitary element � 2 L1.G/˝ L1.G/ such that

.�˝ 1/.�˝ id/.�/ D .1˝�/.id˝�/.�/:

Two 2-cocycles � and �0 on G are said to be coboundary equivalent if there exists a
unitary X 2 L1.G/ such that �0 D .X� ˝X�/��.X/.

Note 3.7. If one replaces L1.G/ by C.G/ or Pol.G/, then we define analogously a
continuous or algebraic 2-cocycle on G, respectively.

Given a 2-cocycle � on G we can define the following linear maps:

�� W L
1.G/! L1.G/˝ L1.G/; ��� W L

1.G/! L1.G/˝ L1.G/;

x 7! ��.x/ WD � ��.x/; x 7! ���.x/ WD �.x/ ��
�:

We call �� and ��� the right/left twisted pseudo co-multiplication on G with respect to
� or the right/left �-pseudo co-multiplication on G; respectively. Observe that both ��

and ��� are linear maps satisfying the following identities:

(i) ��.xy/ D ��.x/�.y/ and ���.xy/ D �.x/���.y/, for all x; y 2 L1.G/,

(ii) ��.x/
�
��.y/ D �.x�y/ and ���.x/���.y/

� D �.xy�/, for all x; y 2
L1.G/,

(iii) .��˝ id/�� D .id˝ ��/�� and .��� ˝ id/��� D .id˝���/��� ;

(iv) and span� -weak
¹��.x/.y ˝ z/ j x; y; z 2 L

1.G/º D L1.G/ ˝ L1.G/ and
span� -weak

¹.y ˝ z/���.x/ j x; y; z 2 L
1.G/º D L1.G/˝ L1.G/.

These identities are obtained after a straightforward computation. Hence, �� and��� are
in particular von Neumann algebraic analogues of module coalgebras, and form concrete
instances of the notion of Galois co-object introduced in [12].
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Definition 3.8. Let G be a compact quantum group and � a 2-cocycle on G. A (meas-
urable) �-representation of G on a Hilbert space H is a unitary element u 2 B.H/ ˝

L1.G/ such that .id˝ ��/.u/ D u12u13. A (measurable) ��-representation on H is a
unitary element u 2 B.H/˝ L1.G/ satisfying .id˝���/.u/ D u12u13.

The elements of the form u�;� WD .!�;� ˝ 1/.u/ 2 L
1.G/ with �; � 2 H are called

matrix coefficients of u. In particular, if we fix an orthonormal basis ¹�iºi in H , we write
uij WD u�i ;�j . Then for an �-representation u we obtain the usual corepresentation iden-
tities ��.uij / D

P
k uik ˝ ukj , for all i; j , where the sum converges in (say) the strong

operator topology. The same conclusion holds for ��-representations.
Note that if the ui are measurable�-representations on Hilbert spacesHi , then clearly

u D
L
i ui is a measurable �-representation on H D

L
i Hi , called the direct sum �-

representation.
Summarizing the discussion following Theorem 3.5, we obtain the following result.

Proposition 3.9. Let ı WB.H/!B.H/˝L1.G/ be a cleft measurable projective rep-
resentation. Then there exists a 2-cocycle�2L1.G/˝L1.G/ and a��-representation
u 2 B.H/˝ L1.G/ such that ı.a/ D u.a˝ 1/u�.

Conversely, if u is a ��-representation, we obtain a measurable right coaction

ıu W B.H/! B.H/˝ L1.G/; ıu.a/ D u.a˝ 1/u
�; a 2 B.H/; (3.1)

where the coaction property follows immediately from the ��-representation property
of u. Similarly, any �-representation u provides a measurable left coaction

ıu W B.H/! L1.G/˝B.H/; ıu.a/ D †.u
�.a˝ 1/u/; a 2 B.H/: (3.2)

Note 3.10. If v is another implementing unitary for ı, we see that v�u.a ˝ 1/u�v D
a˝ 1 for all a 2 B.H/, hence v D u.1˝X/ for some unitary X 2 L1.G/. If v has an
associated 2-cocycle �0, it then follows from the projective representation identities for v
and u that �0 D .X� ˝X�/��.X/, so � and �0 are cohomologous.

Lemma 3.11. Let ı W B.H/ ! B.H/ ˝ L1.G/ be a measurable projective repres-
entation on H . Assume that p 2 B.H/ is a non-zero coinvariant projection, and let
ıp WB.pH/!B.pH/˝L1.G/ be the restriction of ı. Then ı is cleft if and only if ıp is
cleft. Moreover, if ıp is implemented by an��-representation v for some 2-cocycle�, then
ı can be implemented by some��-representation u such that u.p˝ 1/ D .p˝ 1/u D v.

Proof. Assume that ı is cleft, with an implementing unitary u. Then, as ı.p/ D p ˝ 1,
it follows immediately that u commutes with p, hence v D .p ˝ 1/u D u.p ˝ 1/ is a
unitary in B.pH/˝ L1.G/ implementing ıp . This shows that ıp is cleft.

Conversely, assume that ıp is cleft. Then B.H/ contains a minimal projection e such
that ı.e/ and e ˝ 1 are unitarily equivalent in B.H/ ˝M . The same reasoning as in
Theorem 3.5 then shows that ı is cleft.
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Assume now that v is a unitary in B.pH/ ˝ L1.G/ implementing ıp and zu 2
B.H/ ˝ L1.G/ a unitary implementing ı. Assume that � is the 2-cocycle associated
to v, and z� the 2-cocycle associated to zu. Then it is easily seen that .p ˝ 1/zu is a z��-
representation implementing ıp . Hence � and z� are cohomologous, say z� D .X� ˝

X�/��.X/ where zu.p˝ 1/D v.1˝X/. Hence uD zu.1˝X�/ is an��-representation
implementing ı with u.p ˝ 1/ D v.

We can now generalise Theorem 3.5 to the infinite dimensional setting for continuous
projective representations. As mentioned, we will later then strengthen this and show that
this holds in fact in general.

Theorem 3.12. Let G be a compact quantum group. Then any continuous projective rep-
resentation is cleft.

Proof. Assume that ı W K.H/! K.H/ ˝ C.G/ is a continuous projective represent-
ation. Recall from Remark 2.11 that K.H/ı acts non-degenerately on H . Hence, as
K.H/ı is a (separable) C�-algebra of compact operators, we can find an ascending se-
quence pi of finite rank projections in K.H/ı converging strongly to 1. By Theorem 3.5
and Lemma 3.11, we can find a 2-cocycle� 2 L1.G/˝L1.G/ and��-representations
ui 2K.piH/˝ L

1.G/ such that ui implements ıpi and such that ui .pj ˝ 1/ D uj for
j � i . Then clearly the ui converge � -strongly to a unitary u 2 B.H/˝ L1.G/, and u
is an ��-representation implementing ı.

Let now ı W B.H/ ! B.H/ ˝ L1.G/ be a measurable projective representation
of G, and consider in this setting the averaging operator

Eı W B.H/! B.H/; x 7! .id˝ hG/ı.x/:

Then Eı is a normal conditional expectation on B.H/ı , and it is well known that then
necessarily B.H/ı is a (possibly infinite) direct sum of type I factors. In particular,
B.H/ı contains a minimal projection p, and ıp is then an irreducible projective rep-
resentation, meaning B.pH/ıp D Cp. This leads to the following.

Corollary 3.13. If G is of Kac type, then all measurable projective representations of G
are continuous, hence cleft.

Proof. Let ı WB.H/!B.H/˝L1.G/ be a measurable projective representation of G.
If pi are a maximal set of orthogonal minimal projections in B.H/ı , then each ıpi is an
irreducible projective representation. By [14, Corollary 5.2], it follows that each piH is
finite dimensional, and in particular each ıpi is continuous. Since K.H/ is the directed
union of all K.qH/ with q a finite sum of pi , it follows that ı is continuous, and in
particular cleft.

Recall now that any compact quantum group allows a maximal compact quantum
subgroup of Kac type [38, Appendix A.1]. We will slightly modify this construction as
follows.
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Lemma 3.14. Let G be a compact quantum group. Let p be the maximal properly infin-
ite projection of M D L1.G/, and put q D 1 � p. Then qM defines a von Neumann
algebraic compact quantum group of Kac type with coproduct �q.x/ D �.x/.q ˝ q/.

We call qM the normal Kac quotient of M .

Proof. Note that pM D ¹x 2 M j �.x�x/ D 0 for all normal tracial states �º. Since the
convolution product of two normal tracial states is still a normal tracial state, it follows
that � descends to a coproduct �q on qM D M=pM . We are to show that qM has an
invariant normal tracial state.

Note first that p is invariant under the scaling group and the unitary antipode. It fol-
lows that pM \ Pol.G/ is preserved under the antipode, hence Pol.H/ WD qPol.G/ Š
Pol.G/=Pol.G/ \ pM is a Hopf �-algebra with respect to �q . As it spanned by matrix
coefficients of finite dimensional corepresentations, it defines indeed a compact quantum
group H. As Pol.H/ has a separating family of tracial states by construction, it follows
that H must be of Kac type.

Write � W Pol.G/! Pol.H/ for the natural quotient map, and consider N D L1.H/.
As H is a compact quantum subgroup of G, we have a normal coaction ˛ WM !M ˝N

restricting to .id ˝ �/� on Pol.G/. As the Haar state of H is tracial, ˛ descends to a
normal coaction ˛q W qM ! qM ˝N . Moreover, we have

.�q ˝ id/˛q D .id˝ ˛q/�q : (3.3)

LetE W qM ! qM be given byE.x/D .id˝ hH/˛q.x/, for all x 2 qM , where hH 2N�
is the Haar state for H. Since E is normal and E.x/ D hH.x/1 for x 2 Pol.H/, we have
by � -weak density of Pol.H/ in qM that there exists a normal state hqM on qM with
E.x/ D hqM .x/1, for all x 2 qM . From (3.3), it then easily follows that hqM is left
invariant, i.e., .id ˝ hqM /.�q.x// D hqM .x/, for all x 2 qM . As the unitary antipode
of M descends to qM , we also have that qM has a right invariant normal state, hence
.qM;�q/ defines a compact quantum group in its own right. It is then clear that .qM;�q/
in fact equalsL1.H/, and in particular defines a compact quantum group of Kac type.

We are now ready to prove the main theorem of this section.

Theorem 3.15. Let G be a compact quantum group. Then all measurable projective rep-
resentations of G are cleft.

Proof. Let ı WB.H/!B.H/˝L1.G/ be a measurable projective representation of G.
To show that ı is cleft, we may by the discussion before Corollary 3.13 assume that ı is
ergodic. As we are assuming that C.G/ is separable, it then follows in particular that
H is separable. We can then moreover find a unique normal state ˆ on B.H/ such that
ˆ.x/1 D Eı.x/ for all x 2 B.H/. We necessarily have that ˆ � Tr, with Tr the usual
trace of B.H/.

Let e be a minimal projection in B.H/. It is sufficient to show that ı.e/ and e˝ 1 are
unitarily equivalent in B.H/˝M , as we can then proceed as in Theorem 3.5.
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Let p be the (central) maximal properly infinite projection of L1.G/, and put q D
1 � p. We are to show that ı.e/.1 ˝ p/ � e ˝ p and ı.e/.1 ˝ q/ � e ˝ q, where �
denotes Murray–von Neumann equivalence.

To show that ı.e/.1 ˝ p/ � e ˝ p, let us show first that ı.e/.1 ˝ p/ is properly
infinite. Assume this were not the case. Then there exists a non-zero semifinite normal
tracial weight � on pL1.G/ with .Tr ˝ �/.ı.e/.1 ˝ p// < 1. But the left hand side
is larger than .ˆ˝ �/.ı.e/.1˝ p// D ˆ.e/�.p/, which is infinite since p is maximally
properly infinite andˆ is faithful. This contradiction shows that ı.e/.1˝p/ is necessarily
properly infinite. Since ı.e/.1 ˝ w/ ¤ 0 for any non-zero w, again using faithfulness
ofˆ, it follows that the properly infinite projections ı.e/.1˝ p/ and e˝ p have the same
central support 1˝ p, and hence ı.e/.1˝ p/ � e ˝ p.

To show that also ı.e/.1˝ q/ � e ˝ q, we note that x 7! ı.x/.1˝ q/ defines a pro-
jective representation of the Kac type compact quantum group .qL1.G/;�q/. By Corol-
lary 3.13 we have that this projective representation is necessarily cleft, which implies that
ı.e/.1˝ q/ � e ˝ q.

3.2. Measurable �-representations

We recall some of the results of [14], where by Theorem 3.15 we can restrict to the cleft
case.

Definition 3.16. Let G be a compact quantum group and� a 2-cocycle on G. Let .u;Hu/
be a measurable�-representation of G. A (closed) subspace E �H is called u-invariant
if .pE ˝ 1/u.pE ˝ 1/D u.pE ˝ 1/, where pE denotes the orthogonal projection fromH

onto E. We say that u is irreducible if the only u-invariant subspaces are .0/ and Hu, and
we say that u is indecomposable if H cannot be written as a direct sum of two non-zero
u-invariant subspaces.

If .v; Hv/ is another �-representation, an intertwiner between u and v is a linear
bounded operator T W Hu ! Hv such that .T ˝ 1/u D v.T ˝ 1/. The space of all inter-
twiners between u and v is denoted by HomG.u; v/. We write EndG.u/ if u D v.

We say that .u; Hu/ and .v; Hv/ are (unitary) equivalent if HomG.u; v/ contains a
unitary operator.

It is a straightforward computation, using that u and v are unitary, to show that T � 2
HomG.v;u/whenever T 2HomG.u;v/. Then clearly EndG.u/ is a von Neumann algebra.

Similar definitions can be stated for ��-representations.

Definition 3.17. We denote by Irr.G; �/ and by Irr.G; ��/ the set of all equivalence
classes of irreducible �-representations of G and the one of irreducible ��-representa-
tions of G, respectively.

If x 2 Irr.G;�/ is such a class, we denote by ux 2B.Hx/˝L
1.G/ a representative

of x, whereHx denotes the Hilbert space on which ux acts. We put nx WD dim.Hx/, where
possibly nx D 1. Notice that these notations are similar to the ones used for ordinary
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representations of G, so that the context will explain in which situation the notations are
used.

For further use, let us note here that if � is a 2-cocycle for G, then �� is a 2-cocycle
for Gop D .C.G/op; �/. Hence all arguments valid for �-representations are also valid
for unitary ��-representations.

Another way to link up �-representations with ��-representations is given by the
following result.

Lemma 3.18. Let G be a compact quantum group and � a 2-cocycle on G. Let u 2
B.H/˝L1.G/ be a (measurable)��-representation onH , and put ı D ıu W B.H/!
B.H/˝ L1.G/ as in (3.1). With T D B.H/, the unitary operator VT 2 B.L2.T //˝

C.G/ implementing the action ı (recall Remark 2.14) can then be written as VT D
u13u

ı
23 2 T ˝ T

op ˝C.G/, where uı is an�-representation implementing ı in the sense
of (3.2).

Proof. We have by construction that ı.t/ D u.t ˝ 1/u�, for all t 2 T . On the other hand,
we have by Remark 2.14 that there exists a canonical unitary operator VT 2 B.L2.T //˝

C.G/ implementing ı, that is, ı.t/D VT .t ˝ 1/V �T , for all t 2 T . Hence, for all t 2 T we
write the following, upon identifying T ˝ T op Š B.L2.T //:

V �T u13.t ˝ 1˝ 1/ D V
�
T ı.t/13 u13 D .t ˝ 1˝ 1/V

�
T u13;

which shows that there exists a unitary operator uı 2 T op ˝ C.G/ such that VT D u13uı23.
As VT is a corepresentation, it is easily seen that uı must necessarily be an �-representa-
tion. Finally, we have by [43, Proposition 3.7.3] that .JT ˝ yJG/VT .JT ˝ yJG/ D V �T .
Since yJG implements the unitary antipode R, and since for x 2 T op we have JT .1 ˝
x/JT D x� ˝ 1 by definition, it then follows that for x 2 T op we have 1 ˝ .uı/�.x ˝
1/uı D V �T .1˝ x ˝ 1/VT D ı.x/32.

Corollary 3.19. There exists a canonical element X� 2 L1.G/ such that

uı D .j ˝R/.u/.1˝X��/

for all ��-representations. Moreover, X� is then a coboundary between � and the 2-
cocycle z� D .R˝R/��21, so z� D .X�� ˝X

�
�/��.X�/. We obtain in particular a one-

to-one correspondence between �-representations and ��-representations by the map
u 7! uı D .j ˝R/.u/.1˝X��/.

Note that the fact that � and z� are canonically coboundary equivalent holds in the
general context of locally compact quantum groups, see [13, Proposition 6.3 (iii)], but we
can give in our setting an easier, more direct proof. It can be shown that the coboundary
element obtained here indeed coincides with the one from [13, Proposition 6.3 (iii)], but
we refrain from showing this explicitly.
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Proof. If u is an ��-representation, it is easily seen that uı and .j ˝ R/.u/ both imple-
ment the same left coaction on B.H/op, hence by Note 3.10 we have uı D .j ˝R/.u/.1
˝ X�u / for some unitary Xu. It is also easily seen that ı.j˝R/.u/ is cleft with associated
2-cocycle z�, showing that Xu is a coboundary between � and z�.

It remains to show that Xu is independent of u. But by construction, it is easily
shown that .u ˚ v/ı D uı ˚ vı. It then follows that Xu D Xu˚v D Xv for any two
��-representations u; v. Namely, by the previous discussion we have .j ˝ R/.u/ D
uı.1 ˝ Xu/, .j ˝ R/.v/ D vı.1 ˝ Xv/ and .j ˝ R/.u ˚ v/ D .u ˚ v/ı.1 ˝ Xu˚v/,
hence

uı.1˝Xu/˚ v
ı.1˝Xv/ D .j ˝R/.u/˚ .j ˝R/.v/ D .j ˝R/.u˚ v/

D .u˚ v/ı.1˝Xu˚v/ D .u
ı
˚ vı/.1˝Xu˚v/

D uı.1˝Xu˚v/˚ v
ı.1˝Xu˚v/:

Multiplying both sides of this equation by .1 ˝ X�u / on the right, we obtain that
uı ˚ vı.1˝XvX

�
u / D u

ı.1˝Xu˚vX
�
u /˚ v

ı.1˝Xu˚vX
�
u /, hence Xu˚vX�u D 1 and

XvX
�
u D Xu˚vX

�
u ; which yields Xu˚v D Xu and Xv D Xu˚v as claimed.

Lemma 3.20 (Twisted Schur’s lemma). If .u; Hu/ and .v; Hv/ are two irreducible �-
representations (resp. ��-representations) of G, then either u is not unitary equivalent
to v and HomG.u; v/ D .0/; or u is unitary equivalent to v and HomG.u; v/ is a 1-
dimensional subspace of B.Hu;Hv/. In particular, EndG.u/ D C, and u is irreducible if
and only if u is indecomposable.

Proof. Let us prove this for ��-representations, the result for �-representations then fol-
lows by considering .C.G/op; �/.

Let u be an ��-representation, and let E � Hu be an invariant closed subspace. Let
pE be the projection ontoE. Let ! be a faithful normal state on B.H/. By possibly repla-
cing ! by .! ˝ hG/ıu, we may assume that .! ˝ id/ıu.x/D !.x/1. The operator Vıu on
L2.B.H/; !/˝ L2.G/ sending ƒ!.x/˝ƒ.a/ to .ƒ! ˝ƒ/.ıu.x/.1˝ a// is a corep-
resentation implementing ıu by ıu.x/ D Vıu.x ˝ 1/V

�
ıu

. Then the invariance of E gives
that .pE ˝ 1/ıu.pE / D ıu.pE /, which implies .pE ˝ 1/Vıu.pE ˝ 1/ D Vıu.pE ˝ 1/.
But it is well known that this implies pE ˝ 1 commutes with Vıu . In particular, ıu.pE /D
pE ˝ 1, so pE ˝ 1 commutes with u.

It is now immediate that u is indecomposable if and only if it is irreducible, and that
for u; v irreducible one has that HomG.u; v/ is either 0- or one-dimensional, the latter
case occurring if u and v are unitarily equivalent.

Lemma 3.21. Let G be a compact quantum group and � a 2-cocycle on G. Let .u;Hu/
and .v;Hv/ be two measurable �-representations of G.

(i) If T WHu!Hv is a linear bounded operator, then the bounded linear operator
S WD .id ˝ hG/.v

�.T ˝ 1/u/ lies in HomG.u; v/. It is called average inter-
twiner with respect to T .
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(ii) Every �-representation u of G decomposes into a direct sum of irreducible �-
representations.

Proof. (i) Assume that T 2B.Hu;Hv/. Clearly the linear operator S D .id˝ hG/.v
�.T

˝ 1/u/ is a well-defined bounded operator. By definition of �-representation, we have

.id˝ ��/.u/ D u12u13 and .id˝ ��/.v/ D v12v13;

which, using the definition of ��, can be written as

.id˝�/.u/ D .1˝��/u12u13 and .id˝�/.v/ D .1˝��/v12v13:

Apply the unital �-homomorphism .id˝�/ to v�.T ˝ 1/u,

.id˝�/.v�.T ˝ 1/u/ D .id˝�/.v�/.T ˝ 1/.id˝�/.u/

D v�13v
�
12.1˝�/.T ˝ 1˝ 1/.1˝�

�/u12u13

D v�13v
�
12.T ˝ 1˝ 1/u12u13:

Next, the G-invariance of the Haar state of G yields that

.id˝ hG ˝ id/..id˝�/.v�.T ˝ 1/u// D S ˝ 1:

Also, we have

.id˝ hG ˝ id/.v�13v
�
12.T ˝ 1˝ 1/u12u13/

D v�12..id˝ hG/.v
�.T ˝ 1/u//1u12

D v�.S ˝ 1/u

and the conclusion follows.
(ii) If u is an �-representation, then the averaging operator B.H/ ! EndG.u/ D

B.H/ıu sending T to .id˝ hG/.u
�.T ˝ 1/u/ is a normal conditional expectation onto

EndG.u/, as already observed, hence EndG.u/ is a direct sum of type I -factors, proving
that u is a direct sum of irreducible �-representations.

Again, a similar statement holds for ��-representations.

Remark 3.22. Let ı W B.H/! B.H/˝L1.G/ be a measurable projective representa-
tion onH with implementing unitary u. By the argument used in point (ii) of Lemma 3.21,
one has a one-to-one correspondence between the set of all ı-invariant projections in
B.H/ and the u-invariant subspaces of H . Accordingly, ı is ergodic if and only if u
is irreducible. In particular, ı is a torsion action of projective type (recall Theorem-Defini-
tion 2.19) if and only if u is finite dimensional and irreducible.

To any 2-cocycle � one can associate a canonical �-representation.

Theorem-Definition 3.23 (Projective regular representation). Let G be a compact quan-
tum group and � a 2-cocycle on G. Defining V � D �VG , the following properties hold:
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(i) For all x 2 L1.G/ and � 2 L2.G/ we have V �.ƒ.x/˝ �/D ��.x/.�G ˝ �/.

(ii) For all x 2 L1.G/ we have ��.x/ D V �.x ˝ 1/V �G .

(iii) The following identity holds: .id˝��/.V
�/D V �12V

�
13, so V � 2B.L2.G//˝

L1.G/ is an �-representation.

(iv) The following pentagonal equation holds: V �12V
�
13.VG/23 D V

�
23V

�
12.

The unitary V � is called right projective regular representation of G on L2.G/ with
respect to � or simply right �-regular representation of G on L2.G/.

Remark 3.24. Similarly, defining W � D WG�
�, we have that .W �/�.� ˝ ƒ.x// D

��.x/.� ˝ �G/, for all x 2L1.G/ and � 2L2.G/. For all x 2L1.G/we have ��.x/D
.W �/�.1˝ x/WG and the pentagonal equation .WG/12W

�
13W

�
23 D W

�
23W

�
12. Moreover,

the following identity holds: .��� ˝ id/.W �/DW �
13W

�
23, so†W �† is an��-projective

representation.
The unitary W � is called left projective regular representation of G on L2.G/ with

respect to � or simply left ��-regular representation of G on L2.G/.

The following lemma follows from direct computations by using the relations from
Theorem 2.6.

Lemma 3.25. Let � be a 2-cocycle for G. Given the canonical Kac system, .VG; UG/,
associated to G, the following identities hold:

(i) . zVG/12.V
�/13. zVG/

�
12 D .V

�/13.VG/23.

(ii) .V �/12. zVG/23 D . zVG/23.V
�/12.

Lemma 3.26. Let G be a compact quantum group and � a 2-cocycle on G. We have

L1.G/ Š span� -weakly
¹.�˝ id/.V �/ j � 2 B.L2.G//�º

D span� -weakly
¹.id˝ �/..W �/�/ j � 2 B.L2.G//�º:

Proof. Let us show the first identification. The second one follows analogously. Given
x;y 2L1.G/ consider the coordinate linear functional!x�G ;y�G

2B.L2.G//� and write
the following:

h.!x�G ;y�G
˝ id/.V �/.�/; � 0i D hV �.x�G ˝ �/; y�G ˝ �

0
i

D h��.x/.�G ˝ �/; y�G ˝ �
0
i

D h.y� ˝ 1/��.x/.�G ˝ �/; �G ˝ �
0
i

D h.hG ˝ id/..y� ˝ 1/��.x//�; � 0i;

for all �; � 0 2 L2.G/. Hence, .!x�G ;y�G
˝ id/.V �/ D .hG ˝ id/..y� ˝ 1/��.x//, for

all x; y 2 L1.G/. It is enough to show that the linear span of these elements is � -weakly
dense in L1.G/.

As hG is a faithful normal state onL1.G/, it is in fact sufficient to show that the linear
span of elements of the form .hG˝id/.��.x/.y�˝1// is � -weakly dense inL1.G/. But
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by the cancellation property of � we find immediately that ��.L1.G//.L1.G/˝ 1/ is
� -weakly dense in L1.G/˝ L1.G/, which yields the conclusion.

A standard argument by combining the previous lemma and Lemma 3.21 yields the
following Peter–Weyl theorem.

Theorem 3.27 (Twisted Peter–Weyl theorem I). Let G be a compact quantum group and
� a 2-cocycle. The right projective regular representation .V �;L2.G// contains all irre-
ducible �-representations of G in its direct sum decomposition.

Following [14] we have a twisted version of the Schur’s orthogonality relations. This
theorem follows straightforwardly by applying Lemma 3.21 (i) with respect to rank one
operators.

Theorem 3.28 (Twisted Schur’s orthogonality relations). Let G be a compact quantum
group and� a 2-cocycle on G. Let ¹uxºx2Irr.G;�/ be a complete set of mutually inequival-
ent, irreducible �-representations, with fixed bases for the associated Hilbert spaces Hx .
For each x 2 Irr.G;�/ there exists a positive trace class operator F x 2B.Hx/ with zero
kernel such that the following orthogonality relations hold:

hG..u
y

kl
/�uxij / D ıxyıljF

x
ik ;

for every x; y 2 Irr.G; �/, i; j D 1; : : : ; nx and k; l D 1; : : : ; ny .

The matrix F x is nothing but the density matrix of the ıux -invariant state 'x with
'x.T / D .hG ˝ id/ı.T / for T 2 B.H/, so 'x D T r.F x�/.

Given x 2 Irr.G; �/ and the corresponding positive operator F x 2 B.Hx/ from the
previous theorem, we fix an orthonormal basis ofHx , ¹�xi ºiD1;:::;nx , that diagonalises F x .
If F xj 2 RC denotes the eigenvalue of F x for the eigenvector �xj , for every j D 1; : : : ; nx ,
then the orthogonality relations become hG..u

y

kl
/�uxij / D ıxyıkiıljF

x
k

. Following these
notations, we obtain as an immediate corollary of the previous two theorems the following
decomposition for L2.G/.

Theorem 3.29 (Twisted Peter–Weyl theorem II). Let G be a compact quantum group and
� a 2-cocycle on G. We have a unitary transformation L2.G/ Š

L
x2Irr.G;�/Hx ˝Hx

such that ƒ.uxij / 7!
p
F xi �

x
i ˝ �

x
j , for all j D 1; : : : ; nx , x 2 Irr.G; �/.

3.3. Continuous �-representations and 2-cocycles of finite type

We now consider a special type of measurable 2-cocycles.

Definition 3.30. We say that a 2-cocycle � on G is of finite type if there exists a finite
dimensional �-representation.

Not all 2-cocycles � are of finite type, see, e.g., [14, Section 8] for an example of a
2-cocycle which is not of finite type. These types of 2-cocycles will however be sufficient
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for our needs. The following lemma shows that being of finite type is an ambidextrous
notion.

Lemma 3.31. A 2-cocycle� is of finite type if and only if there exists a finite dimensional
��-representation.

Proof. This follows immediately from Corollary 3.19.

Recall the notation introduced in (3.1) and (3.2).

Definition 3.32. Let � 2 L1.G/ ˝ L1.G/ be a measurable 2-cocycle. We say that a
measurable �-representation (resp. ��-representation) u is continuous if ıu is a continu-
ous right (resp. left) projective representation.

Note that this notion is strictly weaker than demanding that u 2M.K.H/˝ C.G//,
which is a too strong condition in practice. Note also that any �-representation on a finite
dimensional Hilbert space is automatically continuous.

We will show that continuous �-representations can only exist if � is of finite type,
and that then all �-representations are continuous.

Theorem 3.33 (Twisted Maschke’s theorem). Let G be a compact quantum group and �
a 2-cocycle on G. Let .u;Hu/ and .v;Hv/ be two continuous �-representations of G.

(i) If T W Hu ! Hv is a linear compact operator, then the average intertwiner S
with respect to T is again compact.

(ii) The C�-algebra Du DK.Hu/
ıu acts non-degenerately onHu, that is, ŒDuHu�

D Hu.

(iii) If u is irreducible, then u is finite dimensional.

(iv) Every continuous �-representation of G decomposes into a direct sum of finite
dimensional irreducible �-representations.

Proof. (i) Assume that u is a continuous �-representation. If then T 2 K.Hu/, we have
that the average S D .id˝ hG/.u

�.T ˝ 1/u/ D .hG ˝ id/ıu.T / 2 K.H/. This proves
the first point when u D v.

(ii) This is just a special case of the observation in Remark 2.11.
(iii) Since K.H/ı is necessarily non-trivial when H is infinite dimensional, it fol-

lows that u can only be irreducible when H is finite dimensional. A general continuous
�-representation u must then be a direct sum of finite dimensional (and hence continu-
ous) �-representations. It then also follows immediately that if u; v are continuous �-
representations, an average intertwiner with respect to an operator in K.Hu;Hv/ remains
in this space, proving the first point in general.

(iv) The last point follows from (iii) and Lemma 3.21 (ii).

Note that the previous lemma shows in particular that the class of continuous �-
representations is stable under direct sums, which is not immediately obvious. By Re-
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mark 3.22, we moreover see that bG is projective torsion-free if and only if all 2-cocycles
of finite type on G are cohomologous to the trivial one.

Theorem 3.34. Let G be a compact quantum group, and let � be a 2-cocycle. Then the
following are equivalent:

(i) There exists a continuous �-representation.

(ii) � is of finite type.

(iii) All irreducible �-representations are finite dimensional.

Moreover, if one (hence any) of these conditions hold, then all�-representations of G are
continuous.

Proof. The implication (i)) (ii) follows from Theorem 3.33 (iv). The implication (ii))
(iii) follows from [14, Proposition 4.3]. The implication (iii)) (i) is trivial, and the final
statement follow from Lemma 3.21 (ii).

Corollary 3.35. Assume that � 2 C.G/˝ C.G/ is a continuous 2-cocycle. Then � is of
finite type.

Proof. In this case, we have that the right regular projective representation V � 2

M.K.L2.G//˝ C.G//, so a fortiori the associated projective representation is continu-
ous. By the previous theorem, this forces � to be of finite type.

Assume now again that � is a general measurable 2-cocycle. Then clearly

���� W L
1.G/! L1.G/˝ L1.G/; x 7! ��.x/��

defines a coassociative coproduct on L1.G/. It follows from [13] that .L1.G/;����/
is again a locally compact quantum group. It needs not necessarily be compact, as the
example in [11] shows. However, one has the following theorem as a particular case of
[14, Proposition 4.3.2].

Theorem 3.36. Let G be a compact quantum group and let � be a 2-cocycle. Then the
couple .L1.G/;����/ defines a compact quantum group if and only if� is of finite type.

We will use the notation .L1.G�/;�G�
/ D .L1.G/;����/. We denote C.G�/ �

L1.G�/ for the associated reduced C�-algebra, and Pol.G�/ for the polynomial Hopf
�-subalgebra.

By standard von Neumann algebra theory [41, Theorem IX.1.14], there is a canonical
identification L2.G�/ Š L

2.G/ intertwining in particular the modular conjugations JG�

and JG and the left action of L1.G/. In the following, we will then simply identify
L2.G�/ Š L

2.G/.

Remark 3.37. An interesting situation where G� is always compact is when G is of Kac
type (see [14, Proposition 5.1]). More precisely, by [14, Proposition 4.3] it follows that
any 2-cocycle of a compact quantum group of Kac type is of finite type.
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In [14, Proposition 4.3], the language of Galois co-objects is used (in the measurable
setting), of which .L1.G/; ��/ is a particular case, see [14, Example 1.20]. Although
we are able to avoid this more abstract theory in the measurable setting, it is necessary
to use this formalism in the C�-algebraic and algebraic setting, due to the fact that most
2-cocycles are in practice not cohomologous to continuous or algebraic ones, even when
of finite type, and that in general one can expect C.G�/ ¤ C.G/ inside L1.G/.

Let us provide now some more information on the relation between Pol.G/ and
Pol.G�/.

Definition 3.38. Let � be a 2-cocycle of finite type. We denote by Pol.G; �/ � L1.G/
the linear span of matrix coefficients of all irreducible �-representations of G, and by
C.G; �/ its normclosure.

By Lemma 3.26 and Theorem 3.33 (iv), it follows that Pol.G; �/ is � -weakly dense
in L1.G/.

Contrary to the ordinary case when � D 1˝ 1, Pol.G; �/ is not a Hopf �-algebra.
More precisely, it is a coalgebra but not an algebra. However, Pol.G;�/will be a Pol.G�/-
Pol.G/-bimodule (and in fact a bimodule coalgebra) such that

Pol.G; �/�Pol.G; �/ D Pol.G/; Pol.G; �/Pol.G; �/� D Pol.G�/:

Indeed, if u is a finite dimensional �-representation and v a finite dimensional G-repres-
entation, then u13v23 is a finite dimensional �-representation, showing that Pol.G; �/ is
a right Pol.G/-module. We obtain then for example the equality Pol.G;�/�Pol.G;�/ D
Pol.G/ as clearly the left hand side is a � -weakly dense �-subbialgebra of L1.G/. The
analogous properties for C.G; �/ then follow immediately.

From Theorem 3.28, we also deduce the following.

Corollary 3.39. Let G be a compact quantum group and � a 2-cocycle of finite type
on G. The set of matrix coefficients of all representatives of irreducible�-representations
of G (with respect to fixed bases) form a basis for Pol.G; �/.

3.4. Example: q-deformations of compact connected Lie groups

In order to illustrate the previous theory, let us study the projective representations of q-
deformations of connected semisimple compact Lie groups. If G is such a group which
is in addition simply connected, and q > 0, we denote by Gq the Drinfeld–Jimbo q-
deformation of G, which is a compact quantum group [31, Section 2.4]. We put G1 WD G.

First of all, it is important to say that the measurable 2-cohomology of Gq , i.e., the
set of all 2-cocycles of Gq up to coboundaries, can be hard to determine. Indeed, this is
already the case for Gq WD SUq.2/, for which the measurable 2-cohomology contains at
least 3 elements [15], but where to the best knowledge of the authors, it is open to decide
whether this is sharp.

Therefore, it is more reasonable to consider projective representations of Gq with
respect to a finite type 2-cocycle. Then we restrict our attention to irreducible ones by
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Theorem 3.33, which are finite dimensional. In this case, we recall that 2SUq.2/ is torsion-
free [47]. In particular, 2SUq.2/ is projective torsion-free, which in our language means
that all 2-cocycles of finite type on SUq.2/ are cohomologous to the trivial one. In other
words, all finite dimensional irreducible projective representations of SUq.2/ are trivial.
This example can be generalised as follows.

Theorem 3.40. Let G be a connected simply connected semisimple compact Lie group.
Given a parameter q > 0, cGq is torsion-free.

Proof. This is shown in [22, Theorem 5.3].

Related to SUq.2/ there is the q-deformation of the rotation group, SOq.3/. As indic-
ated in Examples 2.18, 2SOq.3/ is not projective torsion-free and its projective repres-
entation can be viewed as a q-deformation of the projective representation of SO.3/
associated to its universal cover SU.2/. Moreover, this projective representation is unique
up to equivariant Morita equivalence (Example 2.21). As in the classical situation, one has
SOq.3/ D SUq.2/=Z2 [36]. This example can be generalised as follows.

Let G be a connected semisimple compact Lie group and q > 0. We denote by zG
the universal cover of G. Recall that there exists a central (finite) subgroup � < zG such
thatG Š zG=� . Observe thatZ. zG/ � Z.M.c0.

bzGq///. Hence, given any central subgroup
� < Z. zG/, it is legitimate to consider the quotient quantum group zGq=� . In this way, we
can define q-deformations of connected semisimple compact Lie groups which are not
necessarily simply connected by putting Gq WD . zG=�/q WD zGq=� .

Coming back to the classical case SO.3/Š SU.2/=Z2, recall that (finite dimensional)
irreducible representations of SU.2/ are classified by positive integers. The following is a
well-known fact from representation theory of compact Lie groups. If x.n/ 2 Irr.SU.2//
with n an odd positive integer, then x.n/ descends to an ordinary (finite dimensional)
representation of SO.3/. If x.n/ 2 Irr.SU.2// with n an even positive integer, then x.n/
descends to a projective (finite dimensional) representation of SO.3/. This establishes a
one-to-one correspondence between irreducible projective representations of SO.3/ and
ordinary irreducible representations of SU.2/. The same correspondence holds for con-
nected semisimple compact Lie groups. The following theorem generalises these results
for q-deformations.

Theorem 3.41. Let G be a connected non-simply connected semisimple compact Lie
group. Given a parameter q > 0, bGq is not projective torsion-free and there is a one-
to-one correspondence between finite dimensional irreducible representations of zGq and
finite dimensional irreducible projective representations of Gq .

Proof. First of all, since � is a central subgroup of zGq , it is a normal quantum subgroup
of zGq . Therefore, the left coset space zGq=� defines a compact quantum group. Moreover,
one has that the dual of zGq=� is a discrete quantum subgroup of the dual of zGq (cf. [49,
Proposition 2.1]), i.e., C. zGq=�/ embeds into C. zGq/ intertwining the co-multiplications.
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Assume that ı WB.H/!B.H/˝C.Gq/ is a finite dimensional irreducible projective
representation of Gq D zGq=� . By composing with the inclusion C. zGq=�/ � C. zGq/, we
obtain a finite dimensional irreducible projective representation of zGq , say zı W B.H/!
B.H/ ˝ C. zGq/. However, by virtue of Theorem 3.40, the dual of zGq is in particular
projective torsion-free. Hence there exists a finite dimensional irreducible representation
u of zGq such that zı D Ad.u/.

Conversely, assume that u 2 B.H/˝ C. zGq/ is a finite dimensional irreducible rep-
resentation of zGq . If we denote by � W C. zGq/� C.�/ the surjective �-homomorphism
realising � as a subgroup of zGq , then it is clear that .id˝ �/.u/ is a finite dimensional
representation of � . But since the ug for g 2 � then commute with all .id˝ !/.u/ for
! 2 C. zGq/

�, by centrality of � , it follows by irreducibility of u that .id˝ �/.u/ D 1˝ c
for some group-like unitary in C.�/. In particular, .id˝ �/.u.x ˝ 1/u�/ D x ˝ 1 for all
x 2 B.H/, showing that ı WD Ad.u/ is a well-defined �-homomorphism defining a finite
dimensional irreducible projective representation of Gq .

4. Twisted Baaj–Skandalis duality

We study the construction of a twisted crossed product by a compact quantum group based
on the notion of twisted dynamical system. Twisted C�-algebras associated to classical
locally compact groups and, more generally, twisted crossed products with respect to a
2-cocycle have been studied in the literature by several hands (standard references are [7,
34]). The more general framework of locally compact quantum groups has been addressed
for instance in [32,51], see also the work of S. Vaes and L. Vainerman in the von Neumann
algebraic setting [44].

In this paper, we focus on the case of compact quantum groups. First, we relate the reg-
ularity of a 2-cocycle as defined in [32] to our notion of being of finite type. Then we study
twisted crossed products coming from projective representations. We end by considering
a twisted version of the Takesaki–Takai duality and the Baaj–Skandalis duality.

The contents of this section have been initially inspired by [37].

4.1. Twisted group C�-algebras and regularity

Definition 4.1. Let G be a compact quantum group and � a measurable 2-cocycle on G.
The twisted reduced C�-algebra of G with respect to � is the C�-algebra defined by

C �r .G; �/ � c0.bG; �/ WD C �h.id˝ �/.V �/ j � 2 B.L2.G//�i � B.L2.G//:

The following result can be found in [8, Lemma 4.9] when G is discrete, but is valid
for general regular locally compact quantum groups as was already remarked in [32]. As
we are using a slightly different setup (on which we will comment after the lemma) we
include a proof for G compact, following a different path.
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Lemma 4.2. We have an equalityC �r .G;�/D Œ¹.id˝ �/.V
�/ j �2B.L2.G//�º�. More-

over, C �r .G; �/ acts non-degenerately on L2.G/.

Proof. By a direct computation, we have .id˝ �/.V �/ƒ.x/ D ƒ..id˝ �/.��.x/// for
x 2 L1.G/ and � 2 L1.G/�. By Lemma 3.26 and the fact that V � 2 B.L2.G// ˝
L1.G/, we have that

Œ¹.id˝ �/.V �/ j � 2 B.L2.G//�º�

D Œ¹.id˝ !ƒ.uyrs/;�G
/.V �/ j y 2 Irr.G; �/; 1 � r; s � nyº:

But a direct computation using the twisted orthogonality relations in Theorem 3.28 shows
that with respect to the basis in Theorem 3.29 we have that

.F xr /
�1.id˝ !ƒ.uyrs/;�G

/.V �/.�xi ˝ �
x
j / D ıx;yıs;j �

x
i ˝ �

x
r : (4.1)

Hence Œ¹.id ˝ �/.V �/ j � 2 B.L2.G//�º� forms a C�-algebra acting non-degenerately
on L2.G/, and we moreover obtain the following corollary.

Corollary 4.3 (Twisted Peter–Weyl theorem III). Let G be a compact quantum group and
� a 2-cocycle. Then we have a C�-isomorphism C �r .G; �/ Š

Lc0
x2Irr.G;�/ K.Hx/.

Denoting l1.bG; �/ D L.G; �/ D C �r .G; �/00, we then also have that l1.bG; �/ ŠLl1

x2Irr.G;�/ B.Hx/.

Remark 4.4. It follows from Corollary 3.19 that there is a one-to-one correspondence
between projective representations of G and G�, where we assume that� is of finite type
and hence G� compact. First of all, ‚ WD �� is then easily seen to be a 2-cocycle of
finite type for G� with .G�/�� DG. If then u is a�-representation of G, it is also a‚�-
representation of G�, leading to the left projective G�-representation ıu.a/Du.a˝ 1/u�

for a 2 B.Hu/. By Corollary 3.19, we obtain a one-to-one correspondence between �-
representations of G� and ��-representations of G.

Remark 4.5. We can also relate the regular representations of G and G�. Indeed, since
L1.G/ D L1.G�/, we can canonically identify L2.G�/ and L2.G/, and by [13, Pro-
position 5.4] the right regular representation of the twisted quantum group is given by
��VG�

D.J ˝ yJX��/.�VG/
�.J ˝ yJ /. To see that we can use here the same� as before,

it is sufficient to calculate that .��VG�
/ı D �VG (after identifying L2.G/ with L2.G/

by J ), that is that VB.L2.G// D �
�
13.VG�

/13�23.VG/23, where B.L2.G// carries the co-
action Ad��VG�

. This can be verified using the techniques of [13]. Alternatively, one can
also follow more directly the proof of [14, Proposition 4.1.5].

In any case, from the above we immediately get that C �r .G�; �
�/ D JC �r .G; �/J .

Analogously, we have ��W �G�
D .X� yJ ˝ J /WG�

�. yJ ˝ J /.
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Remark 4.6. In [32, Theorem 2.1], a different twisted group C�-algebra is introduced,
which we will write C �r .�;G/ WD Œ.! ˝ id/.W ��/�. Indeed, by a similar computation to
Lemma 4.2, we obtain that

.F xs F
x
r /
�1=2.!ƒ.uyrs/;�G

˝ id/..W �/�/�xi ˝ �
x
j D ıx;yıi;r�

x
s ˝ �

x
j ;

so that also C �r .�; G/ forms a C�-algebra, which is isomorphic to the direct sumLc0
x2Irr.G;�/ K.Hx/, whose � -weak closure equals the commutant l1.bG; �/0. In fact,

using that V D . yJ ˝ yJ /W �21. yJ ˝ yJ /, we see that yJC �r .�;G/ yJ D C
�
r .G; z�/, with z�

as in Corollary 3.19. It hence follows (cf. [32, Proposition 3.12]) that C �r .�;G/ D
X� yJC

�
r .G; �/ yJX

�
�.

Example 4.7. Let us briefly relate the above construction to the classical setting. Let G
be a classical compact group. Let ! WG �G! S1 be a (measurable) 2-cocycle onG, that
is, !.x; y/!.xy; z/D !.x; yz/!.y; z/ for all x; y; z 2 G. By passing to a cohomologous
2-cocycle, we may without loss of generality assume that ! is normalized, so !.e; x/ D
1D !.x; e/ for all x 2 G. If � denotes the right regular representation ofG, then the right
!-regular representation of G on L2.G/ is the map

�! W G ! B.L2.G//; g 7! �!g , �!g .f /.x/ WD !.x; g/�g.f /.x/ D !.x; g/f .xg/,

for all f 2 L2.G/ and x 2 G. A direct computation shows that �! is a !-representation
ofG on L2.G/. The corresponding Peter–Weyl theory can be obtained in this context (for
instance, see [10] for more details). The twisted reduced C�-algebra of G with respect
to ! is defined as the C�-algebra C �r .G; !/ WD Œ

R
G
f .g/�!.g/dg j f 2 C.G/º�.

Let us now relate the notion of “being of finite type” to the regularity of a 2-cocycle.
This will be essential for the twisted Takesaki–Takai duality in the next section. For what
follows, we recall that C.V / WD Œ¹.id˝ �/.†V / j � 2 B.H/�º� for any V 2 B.H ˝H/.
Regularity of a multiplicative unitary was introduced by S. Baaj and G. Skandalis in [5].
By analogy to [5], we define regularity of � in terms of regularity of the unitary V �. We
will see (Remarks 4.10 below) that our notion of regularity for a 2-cocycle coincides with
the one by S. Neshveyev and L. Tuset in [32].

Definition 4.8. A 2-cocycle � is called regular if C.V �/ DK.L2.G//.

Theorem 4.9. Let G be a compact quantum group and� a (measurable) 2-cocycle on G.

(i) The set C.V �/C.V �/ is linearly dense in C.V �/. In particular, C.V �/ is an
algebra. Moreover, C.V �/ acts non-degenerately on L2.G/, so ŒC.V �/L2.G/�
D L2.G/.

(ii) The 2-cocycle � is regular if and only if � is of finite type.

(iii) We have span¹UGC.G/UG � C
�
r .G; �/º D K.L2.G// if and only if � is of

finite type.
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Proof. (i) Applying the definition of C.V �/ together with the pentagonal equation satis-
fied by V � from Theorem 3.23, we write the following:

span¹C.V �/C.V �/º

D span¹.id˝ �/.†V �/ � .id˝ �0/.†V �/ j �; �0 2 B.L2.G//�º

D span¹.id˝ �0 ˝ �/.†13V �13†12V
�
12/ j �; �

0
2 B.L2.G//�º

D span¹.id˝ �0 ˝ �/.†13†12V �23V
�
12/ j �; �

0
2 B.L2.G//�º

D span¹.id˝ �0 ˝ �/.†13†12V �12V
�
13.VG/23/ j �; �

0
2 B.L2.G//�º

D span¹.id˝ �0 ˝ �/.†23†13V �12V
�
13.VG/23/ j �; �

0
2 B.L2.G//�º

D span¹.id˝ �0 ˝ �/.†23V �32†13V
�
13.VG/23/ j �; �

0
2 B.L2.G//�º

D span¹.id˝ �0 ˝ �/.†23†23V �23†23†13V
�
13.VG/23/ j �; �

0
2 B.L2.G//�º

D span¹.id˝ �0 ˝ �/.V �23†23†13V
�
13.VG/23/ j �; �

0
2 B.L2.G//�º

.�/
D span¹.id˝ �00/.†V �/ j �00 2 B.L2.G//�º

D C.V �/;

where �00 2 B.L2.G//� is defined by �00.a/ WD .�0 ˝ �/.V �†.1 ˝ a/VG/, for all a 2
B.L2.G//; and .�/ follows from the fact that the vector space generated by these func-
tionals is dense in B.L2.G//�.

To see that C.V �/ acts non-degenerately, take � 2 .C.V �/L2.G//?. For every �;
� 0; x 2 L2.G/ we have 0 D h�; .id˝ !�;� 0.†V �/.x//i D h� ˝ �; †V �.x ˝ � 0/i. Since
†V � is a unitary in B.L2.G/ ˝ L2.G//, so surjective, the above equality implies
.C.V �/L2.G//? D .0/.

(ii) By Theorem 3.28, the set

¹.id˝ !ƒ.uy
kl
/;ƒ.a//.†V

�/ j y 2 Irr.G; �/; k; l D 1; : : : ; ny ; a 2 Pol.G/º

is dense in C.V �/. Given uxij 2 Pol.G; �/ we compute with the help of the twisted ortho-
gonality relations from Theorem 3.28 that for � 2 L2.G/

h�; .id˝ !ƒ.uy
kl
/;ƒ.a//.†V

�/ƒ.uxij /i D hƒ.u
y

kl
/˝ �; V �.ƒ.uxij /˝ƒ.a//i

D hƒ.u
y

kl
/˝ �;��.u

x
ij /.�G ˝ƒ.a//i

D

�
ƒ.u

y

kl
/˝ �;

� nxX
rD1

uxir ˝ u
x
rj

�
.�G ˝ƒ.a//

�
D

nxX
rD1

hG..u
y

kl
/�uxir /h�; �.u

x
rj /ƒ.a/i

D F xk ıx;yık;i h�; �.u
x
lj /ƒ.a/i;
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so with respect to the orthonormal basis of Theorem 3.29 we have

.F xk /
�1.id˝ !ƒ.uy

kl
/;ƒ.a//.†V

�/.F xi /
�1=2ƒ.uxij / D ıx;yık;i .F

x
l /
�1=2�.uxlj /ƒ.a/:

Assume now that � is regular. Taking a D 1, we see from the above that .id ˝
!ƒ.uy

kl
/;�G

/.†V �/ is of the form T xrs ˝ 1 for some non-zero operator T xrs with respect
to the model L2.G/ Š

L
x2Irr.G;�/Hx ˝Hx . As this operator needs to be compact, we

see that all nx need to be finite, hence � is of finite type.
Conversely, if � is of finite type, we see from the above computation (and the fact

that the operatorsƒ.b/ 7!ƒ.ba/ are bounded for a 2 Pol.G/) that C.V �/�K.L2.G//.
To see that this is an equality, it is sufficient to show that the commutant C.V �/0 D C.
Now if x 2 C.V �/0, then in particular x commutes with all .id˝ !ƒ.uy

kl
/;�G

/.†V �/,
and it follows from the above computation and (4.1) that x 2 l1.bG; �/. On the other
hand, the computation above also shows that then x 2 �.L1.G//0 D L1.G/, hence x 2
l1.bG;�/\L1.G/. But by Remark 4.6, this implies .W �/�.1˝ x/W � D 1˝ x, hence
����.x/ D 1˝ x and so x 2 C.

(iii) By (4.1) we see that C �r .G; �/ is formed by compact operators if and only if �
is of finite type. Hence span¹UGC.G/UG � C

�
r .G; �/º � K.L2.G// if and only if � is

of finite type. To see that this is an equality if � is of finite type, we can follow a similar
strategy as in (ii). Alternatively, conjugating with yJ and taking into account Remark 4.6,
we see that we have an inclusion C �r .�;G/JC.G/J � K.L2.G//, and this must be an
equality by the discussion following [32, Definition 2.9]. Conjugating back with yJ , we
see that span¹UGC.G/UG � C

�
r .G; �/º DK.L2.G//.

Remarks 4.10. (1) As follows from the end of the above proof, our notion of regu-
larity indeed coincides with the notion of regularity of a 2-cocycle as introduced
in [32, Definition 2.9].

(2) Up to unitary conjugation, our operator V � also coincides with the operator
†.V 121/

�† with V 121 as it appears in [3, Proposition 2.44]. It hence follows from
that result that � is regular if and only if G� is regular, and hence that G� is
never regular if � is not of finite type. It is unclear at the moment if in general
G� is semi-regular (this holds in all known cases). By [3, Proposition 2.44], this
is equivalent to K.L2.G// � C.V �/.

The following proposition is a straightforward adaptation of [32, Proposition 2.3] to
our setting.

Proposition 4.11. Let G be a compact quantum group and � a 2-cocycle. Then the twis-
ted reduced C�-algebra C �r .G; �/ is a right bG-C�-algebra with action ˛� defined by

˛�.x/ D †.V �/�.1˝ x/V �†;

for all x 2 C �r .G; �/.
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Proof. Given x 2 C �r .G; �/, assume without loss of generality that x WD .id˝ �/.V �/
for some � 2B.L2.G//�. Then, with the help of the pentagonal equation satisfied by V �

(see Theorem-Definition 3.23), we have ˛�.x/D .id˝ id˝ �/V �23.VG/13 2 �M.c0.bG/˝
C �r .G; �//, which shows that ˛� is well defined as a (injective) �-homomorphism
C �r .G; �/! �M.c0.bG/˝ C �r .G; �//. Next, we are going to show that ˛� defines an
action of bG on C �r .G; �/. On the one hand, since the elements of the form x D .id ˝
�/.V �/ 2 C �r .G; �/ with � 2 C.G/� are dense in C �r .G; �/, then the previous com-
putation shows also that the subspace ˛�.C �r .G; �//.c0.bG/ ˝ 1/ is dense in c0.bG/ ˝
C �r .G; �/. On the other hand, applying id˝ ˛� and y�˝ id to the above expression, we
obtain .id˝ ˛�/˛�.x/ D .id˝ id˝ id˝ �/V �34.VG/24.VG/14 D .y�˝ id/˛�.x/ by a
direct computation.

Remark 4.12. By the formula ˇ�.x/ WD .V �/�.1˝ x/V � for x 2 C �r .G; �/, we can
also view .C �r .G; �/; ˇ

�/ as a (left) bGcop-C�-algebra.

4.2. Twisted crossed products

In this section, we consider twisted crossed products, cf. again [32]. We start however
from the twisted side, and work our way back to the original compact quantum group. As
to spare the reader a battle with conventions, we spell out some of the details particular to
our setting.

Definition 4.13. A (measurable) left twisted dynamical system is the data .G; A; ı; �/
where G is a compact quantum group, � is a 2-cocycle of finite type on G, A is a C�-
algebra and ı W A! A˝ C.G�/ is left action of G�.

We write G
.ı;�/Õ A, and say that ı is a twisted action of G on A with respect to �

or simply that ı is an �-action of G on A. We say that .A; ı/ is a left �-G-C�-algebra if
moreover ı is injective.

Definition 4.14. Let .G; A; ı; �/ be a twisted dynamical system. The twisted reduced
crossed product ofA by G with respect to .ı;�/, denoted byA Ì

r;.ı;�/
G, is the C�-algebra

defined by

A Ì
r;.ı;�/

G WD C �h.id˝ �/ı.A/.1˝ C �r .G; �//i � LA.A˝ L
2.G//:

Note 4.15. To lighten the notation, we will omit the representation � appearing in the
definition of A Ì

r;.ı;�/
G. Note that our convention of writing G on the right in the crossed

product notation is in line with the notation followed, e.g., in [2].

Lemma 4.16. We have A Ì
r;.ı;�/

G D span¹ı.A/.1˝ C �r .G; �//º.

Proof. It is enough to show that

Œ.1˝ C �r .G; �//ı.A/� � Œı.A/.1˝ C
�
r .G; �//�: (4.2)
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But, using the implementation of �� D � �� in terms of VG and V �, the compatibility
of ı with � as a twisted action of G on A yields that

.1˝ .id˝ �/.V �//ı.a/ D .id˝ id˝ �/..ı ˝ id/ı.a/.1˝ V �//

D lim
X
i

ı.ai /.1˝ .id˝ � � ui /.V �//;

for all a 2 A and all � 2B.L2.G//�, where ı.a/D lim
P
i ai ˝ ui . This proves (4.2).

As a consequence, the mapsA!LA.A˝L
2.G// andC �r .G;�/!LA.A˝L

2.G//
given by a 7! ı.a/ and x 7! 1˝ x, send A and C �r .G;�/ respectively onto non-degener-
ate C�-subalgebras of M.A Ì

r;.ı;�/
G/.

Example 4.17. We note that both Definition 4.13 and Definition 4.14 are natural dual
versions of the classical framework. Let G be a classical compact group and A a unital
C�-algebra. Given a Borel measurable map ! W G � G ! U.A/, a !-action of G on A
is a map ˛ W G ! Aut.A/ such that ˛g1 ı ˛g2 D Ad!.g1;g2/ ı ˛g1g2 for all g1; g2 2 G;
!.x; y/!.xy; z/ D ˛x.!.y; z//!.x; yz/ for all x; y; z 2 G and !.x; e/ D 1 D !.e; x/
for all x 2 G. Consider the vector space of continuous functions on G with values in A
equipped with the usual point-wise operations,C.G;A/. We define the twisted convolution
product on C.G;A/ with respect to ! by

.f �
!
g/.x/ WD

Z
G

f .y/˛y.g.y
�1x//!.y; y�1x/dy;

for all f;g 2C.G;A/ and x 2G. We define the twisted involution onC.G;A/ with respect
to ! by

f
�
!.x/ WD !.x; x�1/˛x.f .x

�1/�/;

for all f 2 C.G; A/ and x 2 G. Straightforward computations show that C.G; A/ is a
�-algebra with the product and involution above. Next, by applying standard arguments
(analogous to the untwisted case) we find that .L2.G/˝H0; �; �!/ is a faithful covari-
ant !-representation of .A; ˛/, where � W A! B.L2.G/˝H0/ is such that �.a/.f ˝
�/.x/ WD .f ˝ �0.˛x�1.a//.�//.x/, for all a 2 A, f 2 L2.G/, � 2 H0, x 2 G; and
.�0; H0/ is any faithful representation of A. Thus we define the reduced twisted crossed
product by A Ì

r; .˛;!/
G WD .�; �!/.C.G;A//

k�kB.L2.G;H0// and one shows that this defini-
tion does not depend on the faithful representation �0. Alternatively, we have A Ì

r; .˛;!/
G

WD span¹˛.A/.1 ˝ C �r .G; !//º, where the action G ˛Õ A is viewed as a map ˛ W A!
M.A˝ C.G// ,! LA.A˝ L

2.G//.
Specially interesting is the case when ! is scalar valued (that is, ! takes its values on

S1 Š S1 � 1A), then ! is a usual (normalized) 2-cocycle on G and ˛ a group homomorph-
ism. In this case, we observe that these constructions yield the usual C�-algebras: if ! D 1,
we have A Ì

r; .˛;!/
G D A Ì

r; ˛
G; if ˛ is trivial, we have A Ì

r; .˛;!/
G D A˝ C �r .G; !/.
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Proposition-Definition 4.18. Let .G;A; ı;�/ be a twisted dynamical system. The twisted
reduced crossed product, A Ì

r;.ı;�/
G, is a bGcop-C�-algebra with action

bGcop
yıÕ A Ì

r;.ı;�/
G

such that
yı.ı.a/.1˝ x// D .ı.a/˝ 1/.1˝ .V �/�.1˝ x/V �/;

for all a 2 A and all x 2 C �r .G;�/. The action bGcop
yıÕ A Ì

r;.ı;�/
G is called twisted dual

action of .ı;�/ or �-dual action of ı.

Proof. Let us consider the unitary zVG as in Theorem-Definition 2.6. We are going to
show that yı can be written as a conjugation by 1 ˝ zVG . Given x 2 C �r .G; �/, assume
without loss of generality that x WD .id ˝ �/.V �/ for some � 2 C.G/�. On the one
hand, using the pentagonal equation satisfied by V � (see Theorem-Definition 3.23) and
Lemma 3.25, a direct computation shows that .V �/�.1 ˝ x/V � D zVG.x ˝ 1/ zV

�
G . On

the other hand, Theorem-Definition 2.6 guarantees that zVG.y ˝ 1/ zV
�

G D y ˝ 1, for all
y 2 C.G/00 D L1.G/ � C.G�/. Combining these two expressions, it is easy to see that
.ı.a/˝ 1/.1˝ .V �/�.1˝ x/V �/D .1˝ zVG/.ı.a/.1˝ x/˝ 1/.1˝ zV

�
G/, for all a 2 A

and all x 2 C �r .G; �/. In other words, these expressions show that the formula of the
statement defines a (injective) �-homomorphismA Ì

r;.ı;�/
G! �M..A Ì

r;.ı;�/
G/˝ c0.bG//

given precisely by yı.z/ D .1˝ zVG/.z ˝ 1/.1˝ zV
�

G/, for all z 2 A Ì
r;.ı;�/

G. It remains to
show that yı defines an action of bG on A Ì

r;.ı;�/
G. On the one hand, the density condition

for yı is obtained as follows:�
yı.A Ì

r;.ı;�/
G/.1˝ c0.bG//�

D
�
.ı.A/˝ 1/.1˝ .V �/�.1˝ C �r .G; �//V

�/.1˝ 1˝ c0.bG//�
.�/
D
�
.ı.A/˝ 1/.1˝ C �r .G; �/˝ c0.bG//�

D .A Ì
r;.ı;�/

G/˝ c0.bG/;
where in .�/ we use Remark 4.12. On the other hand, the compatibility of yı with y�cop is
obtained by a direct computation using again Remark 4.12.

To end this section, let us introduce the following nomenclature for a special type of
quantum dynamical systems.

Definition 4.19. Let G be a compact quantum group and � a 2-cocycle of finite type
on G. Let H be a Hilbert space. A left twisted dynamical system .G;K.H/; ı; �/ is
called �-inner if there exists a �-representation u 2 B.H/˝ L1.G/ such that ı.a/ D
ıu.a/D u.a˝ 1/u

�, for all a 2K.H/. In this case, the data .G;K.H/; ı;�;u/ is called
a left twisted inner dynamical system or right �-inner dynamical system.
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So a left twisted dynamical system .G;K.H/; ı; �/ is nothing but a projective left
G�-representation induced from an �-representation of G.

It is well known that an inner action is exterior equivalent to the trivial one, so that the
corresponding crossed products are isomorphic (see, for instance, [21] for more details).
The following proposition shows that a similar phenomenon occurs in the quantum group
setting when the action is �-inner.

Proposition 4.20. Let G be a compact quantum group and � a 2-cocycle of finite type
on G. LetH be a Hilbert space. If .G;K.H/; ı;�;v/ is a left�-inner dynamical system,
then

K.H/ Ì
r;.ı;�/

G ŠK.H/˝ c0.bG/:
Proof. We can represent K.H/ Ì

r;.ı;�/
G as the normclosure of .1˝C �r .G;�//ıu.K.H//

on H ˝ L2.G/. It is then sufficient to show that u�Œ.1 ˝ C �r .G; �//ıu.K.H//�u D

K.H/˝ c0.bG/. But since u�12.V
�/23u12 D u13.VG/23 as u is a �-representation, we

have that

u�Œ.1˝ C �r .G; �//ıu.K.H//�u

D Œ¹.id˝ id˝ !/.u13.x ˝ VG// j x 2K.H/; ! 2 B.L2.G//�º�:

As u is the direct sum of finite dimensional �-representations, it follows that this last set
equals Œ¹.id˝ id˝ !/.x ˝ VG/ j x 2K.H/; ! 2 B.L2.G//�º� DK.H/˝ c0.bG/.
Remark 4.21. Note that if v is a ��-representation, we also have an ordinary left action
G

ıÕK.H/ by putting ı.a/ D ıv.a/ D v.a˝ 1/v�, for all a 2 B.H/. We then say that
the action G

ıÕK.H/ is �-inner. An analogous computation as above yields that in this
case we have for the untwisted crossed product that

K.H/ Ì
r;ı

G Š
Ad.v�/

K.H/˝ C �r .G; �/:

Analogously, from an�-representation u of G, one could consider an ordinary right action
K.H/

ıÔG by putting ı.a/D†.u�.a˝ 1/u/, for all a 2B.H/. In this case, the (untwis-
ted) crossed product is defined as G Ë

r;ı
K.H/ D C �hy�.c0.bG/˝ 1/.�˝ id/ı.A/i where

we recall that �.x/D UG�.x/UG for x 2 C.G/. Then we now have, upon using the regu-
lar representationWG D {VG that G Ë

r;ı
K.H/ Š

Ad.u21UG;1/
C �r .�;G/˝K.H/, where we

use the notation of Remark 4.6.

4.3. Twisted Takesaki–Takai duality, twisted descent map and twisted
Baaj–Skandalis duality

Definition 4.22. Let .G; A; ı; �/ be a twisted dynamical system. The double reduced
crossed product of A by bGcop with respect to yı, denoted by .A Ì

r;.ı;�/
G/ Ì

r;yı

bGcop, is the
C�-algebra defined by

.A Ì
r;.ı;�/

G/ Ì
r;yı

bGcop
WDC �hyıU .A Ì

r;.ı;�/
G/.1˝C.G//i �LA..A˝L

2.G//˝L2.G//;

where yıU .x/ D .1˝ UG/yı.x/.1˝ UG/ for x 2 A Ì
r;.ı;�/

G.
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Remark 4.23. Observe that the crossed product .A Ì
r;.ı;�/

G/ Ì
r;yı

bGcop defined above is

the usual one as, say, given in [5, Section 7] (we do not consider any deformation in this
definition, contrary to Definition 4.14). In particular, we have automatically that

.A Ì
r;.ı;�/

G/ Ì
r;yı

bGcop
D span¹yıU .A Ì

r;.ı;�/
G/.1˝ C.G//º:

Since .A Ì
r;.ı;�/

G/ Ì
r;yı

bGcop defined above is a usual crossed product, we can define the

corresponding dual action yyı. Hence, the following proposition follows from the standard
theory of crossed products.

Proposition-Definition 4.24. Let .G;A; ı;�/ be a twisted dynamical system. The double
reduced crossed product .A Ì

r;.ı;�/
G/ Ì

r;yı

bGcop is a G-C�-algebra with action

G
yyıÕ .A Ì

r;.ı;�/
G/ Ì

r;yı

bGcop

such that
yyı.yıU .z/.1˝ y// D .yıU .z/˝ 1/.1˝ VG.y ˝ 1/V

�
G/;

for all z 2 A Ì
r;.ı;�/

G and all y 2 C.G/. The action

G
yyıÕ .A Ì

r;.ı;�/
G/ Ì

r;yı

bGcop

is called twisted double dual action of .ı;�/ or �-double dual action of ı.

The following theorem is a special case of [32, Theorem 3.6] by means of [32, Pro-
position 3.5], see also [44, Section 1] in the von Neumann algebraic setting (where no
regularity assumption is needed).

Theorem 4.25 (Twisted Takesaki–Takai duality). Let .G;A; ı;�/ be a twisted dynamical
system with � of finite type.

(i) There is a canonical isomorphism of C�-algebras,

A˝K.L2.G// Š .A Ì
r;.ı;�/

G/ Ì
r;yı

bGcop;

given by the map x 7! .UG/3.V
�/�23.ı ˝ id/.x/.V �/23.UG/3.

(ii) Under the above isomorphism, the twisted double dual action yyı of .ı; �/ is

conjugate to the action G
zıÕ A˝K.L2.G// defined by zı WD Ad.W �/32

ı ı13,
where ı13 denotes the amplified twisted action of G on A ˝K.L2.G// such
that

ı13.a˝ T / D .1˝†/.ı.a/˝ id/.1˝†/.1˝ T ˝ 1/

2 A˝K.L2.G//˝ C.G�/;

for all a 2 A and T 2K.L2.G//.
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Proof. By Theorem 4.9, we have K.L2.G//D ŒC �r .G/UGC.G/UG�. Since ı is continu-
ous, we can hence write

A˝K.L2.G// D Œı.A/.1˝K.L2.G///� D Œı.A/.1˝ C �r .G; �/UGC.G/UG/�;

and the first item then follows by a straightforward computation. The second item then
follows from Remark 4.6 together with the fact that

WG.1˝ UyU /.WG/
�
D .1˝ U/�op.y/.1˝ U/;

which follows from the identity W D {VG in Theorem-Definition 2.6.

As a corollary of the twisted Takesaki–Takai duality established in Theorem 4.25 we
obtain the following generalization of the well-known Packer–Raeburn’s untwisting trick
or Packer–Raeburn’s stabilisation trick [35] to compact quantum groups.

Proposition 4.26 (Quantum Packer–Raeburn’s untwisting trick). Let .G; A; ı; �/ be a
twisted dynamical system with � of finite type. Then

.A Ì
r;.ı;�/

G/˝K.L2.G// Š .A˝K.L2.G/// Ì
r;zı

G:

Proof. Put B WD A Ì
r;.ı;�/

G, which is a bGcop-C�-algebra with action bGcop
yıÕ B . Using

the usual version of Takesaki–Takai duality for quantum groups, we can write

B ˝K.L2.G// Š .B Ì
r;yı

bGcop/ Ì
r;
yyı

G:

Next, using the twisted version of Takesaki–Takai duality from Theorem 4.25 we have the
following:

.B Ì
r;yı

bGcop/ Ì
r;
yyı

G D ..A Ì
r;.ı;�/

G/ Ì
r;yı

bGcop/ Ì
r;
yyı

G Š .A˝K.L2.G/// Ì
r;zı

G:

This trick helps to establish a twisted version of the well-known Baaj–Skandalis dual-
ity [5, 45].

Note 4.27. “Takesaki–Takai duality” for quantum groups is also referred as “Baaj–
Skandalis duality” in the literature. We prefer to reserve the latter terminology for such
duality at the level of KK-theory.

Theorem 4.28 (Twisted Baaj–Skandalis duality). Let .G; A; ı; �/ and .G; B; #; �/ be
two twisted dynamical systems with respect to a given 2-cocycle � of finite type on G.
Then there exists a canonical group isomorphism

J�G W KK
G�.A;B/

�
�! KK

bGcop
.A Ì

r;.ı;�/
G; B Ì

r;.#;�/
G/;
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which is compatible with the Kasparov product, that is, if .G; C; �;�/ is another twisted
dynamical system with respect to �, then we have

J�G .X ˝
C

Y/ D J�G .X/ ˝
C Ì
r;.�;�/

G
J�G .Y/ and J�G .1A/ D 1A Ì

r;.ı;�/
G;

for all X 2 KKG�.A; C / and Y 2 KKG�.C;B/.

Proof. Given the twisted dynamical system .G;A;ı;�/, putA1 WDA Ì
r;ı

G�. Thus .A1;yı/
is an object in KKcG�

cop
. It is known that bG� and bG are monoidally co-Morita equivalent

in the sense of [12, 15]. The corresponding co-linking quantum groupoid takes the form
C �r .G�/˚ C

�
r .G�; �

�/˚ C �r .G; �/˚ C
�
r .G/. Next, following the notations from [3,

Section 2.4], we consider the exterior comultiplication y�ext � .� y���/
2
11 W C

�
r .G�/!�M.C �r .G�; �

�/˝ C �r .G; �//.
Following [3, Proposition 4.1], we consider the C�-algebra

A2 W D span¹.id˝ id˝ �/.idA1 ˝ y�
cop
ext /
yı.a0/ j a0 2 A1; � 2 B.L2.G//�º

D span¹.id˝ id˝ �/.ı.a/˝ 1/.1˝ y�cop
ext .x// j a

0
2 A; x 2 C �r .G�/;

� 2 B.L2.G//�º:

Since ¹.id˝ �/y�cop
ext .x/ j x 2 C

�
r .G�/; � 2 B.L2.G//�º is norm-dense inC �r .G;�/, we

have by construction that A2 D A Ì
r;.ı;�/

G. Now, A2 is an object in KKbGcop
with bGcop-

action given by Proposition 4.18, which we still denote by yı.
In other words, the equivalence of triangulated categories

KK
cG�

cop
JcG�;bGcop

Š KK
bGcop

from [3, Section 4.5] sends A Ì
r;ı

G� to A Ì
r;.ı;�/

G. An application of the equivariant
Morita equivalence of [3, Section 4.4] yields that

.A˝K.L2.G/// Ì
r;zı

G� Š A1 Ì
r;yı

bG�
cop Ì

r;
yyı

G�

in KKcG�
cop

(here zı is defined by the Takesaki–Takai duality for G�) is sent to

.A˝K.L2.G/// Ì
r;zı

G Š A2 Ì
r;yı

bGcop Ì
r;
yyı

G

in KKbGcop
(here zı is defined through the twisted Takesaki–Takai from Theorem 4.25)

through JcG�;bGcop .
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Therefore, the twisted Baaj–Skandalis is obtained as follows:

KKG�.A;B/ Š KKG�.A˝K.L2.G/; B ˝K.L2.G//

JG�
Š KK

cG�
cop
..A˝K.L2.G// Ì

r;zı

G�; .B ˝K.L2.G// Ì
r;zı

G�/

JcG�;bGcop

Š KK
bGcop

..A˝K.L2.G// Ì
r;zı

G; .B ˝K.L2.G// Ì
r;zı

G/

Š KK
bGcop

.A Ì
r;.ı;�/

G; B Ì
r;.#;�/

G/:

As a consequence, we obtain a twisted version of the well-known descent map for
quantum groups [45].

Corollary 4.29 (Twisted descent map). Let .G; A; ı;�/ and .G; B; #;�/ be two twisted
dynamical systems with respect to a given 2-cocycle � of finite type on G. Then there
exists a canonical group homomorphism

j�G W KK
G�.A;B/! KK.A Ì

r;.ı;�/
G; B Ì

r;.#;�/
G/

called twisted descent map (with respect to G). Moreover, j�G is compatible with the
Kasparov product, that is, if .G;C; �;�/ is another twisted dynamical system with respect
to �, then we have

j�G .X ˝
C

Y/ D j�G .X/ ˝
C Ì
r;.�;�/

G
j�G .Y/ and j�G .1A/ D 1A Ì

r;.ı;�/
G;

for all X 2 KKG�.A; C / and Y 2 KKG�.C;B/. Moreover, we have j�G D OG ı J
�
G ,

where OG is the obvious forgetful functor.

Proof. Similarly to Theorem 4.28 we have

KKG�.A;B/ Š KK
bGcop

..A˝K.L2.G// Ì
r;zı

G; .B ˝K.L2.G// Ì
r;zı

G/:

Applying Baaj–Skandalis duality for G, the latter is isomorphic toKKG.A˝K.L2.G/;
B ˝K.L2.G//. Applying the ordinary descent map jG , we get

KK..A˝K.L2.G// Ì
r;zı

G; .B ˝K.L2.G// Ì
r;zı

G/;

which is isomorphic to
KK.A Ì

r;.ı;�/
G; B Ì

r;.#;�/
G/

thanks to the untwisting trick from Proposition 4.26. The map j�G of the statement is
obtained as result of these compositions.
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5. Application: Quantum assembly map for permutation torsion-free
discrete quantum groups

5.1. The Baum–Connes property for discrete quantum groups

The framework for the formulation of the Baum–Connes property for discrete quantum
groups following the approach of R. Meyer and R. Nest is based on triangulated categories
and Bousfield localisation techniques. We refer to [29] or [24] for a complete presentation
of the subject.

Let bG be a discrete quantum group and consider the corresponding equivariant
Kasparov category, KKbG , with canonical suspension functor denoted by†. Then KKbG is
a triangulated category whose distinguished triangles are given by mapping cone triangles.
The word homomorphism (resp. isomorphism) will mean homomorphism (resp. isomorph-
ism) in the corresponding Kasparov category; it will be a true homomorphism (resp.
isomorphism) between bG-C�-algebras or any Kasparov triple between bG-C�-algebras
(resp. any equivariant KK-equivalence between bG-C�-algebras). Analogously, we can
consider the equivariant Kasparov category KKG .

Assume for the moment that bG is torsion-free. In that case, consider the usual com-
plementary pair of localizing subcategories in KKbG , .LbG;NbG/. Denote by .L; N / the
canonical triangulated functors associated to this complementary pair. More precisely we
have that LbG is defined as the localizing subcategory of KKbG generated by the objects
of the form IndbGE .C / D C ˝ c0.bG/ with C any C�-algebra in the Kasparov category KK

and NbG is defined as the localizing subcategory of objects which are isomorphic to 0 in
KK: LbG WD h¹IndbGE .C / D C ˝ c0.bG/ j C 2 Obj:.KK/ºi and NbG D ¹A 2 Obj:.KKbG/ j
ResbGE .A/ D 0º.

If bG is not torsion-free, then a technical property lacked in the literature in order to
define a suitable complementary pair. The natural candidate used in the related works (see,
for instance, [30] and [48]) is given by the following localizing subcategories of KKbG:

LbG WD h¹C ˝ T Ìr G j C 2 Obj:.KK/; T 2 Tor.bG/ºi;
NbG WD LabG D ¹A 2 Obj.KK

bG/ j KKbG.L;A/ D 0;8L 2 Obj.LbG/º:
Remark 5.1. We put yLbG WD h¹T ˝ C j C 2 Obj:.KK/; T 2 Tor.bG/ºi, so that we have
yLbG ÌG D LbG by definition. Similarly, we put bNbG WD NbG Ì bG.

In [2], Y. Arano and A. Skalski have showed that these two subcategories form indeed
a complementary pair of localizing subcategories in KKbG (note that, by [29, Proposi-
tion 2.9] any complementary pair .L;N/ must have N D La). By the Baaj–Skandalis
duality, one then also obtains that the subcategories yLbG and bNbG form a complementary
pair of localizing subcategories in KKG .

The key step is a generalization of the Green–Julg isomorphism. In this section, we
will provide a different proof of this generalization in the case of projective torsion, see
Section 5.3.
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5.2. Two-sided crossed products

In this section, we give some technical tools necessary for the next section. In order to
define an assembly map for discrete quantum groups, we need to define a suitable pair of
adjoint functors on KKbG taking into account the torsion phenomena of bG. For classical
discrete groups, the torsion phenomena are completely described in terms of finite sub-
groups. Hence, the induction and restriction functors will provide such an adjunction. In
the quantum case, the torsion is described in terms of G-C�-algebras, so the induction-
restriction approach is no longer valid since finite discrete quantum groups do not exhaust
the torsion phenomena for bG. Moreover, the torsion objects in the Kasparov category are
also G-C�-algebras. In this sense, we need a construction encoding both the induction
process from the classical setting and the diagonal action with respect to G. We call it a
two-sided crossed product and it is already used in [2], see also [33, Section 2.6] for an
algebraic precursor.

Definition 5.2. Let G be a compact quantum group. If .B; ˇ/ is a left G-C�-algebra and
.A; ˛/ is a right G-C�-algebra, then the two-sided crossed product of B and A by G,
denoted by B Ì

r;ˇ
G Ë
r;˛
A, is the C�-algebra defined by

B Ì
r;ˇ

G Ë
r;˛
A WD C �h..id˝ �/ˇ.B/˝ 1/.1˝ y�.c0.bG//˝ 1/.1˝ .�˝ id/.˛.A///i

� LB˝A.B ˝ L
2.G/˝ A/:

Remark 5.3. First, to lighten the notations we will omit the representations �, y� and �
in the definition of B Ì

r; ˇ
G Ë
r; ˛
A, and note that �.x/ D UGxUG for x 2 C.G/. We also

write ˛U .x/ D .UG ˝ id/˛.x/.UG ˝ id/ for x 2 A. Next, it is easy to show that

B Ì
r;ˇ

G Ë
r;˛
A D span¹.ˇ.B/˝ 1/.1˝ c0.bG/˝ 1/.1˝ ˛U .A//º;

cf. Lemma 4.16. From now on we will use these two descriptions of B Ì
r; ˇ

G Ë
r; ˛
A inter-

changeably. As a consequence, we see that the mapsB ! LB˝A.B ˝ L
2.G/˝ A/,A!

LB˝A.B˝L
2.G/˝A/ and c0.bG/! LB˝A.B ˝ L

2.G/˝ A/ given by b 7!ˇ.b/˝ 1,
a 7! 1˝ ˛U .a/ and x 7! 1˝ y�.x/˝ 1 respectively, send B , A and c0.bG/ respectively
onto non-degenerate C�-subalgebras of M.B Ì

r; ˇ
G Ë
r; ˛
A/.

Remark 5.4. In [2], a universal version B Ì̌ G Ę̈ A of the double crossed product is
introduced. It is not hard to see that our definition is compatible with theirs, in the sense
that there is a natural surjective �-homomorphism

�r W B Ì
ˇ

G Ę̈ A! B Ì
r;ˇ

G Ë
r;˛
A: (5.1)

Indeed, take some universal representations of B; A on Hilbert spaces HB ; HA. Then
one simply needs to observe that the representations � W b 7! ˇ.b/ ˝ 1 and � W a 7!
1˝ .�˝ id/˛.a/ of resp. B and A onH DHB ˝L2.G/˝HA, together with the unitary
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representation U WD V24 of G, form a covariant representation in the sense of [2, Sec-
tion 3]: it follows immediately from the formulas in Theorem 2.2 that

U12.�.b/˝ 1/U
�
12 D .� ˝ id/ˇ.b/; U �12.�.a/˝ 1/U12 D .� ˝ id/˛op.a/:

The universal property of [2, Proposition 3.2] now provides (5.1).
It is furthermore not hard to see that �r will be an isomorphism if A is finite dimen-

sional: By, e.g., [16, Theorem 5.31], B Ì̌ G D B Ì
r;ˇ

G, and then both B Ì̌ G Ę̈ A and

B Ì
r;ˇ

G Ę̈A are implemented on the algebraic tensor product vector space .B Ì
r;ˇ

G/ˇA,
so �r must be an isomorphism.

As for usual crossed products, we can show that the two-sided crossed product con-
struction is functorial. More precisely, we have the following:

Proposition 5.5. Let G be a compact quantum group. Let .B; ˇ/, .B 0; ˇ0/ be left G-C�-
algebras and .A; ˛/, .A0; ˛0/ right G-C�-algebras.

(i) If � W B ! M.B 0/ is a non-degenerate G-equivariant �-homomorphism, then
there exists a non-degenerate �-homomorphism

� Ì id Ë id W B Ì
r;ˇ

G Ë
r;˛
A!M.B 0 Ì

r;ˇ 0
G Ë
r;˛
A/

such that � Ì id Ë id..ˇ.b/˝ 1/.1˝ x ˝ 1/.1˝ ˛U .a///D .ˇ0.�.b//˝ 1/.1˝
x ˝ 1/.1˝ ˛U .a//, for all b 2 B , a 2 A and x 2 c0.bG/.

(ii) If  W A ! M.A0/ is a non-degenerate G-equivariant �-homomorphism, then
there exists a non-degenerate �-homomorphism

id Ì id Ë  W B Ì
r;ˇ

G Ë
r;˛
A!M.B Ì

r;ˇ
G Ë
r;˛0

A0/

such that id Ì id Ë  ..ˇ.b/˝ 1/.1˝ x ˝ 1/.1˝ ˛U .a/// D .ˇ.b/˝ 1/.1˝ x
˝ 1/.1˝ ˛0U . .a///, for all b 2 B , a 2 A and x 2 c0.bG/.

If a torsion action of projective type of G is involved in a two-sided crossed product,
then we can give an alternative description of the latter, which is useful for our pur-
pose. Recall first from Lemma 3.18 that, given a torsion action of projective type ı on
T D B.H/ with implementing ��-representation u for some �, we can construct the
�-representation uı on H with associated coaction ı on T op Š B.H/. By Remark 4.4
we can view uı as an� D .��/�-representation of G�, and correspondingly ıuı as a left
action of G� on T op.

Proposition 5.6. Let G be a compact quantum group. Let .T; ı/ be a torsion action of
projective type of G. Let u be an ��-representation of G implementing ı for some 2-
cocycle � (necessarily of finite type). Let .B; ˇ/ be a G-C�-algebra. Then

B Ì
r;ˇ

G Ë
r;ı

T op
Š .B ˝ T op/ Ì

ž
G�;

where ž WD Aduı23 ı ˇ13.
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We use here that the twisted quantum group G� is again a compact quantum group by
Theorem 3.36.

Proof. First of all, it is straightforward to check that ž WD Aduı23 ı ˇ13 is an action of G�

on B ˝ T op. For given b 2 B and x 2 T op we have

.id˝ ����/ ž.b ˝ x/ D .id˝ ����/.u
ı
23.b.0/ ˝ x ˝ b.1//.u

ı
23/
�/

D �34�3.u
ı
23/.b.0/ ˝ x ˝�.b.1///�3.u

ı
23/
���34

.�/
D uı23u

ı
24.b.0/ ˝ x ˝�.b.1///.u

ı
24/
�.uı23/

�

.��/
D uı23u

ı
24.b.0/.0/ ˝ x ˝ b.0/.1/ ˝ b.1//.u

ı
24/
�.uı23/

�

D . ž ˝ id/.uı23.b.0/ ˝ x ˝ b.1//.u
ı
23/
�/ D . ž ˝ id/ ž.b ˝ x/;

where in .�/ we used the fact that uı is an�-representation of G and in .��/ we used the
fact that ˇ is a G-action on B .

Next, recall that uı implements ı. Then on the one hand, by Remark 4.21 we have

G Ë
r;ı

T op
Š C �r .�;G/˝ T

op

(here the identification is given by conjugating with uı21.UG ˝ 1/). On the other hand, by
Remark 4.4 we view uı as a‚� WD .��/�-representation of G� so that, by applying again
Remark 4.21, we obtain that T op Ì

r;Aduı
G� Š T

op ˝ C �r .G�; ‚/ D T
op ˝ C �r .G�; �

�/

(here the identification is given by conjugating with .uı/�). Recall from Remark 4.5 that
C �r .G�; �

�/ D JC �r .G; �/J . Therefore, by Remark 4.6 we see that T op Ì
r;Aduı

G� is �-
isomorphic to G Ë

r;ı
T op by introducing an extra conjugation with X�UG (and a flip map).

This allows to conclude the isomorphism of the statement. Indeed, since UGX�UG 2

L1.G/0, we compute

.B ˝ T op/ Ì
ž

G� D span¹.id˝ id˝ �/ ž.B ˝ T op/.1˝ 1˝ c0.bG�//º

D span¹.id˝ id˝ �/uı23.B.0/ ˝ T
op
˝ B.1//.u

ı
23/
�.1˝ 1˝ c0.bG�//º

Ad.uı23/�

Š span¹.id˝ id˝ �/.B.0/ ˝ T op
˝ B.1//.u

ı
23/
�.1˝ 1˝ c0.bG�//u

ı
23º

D span¹.id˝ id˝ �/.B.0/ ˝ 1˝ B.1//.1˝ T op
˝ 1/

� .1˝ .uı/�.1˝ c0.bG�//u
ı/º

D
.�/

span¹.id˝ id˝ �/.B.0/ ˝ 1˝ B.1//.1˝ T op
˝ C �r .G�; �

�//º

Š span¹.id˝ id˝ �/.B.0/ ˝ 1˝ B.1//.1˝ T op
˝ JC �r .G; �/J /º

Ad†23.UGX�UG /3

Š span¹.id˝ �˝ id/.B.0/ ˝ B.1/ ˝ 1/

� .1˝ UGC
�
r .�;G/UG ˝ T

op/º
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Aduı21
Š
.��/

span¹.id˝ �˝ id/.B.0/ ˝ B.1/ ˝ 1/.1˝ c0.bG/˝ 1/.1˝ �˝ 1/
� .1˝†.uı/�.1˝ T op/uı†/º

D span¹..id˝ �/ˇ.B/˝ 1/.1˝ c0.bG/˝ 1/.1˝ .�˝ 1/ı.T op//º

D B Ì
r;ˇ

G Ë
r;ı

T op;

where in .�/ and .��/we have used the identifications T op Ì
r;Aduı

G�ŠT
op ˝ C �r .G�; �

�/

and G Ë
r;ı

T op Š C �r .�;G/˝ T
op explained above, respectively.

The two-sided crossed product construction can also be defined for Hilbert modules
in a similar way as we do for usual crossed products.

Definition 5.7. Let G be a compact quantum group. Let .B; ˇ/ be a left G-C�-algebra
and .A; ˛/ a right G-C�-algebra. If .E; ıE / is a G-equivariant Hilbert B-module, we
define the two-sided crossed product of E and A by G, denoted by E Ì

r;ıE
G Ë
r;˛
A, as the

following Hilbert B Ì
r;ˇ

G Ë
r;˛
A-module E Ì

r;ıE

G Ë
r;˛
A WD E ˝

B
B Ì
r;ˇ

G Ë
r;˛
A.

As for the usual crossed products, the embeddings ofE ŠKB.B;E/ andB ŠKB.B/

into KB.B ˚ E/ induce an embedding of E Ì
r;ıE

G Ë
r;˛
A into KB.B ˚ E/ Ì

r
G Ë
r;˛
A. In

this way we have the following (see, for instance, [45, Lemme 5.2] for a proof).

Proposition 5.8. Let G be a compact quantum group. Let .B; ˇ/ be a left G-C�-algebra
and .A; ˛/ a right G-C�-algebra. If .E; ıE / is a G-equivariant Hilbert B-module, then
KB.E/ Ì

r
G Ë
r;˛
A ŠKB Ì

r;ˇ
G Ë
r;˛
A.E Ì

r;ıE

G Ë
r;˛
A/.

Following similar arguments as for usual crossed products (see, for instance, [45, Pro-
position 5.3] for more details), it is easy to show that Definition 5.7 above passes also at
the level of Kasparov triples. More precisely, we have the following.

Proposition 5.9. Let G be a compact quantum group. Let .B; ˇ/, .B 0; ˇ0/ be left G-C�-
algebras and .A;˛/ a right G-C�-algebra. If ..E;ıE /;�;F / is a G-equivariant Kasparov
.B 0; B/-module in KKG.B 0; B/, then the triple .E Ì

r;ıE
G Ë
r;˛
A; � Ì id Ë id; F ˝

B
id/

defines a Kasparov .B 0 Ì
r;ˇ 0

G Ë
r;˛
A;B Ì

r;ˇ
G Ë
r;˛
A/-module in KK.B 0 Ì

r;ˇ 0
G Ë
r;˛
A; B Ì

r;ˇ
G Ë
r;˛
A/.

Finally, as for usual crossed products, the two-sided crossed product functor inter-
twines the suspension of G-C�-algebras and transforms mapping cone triangles into map-
ping cone triangles. In other words, the functor . � / Ì

r
G Ë
r; ˛
A preserves semi-split exten-

sions, i.e., extensions of G-equivariant C�-algebras that split through a G-equivariant
completely positive contractive linear section, see, for instance, [27]; and the class of all
triangles in KKG isomorphic to mapping cone triangles is the same as the class of all tri-
angles in KKG isomorphic to extension triangles (see, for instance, [26, Lemma 1.2.3.7]).
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In conclusion, we have obtained that, for a fixed right G-C�-algebra .A0; ˛0/, the asso-
ciation .B; ˇ/ 7! B Ì

r; ˇ
G Ë
r; ˛0

A0, for all left G-C�-algebra .B; ˇ/ defines a triangulated
functor jG;A0 WD . � / Ìr G Ë

r; ˛0
A0 W KKG ! KK.

5.3. Twisted Green–Julg isomorphism

First of all, let us recall briefly the Green–Julg isomorphism for compact quantum groups
(see [45] for more details). If C is a C�-algebra equipped with the trivial action of G, then
we have that ‰ W KKG.C;B/

�
�! KK.C;B Ì

r;ˇ
G/, for all G-C�-algebra .B; ˇ/. Since C

is equipped with the trivial action of G, then C Ì
r

G Š C ˝ c0.bG/ and we have a natural
�-homomorphism:

�C W C ! C ˝ c0.bG/; c 7! �.c/ WD c ˝ p0;

where p0 WD .id˝ hG/.VG/ 2 c0.bG/ is the canonical projection onto the subspace of
invariant vectors of .VG; L

2.G//. In this way we obtain a Kasparov triple Œ�C � 2

KK.C;C ˝ c0.bG//. The Green–Julg isomorphism is given precisely by

‰.X/ WD ��C .jG.X// D Œ�C � ˝

C˝c0.bG/ jG.X/;

for all X 2 KKG.C;B/. It is also possible to give an explicit expression of its inverse.
Given any C�-algebraC in KK, we denote by �.C / the same C�-algebraC equipped with
the trivial action of G and so we regard it as an object in KKG . In this way, we define the
Kasparov triple EB WD Œ.B ˝ L

2.G/; �r ; 0/� 2 KKG.�.B Ì
r;ˇ

G/; B/, where �r denotes
the canonical representation of B Ì

r;ˇ
G in B ˝ L2.G/. The action of G on B ˝ L2.G/

is defined as the tensor product action of ˇ with the action of G on L2.G/ induced by the
unitary † {VG† D .UG ˝ 1/VG.UG ˝ 1/ (see [45] for the precise definitions). Then we
have

‰�1.Y/ D �.Y/ ˝
�.B Ì

r;ˇ
G/

EB ;

for all Y 2 KK.C;B Ì
r;ˇ

G/. In other words, the Green–Julg isomorphism can be reph-
rased by saying that the functors KKG jG

��! KK and KK
�
�! KKG are adjoint: � is a left

adjoint of jG . Precisely, the unit of the adjunction is given by �C WD Œ�C � and the counit
by "B WD EB , for all C 2 Obj.KK/ and all B 2 Obj.KKG/.

The goal of this section is to generalise these constructions when C is replaced by an
object of the form C ˝ T 2 yLbG , where .T; ı/ is a torsion action of G of projective type.
Recall that a torsion action of projective type of G, .T; ı/, means simply that T DMk.C/
for some k 2N and that ı is ergodic such that T is not G-Morita equivalent to C. We fix a
state 'T D Tr.% �/ on T (recall Section 2.1). Recall as well that, by virtue of Theorem 3.5,
ı is implemented by an ��-representation of G, say u, for some (measurable) 2-cocycle
� on G. The 2-cocycle � is necessarily of finite type (recall Definition 3.30). Hence
G� is again a compact quantum group by Theorem 3.36. Following equation (2.1), we
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denote by .T op; ı/ the corresponding opposite twisted dynamical system. In this case, ı is
implemented (in the sense of (3.2)) by an�-representation of G that we denote by uı. The
representation of G on L2.T / implementing ı according to Proposition 2.13 is denoted
by VT . Given such a projective torsion action of G, we define the following triangulated
functors:

jG;T W KKG
! KK; .B; ˇ/ 7! jG;T .B; ˇ/ WD B Ì

r;ˇ
G Ë
r;ı

T op;

�T W KK! KKG; C 7! �T .C / WD .C ˝ T; id˝ ı/:

We are going to show that �T is a left adjoint of jG;T for every torsion action of
projective type .T; ı/ of G. To do so we start by showing an appropriate equivalence of
triangulated categories between KKG and KKG� . Then the adjunction between �T and
jG;T will result from the usual Green–Julg isomorphism applied to G�.

Let us consider the following triangulated functors:

…T op W KKG
! KKG� ; .B; ˇ/ 7! …T op.B; ˇ/ WD .B ˝ T op; ž WD Aduı23 ı ˇ13/;

…T W KKG� ! KKG; .C; 
/ 7! …T .C; 
/ WD .C ˝ T; z
 WD Adu23 ı 
13/:

First of all, observe that these functors are well defined. On the one hand, given
.B; ˇ/ 2 Obj.KKG/, we have proved in Proposition 5.6 that ž WD Aduı23 ı ˇ13 is an
action of G� on B ˝ T op. So …T op.B; ˇ/ 2 Obj.KKG�/. A similar computation yields
that if .C; 
/ 2 Obj.KKG�/, then z
 WD Adu23 ı 
13 is an action of G on C ˝ T . So
…T .C; 
/ 2 Obj.KKG/.

On the other hand, given two objects .B1; ˇ1/; .B2; ˇ2/ 2 Obj.KKG/ and a Kasparov
triple X 2 KKG.B1; B2/, then …T op.X/ is given by the right exterior tensor product of
Kasparov triples with respect to T op, i.e.,…T op.X/DX˝ T op 2KKG�.B1˝ T

op;B2˝

T op/ (if X is represented by the G-equivariant Hilbert B2-module E with action ıE , then
…T op.X/ is represented by the Hilbert B2 ˝ T op-module E ˝ T op with action of G�

given by Adv23 ı .ıE /13). Similarly, …T .Y/ D Y ˝ T , for all Y 2 KKG�.C1; C2/ with
.C1; 
1/; .C2; 
2/ 2 Obj.KKG�/. Clearly, both …T op and …T intertwine the suspensions
of each category. Moreover, they transform mapping cone triangles into mapping cone
triangles. This is true by the following general fact: if � W A! B is a homomorphism
between C�-algebras and D is any other C�-algebra, then we have that C� ˝D Š C�˝id

induced by the canonical identification C0..0; 1�;B/˝D Š C0..0; 1�;B ˝D/, f ˝ d 7!
.t 7! f .t/˝ d/. If in addition � is a G-equivariant homomorphism between the G-C�-
algebras .A; ˛/ and .B; ˇ/, then C� is a G-C�-algebra with action 
..a; h// WD .˛.a/;

ˇ ı h/, for all .a; h/ 2 C� . In this way, it is straightforward to check that given a G-
equivariant homomorphism between two G-C�-algebras .B1; ˇ1/ and .B2; ˇ2/, say � W
B1!B2, then the isomorphism C� ˝ T

opŠC�˝id is G�-equivariant. As a consequence,
the functor …T op preserves mapping cone triangles; and similarly for …T . In conclusion,
both …T op and …T are well-defined triangulated functors.
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Lemma 5.10. Following the previous notations, the pair of functors .…T op ; …T / defines
an equivalence of triangulated categories between KKG and KKG� .

Proof. It only remains to show that …T ı…T op Š idKKG and …T op ı…T Š idKKG� .
On the one hand, given an object .B; ˇ/ 2 Obj.KKG/, we have

…T .…T op.B; ˇ// D B ˝ T op
˝ T

id˝†
Š B ˝ T ˝ T op

equipped with the G-action zž D Adu24 ı Aduı34 ı ˇ14. Further, by identifying T ˝ T op Š

B.L2.T // DK.L2.T // along with the G-action AdVT , where VT D u13uı23 as in Lem-
ma 3.18, we obtain that …T .…T op.B; ˇ// is G-equivariantly Morita equivalent to .B; ˇ/;
and this identification is natural. So …T ı…T op Š idKKG . On the other hand, given an
object .C; 
/ 2 Obj.KKG�/, we have

…T op.…T .C; 
// D C ˝ T ˝ T
op id˝†
Š B ˝ T op

˝ T

equipped with the G-action zz
 D Aduı24 ı Adu34 ı 
14. By identifying T op ˝ T D .T ˝

T op/op ŠB.L2.T //op ŠB.L2.T op//DK.L2.T op// along with the G�-action AdVT op ,
where we define the (ordinary) G�-representation VT op D uı13u23, we obtain that
…T op.…T .C; 
// is G�-equivariantly Morita equivalent to .C; 
/; and this identification
is natural. So …T op ı…T Š idKKG� .

Remark 5.11. Using the theory of (bi)Galois objects for compact quantum groups [8],
there was proven in [47, Section 8] an equivalence of triangulated categories KKG1 Š

KKG2 when the compact quantum groups G1 and G2 are monoidally equivalent. In our
setting, with� a 2-cocycle of finite type for the compact quantum group G, it is rather the
discrete quantum group duals bG and bG� that are monoidally equivalent ([13]). We then
obtain equivalences

KKG
Š KK

bG
Š KK

cG� Š KKG� ; (5.2)

where the outer equivalences are by Baaj–Skandalis duality, and where in the middle we
use the extension of the results of [47, Section 8] to the (regular) locally compact quantum
group setting [3, Theorem 4.36]. For lack of space, we refrain from showing that (5.2)
agrees with the equivalence we obtain – the argument is based on the observation that, up
to matrix amplification, T ÌG gives a Galois object C �.G; �/ for the discrete quantum
group bGcop.

Theorem 5.12 (Twisted Green–Julg isomorphism). Let G be a compact quantum group.
Let .T; ı/ be a torsion action of projective type of G. Let u be an ��-representation of G
implementing ı for some 2-cocycle � (necessarily of finite type). Then �T W KK! KKG

is a left adjoint of jG;T W KKG ! KK as triangulated functors. More precisely,

‰T W KK
G.C ˝ T;B/

�
�! KK.C;B Ì

r;ˇ
G Ë
r;ı

T op/;

for all C 2 Obj.KK/ and .B; ˇ/ 2 Obj.KKG/.
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Proof. Since the 2-cocycle � is necessarily of finite type, the twisted quantum group G�

is compact by Theorem 3.36. Given a C�-algebra C 2 Obj.KK/ and a G-C�-algebra
.B; ˇ/ 2 Obj.KKG/, the previous lemma allows to write the following:

KKG.C ˝ T;B/ Š KKG�.C ˝ T ˝ T op; B ˝ T op/ Š KKG�.C;B ˝ T op/:

Next, by applying the usual Green–Julg isomorphism we obtain that

KKG�.C;B ˝ T op/
‰
Š KK.C; .B ˝ T op/ Ì

ž
G�/:

To conclude, we observe that .B ˝ T op/ Ì
ž

G� Š B Ì
r;ˇ

G Ë
r;ı

T op by virtue of Proposi-
tion 5.6. Therefore ‰T D ‰ ı…T op .

Remark 5.13. By the twisted Green–Julg isomorphism, obtained in Theorem 5.12 for
the specific case of torsion actions of projective type and in [2, Theorem 4.5] for general
torsion actions, one easily obtains that .T; ı/ is a compact object in KKG , that is, the
functor KKG.T; � / is compatible with countable direct sums. Indeed, if ¹.Bn; ˇn/ºn2N

is a countable family of G-C�-algebras, the twisted Green–Julg isomorphism withC WDC
gives

KKG

�
T;
M
n2N

Bn

�
ŠKK

�
C;

�M
n2N

Bn

�
Ì
r;ˇ

G Ë
r;ı

T op
�
ŠK0

��M
n2N

Bn

�
Ì
r;ˇ

G Ë
r;ı

T op
�
;

and both the K0 functor and the two-sided crossed product functor .�/ Ì
r

G Ë
r;ı

T op are
compatible with countable direct sums.

We believe that this property will be useful to study the equivariant Kasparov cat-
egory KKG from a geometrical and topological perspective according to works by
I. Dell’Ambrogio and his collaborators (see, for example, [17,18]). For instance, the above
compactness result yields that the subcategory PD.G/ WD h¹T j T 2 Tor.1D.G//ºi is a com-
pactly generated tensor triangular subcategory of KKD.G/ when G is finite (note that we
need to consider the Drinfeld double construction to provide a tensor structure on the
Kasparov category). In particular, .PD.G/;PaD.G// is a complementary pair of localizing
subcategories in KKD.G/ as a consequence of the Brown representability theorem. Hence
it will be interesting to compute its spectrum, Spc.PD.G//, in the sense of Balmer [6] and
to make a connection with the Baum–Connes property for bG.

Funding. The work of K. DC. was supported by the FWO grant G032919N. R. M. was
supported by the European Union’s Horizon 2020 research and innovation programme
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