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Introduction by the Organizers

There were 19 one hour talks equally spread across five days but with one less
talk on Wednesday because of the traditional Wednesday afternoon hike. The
participants reflected a broad geographic/gender representation and contributed
to a very active and convivial atmosphere.

There were three talks on geometric evolution equations. Vogiatzi spoke about
high codimension mean curvature flow. In particular she showed how assum-
ing some quadratic bounds one could guarantee that the first time blow ups are
codimension one even if the initial condition is of higher codimension. Lafuente
studied the blow-down of immortal solutions to Ricci flow on essential manifolds
of any dimension, extending a result of Lott in the three dimensional case. Finally,
Hein reported on his long time project with Tosatti where they aim to understand
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immortal solutions to Kähler-Ricci flow. The immortality assumption can be guar-
anteed if the first Chern class lies in the closure of the Kähler cone. He studied
the case where the initial condition admits a holomorphic fibration, in which case
the flow should contract the fiber but converge to a Kähler-Einstein metric on the
base of the fibration.

On the subject of Kähler geometry, besides Hein’s talk, we had two more talks.
Sena-Dias started with an overview of the existence problem of Einstein metrics
(not necessarily Kähler) on a Kähler manifold. She then talked about her new
result (with Oliveira) regarding the existence of new Einstein metrics on blow-ups

of CP2. Liu reported on his study of complete Kähler manifolds with nonnegative
Ricci curvature. The first result he mentioned (under a stronger curvature con-
dition) shows that the average of the scalar curvature (when suitably weighted)
is well defined, answering a question of Lei Ni. His second result shows that (as-
suming Euclidean volume growth) if the one tangent cone at infinity is Ricci flat,
then the manifold is Ricci flat. There are counterexamples if the manifold is not
Kähler and hence its interest.

We had four talks addressing scalar curvature rigidity and one of them inter-
sected with Kähler geometry. Klemmensen proved the stability of the positive
mass theorem for Kähler manifolds. The three dimensional case was recently
proven by Dong, a participant, and Song. The Hilbert-Einstein functional is a
central quantity in the study of scalar curvature. Buttsworth showed in his talk
that this functional tends to −∞ along Ebin geodesics. Zeidler talked about rigid-
ity for spin fill-ins with non-negative scalar curvature. Gromov had previously
showed that a spin fill-in of a manifold satisfying the assumptions of Llarull the-
orem satisfies a geometric lower bound on the boundary mean curvature. Zeidler
and co-authors show that equality is only achieved by the Euclidean ball. Finally,
Lott used the Dirac operator following Cecchini-Zeidler to deduce some restrictions
on non-compact complete manifolds which admit a metric with positive scalar cur-
vature.

The studying of positive scalar curvature metrics is related with the study of
minimal surfaces and on this topic we had three lectures. Rivière talked about the
existence problem for Hamiltonian stationary surfaces. After surveying the subject
he proposed a direct method for constructing Hamiltonian stationary discs with
prescribed singularities. He ended his talk by developing a min-max method to
produce Legendrian Surfaces in a closed 5 Sasakian manifold. The minmax method
was also mentioned by Liokumovich in his talk. He presented recent developments
by him and some of his students regarding the Weyl Law for the area growth
of minimal surfaces of any codimension. The codimension one case had been
previously settled him and co-authors. A different type of minimal surfaces were
addressed by Jiang in her talk. She considered the area growth of area-minimizing
essential surfaces in finite volume 3-manifolds having a metric whose sectional
curvature is bounded from above by −1 or whose scalar curvature is bounded
from below by −6. In each of these cases she showed that the area growth is
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always one-side bounded by the corresponding growth for the hyperbolic metric.
The quantity that measures that growth is called the minimal surface entropy.

We had two talks regarding the study of hyperbolic metrics and their proper-
ties. For the case of closed surfaces, an important tool in the study of Teichmuller
is the mapping class group. Fanoni presented her work on studying the mapping
class group for hyperbolic surfaces which do not have finite topology. In higher
dimensions it is hard to know apriori whether a given manifold admits a hyperbolic
metric. A celebrated example of Gromov-Thurston gives a metric with sectional
curvature everywhere close to −1 but for which the base manifold admits no hy-
perbolic metric. Hamenstad showed in her talk how to improve this construction
and provide one example where such manifold admits a negatively curved Einstein
metric.

The workshop finished with a talk of Petrunin on a very classical and beautiful
subject which is to find isometric embedding of manifolds into Euclidean spaces
with some geometric bonds. Such embeddings exist from the Nash Embedding
Theorem.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Scalar curvature along Ebin geodesics

Timothy Buttsworth

(joint work with Christoph Böhm, Brian Clarke)

1. Einstein-Hilbert action

Let M be a smooth, connected, closed and oriented manifold of dimension n ≥ 3,
and let M denote the set of smooth Riemannian metrics on M . An important
function in Riemannian geometry is the Einstein-Hilbert action S :M→ R given
by

S(g) =
ˆ
M

S(g)dVg,

where S(g) is the scalar curvature of g, and dVg is the volume form. The main
source of interest in the Einstein-Hilbert action is the following formula for its first
variation:

dSg(h) =
ˆ
M

〈
S(g)g

2
− Ric(g), h

〉

g

dVg .

We see from this formula that critical points of S on the restricted set

M1 =

{
g ∈ M |

ˆ
M

dVg = 1

}

are precisely the Einstein metrics, i.e., solutions of

Ric(g) = λg

for some λ ∈ R. Therefore, it is expected that understanding the asymptotics of
the restricted Einstein-Hilbert action S :M1 → R may be used to produce new
Einstein metrics.

2. The restricted space Mµ

It turns out that for the purposes of producing Einstein metrics, we can actually
restrict the domain of S even further. For a given volume form µ that has volume
1, we letMµ = {g ∈ M|dVg = µ}, i.e., the set of Riemannian metrics g that have
volume form µ. A classical result of Moser [4] shows that for any g̃ ∈ M1, there
is a g ∈Mµ so that φ∗g = g̃ for some diffeomorphism φ : M →M . Consequently,
we do not lose any Riemannian structures by restrictingM1 toMµ. Furthermore,
the Second Contracted Bianchi identity implies that for g ∈Mµ, g is critical point
of S :M1 → R if and only if g is a critical point of S :Mµ → R.
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3. Geometry and topology of Mµ

It is clear thatMµ is an infinite-dimensional Fréchet manifold. The tangent space
ofMµ at any given g is given by

TgMµ = {h ∈ S2(T ∗M)| trg(h) = 0}.
We can then equipMµ with a geometric structure with the following L2 or Ebin
metric:

Eg(h, k) =
ˆ
M

〈h, k〉gdVg.

The critical points of the corresponding length functional are the so-called Ebin
geodesics. For a given g ∈ Mµ and h ∈ TgMµ, the Ebin geodesic γ(t) with
γ(0) = g and γ′(0) = h is given by

γ(t) = g(exp(tH)·, ·),
where H = h♯g . The study of the Einstein-Hilbert functional S : Mµ → R (es-
pecially its asymptotics), can be faciliated through understanding the asymptotic
behaviour of S along the Ebin geodesics.

4. Compact homogeneous spaces

Understanding the asymptotics of the Einstein-Hilbert functional by examining its
behaviour along Ebin geodesics has been enormously fruitful in the homogenoeus
case. If we suppose that M = G/H is a homogeneous space and we let MG

1 be
the set of G-invariant Riemannian metrics on M that have volume 1, then critical
points of the restricted functional S :MG

1 → R are homogeneous Einstein metrics.
Let us construct a formula for the Einstein-Hilbert action. Since the scalar

curvature is constant for homogeneous metrics, it suffices to find a formula for the
scalar curvature. To this end, let Q be a unit-volume bi-invariant metric on G.
Choose m to be the Q-orthogonal complement of h in g. Then homogeneous Ebin
geodesics starting at Q on M are given by

γ(t) =

l∑

i=1

etviQ|mi
,

where {vi}li=1 ⊂ R, and m =
⊕l

i=1 mi is a choice of Ad(H)-irreducible and Q-

orthogonal decomposition. The volume 1 constraint is
∑l

i=1 divi = 0, where
di = dim(mi). By ignoring the stationary geodesics, we can also assume that∑l

i=1 div
2
i = 1. The scalar curvature of the homogeneous metric γ(t) is given by

(see [1])

S(γ(t)) =
1

2

l∑

i=1

dibie
−vit − 1

4

l∑

i,j,k=1

[ijk]et(vi−vj−vk),

where bi and [ijk] are non-negative structure constants for the homogeneous space.
Having now competed the computation of the Einstein-Hilbert action, we turn

to the question of existence of homogeneous Einstein metrics. Observe that the
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di, bi, [ijk] terms are all non-negative, and the exponential terms with the largest
growth are et(vi−vj−vk), where vj = min{v1, · · · , vn} < 0, and vi > vk. Therefore,
the scalar curvature will converge to −∞, as long as at least one of the correspond-
ing [ijk] terms do not vanish. On the other hand, if these terms do vanish, and
some of the dibi terms do not vanish, there are directions where scalar curvature
converges to +∞. This pursuit of these observations lead to the construction of
new Einstein metrics in [2] as critical points of the Einstein-Hilbert action using
the Mountain Pass Theorem.

5. Formula without symmetry

In this project, we demonstrate that the tendency of scalar curvature to converge
to −∞ along Ebin geodesics is not unique to the homogeneous case.

Theorem 1. Let M be a compact, oriented smooth manifold of dimension at least
5, equipped with a Riemannian metric g0 with volume form µ, and volume 1. There
exists an open and dense set N ⊂ Tg0Mµ (in the Whitney C∞ topology) so that
for each h ∈ N , limt→∞ S(γ(t)) = −∞ uniformly on M .

Following the homogeneous case as closely as possible, we prove Theorem 1 in [3]
by first finding a local g0-orthonormal frame in which the presentation of H is as
simple as possible. It is generally impossible to ask that the frame diagonalises H ,

but it is always possible to find a frame e =
⋃L

i=1{eia}mi

a=1 in which H takes the
block diagonal form

H =




λ1Im1
+ S1 0 · · · 0

0 λ2Im2
+ S2 · · · 0

...
...

. . .
...

0 0 · · · λLImL
+ SL


 ,

according to a clustering of eigenvalues of H . When we compute scalar curva-
ture using this frame, we find, like in the homogeneous case, terms of the form
[ijk]et(−λi−λj+λk), where [ijk] is a non-negative term, depending on the frame.
We use tools from differential topology to show that at least one of these terms
is generically non-zero, starting in dimension five, showing that scalar curvature
tends to converge to −∞ on the entire manifold as t tends to +∞.
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[2] C. Böhm, M. Y. Wang, W. Ziller: A variational approach for compact homogeneous Einstein

manifolds, Geom. Funct. Anal. (4) 14, 681–733, (2004).
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Classification of mapping classes for surfaces of infinite type

Federica Fanoni

(joint work with Mladen Bestvina and Jing Tao)

To an (orientable, connected) surface S (without boundary), we can associate
its mapping class group MCG(S), defined as the group of homotopy classes of
orientation preserving homeomorphisms. Mapping class groups are fundamental
objects in low-dimensional geometry and topology, as they for instance appear as
orbifold fundamental groups of the moduli space of Riemann surface structures
on the associated surface, and they also play an important role in the study of
three-manifolds (via constructions such as Heegaard splittings and mapping tori).

Except for a few cases (e.g. the sphere), mapping class groups are interesting
infinite groups which have been largely explored in the last decades. One funda-
mental result concerns the classification of mapping classes — elements of mapping
class groups — of surfaces of finite type (i.e. whose fundamental group is finitely
generated), proven by Nielsen [4–6] and Thurston [8]:

Theorem 1 (Nielsen, Thurston). Let S be a finite-type surface of negative Euler
characteristic. Given ϕ ∈ MCG(S), there is a representative homeomorphism
f ∈ ϕ which is either periodic, reducible or pseudo-Anosov.

Recall that a homeomorphism f is:

• periodic if there is some n > 0 so that fn is the identity;
• reducible if there is a finite collection Γ of pairwise disjoint, pairwise non-
homotopic curves, such that f(Γ) = Γ;
• pseudo-Anosov if there are two f -invariant transverse singular measured
foliations F± and λ > 1 so that f expands F+ by a factor λ and contracts
F− by a factor 1

λ .

Here curves are assumed to be closed, simple and essential — that is, neither
contractible, nor bounding a disk with a single puncture. In what follows, we
will say that a mapping class is periodic, reducible or pseudo-Anosov if it has a
representative which is periodic, reducible or pseudo-Anosov, respectively.

A consequence of this result is that there is a canonical decomposition of S
into subsurfaces via a collection of pairwise disjoint and pairwise non-homotopic
curves so that, up to passing to a power, each subsurface is preserved by f and the
restriction of f to each subsurface is either periodic or pseudo-Anosov. Further-
more, we can essentially reconstruct the map on the whole surface by the maps
on the subsurfaces. Said otherwise, we can think of periodic and pseudo-Anosov
elements as Lego blocks which allow us to construct every mapping class.

Using Nielsen and Thurston’s result, together with work of Hurwitz [3] and
again Nielsen [7], one can show that:

• a mapping class ϕ is periodic if and only if there is a hyperbolic metric on
S so that a representative of ϕ is an isometry for this metric; moreover,
both conditions are equivalent to saying that for every pair of homotopy
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classes of curves α and β,

{i(ϕn(α), β) | n ∈ Z}
is bounded;
• a mapping class ϕ is pseudo-Anosov if and only if for every pair of homo-
topy classes of curves α and β,

i(ϕn(α), β)→∞
as n→∞.

Recall that i(α, β) is the geometric intersection number of α and β, that is, the
minimum number of intersections of representatives of the two classes.

If we drop the assumption of the surface being of finite type, mapping class
groups are much less understood and there is no general classification of their
elements. Together with Mladen Bestvina and Jing Tao, our goal is to generalize
Nielsen and Thurston’s result to this setup. Note that in the case of endperiodic
maps (see [2] for definitions), a Nielsen–Thurston type classification has been given
by Handel and Miller and extended by Cantwell, Conlon and Fenley [2].

In our work, the first step is to study maps which do not have any pseudo-
Anosov behavior, i.e. mapping classes ϕ so that for every pair of homotopy classes
of curves α and β,

{i(ϕn(α), β) | n ∈ Z}
is bounded. We call these maps tame. While for finite-type surfaces tameness is
equivalent to periodicity and to having a representative which is an isometry, this
is not true in the general setting. As a simple example, the map (x, y)→ (x+1, y)
of the surface R2 r Z2 is tame and can be realized as an isometry, but it is not
periodic.

The main result of our work [1] is the following classification theorem:

Theorem 2. Let S be a surface and ϕ an extra tame mapping class. Then there
is a canonical decomposition of S into three (possibly disconnected) subsurfaces
S0, Sper and S∞, a representative f of ϕ and a hyperbolic metric on S so that for
every connected component X of the decomposition, there is n = n(X) such that
fn(X) = X and fn|X is homotopic to:

• an isometric translation, if X ⊂ S∞,
• a periodic isometry, otherwise.

Moreover, each component of S0 contains at most one curve, which is peripheral.

We can think of this theorem as saying that the building blocks of extra tame
maps are translations and periodic elements. Extra tame maps are tame maps
with an additional finiteness condition on the set of limits of iterates of curves —
see [1] for the precise definitions. This assumption is needed: for tame maps, the
theorem doesn’t hold. The crucial issue is that the canonical decomposition we
would like to construct is not a decomposition into subsurfaces, but into subsets
with complicated accumulating behavior.
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Strong G2-structures with torsion

Anna Fino

(joint work with Lucia Mart́ın-Merchán and Alberto Raffero)

On a Riemannian n-dimensional manifold (M, g), a metric connection ∇ is said to
have totally skew-symmetric torsion if its 3-covariant torsion tensor g(T (·, ·), ·) is
skew-symmetric. In such a case, ∇ is related to the Levi-Civita connection ∇LC

of g as follows

g(∇XY, Z) = g(∇LC
X Y, Z) +

1

2
g(T (X,Y ), Z), X, Y, Z ∈ Γ(TM).

When M is oriented and the structure group of its frame bundle admits a reduction
to a closed subgroup H ⊆ SO(n), the existence of an H-connection with totally
skew-symmetric torsion can be characterized in terms of the intrinsic torsion of
the H-structure ( [3, Prop. 4.1]). In particular, by [3, Thm. 4.7], a 7-manifold with
a G2-structure ϕ admits a G2-connection ∇ with totally skew-symmetric torsion
if and only if d ∗ ϕ = θ ∧ ∗ϕ, where θ is the Lee form of the G2-structure. The
torsion 3-form T of ∇ can be written in terms of ϕ as follows

T =
1

6
⋆(dϕ ∧ ϕ)ϕ− ⋆dϕ+ ⋆(θ ∧ ϕ).

In particular, T vanishes identically if and only if the G2-structure is parallel, i.e.
∇ϕ = 0 or, equivalently, dϕ = 0 and d ⋆ ϕ = 0 ( [1]).

In this talk we will present recent results, obtained in the paper [2], on 7-
diimensional manifolds admitting strongG2-structures with torsion (shortly strong
G2T -structures), i.e. a G2-connection with closed totally skew-symmetric torsion.
In particular, we will discuss the twisted G2 equation, which is given by the fol-
lowing system of equations

dϕ ∧ ϕ = 0, d ⋆ ϕ = θ ∧ ⋆ϕ, dT = 0, dθ = 0
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and represents the G2-analogue of the twisted Calabi-Yau equation for SU(n)-
structures introduced by Garcia-Fernández, Rubio, Shahbazi and Tipler in [4].

Moreover, we will show that if a 7-dimensional compact, connected homoge-
neous space M for the almost effective action of a connected Lie group G admits
an invariant strong G2T -structure, then M is diffeomorphic either to S3 × T 4 or
to S3 × S3 × S1, up to a covering. On the spaces S3 × T 4 ∼= SU(2)× U(1)4 and
S3×S3×S1 ∼= SU(2)×SU(2)×U(1), we will also present homogeneous examples
of strong G2T -structures solving the twisted G2 equation and whose associated
G2-connection with totally skew symmetric torsion is flat. It remains an open
problem to see whether there exist compact 7-manifolds admitting a strong G2T -
structure inducing a non-flat G2-connection with totally skew-symmetric torsion.
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Einstein metrics on Gromov Thurston manifolds

Ursula Hamenstädt

(joint work with Frieder Jäckel)

Gromov and Thurston constructed in 1987 for every dimension n ≥ 4 and any
ǫ > 0 a closed manifold of dimension n which admits a Riemannian metric of
curvature contained in the interval [−1 − ǫ,−1 + ǫ] but which does not admit a
hyperbolic metric. Such manifolds are called Gromov-Thurston manifolds.

Fine and Premoselli constructed for a family of Gromov Thurston manifolds
in dimension 4 negatively curved Einstein metrics. In the talk, we explain the
following extension of this result.

Theorem 1. For every n ≥ 4 and every ǫ > 0 there exists a closed manifold M
with the following properties.

(1) M admits a metric of curvature in [−1−ǫ,−1+ǫ] but no hyperbolic metric.
(2) M admits a negatively curved Einstein metric.

The basic strategy for the construction of the metric is taken from the work
of Fine and Premoselli. It consists in starting with a Gromov Thurston manifold
which is obtained from an arithmetic hyperbolic manifold by a covering branched
along a codimension two submanifold which is homologous to zero. The idea is to
glue a specific Einstein metric near the branch locus to the hyperbolic metric on
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the complement and deform the resulting metric to an Einstein metric using an
implicit function theorem.

We embark from an arithmetic hyperbolic manifold and use subgroup separa-
tion for geometrically finite subgroups of the fundamental group as well as virtual
retraction of the group onto its stabilizer subgroup of a hyperplane, as established
by Bergeron and Bergeron, Haglund and Wise to construct in any dimension spe-
cific Thurston manifolds which are geometrically well controlled. We then show
how to use this control to apply the implicit function theorem to the linearization
of the Einstein operator to deform the glued metric to an Einstein metric. Suitably
chosen examples do not admit hyperbolic metric.
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Immortal solutions of the Kähler-Ricci flow

Hans-Joachim Hein

(joint work with Man-Chun Lee, Valentino Tosatti)

Setup. On a given compact Kähler manifold X , consider the Kähler-Ricci flow

(1)
∂ω

∂t
= −Ric(ω)− ω, ω(t = 0) = ω0.

Note that this is normalized so that Einstein metrics with Ricci curvature −1 are
exactly the fixed points of the flow. Also note that ω̂(s) := etω(t) with s := et− 1
then solves the ordinary unnormalized Ricci flow equation ∂sω̂ = −Ric(ω̂).

By Tian–Zhang [12], the equation (1) is solvable if and only if it is solvable at
the level of cohomology classes. One easily checks that

(2) [ω(t)] = e−t[ω0] + (1− e−t)c1(KX).

Since the Kähler cone of X is an open convex cone in H1,1(X,R), it follows that
the maximal existence time of the Kähler-Ricci flow (1) is exactly the time when
the parametrized straight line (2) from [ω0] to c1(KX) exits the Kähler cone. In
particular, the flow (1) is immortal if and only if (the unnormalized flow ω̂(s) is
immortal, if and only if) c1(KX) lies in the closure of the Kähler cone of X .

Two simple examples of this situation are (a) when c1(KX) is a Kähler class and
(b) when c1(KX) = 0. In fact, this is the setting of Cao’s foundational paper [1] on
the Kähler-Ricci flow, where he showed that as t→∞, ω(t) converges smoothly to
the unique Kähler-Einstein metric on X in case (a) and etω(t) converges smoothly
to the unique Calabi-Yau metric in the class [ω0] in case (b).

In general, a major difficulty in the subject is that the structure of classes on the
boundary of the Kähler cone is poorly understood. However, for the particular
class c1(KX) the situation is expected to be quite transparent: the Abundance
Conjecture predicts that if c1(KX) lies in the closure of the Kähler cone, then
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c1(KX) admits a smooth nonnegative representative of the form f∗(ωFS|B), where
f : X → B ⊂ CPN is a holomorphic fibration of X with connected Calabi-Yau
fibers. More precisely, the Abundance Conjecture predicts that K⊗p

X is globally
generated for p sufficiently large and divisible, and then for any such p the sections
of K⊗p

X define such a map f thanks to classical work of Iitaka.
Let S ⊂ B denote the discriminant locus of f , a proper subvariety of B, so that

f |f−1(B\S) is a C∞ submersion onto B \ S. Let Y denote a general fiber of f , so
that Y is a connected Calabi-Yau manifold, and write m := dimB, n := dim Y .
Examples (a) and (b) are characterized by the properties that f is an isomorphism
(which implies n = 0) and that m = 0, respectively. We will assume from now on
that n > 0 andm > 0. Then based on (a) and (b) one would expect that for t→∞
the Kähler-Ricci flow (X,ω(t)) collapses along the fibers of f to an Einstein metric
on B. Strictly speaking the correct limit is f∗ωB with ωB a twisted Einstein metric
on B. This satisfies Ric(ωB)+ωB = ωWP, the Weil-Petersson form describing the
variation of complex structure of the fibers of f . Song–Tian [10] proved that ω(t)
converges to f∗ωB weakly as currents on X .

Main Theorem. Given any compact set K ⊂ B \ S, we have that |Ric(ω(t))|ω(t)

remains uniformly bounded on f−1(K) as t→∞.

Remarks. (1) Our bound is an a priori estimate: it only depends on lower-order
quantities that were known to be bounded from previous work.

(2) This is a development of a series of papers [6–8] on an analogous problem
for a 1-parameter family of elliptic PDEs rather than a parabolic PDE.

(3) The only two previously known cases are the following:

• The regular fibers of f are flat rather than Ricci-flat. By Fong–Zhang [4],
this is equivalent to |Sect(ω(t))| remaining uniformly bounded on f−1(K).
Fong–Zhang use a local covering trick and Yau’s estimates, developing an
analogous elliptic PDE result due to Gross–Tosatti–Zhang [5].
• The regular fibers of f are pairwise isomorphic (⇐⇒ ωWP = 0). In this
case the result was proved by Fong–Lee [3] by developing the elliptic PDE
result in [7], which uses techniques that go beyond Yau’s estimates.

(4) We conjecture that |Ric(ω(t))|ω(t) stays uniformly bounded globally on X .
The corresponding statement for scalar curvature rather than Ricci curvature was
proved by Song–Tian [11] using Perelman’s estimates for the Kähler-Ricci flow.

Heuristic idea of proof. If the Ricci curvature bound is false, then there exist
ti →∞ and xi ∈ f−1(K) such that λi := |Ric(ω(ti))(xi)|ω(ti) maximizes the Ricci

curvature on [0, ti]× f−1(K) and such that λi →∞ as i→∞. Then we rescale

ω̃i(t̃) := λiω(ti + λ−1
i t̃).

If it was possible to pass to a limit ω̃∞(t̃), this would be an eternal unnormalized
Kähler-Ricci flow. By the result of Song–Tian [11] mentioned in (4), it would also
be scalar-flat, hence (by the evolution equation of the scalar curvature) Ricci-flat.
But hopefully the property |Ric(ω̃i(0))(xi)|ω̃i(0) = 1 can be passed to the limit, by



1578 Oberwolfach Report 28/2024

using the regularity of the flows ω̃i implied by a uniform Ricci curvature bound
on [−λiti, 0] × f−1(K), and this would be an obvious contradiction.

Input to make the heuristics more rigorous. By Fong–Zhang [4] there exists
a constant C = C(K) ≥ 1 such that for all t ≥ 0 it holds on f−1(K) that

1

C
ωcyl(t) ≤ ω(t) ≤ Cωcyl(t), ωcyl(t) := f∗ωB + e−tω0.

This provides a uniform parabolicity of the Kähler-Ricci flow equation relative to
a cylindrical background geometry with fiber diameter ∼ e−t/2. There are now
two easy cases: λi/e

ti → ∞, and λi/e
ti → c ∈ (0,∞). In these cases, the blown-

up reference geometries (f−1(K), λiωcyl(ti + λ−1
i t̃), xi) converge to flat Euclidean

Cm+n and to a cylinder Cm × (Y∞, cω0|Y∞
), Y∞ := f−1(f(x∞)), respectively. By

the uniform parabolicity of the Kähler-Ricci flow and by parabolic regularity, our
heuristic argument is then justified in these two cases.

The difficulty in the remaining case. In the collapsing case, δi := λi/e
ti → 0,

it is well-understood after Song–Tian [10, 11] how to pass to a weak limit of ω̃i(t̃)
and that this weak limit is actually the pullback of a static Euclidean flow on Cm.
The issue is the absence of a suitable parabolic regularity theory in this case. To
see more concretely what this means, observe that in a dream scenario,

g̃i(t̃) ∼ gCm + δigY∞
+ err with gCm flat and gY∞

Ricci-flat.

But even then, |Ric(g̃i)|g̃i ∼ δ−2
i ·(2nd derivatives of err in fixed local coordinates),

so discussing the boundedness of Ricci amounts to understanding the asymptotics
of g̃i(t̃) relative to a Ricci-flat comparison cylinder to order δ2i .

At this point it is clear that one should probably abandon the ansatz of proving
boundedness of Ricci by contradiction and instead aim for precise asymptotics of
ω(t) relative to the obvious Ricci-flat comparison cylinders. This is what was done
in [7,8] in the elliptic case. The proof is again by contradiction, but by aiming for
a stronger statement we gain more control in the contradiction argument.

Carrying this out still requires on the order of 100 pages. Here we only mention
that the source of the contradiction changes slightly compared to the above. For
example, already in the two easy cases we could have observed that a Calabi-Yau
metric on Cm+n or Cm × Y∞ uniformly equivalent to the natural reference metric
is actually isometric to it, which would contradict the failure of good asymptotics
with respect to these reference metrics in each case. This is a Liouville theorem
for the complex Monge-Ampère equation, which was proved in [6] in the cylinder
case. Following Li–Li–Zhang [9] and Chen–Wang [2], this line of thinking already
leads to a new proof of the usual Evans-Krylov estimate on a ball.
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Inverse Mean Curvature Flow and Geometric Inequalitiess on

3-Manifolds

Gerhard Huisken

The lecture uses inverse solutions Σ2
t t≥0 of inverse mean curvature flow d

dtX = 1
H ν

of 2-dimensional hypersurfaces in Riemannian 3-manifolds to sweep out exterior
regions of some initial boundary Σ2

0 = ∂Ω0,Ω0 ∈ (M3, g). One application (joint
with Thomas Körber, Vienna) is an alternative proof of Hamilton’s conjecture,
stating that 3-manifolds with pinched Ricci-curvature Ricg ≥ ǫRg, ǫ > 0 are com-
pact (first proven by Deruelle-Schulze-Simon using earlier work of Lott in the
bounded curvature case; general case completed my Lee-Topping). A second ap-
plication uses solutions from a point in (M3, g) to define a quasi-local notion of
radius for Ω ∈ (M3, g), leading to a result that a lower bound on scalar curvature
can hold only in regions with a sharp upper bound on their radius - reminiscent of
work by Schoen-Yau concerning the formation of black holes due to concentration
of matter.

Ricci lower bounds and nonmanifold structure

Erik Hupp

(joint work with Aaron Naber, Kai-Hsiang Wang)

This talk presented a negative result about the manifold structure of collapsed

Ricci limits (X, d, µ, p)
mpGH← (Mn

i , gi, dVolgi/Volgi(B1(pi)), pi) (where (Mn
i , gi)

are smooth, complete Riemannian manifolds with Ricgi ≥ Λ > −∞). In the non-
collapsed setting, i.e. if Volgi(B1(pi)) ≥ ν > 0 for ν independent of i, the work of
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Cheeger-Colding guarantees some topological regularity for limit spaces (with an
anologue in the non-collapsed RCD setting–see [3, Thm. 4.11 & 5.1]):

Theorem 1 (Cheeger-Colding [1]). If (X, d, µ, p) is a non-collapsed Ricci limit as

above, then X = R̂ ∪ S where:

• R̂ is open, dense, and bi-Hölder to a smooth Riemannian manifold.
• S has Hausdorff dimension dimH(S) ≤ n− 2.
• µ = c · Hn for some constant c > 0.

However, the first bullet point of Theorem 1 may not hold without the non-
collapsing assumption:

Theorem 2 (Hupp-Naber-Wang [2]). Consider an arbitrary smooth, closed Rie-
mannian 4-manifold (X4, h) with a lower bound on the Ricci curvature Rich >
Λ > −∞. Then for any ε > 0, there exists a sequence of smooth Riemannian
6-manifolds (M6

i , gi) that GH-converge to a metric space (M∞, d∞) with the fol-
lowing properties:

• The (M6
i , gi) have the same lower Ricci bound as (X,h), i.e. Ricgi > Λ.

• (M∞, d∞) is GH ε-close to the original Riemannian manifold (X4, h).
• (M∞, d∞) is not a manifold near any point. In fact, every open set U ⊂
M∞ has nontrivial homology: H2(U) is infinitely generated.
• (M∞, d∞) is 4-rectifiable.

The proof of Theorem 2 proceeds via a warped product construction; one pro-
duces smooth base spaces (X4

i , hi) and positive functions fi : Xi → (0,∞) to
form warped product spaces (M6

i , gi) := (X4
i , hi)×fi S

2 = (Xi × S2, hi + f2
i gS2).

Roughly speaking, one iteratively glues copies of CP 2 \B4 into the reference man-
ifold X so that the added 2-cycles are independent, decreasing in diameter, and
increasing in density (compare with [5]). The concavity properties of the warping
factors fi ց 0 are used to reconcile the geometry of the original manifold with that
of CP 2 \B4 near its boundary without violating the Ricci lower bound (compare
with [4]).

Remark. Without too much additional work, by gluing CPn \ B2n’s Theorem
2 holds for (2n + 2)-dimensional manifolds collapsing to dimension 2n, with H2

replaced byH2k, 0 < 2k < 2n and n ≥ 2. Moreover, recent work in [6] has obtained
the same statement but for (n+2)-dimensional manifolds collapsing to dimension
n, with H2 replaced by Hn−1, n ≥ 3 of any parity. Essentially, if one can produce
a Ricci-positive 5 ≤ (n + 2)-dimensional manifold-with-boundary (Bn+2, g) that
has the warped-product structure (Y n, hY ) ×f S2 on an open dense set, with a
certain standardized conical structure near the boundary, then it can be glued in
densely and at arbitrarily small scales using the methods of Theorem 2.

This raises the question of whether the first bullet point of Theorem 1 can be
recovered in the collapsed case if one adds additional assumptions:

Question. For Ricci limits (X, d, µ, p)
mpGH← (Mn

i , gi, dVolgi/Volgi(B1(pi)), pi)
with Ricgi ≥ Λ > −∞, is there a soft (topological) assumption on the smooth
manifolds Mi that ensures that X has a manifold structure on an open dense set?
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Soft here can be interpreted broadly. This question was originally posed in
[2, Qu. 1.1] with “soft” specified to mean uniformly finitely generated homology
(i.e. there exist surjective homomorphisms H∗(Mi) և ZN for some N < ∞
independent of i). The point of being more vague here is to allow for possibly
stronger assumptions if they are sufficient to recover a dense manifold structure
for collapsed limits–the goal being to see what is needed to obtain a positive result.

References

[1] J. Cheeger and T.H. Colding. On the structure of spaces with Ricci curvature bounded
below. I. J. Differential Geom., 46(3):406–480, 1997.

[2] E. Hupp, A. Naber, and K.-H. Wang. Lower Ricci curvature and nonexistence of manifold
structure. to appear in Geom. Topol., Preprint at arXiv:2308.03909, 2023.

[3] V. Kapovitch and A. Mondino. On the topology and the boundary of N-dimensional
RCD(K,N) spaces. Geom. Topol., 25(1):445–495, 2021.

[4] X. Menguy. Examples of nonpolar limit spaces. Amer. J. Math., 122(5):927-937, 2000.
[5] G. Pereleman. Construction of manifolds of positive Ricci curvature with big volume and

large Betti numbers. In Comparison geometry (Berkeley, CA, 1993-94), volume 30 of Math.
Sci. Res. Inst. Publ., pages 157-163. Cambridge Univ. Press, Cambridge, 1997.

[6] S. Zhou. Examples of Ricci limit spaces with infinite holes. Preprint at arXiv:2404.00619,
2024.

Minimal Surface Entropy of Hyperbolic Manifolds of Finite Volume

Ruojing Jiang

(joint work with Franco Vargas Pallete)

On a closed hyperbolic manifold M , Besson-Courtois-Gallot [1] studied the topo-
logical entropy of the geodesic flow and proved that the hyperbolic metric attains
its minimum among all negatively curved metrics on M with the same volume.
Recently, Calegari-Marques-Neves [2] introduced the concept of the minimal sur-
face entropy of closed hyperbolic 3-manifolds, building on the construction and
calculation of surface subgroups by Kahn-Markovic [5] [6]. The minimal surface
entropy measures the number of essential minimal surfaces in M with respect to
different metrics, shifting the focus from one-dimensional entities (geodesics) to
two-dimensional objects.

Let M = Hn/π1(M) be an n-manifold (n ≥ 3) that admits a hyperbolic metric
h0, a closed surface immersed in M with genus at least two is said to be essential
if the immersion is π1-injective, and the image of its fundamental group in π1(M)
is called a surface subgroup. Let S(M, g) denote the set of surface subgroups
of genus at most g up to conjugacy, and let the subset S(M, g, ǫ) ⊂ S(M, g)
consist of the conjugacy classes whose limit sets are (1+ ǫ)-quasicircles. Moreover,
Sǫ(M) = ∪

g≥2
S(M, g, ǫ). Suppose h is an arbitrary Riemannian metric on M . For

any Π ∈ S(M, g), we set areah(Π) = inf{areah(Σ) : Σ ∈ Π}.
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Definition 1. The minimal surface entropy of M with respect to h is defined as
follows.

E(h) = lim
ǫ→0

lim inf
L→∞

ln#{areah(Π) ≤ 4π(L− 1) : Π ∈ Sǫ(M)}
L lnL

,

E(h) = lim
ǫ→0

lim sup
L→∞

ln#{areah(Π) ≤ 4π(L− 1) : Π ∈ Sǫ(M)}
L lnL

.

Additionally, we write E(h) if E(h) = E(h).

According to [2], when M is a closed hyperbolic 3-manifold, among metrics with
sectional curvature less than or equal to −1, E(h) attains its minimum value at
h0, and E(h0) = 2.

For higher dimensional closed hyperbolic manifolds, if the dimension of M is
odd, Hamenstädt [3] verified the existence of surface subgroups and constructed
an essential surface Σǫ which is sufficiently well-distributed. Based on this result,
we broadened the definition of minimal surface entropy to include a wider range
of scenarios.

Theorem 2 (Jiang, [4]). Let (M,h0) be a closed hyperbolic manifold whose di-
mension n ≥ 3 is odd, and let h be another metric on M with sectional curvature
less than or equal to −1, then

E(h) ≥ E(h0) = 2.

The equality holds if and only if h is isometric to h0.

In a recent work joint with Franco Vargas Pallete, we focused on hyperbolic
3-manifold (M,h0) of finite volume. By utilizing the construction of surface sub-
groups by Kahn-Wright [7], as well as the existence of closed essential minimal
surfaces corresponding to each subgroup, we calculated the minimal surface en-
tropy of the hyperbolic metric.

Theorem 3 (Jiang-Vargas Pallete, in preparation). Let M be a hyperbolic 3-
manifolds of finite volume, we have

E(h0) = 2.

However, for an arbitrary metric h, (M,h) may not contain an area-minimizing
surface. Therefore, we need the following conditions for h to ensure the existence
of such a surface.

Definition 4. A Riemannian metric h on M is weakly cusped if there exists a
mean-convex foliation on each cusp T × [0,∞) satisfying:

(1) The coordinate vector field ∂s induced by the [0,∞) factor satisfies 1
2s ≤

‖∂s‖h ≤ 2
s .

(2) The inverse of the systole of T × {s} is O(s) as s→∞.
(3) The area of T × {s} is O( 1

s2 ) as s→∞.

(4) In the universal cover R2 × [0,∞), each plane R2 × {s} has finite altitude
barriers for balls. This means that for any s, r > 0 there exists a height
a = a(s, r) > 0 so that for any s′ < s and any ball B in R2×{s′} of radius
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less than r (with respect to the induced metric in R2 × {s′}) there exists
an open set U in R2 × [s′, a) so that U ∩ (T × {s′}) = B and the region(
R2 × [s′,∞)

)
\ U admits a mean convex foliation.

Theorem 5 (Jiang-Vargas Pallete). Let (M,h0) be a hyperbolic 3-manifold of
finite volume, and let h be a weakly cusped metric on M . If the sectional curvature
of h is less than or equal to −1, then

E(h) ≥ 2.

Furthermore, the equality holds if and only if h is isometric to h0.

On the other hand, regarding the impact of the scalar curvature, Lowe-Neves [8]
proved the following result using the tool of Ricci flow on a closed hyperbolic 3-
manifold. If the scalar curvature of a metric h satisfies Rh ≥ −6, then E(h) ≤ 2,
and equality holds if and only if h and h0 are isometric. We also derive this result
for the finite volume version.

Theorem 6 (Jiang-Vargas Pallete). Let h be a weakly cusped metric on M . If
the scalar curvature of h is greater than or equal to −6, then

E(h) ≤ 2.

The equality holds if and only if h is isometric to h0.

Furthermore, we can pose a similar question when M is a closed hyperbolic
manifold of odd dimension:

Question 7. Is there a neighborhood U of h0 in the metric space of M , such that
if h ∈ U and Rh ≥ −n(n− 1), then E(h) ≤ 2?

References

[1] G. Besson and G. Courtois and S. Gallot, Volume et entropie minimale des espaces locale-
ment symétriques, Inventiones mathematicae 103 (1991), 417–446.

[2] D. Calegari and F.C. Marques and A. Neves, Counting minimal surfaces in negatively curved
3-manifolds, Duke Mathematical Journal (2022).
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Mass Inequality and Stability of the Positive Mass Theorem For

Kähler Manifolds

Johan Jacoby Klemmensen

Let (Mn, g) be a complete asymptotically Euclidean manifold of dimension n ≥ 3.
If the scalar curvature Rg is integrable, Bartnik and Chruściel showed that the
ADM mass m(g) for each end, defined as

(1) m(g) = lim
ρ→∞

Γ(n2 )

4(n− 1)πn/2

ˆ
Sρ

(gkl,k − gkk,l) νldAeucl,

is well-defined and independent of the chosen asymptotically Euclidean coordinate
chart at infinity. The conjectured Positive Mass Theorem (PMT) was first proven
by Schoen-Yau resp. Witten for dimM ≤ 7 resp. M spin and states the following:
if the scalar curvature is nonnegative and integrable, then m(g) ≥ 0 for every end
and m(g) = 0 for some end if and only if (M, g) is isometric to (Rn, g). Hein-
LeBrun later proved the theorem for AE Kähler manifolds [5], a paper important
for this work as we will study the stability of the Positive Mass Theorem for AE
Kähler manifolds.

The question of stability of the PMT is the following: if the ADM mass is small,
is (M, g) close to (Rn, g) in some sense? The answer was complicated by the dis-
covery of a sequence of AE rotationally symmetric three-dimensional manifolds
(M3

i , gi) such that m(M3
i , gi) → 0, but (M3

i , gi) develops infinitely deep gravita-
tional wells where the GH-distance diverges [7]. It then became clear that other
weaker norms need to be considered, of which Sormani-Wenger’s intrinsic flat
distance is probably the most utilized.

Another direction in the investigation of stability came after Bray-Kazaras-Khuri-
Stern [1] proved their integral inequality, inspired by the inequality of Stern [8].
This inequality bounds the ADM mass from below by an integral involving the
scalar curvature and the Hessian of certain harmonic functions. Using this, Dong
[3], and later Dong-Song [4], proved that any sequence of AE Riemannian three-
manifolds with ADM mass going to zero converge in the Gromov-Hausdorff topol-
ogy to Euclidean three-space after cutting out sets with vanishing boundary in the
limit. Similar results were also proven using this integral inequality, although un-
der other assumptions, including a curvature bound, by Allen-Bryden-Kazaras [2]
and Kazaras-Khuri-Lee [6] on three-manifolds.

In this talk, we prove a stability results for the Positive Mass Theorem and a new
integral inequality for the ADM mass on AE Kähler manifolds (X2m, g, J). This
is the first stability result of the Positive Mass Theorem for Kähler manifolds.

The stability result follows from the following integral inequality

Theorem 1. Let (X2m, g, J) be an asymptotically Euclidean Kähler manifold with
nonnegative and integrable scalar curvature Rg. Let z = x1 + ix2 be one of the
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holomorphic coordinate functions from the work of Hein-LeBrun. Then

(2) m(g) ≥ (m− 1)!

4(2m− 1)πm

ˆ
X

1

2
|∇2x1|2 +

1

2
|∇2x2|2 + |∇x1|2Rg dvolg .

The formula resembles the result [1, Theorem 1.2] on three-dimensional AE
Riemannian manifolds.

Given the integral estimate, we prove a new stability result for the Positive Mass
Theorem. The theorem applies to general sequences of AE Kähler manifolds and
requires the excision of sets with vanishing boundaries in the limit, and potentially
accounts for the presence of gravitational wells known to appear in the Riemannian
case:

Theorem 2. Let (X2m
i , gi, Ji) be a sequence of AE Kähler manifolds of fixed

complex dimension with nonnegative and integrable scalar curvatures, and suppose
that the ADM masses m(gi)→ 0 as i→∞. Then for all i there exists a domain Zi

such that Mi \Zi converge in the pointed Gromov-Hausdorff sense to (R2m, deucl):

(3) (Xi \ Zi, dgi , pi)→ (R2m, deucl, 0)

where pi ∈Mi \Zi is any choice of base point and dgi is the induced length metric
of gi on Mi \ Zi. Furthermore, for any continuous ξ : (0,∞) → (0,∞) such that
limx→0+ ξ(x) = 0, we get for i large enough:

(4) area(∂Zi) ≤
m(gi)

m
2m−2

+ 1
2

ξ(m(gi))
.

For three-dimensional Riemannian manifolds, the theorem was proven by Dong-
Song [4]. Some parts of their proof can be generalized from the three-dimensional
case in a straightforward manner, while others require new work: specifically,
one of the essential ingredients in Dong-Song was the integral inequality of Bray-
Kazaras-Khuri-Stern [1, Theorem 1.2], and a major part in proving the theorem
in the Kähler setting is to prove the inequality in Theorem 1.

Finally, we present a new sequence of AE Kähler metrics on C2 satisfying the
requirements of Theorem 1. The family is generated by a smoothing of the Burns
metric and is given by

(5) ωlog
λ = i∂∂(r2 +λ log(r2 +λ)) =

(
2λ2+λ(2r2+|z2|

2)+r4

(r2+λ)2 − λz1z2
(r2+λ)2

− λz1z2
(r2+λ)2

2λ2+λ(2r2+|z1|
2)+r4

(r2+λ)2

)
.

As the ADM masses vanish along the sequences, we obtain an explicit family of
Kähler metrics with Ricci curvature unbounded from below and for which Theorem
2 applies. The family has the property of global GH convergence to (C2, geucl) in
the limit, and we could not find families of Kähler metrics with nonnegative scalar
curvature developing a gravitational well. Finding a family developing a gravita-
tional well and with vanishing mass would be very interesting for the application
of Theorem 2.
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On the long-time behaviour of collapsing Ricci flows

Ramiro Lafuente

(joint work with Francesco Pediconi)

Let (Mn, g(t))t∈[0,∞) be an immortal Ricci flow solution. Recent groundbreaking
work of Bamler [1], extending to higher dimensions previous results of Hamilton [4]
and Perelman [9] in dimension 3, implies that for t ≫ 1 there is a thick-thin
decomposition

M = Mthick(t) ∪̇ Mthin(t)

such that, after parabolic rescaling, the flow on Mthick(t) converges to a —possibly
singular— Einstein metric with negative scalar curvature, and the flow on Mthin(t)
is collapsed, in the sense that there is no uniform lower bound for the pointed
Nash entropy. In particular, the thin region has no uniform lower bound for the
injectivity radius.

We are interested in the asymptotic behaviour of the flow in the collapsed
regions. In dimension 3, a very satisfactory answer was obtained by Lott in [7] in
the case of bounded curvature and diameter, i.e.

(1) ‖Rmg(t)‖ ≤ C t−1, diam(g(t)) ≤ C
√
t, ∀t > 0.

Recall that these are precisely the bounds that are invariant under parabolic rescal-
ing. Assuming (1), Lott proves that the pull-back to the universal cover of any
sequence of parabolic blow-downs gs(t) := s−1g(st) subconverges to an expanding
homogeneous Ricci soliton.

Our main result is an extension of Lott’s result to higher dimensions n ≥ 4,
under an additional topological assumption:

Theorem. [5] Let Mn be a closed essential manifold, and let (Mn, g(t))t∈[0,∞) be
an immortal Ricci flow satisfying (1). Then, any sequence of parabolic blow-downs
subconverges to an expanding Ricci soliton with cocompact nilpotent symmetry.
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Recall that a closed manifold Mn is essential if the image of the fundamental
class [M ] under the classifying map for the universal cover M → K(π1(M), 1) is
non-trivial in Hn(K(π1(M), 1),Z). For example, aspherical manifolds are trivially
essential, and so is any manifold which is the connected sum of a closed manifold
and an essential one.

Regarding the limits, the underlying manifold X can be described as follows: let
B be a closed orbifold with universal cover B̃ → B. Let N be a simply-connected
Lie group admitting a left-invariant Ricci soliton metric (also called nilsoliton),

and let ρ : π1(B) → Aut(N) be a representation. Then X := B̃ ×ρ N is the
corresponding associated fiber bundle; it is known as a twisted principal bundle.
There is a well-defined notion of a free local action by N on X , which is simply-
transitive on the fibers, and with a compact orbit space B, but which cannot in
general be extended to a global action.

The limit geometry is that of an expanding Ricci soliton, which is of gradient
type if and only if N is abelian. The horizontal distribution is integrable, and the
metric satisfies the harmonic-Einstein equations from [6]. In the non-abelian case,
the fibers are pairwise isometric nilsolitons, and the image of ρ commutes with
the nilsoliton derivation (after identifying Aut(N) ≃ Aut(n)). Several families of
examples solving these equtions, where B is any closed orientable surface, have
been recently found by Adam Thompson. There is an interesting connection with
branched minimal immersions of B into symmetric spaces of non-compact type,
which may be of independent interest.

The convergence in our main theorem is in the sense of étale Riemannian
groupoids, due to the collapse, as developed by Lott. The proof of our main theo-
rem indeed starts with Lott’s extension of Hamilton compactness theorem for Ricci
flows, which yields precompactness —in the Riemannian groupoid topology— of
the set of parabolic blow-downs of any Ricci flow satisfying (1). Essentially, we ob-
tain smooth limits Ricci flows on an n-dimensional manifold, with additional data
in the form of a sheaf of Lie algebras consisting of germs of Killing fields, whose ‘or-
bit space’ is precisely the Gromov-Hausdorff limit of the original sequence. Thanks
to the Cheeger-Fukaya-Gromov theory of collapsing with bounded curvature [3],
these Lie algebras are nilpotent, and their orbits consist precisely of all collaps-
ing directions. The assumption of M being essential is critical to ensure that the
Killing field germs do not vanish at any point; thus, we may assume that the limit
groupoid is locally free. The local structure of such an object is the same as that
of a twisted principal bundle. The latter is in turn nothing but a principal bun-
dle locally, with a global twisting induced by a representation of the fundamental
group of B.

The arguments in the previous paragraph allow us to reduce the main theorem
to the study of Ricci flows on twisted principal bundles with nilpotent symme-
try and compact orbit space. To show that the limits are expanding solitons, we
construct a new scale-invariant, monotone quantity for these flows, which gener-
alises Lott’s generalized W-entropy [7] in the abelian case to arbitrary nilpotent
symmetry. The monotonicity of this functional along (gauged) Ricci flow uses an
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L2-version of the GIT curvature estimates from [2]. Indeed, in the case where
B is a point, this monotone quantity coincides with the Lyapunov function for
immortal homogeneous Ricci flows from [2]. On the other hand, when N is trivial
and B = M is a closed smooth manifold, it reduces to the functional

(g, f) 7→ F(g, f) exp
(
2
nN (g, f)

)
.

Here F and N are respectively Perelman’s energy functional [8] and Nash’s en-
tropy, defined for any Riemannian metric g on M and any smooth function
f ∈ C∞(M) by

F(g, f) =
ˆ
B

(
Rg + |∇f |2g

)
e−fdvolg , N (g, f) =

ˆ
B

f e−fdvolg.

This quantity is monotone under the Ricci flow gauged by ∇f and constant pre-
cisely on expanding gradient solitons, provided f also evolves to keep the weighted
measure e−fdvolg fixed.
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Asymptotics of the volume spectrum

Yevgeny Liokumovich

(joint work with Larry Guth, Fernando Marques, André Neves, Bruno Staffa)

Let M be a compact Riemannian manifold of dimension n + 1. The eigenvalues
of the Laplacian ∆ on M have the following variational characterization. Let
V = W 1,2(M) \ {0} and consider the Rayleigh quotient E : V → [0,∞], E(f) =´
M

|∇f |2

f2 dV . Functional E is homogeneous, E(af) = E(f), so it descends to the

quotient P = V/{lines in V} ≃ RP∞. Then

λp = inf
Pp⊂P

sup
f∈Pp

E(f)

where the infimum runs over all linear subspaces of P of dimension p.



Geometrie 1589

Weyl’s law states that the eigenvalues {λp} have asymptotic behaviour which
only depends on the volume of M :

limp→∞λpp
− 2

n+1 = α(n)vol(M)−
2

n+1 ,

where α(n) = 4π2V ol(B)−
2

n+1 and B is the unit disc in Rn+1.
Gromov ( [3], [4, Section 8], [5, Section 5.2], [6]) proposed studying widths

of Riemannian manifolds as a non-linear analog of the spectral problem on M .
The definition of width is similar to the above min-max characterization of the
eigenvalues, but with the space of cycles on M as the underlying space and the
mass as the energy. We will work with the spaces Zk(M ;Z2) of mod 2 flat k-cycles
inM and Zk,R(M,∂M ;Z2) of relative mod 2 flat cycles wheneverM has boundary.

It follows from the work of Almgren [1] on the topology of Zk(M ;Z2) that there
exists a cohomology class λ ∈ Hn−k(Zk(M ;Z2);Z2), such that all cup powers
λp 6= 0. We say that a family of cycles Φ : X → Zk(M ;Z2) is a p-sweepout if
Φ∗(λp) 6= 0.

The p-width for k-cycles on a manifold M can be defined as follows

ωk
p(M) = inf

Φ:X→Zk(M ;Z2)
sup
x∈X

V olk(Φ(x)),

where the infimum is over all p-sweepouts Φ.
Gromov’s conjecture can then be stated stated as follows: there exists a constant

a(n, k), such that for any compact manifold M we have

limp→∞ωp(M)p−
n−k
n = a(n, k)vol(M)

k
n

The current status of the conjecture is the following:

• for domains in Rn and all k the conjecture was proved by Liokumovich-
Marques-Neves [9];
• for Riemannian manifolds and k = n− 1 it was proved in the same paper;
• for Riemannian manifolds, k = 1 and all n3 it was very recently proved
by Staffa [11].

The key difficult in extending from k = n− 1 to the higher codimension case is
the necessity to prove two highly-nontrivial parametric versions of some fundamen-
tal geometric inequalities: the parametric isoperimetric inequality and parametric
coarea inequality that were formulated in [7].

The conjecture is related to existence questions about minimal submanifolds of
Riemannian manifolds. In the case when k = 1 the widths ω1

p correspond to the
length of a stationary geodesic network (and for n = 2 closed geodesics by [2]).
The asymptotic distribution of widhts has been used by Liokumovich-Staffa and
Li-Staffa to prove density and equidistribution results for stationary geodesic nets
and closed geodesics in [10] and [8].
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Complete Kähler manifolds with nonnegative Ricci curvature

Gang Liu

The talk is based on [5]. We consider complete Kähler manifolds with nonnegative
Ricci curvature. The main results are:

1. When the manifold has nonnegative bisectional curvature, we show that

lim
r→∞

r2

vol(B(p,r))

´
B(p,r) S exists. In other words, it depends only on the manifold.

This solves a question of Ni in [8]. Also, we establish estimates among volume
growth ratio, integral of scalar curvature, and the degree of polynomial growth
holomorphic functions. The new point is that the estimates are sharp for any pre-

scribed volume growth rate. As a byproduct, we show that lim
r→∞

r2

vol(B(p,r))

´
B(p,r) S

< ǫ iff the asymptotic volume ratio of the universal cover is almost maximal.
2. We discover a strong rigidity for complete Ricci flat Kähler metrics. Let

Mn(n ≥ 2) be a complete Kähler manifold with nonnegative Ricci curvature and
Euclidean volume growth. Assume either the curvature has quadratic decay, or the
Kähler metric is ddc-exact with quadratic decay of scalar curvature. If one tangent
cone at infinity is Ricci flat, then M is Ricci flat. In particular, the tangent cone is
unique. In other words, we can test Ricci flatness of the manifold by checking one
single tangent cone. This seems unexpected, since apriori, there is no equation on
M and the Bishop-Gromov volume comparison is not sharp on Ricci flat (nonflat)
manifolds. Such result is in sharp contrast to the Riemannian setting: Colding and
Naber [3] showed that tangent cones are quite flexible when Ric ≥ 0 and |Rm|r2 <
C. This reveals subtle differences between Riemannian case and Kähler case.
The result contains a lot of examples, such as all noncompact Ricci flat Kähler
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surfaces of Euclidean volume growth (hyper-Kähler ALE 4-manifolds classified
by Kronheimer [6]), higher dimensional examples of Tian-Yau type [10]. It also
covers Ricci flat Kähler metrics of Euclidean volume growth on Stein manifolds
with b2 = 0, such as Ricci flat Kähler metrics on Cn [7] [9] [4] [1]. Note in this
case, the cross section is singular.

We also propose a conjecture: Given a complete noncompact Kähler manifold
with nonnegative Ricci curvature and Euclidean volume growth, if one tangent
cone at infinity is Ricci flat (this means the metric is smooth and Ricci flat away
from a real codimension 4 set), then the manifold is Ricci flat. Such should be
compared with a theorem of Colding [2] in Riemannian geometry: For a com-
plete Riemannian manifold with nonnegative Ricci curvature, if a tangent cone at
infinity is Euclidean, then the manifold is Euclidean.
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Positive scalar curvature on noncompact manifolds

John Lott

There are many results on whether a given compact manifold admits a Riemannian
metric with positive scalar curvature (psc). We focus on the noncompact case.

An open conjecture for compact manifolds says that an aspherical compact
smooth manifold cannot admit a psc metric. There are two main approaches to
this conjecture. The first one uses minimal hypersurfaces, following the work of
Schoen-Yau [10], and µ-bubbles as introduced by Gromov [5, Section 5 5

6 ]. Recent
advances are by Chodosh-Li [3] and Gromov [6]. The other approach, which we
follow, uses Dirac operators.

The above conjecture has an extension to compact manifolds that may not be
aspherical. If M is a compact connected oriented n-dimensional smooth manifold,
choose a basepoint m0 and consider the fundamental group Γ = π1(M,m0). There
is a pointed connected CW-complex BΓ with the property that π1(BΓ) = Γ and
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the universal cover of BΓ is contractible. There is a classifying map ν : M → BΓ,
unique up to homotopy, that induces an isomorphism on π1. If [M ] ∈ Hn(M ;Q) is
the fundamental class in rational homology then the extended conjecture says that
nonvanishing of the pushforward ν∗[M ] ∈ Hn(BΓ;Q) is an obstruction for M to
admit a psc metric. If M is aspherical then one recovers the previous conjecture.
There are many results on this extended conjecture, using Dirac operators [9].

We are concerned with obstructions to complete psc metrics on noncompact
manifolds. There is also a long history to this problem, going back to the Gromov-
Lawson paper [7]. Our motivation comes from conjectures relating scalar curvature
to simplicial volume, for compact manifolds.

Here is a test question. Suppose that Y is a compact connected oriented n-
dimensional manifold-with-boundary, with connected boundary ∂Y . Choosing a
basepoint y0 ∈ ∂Y , put Γ = π1(Y, y0) and Γ′ = π1(∂Y, y0). There is a clas-
sifying map of pairs ν : (Y, ∂Y ) → (BΓ, BΓ′), unique up to homotopy. Let
[Y, ∂Y ] ∈ Hn(Y, ∂Y ;Q) be the fundamental class. Is nonvanishing of the pushfor-
ward ν∗[Y, ∂Y ] ∈ Hn(BΓ, BΓ′;Q) an obstruction for the interior int(Y ) = Y − ∂Y
of Y to admit a complete psc metric, provided that
(a) The homomorphism Γ′ → Γ is injective, or
(b) The metric has finite volume?

Here if Γ′ → Γ is not injective then we define Hn(BΓ, BΓ′;Q) using the algebraic
mapping cone complex; it could more accurately be written as Hn(BΓ′ → BΓ;Q).

One needs some condition like (a) or (b), as can be seen if Y = D2. Then
π1(∂Y )→ π1(Y ) is not injective, ν∗[Y, ∂Y ] 6= 0 and int(Y ) does admit a complete
psc metric, such as a paraboloid, but not one of finite volume.

A special case of the above question is when Y and ∂Y are aspherical, in which
case ν∗[Y, ∂Y ] is automatically nonzero.

We give results in the direction of (a) and (b). One main tool is almost flat
bundles in the relative setting. Almost flat bundles were introduced by Connes-
Gromov-Moscovici [4] and give obstructions for compact spin manifolds to have psc
metrics. Almost flat bundles in the relative setting were introduced by Kubota [8].
There are actually two versions: almost flat relative bundles and almost flat stable
relative bundles. They are relevant for (a) and (b), respectively.

Our other main technical tool is Callias-type Dirac operators, as were used for
example by Cecchini-Zeidler in [1,2]. This allows us to give localized obstructions
to positive scalar curvature, that apply to incomplete manifolds. Some of the
statements involve the mean curvature of a boundary.

For notation, R denotes scalar curvature. Our convention for mean curvature
is such that Sn−1 ⊂ Dn has mean curvature H = n− 1.

The geometric setup for our localized statements is that we have a region in
a manifold that is assumed to have positive scalar curvature, then there is an
annulus around it with quantitatively positive scalar curvature, followed by a larger
annulus of a certain size that can have some negative scalar curvature. What
happens outside of the second annulus doesn’t matter. The precise assumption is
the following.
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Assumption 1. Given r0, D > 0, put r′0 = 1
256r

2
0D

2 and D′ = D + 32
r0D

. Let
M be a connected Riemannian spin manifold, possibly with boundary and possibly
incomplete. Let K be a compact subset of M containing ∂M . Suppose that

• The distance neighborhood ND′(K) lies in a compact submanifold-with-
boundary C,
• R > 0 on K,
• R ≥ r0 on ND(K)−K and
• R ≥ −r′0 on ND′(K)−ND(K).

The first main result just uses almost flat K-theory classes, denoted by K∗
af (·).

Theorem 1. Suppose that Assumption 1 holds, where ∂M has nonnegative mean
curvature. Given β ∈ K−1

af (C) if M is even dimensional, or β ∈ K0
af (C) if M is

odd dimensional, we have

(1)

ˆ
∂M

Â(T∂M) ∧ ch
(
β
∣∣
∂M

)
= 0.

Our main application of Theorem 1 is to finite volume complete manifolds
M of dimension at most seven. We show that there is an exhaustion of M by
compact submanifoldsKi whose boundaries ∂Ki have nonnegative mean curvature
as seen from M −Ki. (It would be interesting if the dimension restriction could
be removed.) Rather than applying Theorem 1 to Ki, we apply it to a suitable
compact region of M −Ki containing ∂Ki. In this way we obtain end obstructions
to the existence of finite volume psc metrics. As a simple example, there is no
complete finite volume psc metric on [0,∞)× T n−1 if n ≤ 7.

The next main result uses almost flat relative K-theory classes, denoted by
K∗

af (·, ·). The geometric setup is similar to the previous one, except that now
there is no boundary.

Theorem 2. Suppose that Assumption 1 holds, where ∂M = ∅ and K is a compact
submanifold-with-boundary in M . Then given β ∈ K∗

af (C, C − int(K)), we have

(2)

ˆ
C

Â(TM) ∧ ch(β) = 0.

Theorem 2 is relevant to part (a) of the test question above.
The third main result combines Theorems 1 and 2. It uses almost flat stable

relative K-theory classes, denoted by K∗
af,st(·, ·) The generators of K0

af,st(·, ·) differ
from generators of K0

af (·, ·) essentially by having additional K−1-generators for the
second factor. This meshes well with the compact exhaustions of finite volume
manifolds. In the geometric assumptions, it is now assumed that the boundary
of the inner compact region has nonnegative mean curvature as seen from the
complement.

Theorem 3. Suppose that Assumption 1 holds, where ∂M = ∅, K is a compact
codimension-zero submanifold-with-boundary in M , and ∂K has nonnegative mean
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curvature as seen from M −K. Then given β ∈ K∗
af,st (C, C − int(K)), we have

(3)

ˆ
C

Â(TM) ∧ ch(β) = 0.

When combined with the result about compact exhaustions of complete finite
volume Riemannian manifolds, Theorem 3 is relevant to part (b) of the test ques-
tion above.
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A sharp isoperimetric-type inequality for Lorentzian spaces with

timelike Ricci curvature bounded below

Andrea Mondino

(joint work with Fabio Cavalletti)

The isoperimetric problem is one of the most classical problems in Mathematics,
tracing its origins to the Greek legend of Dido, Queen of Carthage. In the context
of Riemannian geometry, it seeks to answer the following question:

“What is the maximal volume that can be enclosed by a given surface area?”

Equivalently, it can be framed as the problem of finding the maximal function
I(M,g)(·) : [0,∞)→ [0,∞) such that for every subset E ⊂M with smooth bound-

ary ∂E in the (n+ 1)-dimensional Riemannian manifold (Mn+1, g), the following
inequality holds:

(1) Volng (∂E) ≥ I(M,g)(Vol
n+1
g (E)),
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where Voln+1
g (E) and Volng (∂E) denote he (n+1)-dimensional measure of E with

respect to g and the n-dimensional measure of ∂E with respect to the restriction
of g, respectively.

The literature on the isoperimetric problem in Riemannian geometry is vast.
Even in Euclidean spaces, a complete solution is relatively recent and required
several significant breakthroughs. In the framework of Riemannian manifolds with
Ricci curvature bounded below, an isoperimetric inequality of the form (1) (where
the function I(M,g)(·) depends only on the dimension and the Ricci lower bound)
was proved by Gromov in the case of a positive Ricci lower bound, following earlier
work by Lévy.

If (Mn+1, g) is a Lorentzian manifold, the maximal function I(M,g)(·) : [0,∞)→
[0,∞) satisfying (1) is identically zero, at least for small volumes and, in several
examples (including Minkowski space-time), for all volumes. This occurs because
causal diamonds have positive (n + 1)-volume, but their boundary is a null hy-
persurface (with singularities of negligible measure) having zero n-volume, with
respect to the restriction of the ambient Lorentzian metric.

Indeed, due to the different signature, a geometric minimization problem in the
Riemannian context becomes a maximization problem in the Lorentzian context.
A landmark example is given by geodesics, which locally minimize length in Rie-
mannian geometry but locally maximize time separation (i.e., Lorentzian length)
in Lorentzian geometry. The same phenomenon appears in the isoperimetric prob-
lem, which, in Lorentzian signature, reads as:

“What is the maximal area that can be used to enclose a given volume?”

Equivalently, it can be stated as the problem of finding the minimal function
J(M,g)(·) : [0,∞) → [0,∞) such that for every subset E ⊂ M with a smooth

boundary ∂E in the (n + 1)-dimensional Lorentzian manifold (Mn+1, g), the fol-
lowing inequality holds:

(2) Volng (∂E) ≤ J(M,g)(Vol
n+1
g (E)),

where Voln+1
g (E) and Volng (∂E) denote the (n+1)-dimensional measure of E with

respect to |g| and the n-dimensional measure of ∂E with respect to the restriction
of |g|, respectively.

In sharp contrast to the Riemannian setting, where the literature on the isoperi-
metric problem is extensive, the literature on the isoperimetric problem in Lorentz-
ian signature is rather limited: Bahn-Ehlrich [3] for cones in Minkowski space-
time, Bahn [2] for simply connected domains in 2-dimensional Lorentzian sur-
faces with Gaussian curvature bounded above, Abedin-Corvino-Kapita-Wu [1] in
warped product space-times with non-negative timelike Ricci curvature, Lambert-
Scheuer [7] in warped product space-times with non-negative Ricci curvature in
null directions.

One of the main reasons for the relatively limited bibliography compared to the
Riemannian case is the lack of a regularity theory for critical points of the area
functional, which may fail to be elliptic due to the Lorentzian signature of the am-
bient metric. We overcome this issue by adopting an optimal transport approach,



1596 Oberwolfach Report 28/2024

which bypasses the regularity problems. Below, some notation before stating a
simplified version of the main result obtained in collaboration with Cavalletti [5].

Let (Mn+1, g) be a smooth globally hyperbolic Lorentzian manifold. Let V, S be
two Cauchy hypersurfaces, with S ⊂ I+(V ), where

I+(V ) = {y ∈M : ∃x ∈ V such that x≪ y}
denotes the chronological future of V . Let

τV (y) := sup
x∈V

τ(x, y), ∀y ∈ I+(V ), dist(V, S) := inf
y∈S

τV (y),

C(V, S) := {γ(t) | t ∈ [0, 1], s.t. γ is a timelike τV -maximizing geodesic with

γ(0) ∈ V, γ(1) ∈ S},
denote the time-separation from V , the “distance” from V to S, and the region
spanned by timelike τV -maximising geodesics from V to S, respectively.

Theorem 1 [Cavalletti-M., [5]]. Let (Mn+1, g) be a globally hyperbolic Lorentzian
manifold satisfying Hawking-Penrose’s strong energy condition (i.e., Ric ≥ 0 on
timelike vectors). Let V, S ⊂M be Cauchy hypersurfaces with S ⊂ I+(V ). Then

Volng (S) dist(V, S) ≤ (n+ 1) Voln+1
g (C(V, S)).

Some comments are in order (for more details, we refer to [5]):

• Previous results in the literature about isoperimetric-type inequalities in
Lorentzian manifolds (or in Riemannian space-like slices) assume the met-
ric g to be a warped product. There is no symmetry assumption on the
space-time in Theorem 1, but merely a lower bound on the Ricci curvature
in the timelike directions.
• Theorem 1 is stated for non-negative Ricci curvature just for the sake of
simplicity. A completely analogous statement holds for Ricci curvature
bounded below by K ∈ R in the timelike directions.
• The isoperimetric-type inequality in Theorem 1 is sharp and rigid: the
equality is attained if and only if the space-time is conical.
• The isoperimetric-type inequality in Theorem 1 is proved in the higher
generality of Loretzian pre-length spaces satisfying timelike Ricci curva-
ture lower bounds in a synthetic sense via optimal transport, the so-called
TCD(K,N) spaces [4]. Also the assumption on V can be relaxed consider-
ably: it is enough to assume that V is a Borel, achronal, timelike complete
subset.

As applications, in [5] we establish:

• An upper bound on the area of Cauchy hypersurfaces S inside the interior
of a black hole, involving the time-distance from S to the center of the
black-hole.
• An upper bound on the area of Cauchy hypersurfaces in cosmological
space-times. The novelty with respect to previous results (see for instance
[1]) is that no spatial symmetry is assumed; such a higher generality seems
to have advantages also for from the physical point of view [6].
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Tubed embeddings

Anton Petrunin

A smooth isometric embedding of one Riemannian manifold into another will be
called tubed if the image admits a uniformly thick tubular neighborhood. We
consider the following question: When does a Riemannian manifold admit a tubed
embedding in a Euclidean space of large dimension?

The necessary conditions include: (1) bounded sectional curvature, (2) positive
injectivity radius, and (3) uniformly polynomial growth. The latter means that the
volume of any ball of radius R in our manifold is bounded by a fixed polynomial
of R.

We prove a partial converse. Namely, if in addition to the three properties
the covariant derivatives of the curvature tensor are bounded, then the manifold
admits an embedding into Euclidean spaces of sufficiently large dimension.

The proof combines the Nash embedding theorem and the Krauthgamer–Lee
theorem about graph embeddings.

We also discuss related questions with other target spaces.
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Einstein metrics from the Calabi Ansatz via Derdzinski duality

Rosa Sena-Dias

(joint work with Gonçalo Oliveira)

A metric is Einstein if it is a constant multiple of its Ricci tensor. On a Kähler
manifold, the Ricci tensor can be conveniently encapsulated in a (1, 1)-form.

Definition 1. (M,J, ω, g) Kähler is Kähler-Einstein if there is a constant λ such
that Ric(g) = λω.

Kähler-Einstein implies c1(M) = λ[ω]. When λ > 0, the Fano case, there are
non trivial conditions on existence of solutions. Chen-Donaldson-Sun (see [CDS])
recently proved:

Theorem 1. (M,J, ω) Kähler admits a Kähler-Einstein metric in the class
c1(M,J) iff it is K-stable.

We will not define K-stability. The proof of this theorem involves a continuity
method though metrics with a cone angle along a divisor ( [Do]): cone angle
metrics have become popular in Kähler geometry. There are Kähler manifolds,

such as CP2♯CP
2
or CP2♯2CP

2
, which do not carry Kähler-Einstein metrics.

Question 1. Can Kähler geometers help find Einstein metrics on CP2♯CP
2
and

CP2♯2CP
2
?

1. Calabi’s extremal metrics

To attack question (1) one can replace “Einstein” by “good”.

Definition 2 (Calabi). A compact Kähler manifold (M2n, J, ω0) is extremal in
the sense of Calabi if it is a critical point for the Calabi functional defined by

C(ω) =
ˆ
M

Scal2(gω)ω
n, ∀ω ∈ K(M) ∩ [ω0].

Here K(M) is the Kähler cone and gω is the metric associated to ω. The Euler
Lagrange equations for C show that ω is extremal iff ∂̄∇(1,0) Scal(gω) = 0. This can
be taken as a definition in the non-compact setting. In particular, constant scalar
curvature Kähler metrics hence Kähler-Einstein metrics are extremal. Calabi was
the first to write down explicit compact examples of non cscK extremal metrics.
He devised an ansatz for constructing such metrics. We need a very special case
here ( [C]).

Theorem 2 (Calabi). For all m ∈ Z+, there is a 2-parameter family of extremal
metrics on the total space of O(−m), and an extremal metric on Hm = P(O ⊕
O(−m)).

Note that H1 is biholomorphic to CP2♯CP2.
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2. Conformally Kähler-Einstein metrics

If in addressing Question (1) one insists on keeping the Einstein condition, then
one can consider relaxing the Kähler condition.

Definition 3. (M, g) is conformally Kähler/Einstein if there is a smooth function
σ : M → R and a Kähler/Einstein metric g0 on M such that g = eσg0.

Page wrote down an explicit conformally Kähler, Einstein metric on CP
2♯CP2.

Question 2 (Derdzinski). What Kähler manifolds are conformally Einstein?

Theorem 3 (Derdzinski). Let (M4, J, ω, g) be Kähler. There is an Einstein metric
conformal to g on the set where Scal(g) 6= 0 iff g is Bach-flat, in which case g

Scal2(g

is Einstein where defined.

3. Bach-flat metrics

Let (M, g) be Riemannian. The Weyl curvature W is a (3, 1) tensor such that

W (g) = 0 =⇒ g is locally conformally flat.

If M is compact, we further define the Weyl energyW as the total Weyl curvature.

Definition 4. (M, g) compact is Bach-flat iff it is critical for the Weyl energy.

The Euler Lagrange equations forW yield that g is Bach-flat iff its Bach-tensor
B vanishes. Letting Ricci0 denote the traceless Ricci tensor,

Bab = W cd
ab (Ricci0)cd +∇c∇c(Ricci0)ab −∇c∇a(Ricci0)bc.

The above formula allows us to define Bach-flat metrics in the non-compact setting
and shows that Einstein metrics are Bach-flat. It is not hard to see Bach-flatness
is a conformally invariant property and this proves the easy part of Theorem (3).
But how to find Bach-flat Kähler metrics?

Theorem 4 (LeBrun). Let (M4, J, ω, g) be a Kähler surface. Then g is Bach-flat
iff [ω] is critical for A on K(M) and g is extremal in its Kähler class.

Next we define A. Given (M,J, ω, g) Kähler:

(1) C(g) =
ˆ
M

(Scal(g)− Scal(g))2 d vol+32π2 (c1(M) ∧ [ω])2

[ω]2
,

where Scal(g) is the average of the scalar curvature which is topologically deter-
mined. When ∇(1,0) Scal(g) is holomorphic, for g an extremal metric in [ω],

C(g) = F(∇(1,0) Scal(g), [ω]) + 32π2 (c1(M) ∧ [ω])2

[ω]2
,

where F denotes the Futaki invariant. Now ξ = ∇(1,0) Scal(g) is called the extremal
vector field ofM. It exists even when [ω] does not admit an extremal representative
and only depends on [ω]. We set A to be the right hand side of (1). Theorem 4 was
used by Chen-Lebrun-Weber ( [CLW]) to prove existence of a conformally Kähler-

Einstein metric on CP2♯2CP
2
. Elsewhere, LeBrun has showed no other compact
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complex surfaces can carry conformally Einstein Kähler metrics so we look for
them in the non-compact setting.

4. Non-compact conformally Kähler-Einstein metrics

Our idea was as follows.

• For m > 1, the Calabi metrics on Hm are never conformally Einstein.
• The Calabi ansatz can be carried out on Hm with a cone angle along the
divisor at infinity. For the right choice of a cone angle, the metric will be
Bach-flat.
• If the vanishing locus of Scal occurs “before” the cone angle divisor, the
conformally Kähler, Einstein metric will not “see” the cone angle.

This idea essentially works for m ≥ 3. We proved the following result ( [OS]).

Theorem 5 (Oliveira-Sena-Dias). For m = 1 and β ∈]0, 4π[, there is a confor-
mally Kähler, Einstein metric with cone angle β along the divisor at infinity in

CP2♯2CP
2
. For m ≥ 3, there are two conformally Kähler, Einstein metrics on

the disk bundle Dm inside O(−m), g±m, with the same conformal infinity; g+m is
smooth, whereas g−m has a cone angle along the zero section.

We shall explain the notion of conformal infinity in the next section.

5. Poincaré-Einstein metris

Definition 5 ( [An2]). Let M be a manifold with boundary ∂M and ρ a defining
function for ∂M. A metric g is Poincaré-Einstein if it is Einstein on M and ρ2g
extends smoothly over ∂M. The conformal class of (ρ2g)|∂M is independent of ρ.
It is the conformal infinity of g, which is a Poincaré-Einstein filling of (M, g).

The Poincaré model for the hyperbolic metric is Poincaré-Einstein. In this
language, g+m is a Poincaré-Einstein filling of S3/Zm and g−m is its “cap”.

In Witten’s AdS/CFT correspondence, Poincaré-Einstein fillings play a funda-
mental role ( [W]). Page-Pope have constructed a Poincaré-Einstein fillings of
S3/Zm, ( [PP]) which look different from ours but as it turns out, must be iso-
metric to it. We hope the description we have for the fillings may be of use for
instance, to determine renormalised volumes in the sense of [An].

6. New metrics out of rescaled limits?

Since there is a great deal of interest in degenerating families of Einstein metrics, we
calculated limits in our construction. For m ≥ 3, there is a 1-parameter subfamily
of our family of Bach-flat metrics along which the scalar curvature tends to zero;
the corresponding family of Einstein metrics degenerates. We find a convergent
rescaling whose limit is Einstein and conformal to a scalar-flat Kähler metric so
cannot come from Theorem (3). Is this metric new/interesting?
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Hamiltonian Stationary Surfaces in Sasakian geometry.

Variational approaches.

Tristan Rivière

In the early 90’s Yong-Geun Oh introduced the problem of studying critical points
of the area among Lagrangian surfaces in a symplectic riemannian manifold. Such
surfaces are called Hamiltonian stationary or sometimes H-minimal surfaces. This
variational problem is motivated by natural questions such as the study of the
Plateau problem in Lagrangian homology classes, the construction of calibrated
minimal surfaces in Calabi Yau geometry (Thomas-Yau conjecture) or even the
minmax constructions of minimal surfaces in spheres. We will first present the dif-
ficulties of dealing with the Hamiltonian stationary equation in general and present
as a “warning” the construction of “pathological solutions” to this equation in 2
dimension which are nowhere continuous. Then we will turn to the special case of
area minimizing H-minimal surfaces and the discovery in the early 2000 of a family
of singularities of conical type by Schoen and Wolfson around which the Maslov
class realized by the Lagrangian planes is non trivial. We will raise the question
of the possible location of these singularities and whether they ”interact” or not.
In relation with this question, we will mention a direct method for constructing
Hamiltonian stationary discs with prescribed Schoen Wolfson cones (joint work
with Filippo Gaia and Gerard Orriols). In the second part of the talk we will
prove that every non trivial minmax operation for the area of Legendrian Surfaces
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in a closed 5 Sasakian manifold is realised by a smooth branched Hamiltonian
surface with possibly isolated conical singularities.

Singularity Models for High Codimension Mean Curvature Flow

Artemis Aikaterini Vogiatzi

(joint work with Huy The Nguyen)

Mean curvature flow is a geometric evolution equation that describes how a sub-
manifold embedded in a higher-dimensional space changes its shape over time. We
establish a codimension estimate that enables us to prove at a singular time of the
flow, there exists a rescaling that converges to a smooth codimension one limiting
flow in Euclidean space, regardless of the original flow’s codimension. Under a
cylindrical type pinching, we show that this limiting flow is weakly convex and ei-
ther moves by translation or is a self-shrinker. Considering manifolds, such as the
CPn, we go beyond the finite timeframe of the mean curvature flow, by proving
that the rescaling converges smoothly to a totally geodesic limit in infinite time.
Our approach relies on the preservation of the quadratic pinching condition along
the flow and a gradient estimate that controls the mean curvature in regions of
high curvature.

We suppose n ≥ 5 with initial dataM0 = F0(M), when N is an n-dimensional,
closed, immersed submanifold satisfying a quadratic pinching condition of the form

f := −|A|2+cn|H |2−dn ≥ 0, where cn ≤ 4
3n , if n ≥ 8 and cn ≤ 3(n+1)

2n(n+2) , if n = 5, 6

or 7 and dn a positive constant that depends on the background curvature. Our
focus was on the case of high codimension, m ≥ 2. In this work, we successfully
generalised results that concerned hypersurfaces assuming initial conditions such
as convexity and two-convexity to higher codimension and extended results of
submanifolds of higher codimension in the Euclidean and spherical spaces to Rie-
mannian manifolds. We considered submanifolds of arbitrarily high codimension
immersed into any Riemannian manifold, assuming a specific quadratic bound.
We proved pointwise gradient estimates for the mean curvature flow, which we
derived directly from the quadratic curvature bound of f and they played a key
role in our analysis. The importance of the gradient estimates is that they al-
lowed us to control the mean curvature and hence the full second fundamental
form on a neighbourhood of fixed size. These gradient estimates rely solely on the
mean curvature at a point and not on the maximum of curvature, as is the case
with more general parabolic-type derivative estimates. This ensures that we have
control over the curvature of the submanifold during a blow-up procedure. Using
these gradient estimates, we were able to obtain the most important result of our
work: we established a codimension estimate that shows that in regions of high
curvature, with the assumption of the quadratic pinching, singularity models for
this pinched flow must always be codimension one, regardless of the original flow’s
codimension. This crucial estimate enabled us to prove that at a singular time
of the flow, using the gradient estimates, there exists a rescaling that converges
to a smooth codimension one limiting flow in Euclidean space. Also, we proved
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cylindrical estimates that demonstrate an improvement in curvature pinching, as
we approach a singularity. Under a cylindrical type pinching, this limiting flow
is weakly convex and moves by translation or is a self-shrinker. These estimates
allowed us to analyse the behaviour of the flow near singularities and establish
the existence of the limiting flow. Specifically, we showed that these models can
be classified up to homothety. From these theorems we derived that at the first
singular time of the flow, the only possible blow-up limits are codimension one
shrinking round spheres, shrinking round cylinders, and translating bowl solitons.

Assuming the CPn as the background space in particular, we derived a new
behaviour of the flow. By proving a decay estimate for the traceless part of the
second fundamental form, we derive that the solution exists forever and converges
to a totally geodesic submanifold as t→∞.

Mean curvature flow with surgery was initially introduced by Huisken and Sines-
trari in 2009 for hypersurfaces in Rn+1, assuming 2-convexity. In 2018, Nguyen
extended this concept to submanifolds of higher codimension in Euclidean space
Rn+m, where m ≥ 2 represents the codimension and n the dimension of the sub-
manifold, under a quadratic pinching condition. Nguyen’s work is pivotal for
understanding mean curvature flow with surgery in high codimension. Using our
results in our arsenal, we can now generalize mean curvature flow with surgery in
high codimension from the Euclidean space, as first demonstrated by Nguyen in
2018, to any Riemannian manifold that satisfies the quadratic pinching condition
that we use.
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Einstein metrics on Spheres

Matthias Wink

(joint work with Jan Nienhaus)

An important question in geometry is if a given manifold admits a Riemannian
metric which is Einstein. Any Einstein metric on the spheres S2 and S3 is round
with positive scalar curvature. In higher dimensions, much less is known. For
example, it is a famous open question if there exists a Ricci flat metric on S4.

In the case of odd dimensional spheres, a program initiated by Boyer-Galicki-
Kollár [BGK05] has eventually led to many examples of Sasaki-Einstein metrics
on every S2m+1, for m ≥ 1, by the efforts of many authors.

In contrast, the only known examples of even-dimensional spheres admitting
a non-round Einstein metric are S6, S8 and S10. In fact, both S6 and S8 admit
infinitely many non-isometric Einstein metrics due to Böhm [Böh98]. A nearly
Kähler metric on S6 was constructed by Foscolo-Haskins [FH17] and Chi [Chi24]
found an additional example on S8.

In joint work with Jan Nienhaus, in [NW23] we provide a new construction of
Einstein metrics on spheres and prove:

Theorem 1. The ten-dimensional sphere S10 admits three non-round, non-iso-
metric Einstein metrics with positive scalar curvature.

As in the previous works of Böhm, Foscolo-Haskins and Chi, the new exam-
ples on S10 are also of cohomogeneity one. Specifically, the metric is invari-
ant under the action of SO(d1 + 1) × SO(d2 + 1) on Sd1+d2+1 and for each
pair (d1, d2) = (2, 7), (3, 6), (4, 5) we find one non-round Einstein metric. In
fact, based on numerical investigations, we conjecture that these are the only
SO(d1 + 1)× SO(d2 + 1)-invariant metrics on S10. The principal orbit of the ac-
tion is an Sd1 ×Sd2 and one obtains a metric on Sd1+d2+1 by smoothly collapsing
the Sd1 on one end and the Sd2 on the other end (or vice versa).

One may also try to construct an Einstein metric on Sd1+1 × Sd2 by collaps-
ing the Sd1-factor and then reflecting the local solution along a principal orbit.
Any such solution is called a symmetric solution. A common feature of the previ-
ous constructions of Einstein metrics on even-dimensional spheres due to Böhm,
Foscolo-Haskins and Chi is the existence of symmetric solutions. In fact, Böhm
constructs infinitely many Einstein metrics on Sd1+1×Sd2 for 5 ≤ d1 + d2+1 ≤ 9
and d1, d2 ≥ 2, Foscolo-Haskins find a nearly Kähler metric on S3 × S3 and Chi’s
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Einstein metric on S8 is itself symmetric (the principal orbit is an S7 which col-
lapses to a point at both ends). The existence of these symmetric solutions is
particularly helpful as it provides important insights into the dynamics of the as-
sociated differential equation and, in combination with further arguments, yields
the Einstein metrics on S6 and S8.

In contrast, numerical studies indicate that in the situation of Theorem 1 there
is no corresponding symmetric (non-product) SO(d1 + 1)× SO(d2 + 1)-invariant
Einstein metric on Sd1+1 × Sd2 for (d1, d2) = (3, 6), . . . , (7, 2) and only one for
(d1, d2) = (2, 7). In particular, for the proof of Theorem 1 we use a new technique
based on a rotation index for curves. With our techniques we can also recover
Böhm’s Einstein metrics on S5, . . . , S9 as well as the corresponding symmetric
solutions, since Böhm’s examples are also SO(d1 + 1)× SO(d2 + 1)-invariant (for
5 ≤ d1 + d2 + 1 ≤ 9 and d1, d2 ≥ 2).

The construction roughly proceeds as follows. With a suitable coordinate change
we transform the Einstein equation into an ODE system defined on a set homeo-

morphic to the cylinder D
2 × [−1, 1]. The interval [−1, 1] is parametrized by the

rescaled mean curvature H of the principal orbit, which decreases monotonically
from H = +1 to H = −1. Trajectories in the interior correspond to local solutions
of the Einstein equations, and the boundary of the cylinder is invariant under the
ODE.

The conditions for the smooth collapse of an Sd–factor correspond to stationary
points of the ODE and at H = 1 (resp. H = −1) there is a 1-parameter family of
solutions emanating from (resp. converging to) these stationary points. Further-
more we note that cone(h) = (0, 0, h) is a parametrization of the singular Einstein
metric induced by the sine suspension over the principal orbit. Therefore one can
try to analyze if trajectories wind around the cone solution.

In dimension ten, one proves that trajectories in the {H = 1} – slice approach
the base point (0, 0, 1) of the cone solution in a specific tangent direction. Further-
more, trajectories in the interior of the cylinder that are close to (0, 0, 1) remain
close to cone(h) = (0, 0, h) (at least for h ≥ 0) and indeed exhibit a winding
behaviour around the cone solution which can be quantified.

For a given pair (d1, d2) one now considers the intersection of all trajectories that
emanate from the stationary point corresponding to the smooth collapse of the Sd1

at H = 1 and all trajectories that converge to the stationary point corresponding
to the smooth collapse of the Sd2 at H = −1 within the {H = 0} – slice. Based
on the winding behaviour of the trajectories, it follows that the resulting curve
has a winding number greater than two and thus at least two intersection points,
each of which corresponds to an Einstein metric on S10. One intersection point
corresponds to the round metric, the other corresponds to a non-round Einstein
metric.

In order to recover Böhm’s metrics on S5, . . . , S9 one observes that in these
dimensions the base point (0, 0, 1) of the cone solution is a spiral, hence trajectories
in the {H = 1} – slice wind around it infinitely often. Therefore one can find
trajectories in the interior of the cylinder that wind arbitrarily often around the
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cone solution until they reach the {H = 0} – slice. As a consequence, in the
previous construction, one exhibits infinitely many intersection points and thus
infinitely many Einstein metrics on S5, . . . , S9.

We note that in the case of S11 we numerically exhibited Einstein metrics for
(d1, d2) = (2, 8), (3, 7) but not for (d1, d2) = (4, 6), (5, 5).
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Rigidity of spin fill-ins with non-negative scalar curvature

Rudolf Zeidler

(joint work with Simone Cecchini, Sven Hirsch)

Let (Σn−1, gΣ) be a closed, connected non-empty Riemannian manifold. A non-
negative scalar curvature (“NNSC”) fill-in of (Σ, gΣ) is a connected Riemannian
manifold (M, g) with boundary ∂M = Σ such that Scalg ≥ 0 and the metric g
restricts to gΣ on ∂M = Σ.

A recent result of Shi–Wang–Wei [9] states that on a connected manifold with
non-empty boundary, every Riemannian metric on the boundary extends to a
positive scalar curvature metric in the interior. Consequently, every (Σn−1, gΣ)
admits a NNSC fill-in provided that Σ is null-bordant as a smooth manifold.
However, the mean curvature of the boundary with respect to a NNSC fill-in
obtained from Shi–Wang–Wei’s theorem is always negative. Moreover, Miao [8,
Theorem 3] observed that there exists an a priori constant C = C(Σ, gΣ) > 0, such
that any NNSC fill-in (M, g) of (Σ, gΣ) satisfies minΣH∂M,g ≤ C, at least if n ≤ 7
or M is spin.

Taking the above as a starting point, we present more precise geometric bounds
on the minimum of the boundary mean curvature of spin NNSC fill-in (M, g) of
a given Riemannian spin manifold (Σ, gΣ). The first is defined in terms of the
hyperspherical radius.

Definition 1. The hyperspherical radius of (Σ, gΣ) is defined in terms of distance
non-increasing maps to round spheres as follows

RadSn−1(Σ, gΣ) = sup{R > 0 | ∃f : (Σ, gΣ)→ Sn−1
R : deg(f) 6= 0,Lip(f) ≤ 1}.
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Our main result states that the minimum of the boundary mean curvature of
a spin fill-in is bounded in terms of the hyperspherical radius, where equality is
achieved only for Euclidean discs.

Theorem 1 (Cecchini–Hirsch–Z. [2, Theorem 1.5]). Let (M, g) be a spin fill-
in of a Riemannian spin manifold (Σ, gΣ) such that H∂M ≥ (n − 1)/R, where
R = RadSn−1(Σ, gΣ) is the hyperspherical radius. Then M is isometric to the
round disc of radius R.

Note that the estimate without rigidity has previously been proved by Gro-
mov [4, p. 3] and the rigidity result was an open conjecture. The proof of this
theorem involves establishing an almost-rigidity result for maps to convex Eu-
clidean domains in the spirit of the comparison results of Llarull [6], Goette–
Semmelmann [3] and Lott [7]. The main difficulty lies in the fact that the hyper-
spherical radius is defined in terms of a supremum so that a priori there may not
exist a smooth map realizing the hyperspherical radius.

Theorem 2 (Cecchini–Hirsch–Z. [2, Theorem 1.6]). For n ≥ 3, let Ω ⊆ Rn be
a compact domain with smooth strictly convex boundary. Let M be a connected
compact Riemannian spin manifold with connected boundary such that ScalM ≥ 0.

Furthermore, let (fi : ∂M → ∂Ω)i∈N be a sequence of smooth maps satisfying

• Lip(fi) ≤ 1 + 1
i ,

• H∂M ≥ H∂Ω ◦fi − 1
i ,

• deg(fi) 6= 0.

Then there exists an isometry φ : ∂M → ∂Ω with II∂M = φ∗II∂Ω such that, after
passing to a subsequence, fi → f in W1,p(∂M,Rn) for every p < ∞. Moreover,
M is flat and isometric to Ω.

While the above provides a precise geometric bound, the upper bound on the
mean curvature obtained in this way is always positive. Miao [8, Question 2] asked
if there exist null-bordant Riemannian manifolds which do not admit any NNSC
fill-in with positive mean curvature. We answer this question in the spin setting
for NNSC spin fill-ins via the following result.

Theorem 3 (Cecchini–Hirsch–Z. [2, Theorem 1.2]). Let (Σ, gΣ) be a closed spin
manifold which admits a non-trivial harmonic spinor. Then any NNSC spin fill-in
of (Σ, gΣ) is Ricci-flat with minimal boundary.

This theorem is based on a completely elementary extension result for spinors in-
volving APS boundary conditions. Classical results of Hitchin [5] and Bär [1] show
that there are many null-bordant Riemannian manifold which admit harmonic
spinors. Thus there are many examples of Riemannian spin manifolds (Σ, gΣ)
which do admit some NNSC spin fill-in but none with positive mean curvature.
For instance, this includes certain Berger spheres (S3, g) with large fiber.

A more general extension statement is provided in our paper which also has a
number of further applications, see [2, Theorems 1.3 and 3.5].
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