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A thresholding algorithm for Willmore-type flows
via fourth-order linear parabolic equation

Katsuyuki Ishii, Yoshihito Kohsaka, Nobuhito Miyake, and
Koya Sakakibara

Abstract. We propose a thresholding algorithm for Willmore-type flows in RN . This algorithm
is constructed based on the asymptotic expansion of the solution to the initial value problem for a
fourth-order linear parabolic partial differential equation whose initial data is the indicator function
on the compact set �0. The main results of this paper demonstrate that the boundary @�.t/ of the
new set�.t/, generated by our algorithm, is included inO.t/-neighborhood of @�0 for small t > 0
and that the normal velocity from @�0 to @�.t/ is nearly equal to the L2-gradient of Willmore-type
energy for small t > 0. Finally, numerical examples of planar curves governed by the Willmore flow
are provided by using our thresholding algorithm.

1. Introduction

In this paper, we propose a thresholding algorithm for the L2-gradient flow of Willmore-
type energy in RN . Let � be a hypersurface in RN . The Willmore-type energy EN

�
.�/ for

� is defined as

EN� .�/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1
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X
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�i�jdS� C �

Z
�

dS� if N � 3;

where � 2 R. For N D 2, � is the curvature of a planar curve � and s is the arc-length
parameter. ForN � 3, �i (i 2ƒ WD ¹1;2; : : : ;N � 1º) are the principal curvatures of � and
H is the (.N � 1/-times) mean curvature of � . This can be regarded as a generalization of
the Willmore energy. Note that the energy EN0 .�/ with N � 3 appears in the asymptotic
expansion of the heat content (see Angiuli–Massari–Miranda [1]).

Let ¹�.t/ºt�0 be a family of hypersurfaces in RN and assume that the motion of �.t/
is governed by the L2-gradient flow

V D �rL2E
N
� .�.t//; (1.1)
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where V is the normal velocity of �.t/ and rL2EN� .�/ is theL2-gradient of EN
�
.�/ given

by

rL2E
N
� .�/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@2s� C
1

2
�3 � �� if N D 2;

�gH CH jAj
2
�
1

2
H 3
� �H if N D 3;

�gH CH jAj
2
�
1

2
H 3
C 2

X
i;j;k2ƒ
i<j<k

�i�j �k � �H if N � 4:

(1.2)

Here, @2s is the second-order differential operator with respect to s, �g is the Laplace–
Beltrami operator on � by the induced metric g D .gij /, and jAj2 denotes the norm of the
second fundamental formAD .hij /, which is defined as jAj2 WD

P
i;j;k;`2ƒ g

ijgk`hikhj`
.D

P
i2ƒ �

2
i /, where g�1 D .gij / is the inverse matrix of g D .gij /. If �.t/ is embedded

and encloses a domain D.t/, we choose the orientation induced by the outer unit normal
so that V is positive if D.t/ grows and H is negative if �.t/ is a spherical surface. Note
that the term

P
i;j;k2ƒ �i�j �k for N � 4 in (1.2) is derived as the first variation of the

integral of .�1=3/
P
i;j2ƒ �i�j on � (see, e.g., Reilly [36]). Also, note that if N D 3 and

the topology of � is fixed, the integral of �1�2 on � is constant by virtue of the Gauss–
Bonnet theorem so that its first variation is zero.

Equation (1.1) with N D 2; 3 and � D 0 is the Willmore flow (WF for short). For
the results of the existence and the asymptotic behavior of the WF and related flows,
see, e.g., Simonett [40], Kuwert–Schätzle [23,24], Dziuk–Kuwert–Schätzle [11], Okabe–
Wheeler [34], and Rupp [37] and references therein. As for the approximation schemes
and the methods of numerical computations of the flow by (1.1), there are many results
taking account of various applications. Mayer–Simonett’s work [32] is one of the first
numerical approaches for the WF in R3. They used a finite difference scheme to the WF
and numerically observed that the WF can develop singularities in finite time. Rusu [38]
presented an algorithm for the WF in R3 based on the variational method and studied a
semi- and a fully discrete scheme in space and a semi-implicit method in time. Dziuk [10]
introduced a parametric finite-element method to the WF in general space dimensions.
In [3, 4], etc. Barrett, Garcke, and Nürnberg studied parametric finite-element methods
for fourth-order geometric evolution problems, such as surface diffusion flow and the WF.
Furthermore, it is well known that the WF can be approximated by the fourth-order phase-
field equations or equivalent systems of PDE’s, which are derived from approximations
of the Willmore functional. Loreti–March [30] obtained the formal asymptotic expan-
sions of solutions of the fourth-order phase-field equations (or equivalent systems) and
derived (1.1) for N D 3. Bretin–Masnou–Oudet [6] gave similar results to some mod-
ified versions of the fourth-order phase-field equations and the related energies. They
also presented in [6] some numerical simulations of the flows for N D 2; 3, based on
their formal asymptotic expansions. Colli–Laurençot [7,8] studied the well-posedness of a
phase-field approximation to the WF with volume and area constraints in RN .1�N � 3/.
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Rätz–Röger [35] introduced a new diffuse-interface approximation of the WF, avoiding
intersections of phase boundaries that do not correspond to the intended sharp interface
evolution. They also justified the approximation property by a Gamma convergence for
the energies and a matched asymptotic expansion for the flow. Fei–Liu [16] rigorously
proved the convergence of the zero-level set of the solutions of the phase-field system to
the WF for N D 2; 3 if the smooth WF exists.

The purpose of this paper is to introduce a thresholding algorithm by using the follow-
ing Cauchy problem for the fourth-order linear parabolic equation:8̂̂<̂

:̂
ut D ��

2uC ��u in RN � .0;1/;

u.x; 0/ D ��0.x/ WD

´
1 in �0;

0 in RN n�0:

(1.3)

Here,N � 2, �2R, and�0�RN is compact set with smooth boundary. By the derivation
of a threshold function from the solution to the above problem, we obtain a thresholding
algorithm to the motion of �.t/ by (1.1) at least formally. The outline of our algorithm
is as follows: set h > 0 as a time step. For a given compact set �0 in RN with a smooth
boundary @�0, we solve the initial value problem (1.3). Next, let u0 be the solution to
(1.3) and set u0a.x; t / WD u

0.x; a4t / for a > 0. Then, define a threshold function U 0 as

U 0.x; t / WD u03a.x; t / � 3u
0
2a.x; t /C 3u

0
a.x; t /

and give a new set �1 by

�1 WD

²
x 2 RN j U 0.x; h/ �

1

2

³
:

Repeating this procedure inductively, we obtain a sequence ¹�kº1kD0 of compact subsets
of RN . Set

�h.t/ WD �k for kh � t < .k C 1/h; k D 0; 1; 2; : : : :

Then, letting h! 0, we observe at least formally that �h.t/ converges to a compact set
�.t/.� RN / and that @�.t/ moves by (1.1) if we choose a suitable constant a. In order
to justify the thresholding algorithm explained above, we derive the asymptotic expansion
of the solution to (1.3) near @�0. For the details of the justification, see the argument in
Section 4.1.

Thresholding algorithms for the geometric evolution equations were first introduced
by Bence–Merriman–Osher [5] to numerically compute the mean curvature flows. Based
on the level set approach for geometric evolution equations, the convergence and gen-
eralizations of their algorithm were studied by Mascarenhas [31], Evans [15], Barles–
Georgelin [2], Ishii [21], Ishii–Pires–Souganidis [22], Vivier [41], Leoni [29], and so on.
Recently, another approach was suggested by Esedoḡlu–Otto [13], which was considered
the thresholding algorithm for the multi-phase mean curvature flow. They gave the inter-
pretation such that the thresholding algorithm can be regarded as a minimizing movement
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scheme. For the result of the convergence and the further development on this approach,
see Laux–Otto [26–28], Laux–Lelmi [25], and Fuchs–Laux [18].

On the thresholding algorithm for the WF, there are results by Grzhibovskis–Heintz
[20] in R3 and Esedoḡlu–Ruuth–Tsai [14] in R2. In [14,20], the asymptotic expansion of
the convolution .t�N=4�.j � j=t1=4/ � ��0/.x/ is used to define a threshold function. Here,
t�N=4�.j � j=t1=4/ is a modified Gauss kernel or some similar ones. Note that in [14] the
L2-gradient flow of the Helfrich functional in R2 was also considered. On the details of
the difference between their thresholding algorithm and ours, see Remark 4.1. Metivet–
Sengers–Ismaïl–Maitre [33] treated the diffusion-resistance scheme in R2 or R3, which is
a variant of the algorithm by [14].

Referring to [14, 20], the space-time scale jxj=t1=4 plays a key role in obtaining the
WF from the formal asymptotic expansions of their convolutions. Indeed, in [14,20], they
used a modified Gauss kernel whose space-time scale is jxj=t1=4 instead of a natural
space-time scale jxj=t1=2 of the usual Gauss kernel (see Remark 4.1 on the details of the
calculation). Based on this fact, we arrive at the idea of using the fundamental solution
to the fourth-order linear parabolic equation in (1.3) to construct a thresholding algorithm
for the flow by (1.1) since a natural space-time scale of its solution is jxj=t1=4. Another
reason to consider the equation in (1.3) is that (1.1) can be written by the signed distance
function d as follows (cf. [6, Section 3.3] and [16, Lemma A.2]):

dt D ��
2d C hD.hD.�d/;Dd i/;Dd i C 2hD.�d/;Dd i�d

C
1

2
.�d/3 C ��d on �.t/:

Dropping all of the nonlinear terms, we have the fourth-order linear parabolic equation
in (1.3), and hence, it is regarded as the “rough” approximation of this equation. Further-
more, as the benefit of using the fundamental solution to (1.3), the part related to the area
constraint is naturally derived from the term of Laplacian of the equation in (1.3). Such
a derivation considering the structure is difficult if we use a modified Gauss kernel. We
remark that for a thresholding algorithm for the WF, at present, there are no results on
the convergence to some suitable solution to the WF. Since it seems that our approach is
more natural compared with that in [14, 20], it is expected that the construction of some
suitable solution and the convergence to it are shown based on our results. Indeed, in order
to prove the convergence, the ideas based on the gradient flow as in [18, 25–28] may be
useful for the WF. We think that our algorithm has a strong possibility for connecting to
their approach.

This paper is organized in the following way. In Section 2, we derive some formulae
and pointwise estimates of the fundamental solution GN;� to the operator @t C .��/2 C
�.��/ and of its derivatives. In Section 3, we discuss the formal asymptotic expansion of
the solution to (1.3), which is stated in Theorem 3.4. Section 4 is devoted to the justifica-
tion of our algorithm. In Section 4.1, we recall the algorithm and the fact to be justified
and prove this fact in Section 4.2. Section 5 presents the results of numerical experiments.
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We consider the equation in (1.3) with � D 0 and N D 2, i.e., the case corresponding to
the WF in R2, in a periodic square domain. The last two sections are appendices.

2. Preliminaries

In this section, we derive some properties and estimates of the fundamental solution GN;�
to the operator @t C .��/2 C �.��/ on RN � .0;1/, where � is the Laplace operator
on RN and � 2 R.

Define the Fourier transform as

FN Œ �.�/ WD

Z
RN

 .x/e�ih�;xiN dx; F �1N Œ �.x/ WD cN

Z
RN

 .�/eihx;�iN d�

for  2 L1.RN /, where i WD
p
�1, cN WD .2�/�N and h � ; � iN is the inner product on

RN . Then, GN;� is given by

GN;�.x; t / D F �1N Œe�.j � j
4C�j � j2/t �.x/ D cN

Z
RN

e�.j�j
4C�j�j2/tCihx;�iN d�;

and we readily see thatZ
RN

GN;�.x; t /dx D FN ŒF
�1
N Œe�.j � j

4C�j � j2/t ��.0/ D e�.j�j
4C�j�j2/t

ˇ̌
�D0
D 1: (2.1)

Set gN .x/ WD GN;0.x; 1/. That is,

gN .x/ D F �1N Œe�j � j
4

�.x/ D cN

Z
RN

e�j�j
4Cihx;�iN d�: (2.2)

We derive the expansion of GN;� by use of gN and its derivatives.

Proposition 2.1. GN;� is represented as

GN;�.x; t / D
1

tN=4

1X
mD0

.��/mtm=2

mŠ
.��z/

mgN

� x

t1=4

�
;

where �zgN is the Laplacian of gN .z/ with respect to z 2 RN .

Proof. Applying the change of variable � D �=t1=4, we have

GN;�.x; t / D
cN

tN=4

Z
RN

e
�j�j4Cih x

t1=4
;�iN e��j�j

2t1=2d�

D
cN

tN=4

Z
RN

1X
mD0

.��/mtm=2

mŠ
j�j2me

�j�j4Cih x
t1=4

;�iN d�:
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SinceZ
RN

1X
mD0

ˇ̌̌̌
.��/mtm=2

mŠ
j�j2me

�j�j4Cih x
t1=4

;�iN

ˇ̌̌̌
d� D

Z
RN

1X
mD0

j�jmtm=2

mŠ
j�j2me�j�j

4

d�

D

Z
RN

e�j�j
4Cj�jj�j2t1=2d� < C1;

the Lebesgue convergence theorem implies that termwise integration is possible, and
hence,

GN;�.x; t / D
cN

tN=4

1X
mD0

.��/mtm=2

mŠ

Z
RN

j�j2me
�j�j4Cih x

t1=4
;�iN d�: (2.3)

Taking account of @2zi e
ihz;�iN D ��2i e

ihz;�iN .i D 1; : : : ; N /, we obtain the desired result
by some properties of the Fourier transform and (2.3).

Set ZNC WD ¹˛D .˛1; : : : ;˛N /2ZN j ˛i � 0.i D 1; : : : ;N /º and ZC WDZ1C. Hereafter,
˛ D .˛1; : : : ; ˛N / 2ZNC is a multi-index with j˛j D ˛1C � � � C ˛N andD˛

x D @
˛1
x1 � � �@

˛N
xN .

For GN;�, we have the pointwise estimates as follows.

Theorem 2.2. There exist C; �; �;K > 0 such that for all ˛ 2 ZNC , m 2 ZC, � 2 R, and
.x; t / 2 RN � .0;1/

jD˛
x.��x/

mGN;�.x; t /j � C�
j˛jC2m�

�
j˛j C 2mCN

4

�
t�.NCj˛jC2m/=4

�

�
1C

jxj

t1=4

�.j˛jC2m/=3
e��.jxj

4=t/1=3CKj�j2t :

In the case � D 0, this estimate is originally obtained in Eidel’man [12, Section 3 in
Chapter I] and Cui [9, Theorem 3.2]. However, in these references, the precise depen-
dence of the constant on ˛ 2 ZNC and m 2 ZC is not stated. Thus, we give the proof of
this theorem in Appendix B below. The following corollary is a direct consequence of
Theorem 2.2.

Corollary 2.3. There exist C; �; � > 0 such that for all ˛ 2 ZNC , m 2 ZC, and x 2 RN

jD˛
x.��x/

mgN .x/j � C�
j˛jC2m�

�
j˛j C 2mCN

4

�
.1C jxj/.j˛jC2m/=3e��jxj

4=3

:

IfN � 2, for an orthogonal matrix PN of sizeN satisfying PNx D .jxj; 0; : : : ; 0/T 2
RN , set � D PN� in (2.2). Since j detPN j D 1 and j�j D j�j, we obtain

gN .x/ D cN

Z
RN

e�j�j
4Cihx;PN �iN d� D cN

Z
RN

e�j�j
4Cijxj�1d�:
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Applying the change of variable on the polar coordinate, gN .x/ is represented as

gN .x/ D cN!N�2

Z 1
0

�N�1e��
4

²Z �

0

eijxj� cos � sinN�2 �d�
³
d�

D .2�/�N=2jxj1�N
Z 1
0

.jxj�/N=2e��
4

J.N�2/=2.jxj�/d�; (2.4)

where J.N�2/=2 is the .N � 2/=2-th Bessel function. If N D 1, we have

g1.x/ D c1

Z
R
e��

4Cix�d� D 2c1

Z 1
0

e��
4

cos.x�/d�

D .2�/�1=2
Z 1
0

.jxj�/1=2e��
4

J�1=2.jxj�/d�: (2.5)

From (2.4) and (2.5), set

'N .jxj/ WD .2�/
�N=2
jxj1�N

Z 1
0

.jxj�/N=2e��
4

J.N�2/=2.jxj�/d�

for N � 1, which means gN .x/ D 'N .jxj/. According to Ferrero–Gazzola–Grunau [17,
Section 2], 'N .r/ with r D jxj � 0 satisfies

'N .r/ D
1

2NC1�N=2

1X
`D0

.�1/`�.`=2CN=4/

22`�.`C 1/�.`CN=2/
r2`;

'0N .r/ D �r'NC2.r/: (2.6)

In addition, we have the following lemma.

Lemma 2.4. For gN .x/ D 'N .r/ with r D jxj � 0,

�mgN .x/ D

�
d2

dr2
C
N � 1

r

d

dr

�m
'N .r/

D
.�1/m

2NC1�N=2

1X
`D0

.�1/`�..`Cm/=2CN=4/

22`�.`C 1/�.`CN=2/
r2`:

Proof. For m D 1, the direct calculation yields that�
d2

dr2
C
N � 1

r

d

dr

�
'N .r/ D

�1

2NC1�N=2

1X
`D0

.�1/`�..`C 1/=2CN=4/

22`�.`C 1/�.`CN=2/
r2`:

The result follows by induction.

We show the following lemma. It is necessary to estimate some integrations of GN;�
in the next section.
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Lemma 2.5. Let ˛ 2 ZNC with j˛j � 2. Then, there exists  > 0 such that for j�jt1=2 � 
1X
mD0

j�jmtm=2

mŠ

Z
RN

ˇ̌
D˛
x.��x/

mgN .x/
ˇ̌
dx <1:

Proof. By Corollary 2.3, there exist C; �; � > 0 independent of m such that

j�jmtm=2

mŠ

Z
RN

ˇ̌
D˛
x.��x/

mgN .x/
ˇ̌
dx

�
C.j�j�2t1=2/m

mŠ
�

�
m

2
C
j˛j CN

4

�Z
RN

.1C jxj/.j˛jC2m/=3e��jxj
4=3

dx:

Applying the change of variable on the polar coordinate, we obtainZ
RN

.1C jxj/.j˛jC2m/=3e��jxj
4=3

dx

� 2.j˛jC2m/=3C1

²
1C

�
1

�

�.j˛jC2m/=4
�

�
m

2
C
j˛j C 3N

4

�³
for a constant C1 > 0 independent ofm. Here, it follows from the Schwarz inequality that

�

�
m

2
C
j˛j C kN

4

�
� ¹�.m/º1=2

²
�

�
j˛j C kN

2

�³1=2
� .mŠ/1=2

²
�

�
j˛j C kN

2

�³1=2
for m 2 N and k D 1; 3. Therefore, we see that

j�jmtm=2

mŠ

Z
RN

ˇ̌
D˛
x.��x/

mgN .x/
ˇ̌
dx � C2

.41=3j�j�2t1=2/m

.mŠ/1=2
C C3

�
41=3j�j�2t1=2

�1=2

�m
for constants C2; C3 > 0 independent of m. Choose  > 0 satisfying

 <
�1=2

41=3�2
:

Then, with the help of d’Alembert test, we can judge that the series
1X
mD1

.41=3j�j�2t1=2/m

.mŠ/1=2
;

1X
mD1

�
41=3j�j�2t1=2

�1=2

�m
converge uniformly for j�jt1=2 �  so that we obtain the desired result.

Lemma 2.5 and the Lebesgue convergence theorem lead to the following lemma.

Lemma 2.6. Let ˛ 2 ZNC with j˛j � 2 and h 2 L1.RN /. Then, there exists  > 0 such
that for j�jt1=2 � Z

RN

1X
mD0

.��/mtm=2

mŠ
D˛
x.��x/

mgN .x/h.x/dx

D

1X
mD0

.��/mtm=2

mŠ

Z
RN

D˛
x.��x/

mgN .x/h.x/dx:

With regard to .�@2xN /
`.��x/

mgN .x
0; 0/, we have the following representation.
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Lemma 2.7. Let gN be given by (2.2). Then,

.�@2xN /
`.��x/

mgN .x
0; 0/

D c1

mX
jD0

�
m

j

�
F �1N�1

"
1X
kD0

.�2/k

kŠ
L2.kCjC`/j � j

2.kCm�j /e�j � j
4

#
.x0/

for `;m 2 ZC, where

L� WD 2

Z 1
0

��e��
4

d� D
1

2
�

�
� C 1

4

�
(2.7)

for � � 0.

Proof. Fix any x 2 RN . Taking account of

j�j4 D j�0j4 C �4N C 2j�
0
j
2�2N

for �0 D .�1; : : : ; �N�1/, we see that for x0 D .x1; : : : ; xN�1/

.�@2xN /
`.��x/

mgN .x/

D cN

Z
RN

�2`N j�j
2me�j�j

4Cihx;�iN d�

D cN

mX
jD0

�
m

j

�Z
RN

j�0j2.m�j /�
2.jC`/
N e�.j�

0
j4C�4NC2j�

0
j2�2N /Ci¹hx0;�0iN�1CxN �N ºd�

D cN

mX
jD0

�
m

j

�Z
RN

1X
kD0

.�2/k

kŠ
j�0j2.kCm�j /�

2.kCjC`/
N e�j�

0
j4Cihx0;�0iN�1e��

4
NCixN �N d�:

Note that by Fubini’s theorem

.�@2xN /
`.��x/

mgN .x/ D cN

mX
jD0

�
m

j

�Z
RN�1

j�0j2.m�j /e�j�
0
j4Cihx0;�0iN�1

�

²Z
R

1X
kD0

.�2/k

kŠ
j�0j2k�

2.kCjC`/
N e��

4
NCixN �N d�N

³
d�0:

Here, it follows that, for each �0 2 RN�1 and n 2 N,Z
R

ˇ̌̌̌
ˇ nX
kD0

.�2/k

kŠ
j�0j2k�

2.kCjC`/
N e��

4
NCixN �N

ˇ̌̌̌
ˇd�N

�

Z
R
�
2.jC`/
N e��

4
NC2j�

0
j2�2N d�N < C1:
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The Lebesgue convergence theorem implies thatZ
R

1X
kD0

.�2/k

kŠ
j�0j2k�

2.kCjC`/
N e��

4
NCixN �N d�N

D

1X
kD0

.�2/k

kŠ
j�0j2k

Z
R
�
2.kCjC`/
N e��

4
NCixN �N d�N :

Substituting xN D 0, we haveZ
R

1X
kD0

.�2/k

kŠ
j�0j2k�

2.kCjC`/
N e��

4
N d�N D

1X
kD0

.�2/k

kŠ
j�0j2k

Z
R
�
2.kCjC`/
N e��

4
N d�N

D

1X
kD0

.�2/k

kŠ
j�0j2kL2.kCjC`/:

Since

j � j
2.m�j /e�j � j

4Cihx0; � iN�1
1X
kD0

.�2/k

kŠ
L2.kCjC`/j � j

2k
2 L1.RN�1/

by Fubini’s theorem, we obtain the desired result.

3. Asymptotic expansion of a solution to linear parabolic equations

The purpose of this section is to derive the asymptotic expansion of a solution u.x; t / to
(1.3) as t !C0. Throughout this section, we assume that �0 is a compact set in RN and
@�0 is of class C 5. Recalling Proposition 2.1 and Lemma 2.6, the solution u.x; t / to (1.3)
is given by

u.x; t / D .GN;�. � ; t / � ��0/.x/

D
1

tN=4

1X
mD0

.��/mtm=2

mŠ

Z
RN

.��z/
mgN

�x � y
t1=4

�
��0.y/dy

D

1X
mD0

.��/mtm=2

mŠ

Z
¹z2RN jx�t1=4z2�0º

.��z/
mgN .z/dz

for x 2 RN .

3.1. Notations related to @�0

In this subsection, we give some notations related to @�0. For x� 2 RN and ı > 0, we
denote a neighborhood of x� by

Qx�;ı WD ¹x 2 RN j jxi � x�;i j < ı.i D 1; : : : ; N /º; Qx� WD Qx�;1;

Q0x�;ı WD ¹x 2 Qx�;ı j xN D x�;N º; Q0x� WD Q
0
x�;1

:
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Since @�0 is compact, we can choose ı0 > 0 such that the family ¹Qx�;ı0ºx�2@�0 is an
open covering of @�0. We may set ı0 D 1. Let n.x/ be the unit outward normal to @�0
at x 2 @�0 and PN an orthogonal matrix of size N such that PNn.x/ D eN , where
eN D .0

0; 1/T with 00 D .0; : : : ; 0/ 2 RN�1. Then, set z�0 WD ¹ Qy 2 RN j P�1N Qy 2 �0º.
Without loss of generality, we may assume that for each x 2 @�0 there exists a function
f jx W Q

0
0
! R satisfying the following properties.

(A1) f jx 2 C 5.Q00/ for any x 2 @�0 and kf jxkC 5.Q0
0
/

is uniformly bounded for

x 2 @�0.

(A2) f jx.00/ D 0 and rx0f jx.00/ D 00.

(A3) @ z�0 \QPNx D ¹ Qy 2RN j QyN � .PNx/N D f jx. Qy
0
� .PNx/

0/. Qy 0 2Q0PNx/º,
where .PNx/i is the i -th component of PNx and

.PNx/
0
D ..PNx/1; : : : ; .PNx/N�1/:

Note that . Qy 0; .PNx/N C f jx. Qy 0 � .PNx/0//. Qy 0 2 Q0PNx/ is a graph representation of
@ z�0 in a neighborhood of PNx for x 2 @�0. Hereafter, for simplicity, we denote f jx by
f . We also define a function  D  .z0; v; t/WRN�1 �R �RC ! R as

 .z0; v; t/ WD t�1=4¹�v C f .t1=4z0/º:

Let g D .gij /, A D .hij /, H , �i , and �g be the induced metric, the second fundamental
form, the mean curvature, the principal curvatures, and the Laplace–Beltrami operator of
@�0, respectively. jAj2 is the norm of the second fundamental form, that is,

jAj2 D
X

i;j;k;`2ƒ

gijgk`hikhj`;

where g�1 D .gij / is the inverse matrix of g D .gij /. For the representation of these
quantities by f , see Appendix A.

Define the signed distance function to @�0 as

d.y; @�0/ WD

´
infx2@�0 jy � xj .y 2 �0/;

� infx2@�0 jy � xj .y 2 RN n�0/:
(3.1)

Set .@�0/ı WD ¹y 2 RN j jd.y; @�0/j < ıº. Then, we take ı0 2 .0; 1=2/ such that for any
y 2 .@�0/

ı0 there is a unique x0 2 @�0 satisfying jd.y; @�0/j D jy � x0j.
Furthermore, in the following, we often use the notation F.x; t / D OD.b.t//. This

means that there existsC>0, which is obtained uniformly for x 2D, such that jF.x; t /j �
C jb.t/j.

3.2. Asymptotic expansion

We first show the asymptotic expansion of u.x C vn.x/; t/ by using the graph represen-
tation.
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Theorem 3.1. Let  be a constant obtained in Lemma 2.5. Then, there exists �� > 0 such
that for all x 2 @�0, v 2 .�ı0; ı0/, � 2 R, and t > 0 satisfying j�jt1=2 � 

u.x C vn.x/; t/

D
1

2
C

1X
mD0

.��/mtm=2

mŠ

Z
RN�1

Z  .z0;v;t/

0

.��z/
mgN .z/dzNdz

0
CO@�0.e

���t
�1=3

/:

(3.2)

Furthermore, for j 2 ¹1; : : : ; N º, � 2 R, and t > 0 satisfying j�jt1=2 � 

hrxu.x C vn.x/; t/; P
�1
N ej iN

D �
1

t1=4

1X
mD0

.��/mtm=2

mŠ

Z
RN�1

Z  .z0;v;t/

�1

@zj .��z/
mgN .z/dzNdz

0

CO@�0.e
���t

�1=3

/: (3.3)

Remark 3.2. Note that the term O@�0.e
���t

�1=3
/ is not only uniform for x 2 @�0, but

also for v 2 .�ı0; ı0/. See the estimate of I2 in the proof below.

Proof of Theorem 3.1. Step 1. We first prove (3.2). Using the fact that GN;�. � ; t / is radi-
ally symmetric, we have

u.x C vn.x/; t/ D

Z
�0

GN;�.x C vn.x/ � y; t / dy

D

Z
�0

GN;�.y � .x C vn.x//; t/ dy:

Choose an orthogonal matrix PN of size N such that PNn.x/ D eN . Setting Qy D PNy
and taking account of jP�1N zj D jzj for z 2 RN , we obtain

u.x C vn.x/; t/ D

Z
z�0

GN;�. Qy � .PNx C veN /; t/ d Qy

D

�Z
z�0\QPNx

C

Z
z�0nQPNx

�
GN;�. Qy � .PNx C veN /; t/ d Qy

DW I1 C I2:

It follows from Theorem 2.2 with j˛j D m D 0 that for t > 0 satisfying j�jt1=2 � 

I2 � C1t
�N=4eKj�j

2t

Z
RN nBN .PNxCveN ;1=2/

e��.j Qy�.PNxCveN /j
4=t/1=3d Qy

� C2

Z
RN nBN .0;t�1=4=2/

e��jQ�j
4=3

d Q� D O@�0.e
���t

�1=3

/;
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where BN .x; r/ is the N -dimensional ball with the center x and the radius r . We also see
that for t > 0 satisfying j�jt1=2 � ˇ̌̌̌ Z

RN�1

Z f . Qy 0�.PNx/
0/C.PNx/N

�1

GN;�. Qy � .PNx C veN /; t/d QyNd Qy
0
� I1

ˇ̌̌̌
� Ct�N=4eKj�j

2t

Z
RN nBN .PNxCveN ;1=2/

e��.j Qy�.PNxCveN /j
4=t/1=3d Qy

D O@�0.e
���t

�1=3

/;

where f is a function satisfying (A1)–(A3). These facts imply that

u.x C vn.x/; t/D

Z
RN�1

Z f . Qy 0�.PNx/
0/C.PNx/N

�1

GN;�. Qy � .PNx C veN /; t/ d QyNd Qy
0

CO@�0.e
���t

�1=3

/:

Applying the change of variable

� D Qy � .PNx C veN /

and recalling (2.1), Proposition 2.1, and Lemma 2.6, we have

u.x C vn.x/; t/

D

Z
RN�1

Z  .�0;v;1/

�1

GN;�.�; t /d�Nd�
0
CO@�0.e

���t
�1=3

/

D
1

2
C

Z
RN�1

Z  .�0;v;1/

0

GN;�.�; t /d�Nd�
0
CO@�0.e

���t
�1=3

/

D
1

2
C

1

tN=4

1X
mD0

.��/mtm=2

mŠ

Z
RN�1

Z  .�0;v;1/

0

.��z/
mgN

� �

t1=4

�
d�Nd�

0

CO@�0.e
���t

�1=3

/:

By the change of variable z D t�1=4�, we obtain (3.2).

Step 2. We derive (3.3). Using again the fact that GN;�. � ; t / is radially symmetric and
setting

Qy D PNy

with an orthogonal matrix PN introduced in Step 1, we see that

rxu.x C vn.x/; t/ D �

Z
z�0

P TNrzGN;�. Qy � .PNx C veN /; t/ d Qy;

where P TN is the transposed matrix of PN and

rzGN;� D .@z1GN;�.z; t /; : : : ; @zNGN;�.z; t //:
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This implies that

hrxu.x C vn.x/; t/; P
�1
N ej iN

D �

Z
z�0

hP TNrzGN;�. Qy � .PNx C veN /; t/; P
�1
N ej iNd Qy

D �

Z
z�0

@zjGN;�. Qy � .PNx C veN /; t/ d Qy:

Applying an argument similar to the above, we are led to (3.3).

By the Taylor expansion of f .z0/ at z0 D 00, we see that

 .z0; v; t/

D t�1=4
²
� v C f .00/C hz0;rz0iN�1f .0

0/t1=4 C
hz0;rz0i

2
N�1f .0

0/

2
t1=2

C
hz0;rz0i

3
N�1f .0

0/

6
t3=4 C

hz0;rz0i
4
N�1f .0

0/

24
t

C
hz0;rz0i

5
N�1f .� t

1=4z0/

120
t5=4

³
D �vt�1=4 C

hz0;rz0i
2
N�1f .0

0/

2
t1=4 C

hz0;rz0i
3
N�1f .0

0/

6
t1=2

C
hz0;rz0i

4
N�1f .0

0/

24
t3=4 C

hz0;rz0i
5
N�1f .� t

1=4z0/

120
t (3.4)

for some � 2 .0; 1/. Note that hz0;rz0inN�1f is defined by

hz0;rz0i
n
N�1f D

�X
i2ƒ

zi@zi

�n
f

D

X
d1C���CdN�1Dn

�
n

d1; : : : ; dN�1

�
.z1@z1/

d1 � � � .zN�1@zN�1/
dN�1f;

where �
n

d1; : : : ; dN�1

�
D

nŠ

d1Š � � � dN�1Š
:

According to (A2) and Appendix A below, hz0;rz0i2N�1f .0
0/ is represented as

hz0;rz0i
2
N�1f .0

0/ D
X
i2ƒ

�i�
2
i ; (3.5)

where �0 D P�1N�1z
0 for an orthogonal matrix PN�1 of size N � 1. This implies that�
hz0;rz0i

2
N�1f

�2
.00/ D

X
i2ƒ

�2i �
4
i C 2

X
i1;i22ƒ
i1<i2

�i1�i2�
2
i1
�2i2 ; (3.6)
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hz0;rz0i

2
N�1f

�3
.00/ D

X
i2ƒ

�3i �
6
i C 3

X
i1;i22ƒ
i1¤i2

�2i1�i2�
4
i1
�2i2

C 6
X

i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3�
2
i1
�2i2�

2
i3
: (3.7)

Since PN�1 is an orthogonal matrix, for any F WRN�1 ! R, it holds thatZ
RN�1

F.z0/dz0 D

Z
RN�1

zF .�0/ d�0;

where zF .�0/ WD F.PN�1�0/D F.z0/. Hereafter, we use the variable z0 in the sense of the
variable �0 as the above.

We introduce some notations. Set

B WD ¹i 2 ƒ j ˇi ¤ 0º:

Then, for ˇ D .ˇ1; : : : ; ˇN�1/ 2 ZN�1C , .ˇi /i2B denotes a multi-index in which only
positive components are chosen. For example, if ˇi1 D p .> 0/, ˇi2 D q .> 0/, and ˇi D 0
for i ¤ i1; i2, .ˇi /i2B is represented as

.ˇi /i2B D .p; q/i1;i2 :

Using the above notations, we define moments related to gN as follows:

M0 WD

Z
RN�1

gN .z
0; 0/ dz0; M

`;m
.ˇi /i2B

WD

Z
RN�1

®
.�@2zN /

`.��z/
mgN .z

0; 0/
¯
.z0/ˇdz0

for `;m 2 ZC and ˇ D .ˇ1; : : : ; ˇN�1/ 2 ZN�1C . We calculate the explicit values of some
moments.

Lemma 3.3. Let `; m 2 ZC and ˇ D .ˇ1; : : : ; ˇN�1/ 2 ZN�1C with jˇj WD ˇ1 C � � � C
ˇN�1 � 6. Then, (i), (ii), and (iii) hold as follows.

(i) M0 D c1L0.

(ii) If jˇj is odd, M `;m
.ˇi /i2B

D 0.

(iii) For i0; i1; i2; i3 2 ƒ with i1 < i2 < i3,

M
0;0
.ˇi /i2B

D

8̂̂<̂
:̂
4c1L2 ..ˇi /i2B D .2/i0/;

�12c1L0 ..ˇi /i2B D .4/i0/;

�4c1L0 ..ˇi /i2B D .2; 2/i1;i2/;

M
1;0
.ˇi /i2B

D

8̂̂<̂
:̂
�60c1L0 ..ˇi /i2B D .6/i0/;

�12c1L0 ..ˇi /i2B D .4; 2/i1;i2/;

�4c1L0 ..ˇi /i2B D .2; 2; 2/i1;i2;i3/;

M
0;1
.2/i0
D �c1L0:
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Proof. Step 1. We first prove (i). It follows from Lemma 2.7 that for ˇ 2 ZN�1CZ
RN�1

®
.�@2zN /

`.��z/
mgN .z

0; 0/
¯
.z0/ˇdz0

D c1

mX
jD0

�
m

j

�Z
RN�1

F �1N�1

"
1X
kD0

.�2/k

kŠ
L2.kCjC`/j � j

2.kCm�j /e�j � j
4

#
.z0/.z0/ˇdz0:

Setting .`;m/ D .0; 0/ and ˇ D .0; : : : ; 0/ 2 ZN�1C , we have

M0 D c1FN�1

"
F �1N�1

"
1X
kD0

.�2/k

mŠ
L2kj � j

2ke�j � j
4

##
.00/

D c1

1X
kD0

.�2/k

kŠ
L2kj�

0
j
2ke�j�

0
j4

ˇ̌̌̌
�0D00

D c1L0:

Step 2. We derive the precise form of M `;m
.ˇi /i2B

and prove (ii). It is observed thatZ
RN�1

F �1N�1

"
1X
kD0

.�2/k

kŠ
L2.kCjC`/j � j

2.kCm�j /e�j � j
4

#
.z0/.z0/ˇdz0

D .�i/�jˇ j
Z

RN�1

F �1N�1

"
1X
kD0

.�2/k

kŠ
L2.kCjC`/j � j

2.kCm�j /e�j � j
4

#
.z0/.�iz0/ˇdz0

D ijˇ j
Z

RN�1

F �1N�1

"
1X
kD0

.�2/k

kŠ
L2.kCjC`/D

ˇ

�0

�
j�0j2.kCm�j /e�j�

0
j4
�#
.z0/ dz0

D ijˇ j
1X
kD0

.�2/k

kŠ
L2.kCjC`/D

ˇ

�0

�
j�0j2.kCm�j /e�j�

0
j4
�
.00/:

This implies that

M
`;m
.ˇi /i2B

D c1ijˇ j
mX
jD0

�
m

j

� 1X
kD0

.�2/k

kŠ
L2.kCjC`/D

ˇ

�0

�
j�0j2.kCm�j /e�j�

0
j4
�
.00/:

In particular, we see that

M
0;0
.ˇi /i2B

D c1ijˇ j
1X
kD0

.�2/k

kŠ
L2kD

ˇ

�0

�
j�0j2ke�j�

0
j4
�
.00/; (3.8)

M
1;0
.ˇi /i2B

D c1ijˇ j
1X
kD0

.�2/k

kŠ
L2.kC1/D

ˇ

�0

�
j�0j2ke�j�

0
j4
�
.00/; (3.9)

M
0;1
.ˇi /i2B

D c1ijˇ j
´
1X
kD0

.�2/k

kŠ
L2kD

ˇ

�0

�
j�0j2.kC1/e�j�

0
j4
�
.00/

C

1X
kD0

.�2/k

kŠ
L2.kC1/D

ˇ

�0

�
j�0j2ke�j�

0
j4
�
.00/

µ
: (3.10)
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Since M `;m
.ˇi /i2B

is real-valued by its definition and ijˇ j D ˙i if jˇj is odd, we easily
obtain (ii).

Step 3. We show that (iii) holds. By virtue of the Leibniz rule, we have

D
ˇ

�0

�
j�0j2.kCj /e�j�

0
j4
�
D

X
�ˇ

�
ˇ



��
D
j�0j2.kCj /

��
Dˇ�e�j�

0
j4
�

for j D 0; 1, where  D .1; : : : ; N�1/ 2 ZN�1C and�
ˇ



�
D

�
ˇ1

1

�
� � �

�
ˇN�1

N�1

�
;

�
ˇi

i

�
D

ˇi Š

i Š.ˇi � i /Š
:

Note that  � ˇ is defined as i � ˇi .i D 1; : : : ; N � 1/. Since

j�0j2.kCj / D .�21 C � � � C �
2
N�1/

kCj
D

X
d1C���CdN�1DkCj

�
k C j

d1; : : : ; dN�1

�
�
2d1
1 � � � �

2dN�1
N�1 ;

we see that

D


�0
.j�0j2.kCj //.00/

D

X
d1C���CdN�1DkCj

�
k C j

d1; : : : ; dN�1

��
@
1
�1
�
2d1
1

�
� � �
�
@
N�1
�N�1

�
2dN�1
N�1

�ˇ̌̌̌
�0D00

D

´ �
kCj

1=2;:::;N�1=2

�
1Š � � � N�1Š .i is even; 1 C � � � C N�1 D 2.k C j //;

0 (otherwise):

This implies that

D
ˇ

�0

�
j�0j2.kCj /e�j�

0
j4
�
.00/

D

X
2�1�ˇ1;:::;2�N�1�ˇN�1;
�1C���C�N�1DkCj

�
ˇ1

2�1

�
� � �

�
ˇN�1

2�N�1

��
k C j

�1; : : : ; �N�1

�

� .2�1/Š � � � .2�N�1/Š
�
@
ˇ1�2�1
�1

� � � @
ˇN�1�2�N�1
�N�1

e�j�
0
j4
�
.00/

D

X
2�1�ˇ1;:::;2�N�1�ˇN�1;
�1C���C�N�1DkCj

ˇ1Š � � �ˇN�1Š

.ˇ1 � 2�1/Š � � � .ˇN�1 � 2�N�1/Š

�
k C j

�1; : : : ; �N�1

�

�
�
@
ˇ1�2�1
�1

� � � @
ˇN�1�2�N�1
�N�1

e�j�
0
j4
�
.00/: (3.11)

Here, it follows that

@�i e
�j�0j4

ˇ̌
�0D0
D @�i1 @�i2 e

�j�0j4
ˇ̌
�0D0
D @�i1 @�i2 @�i3 e

�j�0j4
ˇ̌
�0D0
D 0;

@�i1 @�i2 @�i3 @�i4 e
�j�0j4

ˇ̌
�0D0
D �8.ıi1i2ıi3i4 C ıi1i3ıi2i4 C ıi1i4ıi2i3/;

@�i1 @�i2 @�i3 @�i4 @�i5 e
�j�0j4

ˇ̌
�0D0
D @�i1 @�i2 @�i3 @�i4 @�i5 @�i6 e

�j�0j2
ˇ̌
�0D0
D 0:
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Therefore, we obtain�
@
ˇ1�2�1
�1

� � � @
ˇN�1�2�N�1
�N�1

e�j�
0
j4
�
.00/

D

8̂̂̂̂
<̂
ˆ̂̂:
1 .ˇi � 2�i D 0 .i D 1; : : : ; N � 1//;

�4Š .ˇi0 � 2�i0 D 4; ˇi � 2�i D 0.i ¤ i0//;

�8 .ˇi � 2�i D 2.i D i1; i2/; ˇi � 2�i D 0.i ¤ i1; i2//;

0 .otherwise/

(3.12)

for jˇj � 6 and i0; i1; i2; i3 2 ƒ with i1 < i2 < i3. Thus, (3.11) and (3.12) imply that

D
ˇ

�0

�
j�0j2.kCj /e�j�

0
j4
�
.00/

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

2 ..ˇi /i2B D .2/i0 ; .k; j / D .1; 0/; .0; 1//;

�4Š ..ˇi /i2B D .4/i0 ; .k; j / D .0; 0//;

4Š ..ˇi /i2B D .4/i0 ; .k; j / D .2; 0/; .1; 1//;

�8 ..ˇi /i2B D .2; 2/i1;i2 ; .k; j / D .0; 0//;

8 ..ˇi /i2B D .2; 2/i1;i2 ; .k; j / D .2; 0/; .1; 1//;

�6Š ..ˇi /i2B D .6/i0 ; .k; j / D .1; 0/; .0; 1//

6Š ..ˇi /i2B D .6/i0 ; .k; j / D .3; 0/; .2; 1//;

�6 � 4Š ..ˇi /i2B D .4; 2/i1;i2 ; .k; j / D .1; 0/; .0; 1//;

6 � 4Š ..ˇi /i2B D .4; 2/i1;i2 ; .k; j / D .3; 0/; .2; 1//;

�2 � 4Š ..ˇi /i2B D .2; 2; 2/i1;i2;i3 ; .k; j / D .1; 0/; .0; 1//;

2 � 4Š ..ˇi /i2B D .2; 2; 2/i1;i2;i3 ; .k; j / D .3; 0/; .2; 1//;

0 .otherwise/

(3.13)

for jˇj � 6. Furthermore, by (3.8), (3.9), (3.10), and (3.13), we have

M
0;0
.ˇi /i2B

D

8̂̂<̂
:̂
4c1L2 ..ˇi /i2B D .2/i0/;

�4Šc1.L0 � 2L4/ ..ˇi /i2B D .4/i0/;

�8c1.L0 � 2L4/ ..ˇi /i2B D .2; 2/i1;i2/;

M
1;0
.ˇi /i2B

D

8̂̂<̂
:̂
�6Šc1

�
2L4 �

8
3Š
L8
�

..ˇi /i2B D .6/i0/;

�6 � 4Šc1
�
2L4 �

8
3Š
L8
�
..ˇi /i2B D .4; 2/i1;i2/;

�2 � 4Šc1
�
2L4 �

8
3Š
L8
�
..ˇi /i2B D .2; 2; /i1;i2;i3/;

M
0;1
.2/i0
D �2c1.L0 � 2L4/:

Since it follows from (2.7) that

L4 D
1

2
�

�
5

4

�
D
1

8
�

�
1

4

�
D
1

4
L0; L8 D

1

2
�

�
9

4

�
D

5

32
�

�
1

4

�
D

5

16
L0;

we are led to (iii).
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Combining Lemma 3.3 with Theorem 3.1, we obtain the following precise asymptotic
expansion of the solution to (1.3).

Theorem 3.4. Let  be a constant obtained in Lemma 2.5 and take vD V t in Theorem 3.1
for V 2 R. Then, an asymptotic expansion of a solution to (1.3) is given by

u.x C V tn.x/; t/

D
1

2
C c1�

�
3

4

�
Ht1=4

�
c1

2
�

�
1

4

�²
V C

1

2

�
�gH CH jAj

2
�
1

2
H 3
C 2

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 � �H

�³
t3=4

CO@�0.t/ (3.14)

for any x 2 @�0, � 2 R, and t > 0 satisfying j�jt1=2 �  and jV jt � ı0.

Proof. Step 1. Set

„.0/ WD

Z
RN�1

Z  .z0;V t;t/

0

gN .z/dzNdz
0;

„.1/ WD

Z
RN�1

Z  .z0;V t;t/

0

.��z/gN .z/dzNdz
0:

Then, we prove that

u.x C V tn.x/; t/ D
1

2
C„.0/ � �t1=2„.1/ CO@�0.t/: (3.15)

According to (3.2), we see that

u.x C V tn.x/; t/

D
1

2
C„.0/ � �t1=2„.1/

C

1X
mD2

.��/mtm=2

mŠ

Z
RN�1

Z  .z0;V t;t/

0

.��z/
mgN .z/dzNdz

0
CO@�0.e

���t
�1=3

/:

By calculation similar to the proof of Lemma 2.5, we are able to find C > 0 and  > 0
such that ˇ̌̌̌

ˇ 1X
mD2

.��/mtm=2

mŠ

Z
RN�1

Z  .z0;v;t/

0

.��z/
mgN .z/dzNdz

0

ˇ̌̌̌
ˇ

�

1X
mD2

j�jmtm=2

mŠ

Z
RN

j.��z/
mgN .z/jdz � C j�j

2t

for j�jt1=2 �  . This implies (3.15).
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Step 2. We derive the precise asymptotics for„.0/ and„.1/. Applying the Taylor’s expan-
sion of gN .z/ and .��z/gN .z/ with respect to the variable zN and taking account of

@zN gN .z
0; 0/ D @3zN gN .z

0; 0/ D 0; @zN .��z/gN .z
0; 0/ D 0; (3.16)

which is obtained with the help of (2.6), we have

gN .z/ D gN .z
0; 0/C

1

2
@2zN gN .z

0; 0/z2N C
1

4Š
@4zN gN .z

0; �0zN /z
4
N ;

.��z/gN .z/ D .��z/gN .z
0; 0/C

1

2
@2zN .��z/gN .z

0; �1zN /z
2
N

for some �0; �1 2 .0; 1/. These imply that

„.0/ D

Z
RN�1

gN .z
0; 0/ .z0; V t; t/dz0 �

1

6

Z
RN�1

.�@2zN /gN .z
0; 0/

®
 .z0; V t; t/

¯3
dz0

C
1

4Š

Z
RN�1

Z  .z0;V t;t/

0

.�@2zN /
2gN .z

0; �0zN /z
4
NdzNdz

0;

„.1/ D

Z
RN�1

.��z/gN .z
0; 0/ .z0; V t; t/ dz0

�
1

2

Z
RN�1

Z  .z0;V t;t/

0

.�@2zN /.��z/gN .z
0; �1zN /z

2
NdzNdz

0:

Using Corollary 2.3, we observe thatˇ̌̌̌ Z
RN�1

Z  .z0;V t;t/

0

.�@2zN /
2gN .z

0; �0zN /z
4
NdzNdz

0

ˇ̌̌̌
D O@�0.t

5=4/;ˇ̌̌̌ Z
RN�1

Z  .z0;V t;t/

0

.�@2zN /.��z/gN .z
0; �1zN /z

2
NdzNdz

0

ˇ̌̌̌
D O@�0.t

3=4/:

Then, it follows from (3.4), (3.5), (3.7) and Lemma 3.3 that

„.0/ D
1

2

Z
RN�1

gN .z
0; 0/

X
i02ƒ

z2i0�i0dz
0t1=4 �

Z
RN�1

gN .z
0; 0/Vdz0t3=4

C
1

24

Z
RN�1

gN .z
0; 0/

� X
i02ƒ

z4i0@
4
zi0
f C 6

X
i1;i22ƒ
i1<i2

z2i1z
2
i2
@2zi1

@2zi2
f

�
dz0t3=4

�
1

48

Z
RN�1

.�@2zN /gN .z
0; 0/

� X
i02ƒ

z6i0�
3
i0
C 3

X
i1;i22ƒ
i1¤i2

z4i1z
2
i2
�2i1�i2

C 6
X

i1;i2;i32ƒ
i1<i2<i3

z2i1z
2
i2
z2i3�i1�i2�i3

�
dz0t3=4 CO@�0.t/
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D
1

2

X
i02ƒ

M
0;0
.2/i0

�i0 t
1=4
�M0V t

3=4

C
1

24

� X
i02ƒ

M
0;0
.4/i0

@4zi0
f C 6

X
i1;i22ƒ
i1<i2

M
0;0
.2;2/i1;i2

@2zi1
@2zi2

f

�
t3=4

�
1

48

� X
i02ƒ

M
1;0
.6/i0

�3i0 C 3
X

i1;i22ƒ
i1¤i2

M
1;0
.4;2/i1;i2

�2i1�i2

C 6
X

i1;i2;i32ƒ
i1<i2<i3

M
1;0
.2;2;2/i1;i2;i3

�i1�i2�i3

�
t3=4 CO@�0.t/

D 2c1L2
X
i02ƒ

�i0 t
1=4

� c1L0

²
V C

1

2

� X
i02ƒ

@4zi0
f C

X
i1;i22ƒ
i1<i2

@2zi1
@2zi2

f �
5

2

X
i02ƒ

�3i0 �
3

2

X
i1;i22ƒ
i1¤i2

�2i1�i2

�

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3

�³
t3=4 CO@�0.t/;

„.1/ D
1

2

Z
RN�1

.��z/gN .z
0; 0/

X
i02ƒ

z2i0�i0dz
0t1=4 CO@�0.t

3=4/

D �
1

2
c1L0

X
i02ƒ

�i0 t
1=4
CO@�0.t

3=4/:

Step 3. From the results in Step 1 and Step 2, we prove (3.14). Taking account of L0 D
�.1=4/=2 and L2 D �.3=4/=2, we obtain

u.x C V tn.x/; t/

D
1

2
C„.0/ � �t1=2„.1/ CO@�0.t/

D
1

2
C c1�

�
3

4

� X
i02ƒ

�i0 t
1=4

�
c1

2
�

�
1

4

�²
V C

1

2

� X
i02ƒ

@4zi0
f C 2

X
i1;i22ƒ
i1<i2

@2zi1
@2zi2

f �
5

2

X
i02ƒ

�3i0 �
3

2

X
i1;i22ƒ
i1¤i2

�2i1�i2

�

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 � �
X
i02ƒ

�i0

�³
t3=4 CO@�0.t/:
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Referring to Appendix A below, we see that

H D
X
i2ƒ

�i ; jAj
2
D

X
i2ƒ

�2i ;

�gH CH jAj
2
�
1

2
H 3
D

X
i02ƒ

@4zi0
f C 2

X
i1;i22ƒ
i1<i2

@2zi1
@2zi2

f �
5

2

X
i2ƒ

�3i

�
3

2

X
i1;i22ƒ
i1¤i2

�2i1�i2 � 3
X

i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 :

Consequently, we have (3.14).

4. A thresholding algorithm for the flow by (1.1)

In this section, we first introduce a threshold function based on the asymptotic expansion
obtained in Theorem 3.4 and propose the thresholding algorithm. After that, we justify its
algorithm. Throughout this section, we assume that �0 � RN is a compact set and @�0
is of class C 5.

4.1. A thresholding algorithm

Let u be a solution to (1.3). Set

ua.x; t / WD u.x; a
4t /

for x 2 RN and a > 0. Then, it follows from Theorem 3.4 that for V 2 R

ua.x C V tn.x/; t/

D
1

2
C c1�

�
3

4

�
aHt1=4

�
c1

2
�

�
1

4

�²
V

a
C
a3

2

�
�gH CH jAj

2
�
1

2
H 3
C 2

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 � �H

�³
t3=4

CO@�0.t/:

Hence, we see that

u3a.x C V tn.x/; t/ � 3u2a.x C V tn.x/; t/C 3ua.x C V tn.x/; t/ �
1

2

D �
11c1

12a
�

�
1

4

�
�

²
V C

18a4

11

�
�gH CH jAj

2
�
1

2
H 3
C 2

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 � �H

�³
t3=4

CO@�0.t/:
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Choosing a > 0 such that 18a4=11 D 1, we are led to

u3a.x C V tn.x/; t/ � 3u2a.x C V tn.x/; t/C 3ua.x C V tn.x/; t/ �
1

2

D �
11c1

12a
�

�
1

4

��
V C�gH CH jAj

2
�
1

2
H 3
C 2

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 � �H

�
t3=4

CO@�0.t/: (4.1)

From the above observation, let us introduce a threshold function and a new set generated
by its function. Define a threshold function U.x; t / as

U.x; t / WD u3a.x; t / � 3u2a.x; t /C 3ua.x; t / (4.2)

for a > 0 satisfying 18a4=11 D 1 and set

�.t/ WD

²
x 2 RN j U.x; t / �

1

2

³
: (4.3)

For any x 2 @�0 and small t > 0, we define V D V.x; t / by

x C V.x; t /tn.x/ 2 @�.t/: (4.4)

Then, setting y.x; t / WD x C V.x; t /tn.x/, we notice that

V.x; t / D �
d.y.x; t /; @�0/

t
; jd.y.x; t /; @�0/j D jy.x; t / � xj

for all x 2 @�0 and small t > 0. Hence, we can regard V as the outward normal velocity
from @�0 to @�.t/. Here, d.y; @�0/ is defined by (3.1).

We assume that

kV kL1.@�0�.0;t0// <1 for some t0 > 0; (4.5)

and U.x C V.x; t /tn.x/; t/ D 1=2. Then, by (4.1),

V C�gH CH jAj
2
�
1

2
H 3
C 2

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 � �H D O@�0.t
1=4/;

where g D g.x/ and �i D �i .x/ for x 2 @�0. This implies that V must be closed to the
L2-gradient �rL2EN� .@�0/. We emphasize that the assumption (4.5) is actually valid as
we show in the next subsection.

Based on the above argument, let us derive a thresholding algorithm for (1.1). First,
we solve the initial value problem (1.3) for the initial function ��0.x/ and let u0 be the
corresponding solution. Define a threshold function U 0.x; t / as (4.2) and a set �0.t/ as
(4.3). Fix a time step h > 0 and define �1 WD �0.h/. As the second step, we solve the
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problem (1.3) with �1 replacing �0 and define �1.t/ as the set of (4.3) with u replaced
by the solution to the problem (1.3) with the new initial function ��1.x/. Repeat this
procedure to obtain a sequence ¹�kºk2ZC of compact sets in RN . Then, setting

y�h.t/ D �k for t 2 Œkh; .k C 1/h/.k 2 ZC/

and letting h! 0, we can expect that at least formally there is a limit flow ¹@ y�.t/ºt�0 of
¹@ y�h.t/ºt�0 as h! 0, whose boundary moves by (1.1) with y�.t/D @ y�.t/. Indeed, since
yV h.x; t /, given by

x C yV h.x; t /hn.x/ 2 @�kC1 for t 2 Œkh; .k C 1/h/ .k 2 ZC/ and x 2 @�k ;

can be regarded as a normal velocity of @ y�h.t/, the above observation implies that the
limit flow of ¹@ y�h.t/ºt�0 formally moves by (1.1).

Remark 4.1. Set

E˛.x; t / WD
1

.t˛/N
�

�
jxj

t˛

�
; �.s/ WD

1

.4�/N=2
exp

�
�
s2

4

�
;

 ˛.z
0; v; t/ WD t�˛¹�v C f .t˛z0/º:

Then, the expansion of  ˛.z0; V t; t/ is given by

 ˛.z
0; V t; t/ D �V t1�˛ C

hz0;rz0i
2
N�1f .0

0/

2
t˛ C

hz0;rz0i
3
N�1f .0

0/

6
t2˛

C
hz0;rz0i

4
N�1f .0

0/

24
t3˛ C

hz0;rz0i
5
N�1f .� t

˛z0/

120
t4˛

for some � 2 .0; 1/. Let rL2EN0 .�/ be the L2-gradient of EN0 .�/ given by (1.2) with
� D 0, that is,

rL2E
N
0 .�/ D �gH CH jAj

2
�
1

2
H 3
C 2

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 ;

and set
w˛.x; t / WD .E˛. � ; t / � ��0/.x/:

Since E1=2.x; t / is the Gauss kernel, w1=2 is a solution to´
wt D �w in RN � .0;1/;

w.x; 0/ D ��0.x/ in RN :

Here, the precise asymptotic expansion of w1=2.x C V tn.x/; t/ until the term of t3=2 is
represented as

w1=2.x C V tn.x/; t/

D
1

2
� c1
p
�.V �H/t1=2

C c1
p
�

²
1

2
rL2E

N
0 .�/C

1

4
V.2jAj2 CH 2/ �

1

4
V 2H C

1

12
V 3
³
t3=2 CO@�0.t

2/:
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We remark that the precise asymptotic expansion until the term of t1=2 is obtained in
Evans [15] and its expansion is the basis of the BMO algorithm for the mean curvature
flow (cf. Bence–Merriman–Osher [5]). On the other hand, considering the asymptotic
expansion of w1=4.x C V tn.x/; t/, we have

w1=4.x C V tn.x/; t/ D
1

2
C c1
p
�Ht1=4

� c1
p
�

�
V �

1

2
rL2E

N
0 .�/

�
t3=4 CO@�0.t/: (4.6)

The difference between (4.6) and our expansion

u.x C V tn.x/; t/ D
1

2
C c1�

�
3

4

�
Ht1=4

�
c1

2
�

�
1

4

��
V C

1

2
rL2E

N
0 .�/

�
t3=4 CO@�0.t/;

which is given by (3.14) with � D 0, is the sign before rL2EN0 .�/. This difference is due
to the fact that w1=4 satisfies the second-order parabolic equation

wt D .2
p
t /�1�w;

whereas u fulfills the fourth-order parabolic equation ut D��2u. The thresholding algo-
rithms of the Willmore flow based on (4.6) are derived for N D 2 in Esedoḡlu–Ruuth–
Tsai [14] and for N D 3 in Grzhibovskis–Heintz [20]. Since the difference explained
above is essentially related to the parabolicity, the same threshold function as ours, that is,
U given by (4.2), cannot be chosen if w1=4 is used.

4.2. Properties of evolving sets

We give a justification of the argument in the previous subsection; more precisely, we
prove that the assumption (4.5) is actually valid. In order to do so, we prepare several
propositions and lemmas. In the following, we use the notation defined as in (4.2), (4.3),
and (4.4).

Proposition 4.2. There exist K� > 0 and t� > 0 such that

@�.t/ � ¹x 2 RN j jd.x; @�0/j � K�t
1=4
º

for t 2 .0; t�/, where d. � ; @�0/ is the signed distance function to @�0 given by (3.1).

Proof. Step 1. Set DC.t; r/ WD ¹x 2 RN j d.x; @�0/ > rt1=4º for r > 0. We show that
there exist tC > 0 and K� > 0 such that DC.t; K�/ � �.t/ for all t 2 .0; tC/. Recalling
the definition (3.1) of the signed distance function, we can find

tC D tC.r/ > 0
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satisfying ; ¤ DC.t; r/ � �0 for t 2 .0; tC/. Fix any x 2 DC.t; r/. Taking account of
BN .x; rt

1=4=2/ � �0 for t 2 .0; tC/ and recalling (2.1), we see that for any a > 0

jua.x; t / � 1j D j.GN;�. � ; a
4t / � ��0/.x/ � 1j

�

ˇ̌̌̌ Z
BN .x;rt1=4=2/

GN;�.x � y; a
4t /dy � 1

ˇ̌̌̌
C

Z
�0nBN .x;rt1=4=2/

jGN;�.x � y; a
4t /jdy

� 2

Z
RN nBN .x;rt1=4=2/

jGN;�.x � y; a
4t /jdy:

Here, it follows from Theorem 2.2 with j˛j D 0 and m D 0 that for t 2 .0; tC/Z
RN nB.x;rt1=4=2/

jGN;�.x � y; a
4t /j dy

�
C1e

Kj�j2t

aN tN=4

Z
RN nB.x;rt1=4=2/

e��.jx�yj
4=.a4t//1=3dy

� C2

Z
RN nB.0;r=2a/

e��jzj
4=3

dz:

Using the polar coordinate, we haveZ
RN nB.0;r=2a/

e��jzj
4=3

dz D !N�1

Z 1
r=2a

e���
4=3

�N�1d� � C3e
��1.r=a/

4=3

;

where C3 WD .3=4/.2=�/3N=4�.3N=4/ and �1 WD �=27=3. Thus, it is seen that

jua.x; t / � 1j � C4e
��1.r=a/

4=3

:

By means of this inequality, we obtain

U.x; t / D u3a.x; t / � 3u2a.x; t /C 3ua.x; t / � 1 � 7C4e
��1.r=3a/

4=3

for t 2 .0; tC/. Taking r D K� > 0 such that 7C4e��1.K�=3a/
4=3
< 1=2, we conclude that

U.x; t / >
1

2

for t 2 .0; tC.K�//. This implies that x 2 int�.t/ so that DC.t; K�/ � int�.t/ for t 2
.0; tC.K�//.

Step 2. Set D�.t; r/ WD ¹x 2 RN j d.x; @�0/ < �rt1=4º for r > 0. We prove that there
exists t� > 0 such thatD�.t;K�/ � RN n�.t/ for all t 2 .0; t�/, whereK� is a constant
as in Step 1. Recalling (3.1) again, we are able to find a t� D t�.r/ such that

; ¤ D�.t; r/ � RN n�0
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for t 2 .0; t�/. Fix any x 2D�.t; r/. Since�0 � RN nBN .x; rt1=4=2/ for t 2 .0; t�/, it
follows that for any a > 0 and t 2 .0; t�/

jua.x; t /j D j.GN;�. � ; a
4t / � ��0/.x/j

�

Z
RN nB.x;rt1=4=2/

jGN;�.x � y; a
4t /jdy

� C4e
��1.r=a/

4=3

:

Using this inequality, we have

U.x; t / D u3a.x; t / � 3u2a.x; t /C 3ua.x; t / � 7C4e
��1.r=3a/

4=3

for t 2 .0; t�/. Taking r D K� > 0 as in Step 1, we obtain

U.x; t / <
1

2

for t 2 .0; t�.K�//. This implies that x 2 RN n�.t/ so that D�.t;K�/ � RN n�.t/ for
t 2 .0; t�.K�//.

Step 3. Define t� WD min¹tC.K�/; t�.K�/º. Then, we see that

DC.t; K�/ � int�.t/; D�.t; K�/ � RN n�.t/

for t 2 .0; t�/. This leads to the desired result.

Furthermore, we are able to derive the following refinement of Proposition 4.2.

Proposition 4.3. For any " 2 .0; 1/, there exists t�;" > 0 such that

@�.t/ � ¹x 2 RN j jd.x; @�0/j � "t
1=4
º

for t 2 .0; t�;"/.

In order to prove this proposition, we need several preparations. Let us consider the
case where �D 0 and�0 D ¹x 2RN j xN � 0º. Taking account of n.x/D eN and f � 0
in this case, we see that for x 2 @�0, v 2 R, and t > 0

u.x C vn.x/; t/ D
1

2
C

Z
RN�1

Z �vt�1=4
0

gN .z/ dz D u.veN ; t /:

Since u.veN ; t / is the solution to (1.3) with � D 0 and �0 D ¹x 2 RN j xN � 0º,
u.veN ; t / can be the solution to8̂̂<̂

:̂
Qut D �@

4
yN
Qu in R � .0;1/;

Qu.yN ; 0/ D �.�1;0�.yN / D

´
1 in .�1; 0�;

0 in RN n .�1; 0�:

(4.7)
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On the other hand, the solution Qu.yN ; t / to (4.7) is represented as

Qu.yN ; t / D
1

2
C

Z �yN t�1=4
0

g1.z/ dz:

By the uniqueness of the solution to (4.7), we obtain

u.veN ; t / D Qu.v; t/ D
1

2
C

Z �vt�1=4
0

g1.z/ dz:

As a result, it follows that for x 2 @�0 D ¹x 2 RN j xN D 0º

u.x C vn.x/; t/ D
1

2
C

Z
RN�1

Z �vt�1=4
0

gN .z/ dz D
1

2
C

Z �vt�1=4
0

g1.r/ dr: (4.8)

We state several properties of the integration of

g1.z/ D '1.jzj/

based on Ferrero–Gazzola–Grunau [17] and Gazzola–Grunau [19]. For n 2 ZC, set

ˆN;n.r/ WD

nX
`D0

.�1/`bN;`r
2`; bN;` WD

1

2NC1�N=2
�

�.`=2CN=4/

22`�.`C 1/�.`CN=2/
:

The following lemma holds.

Lemma 4.4 ([17, Lemma A.2]). Set ıN;n WD bN;nC1=bN;n and assume that n 2 ZC is
even. Then, for 0 � r � 1=

p
ıN;n,

ˆN;n�1.r/ � 'N .r/ � ˆN;n;

max¹j'N .r/ �ˆN;n.r/j; j'N .r/ �ˆN;n�1.r/j; jˆN;n�1.r/ �ˆN;n.r/jº � bN;nr2n:

Set

‰.r/ WD

Z r

0

'1.�/ d�:

Since '1 is represented as a power series and converges locally uniformly in R, we readily
see that

‰.r/ D

1X
`D0

.�1/`b1;`

Z r

0

�2`d� D

1X
`D0

.�1/`

2`C 1
b1;`r

2`C1:

For n 2 ZC, define ‰n.r/ as

‰n.r/ WD

Z r

0

ˆ1;n.�/ d� D

nX
`D0

.�1/`

2`C 1
b1;`r

2`C1:

As a direct consequence of Lemma 4.4, we obtain the following corollary.
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Corollary 4.5. Assume that n 2 ZC is even. Then, for 0 � r � 1=
p
ı1;n,

‰n�1.r/ �

Z r

0

'1.�/ d� � ‰n.r/;

max
²ˇ̌̌̌ Z r

0

'1.�/ d� �‰n.r/

ˇ̌̌̌
;

ˇ̌̌̌ Z r

0

'1.�/ d� �‰n�1.r/

ˇ̌̌̌
;
ˇ̌
‰n.r/ �‰n�1.r/

ˇ̌³
�

b1;n

2nC 1
r2nC1:

According to [17, Theorem 2.3], 'N changes its sign infinitely many times. Let
¹r˙
k
ºk2N be a sequence satisfying

'1.r
˙
k / D 0; 0 < rC1 < r�1 < r

C
2 < r�2 < � � � < r

C

k
< r�k < � � � ;

'1.r/

´
> 0 for r 2

S
k2ZC

.r�
k
; rC
kC1

/;

< 0 for r 2
S
k2N.r

C

k
; r�
k
/;

where r�0 D 0. Applying Lemma 4.4 with n D 16, we obtain

3:453 < rC1 < 3:454; 6:784 < r�1 < 6:785: (4.9)

The following lemma can be proved by using [19, Theorem 1 and Remark 1].

Lemma 4.6. (i) ‰.r/ > 0 for r > 0.
(ii) ‰.r/ takes local maximum (resp., local minimum) at rC

k
(resp., r�

k
).

(iii) ‰.r/ is strictly increasing (resp., decreasing) in each interval .r�
k
; rC
kC1

/ for k 2
ZC (resp., .rC

k
; r�
k
/ for k 2 N), where r�0 D 0.

Furthermore, we are able to prove the following lemma.

Lemma 4.7. ¹‰.rC
k
/ºk2N (resp., ¹‰.r�

k
/ºk2N) is strictly decreasing (resp., increasing).

Proof. It follows from [19, Theorem 1] that for each k 2 NZ r�
kC1

r�
k

'1.r/ dr > 0;

Z rC
kC1

rC
k

'1.r/ dr < 0: (4.10)

This implies that

‰.r�kC1/ D ‰.r
�
k /C

Z r�
kC1

r�
k

'1.r/ dr > ‰.r
�
k /;

‰.rC
kC1

/ D ‰.rC
k
/C

Z rC
kC1

rC
k

'1.r/ dr < ‰.r
C

k
/

for each k 2 N.
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With the help of (4.9), Corollary 4.5, and some numerical computations, we observe
that

‰.rC1 =3/ > 0:32584; 0:5522 <‰.rC1 / < 0:5523; 0:4938 <‰.r�1 / < 0:4939: (4.11)

For r � 0, set
I.r/ WD ‰.r=.3a// � 3‰.r=.2a//C 3‰.r=a/:

Using (4.11), we can prove the following lemma.

Lemma 4.8. I.r/ > 0 for r > 0.

Proof. We divide the proof into several cases.

Case 1: 0 < r=a � rC1 . We readily see that

I.r/ D

�Z r=.3a/

0

C3

Z r=a

r=.2a/

�
'1.�/ d� > 0:

Case 2: rC1 < r=a� r
�
1 . Note that rC1 =3 < r=.3a/ < r=.2a/� r

�
1 =2 < r

C
1 by (4.9). Then,

it follows from Lemma 4.6 (iii) and (4.11) that

I.r/ > ‰.rC1 =3/� 3‰.r
C
1 /C 3‰.r

�
1 / > 0:32584C 3.�0:5523C 0:4938/D 0:1329 > 0:

Case 3: r�1 < r=a � 3r�1 . First, we derive the lower bound of ‰.r=.3a//. Note that
rC1 =3 < r

�
1 =3 < r=.3a/ � r

�
1 . If r=.3a/ < rC1 , we have

‰.r=.3a// D ‰.rC1 =3/C

Z r=.3a/

rC1 =3

'1.�/ d� > ‰.r
C
1 =3/:

If r=.3a/ � rC1 , Lemma 4.6 (iii) implies that ‰.r=.3a// � ‰.r�1 /. Second, let us con-
sider the upper bound of ‰.r=.2a//. If r=.2a/ � rC1 , it follows from Lemma 4.6 (iii) that
‰.r=.2a// � ‰.rC1 /. If r=.2a/ > rC1 , we can choose k� 2 N such that rC

k�
< r=.2a/ �

rC
k�C1

. Then, by (4.10), we see that

‰.r=.2a// D ‰.rC1 /C

k��1X
kD1

Z rC
kC1

rC
k

'1.�/ d�C

Z r=.2a/

r
kC�

'1.�/ d� < ‰.r
C
1 /:

Finally, we derive the lower bound of‰.r=a/. Choose `� 2N such that r�
`�
< r=a� rC

`�C1
.

By virtue of (4.10), we obtain

‰.r=a/ D ‰.r�1 /C

`��1X
`D1

Z r�
`C1

r�
`

'1.�/ d�C

Z r=a

r�
`�

'1.�/ d� > ‰.r
�
1 /:

Consequently, based on these bounds and (4.11), we obtain

I.r/ > min
®
‰.rC1 =3/;‰.r

�
1 /
¯
� 3‰.rC1 /C 3‰.r

�
1 /

> 0:32584C 3.�0:5523C 0:4938/ D 0:1329 > 0:
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Case 4: 3r�1 < r=a. Choose k� 2 N such that r�
k�
� r=.3a/ < r�

k�C1
. Then, we have

‰.r=.3a//

´
> ‰.r�

k�
/ if r=.3a/ 2 .r�

k�
; rC
k�C1

/;

� ‰.r�
k�C1

/ if r=.3a/ 2 ŒrC
k�C1

; r�
k�C1

/:

Since ‰.r�
k
/ � ‰.r�1 / for k 2 N by Lemma 4.7, we see that ‰.r=.3a// > ‰.r�1 /. To

derive the lower bound of �‰.r=.2a//C‰.r=a/, take `�; m� 2 N satisfying

rC
`�
� r=.2a/ < rC

`�C1
; r�m� � r=a < r

�
m�C1

:

Then, it follows from Lemma 4.7 that

�‰.r=.2a//C‰.r=a/ > �‰.rC
`�
/C‰.r�m�/ � �‰.r

C
1 /C‰.r

�
1 /:

Therefore, by virtue of these bounds and (4.11), we see that

I.r/ > ‰.r�1 /C 3¹�‰.r
C
1 /C‰.r

�
1 /º > 0:4938C 3.�0:5523C 0:4938/D 0:3183 > 0:

This completes the proof.

Now, we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. For y 2 @�.t/, take x 2 @�0 such that jy � xj D jd.y; @�0/j.
Set v D d.y; @�0/. Then, we have y D x C vn.x/. Applying Theorem 3.1, we obtain

u.x C vn.x/; a4t / D
1

2
C

1X
mD0

a2m.��/mtm=2

mŠ

�

Z
RN�1

Z  a.z
0;v;t/

0

.��z/
mgN .z/dzNdz

0
CO@�0.e

���t
�1=3

/;

where
 a.z

0; v; t/ WD
1

at1=4
¹�v C f .at1=4z0/º (4.12)

for a > 0 and a function f satisfying (A1)–(A3). Then, we have

U.x C vn.x/; t/

D
1

2
C

1X
mD0

a2m.��/mtm=2

mŠ

�

�
32m

Z
RN�1

Z  3a.z
0;v;t/

0

�3 � 22m
Z

RN�1

Z  2a.z
0;v;t/

0

C3

Z
RN�1

Z  a.z
0;v;t/

0

�
� .��z/

mgN .z/dzNdz
0
CO@�0.e

���t
�1=3

/:

Since y 2 @�.t/ and v D d.y; @�0/, we see that

U.x C vn.x/; t/ D
1

2
:

Furthermore, Proposition 4.2 implies that jvj � K�t1=4 for t 2 .0; t�/.
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Let us prove v D o@�0.t
1=4/ as t ! C0. In the proof by contradiction, suppose that

there exists "� > 0 such that for any k 2N there are ¹tkºk2N and ¹ykºk2N � @�.tk/ such
that

0 < tk <
1

k
; jd.yk ; @�0/j > "�t

1=4

k
:

Then, there exist sequences ¹xkºk2N � @�0 and ¹rkºk2N satisfying

yk D xk C vknk ; "� < jrkj � K�; U.xk C vknk ; tk/ D
1

2
;

where vk WD �rkt
1=4

k
and nk WD n.xk/. Since ¹xkºk2N and ¹rkºk2N are bounded se-

quences, by taking subsequences if necessary, we may assume that xk ! x� 2 @�0,
rk! r� as k!1, where "� � jr�j �K�. On the other hand, a.z0; vk ; tk/ is represented
as

 a.z
0; vk ; tk/ D .at

1=4

k
/�1

´
� vk C

.at
1=4

k
/2hz0;rz0i

2
N�1f .�at

1=4

k
z0/

2

µ

D
rk

a
C
at
1=4

k

2
hz0;rz0i

2
N�1f .�at

1=4

k
z0/

for some � 2 .0; 1/. Since  a.z0; vk ; tk/! r�=a as k !1, it follows from (4.8) that

1

2
D lim
k!1

U.xk C vknk ; tk/

D
1

2
C

�Z
RN�1

Z r�=3a

0

�3

Z
RN�1

Z r�=2a

0

C3

Z
RN�1

Z r�=a

0

�
gN .x/ dx

D
1

2
C

�Z r�=.3a/

0

�3

Z r�=.2a/

0

C3

Z r�=a

0

�
g1.r/ dr:

By Lemma 4.8 and g1.r/ D '1.jr j/, we see that if r� > 0,�Z r�=.3a/

0

�3

Z r�=.2a/

0

C3

Z r�=a

0

�
g1.r/ dr > 0;

and if r� < 0,�Z r�=.3a/

0

�3

Z r�=.2a/

0

C3

Z r�=a

0

�
g1.r/ dr

D �

�Z �r�=.3a/
0

�3

Z �r�=.2a/
0

C3

Z �r�=a
0

�
g1.r/ dr < 0:

These facts lead to a contradiction. Therefore, v D o@�0.t
1=4/ as t !C0.

We next prove an estimate of the derivative of U , which guarantees that @�.t/ is a
smooth hypersurface. Set M0;a WD 11M0=.6a/, where M0 is as in Lemma 3.3.
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Proposition 4.9. There exist "0 2 .0; 1/ and C > 0 such that for t > 0 small enough,
x 2 @�0, and v 2 .�ı0; ı0/ satisfying jvj � "0t1=4

�
3M0;a

2
t�1=4 � C."0 C t

1=4/ � hrxU.x C vn.x/; t/;n.x/iN

� �
M0;a

2
t�1=4 C C."0 C t

1=4/: (4.13)

Here, ı0 2 .0; 1=2/ has been taken at the end of Section 3.1. Furthermore, @�.t/ is a
smooth hypersurface for t > 0 small enough.

Proof. Step 1. Set

„
.1/
N;a WD �

1

at1=4

Z
RN�1

Z  a.z
0;v;t/

�1

@zN gN .z/dzNdz
0:

Then, we have

jhrxua.x C vn.x/; t/;n.x/iN �„
.1/
N;aj � C1j�jt

1=4: (4.14)

Indeed, applying an argument similar to the proof of Lemma 2.5, we obtainˇ̌̌̌
ˇ 1

at1=4

1X
mD1

a2m.��/mtm=2

mŠ

Z
RN�1

Z  a.z
0;v;t/

�1

@zN .��z/
mgN .z/ dzNdz

0

ˇ̌̌̌
ˇ � C1j�jt1=4

for j�jt1=2 � =a2, where  a.z0; v; t/ is given by (4.12). This inequality and (3.3) yield
(4.14).

Step 2. We prove (4.13). By (4.2) and (4.14), there exists a C2 > 0 such that

jhrxU.x C vn.x/; t/;n.x/iN � .„
.1/
N;3a � 3„

.1/
N;2a C 3„

.1/
N;a/j � C2j�jt

1=4 (4.15)

for small t > 0. Note that „.1/N;a is rewritten as

„
.1/
N;a D �

1

at1=4

Z
RN�1

gN .z
0;  a.z

0; v; t// dz0:

It follows from (3.16) and Taylor’s theorem that

gN .z
0;  a.z

0; v; t// D gN .z
0; 0/C

1

2
@2zN gN .z

0; � a.z
0; v; t//¹ a.z

0; v; t/º2

for some � 2 .0; 1/. This and the definition of M0 imply that

„
.1/
N;a D �

M0

at1=4
�

1

2at1=4

Z
RN�1

@2zN gN .z
0; � a.z

0; v; t//¹ a.z
0; v; t/º2dz0: (4.16)

In addition, taking account of

 a.z
0; v; t/ D �

v

at1=4
C
at1=4

2
hz0;rz0i

2
N�1f .

z�at1=4z0/
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for some z� 2 .0; 1/, we haveZ
RN�1

@2zN gN .z
0; � a.z

0; v; t//¹ a.z
0; v; t/º2dz0

D
v2

.at1=4/2

Z
RN�1

@2zN gN .z
0; � a.z

0; v; t// dz0

� v

Z
RN�1

@2zN gN .z
0; � a.z

0; v; t//hz0;rz0i
2
N�1f .

z�at
1=4

k
z0/ dz0

C
.at1=4/2

4

Z
RN�1

@2zN gN .z
0; � a.z

0; v; t//
®
hz0;rz0i

2
N�1f .

z�at
1=4

k
z0/
¯2
dz0: (4.17)

We assume that jvj � "0t1=4, where "0 2 .0; 1/ is suitably chosen later. Then, it follows
that

j a.z
0; v; t/j � C3.jz

0
j
2t1=4 C "0/:

This fact and Corollary 2.3 with j˛j D 2 and m D 0 yield that

j@2zN gN .z
0; � a.z

0; v; t//j � C4
®
1C .jz0j2 C j a.z

0; v; t/j2/1=2
¯2=3

e��jz
0j4=3

� C4.1C jz
0
j C j a.z

0; v; t/j/2=3e��jz
0j4=3

� C5.1C jz
0
j
2=3
C jz0j4=3t1=6/e��jz

0j4=3 :

Applying this estimate to the right-hand side of (4.17), we are able to find a constant
C6 > 0 such thatˇ̌̌̌
1

2

Z
RN�1

@2zN gN .z
0; � a.z

0; v; t//¹ a.z
0; v; t/º2dz0

ˇ̌̌̌
� C6

²
"20
a2
C "0t

1=4
C .at1=4/2

³
for t > 0 small enough. Recalling (4.16), we see thatˇ̌̌

„
.1/
N;3a � 3„

.1/
N;2a C 3„

.1/
N;a CM0;at

�1=4
ˇ̌̌
� C7

�
"20

a3t1=4
C
"0

a
C at1=4

�
for some C7 > 0. Choosing "0 > 0 such that

C7"
2
0

a2
�
M0

2
;

we obtain

�
3M0;a

2
t�1=4 � C7

�
"0

a
C at1=4

�
� „

.1/
N;3a � 3„

.1/
N;2a C 3„

.1/
N;a

� �
M0;a

2
t�1=4 C C7

�
"0

a
C at1=4

�
:

By this inequality and (4.15), we are led to the desired result.
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Step 3. Let us prove that @�.t/ is a smooth hypersurface for t > 0 small enough. By
virtue of (4.13), hrxU.x C vn.x/; t/; n.x/iN is far from zero for t > 0 small enough;
in particular, it is negative. This fact and the implicit function theorem imply the desired
result.

Theorem 4.10. There exists C0 > 0 such that

sup
x2@�.t/

jd.x; @�0/j � C0t

for t > 0 small enough.

Proof. Applying (3.14) with V D 0, there exists C1 > 0 such thatˇ̌̌̌
U.x; t / �

1

2

ˇ̌̌̌
� C1t

3=4 (4.18)

for x 2 @�0 and t > 0 small enough. For any y 2 @�.t/, let x 2 @�0 be a point sat-
isfying jd.y; @�0/j D jy � xj. Then, y can be represented as y D x C vn.x/, where
v D d.y; @�0/. This implies that

U.x C vn.x/; t/ � U.x; t / D hrxU.x C �vn.x/; t/;n.x/iN v

for some � 2 .0; 1/. Taking account of U.y; t / D 1=2 for y 2 @�.t/ and using Proposi-
tion 4.9 and (4.18), we see that

jhrxU.x C �vn.x/; t/;n.x/iN vj � C1t
3=4;

� C2t
�1=4
� hrxU.x C �vn.x/; t/;n.x/iN � �C3t

�1=4

for t > 0 small enough where C2; C3 are positive constants independent of x 2 @�0 and
t > 0. As a result, it follows that there exists C4 > 0 such that jvj � C4t for x 2 @�0 and
small t > 0. This is the desired result.

From this theorem, it follows that V , defined as in (4.4), is bounded on @�0 � .0; t0/
for some small t0 > 0, and hence, the argument in Section 4.1 is justified; that is, we have
the following theorem.

Theorem 4.11. Let V be as in (4.4). Then, there exist C > 0 and t0 > 0 such thatˇ̌̌̌
V C�gH CH jAj

2
�
1

2
H 3
C 2

X
i1;i2;i32ƒ
i1<i2<i3

�i1�i2�i3 � �H

ˇ̌̌̌
� Ct1=4

for all t 2 .0; t0/ and x 2 @�0. Especially, this estimate turns toˇ̌̌̌
V C �ss C

1

2
�3 � ��

ˇ̌̌̌
� Ct1=4 if N D 2;ˇ̌̌̌

V C�gH CH jAj
2
�
1

2
H 3
� �H

ˇ̌̌̌
� Ct1=4 if N D 3

for all t 2 .0; t0/ and x 2 @�0.
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Remark 4.12. (i) If @�0 is of class C n.n � 6/, we can replace t1=4 with t1=2 in Theo-
rem 4.11. But we omit the details because the actual calculations are more complicated.

(ii) Based on the boundedness of V , we can improve (4.13) as follows:

jhrxU.x C vn.x/; t/;n.x/iN CM0;at
�1=4
j � Ct3=4:

Moreover, we can also estimate

jhrxU.x C vn.x/; t/;�.x/ij � Ct
3=4;

where �.x/ is any unit tangential vector of @�0 at x 2 @�0. Thus, the outer unit normal
�rxU. � ; t /=jrxU. � ; t /j of @�.t/ is nearly equal to n. � /, that of @�0, for any small t > 0.

5. Numerical experiments

In this section, we present some results of numerical experiments based on our threshold-
ing algorithm which is proposed in Section 4.1. We focus on the case where N D 2 and
� D 0, that is, the Willmore flow for planar curves.

5.1. Numerical scheme

Let D D .R=LZ/ � .R=LZ/ be a periodic square region with L > 0 and assume that
�0 � D holds. Then, we solve the following initial value problem:´

ut D �.��/
2u in D � .0;1/;

u. � ; 0/ D ��0 in D:
(5.1)

By the definition ofD, the periodic boundary condition is implicitly imposed on the above
problem. Note that there are other possibilities regarding the boundary conditions; for
example, the Dirichlet boundary condition or the Neumann boundary condition is natural.
However, we adopt the periodic boundary condition here since we develop a numerical
scheme based on the Fourier transform.

We seek a solution in the form of Fourier series

u.x; t / D
X
�2Z2

u�.t/e
2� ihx;�i2=L;

since u is supposed to be a periodic function. Taking account of

ut D
X
�2Z

Pu�.t/e
2� ihx;�i2=L; .��/2u D

X
�2Z

16�4

L4
j�j4u�.t/e

2� ihx;�i2=L

and substituting these expressions into the first equation in (5.1), we are led to an infinite
system of ordinary differential equations

Pu�.t/ D �
16�4

L4
j�j4u�.t/; � 2 Z2;
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where the dot symbol indicates the time derivative. Each ordinary differential equation
can be separately and explicitly solved as

u�.t/ D ��0;�e
�16�4j�j4t=L4 ;

where ��0;� denotes the Fourier coefficient of the characteristic function ��0 . Then, the
function U defined by (4.2) can be computed as

U.x; h/ D u3a.x; h/ � 3u2a.x; h/C 3ua.x; h/

D

X
�2Z2

��0;�

�
e�16�

4j�j4.3a/4h=L4
� 3e�16�

4j�j4.2a/4h=L4

C 3e�16�
4j�j4a4h=L4

�
e2� ihx;�i2=L; (5.2)

where h > 0 denotes a time step. Hence, we obtain �1 by �.h/, where �.t/ is given
by (4.3). Repeating the above procedure yields an approximation of the Willmore flow.

In the actual computation, we first generate a uniform mesh ¹xij º.i;j /2�2N as

xij D

 �
i C 1

2

�
r�

j C 1
2

�
r

!
; .i; j / 2 �2N ;

where r WD L=N , �N WD ¹0; 1; : : : ; N � 1º, and N is a power of 2. Let us denote an
approximate value of u. � ; t / at .xi ; yj / by uij .t/. Using the fast Fourier transform, we
can compute discrete Fourier coefficients ��0;� for � 2 �2N with O.N 2 logN/ com-
plexity. Then, we are able to approximate ¹U.xij ; h/º.i;j /2�2N given by (5.2) by means
of applying the inverse fast Fourier transform to ¹��0;�.u�.81a

4h/ � 3u�.16a
4h/ C

3u�.a
4h//º�2�2N

.

Remark 5.1. As described above, we use a uniform mesh to perform the fast Fourier
transform and its inverse. It is preferable to adopt some mesh refinement techniques to
capture the evolution of the interface more precisely. Indeed, Ruuth [39] developed a
gradually adaptive mesh refinement technique and applied it to the computation of the
curve shortening and mean curvature flows based on the BMO algorithm. This technique
has also been applied to the Willmore flow in Esedoḡlu–Ruuth–Tsai [14]. It could be
expected that a similar approach would be necessary for our algorithm. However, as a first
step of numerical computation of the Willmore flow based on our proposed scheme, we
adopt the uniform mesh in this paper.

5.2. Numerical results

In this subsection, we show two numerical results of our algorithm.

5.2.1. Self-similar solution. First, let us consider the case where the initial curve is a
circle. As is well documented, the solution develops over time, maintaining a circular
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Figure 1. Plot of the absolute error versus the time step size h at t D 0:00064. The left is the
overview and the right is the close-up around h D 2:50 � 10�5.

shape. Its radius, designated as R, is defined as the solution to the following ordinary
differential equation:

PR D
1

2

�
1

R

�3
:

That is to say, R is specifically represented as

R.t/ D
4
p
R.0/4 C 2t :

Figure 1 illustrates how the discrepancy between the area of the exact solution and that
of the numerical solution diminishes as h is gradually reduced. The initial radius is 0:1,
and the final computation time is 0:00064. The remaining parameters were determined as
follows:

• L D 1 (the domain size),

• N D 214 (the number of mesh).

As illustrated in the graph, the approximation error exhibits a gradual decline as h is re-
duced. The orange line in the graph represents O.h/, indicating that the proposed scheme
is first-order accurate. This is a superior value compared to the result by Esedoḡlu–Ruuth–
Tsai [14], which suggested one-half-order accuracy.

5.2.2. Other nontrivial examples. In this subsection, we show several nontrivial numer-
ical results. Parameters are chosen as follows:

• L D 5 (the domain size),

• N D 210 D 1024 (the number of mesh).

Note that the time step h cannot simply be made smaller. As pointed out by Ruuth [39,
Section 2.3], the spatial step must be sufficiently smaller than the time step to allow the
interface to move.

First, consider the case where the following Cassini’s oval gives the initial region:

�0 WD
®
x 2R2 j .x21 C x

2
2/
2
� 2b2.x21 � x

2
2/� a

4
� b4

¯
; aD 0:6825; b D 0:678:
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Figure 2. Numerical results of the Willmore flow with initial region given as the Cassini parameters
are chosen as L D 5;N D 1024, and h D 0:004.

The results are shown in Figure 2, where the time step h is chosen as h D 0:004. It can be
seen that the numerical computations are performed stably without any numerical insta-
bility. Another more complex initial shape is the following initial region:

�0 WD
®
x 2 R2 j x21 C x

2
2 � max¹0:01; r.x/2º

¯
; (5.3)

where

c D
x1q

x21 C x
2
2

; r.x/ D 0:5C
16c5 � 20c3 C 5c

3
:

The results are depicted in Figure 3, in which the time step h is chosen as

h D 0:003:

In this case, the numerical computation is also successful without instability.
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Figure 3. Numerical results of the Willmore flow with initial region given by (5.3). Parameters are
chosen as L D 5;N D 1024, and h D 0:0003.

A. Mean curvature and its derivatives

Set ˆ.x0/ D .x0; f .x0//, where x0 D .x1; : : : ; xN�1/. In this subsection, we denote @xi
by @i . First, we have

@iˆ D .0; : : : ; 0; 1
Oi

; 0; : : : ; 0; @if /;

@1ˆ � � � � � @N�1ˆ D .�rx0f; 1/:

Then, the outer unit normal n to the hypersurface ¹ˆ.x0/ j x0 2 Dº for D � RN�1 is
represented as

n D
.�rx0f; 1/p
1C jrx0f j2

:
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Also, the first fundamental forms are

gij D h@iˆ; @jˆiN D ıij C @if @jf

Setting g D det.gij / D 1C jrx0f j2, we see that

gij D ıij �
@if @jf

1C jrx0f j2
:

Let us derive the second fundamental forms. Since

@i@jˆ D .0; : : : ; 0; @i@jf /;

we are led to

hij D h@i@jˆ;niN D
@i@jfp

1C jrx0f j2
:

Thus, the mean curvature H is represented as

H D
X
i;j2ƒ

gijhij D
X
i;j2ƒ

�
ıij �

@if @jf

1C jrx0f j2

�
@i@jfp

1C jrx0f j2
:

Furthermore, we have

jAj2 D
X

i;j;k;`2ƒ

gikgj`hijhk`

D

X
i;j;k;`2ƒ

�
ıik �

@if @kf

1C jrx0f j2

��
ıj` �

@jf @`f

1C jrx0f j2

�
@i@jf @k@`f

1C jrx0f j2
:

When rx0f D 00 at some point, H and jAj2 are given by

H D
X
i;j2ƒ

ıij @i@jf D
X
i2ƒ

@2i f; jAj
2
D

X
i;j;k;`2ƒ

ıikıj`@i@jf @k@`f D
X
i;j2ƒ

.@i@jf /
2:

We derive the Laplace–Beltrami operator �g . The definition of the Laplace–Beltrami
operator �g is

�g D
X
i;j2ƒ

1
p
g
@i
�p
ggij @j

�
D

X
i;j2ƒ

²
gij @i@j C

1
p
g
@i
�p
ggij

�
@j

³
:

Since

@ig D @i .1C jrx0f j
2/ D 2

X
k2ƒ

@kf @i@kf;
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it follows thatX
i2ƒ

@i .
p
ggij / D

X
i2ƒ

.@i
p
g/gij C

X
i2ƒ

p
g@ig

ij

D
1

2
p
g

X
i2ƒ

.@ig/

�
ıij �

@if @jf

g

�
�
p
g
X
i2ƒ

�
@2i f @jf C @if @i@jf

g
�
@if @jf @ig

g2

�
D

1
p
g

X
k2ƒ

@kf @j @kf C
1

g
p
g
@jf

X
i;k2ƒ

@if @kf @i@kf

�
1
p
g

X
i2ƒ

�
@2i f @jf C @if @i@jf

�
D

1

g
p
g
@jf

X
i;k2ƒ

@if @kf @i@kf �
1
p
g
@jf

X
i2ƒ

@2i f

D �@jf
X
i;k2ƒ

�
ıik �

@if @kf

g

�
@i@kf
p
g

D �H@jf:

Note that rx0f D 00 at some point gives @i .
p
ggij / D 0. Here, we have

@k@`H D
X
i;j2ƒ

®
.@k@`g

ij /hij C @kg
ij @`hij C @`g

ij @khij C g
ij .@k@`hij /

¯
:

The first partial derivatives of gij and hij are given by

@kg
ij
D �

@i@kf @jf C @if @j @kf

g
C
@if @jf @kg

g2
;

@khij D
@i@j @kf
p
g
�
@i@jf @kg

2g
p
g

;

and the second partial derivatives of gij and hij are given by

@k@`g
ij
D �

@i@k@`f @jf C @i@kf @j @`f C @i@`f @j @kf C @if @j @k@`f

g

C
.@i@kf @jf C @if @j @kf /@`g

g2

C
@i@`f @jf @kg C @if @j @`f @kg C @if @jf @k@`g

g2

�
2@if @jf @kg@`g

g3
;
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@k@`hij D
@i@j @k@`f
p
g

�
@i@j @kf @`g

2g
p
g

�
@i@j @`f @kg C @i@jf @k@`g

2g
p
g

C
3@i@jf @kg@`g

4g2
p
g

:

Note that
@k@`g D 2

X
m2ƒ

�
@k@mf @`@mf C @mf @k@`@mf

�
:

When rx0f D 00 at some point, we have

g D 1; @kg D 0; @k@`g D 2
X
m2ƒ

@k@mf @`@mf;

gij D g
ij
D ıij ; @kg

ij
D 0; @k@`g

ij
D �.@i@kf @j @`f C @i@`f @j @kf /

so that we obtain

@k@`H D �
X
i;j2ƒ

.@i@kf @j @`f C @i@`f @j @kf /@i@jf

C

X
i;j2ƒ

ıij

�
@i@j @k@`f � @i@jf

X
m2ƒ

@k@mf @`@mf
�
:

This implies that

�gH D
X
k;`2ƒ

gk`@k@`H

D

X
i;j2ƒ

X
k;`2ƒ

ıij ık`

�
@i@j @k@`f � @i@jf

X
m2ƒ

@k@mf @`@mf
�

�

X
i;j2ƒ

X
k;`2ƒ

ık`.@i@kf @j @`f C @i@`f @j @kf /@i@jf

D

X
i;j2ƒ

@2i @
2
j f �H jAj

2
� 2

X
i;j;k2ƒ

@i@jf @i@kf @j @kf:

Consequently, it follows that under the assumption rx0f D 00 at some point

�gH CH jAj
2
�
1

2
H 3

D

X
i;j2ƒ

@2i @
2
j f �H jAj

2
� 2

X
i;j;k2ƒ

@i@jf @i@kf @j @kf CH jAj
2
�
1

2
H 3

D

X
i;j2ƒ

@2i @
2
j f �

1

2
H 3
� 2

X
i;j;k2ƒ

@i@jf @i@kf @j @kf:

SinceAD .@i@jf / is a symmetric matrix, there exists an orthogonal matrixPN�1D .pij /
such that

P�1N�1APN�1 D

0B@�1 : : :

�N�1

1CA ;
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where �i .i D 1; : : : ; N � 1/ are the principle curvatures. Taking account of P�1N�1 D
tPN�1, it follows that

A D PN�1

0B@�1 : : :

�N�1

1CAP�1N�1 D PN�1
0B@�1 : : :

�N�1

1CA tPN�1

so that we have
@i@jf D

X
m2ƒ

�mpimpjm:

Since
P
k pkipkj D ıij , this implies thatX

i;j;k2ƒ

@i@jf @i@kf @j @kf

D

X
i;j;k2ƒ

X
m1;m2;m32ƒ

�m1�m2�m3pi;m1pj;m1pi;m2pk;m2pj;m3pk;m3

D

X
m1;m2;m32ƒ

�m1�m2�m3

�X
i2ƒ

pi;m1pi;m2

��X
j2ƒ

pj;m1pj;m3

��X
k2ƒ

pk;m2pk;m3

�
D

X
m1;m2;m32ƒ

�m1�m2�m3ım1m2ım1m3ım2m3 D
X
m2ƒ

�3m:

Thus, we are led to

�gH CH jAj
2
�
1

2
H 3
D

X
i;j2ƒ

@2i @
2
j f �

1

2

� X
m2ƒ

�m

�3
� 2

X
m2ƒ

�3m

D

X
i2ƒ

@4i f C 2
X
i;j2ƒ
i<j

@2i @
2
j f �

5

2

X
m2ƒ

�3m

�
3

2

X
m1;m22ƒ
m1¤m2

�2m1�m2 � 3
X

m1;m2;m32ƒ
m1<m2<m3

�m1�m2�m3 :

B. Proof of Theorem 2.2

Theorem 2.2 with � D 0 is the same as Cui [9, Theorem 3.2]. However, in [9], the author
does not state the dependence of the constant C on ˛ 2 ZN andm 2N. Noting this point,
we give a proof of Theorem 2.2 in this subsection.

First, we prepare some notations, according to [9]. Set

P2k.i�/ WD ¹.i�1/2 C � � � C .i�N /2ºk D .�1/k.�21 C � � � C �
2
N /

k
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for � D .�1; : : : ; �N / 2 CN and k 2 ZC. Since it follows from direct calculations that
there exist ı 2 .0; 1/, K1 > 1, and K2 > 1 such that

Re¹�P4.i�/ � �P2.i�/º � �ıjRe�j4 CK1j Im �j4 CK2j�j2

for � 2 R, where Re� WD .Re�1; : : : ;Re�N / and Im � WD .Im �1; : : : ; Im �N /, we are led
to ˇ̌

e�P4.i�/��P2.i�/
ˇ̌
� e�ıjRe�j4CK1j Im�j4CK2j�j2 for all � 2 CN : (B.1)

Note that
GN .x; t / D cN

Z
RN

e�.P4.i�/C�P2.i�//tCihx;�iN d�:

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The proof follows from the argument in that of [9, Theorem 3.2].
It follows from Cauchy’s integral theorem that

D˛
x.��x/

mGN .x; t /

D cN

Z
RN

.i� � �/˛
´
�

NX
jD1

.i�j � �j /2
µm
e�.P4.�Ci�/C�P2.�Ci�//tCihx;�iN�hx;�iN d�;

where � 2 RN is arbitrary and independent of � 2 RN . Then, (B.1) implies that

jD˛
x.��x/

mGN .x; t /j

� cN e
�hx;�iN

Z
RN

.j�j C j�j/j˛jC2mje�.P4.�Ci�/C�P2.�Ci�//t
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kD0

�
j˛j C 2m

k

�
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4td�:

Applying the change of variable on the polar coordinate, we haveZ
RN

j�jke�ıj�j
4td� D !N�1

Z 1
0

rkCN�1e�ır
4tdr

D
!N�1

4
�

�
k CN

4

�
.ıt/�.NCk/=4

�
!N�1

4
max

²
�

�
j˛j C 2mCN

4

�
; �

�
N

4

�³
.ıt/�.NCk/=4;

where !N�1 is the area of the .N � 1/-dimensional unit ball. Taking account of the fact
that the minimum of �.s/ exists and is positive for s > 0, we see that

jD˛
x.��x/
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�
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4

�
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®
.ıt/�1=4 C j�j

¯j˛jC2m
;
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where C > 0 is a constant depending only onN . Since � 2RN is arbitrary, we can choose
� WD .4K1/

�1=3t�1=3jxj�2=3x. Then, it follows that

e�hx;�iNCK1j�j
4tCK2j�j

2t
®
.ıt/�1=4 C j�j
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D e��.jxj

4=t/1=3CK2j�j
2t

²
1

.ıt/1=4
C

1

.4K1/1=3

�
jxj

t

�1=3³j˛jC2m
D �.j˛jC2m/=4t�.j˛jC2m/=4e��.jxj

4=t/1=3CK2j�j
2t

²
1C

ı1=4

.4K1/1=3

�
jxj

t1=4

�1=3³j˛jC2m
� �.j˛jC2m/=4t�.j˛jC2m/=4e��.jxj

4=t/1=3CK2j�j
2t

²
1C

�
jxj

t1=4
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;

where
� D

3

4
.4K1/

�1=3
2 .0; 1/; � D

1

ı
> 1:

In the last inequality, we have used ı 2 .0;1/ andK1 > 1. Since 1C r1=3 � 22=3.1C r/1=3

for r > 0, we are led to the desired result.
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[13] S. Esedoḡlu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions.

Comm. Pure Appl. Math. 68 (2015), no. 5, 808–864 Zbl 1334.82072 MR 3333842
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