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Introduction by the Organizers

The Oberwolfach Mini-Workshop Growth and expansion in groups (2415a) was
organized by Jitendra Bajpai (Kiel) and Daniele Dona (Budapest), and it was
attended in total by 16 participants both senior and junior with a broad geo-
graphical distribution, all of whom came to Oberwolfach in person. The topic of
the workshop was the phenomenon of growth and expansion of sets inside groups.
The aim was to present the field’s state of the art by gathering leading experts
and passing the knowledge to the next generation. The program consisted of four
mini-courses given by the main speakers, each made of four 1-hour lectures, and of
seven individual lectures given by several other participants, of duration variable
between 20 and 60 minutes.

The first main speaker was Sean Eberhard (Belfast), whose course was titled
Growth for special generating sets in high rank. The course focused on finite
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simple groups of high rank, namely alternating groups and classical groups, and
the diameter of their Cayley graphs with respect to generating sets that are either
random or contain a special element of small support: such elements are 3-cycles
in Alt(n), transvections in classical non-orthogonal groups, and long root elements
in orthogonal groups. The speaker first showed the main techniques involved in
the proof of results for Alt(n), going back to articles of Babai-Beals-Seress [1],
Babai-Hayes [2], and Helfgott-Seress-Zuk [13] among others. Then he moved to
the recent results for classical groups as in Halasi [10], Garonzi-Halasi-Somlai [7],
Eberhard-Jezernik [6], and Eberhard [5].

The second main speaker was Harald Helfgott (Paris), whose course was titled
Strategies for growth in permutation groups. The course focused on the proof of a
uniform diameter bound for all the Cayley graphs of Alt(n). The speaker presented
the methods adopted in the papers of Helfgott-Seress [12] and Helfgott [11]. One of
the objectives of the course was to highlight which techniques could be potentially
transferred to the case of classical groups, so the treatment was tailored to be
general enough to cover both high-rank cases at once whenever possible.

The third main speaker was Martin Kassabov (Ithaca), whose course was ti-
tled Kazhdan Property T, Kazhdan constants and expansion in finite groups. The
course focused on how to prove that certain groups have property (T), such as
SL3k(Z) and Aut(Z[x1, . . . , xn]), which as a consequence provides families of ex-
panders on finite groups of the form SL3k(Fp) and Alt(pn − 1). The proofs are
based on papers of Kassabov [14] and Caprace-Kassabov [4] and feature partic-
ularly explicit geometric constructions, giving in theory explicit bounds for the
corresponding Kazhdan constants.

The fourth main speaker was Pham Huu Tiep (Piscataway), whose course was
titled Character bounds for finite simple groups and applications. The course fo-
cused on giving bounds for the values of characters on non-central elements in-
side finite quasi-simple groups, either of the form |χ(g)| ≤ γχ(1) or of the form
|χ(g)| ≤ χ(1)α. There is a variety of such results, both for symmetric groups and
for groups of Lie type, due among others to Larsen-Shalev [15], Bezrukavnikov-
Liebeck-Shalev-Tiep [3], Guralnick-Larsen-Tiep [8, 9], and Larsen-Tiep [16]. Par-
ticular emphasis was given to the theory of character levels and to the several
applications of the resulting bounds, for example on Waring’s problem, on ran-
dom walks on Cayley graphs, and on Thompson’s conjecture.

In addition, there were seven individual lectures distributed throughout the
week. Vadim Alekseev (Dresden) presented some results concerning geometric
property (T), and in particular connecting it to property (T) in the context of sofic
groups. Michal Doucha (Prague) talked about the shadowing property of actions
on compact metric spaces, according to which every pseudo-orbit closely traces
the path of an actual orbit, and about the fact that hyperbolic groups acting on
their border have the shadowing property. Daniele Garzoni (Los Angeles) gave a
presentation of the group large sieve method, by which one can show that a random
walk on a group with many quotients satisfying certain properties almost never
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ends in any given small set. Noam Lifshitz (Jerusalem) presented a Bogolyubov-
type theorem for SLn(Fq), saying that for any subset A of positive density α
there is a subgroup of density αC contained in (AA−1)2, where C is an absolute
constant. Martin Nitsche (Karlsruhe) explained how to prove property (T) for
Aut(Fn), with the use of a computer for n low and without for n large enough.
Luca Sabatini (Belfast) showed that some results on diameter and expansion in
Cayley graphs with random generating sets can be appropriately generalized to
the setting of Schreier graphs as well. Katrin Tent (Münster) presented the main
ideas of the proof that the free Burnside group B(n,m) is infinite for n ≥ 557 odd.

The workshop provided an inspiring environment in which the main speakers
interacted with each other and with the younger audience, and stimulated discus-
sion that resulted in a lot of open questions from the participants. We felt that
the frontiers of the main lines of research on the topic of the workshop have been
nicely presented to a potentially interested audience, and hope that in the future
the event develops into a flurry of new ideas, results, and meetings.

Acknowledgement: The MFO and the workshop organizers would like to thank the
Oberwolfach Foundation for supporting the participation of Subham Bhakta with
the Oberwolfach Foundation Fellowship at the MFO.
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Abstracts

Sofic approximations and geometric property (T)

Vadim Alekseev

(joint work with Stefan Drigalla)

In the recent years, there has been substantial activity connecting graph theory
and group theory via the concept of a metric approximation of an infinite group
by finite objects (groups or graphs), particularly around sofic groups. This lead
to numerous results which connect approximation properties of the group (for
instance, amenability, Haagerup property) in terms of geometric properties of its
approximations (e.g. hyperfiniteness, coarse embeddability into Hilbert space of a
graph sequence). More precisely, we have the following results:

Theorem 1 ([1, Theorem 1.1]). Let Γ be a sofic group, X a sofic approximation
of Γ, and X be the space of graphs constructed from X . Then:

(1) If X has property A then Γ is amenable;
(2) If X admits an asymptotic coarse embedding into Hilbert space, then Γ is

a-T-menable;
(3) If X has boundary geometric property (T) then Γ has property (T).

The philosophy of this result is exactly that interesting analytic properties of
discrete groups are in some sense testable on a sofic approximation, but how these
properties connect with the measures on the sofic boundary action as well as with
their graph theoretic counterparts is yet to be fully understood, and it leads to
the following question: to which extent do the converse statements to the one
of Theorem 1 hold? In the case where the sofic approximation is coming from a
sequence of finite quotients for a residually finite groups, the converses were known
to hold true [2, 3, 4, 5], but as sofic approximations can be perturbed on sets of
small density, it is easy to see that the converse implications can not hold “on the
nose”.

The question in the amenable case was partly answered by Tom Kaiser in [7]
by introducing property almost-A which means that after throwing out asymptot-
ically negligible pieces of a graph sequence one obtains a sequence with property
A. Together with Leonardo Biz we were able to prove the following analogous
statement in the a-T-menable setting:

Theorem 2 ([6, Theorem C]). Let X = {Xi}i∈N be a sequence of finite graphs with
bounded degree and X the related space of graphs. If the coarse boundary groupoid
(∂G(X), µω) is a measurably a-T-menable for every non-principal ultrafilter ω ∈
∂βN, then, for every ε > 0, there exist {Zi}i∈N ⊂ {Xi}i∈N such that lim

i→∞
µi(Zi) ≤

ε and {Xi\Zi}i∈N is asymptotically coarsely embeddable into a Hilbert space H
when equipped with the same metric on X.

This left the case of property (T) open. By the result of Gábor Kun, every
sofic approximation of a property (T) group is asymptotically equivalent to an
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expander sequence, but in view of the above one would expect a stronger result
here, namely that it should be asymptotically equivalent to a space with geometric
property (T). This is indeed our main new result with Stefan Drigalla:

Theorem 3. Let X be a space of graphs having almost boundary (T). Then there
is a space of graphs X ′ which is approximately isomorphic to X and has geometric
property (T).

Here, almost boundary (T) is a condition which ensures spectral gap of the
Laplacian of the graphs on a measure 1 subset of the Stone-Čech boundary of
X . In particular, it is automatically satisfied for every sofic approximation of a
property (T) group. As a consequence, we obtain the following result, completing
the picture of converses to 1:

Theorem 4. Let Γ be a finitely generated sofic group. The following are equiva-
lent:

(1) Γ has property (T),
(2) every sofic approximation of Γ has almost boundary (T),
(3) there is a sofic approximation of Γ with geometric property (T).
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Shadowing of actions of hyperbolic groups on their boundaries

Michal Doucha

Shadowing, also known as the pseudo-orbit tracing property, is a fundamental
dynamical notion having its origins in smooth dynamics in the study of hyperbolic
systems. A ε-pseudo-orbit of a homeomorphism f : X → X on a compact metric
space X , for some ε > 0, is a sequence (xn)n∈Z ⊆ X such that for every n ∈ Z,
f(xn) is in a ε-neighborhood of xn+1. A homeomorphism has the shadowing if each
pseudo-orbit stays close to a true orbit; typical examples are uniformly hyperbolic
dynamical systems.
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The theory of shadowing has been eventually generalized to actions of more
general groups (see [8])). Let a countable group G act continuously on a compact
metric space X . Let S ⊆ G be finite and let δ > 0. A sequence (xg)g∈G is a
(S, δ)-pseudo-orbit if for every g ∈ G and s ∈ S, d(sxg , xsg) < δ. The action of G
on X has the shadowing if for every ε > 0 there are a finite set S ⊆ G and δ > 0
such that for every (S, δ)-pseudo-orbit (xg)g∈G there exists x ∈ X so that for all
g ∈ G we have d(gx, xg) < ε.

There are now a number of examples of group actions with the shadowing. For
instance, Osipov and Tikhomirov in [8] show that an action of a finitely generated
nilpotent group has the shadowing if and only if at least one element of the group
acts expansively with the shadowing. Meyerovitch proves that expansive principal
algebraic actions of countable groups have the shadowing, see [7]. Chung and Lee
show that a subshift over a general countable group has the shadowing if and only
if it is of finite type (see [1]) generalizing the result of Walters for the integer actions
(see [9]). In general, subshifts of finite type approximate in a sense every action
of a finitely generated group on a compact metrizable space with the shadowing,
see [4, 3].

The following is our main result.

Theorem. Let G be a hyperbolic group and denote by ∂G its Gromov boundary.
Then the canonical action of G on ∂G has the shadowing.

Let us mention some interesting consequences. Let G be a countable group
and X a compact metric space. A continuous action α : G × X → X is called
topologically stable if for every ε > 0 there exists an open neighborhood U of α
in the space of all actions of G on X (this space can be identified with a closed
subset of Homeo(X)G) such that for every action β ∈ U there exists a continuous
map h : X → X such that

• h intertwines between β and α, i.e. for every x ∈ X and g ∈ G, h(β(g, x)) =
α(g, h(x));

• supx∈X d(x, h(x)) ≤ ε.

Since expansive actions of finitely generated groups on compact metric spaces with
the shadowing are topologically stable (see [9, 1]) and the canonical action of a
hyperbolic group on its boundary is expansive (see [2, Chapter 3]), we recover the
following recent results of Mann, Manning and Mann, Manning, Weisman.

Corollary[5, 6]. Let G be a hyperbolic group. Then the canonical action of G on
∂G is topologically stable.
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Growth for special generating sets in high rank

Sean Eberhard

The well-known conjecture of Babai predicts that Cayley graphs of simple groups
have polylogarithmic diameter uniformly in the choice of generating set. This is
now known for simple groups of Lie type of bounded rank, but it is still wide open
for high-rank groups. For example, for An, the state of the art is still the 2014
result of Helfgott and Seress [10] that

diam(An) ≪ expO((log n)4 log logn),

i.e., quasipolynomial in log |An|. For classical groups the situation is even worse.
The purpose of this short course is to consider the diameter with respect to gen-

erating sets containing “something special”. We consider two particular meanings
of “special”: either “small support” or “random”. We are particularly interested
in random elements, which simply means we choose generators at random and
hope to prove results with some probability estimate 1 − o(1). In other words,
while Babai’s conjecture strictly interpretated is a conjecture about diameters in
the “worst case”, we are now considering diameters in the “typical case”. As ever,
the case of symmetric and alternating groups is better studied and better under-
stood. Our approach is to review what is known in this case and then see what
analogues there are for classical groups if any.

The following table gives a representative sample of what is known for diameters
of G = Sn or An with respect to a generating set X containing something special.

If X contains... diam(G;X) ≪ Reference

a 3-cycle n4 folklore

x 6= 1, |supp(x)| ≤ 0.33n n8+o(1) Babai–Beals–Seress, 2004 [1]
x 6= 1, |supp(x)| ≤ 0.63n n78 Bamberg–Gill–Hayes–Helfgott

–Seress–Spiga, 2012 [3]

two random elements n7+o(1) Babai–Hayes, 2004 [2]

n3+o(1) Schlage-Puchta, 2012 [13]

n2+o(1) Helfgott–Seress–Zuk, 2015 [11]
three random elements n2 log n Eberhard–Jezernik, 2022 [5]
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Now let us turn to classical groups, say G = SLn(q). Note that |G| ≈ qn
2

, so
ideally we want diameter bounds of the form

(log |G|)O(1) = (n log q)O(1),

i.e., polynomial in n and log q. We will generally assume q is small (think q = 2,
at least to begin with), so the goal is “polynomial in n” (just like for Sn).

The most important special kinds of elements in the symmetric group are el-
ements of small support: transpositions, 3-cycles, etc. The closest analogues in
classical groups are elements of small degree, where we define deg(g) to be the rank
of g − 1. This quantity measures how close g is to being trivial. A transvection
is an element of SLn(q) of degree 1. Transvections are present in SLn(q), SUn(q),
and Sp2n(q), but not in Ωε

n(q). The elements of minimal degree in Ωε
n(q) (long

root elements) have degree 2.
The following table summarizes the state of the art for special generating sets

in classical groups.

If X contains... diam(G;X) ≪ Restrictions Reference

a transvection (q log n)O(1) SL, q = p Halasi, 2020 [9]
q odd, q 6= 9, 81 Garonzi–Halasi–Somlai, 2023 [7]
any q Eberhard, 2024 [4]

qO(1) random Eberhard–Jezernik, 2022 [5]
3 random q ≪ 1, not Ω Eberhard, 2024 [4]

These results are all proved by combining (in varying amounts) only a few basic
ingredients:

(0) the trivial diameter bound (i.e., diameter ≤ number of vertices),
(1) a random commutator argument (to shrink supports),
(2) the “xyi trick” (to make a few random elements look like more),
(3) character bounds,
(4) spectral gaps for Schreier graphs.

The trivial diameter bound is used on suitable Schreier graphs, e.g., the Schreier
graph for Sn acting on 3-cycles by conjugation. Here we rely on the fact that
the symmetric group has comparatively small conjugacy classes. The random
commutator argument is based on the observation that two elements of Sn of
small support tend to have commutators of even smaller support. Neither of these
facts seems to have a useful analogue for classical groups.

The “xyi” trick is the idea that, if x and y are independent uniform random
elements of a group G, the elements xyi (0 ≤ i < L) behave in some ways like
many independent uniform elements. Obviously this is not strictly true, but it is
true that each element xyi is uniformly distributed, and if we can show that the
elements xyi and xyj are pairwise approximately uniform with respect to suitable
events then we may be able to use the second moment method. This idea was first
proposed by Babai–Beals–Seress [1] and implemented by Babai–Hayes [2].

The “xw trick” is more general, and also useful for classical groups. The idea
is that if we have even more generators, say k + 1 generators x0, . . . , xk, then we
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can consider not only the words x0x
i
1 by also the words x0w(x1, . . . , xk) for any

word w in k letters. If k ≥ 2 we have exponentially words w, so this trick is
exponentially more powerful. Here is a precise statement, based on characters.
Let G be a finite group. Let C ⊂ G be a normal subset of density δ = |C|/|G|. Let
x0 ∈ G be uniformly random and let x1, . . . , xk ∈ G be fixed. Let Bk(L) ⊂ Fk be
the ball of radius L in the free group Fk. Let

E =
⋂

w∈Bk(L)

{x0w(x1, . . . , xk) /∈ C}

be the event that x0w(x1, . . . , xk) fails to be in C for every word w of length at
most L. Then

Prob(E) ≤ 1

δ|Bk(L)|
+ δ−1 max

16=χ∈Irr(G)
16=w∈Bk(2L)

|χ(w(x1, . . . , xk))|
χ(1)

.

The message is that if we want to show that some x0w(x1, . . . , xk) lies in C with
high probability, it suffices to (a) choose k and L so that |Bk(L)| (which is 2L+1
if k = 1, and ≈ (k−1)L if k > 1) is much larger than δ−1, and (b) bound character
ratios χ(w)/χ(1).

Now let us consider bounding character ratios χ(w)/χ(1). Here w is a fixed word
in k variables x1, . . . , xk of length at most L, and ideally we wish to show that
|χ(w)|/χ(1) is very small with high probability. The character bound of Larsen
and Shalev [12] states that, for χ ∈ Irr(Sn),

|χ(σ)| ≤ χ(1)1−
log(n/f)
2 log n +o(1),

where f = max(fix(σ), 1). For classical groups we rely on recent technology of
Guralnick, Larsen, and Tiep [8]. For g ∈ GLn(q), let supp(g) denote the minimum
rank of g−λ as λ ranges over the algebraic closure of Fq. Then the GLT character
bound implies that there exists δ > 0 such that if g ∈ G = SLn(q) (or another
classical group) and |supp(g)| ≥ (1− δ)n then

|χ(g)| ≤ χ(1)1/2.

for any irreducible character χ of G.
To apply these character bounds, we need to know that short words in random

generators never have small support. To this end the following tail bounds are
proved in this course.

(1) Let G = Sn and 1 6= w ∈ Bk(L). Let x1, . . . , xk ∈ G be uniformly random.
Then

Prob(supp(w(x1, . . . , xk)) ≤ n− f) ≤ 2 exp(−cf/L2).

(2) Let G = SLn(q) and 1 6= w ∈ Bk(L). Let x1, . . . , xk ∈ G be uniformly
random. Let δ > 0. Assume that L < δ2n/20. Then

Prob(supp(w(x1, . . . , xk)) ≤ n− δn) ≤ 2q−cδ2n2/L.
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Finally, all being well, the outcome of the above arguments is some element g ∈
G of minimal support (or minimal degree, for a classical group) and of short length
in the generators. To finish we use the fact that the Schreier graph defined by
conjugation on 3-cycles (for An) or transvections (for SL) is actually an expander
graph. For the symmetric group with two random generators this is a result of
Friedman–Joux–Roichman–Stern–Tillich (1996) [6]. For classical groups, it turns
out a similar argument works, but we must assume that the number of random
generators is at least qC for a certain constant C. This argument is sketched in
the final lecture of this course. (Another approach for classical groups altogether
is based on the “combinatorics of transvections”: we do not have time to cover
this unfortunately.)

We end by describing some related open problems.

(Q1) What is the length of the shortest “approximate law” on Sn? Here an
approximate law is a word w ∈ F2 such that w(x, y) = 1 for 99% of all pairs
x, y ∈ Sn. The bound (1) above with f = n shows that an approximate law
must have length at least cn1/2 for some c > 0. I can prove an upper bound
of n3+o(1).

(Q2) What is the length of the shortest approximate law on SLn(2)? To put it in
a particularly provocative way, is there an approximate law of length ≤ 10n?

(Q3) Let Γk(q) denote the Schreier graph of G = SLn(q) acting on Fn
q \ {0} with

k random generators x1, . . . , xk ∈ G. In these lectures we sketch the proof
that Γk(2) is an expander with high probability provided k ≥ 32. Show that
Γ2(2) is an expander with high probability.
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The group large sieve method and Hilbert’s irreducibility theorem

Daniele Garzoni

(joint work with Lior Bary-Soroker)

Let f(t1, . . . , tr, X) ∈ Q[t1, . . . , tr, X ] be irreducible. Hilbert’s irreducibility the-
orem (HIT), proved by Hilbert in 1892, asserts that there exist t1, . . . , tr ∈ Q
such that f(t1, . . . , tr, X) ∈ Q[X ] is irreducible. In words, we can specialize the
variables t1, . . . , tr to rational numbers, preserving irreducibility. In fact, we can
also find specializations that preserve the Galois group, which is to say, such that
the Galois group of f(t1, . . . , tr, X) over Q is isomorphic to the Galois group of
f(t1, . . . , tr, X) over Q(t1, . . . , tr).

HIT has had various applications, notably to the inverse Galois problem. In-
deed, given HIT, in order to realize a group as Galois group over Q, it is sufficient
to realize it over Q(t1, . . . , tr), which is a more tractable problem that can be
attacked with geometric methods.

Indeed, the connection of HIT with geometry is apparent and very fruitful: We
can view f as a cover π of finite degree of the affine space An over Q, and we are
asking for rational points t = (t1, . . . , tr) ∈ An(Q) such that the fiber π−1(t) is
irreducible.

When HIT is stated in this way, the generalization to arbitrary algebraic vari-
eties is inescapable. A variety V over a field K is said to have the Hilbert Property
(HP) if it satisfies a suitable analogue of HIT, where An is replaced by V and Q
by K. (In fact, the precise definition involves a finite number of covers π1, . . . , πt,
and we are seeking points having irreducible fibers in each πi.)

It is then an important problem to understand which varieties have HP. One of
the main motivations is the following conjecture of Colliot-Thélène: Every unira-
tional variety over Q has HP. If this were true, then the Inverse Galois Problem
would have a positive solution.

One of the main examples of varieties (overQ, say) having the HP are connected
linear algebraic groups. This was proved by Sansuc [13].

Abelian varieties fail to have HP for an “obvious” reason, namely, because they
admit isogenies. (In fact, this is obvious only if we are aware of the Mordell–Weyl
theorem.) What if we exclude isogenies to begin with? Slightly more precisely,
we only seek points with irreducible fibers under ramified covers. One defines the
so-called Weak Hilbert Property (WHP) accordingly. This point of view, pioneered
by Zannier [14] and Corvaja–Zannier [5] (though apparent also in earlier work of
Dèbes [6]), has been subject of intense research in recent years.
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If we restrict to ramified covers, then abelian varieties behave nicely (see [4]).
What is more, one can obtain much stronger statements even for varieties having
the usual HP, such as linear algebraic groups.

For example, a theorem of Corvaja [3] and Liu [9] asserts the following: If G is
a connected linear algebraic group over Q, Γ is a finitely generated Zariski dense
subgroup of G(Q) and π : V → G is a finite ramified cover of G, then there exists
a coset C of a finite-index subgroup of Γ such that the fiber π−1(g) is irreducible
for every g ∈ C. In particular, we can find “many” points of Γ with irreducible
fiber. This fails if π is allowed to be an isogeny.

In joint work with Lior Bary-Soroker [1], we made this quantitative, showing
that “almost all” points of Γ have irreducible fiber. We achieved this using random
walks. Specifically, with notation as in the previous paragraph, we showed that,
provided G/Ru(G) is trivial or semisimple, if we perform a random walk on any
Cayley graph of Γ (with respect to a finite generating set), then almost surely we
will only hit points whose fiber is irreducible. In fact, we also allow Γ to be an
arithmetic group in positive characteristic, which is a setting of intrinsic interest
in this context.

This way of counting is motivated and inspired by work of Rivin [12], Lubotzky–
Meiri [10], Lubotzky–Rosenzweig [11], Jouve–Kowalski–Zywina [7]. Indeed, work
by Jouve–Kowalski–Zywina on the characteristic polynomial of random elements
of Γ can be seen as a special cases of the above result. Also, the case where G is
semisimple and simply connected was addressed already by Kowalski [8].

The assumption that G/Ru(G) is trivial or semisimple is used crucially in the
proof, as we will briefly explain below. In particular, groups such as tori or gen-
eral linear groups are excluded by our analysis, though the statement could (and
should) be true in these cases as well. There is some recent progress on tori, see
[2].

The method of proof uses the so-called group large sieve method. This is mo-
tivated by the classical large sieve of analytic number theory. In the context of
groups it was used by Rivin, and developed by Kowalski and Lubotzky–Meiri. We
are given a finitely generated group Γ and a subset Z of Γ, and we want to show
that Z is “small”. Here we define “small” in the following way: If we fix a finite
generating set of Γ and we perform a random walk on the corresponding Cayley
graph, then at the n-th step the probability that we hit elements of Z decays to
zero as n → ∞, preferably exponentially fast. The large sieve gives conditions on
Γ (more precisely, on a certain sequence of finite quotients of Γ) that ensure this
conclusion.

This method has been applied in a variety of problems [7, 10, 11]. The main
examples of groups Γ satisfying the assumptions of the large sieve come from
arithmetic: They are Zariski dense subgroups of semisimple simply connected lin-
ear algebraic groups over number fields. Here deep theorems, such as the strong
approximation theorem and the superstrong approximation theorem, play a cru-
cial role. (Strong approximation is really the reason why in [1] we require that
G/Ru(G) be semisimple. The fact that it might not be simply connected can be
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amended via a geometric argument involving ramification. Moreover, in the afore-
mentioned [2], we somehow remedy the failure of strong approximation for tori by
invoking the Generalized Riemann Hypothesis.)

It is fair to say that these are essentially the only examples of groups to which
the large sieve has been applied. In certain problems one can start with more
general situations and reduce the problems to such groups (for example the so-
called Lubotzky’s alternative serves for this purpose).

In all previous applications of the large sieve, it has always been assumed that
the aforementioned finite quotients of Γ be uniform expanders. However, it is not
hard to remove this assumption, in order to make it amenable to more general
contexts (notably, to arithmetic groups in positive characteristic), see [1]. There is
a price to pay: One gets a decay in n which is polynomial rather than exponential
(and this is really the best one can hope for.)

Further relaxations of the large sieve are easily obtained. For example, it has
always been required that the finite quotients grow polynomially in size. One can
remove this assumption, at the expense of getting some slower decay in n in the
conclusion. Giving up on this condition is potentially very useful, as there are
many groups satisfying the assumptions of the “relaxed” large sieve which do not
come from arithmetic, so that applications in these novel contexts are possible.
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Strategies for growth in permutation groups

Harald Andrés Helfgott

Consider the question of bounding the diameter of any Cayley graph Γ(G,A) of a
finite, simple, non-abelian group G. Here A ⊂ G is any set generating G, and the
diameter is just the smallest k such that every element of G can be written as a
product a1a2 · · · aℓ, ℓ ≤ k, ai ∈ A ∪ A−1, where A−1 = {g−1 : g ∈ A}.

In the case of linear algebraic groups G, the dependence of bounds on the rank
r of G was very poor until recently. Now it is exponential on r: for G < GLN

an untwisted classical group over a field F with char(F) > N , and any subset
A ⊂ G(F) that generates G(F),

(1) diam(Γ(G(F), A)) ≤ (log |G(F)|)O(r4) (see [1], [3]).

The technical assumptions here (untwisted group, high characteristic, etc.) are
made mainly for simplicity; no doubt they will be removed eventually. What is
more interesting is to compare this bound with what is believed to hold for all finite,
simple, non-abelian groups G (Babai’s conjecture: diam(Γ(G,A)) ≪ (log |G|)O(1))
and above all with what is already known for the alternating group Altn: for
G = Altn and any set A ⊂ G generating G,

(2) diam(Γ(G,A)) ≤ (log |G|)O((log n)3 log logn) (see [5])

Here n (or rather n− 1) should be seen analogous to the rank r. In other words,
we should aim at an improvement on (1) with log r in place of r; only then would
we have a true analogue to (2).

One immediate objection (by those in the know) is that results such as (1) were
originally corollaries of “product theorems” of the following kind:

(3) |A3| ≥ |A|1+δ for A ⊂ G generating G

(where Ak := {a1a2 · · ·ak : a1, . . . , ak} and |S| denotes the number of elements of
a set S) and that it is known that such a theorem cannot hold in general with δ
larger than 1/n or so, by a counterexample due to Pyber. However, exactly the
same is true in Altn, and yet this was not a major obstacle to the proof of (2).

Our goal in this Oberwolfach minicourse was to go in detail over a newer proof
of (2) – essentially as in [4], but streamlining the proof as much as possible, while
keeping in mind some questions. How can Symn and Altn serve as a model for
SLn? What ideas from the proof may carry over to linear algebraic groups? What
notions from existing proofs for permutation groups and linear algebraic groups
can be put in a common framework?

1. There are some basic lemmas on growth that we can use whether we study
linear algebraic groups or permutation groups, or any other group: growth in a
subgroup implies growth in the group (by about the same factor), growth in a quo-
tient implies growth in the group, etc. Many of them rest on an easy generalization
of the orbit-stabilizer theorem (a result on actions familiar from any first course
in group theory) to sets and their orbits (in place of subgroups and their orbits).
The basic idea here can be applied elsewhere, in different ways, whether we speak
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of SLn or Altn: basic results in group theory whose proofs have a concrete or
algorithmic flavor can often have their proofs “relaxed” so as to make the results
to hold for arbitrary subsets A of a group G, rather than just for subgroups of G.
(Typically, some instances of A are replaced by powers Ak, and some equalities
become bounds.)

2. An idea that is productive both for linear algebraic groups and for Altn
(but in different ways) is that of quasitransversality. In the case of linear algebraic
groups G, the meaning is very simple: given an irreducible proper subvariety
V ⊂ G of dimension > 0 and a set of generators A of G(F), we can find g ∈ A such

that gV g−1 6= V ; we then study the varieties V gV g−1 (of dimension > dim(V ))
and V ∩ gV g−1 (of dimension < dim(V )). In the case of permutation groups such
as Altn, we can consider, instead of V , sets whose orbits (not necessarily for the
most obvious action) are constrained in some sense. It is in this way that we can
prove a relaxation of Babai’s splitting lemma, for instance.

3. At least one further basic tool in the proof of 2 has an obvious analogue for
linear algebraic groups G(F): (pointwise) stabilizer chains

A > A(α1) > A(α1,α2) > . . .

correspond to chains of stabilizers of flags. The latter do not play a role in current
proofs of results such as (1), though it is natural to guess that they ought to
be helpful, at least for the growth of relatively large subsets A (say, A > |F|);
otherwise it is not a priori clear how to obtain even two distinct elements of
A ⊂ SLn(F) stabilizing the same point in An(F) (though see our later discussion
on lower bounds of intersections of the form AA−1 ∩ C(g)).

4. Stepping back a little: linear algebraic groups G(F) and permutation groups
such as Altn are defined in terms of actions – a geometrically meaningful action
on affine space An(F)), in one case, and an action on a small, unstructured set
[n] = {1, 2, . . . , n}, in the other. The strategies followed to prove 1 and 2 always
reflect this similarity and this distinction: the action of G = SLn (say) on An

and on itself gives rise to subvarieties of G, whereas the fact that [n] is small
compared to Altn implies immediately that a random walk on any Schreier graph
for the action Altn y [n] has small mixing time, and so probabilistic arguments
are possible and in fact extremely fruitful. Is there a way to use probabilistic
arguments to prove results on growth in linear algebraic groups? Small mixing
time will no longer come for free.

Here are some challenges. First of all, let us try to do more or less the opposite
of a transfer of a proof for Altn to linear algebraic groups.

Problem 1. Let G = SLn (say), F a finite field. Let A ⊂ G(F) be a set gener-
ating G(F). Assume A contains all permutation matrices. Prove a good bound on
diam(Γ(G(F), A)). (Perhaps ≪ (log |G(F)|)O(1)?)

We can of course assume just that A contains a couple of permutation matrices
that generate Alt(n) or Sym(n) (as subgroups of SLn) and then apply (2).
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Problem 2. Let G be a linear algebraic group of rank r defined over a finite
field F. Let g ∈ G(F) be a regular semisimple element. Let A ⊂ G(F) be a set
generating G(F). Prove that

(4) |A ∩ Cl(g)| ≤ C|Ak|1− r
dim G .

for C, k as small as possible. (Is C, k = rO(1) doable?)

Here Cl(g) is the conjugacy class of g in G(F) (or in G(F), if you prefer). We

currently know how to prove (4) with C, k = O(r)O(r2). The proof does use
the fact that Cl(g) is a conjugacy class and not some other variety; otherwise,
the dependence of C on r would be worse – that is, it is in fact worse in the
best available bounds for intersections A ∩ V of subsets A ⊂ G(F) with arbitrary
varieties V [2]. The motivation is that results of the form (4) are crucial in proofs of
diameter bounds, product theorems, etc.: by the (relaxed) orbit-stabilizer theorem,
(4) implies immediately a lower bound on the intersection |AA−1 ∩ C(g)|, where
C(g) is the centralizer of g.

Let us conclude by pointing out that there are tools that are not currently being
used in the proofs of results such as the above and probably should be. For instance
- can character theory be used to address Problem 2? It also seems reasonable
to venture that buildings ought to play a role in better bounds on growth and
diameter in linear algebraic groups.
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Kazhdan Property T, Kazhdan constants and expansion in
finite groups

Martin Kassabov

In this minicourse I will introduce Kazhdan property T and go over several meth-
ods for proving that a group has property T, which produce estimates for the
relevant Kazhdan constants. Even though property T comes from representa-
tion theory and computing the Kazhdan constants requires deep understanding of
all unitary representations of a group, it is possible to obtain surprisingly good
estimates almost without any representation theory of “large groups”. As an ap-
plication I will go over several constructions of expanding generating sets in finite
simple groups.
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The outline of the minicourse is as follows.

1) Kazhdan Property T and
2) Dependance of Kazhdan constants on generating sets
3) Estimate of Kazhdan constants for SLn(Z)
4) Construction of expanding generating sets in finite simple groups of un-

bounded rank
5) Construction of expanding generating sets in alternating groups

Polynomial Bogolyubov in finite simple groups of Lie type

Noam Lifshitz

(joint work with Shai Evra, Guy Kindler, Nathan Linzey)

A well known open problem in additive combinatorics concerns showing that if
A ⊆ Fn

p , then 2A − 2A contains an affine subspace of codimension Op(log(1/α)).
Such a result is known as a polynomial Bogolyubov result because the density of

the subspace |H|
pn is polynomial in the density |A|

pn of A. In the talk we discuss a

nonabelian analogue for finite simple groups. We show that In my joint work with
Evra, Kindler, and Lindzey [2] we show that if G is a finite simple group of Lie
type, then AA−1AA−1 contains a subgroup whose density is polynomial in the
density of A. Our work builds upon previous works due to Evra, Kindler, and
Lifshitz [1] for special linear groups, Keevash–Lifshitz [3] for alternating groups,
and the bounded rank case due to Nikolov and Pyber [5].

We present an approach based on the theory of Boolean functions. The study
of the Boolean cube was initiated by Kahn, Kalai, and Linial [4] in 1988 and
the theory that they developed has found remarkable applications across various
domains. One of the central tools in the study of the Boolean cube is the hy-
percontractivity theorem of Bonami, Gross, and Beckner. For a function on the
Boolean cube {−1, 1}n, its Lp-norms are given by

‖f‖pp = Ex∼{−1,1}n [|f(x)|p]
Bonami’s lemma which is a well knon consequence of the hypercontractractivity

theorem states that if f is a polynomial of degree ≤ d on the Boolean cube, and
r > 2 then ‖f‖r ≤

√
r − 1‖f‖2. Kahn, Kalai and Linial used Bonami’s lemma

to prove their so called ‘level d inequality’. Every function f : {−1, 1}n → R

has a Fourier expansion f =
∑

S⊆[n] f̂(S)χS , where χS =
∏

i∈S xi. The level d

inequality states that if f : {−1, 1}n → {0, 1} is the indicator of a set of density

α ≤ 1/2, then
∑

|S|=d |f̂(S)|2 ≤ α2 logd(1/α). When α is small, this is almost a

quadratic improvement over the trivial L2 bound, which states that the sum of the
squares of the Fourier coefficients is ‖f‖22 = α. It turns out that the KKL theorem
has a representation theoretic interpretation. The hyperoctahedral group Sn ⋊
Z/2Z)n acts on the Boolean cube and the spaces span{χS}|S|=d are the irreducible
consituents of the module of real valued functions on the Boolean cube. The KKL
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theorem can then be reinterpreted as stating that most of the Fourier mass of a
Boolean function is concentrated on the high dimensional representations.

The more classical approach of Sarnak–Xue, Gowers, and Nikolov–Pyber relies
on the minimal dimension of an irreducible representation to obtain rowth results.
When trying to adapt this approach to the high rank regime it fails due to the
existence of low dimensional representations. We overcome this by proving level-d
type inequalities showing that the Fourier mass of {0, 1}-valued functions on finite
simple groups are concentrated on the high dimensional representations.
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On property (T) for Aut(Fn)

Martin Nitsche

Ten years ago, Ozawa (cf. [6]) proposed a new method to prove property (T) for a
given finitely generated group Γ. The centerpiece of this method is to decompose
a certain element ∆ ∈ R[Γ] of the group algebra into a sum of squares, a task
that can be formulated as an optimization problem and solved with the computer
(see [3]). The most important application of this method, to date, is the proof
that the automorphism groups of the free groups, Aut(Fn), have property (T) for
n ≥ 4 ([2, 1, 4]).

The main goal of this talk was to reinterpret Ozawa’s method in a more geo-
metrical way. The starting point for this is the following theorem of Shalom.

Theorem 1 (Shalom). A finitely generated group Γ has property (T) exactly if
its reduced cohomology H̄1(Γ, π) is trivial for any unitary representation π, i.e. if
Γ does not allow any non-trivial harmonic 1-cocycle.

If we fix a finite symmetric generating set S = S−1 for Γ, then a non-trivial
harmonic 1-cocycle (for some unitary representation π) is a map c : Γ → H of Γ
into some Hilbert space, such that

(1) ‖c(γ1)−c(γ2)‖ = ‖c(γγ1)−c(γγ2)‖ for all γ, γ1, γ2 ∈ Γ (cocycle condition)

(2) the “curvature” κ(c) :=
∥

∥c(1)− 1/|S| ·∑s∈S c(s)
∥

∥

2
is 0

(3) c 6= 0, we can assume that c is scaled such that
∑

s∈S ‖c(s)− c(1)‖2 = 1
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To prove property (T) for a group Γ, one has to show that any non-trivial
cocycle on Γ must have positive curvature. The key point now is that it suffices to
look at partial cocycles cT : T → H that are defined only on a finite subset T ⊂ Γ.
If one could find a partial harmonic cocycle for every finite subset T , one could
obtain a full harmonic cocycle as a limit.

Since T is finite, the task of finding a lower bound for the curvature of a partial
cocycle, under the constraints of Conditions 1 and 3, can be given to the computer.
We get the following result (see [4]).

Theorem 2. Let Γ be a finitely generated group with solvable word problem. If
Γ has no non-trivial harmonic cocycles, the computer can (theoretically) always
prove it by bounding the curvature of partially defined cocycles from below.

The optimization problem of providing a lower bound for the curvature of a
partially defined cocycle is equivalent to the optimization problem introduced by
Ozawa and Netzer–Thom for proving property (T).

Unfortunately, the computer proofs for property (T) allow little insight into
what makes them succeed for a particular group. But for Γ = Aut(Fn), if one
allows n to be very big, one can also lead Conditions 1,2,3 to a contradiction by
a purely human argument (see [5]). In the second part of the talk I sketched an
example for how letting n → ∞ can be exploited in such an argument.
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From Cayley graphs to Schreier graphs

Luca Sabatini

(joint work with Daniele Dona)

Let G be a finite group acting transitively on the set Ω, and let S ⊆ G. The
Schreier graph Γ = Sch(G 	 Ω, S) is the graph with vertex set V (Γ) = Ω, and
the edges are the pairs (ω, ωs) for every ω ∈ Ω and s ∈ S. This is a natural
generalization of Cayley graphs, which arise when G is a regular permutation
group on Ω. The general setting is much wilder, as there is no natural action of
G on V (Γ) that preserves the graph structure. For example, it is well known that
every regular graph of even degree is a Schreier graph over Sym(Ω) [6].

In this seminar, we will discuss about the diameter of random Schreier graphs,
where by random we mean that the action of G on Ω is fixed, and a set S ⊆ G of
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size k is chosen uniformly at random. The value of k is allowed to depend on the
size of Ω, which in turn is going to infinity (as well as the size of G). Of course,
the results that we obtain depend on the particular group G and action, and on
how large k is with respect to the cardinalities of G and Ω. For particularly “nice”
actions, very strong results were obtained in [5, 4]. For example, for Sym(Ω) in
its natural action, and for any fixed k ≥ 2, the symmetrization of the resulting
Schreier graph is a 2k-regular expander graph with high probability. The situation
turns out to be very different for a generic “bad” action: even just to obtain a
connected graph, it is necessary for k to grow with the size of Ω. For instance, in
the case of a Cayley graph, k has to be at least the minimal number of generators
of G. In 1996, Roichman [7] proved the following theorem concerning the diameter
of random Cayley graphs.

Theorem 1 (Roichman). Fix ε > 0, and let G be any group of cardinality n. Let
k = ⌊(logn)1+ε⌋, and let S ⊆ G be a random multiset of k elements. Then

diam( Cay(G,S) ) ≤ 2

ε

logn

log k

with high probability.

Theorem 1 is sharp in three ways. First, it is clear that a bound of the type
O(logk n) is the best possible for the diameter of k-regular graph of size n. Second,
it is not hard to see ([7, Proposition 5.7]) that, for an abelian group of order n,
(logn)1+ε elements are required to get such a bound O(logk n). Third, even the
constant 2

ε is close to the best possible.
It is natural to ask what happens in the realm of Schreier graphs [9]. It is

remarkable that Roichman obtains his theorem starting from results on the mixing
time of random random walks (see also [3]). The proofs of such results use many
distinguished properties of Cayley graphs, in particular their vertex-transitivity.
It follows that these ideas cannot be used in the general framework. In a recent
work with D. Dona [2], we provide a direct combinatorial proof of the following:

Theorem 2. For every ε > 0 there exists C such that the following holds. Let Ω
be a set of cardinality n, and let G be any finite group acting transitively on Ω. Let
k be an integer such that (log n)1+ε ≤ k ≤ n, and let A ⊆ G be a random multiset
of k elements. Then

diam( Sch(G 	 Ω, A) ) ≤ C
logn

log k

with high probability.

Our proof is based on the more modern philosophy of growth in groups. It
consists of two main steps, which we explain in the two Propositions below. For
ω ∈ Ω, S ⊆ G, and t ∈ N, we write sphS(ω, t) to denote the sphere of radius t
in Sch(G 	 Ω, S) and centered in ω. Moreover, we write S ∼ µG(k) to say that
S ⊆ G is a random multiset of size k chosen with the uniform distribution.

Proposition 3 (Initial growth). For every ε > 0 there exists C > 0 such that the
following holds. Let G be a finite group acting transitively on a set Ω with |Ω| = n,
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and let k be any integer such that (logn)1+ε ≤ k ≤ n. Fix ω ∈ Ω. Then, for
A ∼ µG(k), we have

|sphA (ω, ⌊C logk n⌋)| ≥ n

kε/2

with high probability.

Once we have a large sphere around a fixed point, we bound the diameter with
the help of a few more random elements.

Proposition 4 (Filling the set). Suppose that, for some ω ∈ Ω, for A ∼ µG(k)

we have |ωAt | ≥ |Ω|/kδ with high probability. Then, for B ∼ µG(k+4kδ logn), we
have

diam(Sch(G 	 Ω, B)) ≤ 2t+ 2

with high probability.

To use Proposition 4 in a effective way, it is important to notice that k is
comparable to k+4kδ logn, when k is larger than (logn)1+ε and δ is small enough
with respect to ε.

We conclude the seminar with another question related to the diameter of Cay-
ley graphs. We remark that a positive answer to Question 5 would imply the
famous Babai’s conjecture.

Question 5. Fix c ∈ N, and let G = 〈S〉 be a finite group. Suppose that |S| ≤ c
and diam(G,S) ≤ (log |G|)c. Does there exist c′(c) such that diamworst(G) ≤
(log |G|)c′?

Essentially, we are asking if polylogarithmic diameter is a group property. For
comparison, it has been proved by Breuillard and Tointon [1] (see also [8]) that if

G = 〈S〉 and diam(G,S) ≥ |G|ε for some ε > 0, then diam(G,S′) ≥ |G|ε′(ε,|S|)/|S′|

for every S′ ⊆ G.
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Burnside groups of odd exponent and iterated small cancellation

Katrin Tent

(joint work with Agatha Atkarskaya, Eliyahu Rips)

Recall that a group G acts sharply n-transitively on a set X if for any two n-tuples
(x1, . . . , xn), (y1, . . . , yn) with xi 6= xj , yi 6= yj , 1 ≤ i 6= j ≤ n there is a unique
g ∈ G such that gxi = yi, i = 1, . . . n.

For infinite groups it follows from results of Tits and Jordan that we have n ≤ 3
and since for n = 1 any group can act regularly on itself, the cases to consider are
n = 2 and 3.

It is easy to see that the set of involutions J in a sharply 2-transitive group is
non-empty and forms a single conjugacy class. It follows that either involutions
do not have fixed points or there is a G-equivariant bijection between the set of
involutions and the underlying set X . In this case, the group G acts sharply 2-
transitively on the set J and in particular, all translations, i.e. products of two
distinct involutions, have the same order, either a prime p or infinite. Accordingly
these groups are said to have characteristic p or 0. A long-standing conjecture
stated that all sharply 2-transitive groups are of the form K.K∗ for some (near-)
field K. In particular such groups contain a regular (and abelian) normal subgroup
and are called split. For several classes of groups like e.g. finite groups, locally
compact connected groups, groups having characteristic 3 and for subgroups of
GL(n,K) where charK 6= 2 the conjecture has been shown to hold by Zassenhaus,
Tits, Kerby and Glasner-Gulko, respectively.

The first counterexamples were constructed by Rips, Segev and the speaker in
[5]. In these examples, involutions have no fixed points and the set of translations
does not necessarily form a conjugacy class. In a variant, this construction was
extended in [7] to yield sharply 3-transitive groups in which the sharply 2-transitive
point stabilizers are non-split (and their involutions have no fixed points). Then
[6] presented the first examples of a group G acting sharply 2-transitively on the
set of involutions. The construction proceeds via iterated HNN-extensions making
translations conjugate. In this process translations are forced to have infinite
order and in light of the result that sharply 2-transitive groups in characteristic
3 split, it is a particularly challenging problem to construct examples in positive
characteristic.

In order to do so, one needs to take quotients of the HNN-extensions forcing
translations to have a fixed finite order, much as is the case in the construction of
free Burnside groups.

Recall that 1902, Burnside asked whether any finitely generated torsion group
is finite. This has long been refuted, in particular by Adian and Novikov [1]. More
precisely, Adian and Novikov show that the free Burnside group

B(n,m) = Fm/〈〈wn : w ∈ Fm〉〉
is infinite for m ≥ 2 and odd n ≥ 665. However, the proof is based on a large
number of induction assumptions and quite hard to follow. Shorter and more
geometric proofs were obtained e.g. by Ol’shanski and Gromov at the expense of
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obtaining a very large lower bound for the exponent in order for the group to be
infinite.

In order to construct sharply 2-transitive groups of positive characteristic, we
needed a more managable approach. Hence we prove in [4]

Theorem: The free Burnside group B(n,m) is infinite for m ≥ 2 and odd
n ≥ 557.

The proof proceeds via iterated small cancellation theory, noting that for non-
commuting reduced words x, y ∈ Fm and any exponent k ∈ N the length of a
common prefix of xk, yk is bounded in length by |x| + |y|. This yields a suitable
small cancellation condition on power words, and hence on the relators for B(n,m).
Our proof proceeds roughly by ranking words in the free group by their nesting
depth of power words, i.e. we fix a nesting constant τ = 15 and put (roughly)
rk(x) = 1 if |x| = 1. Then inductively we set rk(x) ≥ k+1 if x cyclically contains
a subword uτ with rk(u) ≥ k.

Now let Nk denote the normal subgroup of Fm generated by xn with rk(x) ≤ k.
Then B(n,m) = Fm/

⋃

Nk. Our proof proceeds by induction on the rank, con-
structing a section cank : Fm/Nk −→ Fm. This section cank thus defines for any
element of Fm a canonical form of rank k, that is a canonical representative for
its coset modulo Nk.

The idea is that we consider a word w ∈ Fm which is already the canonical
representative in rank k−1. Now we decide for subwords of w of the form ud with
rk(u) = k whether or not to turn them, i.e. to replace them by their complement
in un. By the small cancellation condition for power words mentioned above the
overlap between two different power subwords of the same rank is bounded by
exponent τ + 1. Hence we can bound the ’damage’ that turning one such power
subword creates on a neighbouring power subword.

If d is sufficiently small, we will never replace ud and if d is sufficiently close
to n we will always turn this occurrence. In all other cases, we use a certification
sequence to decide whether or not to turn an occurrence. This ensures that we
consider the whole word before making a turn which might have a ripple effect
throughout the word.

Since words are finite strings, it is clear that the canonical forms stabilize for
every word at some stage and this stage is defined as the canonical form of the
given word. Also, by the size of the exponent, it is clear that words not containing
cubic subwords are already in canonical form. The free Burnside group can now be
considered as the collection of all canonical forms (with a suitable multiplication).
Since there are infinitely many cube-free words in two generators, it follows that
indeed the free Burnside groups B(n,m) are infinite for odd n ≥ 557 and m ≥ 2.

We can now apply this to the construction of sharply 2-transitive groups in
positive characteristic. Using results by Coulon, we already showed in [2] that
sharply 2-transitive groups exist in all sufficiently large positive characteristics.
However, the lower bound on the cahracteristic in these examples is extremely
large and we thus expect to produce examples with a more reasonable lower bound
on the characterstic using the methods from [4].
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The existence of sharply 3-transitive groups with non-split point-stabilizers is
still very much unresolved except for the examples in [7].
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Character bounds for finite simple groups and applications

Pham Huu Tiep

In this minicourse, we discuss recent results, obtained in joint work of the speaker
with various collaborators, on the following problem:

Problem 1. Let G be a finite almost quasisimple group, g ∈ Gr Z(G).

(A) Find an explicit, and as small as possible, 0 < γ = γ(g) < 1, such that

|χ(g)|
χ(1)

≤ γ, ∀ χ ∈ Irr(G) with χ(1) > 1.

(B) Find an explicit, and as small as possible, 0 < α = α(g) < 1, such that

|χ(g)| ≤ χ(1)α, ∀ χ ∈ Irr(G).

Results on Problem 1 will be useful for a number of applications, which usually
involve using Frobenius character formula, and include

(i) Ore conjecture [17] and Waring-type problems [9, 13, 14] for finite simple
groups;

(ii) Random generation of simple groups, and representation varieties Hom(Γ, G),
where G = Sn or G = G(F) for a simple algebraic group G, and Γ a Fuchsian
group, see e.g. [20];

(iii) Random walks on Cayley graphs and McKay graphs [21, 22];
(iv) Thompson conjecture [11, Problem 9.24], [1]: If G is a finite non-abelian

simple group, then G = C2 for some conjugacy class C of G.
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The most general result on Problem 1(A), which combines results of Gluck [5],
Gluck and Magaard [6], and Guralnick and the author [10], says that one can
take γ = 79/80, unless E(G) = An. The first significant result on Problem 1(B)
for symmetric groups was obtained by Fomin and Lulov [4]. It has been vastly
generalized by Larsen and Shalev [12].

Our main focus will be on finite classical groups G = Cl(V ), where V = Fn
q .

For any g ∈ Cl(V ), the support supp(g) is defined to be.

supp(g) = inf
λ∈Fq

codimKer(g − λ · 1Ṽ ),

where Ṽ = V ⊗ Fq. A result of Larsen, Shalev, and the author [13] states that,
for any classical group G = Cl(V ), any irreducible character 1G 6= χ ∈ Irr(G), and
any g ∈ G

(1)
|χ(g)|
χ(1)

≤ 1

q
√

supp(g)/481
.

Relying on Howe’s duality and Deligne-Lusztig theory, an approach towards
Problem 1(B) using the concept of character level has been developed in [7], [8].
This approach applies particularly well in the situation where either χ(1) or |CG(g)|
is not too large, compared to |G| logarithmically.

Theorem 2. [7, 8] For any 0 < ε < 1, there is δ = δ(ε) > 0 such that the following
statement holds. For any finite quasisimple group G of Lie type, and for any g ∈ G
with |CG(g)| ≤ |G|δ,

|χ(g)| ≤ χ(1)ε

for all χ ∈ Irr(G).

For instance, if G = SLn(q) or SUn(q), and ε = 8/9, one can take δ = 1/12.
Building on [2, 7, 8, 25], we have recently proved the following uniform exponen-

tial character bound, which works for all elements in all finite quasisimple groups
of Lie type:

Theorem 3. [15] There exists an explicit constant c > 0 such that for all finite
quasisimple groups G of Lie type, all χ ∈ Irr(G), and all g ∈ G, we have

|χ(g)|/χ(1) ≤ χ(1)−c
log |gG|
log |G| .

Up to the factor c, the exponent in Theorem 3 is optimal.
Theorem 3 has a number of consequences.

• A linear upgrade of the LST-bound (1):

|χ(g)/χ(1)| ≤ q−σ·supp(g)

for a uniform constant σ > 0.
• One can “swap” ε and δ in Theorem 2 :
For any 0 < δ < 1, there is 0 < ε = ε(δ) > 0 such that the following
statement holds. For any finite quasisimple group G of Lie type, and for
any g ∈ G with |CG(g)| ≤ |G|δ,

|χ(g)| ≤ χ(1)ε
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for all χ ∈ Irr(G).
• Lubotzky’s conjecture (also of Shalev) [23, 24]: If G is simple of Lie type,
then the mixing time of the random walk on the Cayley graph Γ(G, gG) is of
the same magnitude as its diameter; and it is Ω(n/supp(g)) if G = Cln(q).

The diameter part was established by [19].
• Liebeck-Shalev-Tiep’s conjecture [20]: If G is simple and α a faithful char-
acter of G, then the diameter of the McKay graph M(G,α) is

Ω(log |G|/ logα∗(1)),

where α∗ is the sum of distinct irreducible constituents of α.

It was proved in [3] that Thompson’s conjecture holds for all finite simple groups
of Lie type over fields of at least 9 elements. Relying on Theorem 3 (and [17, 18]),
we are able to make further progress on Thompson’s conjecture:

Theorem 4. [15], [16] Suppose G = Cln(q) is a simple classical group of large
enough rank. If G = PΩǫ

n(q) and 2 ∤ q, assume in addition that 2|n and ǫ =
(−1)n(q−1)/4. Then Thompson’s conjecture holds for G, i.e. G = C2 for some
conjugacy class C in G.
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Contributions to the open problem session

Questions by G. Arzhantseva.

An expander is an infinite sequence of finite graphs of uniformly bounded degree,
size tending to infinity, and the Cheeger isoperimetric constant being uniformly
isolated from zero.

Answering an old open question, Kassabov constructed, for each n, a bounded
size generating set Xn of the symmetric group Sym(n) such that the sequence of
Cayley graphs Cay(Sym(n), Xn) is an expander [13]. Equivalently, such generat-
ing sets exist for the alternating groups Alt(n).

Using a strengthening of Kazhdan’s property (T), V. Lafforgue provided the
first examples of super-expanders, that is, expanders with respect to all uniformly
convex Banach spaces [16]. A combinatorial construction of super-expanders was
given in [18]. Every super-expander is an expander. Whether or not the converse
holds is a major open question.

Question 1. Can the sequence of symmetric groups Sym(n) be made a super-
expander using a bounded number of generators?
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Equivalently, the question arises for the sequence of alternating groups Alt(n).

A famous open problem asks whether or not two almost commuting matrices are
necessarily close to two commuting matrices. This is considered independently of
the matrix sizes and the interpretation of “almost” and “close” is with respect to
a given norm. The topic goes back to von Neumann (1929). There are numerious
positive and negative answers in the literature, depending on the type of matrices,
the matrix norm, and the underlying field.

In [2], we proved that almost commuting permutations are close to commuting
permutations with respect to the normalised Hamming distance. We consider a
finite number of permutations (two or more). The result is interesting in the
setting of sofic approximations of groups. In [3], we have introduced linear sofic
approximations. These are approximations by general linear groups GLn(F ), over
a field F , equipped with the normalised rank metric drk(A,B) := 1

n rank (A − B)
for A,B ∈ GLn(F ).

Question 2. Are almost commuting invertible matrices close to commuting in-
vertible matrices in the normalised rank metric?

For k = C, a partial positive answer was obtained in [9].

The following well-known question is relevant to the present workshop.

Question 3. [20, Question 12.64, A. Yu. Ol’shanskĭı] Is it true that for a given
number k ≥ 2 and for any (prime) number n, there exists a number N = N(k, n)
such that every finite group with generators A = {a1, . . . , ak} has exponent ≤ n if
(x1 · · ·xN )n = 1 for any x1, . . . , xN ∈ A ∪ {1}?

For given k and n, a negative answer implies, for example, the infiniteness of
the free Burnside group B(k, n), and a positive answer, in the case of sufficiently
large n, gives, for example, an opportunity to find a hyperbolic group which is not
residually finite (and in this group a hyperbolic subgroup of finite index which has
no proper subgroups of finite index).

An affirmative answer is known for finite solvable groups and the general case
of all finite groups reduces to the case of finite simple groups [17].

Questions by J. Bajpai.

Definition 1. A subgroup Γ of GLn(Z) is called thin if Γ is of infinite index
in G(Z) and arithmetic if Γ is of finite index in G(Z), where G is the Zariski
closure of Γ.

For the past 15 years, thin groups have been a central object of research interest
due to their connection with number theory, geometry, and computer science.

Following Tits alternative, we know that every finitely generated linear group
which is not virtually solvable contains a free group on two generators. Classically,
ping-pong lemma has been an important tool to construct free groups.

For n ≥ 3, let A,B be any pair of matrices inside GLn(Z), and a subgroup
Γ = 〈A,B〉 generated by the matrices A and B. It has been a challenging task
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to determine the thinness of subgroup Γ, which to date, heavily relies on ping-
pong lemma. That is, showing freeness by using ping-pong is the first major step
towards thinness of Γ. Hence, the following is one of the most natural question to
ask.

Question 4. Can we classify all pairs of matrices A,B in GLn(Z), for n ≥ 3,
such that the subgroup Γ = 〈A,B〉 ⊂ G(Z) is thin?

In the last 12 years, lot of progress have been made in this direction. For quick
introduction of the subject and recent developments, see [14, 1, 11].

For a special family of groups, namely hypergeometric groups Γ = Γ(f, g) =
〈A,B〉 ⊂ Sp2n(Z), n ≥ 1, where f, g ∈ Z[x] be the polynomials of degree 2n and
A and B are the companion matrices of the polynomials f respectively g, a nice
criteria has been provided in [19] to determine arithmeticity of such Γ, that is, if
highest nonzero coefficient of f − g is either ±1 or ±2, then Γ is arithmetic inside
Sp2n. However, there is no such criteria available to determine thinness of these
groups. In this direction, some progress has been done when the zariski closure G
of Γ is Sp4, Sp6, and O5, see [8, 10, 5, 6].

Questions by S. Eberhard.

There were four questions posed by Eberhard. Three of them are marked as (Q1),
(Q2), (Q3) in his extended abstract. The fourth one goes as follows.

Question 5. What is the length of the shortest law on Sn? It is known that a
law must have length at least 2n − 1, and at most exp(O((log n)4 log logn)) by
Kozma–Thom [15].

Questions by H. Helfgott.

There were two questions posed by Helfgott, going as follows.

Question 6. Can we prove better bounds for diam(G) with G = SLn(Fq), say

(log |G|)(log n)O(1)

?

The second question arises in the context of [12, §2.5]. Let G = Sym(n), k ≤ n,
Σ = {1, . . . , k}, O = {k + 1, . . . , n}, and A ⊂ GΣ with A|Σ = Sym(Σ). Note that
〈(A3)(Σ)〉 = 〈A〉(Σ) by Schreier. Assume that 〈A〉(Σ) is non-trivial, it can be equal
to Sym(O) if desired.

Question 7. What can we say about (Ak100

)(Σ)? Is it big? What about its struc-

ture? If it is not big, is (Ak100

)(O) non-trivial?

Questions by M. Kassabov.

There were two questions posed by Kassabov, going as follows.

Question 8. Does a random generating set in Alt(n) give expanders?

Question 9. For what function f(n) does there exist an expanding generating set
in Alt(n)f(n)?



Mini-Workshop: Growth and Expansion in Groups 1037

By [7, Cor. 15] there is such a set for f(n) < exp((logn)k) for any fixed k.
There is no such set for f(n) ≫ n!, because the minimal number of generators is
unbounded. It may be possible to have f(n) ≈ exp(n0.001).

A bottle of wine has been promised as reward for answering “yes” to Question 8
and “it must be f(n) . exp((logn)k)” to Question 9.

Questions by N. Lifshitz.

There was one question posed by Lifshitz, going as follows.
In 1985, Babai and Sós [4] defined a set A ⊆ G to be product-free if xy /∈ A for

every x, y ∈ A. For instance, if G acts on a set X , for any x ∈ X and I ⊆ X the
set kx,I = {g ∈ G : g(x) ∈ I, g(I) ⊆ X \ I} is product-free.

Question 10. If the minimal dimension of an irreducible representation of G is
D > 1, is there some X of size DO(1) such that a set kx,I is largest among the
product-free sets of G?

Questions by L. Sabatini.

There was one question posed by Sabatini. It is marked as Question 5 in his
extended abstract.
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