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Abstract. This half-size MFO workshop brings together researchers in
mathematical statistics, probability theory, machine learning, medical sci-
ences, and economics to discuss recent developments in sequential inference.
New sequential inference methods that build on nonnegative martingale tech-
niques allow us to elegantly solve prominent shortcomings of traditional sta-
tistical hypothesis tests. Instead of p-values, they are based on e-values which
have the added benefit that their meaning is much easier to communicate to
applied researchers, due to their intuitive interpretation in terms of the wealth
of a gambler playing a hypothetically fair game. Significant new contributions
to this fast growing research area will be presented in order to stimulate col-
laborations, discuss and unify notation and concepts in the fields, and tackle
a variety of open problems and address current major challenges.
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Introduction by the Organizers

The workshop Game-theoretic statistical inference, organized by Peter Grünwald,
Aaditya Ramdas, Ruodu Wang and Johanna Ziegel, was well attended and in-
volved 23 on-site participants. The participants show a broad representation of
diversity in research areas, geographic locations, ethnic and gender groups, and
career stages.

The research area of e-values and game-theoretic statistical inference is currently
at a very exciting stage: the first breakthrough papers appeared around 5 years
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ago, an initial amount of consolidation has taken place, and now, at a highly rapid
rate, new results are being derived. As such, all the talks were exciting — they were
all full of recent results, conjectures and ideas for novel research. This gathering
brought together a highly representative sample of the most active researchers in
the field, as well as some researchers working in adjacent-yet-closely-related fields.
Most participants gave a talk — some talks were 30, others 45-minute length.
As such we had 22 talks in total, providing a kaleidoscope of current research
on e-values and their use in anytime-valid inference, decision theory and multiple
testing, and indicating a plethora of open questions and possibilities for follow-up
work.

The first day was reserved for, among others, what we expected to be the most
‘mind-boggling’ talks, namely those by Rafael Frongillo and Martin Larsson (see
below). Otherwise the talks were given in no particular order. Still, one could
identify several specific recurring sub-topics:

Game-Theoretic Probability and Statistics. Rafael Frongillo is in the process
of writing a monograph on game-theoretic probability, connecting the foundational
work by Vladimir Vovk and Glenn Shafer (both present at the workshop) to min-
imax theorems and minimax regret results in online learning theory. Frongillo’s
talk, sketching the general take of his book, provided substantial clarification on
how these different concepts (game-theoretic and measure-theoretic probability,
replicating prices, minimax theorems) relate. Later on, Wouter Koolen gave a
talk in which he very clearly showed how supermartingales — stochastic objects
— occur naturally in non-stochastic, worst-case online learning algorithms via de-
fensive forecasting, which also stems from work of Vovk, Shafer, and Akimichi
Takemura. Interestingly, Frongillo’s and Koolen’s talk did not quite paint the
same picture, thus supplying much material for further discussion and thought.

Rather than presenting novel mathematics, pioneer Shafer gave an entertaining
talk on how to teach game-theoretic statistics. And pioneer Vovk talked about
linking game-theoretic probability with multiple testing, thereby bridging two of
the prominent sub-topics in this workshop.

E-variables and Multiple Testing. This topic drew a lot of attention. Apart
from Vovk, Rina Barber talked about connecting knock-offs to e-values, and Zhimei
Ren and Nikos Ignatiadis both gave exceptionally clear talks on how e-values can
be used generally in multiple testing, and how their power can be improved in
some cases, again connecting two sub-areas:

Improving Power obtained with E-Tests. Apart from Ren and Ignatiadis,
also Ruodu Wang talked explicitly about this subject, which is important from
both practical and theoretical perspectives. Also Thorsten Dickhaus was implicitly
about this — he presented what was essentially work in progress on modelling a
series of 3 ˆ 2 contingency tables with e-values, and after discussion with other
participants it turned out that standard solutions to this problem such as those by
Turner, Ly and Grünwald (2024) and universal inference do not provide satisfying
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answers. A new collaboration with Rianne De Heide and Peter Grünwald on this
topic has already been initiated.

Information Projections. On the first day, Martin Larsson gave a talk about
one of the most exciting novel developments: the numeraire e-variable, a far-
reaching and unifying treatment of the idea of the reverse information projection
and its use in constructing the growth-optimal e-variable that is central to the
field. Some open problems (when can the numeraire e-variable be arrived at by a
simple KL projection and when not?) were also discussed. Grünwald’s talk about
a theory for constructing information projections and e-values for exponential
families also fell into this category. Wang, in the second part of his talk, considered
axiomatizations of desirable e-value criteria that characterized growth optimality,
and hence are intimately related to information projections.

Extensions of Ville’s Inequality. Muriel Pérez’ talk on Ville’s inequality for
potentially negative martingales as well as Johannes Ruf’s talk on the proper way
to define Villean theorems for composite nulls both fell in this category. Also, the
part of Aaditya Ramdas’ talk about anytime-valid matrix inequalities dealt with
variations of this question. It is amazing to see how a result of 1939 has been
revived and significantly extended in recent years!

Specific Applications and Models. Johanna Ziegel, Hongyan Shi, Parnian
Kassraie, Timo Dimitriadis, Shubhhada Agrawal and Michael Lindon all talked
about specific applications of e-values and anytime-valid inference to specific mod-
els, ranging from the highly parametric (regression with Gaussian noise) to non-
parametric (learning a mean under moment constraints) and from the highly reg-
ular (regression) to the highly irregular (mixture models) with applications such
as bandits, simple A/B-testing and forecasting. Together these talks gave a fine
overview of the state-of-the-art in applying the theories to specific statistical mod-
els and situations.

Two talks that stood on their own, yet nevertheless were very well received,
were those by Ryan Martin and Ian Waudby-Smith. Martin talked about connec-
tions between uncertainty quantification with e-values based on the e-posterior and
Martin’s own theory of inferential models based on possibility contour functions,
a specific method to represent certain sets of probabilities. Waudby-Smith talked
about the new ideas of asymptotic confidence sequences, distribution-uniform
anytime-valid inference, and their applications to conditional independence test-
ing.

Open Problem Discussions. On the first day, Koolen presented an open prob-
lem (or rather a conjecture) related to the KLinf function that is used a lot in
nonparametric e-processes. Several attendees started working on it. The problem
remains unsolved as yet, but some progress was made in the sense that it was
shown that ‘easy’ solutions, which would be based on proving the conjecture via
Markov’s inequality on a suitably chosen random quantity, cannot work — if the
conjecture is true at all it must be proven by other, considerably more compli-
cated means. On the second day, Grünwald presented an open problem regarding
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whether the mixture achieving the minimum Kullback-Leibler divergence towards
a point null distribution P0 on a set Q of distributions separated from P0 and with
a convex complement, always has support concentrated on the boundary of Q.
Wang and co-authors have recently shown a generalization of Strassen’s theorem,
which, in contrast to the classical theorem, only holds in one dimension, and it is
open how to achieve the same result in higher dimensions. This was posted as an
open question to the participants of the workshop.

General Impression. We felt that the atmosphere during the workshop was
friendly and highly inspiring. Thursday night there was an improvised musical con-
cert; there were groups of people working together and chatting until late at night;
and most of the participants joined the traditional Wednesday Schwarzwälder
Kirschtortenhike. We have fond memories!

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Minimax Duality in Game-Theoretic Probability and Statistics

Rafael Frongillo

Suppose Ada and Charles, circa 1850, encounter a device purporting to simulate
a fair coin. Ada, skeptical, proposes a sequential bet: on round t she can gamble
any amount βt P R, after which they observe the output yt P t´1, 1u of the device,
and Charles pays Ada βtyt. Here yt “ 1 might represent heads, and yt “ ´1 tails,
so that βt ą 0 represents a bet on heads and βt ă 0 on tails.

Suppose Ada is correct and device fails to faithfully simulate a fair coin. If
for example it has a bias toward heads, Ada can start with $1, repeatedly bet a
small fraction of her wealth on heads, and become infinitely rich. Indeed, if it
has any sort of bias in a suitable sense, she can do something similar. Moreover,
beyond simply getting rich, Ada winning a lot of money from $1 without risking
bankruptcy amounts to evidence that, whatever this device is doing, it is not
simulating a fair coin. In particular, this evidence would remain valid even without
a stochastic assumption about the device, i.e., that it is random in any traditional
sense.

Now suppose Ada’s friend Mary, observing the exchange between Ada and
Charles, offers a deal: Mary will pay Ada $3 now, but if the next three “flips” of
the device are heads, Ada must pay Mary $16. Should Ada accept? If the device
were faithfully simulating a fair coin, Ada may well accept as the expected value
of the net deal is 3 ´ p1

2
q316 “ 1. But of course Ada is skeptical, and may be

hesitant to place any assumption whatsoever on the workings of the device.
Nonetheless, Ada would accept Mary’s deal. Starting with $2 of the $3 Mary

pays her, Ada can place three all-or-nothing bets on heads, so that no matter the
outcome she makes $1! In this case we say that Ada can replicate the contingent
security

X “
#
$16 3 heads

$0 otherwise

for $2. In other words, $2 is the lowest price Ada would sell X for, if she is not
willing to place any assumptions on the device.

The above ideas, of evidence and replication even in the absence of stochastic
assumptions, underly the field of game-theoretic probability/statistics as detailed
by Shafer and Vovk [1, 2]. A convenient framework to make these ideas rigorous
is via gamble spaces, pairs pΩ,Zq where Ω is a set of outcomes and Z Ď pΩ Ñ
R Y t8uq a set of available gambles. For example, Ada’s gambles on the fair coin
device were each on the gamble space with Ω “ t´1, 1u and Z “ tω ÞÑ βω | β P Ru.

We may define the game-theoretic upper expectation EX of a variableX : Ω Ñ R

by its cost to replicate using gambles from Z.

EX :“ inftα P R | DZ P Z s.t. Z ` α ě Xu . (replication cost)
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We can in turn rephrase this upper expectation as a zero-sum game between two
players, Gambler who chooses Z P Z, and Nature (or Reality) who chooses ω P Ω,

“ inf
ZPZ

sup
ωPΩ

Xpωq ´ Zpωq . (zero-sum game)

One can further define sequential versions of gamble spaces and upper expecta-
tions, matching the iterative nature of Ada’s gambles. Defining the conditional
game-theoretic upper expectation as the cost to replicate a variable on the remain-
ing rounds gives rise to a game-theoretic notion of supermartingales.

How do these game-theoretic expectations and supermartingales relate to their
measure-theoretic counterparts? It turns out that, under certain conditions, the
two coincide. Specifically, if minimax duality holds, we can write

EX “ inf
ZPZ

sup
ωPΩ

Xpωq ´ Zpωq “ sup
µP∆pΩq

inf
ZPZ

EµrX ´ Zs .(1)

If we further assume that the gambles Z are scalable, meaning Z P Z, c ě 0 ùñ
cZ P Z, then we can further eliminate Z in this expression,

“ sup
µP∆0pZq

EµX ,(2)

where ∆0pZq :“ tµ P ∆pΩq | @Z P Z,EµZ ď 0u is the set of distributions
consistent with the gambles. (If µ has EµZ ą 0 for any Z P Z, then by scaling Z

the infimum in the right-hand side of eq. (1) is ´8.) Now any statement of the
form “EµX ď c for all µ P ∆0pZq” can be translated to a game-theoretic version,

EX ď c. Many of the results of Shafer and Vovk [1, 2] can thus be interpreted as
minimax theorems for particular gamble spaces.

References

[1] G. Shafer and V. Vovk. Probability and finance: It’s Only a Game! Wiley, 2001.
[2] G. Shafer and V. Vovk. Game-Theoretic Foundations for Probability and Finance. Wiley,

2019.

Bayes factors, e-values, and p-values for the simultaneous analysis of
many contingency tables

Thorsten Dickhaus

Analyzing many contingency tables simultaneously is important in the context of
genetic association studies. As discussed in prior work (see, e. g., [1]), computing
Bayes factors for the null hypothesis of no association between the two categor-
ical variables corresponding to the two dimensions of the contingency table is in
this context often more convenient than computing p-values. However, the Bayes
factors proposed in [1] are generally not e-values, especially because the null hy-
pothesis of no association is a composite null. Recently, general approaches to
computing e-values for multi-sample comparisons based on contingency table data
have been presented in [2]. These e-values allow for an arbitrary number of interim
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analyses. Hence, they may be over-conservative in certain situations, in which the
number of repeated evaluations is limited by design.

The research question that we are interested in is how to define an e-value for
a p2 ˆ kq contingency table, k P t2, 3u, which is easy to compute and powerful.
In this, we mean by “easy to compute” that resource-intensive operations like a
loop over all contingency tables with given marginal counts shall be avoided. This
requirement refers to the situation that hundreds of thousands of such e-values
have to be computed for one and the same dataset in the case of a genome-wide
association study (GWAS). By “powerful”, we mean that the e-value should (with
high probability) be larger than the p-value based on Fisher’s exact test calibrated
to the e-value scale by a “p-to-e-calibrator” in the sense of Section 2 in [3], at least
if the alternative hypothesis of association is true. We do, however, not necessarily
require an anytime-valid e-value, because recruiting many patients sequentially is
often logistically infeasible for GWAS, and because oftentimes individual patient
data are in this context unavailable to the data analyst, for confidentiality reasons.

Our primarily intended use case is a GWAS which is either multi-centric (fixed-
sized and independent patient groups are recruited at different locations) or group-
sequential (fixed-sized and independent patient groups are recruited at the same
location at different time points). These two sampling schemes are realistic for
GWAS, and e-values (which are easy to compute and powerful) would allow the
data analysts to combine the evidence across centers or across time points, re-
spectively, in a convenient manner (e. g., by multiplication or by averaging of
e-values).

The author thanks all participants of the Oberwolfach Workshop 2419b on
“Game-theoretic Statistical Inference: Optional Sampling, Universal Inference,
and Multiple Testing Based on E-values” for discussing the aforementioned re-
search question with him. A final solution to the problem is yet outstanding.

References

[1] T. Dickhaus, Simultaneous Bayesian analysis of contingency tables in genetic association
studies, Statistical Applications in Genetics and Molecular Biology 14 (2015), 347–360.

[2] R. J. Turner, A. Ly, P. D. Grünwald, Generic E-variables for exact sequential k-sample
tests that allow for optional stopping, Journal of Statistical Planning and Inference 230
(2024), Article 106116.

[3] V. Vovk, R. Wang, E-values: Calibration, combination and applications, The Annals of
Statistics 49, 1736–1754.

The numeraire e-variable and reverse information projection

Martin Larsson

(joint work with Aaditya Ramdas and Johannes Ruf)

We consider testing a composite null hypothesis P against a point alternative Q

using e-variables, which are nonnegative—possibly infinite—random variables X

such that EPrXs ď 1 for all P P P . Here P is a nonempty family of proba-
bility measures on an arbitrary measurable space pΩ,Fq and Q is a probability
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measure on this space. We establish that under no conditions whatsoever on P

or Q, there exists a special e-variable X˚ that we call the numeraire e-variable
(or just the numeraire), which is strictly positive and satisfies EQrX{X˚s ď 1
for every other e-variable X . Equivalently, X˚ has the log-optimality property
that EQrlogpX{X˚qs ď 0 for every e-variable X . The numeraire is unique up to
Q-nullsets. The terminology derives from mathematical finance, where the nu-
meraire portfolio is a central object analogous to the numeraire e-variable.

Once the numeraire X˚ has been shown to exist, a satisfactory duality theory
is obtained in a straightforward manner. Specifically, X˚ identifies a particular
sub-probability measure P˚ via the density dP˚{dQ “ 1{X˚. As a result, X˚ can
be seen as a generalized likelihood ratio of Q against P . The measure P˚ coin-
cides with the well-known reverse information projection (RIPr) when additional
assumptions are made that are required for the latter to exist. Furthermore, in the
general case, P˚ satisfies properties associated with the RIPr, such as minimizing
relative entropy between the alternative and the null. This makes P˚ a natural
definition of the RIPr in the absence of any assumptions on P or Q.

Our theory depends crucially on the concept of the effective null. This is the set
P˝˝ consisting of all sub-probabilities P such that EPrXs ď 1 for every e-variable
X . In other words, the effective null is the set of sub-probabilities against which
the e-variables for P are powerless, and is larger than P in general. The RIPr P˚

belongs to the effective null and, moreover, an e-variable with nontrivial power
against Q exists if and only if Q does not belong to the effective null. In the
language of convex analysis, the effective null can be viewed as the bipolar of P .

In addition to the abstract theory, we provide several tools for finding the nu-
meraire and RIPr in concrete cases. We discuss several nonparametric examples
where we can indeed identify the numeraire and RIPr, despite not having a ref-
erence measure. Our results have interpretations outside of testing in that they
yield the optimal Kelly bet against P if we believe reality follows Q.

Finally, we develop a more general optimality theory that goes beyond the
ubiquitous logarithmic utility. We focus on certain power utilities, leading to
reverse Rényi projections in place of the RIPr, which also always exist.

This talk is based on the preprint [1].

References

[1] M. Larsson, A. Ramdas, J. Ruf, The numeraire e-variable and reverse information projec-
tion, arXiv:2402.18810

http://www.overleaf.com
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Distribution-uniform anytime-valid inference

Ian Waudby-Smith

(joint work with Edward H. Kennedy and Aaditya Ramdas)

What is asymptotic anytime-valid inference? One of the core goals of any-
time-valid inference is to derive confidence sequences (CSs) — sequences of confi-
dence intervals (CIs) that are uniformly valid for all sample sizes. This literature
has historically taken a mostly nonasymptotic approach to inference so that type-I
errors and coverage probabilities hold in finite samples [7]. For example, the tra-
ditional definition of a (nonasymptotic) confidence sequence with coverage p1´αq
for a parameter θ P R is a sequence of sets pCnq8

n“1 so that

(1) sup
PPP

PP pDn ě 1 : θ R Cnq ď α,

where α P p0, 1q. However, nonasymptotic approaches generally require strong
assumptions on the random variables such as lying in a parametric family, a priori
known bounds on their support, or on their moments.

This work takes an asymptotic view of anytime-valid inference where type-I
errors and coverage probabilities hold in the limit [8, 9, 1]. Following [9], the

sequence of sequences of sets pCpmq
k q8

k“m; m “ 1, 2, . . . is said to have p1 ´ αq-
coverage for a parameter θ P R if

(2) sup
PPP

lim sup
mÑ8

PP

´
Dk ě m : θ R C

pmq
k

¯
ď α.

For example, if pXnq8
n“1 are i.i.d. random variables with mean θ and a finite

p2 ` δqth moment for some δ ą 0, then

(3) C
pmq
k

:“ 1

k

kÿ

i“1

Xi ˘ pσk ¨
c

Ψ´1p1 ´ αq ` logpk{mq
k

satisfies (1), where pσk is the sample standard deviation, Ψ is an invertible function
given by Ψpxq :“ 1 ´ 2

“
1 ´ Φp?

xq ` ?
xφp?

xq
‰
and Φ and φ are the distribution

and density functions of a standard Gaussian, respectively.
An advantage of the bound in (3) despite the weaker guarantee in (2) is that

it can be used under substantially weaker conditions than those satisfying the
nonasymptotic guarantee in (1), such as finite moment assumptions appearing in
central limit theorem-based confidence intervals.

What is distribution-uniform anytime-valid inference? Notice, however,

that (2) is a P -pointwise statement. In this work, we say that C
pmq
k has P-uniform

p1 ´ αq-coverage if the supremum over P P P and the limit supremum over m P N

are swapped, i.e. if

(4) lim sup
mÑ8

sup
PPP

PP

´
Dk ě m : θ R C

pmq
k

¯
ď α,

and we show that the very same bound given in (3) satisfies (4) under the assump-
tion that the p2 ` δqth absolute moment is uniformly bounded: supPPP EP |X ´
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EPX |2`δ ă 8 and the variance is uniformly positive: infPPP VarP pXq ą 0. The
guarantee in (4) implies the usual pointwise guarantee in (2) but highlights that
asymptotic approximations hold uniformly within the class P .

Showing that the bound in (3) satisfies the uniform guarantee in (4) is rather
nontrivial. Prior work on asymptotic confidence sequences and coverage heavily
relied on almost-sure analogues of central limit theorems called “strong Gaussian
approximations” [6, 4], but this literature has thus far been entirely P -pointwise.
For example, the Komlós-Major-Tusnády approximations state that if pXnq8

n“1

are i.i.d. on a probability space pΩ,F , P q with EP |X |q ă 8, then without loss of
generality,1 there exist i.i.d. Gaussians pYnq8

n“1 such that

(5)
nÿ

i“1

Xi ´
nÿ

i“1

Yi “ o
´
n1{q

¯

P -almost surely. However, it is not clear what it would even mean for the guarantee
in (5) to hold “uniformly” in a class of distributions P . In this work, we give a
definition of a P-uniform strong approximation as well as a theorem stating how
such an approximation can hold under uniformly bounded moment assumptions.
In short, we show the following.

Theorem 1 (Distribution-uniform strong Gaussian approximation). Let pXnq8
n“1

be i.i.d. on pΩ,F ,Pq ” pΩ,F , P qPPP with means µP :“ EP pXq and variances
σ2
P :“ EP pX ´ µP q2. If X has q ą 2 uniformly upper-bounded moments, and a

uniformly positive variance, i.e.

(6) sup
PPP

EP |X ´ µP |q ă 8 and inf
PPP

σ2
P ą 0,

then there exists a construction with independent standard Gaussians pYnq8
n“1 „

Np0, 1q so that

(7)

∣

∣

∣

∣

∣

nÿ

i“1

Xi ´ µP

σP

´
nÿ

i“1

Yi

∣

∣

∣

∣

∣

“ soPpn1{q log2{qpnqq.

In Theorem 1, the convergence soPp¨q is a notion of time- and P-uniform con-
vergence introduced by [2] that generalizes P -almost sure convergence to a class
of distributions P . Applying Theorem 1 along with other properties of suprema
of Gaussian processes, we obtain that (3) satisfies (4).

Applications to conditional independence testing. As one application of
this work, we derive anytime-valid distribution-uniform tests of conditional inde-
pendence without relying on Model-X assumptions. Concretely, given access to
R ˆ R ˆ Rd-valued i.i.d. triplets pXn, Yn, Znq8

n“1, we want to test whether

H0 : X KK Y | Z,

1Here, “without loss of generality” means that one may need to construct a new probability
space rich enough to describe Gaussian random variables.
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versus the alternative that some conditional dependence exists. It is known that
conditional independence testing is impossible (in a formal sense) without struc-
tural assumptions [5] which is why the existing anytime-valid tests of conditional
independence rely on the so-called “Model-X” assumption where the conditional
distribution of X | Z is assumed to be known (e.g. in [3]). Moving beyond Model-X
to fully nonparametric assumptions has been done in the fixed-n setting, notably
by Shah & Peters [5]. They construct the “Generalized Covariance Measure”
statistic GCMn given by

GCMn :“ 1

n

nÿ

i“1

tXi ´ pµx
npZiqu ¨ tYi ´ pµy

npZiqu,

where pµx
n and pµy

n are estimates of the conditional means µxpZq :“ EP pX | Zq and
µypZq :“ EP pY | Zq of X and Y given Z, respectively. They show that under
certain nonparametric conditions on the estimability of µx and µy, the statistic
GCMn has a Gaussian limit and can be used to carry out distribution-uniform
(fixed-n) inference.

However, the requisite statistical theory for analyzing this statistic in the any-
time-valid regime did not yet exist. The aforementioned strong Gaussian approxi-
mation of Theorem 1 and the distribution-uniform coverage guarantees of (3) now
allow us to obtain the following anytime-valid test of conditional independence.

Theorem 2 (P0-uniform type-I error control of the SeqGCM). Suppose pXn, Yn,

Znq8
n“1 are R ˆ R ˆ Rd-valued triplets defined on the probability spaces pΩ,F ,Pq

and let P0 Ď P be a collection of distributions in P satisfying the conditional
independence null H0 as well as

sup
PPP0

}pµx ´ µx}L2pP q}pµy ´ µy}L2pP q “ O

ˆ
1{
b
n log2`δpnq

˙

for some δ ą 0, along with some other regularity conditions. Define

(8) spGCM
k,m :“ 1 ´ Ψ

´
kpĞGCMkq2 ´ logpk{mq

¯

where ĞGCM is a minor modification of GCM whose details we omit. Then
pspGCM

k,m q8
k“m forms a P0-uniform anytime p-value for the conditional independence

null:

(9) lim
mÑ8

sup
PPP0

sup
αPp0,1q

∣

∣

∣

∣

PP

´
Dk ě m : spGCM

k,m ď α
¯

´ α

∣

∣

∣

∣

“ 0.

A future direction. While this would be of purely probabilistic interest and
would not advance the statistical goals discussed above, in future work, we aim to
drop the logarithmic factor found in (7) to obtain a uniform strong Gaussian ap-
proximation theorem that generalizes the Komlós-Major-Tusnády approximations
found in (5). This would require a rather different (and more sophisticated) set of
proof techniques than those used to derive Theorem 1.
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Online Model Selection

Parnian Kassraie

We consider the problem of sequential inference and optimization, when the tar-
get function can be queried iteratively, but drawing samples is costly. This setting
formalizes applications such as molecular design, personalized mHealth, scheduled
clinical trials, and environmental monitoring, to name a few. Sequential decision-
making and Bandits address such problems through algorithms that iteratively
interact with the environment by drawing samples that are expected to be infor-
mative, or yield a high target value. To this end, such algorithms maintain an
adaptive estimate of the target function, and use it for choosing the next sample.
The statistical modeling of the target function plays a crucial role here; it is not
known a priori which model is going to yield the most sample efficient algorithm,
and we can only select the right model as we gather empirical evidence. This leads
us to ask, can we perform online model selection, while simultaneously optimizing
for the target function?

We detail the problem of online model selection and its challenges, e.g., handling
non-i.i.d. and non-diverse data. We recover a scenario under which simultaneous
model selection and optimization is possible, and propose an exponential weighting
algorithm for probabilistic model aggregation. The algorithm can be stopped at
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any time with valid regret guarantees, and its regret has an exponentially improved
dependence (logM) on the number of models M . Our approach utilizes a novel
time-uniform analysis of the Lasso and establishes a new connection between online
learning and high-dimensional statistics. This result is presented in [1].

Open Direction (1). We tackle the problem of online model selection over
classes of linear functions, however it remains open for general non-parametric
model classes. Iterating back to the open problem of [2], we ask, on which classes
can we perform online model selection with a regret of rate logM?

Open Direction (2). Model selection seems to inherently rely on diversity of
data. This requires us to mix our sampling method with uniform draws, using a
mixing ratio that vanishes as more samples are acquired. However, we conjecture
that such pure exploration is not required, and there is just enough diversity in
the data that is collected for online inference as [3] might suggest.

References

[1] P. Kassraie, N. Emmenegger, A. Krause, and A. Pacchiano (2023). Anytime Model Selection
in Linear Bandits. Proceedings of Advances in Neural Information Processing Systems.

[2] A. Agarwal, H. Luo, B. Neyshabur, and R. Schapire (2017). Corralling a band of bandit
algorithms. In Conference on Learning Theory.

[3] D. Banerjee, A. Ghosh, S. Chowdhury, A. Gopalan (2023). Exploration in Linear Bandits
with Rich Action Sets and its Implications for Inference.

Multiple testing in game-theoretic probability

Vladimir Vovk

The usual way of testing probability forecasts in game-theoretic probability is via
construction of test martingales. The standard assumption is that all forecasts are
output by the same forecaster. In my talk in Oberwolfach and paper [9] (prepared
in support of the talk), I discussed possible extensions of this picture to testing
probability forecasts output by several forecasters. This corresponds to multiple
hypothesis testing in statistics. One interesting phenomenon is that even a slight
relaxation of the requirement of family-wise validity leads to a very significant
increase in the efficiency of testing procedures. The main goal of the paper and
talk was to report results of preliminary simulation studies.

Game-theoretic probability, as presented in, e.g., my joint books [4] and [5] with
Glenn Shafer, is based on the idea that a null hypothesis can be tested dynamically
by gambling against it. More generally, we are testing a player called Forecaster,
which can be a scientific theory, a computer program, a human forecaster, etc.
The gambler starts from an initial capital of 1 and is required to keep his capital
nonnegative. His current capital is interpreted as the degree to which the null
hypothesis has been undermined.

The idea of testing via gambling goes back at least to Richard von Mises’s prin-
ciple of the impossibility of a gambling system (Unmöglichkeit eines Spielsystems
[7, p. 58]; see also [8]), but von Mises’s notion of gambling was too narrow, and it
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was only applicable to infinite sequences. The narrowness of von Mises’s notion of
gambling was demonstrated by Ville [6, Sect. II.4] (for an English translation, see
[3]). Ville proposed extending von Mises’s testing procedure to using nonnegative
martingales [6, Chap. IV], but he is surprisingly terse when using his wider notion
of testing to restate von Mises’s principle of the impossibility of a gambling system,
especially in the two philosophical chapters [6, preliminary chapter and Chap. 6]
(even though he had been interested in the impossibility of gambling systems long
before he started writing his book [6]: see [2, Sect. 5.3]). It appears that the
idea of testing using nonnegative martingales emerged gradually in various fields,
including the algorithmic theory of randomness.

In my paper and talk, I discussed testing several forecasters in one go, with
different forecasters being tested at different steps. Testing by gambling can be
studied in the usual setting of measure-theoretic probability, and this is what I did,
for simplicity and as a first step. Replacing measure-theoretic probability by game-
theoretic probability as mathematical foundation for our definitions and results
was mentioned as one of directions of future research. For now, each forecaster
was formalized as a composite null hypothesis, represented by a set of probability
measures on the sample space.

In principle, we can consider two settings for testing multiple null hypotheses.
In the closed setting, we have a fixed number K of null hypotheses. In the open
setting, the number of null hypotheses is not known in advance and is potentially
infinite. In my paper and talk I concentrated on the closed setting.

These are some possible directions of further research that I mentioned:

‚ The motivation behind my paper and talk was coming from game-theoretic
probability and statistics, but their mathematical setting was that of
measure-theoretic probability. Replacing measure-theoretic probability by
purely game-theoretic probability (as developed in [5]) would simplify the
exposition and lead to more natural and general definitions.

‚ I concentrated on simulation studies. It would be interesting to conduct
empirical studies on benchmark or real-world datasets, for example ones
collected in the course of statistical meta-analyses.

‚ The experimental results that I reported in the paper and talk established
confidence regions for the numbers of true discoveries, which can be re-
stated as results about the false discovery proportions, FDP. Are there any
interesting theoretical results in this context about false discovery rates,
FDR (as in [1] in the case of p-values and [10] in the case of e-values)?

‚ My paper and talk concentrated on the closed setting (when the number
of null hypotheses K is given in advance). The open setting, where new
hypotheses may appear at any moment, may be even more interesting. In
this case we need, of course, to break the symmetry (which I assumed)
between the null hypotheses: there is no uniform probability measure on
t1, 2, . . . u.
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Anytime-Valid Inference in Linear Models and Regression-Adjusted
Causal Inference

Michael Lindon

Linear models are fundamental tools in statistics, econometrics and causal infer-
ence. In randomized experiments, linear models also enjoy a certain robustness
property which enables inference on average treatment effects, despite the appar-
ent model misspecification. As interest in Anytime-Valid inference continues to
grow, it is increasingly asked how to perform anytime-valid inference for the linear
model. In this work [1], we propose a path forward by constructing a mixture
martingale, or Bayes factor, based on a multivariate Gaussian mixture over the
coefficients of interest, and the right-Haar mixture over the nuisance parameters
(nuisance coefficients and residual variance). The final expression

BnpYnq “

d
detpΦq

detpΦ ` Z̃1
nZ̃nq

ˆ
1 `

δ̂npYnq1pZ̃1
nZ̃n´Z̃

1
nZ̃npΦ`Z̃

1
nZ̃nq´1

Z̃
1
nZ̃nqδ̂npYnq

s2npYnq

˙´ νn`d
2

ˆ
1 `

δ̂npYnq1Z̃1
nZ̃nδ̂npYnq

s2npYnq

˙´ νn`d
2

depends conveniently on the same statistics used in a classical fixed-n inference.

In particular, δ̂npYnq is the ordinary least squares (OLS) estimator of δ, Z̃ 1
nZ̃n “

Z 1
npWnpW 1

nWnq´1W 1
n´XnpX 1

nXnq´1X 1
nqZn “ Z 1

npIn´XnpX 1
nXnq´1X 1

nqZn is the

precision matrix of the multivariate Gaussian sampling distribution of δ̂npYnq{σ „
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Npδ{σ, pZ 1
nZnq´1q, s2npYnq “ Y 1

npIn ´WnpW 1
nWnq´1W 1

nqYn{νn is the linear model
estimate of the residual variance and νn “ n ´ p ´ d is the degrees of freedom.

The right-Haar prior exploits the group invariance structure of the linear model
to result in a test statistic that is a nonnegative supermartingale, and consequently
an e-process, for all values of the nuisance parameters. Group invariance arguments
are common tricks to reduce composite null hypotheses to simple null hypothe-
ses, and detailed examples can be found in [2]. Interestingly, these authors also
provide a safe test for single coefficients of a linear model, with some differences.
While our test handles the multivariate case of testing a collection of regression
coefficients, their test only handles single coefficients. In our construction, a com-
posite alternative is provided by taking a mixture, whereas their test uses a point
alternative. Lastly, both tests use different test-statistics.
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Safely reliable possibilistic e-UQ

Ryan Martin

Consider a statistical model Z „ Pω for the observable data Z, where Pω is a
probability distribution that depends on a parameter ω P O. There’s an uncertain
“true value,” Ω, and the goal is to infer a particular feature Θ “ fpΩq, taking
values in T “ fpOq, based on observed data Z “ z. What it means to “infer” can
vary by applications, but my focus here is on uncertainty quantification (UQ) about
Θ, given Z “ z, which boils down to the assignment of reliable data-dependent
degrees of support and/or plausibility to various hypotheses about Θ. Many have
apparently fallen short of this lofty goal, most notably Fisher, but I believe there’s
hope of uncovering what Efron called the “Holy Grail of statistics.”

It is a mathematical fact that the kind of uncertainty that arises in the context
of statistical inference generally cannot be quantified reliably using ordinary prob-
ability. Indeed, the false confidence theorem [1] establishes that, without genuine
or believable prior info, every probabilistic quantification of uncertainty—Bayes,
fiducial, etc.—tends to assign high confidence, i.e., high posterior probability, to
certain false hypotheses [6, 7, 10]. False confidence creates an unacceptable risk of
unreliability, or “systematically misleading conclusions” [15]. Fortunately, proba-
bility theory is not the only UQ game in town. Alternatives include the Dempster–
Shafer theory of belief functions [2, 16], possibility theory [3], and the theory of
lower previsions [17]. Inferential models (IMs) [12, 13] make up a new frame-
work for statistical reasoning near the boundary between precise and imprecise
probability theory. This perspective is necessary to avoid false confidence, etc.
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My current efforts [9, 11, 10] focus on the construction of possibilistic IMs, where
the IM output takes the mathematical form of a possibility measure.1 There are a
number of reasons why I like this form, but it’s worth noting here that possibility
theory is among the simplest of the imprecise probability theories. It closely
mimics probability theory but with a different calculus—where probability theory
relies on integration, possibility theory uses optimization. The specific proposal
put forward in the above references starts with the IM’s contour function

πzpθq “ sup
ω:fpωq“θ

PωtρpZ, θq ď ρpz, θqu, θ P T,

where ρpz, θq is some ranking of the parameter value θ in terms of its compatibil-
ity with z—large values indicate higher compatibility. For example, in [9, 11], I
recommended taking ρpz, θq to be the relative profile likelihood

Rpz, θq “
supω:fpωq“θ Lzpωq

supω Lzpωq , θ P T,

with Lzpωq the usual likelihood function. From here, the IM’s possibility or upper
probability output is given by

(1) ΠzpHq “ sup
θPH

πzpθq, H Ď T.

The interpretation is that a small ΠzpHq means there’s strong evidence in Z “ z

against the truthfulness of H . This possibilistic IM’s output is reliable in the sense
that there’s no false confidence, i.e., no tendency to assign too small of upper
probability values to true hypotheses about Θ:

sup
ω:fpωqPH

PωtΠZpHq ď αu ď α, H Ď T.

Further details, both theory and applications, are given in the above references.
Statistical methods—from classical to the possibilistic IM described above—

often assume the data-generating process is fully known. This can be an issue when
the data are collected sequentially and the (possibly data-dependent) rule by which
the collection stops isn’t explicitly stated. Consider (say) an iid sequence Z1, Z2, . . .

from Pω, with Zn “ pZ1, . . . , Znq the first n instances along the sequence, and
define a filtration Fn “ σpZnq, n ě 1. A stopping time N is an integer-valued
random variable such that tN ď nu P Fn, n ě 1. Then a realization of the data
ZN is of the form zn, with n the observed value of N and zn “ pz1, . . . , znq are the
observed Z values. If the data analyst isn’t privy to which stopping time N was
employed, then he/she might just assume that N ” n was fixed at the observed
value in advance. But this could be very misleading, since the relevant sampling
distributions of statistics based on Zn could be drastically different that based on
ZN , thus jeopardizing the statistical method’s reliability. I’ll say that a statistical
method is safely reliable if its reliability holds uniformly over stopping times. How
can the above IM be made safely reliable?

1There’s a complementary necessity measure but I won’t discuss it here.
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Interestingly, one can interpret N as a sort of “nuisance parameter,” so the
general rules in [11] suggest a safely reliable possibilistic IM with contour

πznpθq “ sup
N

sup
ω:fpωq“θ

PωtρpZN , θq ď ρpzn, θqu, θ P T,

where the outermost supremum is over all stopping rules. Of course, direct com-
putation of the right-hand side above can be challenging, but there’s a simple
workaround. If ρpzn, θq “ epzn, θq´1 is taken to be the reciprocal of an e-process
[4, 14, 18] for testing “Θ “ θ” based on data zn, then an immediate consequence
of Ville’s inequality is that

πznpθq ď πe
znpθq :“ 1 ^ epzn, θq´1, θ P T.

The upper bound corresponds to the proposed e-posterior in [5]. But notice that
the bound itself is a possibility contour—so there’s a corresponding possibilistic

IM, with upper probability Π
e

zn defined via optimization of πe
zn as in (1). This

provides possibilistic, e-process-based UQ, or e-UQ. Moreover, that πe
zn is an upper

bound of the safely reliable πzn implies that the corresponding possibilistic IM’s
e-UQ is safely reliable too. Further details on this will be fleshed out elsewhere.

One notable observation is that my proposed possibilistic e-UQ can be used
for safely reliable decision-making. Let ℓapθq ě 0 denote the loss associated with
taking action a P A when the world is in state θ. Then the possibilistic IM’s upper
expected loss associated with an action a is a Choquet integral, which is given by

Π
e

znℓa “
ż 1

0

sup
θ:πe

zn
pθqąs

ℓapθq ds.

The claimed reliability of my IM’s upper expected loss corresponds to the following
extension of the results in [5, 8]:

sup
N

sup
ωPO

E

#
sup
aPA

ℓapfpωqq
Π

e

ZN ℓa

+
ď 1.

In words, the IM’s assessment of an action a won’t be more optimistic than that of
an oracle who knows the true θ “ fpωq, and this holds uniformly over actions, true
states of the world, and stopping rules. More details will be presented elsewhere.

Open questions include how to incorporate incomplete or partial prior infor-
mation about Θ “ fpΩq and/or about the stopping rule N . Indeed, there’s an
opportunity for efficiency gain if we don’t need to be safe relative to all stopping
rules. With the inclusion of partial prior information, one could try to generalize
the above upper expected loss result and, moreover, try to prove a version of the
classical Bayesian result, namely, that the possibilistic IM’s optimal action—the

one that minimizes the upper expected loss a ÞÑ Π
e

znℓa—is admissible. It’s rela-
tively straightforward to incorporate partial prior information coming in the form
of a possibility measure, and I’ll report on this elsewhere. But given the connec-
tion to e-values, game-theoretic probability, etc., it’s of interest to consider prior
information that takes the form of gambles about the uncertain value of Θ that
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are a prior acceptable to the data analyst, i.e., gambles that aren’t expected to
multiply an opponent’s capital by a large factor.
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Continuous Monitoring of Systemic Risks

Timo Dimitriadis

(joint work with Yannick Hoga)

In the wake of numerous instances of financial market turmoil in recent decades,
increasingly more attention has been paid to systemic risks, that is, spillovers
of risk from one bank to another, opposed to managing risks of each individual
institution in isolation; see for example [1]. This holds for regulators (who became
more concerned with the interconnectedness of banks in the financial system) as
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well as individual financial institutions (in avoiding joint distress across trading
desks or business units).

To fix ideas, given absolutely continuous random variables Xt and Ykt, k “
1, . . . ,K with (invertible) distribution functions FXt

and FYkt
representing neg-

ative financial log-returns, the Value-at-Risk (VaR) of Xt at level β P p0, 1q is
defined as the β-quantile F´1

Xt
pβq of Xt. The Conditional Value-at-Risk (CoVaR)

as the most prominent systemic risk measure is given by the α-quantile of Ykt given
that Xt violates its conditional β-quantile, tXt ě F´1

Xt
pβqu, where α, β P p0, 1q are

values often chosen close to one.
Given sequences of forecasts vt for the VaR and ckt for the CoVaR of institution

k for the trading days t P N, we propose continuous monitoring schemes for these
risk measures, which allow to detect changes in systemic risk in an “online” fashion
by continuously monitoring (re-testing) every trading day without inflating type I
errors. Building on recent forecast evaluation results in [2], [3] and [4], one can
show that the typical condition of conditional forecast calibration (also known as
forecast optimality or forecast rationality) is equivalent to

It :“ 1tXtąvtu
i.i.d.„ Berp1 ´ βq,

Ikt :“ 1tXtąvt, Yktącktu
i.i.d.„ Ber

`
p1 ´ αqp1 ´ βq

˘
,(1)

CovpIt, Iktq “ p1 ´ αqβp1 ´ βq.

As the probabilistic structure of these indicator functions is (almost) fully known
under the null hypothesis in (1), we can monitor the correctness of (1) through
necessary conditions in the form of a moving sum detector and the Gini coefficient
in an online fashion by simulating critical values based on a maximum length of
the monitoring procedure of n P N trading days. This method holds size by con-
struction, such that the null of correct systemic risk assessments is only rejected
during the monitoring period with at most a pre-specified probability. The moni-
toring procedures further allows multiple (i.e., K) series at once to be monitored,
thus increasing the likelihood and the speed with which early signs may be picked
up.

Such procedures are vital in taking timely countermeasures to avoid financial
distress. An empirical application to US banks during multiple crises demon-
strates the usefulness of our monitoring schemes for both regulators and financial
institutions. Open questions include the relaxation of the finite monitoring length
through the use of e-processes akin to [5] and the most suitable generalizations
to other systemic risk measures such as the Conditional or Marginal Expected
Shortfall.
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A generalization of Ville’s inequality to possibly negative martingales

Muriel Pérez

(joint work with Tyron Lardy and Wouter Koolen)

We introduce an extension of Ville’s inequality to possibly negative martingales.
Ville’s inequality, a maximal inequality for a certain family of martingales, is at the
center of current statistical guarantees for anytime-valid tests. Indeed, if n ÞÑ Mn

is a nonnegative martingale under a distribution P with expected value equal to
one—a test martingale—, Ville’s inequality states that

PtDn : Mn ě 1{αu ď α.

This inequality ensures that a statistical test that monitors Mn continuously and
rejects P as soon as Mn crosses the threshold 1{α has type-I error below α uni-
formly over time—a test with such guarantee is called anytime valid. A large effort
has been put into designing test martingales Mn that result in powerful and flex-
ible tests against specific alternatives and extensions of this inequality are known
for composite null distributions (see Ruf et al. [3] and Johannes Ruf’s extended
abstract in this repport) and possibly nonintegrable martingales [4]. A large por-
tion of the design principles used to to build these tests hinge on interpretations
of these martingales as betting strategies or as sequential information-theoretical
coding schemes. In this interpretations, the fact that test martingales are posi-
tive is crucial. The present talk, with its focus on possibly negative martingales,
deviates from this this wisdom.

We present an extension of Ville’s inequality that holds for martingales that
are possibly negative, but still bounded from below by some function. The main
result is the following theorem.

Theorem 1. Let n ÞÑ Mn be a supermartingale and let n ÞÑ fn be nondecreasing
and such that n ÞÑ Mn ` fn is nonnegative. Let n ÞÑ gn be nondecreasing, and
such that f0 ` g0 ě 0 and EPrM0s P r´f0, g0s. Then

PtDn : Mn ě gnu ď 1 ´ g0 ´ EPrM0s
g0 ` f0

8ź

i“1

gi ` fi´1

gi ` fi
.

Furthermore, if f and g are not only defined on Ně0 but on Rě0 and they are

both differentiable, the r.h.s. is bounded by 1 ´ g0´EPrM0s
g0`f0

exp
´

´
ş8
0

f 1
t

ft`gt
dt
¯
.

https://arxiv.org/abs/2209.00991
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This inequality is sharp two senses: firstly, when Mn is nonnegative (fn “ 0
in that case), Ville’s inequality is recovered; secondly, there exists a martingale
that attains equality. At this point it may not be clear why such a generalization
is useful, but such martingales are suggested by the analysis of online-learning
algorithms (see Wouter Koolen’s extended abstract in this report) and they can
be used to derive tight time-uniform probabilistic bounds directly. This last feature
is best illustrated with an example. Indeed, if X1, X2, . . . is a sequence of i.i.d.
standard normal random variables, the analysis of Squint [1] suggests a functional

form similar to M‹
n “ 1?

2π

ş8
´8

´
eη

ř
iďn Xi´η2n{2 ´ 1

¯
e´η2{2 dη

|η| —it can be shown

that M‹
n bounded by lnp1`nq{

?
2π from below. Using this particular martingale,

we show a choice of gn for which Theorem 1 implies a finite-time law of the
iterated logarithm for n ÞÑ ř

iďn Xi with sharp constants, reproducing one of
the fundamental results in this branch of sequential analysis with a more direct
proof than with standard methods [2]. This direct proof becomes possible, on
the technical side, because M‹

n includes an “improper prior” dη{|η| on possibly
negative martingales, while standard methods use approximations of dη{|η| with
“proper priors” on nonnegative martingales. It is known that improperness is
necessary to derive laws of the iterated logarithm, but the standard method of
mixtures excludes it.

This result opens the door to use a larger family of martingales for anytime-valid
inference by lifting the nonnegativity restriction. It remains to be seen whether
these objects have a game-theoretic, betting or information-theoretic interpreta-
tion; to explore more deeply the connection with online learning; and to see if
unknown concentration results become accessible with these techniques.
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E-values as unnormalized weights in multiple testing

Nikolaos Ignatiadis

(joint work with Ruodu Wang, Aaditya Ramdas)

We study how to combine p-values and e-values, and design multiple testing pro-
cedures where both p-values and e-values are available for every hypothesis [1].

To describe the basic setting, let H1, . . . , HK be K hypotheses, and write K “
t1, . . . ,Ku. Denote the true (unknown) data-generating probability measure by P.
For each k P K, we may think of hypothesis Hk as defining a set of joint probability
measures, and Hk is called a true null hypothesis if P P Hk. A p-value P for a
hypothesis H is a random variable that satisfies QpP ď tq ď t for all t P r0, 1s
and all Q P H . In other words, a p-value is stochastically larger (or equal) than
a uniform random variable Up0, 1q. An e-value E for a hypothesis H is a r0,8s-
valued random variable satisfying EQpEq ď 1 for all Q P H . Let N Ď K be the
unknown index set of true null hypotheses.

Two settings of testing multiple hypotheses were considered in [2]. In the first
setting, for each k P K, Pk is a p-value for Hk. In the second setting, for each
k P K, Ek is an e-value for Hk. Here we consider the setting where both Pk and
Ek are available for each Hk. Since we are testing whether P P Hk for each k, we
will only use the following condition: if k P N , then PpPk ď tq ď t for all t P r0, 1s
and EPpEkq ď 1. We impose no restrictions on Pk and Ek if k R N .

We also write D for a multiple testing procedure, that is, a Borel mapping that
produces a subset of K representing the indices of rejected hypotheses based on
p-values (we write p-D to denote a procedure D that is based only on p-values), e-
values, or a combination of both as the input. Below we construct new procedures
D that take as input both p-values and e-values.

Our starting point is the following: If Pk and Ek are independent, how should
we combine them to form a new p-value P˚

k ? To be more formal, we call a

function f : r0, 1s ˆR` Ñ r0, 1s an i-pe/p combiner if fpP,Eq is an e-value for any
independent p-value P and e-value E, and pp, eq ÞÑ fpp, eq is non-decreasing in p

and non-increasing in e.
We have the following result:

Theorem 1. Consider the function Q defined by Qpp, eq :“ pp{eq ^ 1. This
function is an admissible i-pe/p combiner.

We call the function above the “Q-combiner.” We describe its properties as
a general-purpose method for meta-analysis from two studies, where a primary
dataset is used to compute p-values, and an independent secondary dataset is used
to compute e-values. Furthermore, the Q-combiner is used as the main building
block for our main proposal, which turns multiple testing procedures based only
on p-values (p-D) into procedures that can use both p-values and e-values:

Definition 1 (e-weighted p-value procedure (ep-D)). Let p-D be a multiple testing
procedure based on p-values. Given p-values pP1, ..., PKq and e-values pE1, ..., EKq,
we define the e-weighted p-value procedure ep-D which proceeds as follows: for
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k P K, compute the Q-combiner P˚
k
:“ QpPk, Ekq “ pPk{Ekq ^ 1, and then supply

pP˚
1 , ..., P

˚
Kq to p-D.

We describe type-I error control guarantees for several different ep-D procedures
including the ep-BH (Benjamini-Hochberg) and ep-Bonferroni procedures. These
procedures may be interpreted in two ways: first, they are p-value based procedures
applied to the p-value vector pP˚

1 , . . . , P
˚
Kq, and second, they are weighted p-value

based procedures with p-value vector pP1, . . . , PKq and weight vector pE1, . . . , EKq.
We build on both perspectives to derive guarantees on the control of generalized
type-I error rates. Our guarantees depend on the dependence of the e-values
pE1, . . . , EKq, the p-values pP1, . . . , PKq, as well as the cross-dependence between
p-values and e-values (for example, to guarantee that P˚

k is indeed a p-value, we
require that Ek is independent of Pk for all k P N ).

The perspective in terms of weighted multiple testing is important as our results
provide a new perspective on multiple testing with data-driven weights: while stan-
dard weighted multiple testing methods require the weights to deterministically
add up to the number of hypotheses being tested, we show that this normaliza-
tion is not required when the weights are e-values that are independent of the
p-values. Our procedures can result in a substantial increase in power, especially
if the nonnull hypotheses have e-values much larger than one.

Finally, the weighted multiple testing perspective demonstrates that for several
of our guarantees, e.g., for false discovery rate control of ep-BH or family-wise error
rate control of ep-Bonferroni, it suffices to relax the notion of e-value. Instead, it
suffices that pE1, . . . , EKq are compound e-values as defined below.

Definition 2 (Compound e-values [1]). We say that pE1, . . . , EKq are compound
e-values, if the following holds:

ÿ

kPN
EPrEks ď K.

The importance of this notion for multiple testing has been convincingly demon-
strated in prior work [2, 3]. Here, we provide a name for this property (inspired
by Herbert Robbins’ compound decision theory) and show its versatility and use-
fulness in the context of multiple testing with p-values and e-values.
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Supermartingales in Online Learning

Wouter M. Koolen

We investigate one fascinating connection between supermartingales and online
learning algorithms. We start by seeing how we can look at the classic Hedge
algorithm in this way. We will then discuss the design of two sophisticated online
learning algorithms: Squint and Muscada. In each, we go over the desiderata,
review the construction of the supermartingale, what its design achieves, and why
certain things don’t work. On the way, we highlight connections to e-processes,
deviation inequalities and to defensive forecasting.

1. Introduction

We investigate connections between sequential testing and online learning. The
reason to revisit these connections is the following. Martingales are popular tools
for sequential testing that have recently gotten new attention by the explosion of
interest in e-values. It has been known since [1] that so-called test supermartin-
gales can be converted into learning algorithms by a method called Defensive
Forecasting.

2. Online Learning

We revisit the classic Hedge setting with K experts. Here for rounds t “ 1, 2, . . .

‚ The Learner plays weights wt P △K from the probability simplex.
‚ The Adversary picks a bounded loss vector ℓt P r0, 1sK.

After T rounds, the regret w.r.t expert k is defined as

Rk
T :“

Tÿ

t“1

´
wJ

t ℓt ´ ℓkt

¯
.

The goal from the online learning perspective is to develop a strategy for Learner
keeping all Rk

T small, against any Adversary.
To test whether a given Learner is doing a good job, an external observer

(customarily called the Skeptic) may engage in a sequence of bets that cost 0 and
pay off wJ

t ℓt ´ ℓkt . In other words, Skeptic may construct a supermartingale by

sequentially multiplying conditional e-values of the form 1`řK
k“1 η

k
t

`
wJ

t ℓt ´ ℓkt
˘

for ηkt positive yet small enough to avoid bankruptcy. One simple and effective
way to construct such a supermartingale uses mixing over experts k, repeating a
fixed bet η ą 0 over and over, and invoking the convenient bound

1 ` η
´
wJ

t ℓt ´ ℓkt

¯
ě eηpwJ

t ℓt´ℓkt q´η2{2.

With that, we have motivated the choice of the Hedge supermartingale

ΦT :“
Kÿ

k“1

1

K

Tź

t“1

eηpwJ
t ℓt´ℓkt q´η2{2 “

Kÿ

k“1

1

K
eηR

k
T ´Tη2{2.
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One can check that the choice η “
b

2 ln K
α

T
ensures that at time T the super-

martingale ΦT is below the threshold 1
α

only if the regret Rk
T ď

b
2T ln K

α
for

every expert k. In other words, ΦT gets big when Learner is incurring too much
regret.

Why is this interesting? Because Defensive Forecasting allows us to take the
supermartingale ΦT as the specification of a good Learner and synthesise a learning
algorithm from it. In our context, this means choosing the weights wt P △K so
that even for the worst-case losses ℓt P r0, 1sK still Φt ď Φt´1. Solving this
min-max requirement leads to the solution

wk
T`1 “ eηR

k
T

řK
j“1 e

ηR
j

T

which is the well-known Hedge algorithm introduced and analysed by [2]. We
next review two extensions of these ideas that have been developed in the online
learning world, and interpret them as supermartingales.

3. The Squint Supermartingale

For our first interesting online learning supermartingale we turn to a strategy called
Squint [3]. Let us introduce the abbreviation rkt :“ wJ

t ℓt´ℓkt for the instantaneous
regret w.r.t. expert k in round t. The Squint supermartingale is given by

ΦT :“
Kÿ

k“1

πk

ż 1
2

0

eηR
k
T ´η2V k

T ´ 1

η
dη where V k

T “
Tÿ

t“1

prkt q2

where π P △K is any prior distribution on K experts chosen by the user.1 Keeping
this supermartingale from growing is possible (this requirement essentially fixes the
learning algorithm), and has desirable consequences in terms of online learning:
no tuning parameter, anytime regret guarantees, stochastic luckiness, quantile
bounds and adaptivity to the complexity of the comparator. Moreover, this comes
at no increase in computational cost due to available closed-form expressions for
the integral. But in terms of testing by betting something unexpected happened.
Note that the density 1

η
w.r.t. with which we are integrating is improper, as it packs

too much mass close to η “ 0. Yet since we are mixing centred (by subtracting
´1 in the numerator) supermartingales, this does not make the value diverge
immediately. However, something gives: this supermartingale is not guaranteed
to be non-negative. Yet not all is lost, as one can show that ΦT ě ´ lnp1 ` T q.
Within the testing community, we need to learn to harvest the benefits of working
with supermartingales that are bounded below by a function of time. We refer
to the contribution of Muriel Pérez Ortiz (also in this workshop report) for more
details on first steps in that regard.

1In fact, here we can tolerate countably many experts too.
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4. The Muscada Supermartingale

For our second exhibit we turn to multi-scale online learning and the Muscada
strategy [4]. The setup is the standard expert setting, with one new ingredient.
We fix a vector σ P p0,8qK of positive loss ranges, and we constrain the losses ℓt
to be such that ℓkt P r˘σks. So the losses are still bounded, but the ranges differ
per expert. Here the Muscada supermartingale is constructed as follows:

(1) ΦT :“ max
wP△pKq

xw,RT ´ µT y ´ DηT
pw,uq.

where for w,u P △K the relative entropy at multi-scale η P p0,8qK is

Dηpw,uq “
Kÿ

k“1

wk lnpwk{ukq ´ wk ` uk

ηk

and we define µT by µk
T :“ σk

?
T lnK and set ηkT « 1

σk

b
lnK
T

(we refer to [4] for

full details). With this notation, the online learning goal is to ensure Rk
T ď µk

T .
And indeed, we find that Defensive Forecasting results in a strategy for choosing
the weights wT that guarantees

Rk
T ď σk

?
T lnK.

One could argue that the supermartingale above is constructed to make the De-
fensive Forecasting proof go through. Most interestingly here is that ΦT is not
of mixture-over-experts form. While that form worked for the same-scale Hedge
case, it apparently does not work multi-scale. The reason being that we do not
control the range of the instantaneous loss rkt “ wJ

t ℓt ´ ℓkt . While the range of ℓkt
is r˘σks, the range of wJ

t ℓt can still be r˘maxk σks.
Yet the optimization-based and mixture-based supermartingales are related, for

the same-scale case, by duality for KL. That is for any π P △K and X P RK ,

ln
ÿ

k

πke
Xk “ max

wP△K

xw,Xy ´ KLpw}πq.

The proof that a certain choice of weights wt, namely the minimiser of Φt´1 in (1),
keeps Φt ď 0 can be found in [4]. What we find interesting is that the form of the
supermartingale [4] makes it possible to use the knowledge about the per-expert
loss ranges effectively.

5. Conclusion

It is our belief that testing by betting can learn some cool techniques from on-
line learning. The success criterion in online learning, small regret, makes that
supermartingales appearing there have a certain from. That form, perhaps, made
it possible to invent new techniques. Yet these are not online learning specific;
instead, they can often be translated back to pure testing-by-betting of whether
data conforms to a probabilistic forecast. We brought two such techniques to
the attention of the testing community, and we are looking forward to further
discussions.
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KLinf and Optimality in Multi-Armed Bandits

Shubhada Agrawal

(joint work with Sandeep Juneja, Wouter Koolen, Peter Glynn)

Real-world machine learning applications often involve making decisions sequen-
tially through dynamic interactions with the environment, based on limited feed-
back. While tech giants like Google and Meta use machine learning algorithms to
generate billions in revenue via online advertising, their adoption in safety-critical
domains is limited. This limitation arises mainly due to a lack of understanding of
their performance in diverse practical environments. Thus, it is crucial to develop
a foundational understanding of the performance of these algorithms and their
associated statistical limitations.

The multi-armed bandit (MAB) problem is a simple and elegant statistical
model for interactive learning in uncertain environments. Originating from Thomp-
son’s work in the 1930s on adaptive clinical trials [3], the MAB framework involves
an algorithm interacting with a fixed set of unknown and independent probability
distributions, or arms. In each iteration, the algorithm selects an arm and receives
a sample from the underlying distribution, considering prior actions and outcomes.
The objective is to choose arms to optimize a certain objective.

Classical MAB settings have been extensively studied. Instance-dependent
lower bounds for these problems, as well as optimal algorithms that match these
lower bounds even in the multiplicative constants on every bandit instance, have
been developed under minimal assumptions on the uncertainty distributions. A
naturally occurring quantity in these lower bounds is the infimum of KL-diver-
gences between probability measures, denoted as KLinf . Moreover, the optimal
algorithms that match these lower bounds, even in the multiplicative constants,
rely on the empirical version of KLinf .

In this talk, we will first consider a simple 1-armed bandit problem, or a specific
sequential hypothesis testing problem (with composite null and point alternative).
We will derive a lower bound on the average number of samples required by any al-
gorithm to ensure δ-correctness in this setup. This lower bound will involve KLinf .
We will then examine a natural first algorithm and demonstrate its sub-optimality.
Subsequently, we will explore modifications to arrive at an exactly-optimal algo-
rithm, which will notably rely on KLinf . We will also present a concentration
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result for the empirical KLinf statistic in a non-parametric setting that allows for
heavy-tailed distributions. Finally, we will discuss an extension to the multi-armed
bandit setting and conclude with several structural and topological properties of
KLinf .

This talk is based on [1] and [2], which developed optimal algorithms for ban-
dits with heavy-tailed distributions and the theory of KLinf for general classes of
distributions.
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On universal inference in Gaussian mixture models

Hongjian Shi

(joint work with Mathias Drton)

Let tPθ : θ P Θu be a parametric statistical model, with parameter space Θ Ď Rd.
The distributions Pθ are assumed to be dominated by a common measure ν, and
have probability densities fθ with respect to ν. Suppose that the observations
X1, . . . , Xn are independent and identically distributed (i.i.d.) according to an
unknown distribution Pθ in the model. We are now interested in a testing problem

(1) H0 : θ P Θ0 versus H1 : θ P ΘzΘ0

for a subset Θ0 Ĺ Θ.
Let ℓpθq “ řn

i“1 log fθpXiq be the log-likelihood function. The (classical) likeli-
hood ratio statistic for (1) is given by

λn :“ 2
!
sup
θPΘ

ℓpθq ´ sup
θPΘ0

ℓpθq
)
.

For regular problems, asymptotically valid likelihood ratio tests (LRTs) may be
constructed via Wilks’ theorem, i.e., the fact that the distribution of λn asymp-
totically converges to the chi-squared distribution χ2

m under the null hypothesis.
However, when regularity conditions fail, it can be difficult to provide theoretical
insights on the distribution of likelihood ratios and standard bootstrapping is not
necessarily valid; see, e.g., [1]. These issues are particularly pressing for mixture
models.

Recent work on game-theoretic statistics and safe anytime-valid inference
(SAVI) (see [4] for a comprehensive review) provides new tools for statistical in-
ference without assuming any regularity conditions. In particular, the framework
of universal inference proposed by [5] offers new solutions by modifying the likeli-
hood ratio test in a data-splitting scheme. The data are divided into two parts, D0
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for inference and D1 for estimation. For this split, choose a fraction m0 P p0, 1q
and partition the data into two disjoint subsets D0 “ tX1,0, . . . , Xtm0nu,0u and
D1 “ tX1,1, . . . , Xrm1ns,1u, where m1 :“ 1 ´ m0. We will write n0 for tm0nu and

n1 for rm1ns to shorten notation. Let ℓkpθq “
řnk

i“1 log fθpXi,kq, k “ 0, 1, be the

likelihood functions based onD0 andD1, respectively. Let pθn,1 :“ argmaxθPΘℓ1pθq
be the maximum likelihood estimator (MLE) of θ under the full model and based

on D1, and let pθn,0 :“ argmaxθPΘ0
ℓ0pθq be the MLE of θ under H0 and based

on D0. Now the split likelihood ratio statistic is defined as

(2) λsplit
n :“ 2

!
ℓ0ppθn,1q ´ ℓ0ppθn,0q

)
.

As shown in [5], under the null hypothesis H0 : θ P Θ0, it holds for any positive
integer n that

(3) Eθrexppλsplit
n {2qs ď 1.

An application of Markov’s inequality yields for any α P p0, 1q and any positive
integer n,

(4) Pθpλsplit
n ą ´2 logαq ď α.

Accordingly, the split likelihood ratio test (split LRT) given by 1pλsplit
n ą ´2 logαq

is finite-sample-valid at significance level α.
In this paper, we study the performance of the resulting split likelihood ratio

test under the Gaussian mixture model

(5) fp,tpxq “ p1 ´ pqφpx; 0, 1q ` pφpx; t, 1q
where the mixture weight p P r0, 1s and the mean t P R are unknown parameters.
We consider the homogeneity testing problem

(6) H0 : p “ 0 or t “ 0 against H1 : p P p0, 1q, t P Rzt0u.
This model is a canonical example of models in which classical regularity condi-
tions fail to hold. In particular, the likelihood ratio statistic diverges to `8 in
probability at the order of Oplog lognq as proven in [3].

Proposition 1 (Theorem 2 in [3]). The likelihood ratio statistic λn for testing
homogeneity in the Gaussian mixture model (5) satisfies

lim
nÑ8

PH0
tλn ´ log logn ` logp2π2q ď xu “ expt´ expp´x{2qu, x P R.

Consequently,

lim
nÑ8

PH0
tλn ą cn,αu “ α,

where the critical value is defined as

(7) cn,α “ log logn ´ logp2π2q ´ 2 log logp1 ´ αq´1.

We first establish that under the null hypothesis, the split likelihood ratio statis-
tic is asymptotically normal with increasing mean and variance.
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Theorem 2. Suppose that X1, . . . , Xn are i.i.d. standard normal random vari-
ables. The asymptotic null distribution of the split LRT is obtained as

(8)
λsplit
n ` m0

m1
log logn

2
b

m0

m1
log logn

dÝÑ Np0, 1q.

As a direct corollary of Theorem 2, if we adopt the asymptotic critical point
from the asymptotic null distribution (8), namely,

(9) csplitn,α :“ 2

c
m0

m1

log logn ˆ Φ´1p1 ´ αq ´ m0

m1

log logn,

then the split LRT will have the asymptotic size of α:

lim
nÑ8

PH0
tλsplit

n ą csplitn,α u “ α.

Moreover, contradicting the usual belief that the flexibility of SAVI and uni-
versal methods comes at the price of a significant loss of power, we are able
to prove that universal inference surprisingly achieves the same detection rate
pn´1 log lognq1{2 as the classical likelihood ratio test. In detail, we consider the
following sequence of local alternative hypotheses:

(10) H
#
1,n : p “ qn, t “ µn, with qnµn “ γpn´1 log log nq1{2, µn “ Otplog nq´1{2u

of the model fp,tpxq “ p1´pqφpx; 0, 1q`pφpx; t, 1q. The following result, due to [2],
shows that the LRT can distinguish the null hypothesis from the local alternative
at the rate pn´1 log lognq1{2. In addition, the rate pn´1 log log nq1{2 is optimal in
the sense that there is a dramatic change in the power of the LRT at |γ| “ 1.

Proposition 3 (Theorem 2.1 in [2]). Under the sequence of local alternative hy-

potheses H
#
1,n given in (10), the asymptotic local power of the LRT is given by

lim
nÑ8

P
H

#
1,n

tλn ą cn,αu “

$
’’&
’’%

α, if |γ| ă 1,

p1 ` αq{2, if |γ| “ 1,

1, if |γ| ą 1.

A similar phenomenon can also be found in the split likelihood ratio test, which
is summarized in Theorem 4 below.

Theorem 4. Under the sequence of local alternative hypotheses H
#
1,n given in

(10), the asymptotic local power of the split LRT is given by

lim
nÑ8

P
H

#
1,n

tλsplit
n ą ´2 logpαqu “

$
’’&
’’%

0, if |γ| ă m
´1{2
1 ,

1{2, if |γ| “ m
´1{2
1 ,

1, if |γ| ą m
´1{2
1 ,
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and if the asymptotic critical point csplitn,α defined in (9) is adapted, then the split
LRT will have very similar asymptotic local power as the LRT with a shifted thresh-
old:

lim
nÑ8

P
H

#
1,n

tλsplit
n ą csplitn,α u “

$
’’&
’’%

α, if |γ| ă m
´1{2
1 ,

p1 ` αq{2, if |γ| “ m
´1{2
1 ,

1, if |γ| ą m
´1{2
1 .
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Game-theoretic statistical modelling

Glenn Shafer

Statistical modelling is an art, not a mathematical exercise. One first chooses
or invents a statistical model, which is a mathematical object. Then, as Paul R.
Rosenbaum has explained [3, p. 46]:

. . . a separate argument, not always a particularly clear or com-
pelling argument, is invoked to connect this convenient but rather
technical model to the scientific problem at hand. The arguments
that connect statistical models to important scientific questions—
these connectivity arguments—are often most compelling to peo-
ple who do not understand them, and least compelling to people
who do.

Perhaps because they are not clear and compelling, statisticians often leave their
connectivity arguments implicit.

Many standard connectivity arguments suppose that the model represents a
“true” state of affairs and relates this supposition to the use of hypothetical rep-
etitions in assessing conclusions.1 A game-theoretic connectivity argument, in
contrast, interprets probabilities as forecasts. The statistician argues that the
model is a good forecaster, in the sense that an opponent will not multiply their
money by a large factor betting against its probability forecasts. This formulation
may still involve repetition, perhaps actual, perhaps hypothetical, because a single

1See for example the well known textbook by David R. Cox and David V. Hinkley [1, p. 45].
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bet may offer limited opportunity for such multiplication.2 But there is no need
for “true” in quotation marks.

The shift from truth to good forecasting often makes a statistician’s argument
neither more nor less compelling. But it may make the argument more under-
standable and its limitations clearer, especially for those who are not experts in
probability and statistics.

Game-theoretic statistical modelling usually uses a game imagined by a statis-
tician (call her Statistician, with a capital S ), which makes explicit some of the
steps she takes in analyzing data. Chapter 10 of [7] gives a few examples. Here I
offer some further examples. In each example, we find some or all of these players:

(1) Player I (call him Oracle), who announces information that Statistician
does not know, information that provides a full or partial answer to the
scientific or practical question.

(2) Player II (call him Informant), who announces information Statistician
does know.

(3) Player III (call him Forecaster), who announces bets on what Informant
will announce.

(4) Player IV (call him Skeptic), who announces a bet chosen from Forecaster’s
announcement.

Skeptic begins with unit capital. In this extended abstract, we consider only one
round of play, but some of our examples can be extended to multiple rounds.

Before each round, Statistician

‚ tells Oracle what question to answer,
‚ tells Informant what to say,
‚ assigns to Forecaster a strategy that uses what Forecaster has heard so far
to tell him what to announce, and

‚ assigns to Skeptic a strategy that uses what Skeptic has heard so far to
announce a bet that does not risk his cumulative capital becoming nega-
tive.

In general, the games used in game-theoretic probability are perfect information
games. This means that each player hears the other players’ moves as they are
made. This concept is not relevant here, however, because the players are not free.
Statistician tells them what to do.

After each round, Statistician can calculate Skeptic’s capital. When Oracle
is not in the game, and the capital is large enough, Statistician will conclude
that the strategy she assigned to Forecaster has been discredited. When Oracle
is in the game, Statistician can calculate Skeptic’s capital only as a function of
Oracle’s announcement. She can draw conclusions about Oracle’s announcement
from this function, the possible announcements that would have produced large

2Attempts to give precise mathematical meaning to “true” probabilities or “good” forecaster
lead to imagined infinities: unlimited repetition where some event has probability one, or unlim-
ited play where the nonnegative capital process of the forecaster’s opponent remains bounded
[7]. Unfortunately, imagined infinities may do little to make a statistician’s data analysis more
compelling.
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capital being discredited. These conclusions can be expressed as warranty sets or
confidence sets [5].

The strategies Statistician assigns to the players may not use all the information
that she has at the outset or acquires in the course of play. This corresponds to
“shrinking the filtration” or “forgetting” in measure-theoretic statistics. Moreover,
the strategy she assigns to Skeptic may use more information than the strategy
she assigns to Forecaster. This is one way game-theoretic statistics can make
statistical arguments more explicit and thus clarify aspects that may otherwise
seem puzzling or counter-intuitive.

Example 1. Gaussian measurement model. Statistician plans to measure
an unknown quantity µ. Calling her measurement Y and its value y, she imagines
this protocol.

Oracle announces µ.
Forecaster announces a probability distribution P for Y with EP pY q “ µ.
Skeptic announces Z ě 0 with EP pZpY qq ď 1.
Informant announces y.
K :“ Zpyq.

Forecaster’s announcement is interpreted as an offer to sell for 1 any Z satisfying
Z ě 0 and EP pZpY qq ď 1. The quantity K is Skeptic’s return on his investment of
1. If K large, Skeptic has multiplied his capital by a lot and discredited Forecaster.

Statistician and her public believe that the standard normal is a good forecaster
of the error of her measuring instrument. So she assigns to Forecaster the strategy
that announces Nµ,1 when Oracle announces µ. Once she has done this, a strategy
for Skeptic is a mapping Z that assigns to each µ a variable Zµ satisfying Zµ ě 0
and ENµ,1

pZµpY qq ď 1.
We can distinguish two fairly distinct classes of strategies for Skeptic.

(1) Statistician might choose each Zµ to make K larger the farther µ is from
y. An extreme choice is to make Zµ an all-or-nothing bet. For example:
Zµpyq :“ 20 when |y ´ µ| ą 1.96 and Zµpyq :“ 0 when |y ´ µ| ď 1.96.
This makes the interval y ˘ 1.96 a 20-fold warranty interval and a 95%
confidence interval for µ [5].

(2) Statistician might assess a subjective probability distribution for µ, use it
to average over the normal distributions with variance 1, and then use the
resulting distribution for Y as the alternative in a Kelly bet against each
Nµ,1. This also produces warranty and confidence sets. Here Statistician is
assigning Forecaster the task of assuring validity (based on the consensus in
favor of standard normal errors) and Skeptic the task of assuring efficiency
(relative to her subjective opinion) [6].

Example 2. Linear regression. Statistician realizes that the temperature may
be influencing her measurements of µ. The previous experience that had justified
her forecasting the errors with the N0,1 distribution was based on measurements
at 0˝ Celsius. To test whether temperature is making a difference and take it into
account, she imagines this protocol:
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Oracle announces µ, β.
Informant announces x, the temperature on the Celsius scale.
Forecaster announces a distribution P for Y with EP pY q “ µ ` βx.
Skeptic announces Z ě 0 with EP pZpY qq “ 1.
Informant announces y P R.
K :“ Zpyq.

Statistician replaces Forecaster with the strategy that announces Nµ`βx,1. A
strategy for Skeptic is then a mapping Z that assigns to each triplet pµ, β, xq a
function Zµ,β,x satisfying Zµ,β,x ě 0 and ENµ`βx,1

pZµ,β,xpY qq ď 1.
As in Example 1, Statistician has a wide variety of possible strategies for Skeptic.

Whatever strategy she assigns to Skeptic, she will obtain warranty sets for the pair
pµ, βq. If there is a values of µ such that pµ, 0q is in the 4-fold warranty set, say,
then she may decide that it is unnecessary to take temperature into account and
return to the model in Example 1.

Example 3. Fisher’s exact test. In a clinical trial, N patients are chosen
randomly from a group of 2N to receive treatment A; the otherN receive treatment
B. The outcome is to survive or not. Statistician writes s for the observed number
of survivors, Y for the number of these survivors receiving treatment A, and y for
Y ’s value. Statistician imagines this protocol.

Informant announces s.
Forecaster announces a probability distribution P for Y .
Skeptic announces Z ě 0 with EP pZpY qq ď 1.
Informant announces y.
K :“ Zpyq.

Statistician assigns to Forecaster the strategy that announces the distribution Ps

for Y obtained by conditioning the randomization probabilities on s. A strategy
for Skeptic is now a mapping Z that assigns to each s a variable Zs satisfying
Zs ě 0 and EPs

pZspY qq ď 1.
As in Example 1, there are many different possibilities for Z. Fisher recom-

mended all-or-nothing bets that pay off for large enough y [2]. Another possibility
is Kelly bets that use as their alternative the distribution for Y obtained by condi-
tioning on s Statistician’s subjective probabilities for the outcomes assessed using
everything she knows before observing any results of the experiment. Here again
she assigns Forecaster the task of assuring validity and Skeptic the task of assur-
ing efficiency relative to her subjective opinion. This is one way of resolving the
Bayesian discomfort with randomization tests discussed by L. J. Savage [4, p. 34].

Example 4. Conformal prediction. Here we use concepts and terminology
defined in [8], limited to a single prediction. Statistician observes pairs of the form
z “ px, yq. The xs, called objects, are from a space X. The ys, called labels, are
from a space Y. The product Z :“ X ˆ Y is called the example space.

Statistician has observed n ´ 1 examples and an additional object x, and she
wants to “predict” x’s label y. (We use quotation marks, because she may never
observe or otherwise learn y’s exact value.) Her basis for prediction is the opinion
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that px, yq is not particularly different from previous examples. She makes this
into a forecast using the concept of a smoothed conformal transducer [8, p. 55].

To define a smoothed conformal transducer f , Statistician begins with a way of
scoring how different one example is from n ´ 1 others. For each possible value y,
she puts px, yq in a bag with the n ´ 1 examples she has observed and scores how
different each is from the others. She writes nă the number of examples in the
bag that score less different than px, yq and n“ for the number that tie with px, yq.
Then she draws a pseudo-random number τ from r0, 1s and sets fpyq :“ nă`τn“

n
.

Her forecast, which combines her expectation that px, yq will not be particularly
different with her opinion that τ is random, is the uniform probability distribution
for fpyq.

Using these ideas, Statistician imagines this very simple protocol:
Forecaster announces a smoothed conformal transducer f .
Skeptic announces a probability density q on r0, 1s.
Oracle announces y.
K :“ qpfpyqq.

Because the uniform probability density for fpyq is implicit in the forecast, Skep-
tic’s bet is a Kelly bet against f .

If Statistician actually knew y (in this case Informant, not Oracle, would an-
nounce it), then K would be a betting score for testing Statistician’s supposition
that that the new example is not particularly different from the old ones [8, Pt.
III]. But here she is using K to predict y. As in our other examples, her K-fold
warranty interval will consist of the values of y for which K is less than K.

Statistician’s choice of q will depend on her purpose. If she expects to see y,
she will have no reason to make future bets on y using other information, and
she may make the all-or-nothing bet usually prescribed for conformal prediction.
If she does expect to use future evidence to continue betting on y, then she may
use a Kelly bet that maximizes the expected logarithm of K with respect to a
probability distribution for y based on evidence she already has about y.
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A composite generalization of Ville’s martingale theorem using
e-processes

Johannes Ruf

(joint work with Martin Larsson, Wouter M. Koolen, Aaditya Ramdas)

We provide a composite version of Ville’s theorem that an event has zero measure
if and only if there exists a nonnegative martingale which explodes to infinity when
that event occurs. This is a classic result connecting measure-theoretic probabil-
ity to the sequence-by-sequence game-theoretic probability, recently developed by
Shafer and Vovk. Our extension of Ville’s result involves appropriate composite
generalizations of nonnegative martingales and measure-zero events: these are re-
spectively provided by “e-processes”, and a new inverse capital outer measure. We
then develop a novel line-crossing inequality for sums of random variables which
are only required to have a finite first moment, which we use to prove a composite
version of the strong law of large numbers (SLLN). This allows us to show that
violation of the SLLN is an event of outer measure zero and that our e-process
explodes to infinity on every such violating sequence, while this is provably not
achievable with a nonnegative (super)martingale. This presentation is based on
[1].
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E-Values for Exponential Families

Peter Grünwald

(joint work with Tyron Lardy, Yunda Hao, Shaul K. Bar-Lev, Martijn de Jong)

We provide a general theory for constructing various types of e-variables, including
optimal ones (in the GRO sense), when the null hypothesis P is a composite,
multivariate exponential family.

An e-value is the value taken by an e-variable, which is a test statistic that,
in contrast to the p-value, is suitable for experiments with a flexible design; see
e.g. Ramdas et al. [5] for a comprehensive overview. The most straightforward
example of e-variables are likelihood ratios between simple alternatives and sim-
ple null hypotheses. E-variables for composite nulls, and in particular ‘good’ e-
variables, are generally more complicated. However, e-variables in the form of
a likelihood ratio with a single, special element of the null representing the full,
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composite null sometimes still exist. We refer to such e-variables as ‘simple’ e-
variables.

Simple e-variables, if they exist, can easily be computed, and are known to be
optimal in an expected-log-optimality sense [3, 1]. That is, if we combine evidence
from a repeated experiment where data is collected using a fixed stopping rule,
then using the simple e-variable will asymptotically result in the most evidence
against the null, among all e-variables. As such, it is desirable to find out whether
or not simple e-variables exist in specific settings. Our first main result provides
a condition – we will call it Condition Simple on the family P and any postulated
simple alternative Q, under which simple e-variables exist for exponential family
nulls. We then consider the case of the Anti-Simple condition. Under this con-
dition, simple e-variables cannot exist but there is still a beautiful mathematical
structure in the problem that allows us to determine, at least asymptotically, GRO
and other (especially conditional) e-variables.

We briefly and superficially describe the results here, assuming prior knowledge
on e-variables and exponential families. We fix a regular multivariate exponential
family null P for data U with some sufficient statistic vector X “ tpUq and a
distribution Q for U , outside of P , and with density q. As our most important
regularity condition, we assume that Q has a moment generating function and that
there exists P~µ˚ P P with the same mean of X , say ~µ˚, as Q. It is known that P~µ˚

is the Reverse Information Projection (RIPr) of Q onto P [4], that is, it achieves
minPPP DpQ}P q. Denoting the density of P~µ˚ by p~µ˚ , it follows by Theorem 1
of [1] that qpUq{p~µ˚ pUq would be an e-variable in case infPPconvpPq DpQ}P q “
minPPP DpQ}P q. Our theorem establishes a sufficient condition for when this is
actually the case. It is based on constructing a second exponential family Q with

densities proportional to expp~βT tpUqqqpUq for varying ~β: Q contains Q and has
the same sufficient statistic as P . In some cases, but not all, Q may be thought
of as the composite alternative we are interested in.

Condition Simple. (this part is based on arXiv paper [2]) Letting Σpp~µq and Σqp~µq
denote the covariance matrices of the P~µ P P and Q~µ P Q with mean ~µ, our
first main result implies the following: under a further regularity condition on the
parameter spaces of P and Q, simple e-variables exist whenever Σpp~µq ´ Σqp~µq is
positive semidefinite for all ~µ in the mean-value parameter space of Q. We call
this Condition Simple (additionally, three equivalent rephrasings of the condition
are given). In this case, we may further conclude that for every element Q~µ1

of the constructed Q, the likelihood ratio q~µ1 pUq{p~µ1 pUq is an e-variable, where
P~µ is the element of P to which Q~µ is projected. An example pair pQ,Pq to
which the theorem applies is when, under Q, U „ Npm, s2q for fixed m, s2 and
P “ tNp0, σ2q : σ2 ą 0u is the univariate (scale) family of normal distributions.
This situation is illustrated in Figure 1. The proof of this result is based on convex
duality properties of exponential families.

Condition Anti-Simple. (this part has not been published yet) If, broadly speaking,
Σpp~µq ´Σqp~µq is negative semidefinite for all ~µ in the mean-value parameter space



Game-theoretic Statistical Inference 1379

−15

−10

−5

0

5

10

15

0 10 20 30

s
2

m

(m, s
2)

(−3.0,9.0)

(2.0,4.0)

(5.0,5.0)

Figure 1. The family Q for various pm, s2q. The coordinate
grid represents the parameters of the full Gaussian family, the
horizontal line shows the parameter space of P , the sloped lines
show the parameters of the distributions in Q, and the dashed
lines show the projection of pm, s2q onto the parameter space of P .
For example, we may start out with Q expressing U „ Npm, s2q
with m “ ´3.0, s2 “ 9.0, represented as the green dot on the
green line. Its RIPr onto P is the green point on the yellow line.
The corresponding family Q, constructed in terms of Q and P , is
depicted by the green solid line. Our first main theorem implies
that the likelihood ratio between any point on the green line and
its RIPr onto the yellow line is an e-variable; similarly for the red
and blue lines.

of Q, we say that Condition Anti-Simple holds. Note that the Simple and Anti-
Simple conditions cannot both hold at the same time, but there are cases in which
neither holds.

In our second main result, we show that under the anti-simple condition, if we
extend the hypotheses to n outcomes by assuming independence, then the Reverse
Information Projection (RIPr) of Q onto P is obtained by adopting a specific
Gaussian prior W on the mean-value parameters ~µ, with a covariance matrix that
scales as order 1{n. The GRO e-variable is then given by qpUq{pW pUq, pW being
the marginal density of U obtained if we equip P with priorW , and it (nontrivially)
happens to be equal to the so-called conditional e-variable. This holds exactly if
Q and P are both multivariate Gaussian location families, differing merely in
their covariance matrices. For other exponential families, the result holds in an
asymptotic sense.

Repercussions. These results have repercussions for the difference in growth op-
timality between various types of e-variables and e-processes, including GRO e-
variables, sequential-local GRO e-variables, conditional e-variables and Universal
Inference GRO e-processes. We discussed these repercussions in our talk.
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E-power and improvements for e-tests

Ruodu Wang

The simplest criterion to quantify the power of an e-variable E is through its
growth rate under an alternative probability measure Q, defined as EQrlogEs.
This idea goes back to [2], and it is studied by [4], [1] and [7] in detail. The
quantity EQrlogEs is called the e-power of E by [5].

The main justification behind e-power is built on the fact that e-variables for
sequential data are often multiplicative, and hence EQrlogE1s measures the as-
ymptotic growth rate of the partial product of iid e-variables E1, E2, . . . under Q,
due to the Law of Large Numbers.

It is notable that this definition of e-power also has some deficiencies, such
as being not well-defined for some e-variables, and inconsistency with natural
intuition for some e-processes in special cases.

To identify justified notion of e-power, we can use an axiomatic approach from
decision theory. Let X be the set of all bounded nonnegative random variables,
representing potential e-variables (the fact that we need to work with bounded
e-values is a limitation of the e-power). For a function Π : X Ñ r´8,8s, the
following five properties are relevant.

P1 Law-invariance: ΠpEq is determined by the distribution of E under Q.
P2 Strict monotonicity: ΠpE1q ď ΠpE2q if E1 ď E2, and ΠpE1q ă ΠpE2q if

QpE1 ă E2q “ 1.
P3 Multiplicative invariance: ΠpE1q ą ΠpE2q ùñ ΠpEE1q ą ΠpEE2q for E

independent of E1, E2 under Q.
P4 Consistency: For E1, E2, . . . , iid under Q with ΠpE1q ą 0,

Q

¨
˝

nź

k“1

Ek ą 1

α

˛
‚Ñ 1 as n Ñ 8 for all α P p0, 1q.

P5 Symmetry: ΠpE´1q “ ´ΠpEq if E´1 P X .

It can be shown, based on a recent result of [3], that a function Π : X Ñ r´8,8s
satisfies P1-P5 if and only if there exists a strictly increasing and symmetric func-
tion f such that

ΠpEq “ fpEQrlogEsq for all E P X .
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Therefore, the e-power is uniquely determined by the five properties introduced
above. Whether these five properties are natural and desirable, or whether there
are better alternatives, can be debated, and should be carefully studied.

Another important issue related to the power of e-values in hypothesis testing
is the choice of the rejection threshold t. That is, we reject the null hypothesis
when E ě t is observed for an e-variable E. This threshold is by default set to
t “ 1{α for a type-I error control at α, and this is based on Markov’s inequality.
This threshold can be wasteful in practical applications but cannot be improved
without further assumptions. We show how this threshold can be improved under
additional distributional assumptions on the e-values. For instance, the threshold
can be improved to t “ 1{p2αq when we know that the e-variable has a decreasing
or unimodal density; the factor of 2 in case of the decreasing density was earlier
obtained by [6] in a slightly weaker result than our statement. It can be approxi-
mately improved to t “ 1{peαq when we know that the log-transformed e-variable
has a decreasing or unimodal–symmetric density. These improvements can help to
enhance the power of testing via e-values, if good knowledge about the distribution
of the e-variable is available. We can also find methods to boost e-values in the
e-BH procedure, leading to potentially more discoveries under some assumptions
while controlling the false discovery rate.
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Three new directions in e-statistics

Aaditya Ramdas

This talk described three new and underexplored directions in game-theoretic sta-
tistics. These are (A) the role of randomization, (B) the utility of matrix e-
processes and (C) the problem of sequential change detection.

(A) The first advance that used external randomization came in the form of
the “uniformly randomized Markov’s inequality” [1], which uniformly improves on
Markov’s inequality. Since (deterministic) tests based on e-values always employ
Markov’s inequality (or its generalization to nonnegative supermartingales, Ville’s
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inequality), the randomized improvement yields strictly more powerful tests. How-
ever, it is not the case that one must move from e-values to tests in order to observe
the benefits of randomization. [2] describe the concept of “stochastic rounding of
e-values to a grid”, which transforms e-values to (randomized) e-values that only
take values on a predefined grid. While stochastic rounding hurts e-power, it
improves power when employed with other multiple testing procedures like the e-
Benjamini-Hochberg procedure [3], and thus can be seen as a tool to trade e-power
for power.

(B) The concept of a composite nonnegative supermartingale (and their gener-
alization, e-processes) has been particularly central for game-theoretic statistics.
One can ask whether an appropriate generalization exists beyond the scalar set-
ting. For matrices, [4] studies the concept of a positive semidefinite (psd) super-
martingale, which are a sequence of square symmetric psd matrices that satisfy
the supermartingale constraint in the usual psd sense. While matrix martingales
have been studied, these often reduce to an elementwise martingale claim, but
with the psd constraint, supermartingales have a richer structure. We prove op-
tional stopping theorems, a matrix Ville’s inequality, and demonstrate promising
applications to matrix testing problems like sequential covariance testing.

(C) While the e-statistics literature has focused primarily on testing and esti-
mation, it is of interest to extend the developed techniques to other related areas
such as change detection. In a first attempt to do this systematically, [5] developed
the notion of an e-detector, which controls the “average run length” (frequency of
false alarms, an analog of type-1 error) nonasymptotically at a predefined error
level, for composite classes of pre-change distributions. E-detectors can be built
by summing e-processes started at consecutive times. Thus, e-detectors are really
a sophisticated reduction from sequential change detection to sequential testing,
generalizing and improving an old reduction by Lorden. We demonstrated some
new practical applications, as well as nontrivial bounds on the detection delay.
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Sequential model confidence sets

Johanna Ziegel

(joint work with Sebastian Arnold, Georgios Gavrilopoulos, Benedikt Schulz)

In most prediction and estimation situations, scientists consider various statistical
models for the same problem, and naturally want to select amongst the best.
Hansen, Lunde and Nason [3] provide a powerful solution to this problem by the
so-called model confidence set (MCS), a subset of the original set of available
models that contains the best models with a given level of confidence. More
precisely, given a finite set of models M0 “ t1, . . . ,mu, and a confidence level

α P p0, 1q, they construct a set xM Ă M0 with

PpM‹ Ă xMq ě 1 ´ α,

where M‹ is the set of superior models with respect to a chosen expected loss L.
Importantly, model confidence sets respect the underlying selection uncertainty by
being flexible in size.

However, the MCS construction presuppose a fixed sample size which stands
in contrast to the fact that model comparison and forecast evaluation are often
inherently sequential tasks where new data is collected sequentially and where the
decision to continue or conclude a study or analysis may depend on the previous
outcomes.

We extend model confidence sets sequentially over time by relying on sequential
testing methods. This is challenging since the set of superior objects will also
become time dependent, and there are several natural ways to define it. To this
end, let dij,t “ Li,t ´ Lj,t, i, j P M0 denote the loss difference of model i and j

at time point t, and define µij,t “ Epdij,t | Ft´1q, where Ft´1 is the σ-algebra of

available information at time point t ´ 1. Finally, let ∆ij,t “ p1{tq
řt

s“1 µij,s.
We follow [5, 4, 2] by defining the superior models in terms of the (average)

conditional expected loss differences. Specifically, we consider strongly superior
objects

M
s,‹
t “

 
i P M0 | µij,r ď 0 for all r ď t, for all j P M0

(
,

uniformly weakly superior objects

M
uw,‹
t “

 
i P M0 | ∆ij,r ď 0 for all j P M0, for all r ď t

(
,

and weakly superior objects

M
w,‹
t “

 
i P M0 | ∆ij,t ď 0 for all j P M0

(
.

Clearly, Ms,‹
t Ď M

uw,‹
t Ď M

w,‹
t . Furthermore, Mw,‹

t ‰ H for all t, whereas Ms,‹
t

and M
uw,‹
t are decreasing sequences of sets and may become empty from some

time point on.

Let pM‹
t qt Ď M0 be the targeted sequence of superior objects. We call p xMtqt Ď

M0 sequential model confidence sets at level α if

P

´
@t : M‹

t Ď xMt

¯
ě 1 ´ α.
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In [1], we provide possible constructions of valid sequential model confidence sets
building on the work of [4, 2]. Furthermore, the performance of our proposals
is investigated in simulation studies and their usefulness is illustrated in two case
studies on predictions of Covid-19 related deaths, and of wind gusts over Germany.
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