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Abstract. Data science is a field of major importance for science and tech-
nology nowadays and poses a large variety of challenging mathematical ques-
tions. The area of applied harmonic analysis has a significant impact on such
problems by providing methodologies both for theoretical questions and for
a wide range of applications in machine learning, as well as in in signal and
image processing. Building on the success of four previous workshops on
applied harmonic analysis in 2012, 2015, 2018, 2021, this workshop focused
on several exciting directions, such as mathematical theory of deep learning,
phase-retrieval time-frequency analysis, and sampling on t-design curves, and
discussed open problems in the field.
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Introduction by the Organizers

The workshop Applied Harmonic Analysis and Data Processing was organized
by Ingrid Daubechies, Gitta Kutyniok, and Holger Rauhut. This meeting was
attended by 47 participants – thereof 18 female – from 10 countries; 46 of them
participated in person and 1 participated virtually.

Data Science encompasses signal and image processing, data processing and
machine learning. On the one hand it is a field of major importance for science,
technology and society and on the other hand it is a very rich source of a large
variety of mathematical problems. A major challenge is the ever increasing size
and complexity of data and the demand for efficient computational methods for
processing such data. Mathematical understanding of the underlying structures
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and algorithms is highly desired. One of the key drivers for a large number of big
data applications is deep learning. Despite its huge success, however, mathematical
theory for major aspects of deep learning is still in its beginnings. Although highly
exciting mathematical results could be shown in the recent years, many open
problems remain. This means that the amount of new mathematical challenges
arising from the need of data analysis and information processing is enormous, with
their solution requiring fundamentally new ideas and approaches, with significant
consequences in the practical applications.

This workshop was a concerted effort to bring together researchers with various
backgrounds, including harmonic analysis, optimization, probability theory, ap-
proximation theory, machine learning, computer science and electrical engineering.
The workshop featured 30 talks, thereof several longer overview talks. Moreover,
a session of short presentations of 3 minutes took place on Monday, which we call
the 3 Minutes of Fame (following Andy Warhol’s concept of 15 minutes of fame).
This session has meanwhile become a tradition and has proven to be an efficient
vehicle to ensure that every participant had the possibility to advertise her/his
research. At the same time it is very entertaining for the audience. A large part
of the attendees participated, ranging from PhD students to renowned professors,
contributing to the success of this session.

Let us mention a few highlights from the program:

• Mathematical theory of deep learning. A number of talks reported
on progress – but also on intriguing open questions – on the theory of deep
learning. Helmut Boelcskei talked about the relation of fuzzy logic with
neural networks. Mahdi Soltanolkotabi and Carola Schönlieb reported on
mathematical progress on the use of deep learning methods for the solu-
tion of inverse problems. Kathlén Kohn presented algebraic properties on
linear convolutional neural networks. Rémi Gribonval showed new results
on conservation laws for gradient flows, in particular for those related to
learning neural networks. Sophie Langer talked about the role of statistics
in deep learning. Rima Alaifari presented mathematical approaches for
the use of neural networks in solving PDEs, leading to the notion of neu-
ral operators. Anna Shalova gave insights on the effect of random noise
on the implicit bias of stochastic gradient descent for learning overparam-
eterized models. Claire Boyer presented an overview on physics-informed
neural networks. Noam Razin talked about implicit bias of policy gradi-
ent methods arising in reinforcement learning. Felix Voigtländer presented
new results on sampling numbers of the Fourier-analytic Barron space of-
ten arising in the theoretical analysis of neural networks. Interestingly, as
a main proof technique he used compressive sensing approaches. Mariia
Seleznova talked about new insights as well as limitation of the kernel
regime of deep neural networks.

• Harmonic analysis approaches for signal and image processing.
Karlheinz Gröchenig presented the concept of sampling on t-design curves
approximating integrals over the sphere via line integrals (modeling sensors
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that move in time). He gave interesting constructions of t-design curves
and presented a number of open problems. Philipp Grohs reported on
stability and sampling results for phase retrieval, i.e., for reconstruction
from time-frequency samples without phase information. Interestingly,
this problem behaves very differently from reconstruction when the phase-
information is present. Monika Dörfler talked about quantum harmonic
analysis and how it can be used to augment data sets in a meaningful way.

• Mathalchemy. In an entertaining evening lecture, Ingrid Daubechies
talked about her experience in creating an impressive artwork – called
Mathalchemy – together with 23 other mathematicians and artists. It il-
lustrates a huge number of mathematical concepts and results in a very
creative installation combining many pieces of art made with a large num-
ber of techniques. This art installation is displayed at changing museums.

As a cultural activity, on Thursday evening, a concert in the great music room
of MFO was organized where the group had the pleasure of listening to musical
contributions at very high level by several participants ranging from Jazz to pop
and classical music.

The organizers would like to take the opportunity to thank MFO for providing
support and a very inspiring environment for the workshop.
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Richard Küng (joint with Hsin-Yuan (Robert) Huang, Giacomo Torlai,
Victor Albert and John Preskill)
Learning to predict ground state properties of gapped Hamiltonians . . . . . 1185

Sophie Langer (joint with Johannes Schmidt-Hieber, Harro Walk,
Alina Braun, Michael Kohler)
Understanding deep learning: Beyond feedforward neural networks in
nonparametric regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185

Rima Alaifari (joint with Francesca Bartolucci, Emmanuel de Bézenac,
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Abstracts

Ten open problems involving matrices, randomness, graphs, and more

Afonso S. Bandeira

Below I list ten conjectures that I mentioned in my talk at Oberwolfach, and an
extra open problem I thought about while there. The statements are at times
stated in a slightly informal way for easiness and brevity of exposition, formal
statements are available in the references. After each group of related conjectures,
a short description with references is given. For the sake of brevity, the reference
list focuses on recent work (that itself cites other relevant references). Some refer-
ences are forthcoming, but should hopefully be available in the next few months.
As always, spending time at Oberwolfach was a true pleasure, full of stimulating
lectures and mathematical discussions.

Conjecture 1 (Matrix Spencer). There exists a positive universal constant C
such that, for all positive integers n, and all choices of n self-adjoint n × n real
matrices A1, . . . , An satisfying, for all i ∈ [n], ‖Ai‖ ≤ 1 (where ‖ · ‖ denotes the
spectral norm) the following holds

min
ε∈{±1}

∥
∥
∥
∥
∥

n∑

i=1

εiAi

∥
∥
∥
∥
∥
≤ C

√
n.

Conjecture 2 (Group Spencer). Let G be a finite group of size n. Conjecture 1
holds in the particular case in which A1, . . . , An are the n×n matrices correspond-
ing to the regular representation of G.

Bansal, Jiang, and Meka [7] showed Conjecture 1 for low-rank matrices and
Bandeira, Kunisky, Mixon, Zeng [5] showed Conjecture 2 for simple groups.

Conjecture 3 (Kikuchi Spectral Threshold). Given r, ℓ, n positive integers satis-
fying n ≫ ℓ ≥ r

2 and r even (r and ℓ will be fixed and n → ∞). For each S ⊂ [n]
with |S| = r let ZS ∼ N (0, 1), and all independent. Let λ ≥ 0 and let M be the
(
n
ℓ

)
×
(
n
ℓ

)
matrix (with rows and columns indexed by subsets I ⊂ [n] of size ℓ) given

by

M(λ)I,J =

{
λ+ ZI∆J if |I∆J | = r,

0 otherwise,

where I∆J = (I ∪ J) \ (I ∩ J) denotes the symmetric difference.

Let λ♮r,ℓ denote the threshold at which eigenvalues “pop-out” of the spectrum of

M(λ): in other words λ♮r,ℓ is the real number such that, for all λ > λ♮r,ℓ, there

exists ε > 0 such that EλmaxM(λ) > (1 + ε + o(1))EλmaxM(0), where o(1) is a
term that goes to zero as n→ ∞.

For fixed r, we have

n
r
4 λ♮r,ℓ → 0

as ℓ→ ∞ (note that this is after one has taken n→ ∞).
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This conjecture was posed in the context of understanding the behavior of the
Kikuchi methods for Tensor PCA in the work of Wein, El Alaoui, and Moore [11].
The threshold has been characterized for even r and 1

2r ≤ ℓ < 3
4r in forthcom-

ing work of Bandeira, Cipolloni, Schröder, and van Handel [3], which is a follow
up to the matrix concentration inequalities of Bandeira, Boedihardjo, and van
Handel [2].

Conjecture 4 (Tensor Non-Commutative Khintchine I). Let r ≥ 2 an integer
and p ≥ 2 a real. Let T1, . . . , Tn be d⊗r symmetric tensors (invariant under
permutation of the r indices, r = 2 corresponds to symmetric matrices). Given
such a tensor T , we define

‖T ‖Ip = sup
v∈Rd:‖v‖p=1

∣
∣
〈
v⊗r, T

〉∣
∣ ,

for p = 2 this is known as the injective norm. Let σ2
AW =

∑n
i=1 ‖Ti‖2Ip .

The following bound holds:

E

∥
∥
∥
∥
∥

n∑

i=1

giTi

∥
∥
∥
∥
∥
Ip

≤ Cr,p polylogr,p(d) d
1
2− 1

p σAW ,

where gi are iid standard gaussian random variables, and Cr,p is a constant de-
pending on r and p, but not on d or n (and the polylogarithmic factor may also
depend on r, p).

Conjecture 5 (Tensor Non-Commutative Khintchine II). A weaker version of
Conjecture 4, where under the same conditions the weaker bound is conjectured

E

∥
∥
∥
∥
∥

n∑

i=1

giTi

∥
∥
∥
∥
∥
Ip

≤ Cr,p polylogr,p(d) d
1
2− 1

max{p,r} σAW .

Forthcoming work Bandeira, Gopi, Jiang, Lucca, and Rothvoss [4] establishes

the weaker upper bound ≤ Cr,p polylogr,p(d) d
1
2− 1

max{p,2r} σAW . We note also that

the factor d
1
2− 1

p is necessary. This question is tightly connected to the question
of proving Non-Commutative Khintchine Inequality without the use of operator
theoretic tools. We refer to [4] for more on this.

Conjecture 6 (Ellipsoid Problem - Existence). Fix any 0 < ε < 1. For d and n
positive integers such that

n ≤ (1 − ε)
d2

4
,

let x1, . . . , xn be iid N (0, Id×d) random vectors in R
d. We have

Prob
[
∃Σ � 0 such that, ∀i∈[n], x

T
i Σxi = 1

]
→ 1,

as n, d→ ∞.

Conjecture 7 (Ellipsoid Problem - Non-existence). Fix any ε > 0. For d and n
positive integers such that

n ≥ (1 + ε)
d2

4
,
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let x1, . . . , xn be iid N (0, Id×d) random vectors in Rd. We have

Prob
[
∃Σ � 0 such that, ∀i∈[n], x

T
i Σxi = 1

]
→ 0,

as n, d→ ∞.

There are known lower and upper bounds that are optimal up to a universal
constant. Furthermore, Conjectures 6 and 7 are known for an approximate version
of the problem, we point the reader to Maillard and Bandeira [9] and references
therein.

Conjecture 8 (Globally Synchronizing Regular Graphs). We say an n×n matrix
A is globally synchronizing if the only local minima of E : Sn−1 → R, parameterized
by θ ∈ [0, 2π[n and given by

E(θ) =
1

2

n∑

i,j=1

Aij (1 − cos(θi − θj)) ,

are the global minima corresponding to θi = c, ∀i. A graph G is said to be globally
synchronizing if its adjacency matrix is globally synchronizing.

A uniform random 3-regular graph is globally synchronizing with high probability
(probability going to 1 as n→ ∞).

Conjecture 9 (Global Synchrony with negative edges). Given any ε > 0, the
n× n random matrix A with zero diagonal and off-diagonal entries given by

Aij =

{
1 with probability 1

2 + δ
−1 with probability 1

2 − δ,

with δ ≥ (1 + ε)
√

logn
2n , is globally synchronizing with high probability (see Conjec-

ture 8).

Conjecture 10 (Density threshold for Global Synchrony). For any ε > 0, there
exists n > 0 and a graph G on n nodes such that the minimum degree of G is at
least

(
3
4 − ε

)
n and G is not globally synchronizing (See Conjecture 8).

Conjectures 8 and 10 are related to understanding spontaneous synchroniza-
tion of coupled oscillators under the Kuramoto model. Abdalla, Bandeira, Kass-
abov, Souza, Strogatz, and Townsend [1] have shown that random 600-regular
graphs are globally synchronizing with high probability. Kassabov, Strogatz, and
Townsend [8] showed an upper bound on the 3

4 threshold in 10. Conjecture 9
is motivated by understanding performance of the Burer-Monteiro approach for
inverse problems on graphs, a higher rank version of this conjecture is shown in
forthcoming work of McRae, Abdalla, Bandeira, and Boumal [10] but Conjecture 9
remains elusive.

An eleventh question: During the workshop, Radu Balan proposed a beautiful
question, that captured a lot of my (and my collaborators) attention for the whole
workshop. I couldn’t resist the opportunity to mention it here.
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Open Problem 11 (The Balan-Jiang Problem). Given a self-adjoint positive semi-
definite matrix A ∈ Cn×n, we define

γ+(A) = inf

{
p

∑

k=1

‖xk‖21 : x1, . . . , xp ∈ C
n, A =

p
∑

k=1

xkx
∗
k

}

.

Given n > 0, define

Cn = sup

{
γ+(A)

‖A‖(e,1)
: A ∈ C

n×n, A � 0, A 6= 0

}

,

where ‖ · ‖(e,1) denotes the entrywise ℓ1 norm. What is the asymptotic growth of
Cn?

During the workshop, Mixon, Steinerberger, and myself [6] showed that Cn ≥
c
√
n, for a universal constant c > 0. The best known upper bound is of order n.

See references within [6] for more on this question.

Acknowledgements. Thanks to Antoine Maillard, Kevin Lucca, Andrew McRae,
Dustin Mixon, Stefan Steinerberger, and Mariia Seleznova for going over an ear-
lier version of this manuscript, spotting many typos, and suggesting improvements.
Last but not least, thanks to all my collaborators with whom I have spent many
enjoyable hours thinking about these problems.
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Extracting formulae in many-valued logic from deep neural networks

Helmut Bölcskei

State-of-the-art deep neural networks exhibit impressive reasoning capabilities,
e.g. in mathematical tasks [1], program synthesis [2], and algorithmic reason-
ing [3]. This talk reports an attempt at systematically connecting neural networks
with mathematical logic. Specifically, we shall be interested in reading out logical
formulae from (trained) deep neural networks.

Let us first take a step back. Consider a neural network that realizes a map
f : [0, 1]n → [0, 1]. When the input and output variables take on two possible
values only, say 0 and 1, f reduces to a Boolean function and can hence be stud-
ied by means of Boolean algebra, see e.g. [4]. Boolean functions can be realized
by Boolean circuits [5]. The idea of using Boolean algebra to analyze and de-
sign Boolean circuits dates back to [6, 7] and most prominently to Shannon [8].
Specifically, this correspondence works as follows. Given a Boolean circuit, one
can deduce a Boolean algebraic expression that realizes the circuit’s input-output
relation. Conversely, for a given Boolean algebraic expression, it is possible to
specify a Boolean circuit whose input-output relation equals this expression.

The main aim of the research reported in this talk is to initiate the development
of a generalization of this correspondence from Boolean functions f : {0, 1}n →
{0, 1} to general functions f : [0, 1]n → [0, 1]. This immediately leads to the
following two questions:

(1) What is the logical system replacing Boolean logic?
(2) What is the counterpart of Boolean circuits?

As to the first question, we show that the theory of infinite-valued  Lukasiewicz
logic [9] provides a suitable framework for characterizing general (nonbinary) func-
tions f : [0, 1]n → [0, 1] from a logical perspective. With slight abuse of terminol-
ogy, we shall refer to infinite-valued  Lukasiewicz logic as many-valued (MV) logic.
Based on a fundamental result [10], which characterizes the class of truth functions
in MV logic—also called McNaughton functions—as continuous piecewise linear
functions with integer coefficients, we show that neural networks employing the
ReLU nonlinearity ρ(x) = max{0, x} and integer weights1 naturally implement
statements in MV logic. This answers the second question above by identifying
ReLU networks as the counterpart of Boolean circuits.

In practice, trained neural networks will, however, not exhibit integer weights,
unless this is explicitly enforced in the training process. Extensions of MV logic,
namely Rational  Lukasiewicz logic [11] and RL [12], have truth functions that are
again continuous piecewise linear, but with rational and real-valued coefficients,
respectively. Such functions are likewise naturally realized by ReLU networks, but
correspondingly with rational and real-valued weights.

Besides the conceptual contribution residing in the systematic development of
the connection between ReLU networks and MV logic along with its extensions, we

1By weights, we mean the entries of the weight matrices and bias vectors associated with the
network.
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also devise an algorithm for extracting logical formulae from (trained) ReLU net-
works with integer, rational, or real-valued weights. For pedagogical reasons and to
render the presentation more accessible, we first present the entire framework for
MV logic and ReLU networks with integer weights, and then provide extensions
to the rational and real case. In addition, we carry out a detailed comparison
between our algorithm and the only two constructive procedures for converting
McNaughton functions to their associated MV logical formulae available in the
literature [13, 14].

The overall philosophy of viewing ReLU networks as the circuit counterpart
of MV logic and its extensions is inspired by [15, 16, 17]. Specifically, Amato et
al. [15, 16] pointed out that neural networks, with the clipped ReLU (CReLU) non-
linearity σ(x) = min{1,max{0, x}} and rational weights, realize truth functions in
Rational  Lukasiewicz logic. Di Nola et al. [17] proved that CReLU networks with
real weights realize truth functions in RL logic. The universal correspondence be-
tween ReLU networks and MV logic as well as its extensions reported here along
with the algorithm for extracting logical formulae from ReLU networks appear to
be new.
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Deep learning for inverse problems: faster reconstruction, new
architectures, and dynamic feature learning

Mahdi Soltanolkotabi

This talk focuses on three interconnected themes. In the first part of the talk I
discussed our recent work on flash diffusion in [2]. Inverse problems arise in a
multitude of applications, where the goal is to recover a clean signal from noisy
and possibly (non)linear observations. The difficulty of a reconstruction problem
depends on multiple factors, such as the structure of the ground truth signal, the
severity of the degradation, the implicit bias of the reconstruction model and the
complex interactions between the above factors. This results in natural sample-by-
sample variation in the difficulty of a reconstruction task, which is often overlooked
by contemporary techniques. Recently, diffusion-based inverse problem solvers
have established new state-of-the-art in various reconstruction tasks. Our key
observation in this paper is that most existing solvers lack the ability to adapt
their compute power to the difficulty of the reconstruction task, resulting in long
inference times, subpar performance and wasteful resource allocation. We propose
a novel method that we call severity encoding, to estimate the degradation severity
of noisy, degraded signals in the latent space of an autoencoder. We show that the
estimated severity has strong correlation with the true corruption level and can
give useful hints at the difficulty of reconstruction problems on a sample-by-sample
basis. Furthermore, we propose a reconstruction method based on latent diffusion
models that leverages the predicted degradation severities to fine-tune the reverse
diffusion sampling trajectory and thus achieve sample-adaptive inference times.
We perform numerical experiments on both linear and nonlinear inverse problems
and demonstrate that our technique achieves performance comparable to state-of-
the-art diffusion-based techniques, with significant improvements in computational
efficiency.

In the second part I talked about our recent work on designing new architec-
tures for accelerated MRI reconstruction [1]. In accelerated MRI reconstruction,
the anatomy of a patient is recovered from a set of under-sampled and noisy mea-
surements. Deep learning approaches have been proven to be successful in solving
this ill-posed inverse problem and are capable of producing very high quality re-
constructions. However, current architectures heavily rely on convolutions, that
are content-independent and have difficulties modeling long-range dependencies in
images. Recently, Transformers, the workhorse of contemporary natural language
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processing, have emerged as powerful building blocks for a multitude of vision
tasks. These models split input images into non-overlapping patches, embed the
patches into lower-dimensional tokens and utilize a self-attention mechanism that
does not suffer from the aforementioned weaknesses of convolutional architectures.
However, Transformers incur extremely high compute and memory cost when 1)
the input image resolution is high and 2) when the image needs to be split into
a large number of patches to preserve fine detail information, both of which are
typical in low-level vision problems such as MRI reconstruction, having a com-
pounding effect. To tackle these challenges, we propose HUMUS-Net, a hybrid
architecture that combines the beneficial implicit bias and efficiency of convolu-
tions with the power of Transformer blocks in an unrolled and multi-scale network.
HUMUS-Net extracts high-resolution features via convolutional blocks and refines
low-resolution features via a novel Transformer-based multi-scale feature extrac-
tor. Features from both levels are then synthesized into a high-resolution output
reconstruction. Our network establishes new state of the art on the largest pub-
licly available MRI dataset, the fastMRI dataset. We further demonstrate the
performance of HUMUS-Net on two other popular MRI datasets and perform
fine-grained ablation studies to validate our design.

Finally, in the last part of the talk I discussed our recent work on feature learning
via gradient descent in [3]. We consider the problem of learning polynomials
with low-dimensional latent representation of the form f∗(x) = g(Ux), where U
maps from d to r dimensions with d ≫ r. When g is a degree g polynomial,
existing analysis using equivalence to kernel methods require n ≍ dp samples. Our
primary result is that gradient descent can learn the representation span(U), and
then perform a kernel method restricted to the span. This results in a sample
complexity of n ≍ d2r + drp. Finally, we show that the assumptions in our
algorithm is necessary by showing a correlational statistical query lower bound
of n ≍ dO(p) when the assumptions are violated.
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t-design curves and mobile sampling on the sphere

Karlheinz Gröchenig

(joint work with Martin Ehler, Clemens Karner)

A finite set Xt ⊆ Sd is a t-design (or Xt consists of t-design points), if for every
algebraic polynomial f in d+ 1 variables of (total) degree t one has

(1)
1

|Xt|
∑

x∈Xt

f(x) =

∫

Sd

f .

Using curves instead of points, one can define analogously the notion of a t-
design curve on the sphere Sd as follows [2]. A piecewise smooth curve γ : [0, 1] →
Sd with at most finitely many self intersections and and with arc length ℓ(γ) is
called a t-design curve in Sd, if the line integral integrates exactly all algebraic
polynomials in d+ 1 variables of degree t, i.e.,

(2)
1

ℓ(γ)

∫

γ

f =

∫

Sd

f .

Here
∫

γ f =
∫ 1

0 f(γ(s))|γ′(s)| ds and the arc length is ℓ(γ) =
∫

γ 1.

The definition is motivated by Martin Vetterli’s idea of mobile sampling [4].
Instead of using many fixed sensors to measure a physical field one might want
to use a single sensor and move it around, in other words, instead of sampling at
many points one should sample along a curve. Thus t-design curves can be seen
as a version of mobile sampling on the sphere.

Very little is known about t-design curves on the sphere. There are some ad
hoc constructions of t-design curves for t = 1, 2, 3, some necessary conditions on
the required length of t-design curves, and some existence results. We report on
our work [2].

A necessary condition is the following.

Theorem 1. Assume that a piecewise smooth, closed curve γ : [0, 1] → S
d satisfies

1

ℓ(γ)

∫

γ

f =

∫

Sd

f for all f ∈ Πt .

Then its length is bounded from below by

ℓ(γ) ≥ Cdt
d−1

with some constant Cd > 0 that may depend on the dimension d but is independent
of t and γ.

For comparison, the number of t-design points is bounded below by C′
dt

d for
some dimensional constant.

It was a longstanding open problem to prove the existence of t-design points
achieving this lower bound. Attempts in the 1990 showed the existence of t-design

points with O(td
3

) and then O(td
2

) points. The breakthrough result is due to A.
Bondarenko, D. Radchenko, and M. Viazhovska [1] who proved the existence of
t-design points of the conjectured order O(td).
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As for existence of t-design curves, we were able to use the result of Bondarenko,
Radchenko, and Viazhovska. For the 2-sphere our result is asymptotically optimal,
for higher-dimensional spheres the result corresponds to versions for t-design points
before [3].

Theorem 2. In S2 there exists a sequence of t-design curves (γt)t∈N
with length

ℓ(γt) ≍ t.

In view of Theorem 1 this result is asymptotically optimal. The result for
higher-dimensional spheres is obtained by induction on the dimension, and in this
process one looses the asymptotic optimality.

Theorem 3. In Sd for d ≥ 3 there exists a sequence of t-design curves (γt)t∈N
,

such that ℓ(γt) . td(d−1)/2.

Both results are based on the existence of asymptotically optimal t-design points
from [1]. The technical part involves some harmonic analysis and geometry on the
sphere, and in particular a lemma of Samko [5] that connects point evaluations to
line integrals along circles. The final step is the construction of a closed curve and
requires some elementary graph theory, such as the existence of Euler paths.

A natural idea would be to start with a set of t-design points and to connect
them along geodesic arcs. By choosing a suitable sequence of points, one could
construct a curve of the desired length O(td−1) and then hope that miraculously
this curve also yields exact integration, i.e., is a t-design curve. Unfortunately,
this idea fails, as already the examples for t = 2 and t = 3 show. In fact, this
was our first idea, and this is the audience’s guess in every talk and every dis-
cussion. However, this procedure yields curves satisfying Marcinkiewicz-Zygmund
Inequalities.

Theorem 4. Let Xt ⊆ Sd be a sequence of t-design points as constructed in [1].
Then there exists a closed, piecewise smooth curve γt with vertices at Xt of length
ℓ(γt) ≍ td−1, such that

(3) A

∫

Sd

|f |2 ≤ 1

ℓ(γt)

∫

γt

|f |2 ≤ B

∫

Sd

|f |2

for all polynomials of degree t.

This result is still sufficient for many purposes, e.g., it implies a formula for
exact integration and yields sufficiently dense curves.

The investigation and construction of t-design curves is only at the beginning
and, for the authors, a big, new research project. There are many open problems
and many variations to be looked at.
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Convolutions, groups, polynomials in neural networks

Kathlén Kohn

(joint work with Guido Montúfar, Anna-Laura Sattelberger, Vahid Shahverdi,
Matthew Trager)

Feedforward neural networks are parametrized families of functions. For a fixed
network architecture, its weights and biases are the trainable parameters θ ∈ RN .
Each layer of the network is a function fi,θ that depends on the parameters θ. A
network with L layers composes L such functions via the network parametrization
map

µ : RN −→ M, θ 7−→ fL,θ ◦ . . . ◦ f2,θ ◦ f1,θ.(1)

The space of functions M = im(µ) that the network architecture parametrizes is
often called the neuromanifold of the network, although it is not a smooth manifold
(it essentially always has singularities).

Given training data D, supervised learning aims to minimize the loss

LD : RN µ−→ M ℓD−→ R.(2)

Typically, a version of gradient descent is used to find parameters θ ∈ R
N such

that µ(θ) ∈ M is a “best” function approximating the training data D.
This optimization problem has a deeply geometric nature since the loss LD is

a composition of the network parametrization map µ and the loss ℓD on function
space. This raises the questions:
• How does the network architecture affect the geometry of the neuromanifold M?
• How does the geometry of M impact the training of the network?

1. Impact of convolutional architecture

We begin by investigating how the neuromanifold and the training of the net-
work are affected by changing a linear network from a dense architecture to a
convolutional architecture.

In a linear dense network, the functions in (1) are arbitrary linear maps fi,θ :
Rki−1 → Rki . The parameters θ ∈ RkL×kL−1 × . . .× Rk1×k0 are the entries of the
matrices representing fL,θ, . . . , f1,θ. The neuromanifold is M = {W ∈ R

kL×k0 |
rank(W ) ≤ min(k0, . . . , kL)}. This is an algebraic variety.
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Next, we consider linear convolutional networks (LCNs) with one channel and
convolutions on one-dimensional signals. In this case, each function fi,θ is a linear
map, given by a Toeplitz matrix of stride s of the form

Tw,s =








w0 · · · ws · · · wk−1

w0 · · · wk−1

. . .
. . .

w0 · · · wk−1







.

Here, w ∈ Rk is the filter of the convolution; all other entries in Tw,s are 0. The
composition of convolutions fL,θ ◦ . . . ◦ f1,θ is also a convolution: it has stride
s1 · · · sL and its filter can be computed via sparse polynomial factorization as
follows. Denoting by w(i) ∈ Rki the filter of the convolution fi,θ in the i-th layer
and by si its stride, we identify the convolution with the polynomial

Pi(x) := w
(i)
0 + w

(i)
1 xti + . . .+ w

(i)
ki−1(xti)ki−1, where ti := s1 · s2 · · · si−1.

Under this identification, the filter of the end-to-end convolution fL,θ ◦ . . . ◦ f1,θ
is the coefficient vector of the polynomial PL(x) · · ·P1(x). The identification of
convolutions on higher-dimensional signals with multivariate polynomials works
analogously [1, Sections 4.2-4.3]. For the case of one-dimensional convolutions,
we in particular see that the filter of the end-to-end convolution has size k :=

k1 +
∑L

i=2(ki − 1)ti. Using elementary algebraic geometry, we can understand the
geometry of the set of all end-to-end filters:

Theorem 1. [2, Theorem 2.4] The neuromanifold M of an LCN is a semi-
algebraic Euclidean-closed subset of Rk of dimension k1 + . . .+ kL − (L− 1).

In particular, we see that the neuromanifold M is a full-dimensional subset
of its ambient vector space Rk if and only if all strides si are 1 (except for the
last stride sL, which does not affect the geometry of M at all). We compare the
properties of M for dense and convolutional networks in the following table:

The table says that the neuromanifolds of linear dense networks and LCNs
of stride one have degenerate points, which are singularities or boundary points,
respectively. Moreover, with positive probability on the training data, some critical
points of the loss correspond to such degenerate points in function space. On the
contrary, LCNs with all strides larger than 1 have both types of degenerate points
on their neuromanifold, but those correspond almost never to critical points when
we train with the squared-error loss. This can be formulized as follows:

Theorem 2. [2, Theorem 2.12] Consider an LCN with all strides larger than 1
and the squared-error loss ℓD. Let d ≥ k. For almost all data D ∈ (Rk0 × RkL)d,
every critical point θ of LD satisfies:
• either µ(θ) = 0, or
• µ(θ) is a smooth point in the relative interior of M and θ is a regular point of µ.

Hence, the network parametrization does not introduce any additional critical
points (except for the zero functions) and we can equivalently study the critical
points of the loss in either parameter or function space. This can be used to
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linear LCN LCN
dense ∀i : si = 1 ∀i : si > 1

M algebraic variety semialgebraic & Euclidean closed
full-dimensional low-dimensional

∂M ∅ non-empty non-empty

Sing(M◦) non-empty ∅ non-empty

µ(Crit(LD)) often in Sing(M) often in ∂M almost never in
Sing(M◦) or ∂M

critical points often often almost never
spurious?

Table 1. ∂M is the Euclidean relative boundary of M.
Sing(M◦) refers to the singular points of M \ ∂M. The sec-
ond to last row concerns the image of the critical points of the
loss in (2) under the map µ in (1). A critical point θ of the loss
LD is called spurious if µ(θ) is not a critical point of ℓD. See [2].

count all critical points [4]. For a detailed study of the singularities and boundary
points and the generalization of Theorem 2 to architectures where some strides
are allowed to be 1, see [2].

2. Group-equivariant architectures

Imagine you want to design a linear autoencoder f : Rk → Rr → Rk that is
equivariant under the action of a group G, i.e., such that f(g · x) = g · f(x) for all
g ∈ G and x ∈ R

k. Is it possible to find an architecture such that its neuromanifold
is the whole set of all possible linear equivariant functions

{f : Rk → R
k | linear, G-equivariant, rank(f) ≤ r} ?(3)

We show that the answer is typically No. More concretely, the variety (3) typically
has many irreducible components. Since any neural network can parametrize at
most one of those components, there is no neural network who can parametrize
all of (3). This means that any architecture design would implicitly pick one of
the components, and completely disregard the others. In practice, it is also not
possible to design one architecture for each component and then train all those
networks in parallel, because the number of components will typically be gigantic.
For instance, for autoencoders trained on MNIST with k = 784 and r = 99 that
are equivariant under horizontal shifts by one pixel, the number of components is

72, 425, 986, 088, 826.

A formula that computes the number of components for arbitrary k, r and for
cyclic permutation groups is provided in [3]. A central question remains: Which
of these many components is best?
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3. Neural-network computable?

Can one develop a theory of which problems can be solved well by training neural
networks and which one cannot, similarly to P vs. NP or quantum complexity
theory? For instance, is solving systems of polynomial equations hard
for neural networks? The classical computer vision problem of reconstructing
3D scenes from images taken by unknown cameras is essentially equivalent to
solving (certain) polynomial equation systems, and so far pure machine learning
solvers do not work as well classical algorithms at the core.
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Conservation laws for gradient flows

Rémi Gribonval

(joint work with Sibylle Marcotte, Gabriel Peyré)

We rigorously expose the basic definitions and properties of “conservation laws”,
that define quantities conserved during gradient flows of a given machine learning
model, such as a ReLU network, with any training data and any loss. We explain
how to find the maximal number of independent conservation laws via Lie algebra
computations and provide algorithms algorithms to: a) compute a family of poly-
nomial laws; b) compute the number of (not necessarily polynomial) conservation
laws. We obtain that on a number of architecture there are no more laws than
the known ones [1], and we identify new laws for certain flows with momentum
and/or non-Euclidean geometries [2].
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Learning to predict ground state properties of gapped Hamiltonians

Richard Küng

(joint work with Hsin-Yuan (Robert) Huang, Giacomo Torlai, Victor Albert
and John Preskill)

Classical machine learning (ML) provides a potentially powerful approach to solv-
ing challenging quantum many-body problems in physics and chemistry. However,
the advantages of ML over traditional methods have not been firmly established.
In this talk, I sketch a rigorous proof that underscores how classical ML algorithms
can efficiently predict ground-state properties of gapped Hamiltonians after learn-
ing from other Hamiltonians in the same quantum phase of matter. By contrast,
under a widely accepted conjecture, classical algorithms that do not learn from
data cannot achieve the same guarantee.

Our proof technique combines five main ingredients:

(1) lifting the originally quadratic 2n-dimensional vector problem to a linear
problem on Hermitian 2n times 2n matrices;

(2) employing importance sampling and tensor calculus to efficiently store and
process Hermitian 2n times 2n matrices, dubbed a classical shadow;

(3) linearizing the action of a deep neural network by using recent insights
about the neural tangent kernel;

(4) approximating a slowly-varying and bounded function with independent
Fourier sampling (non-asymptotic);

(5) justifying the features in (4) by using tensor product expansions, as well
as matrix perturbation theory. I will try to convey how these main proof
ingredients arise and play nicely together in the setup of learning ground
state properties of gapped local Hamiltonians. Numerical experiments
that address the anti-ferromagnetic Heisenberg model and Rydberg atom
systems lend further credence to our findings.
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Understanding deep learning: Beyond feedforward neural networks in
nonparametric regression

Sophie Langer

(joint work with Johannes Schmidt-Hieber, Harro Walk, Alina Braun,
Michael Kohler)

In recent years, substantial efforts have been dedicated to gaining a deeper un-
derstanding of deep learning methods, primarily focusing on vanilla feedforward
neural networks (FNNs). These networks characterized by L hidden layers and r



1186 Oberwolfach Report 21/2024

neurons per layer, can be described by a parametrized family of functions denoted
as x → f(x; θ):

f(x; θ) := WLσLWL−1σL−1 · · ·W1σ1W0x.

Here θ = (W1, . . . ,WL) with each Wi representing a di+1 × di weight matrix and
σi : Rdi → Rdi being a fixed so-called activation function, typically the ReLU
function σ(x) = max{x, 0}. Given some training data {(x1, y1), . . . , (xn, yn)}, the
computation of the parameter θ is usually achieved by approximately minimizing
the empirical risk

R̂(f) =
1

n

n∑

i=1

ℓ (yi, f(xi; θ))

for some loss function ℓ : Y × Y → R using variants of gradient descent. Existing
theoretical results on FNNs include the analysis of their expressive power (e.g.,
[1, 2, 3]), their generalization abilities on unknown new data sets (e.g., [4, 5]) and
investigations in (stochastic) gradient descent for their training (e.g., [6, 7]).

While these results focus on specific aspects of the methodology, they are lack-
ing a comprehensive end-to-end analysis of all aspects together. This gap, in turn,
limits a holistic theoretical characterization of the entire procedure. In this con-
text, the statistical perspective is a very promising approach. By interpreting
deep learning as a nonlinear or nonparametric generalization of existing statistical
models, networks can be analysed as estimators for statistical prediction problem
such as nonparametric regression or classification.

In particular, f̂ is defined as a neural network estimator trained by variants of
gradient descent on n independent and identically distributed random variables
Dn = {(X1, Y1), . . . , (Xn, Yn)} over a class of neural networks F with a specific

architecture. The performance of the estimator f̂ is then theoretically evaluated
by analysing its (theoretical) risk

R(f̂) = E
{

ℓ
(

Y, f̂(X)
)}

relatively to the risk of the minimizer f∗ ∈ arg minf R(f) over all measurable func-
tions and for a new random input-output pair (X, Y ) following the same distribu-

tion as Dn. By defining f̂erm ∈ arg minf∈F R̂(f) as an empirical risk minimizer
over the class F and RF = inff∈F R(f) as the minimal risk over F , the error can
be bounded by three terms:

R(f̂) −R(f∗) ≤ 2 sup
f∈F

R(f) − R̂(f)

︸ ︷︷ ︸

generalization

+ R̂(f̂) − R̂(f̂erm)
︸ ︷︷ ︸

optimization

+RF −R(f∗)
︸ ︷︷ ︸

approximation

.

Here, the approximation error computes the richness of the function class F ,
determining if the problem can be effectively computed by functions within F .
The optimization error measures the performance of the optimization algorithm,
specifically a variant of gradient descent, and the generalization error evaluates
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how well the empirical risk minimizer performs relative to the true risk minimizer
in F by analysing the statistical complexity of the function class.

While the statistical perspective enables to address all three aspects together,
existing results ([5, 8, 9]) often simplify their analysis by (i) restricting their func-
tion class to simple FNNs and (ii) presuming an optimal optimization, wherein

f̂ = ferm. While this limitation played a pivotal role in providing preliminary
insights into deep learning methodologies, there is now an undeniable necessity
to challenge these assumptions in order to derive theoretical results more aligned
with the practical methodologies in use.

In this talk, we propose ideas for extending the existing theory, focusing on two
aspects:

(i) The analysis of convolutional neural networks (CNNs) in image classifica-
tion

(ii) The analysis of neural networks trained by gradient descent.

For (i) we present a new statistical framework for analysing image classification
theoretically. Conventional nonparametric regression is often used to analyze es-
timators in statistical contexts [10], which assumes a functional relation between
input and output, i.e., Y = f(X) + ǫ, up to some additive measurement noise ǫ.
However, this model becomes questionable for image classification due to the high
variability of images within a single class, leading to high prediction errors due to
the high noise values in the data.

To address this challenge, we propose a new image classification model where
images are viewed as highly structured objects, and variations within a class are
attributed to different geometric deformations. The classification rule should,
therefore, remain invariant to these deformations. While CNNs are inherently
translation-invariant, their learning of other geometric deformations needs theo-
retical exploration. In this report, we provide an initial theoretical foundation for
CNN-based image recognition, emphasizing their superior performance in handling
a variety of geometric deformations.

To (ii) analyse neural networks trained by gradient descent, we start the anal-
ysis with shallow neural networks and regression functions lying in the so-called
Barron class - functions with a finite first moment of their Fourier transform. In
this context, Andrew Barron showed convergence guarantees for an empirical risk
minimizer based on shallow networks ([11]). Our results extend his analysis to
networks trained by gradient descent. An important aspect in our analysis is the
proper initilization of the weights in the hidden layer of the network. Using a
sigmoidal activation function, we introduce an initialization that achieves good
convergence guarantees for the corresponding shallow network estimator. We fur-
ther show that these weights change only slightly during gradient descent, thus
providing convergence guarantees for the estimator learned by gradient descent.

In summary, this report aims to open new avenues for understanding deep
learning theoretically, presenting initial ideas for potential research directions.
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Representation equivalent Neural Operators

Rima Alaifari

(joint work with Francesca Bartolucci, Emmanuel de Bézenac, Bogdan Raonić,
Roberto Molinaro, Siddhartha Mishra)

Introduction. Until recently, data-driven methods for learning maps between
infinite-dimensional spaces (especially relevant in the context of solving PDEs)
have followed the strategy to simply discretize both input and output spaces and
learn finite-dimensional maps. Such approaches have a major drawback: the map
learned in the training procedure (for a fixed discretization) may not generalize
to different discretizations after training. To circumvent this shortcoming, neural
operators [2] have recently been introduced as a concept of a learned map between
infinite-dimensional spaces consisting of layers of linear integral operators fol-
lowed by non-linear activation functions. They are defined through discretization
invariance: (i) any discretization of the input function is accepted; (ii) the output
function can be evaluated at any discretization; (iii) the discretized maps tend
to an operator mapping between infinite-dimensions as the discretization becomes
finer.

Imposing discretization invariance on the neural operator, however, does not en-
force any link between the discretized map for a fixed discretization and the neural
operator (as a map between infinite-dimensional spaces). It is rather an asymptotic
property and numerical experiments show that significant discrepancies (through
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aliasing errors) can occur when such architectures are tested at resolutions that
differ from the training resolution.

To overcome the limitations of mere discretization invariance, we develop a novel
framework of Representation equivalent Neural Operators (ReNOs) [1], that rather
guarantees a continuous-discrete equivalence. Our construction is based on utiliz-
ing frame theory and generalizing aliasing errors to operators. This way, unique
and stable reconstruction of the infinite-dimensional operator from its discretiza-
tions can be guaranteed. By connecting all discretizations to the same operator
between infinite-dimensions, any two discretizations are also tied together uniquely
and stably. Numerical experiments further highlight that there is no trade-off be-
tween the expressivity of the network and its ReNO property. As a novel ReNO
architecture we propose Convolutional Neural Operators [3], that achieve state-of-
the-art results on a large set of benchmark PDEs.

Frame Theory and Aliasing. To facilitate the transition from continuous to
discrete representations we employ frame theory.

A countable sequence {fi}i∈I in a separable Hilbert space H is a frame if there
exist constants A,B > 0 such that:

A‖f‖2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B‖f‖2, ∀f ∈ H.

Given such a frame, functions in H can be uniquely and stably reconstructed
from their frame coefficients using the synthesis operator T and its adjoint T ∗.
The reconstruction formula is:

f = TT †f =
∑

i∈I

〈f, S−1fi〉fi =
∑

i∈I

〈f, fi〉S−1fi,

where S = TT ∗, the frame operator, is invertible and its inverse S−1 is bounded,
ensuring stability. The pseudo-inverse of the synthesis operator is given by T †f =
{〈f, S−1fi〉}i∈I . It is useful to consider discrete representations of subspaces of H,
in order to quantify errors. If {fi}i∈I is a frame of a subspace V ⊆ H, it is said
to be a frame sequence of H. Aliasing occurs when a function cannot be perfectly
reconstructed from its coefficients, leading to errors:

ǫ(f) = f − PV f, ‖ǫ(f)‖2 = ‖f − PV f‖2,
where PV is the orthogonal projection onto V . In other words, aliasing errors

occur when a function f ∈ H with f 6∈ V is represented by {〈f, fi〉}i∈I , where
{fi}i∈I is a frame for V ⊂ H, but not for H.

Alias-Free Framework for Operator Learning. Next, we extend the concept
of aliasing from functions to operators. Let U be an operator between separable
Hilbert spaces H and K, and let Ψ = {ψi}i∈I and Φ = {ϕj}j∈J be frame sequences
for H and K, respectively. The synthesis operators TΨ and TΦ map sequences of
frame coefficients back to functions in the respective Hilbert space. With this, out
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of a discrete realization u : ℓ2(I) → ℓ2(J) of the operator U one can construct an
operator mapping from H to K through:

TΦ ◦ u ◦ T †
Ψ : H → K.

Operator aliasing error measures the discrepancy between U and its discrete
implementation u:

ǫ(U, u,Ψ,Φ) = U − TΦ ◦ u ◦ T †
Ψ,

with the corresponding scalar error given by the operator norm ‖ǫ(U, u,Ψ,Φ)‖.
If this error is zero, the operator U can be perfectly represented by the discrete
map u, ensuring continuous-discrete equivalence (CDE).

Representation equivalent Neural Operator (ReNO). To introduce our
framework of Representation equivalent Neural Operators (ReNOs), we need to
make one more extension. On the level of discretizations, we will consider maps
u that take in any pair of frame sequences (Ψ,Φ) of H,K and output a mapping
from ℓ2(I) to ℓ2(J):

u(Ψ,Φ) : ℓ2(I) → ℓ2(J).

This emphasizes that in order to eliminate aliasing errors, the discrete maps must
depend on the choice of the discrete representations Ψ and Φ. We then say that a
pair (U, u) is a ReNO if, for any pair (Ψ,Φ) with

(1) DomU ⊆ MΨ and RanU ⊆ MΦ

there is no aliasing error, i.e.

ǫ(U, u,Ψ,Φ) = 0.

Here, MΨ and MΦ are the closed spans of the frame sequences Ψ and Φ. The
conditions in (1) simply ensure that only those frame sequences are considered,
that can actually represent the domain and range of U , respectively. This definition
now straightforwardly extends to a layerwise instantiation: for a neural operator
U of the form

U = UL ◦ UL−1 ◦ · · · ◦ U1,

where each Uℓ is a mapping between separable Hilbert spaces Hℓ and Hℓ+1, each
layer must satisfy the ReNO condition (i.e. zero aliasing error). This ensures that
any two discrete representations of the operator are equivalent, preserving the
underlying structure in function spaces. This framework also allows to introduce
ǫ-ReNOs, where a small, controlled amount of aliasing is permissible:

‖ǫ(U, u,Ψ,Φ)‖ ≤ ǫ,

for all Ψ and Φ satisfying (1).
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Figure 1. A sketch of the ReNO framework. Any learned dis-
cretization is tied to the operators in function space through anal-
ysis and synthesis operators of frame sequences.

Examples. We define the Representation Equivalence Error as a measure to
quantify how severely an architecture deviates from the ReNO property. For
u = u(Ψ,Φ) and u′ = u(Ψ′,Φ′) one can compute the error between these two
discretizations via

τ(u, u′) = u− T †
Φ ◦ TΦ′ ◦ u′ ◦ T †

Ψ′ ◦ TΨ.

Classical Convolutional Neural Networks (CNNs) and Fourier Neural Operators
(FNOs) do not satisfy the ReNO conditions due to inconsistencies across different
discretizations. The discrete convolution operation in CNNs does not preserve
the continuous-discrete equivalence, leading to aliasing errors. For FNO, the issue
lies in the nonlinear activation function: the considered function space is that of
bandlimited functions throughout the network. When a pointwise nonlinearity σ,
such as the ReLU or GeLU is applied to a function f , then in general, σ(f) is no
longer bandlimited and has an effective bandwidth significantly larger than that
of f .

In contrast, Convolutional Neural Operators (CNOs) take this issue into ac-
count: before applying a nonlinear activation function, the function is upsampled
(to twice the bandwidth). The application of σ is followed by a downsampling
operation to control the dimensionality throughout the network. Convolutional
neural operators take the form of a U-Net architecture and convolutions are im-
plemented in the original space without passing to the Fourier domain (see [3] for
details and tests on a wide range of benchmark PDEs).

Empirically analyzing the Representation Equivalence Error in different archi-
tectures demonstrates that CNNs and FNOs exhibit significant aliasing errors
when changing the resolution of input and output frames, while CNOs maintain
representation equivalence within a defined resolution range. This highlights the



1192 Oberwolfach Report 21/2024

practical importance of the ReNO framework in ensuring consistency and stability
in operator learning.

Discussion. The ReNO framework provides a robust solution to the inconsis-
tencies in neural operator learning by ensuring that discrete representations are
equivalent to their continuous counterparts. This framework not only addresses
existing challenges but also offers a foundation for developing new neural opera-
tors. Future work may explore quantitative measures of error in ReNOs and extend
the concept to ǫ-ReNOs, providing a nuanced approach to operator learning with
controlled aliasing.

A question that remains open and highly relevant is that of identifying com-
binations of suitable function spaces and activation functions so that the space
is closed under the action of the activation function. More generally, identifying
pairs of function spaces B1, B2 and activation functions σ for which σ(B1) ⊆ B2

could be helpful in designing new architectures that satisfy the ReNO property.
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Algorithmic approaches to recovering sparse and low-rank matrices

Johannes Maly

(joint work with Massimo Fornasier, Christian Kuemmerle, Valeriya Naumova)

We consider the reconstruction of sparse1, low-rank matrices X⋆ ∈ Rn1×n2 from
incomplete and inaccurate measurements

y = A(X⋆) + η ∈ R
m,

where A : Rn1×n2 → Rm resembles a linear measurement process and η ∈ Rm

models additive noise. This problem, which stems from compressed sensing [2]
and related fields, is relevant in several modern applications such as sparse phase
retrieval, blind deconvolution of sparse signals, machine learning, and data mining
[4, 3, 7]. We examined two algorithmic approaches to the problem:

1A vector z ∈ Rn is called s-sparse if at most s of its entries are non-zero. On matrices
sparsity can be defined and counted in various ways, cf. [6].
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1. Iteratively Re-weighted Least-Squares (IRLS)

The classical iterative IRLS-algorithm for sparse recovery aims at solving an ℓ1-
minimization over the set of data interpolations by iteratively solving weighted
ℓ2-minimization problems via

xk+1& = arg min
z∈Rn

〈z, diag(wk)z〉, s.t. Az = y

εk+1& = min

{

εk,
Best s-term approximation error of xk+1

n

}

(wk+1)i& =
1

max{|(xk+1)i|, εk+1}
.

To recover the sparse and low-rank matrix X⋆ from y, one only has to replace

• the smoothing parameters εk by two sequences

εk+1 = min{εk, σR+1(X(k))} and δk+1 = min{δk, ρs+1(X(k))}
• the weights wk by the weight operator

WX(k),εk,δk(Z) = W lr
X(k),εk

(Z) + Wsp

X(k),δk
Z,

where

W lr
X(k),εk

(Z) =
[
U&U⊥

]
Σ−1

εk

[
U∗

U∗
⊥

]

Z
[
V&V⊥

]
Σ−1

εk

[
V∗

V∗
⊥

]

with Σεk = diag(max{σ(k)
i /εk, 1}) and Wsp

X(k),δk
∈ Rn1×n1 with

(

Wsp

X(k),δk

)

ii
= max

(∥
∥(X(k))i,:

∥
∥
2

2
/δ2k, 1

)−1

, for all i ∈ [n1].

In [5], we show that under standard restricted isometry property (RIP) assump-
tions on A the modified IRLS algorithm exhibits a locally quadratic convergence
rate to X⋆ if initialized sufficiently close. Notably, the algorithm automatically
balances between sparsity and low-rankness of the iterates. Empirical evalua-
tions furthermore suggest that the obtained bounds on the initialization radius
are overly pessimistic in the ambient dimension n1n2 of the problem. A major
open question of this work is whether the analysis could be refined and whether
one can show global convergence of the algorithm under suitable assumptions on
A.

2. Multi-penalty optimization

Our second study considers the multi-penalty objective JR
α,β : Rn1×R×Rn2×R → R

defined as

JR
α,β(U,V) :=

∥
∥y −A

(
UV⊤)∥∥2

2
+ ENα(U) + ENβ(V),

where the elastic net is given by

ENγ(Z) = γ1 ‖Z‖2F + γ2 ‖Z‖1 ,
for γ1, γ2 > 0. The idea is to regularize the rank by representing the argument
as a product of lower dimensional matrices, and to regularize sparsity by ℓ1-type
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regularizers on the single matrix factors. The functional JR
α,β can be viewed as a

natural generalization of the Sparse PCA formulation in [7]. In [1, 6], we analyze
the general properties of global minimizers of JR

α,β, propose a non-orthogonal
signal model for sparse and low-rank matrices that is tailored to the specific shape
of JR

α,β, and introduce robust injectivity to understand the sample complexity

that guarantees good approximation of X⋆ by global minimizers of JR
α,β. We

prove local convergence of alternating schemes to global minimizers and validate
the performance of such approaches in empirical studies. A major open question
in this setting is again the exact convergence radius of the numerical optimization
methods.
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Machine learned regularisation for inverse problems — the dos
and don’ts

Carola Schönlieb

Machine learning, in particular deep learning, has entered the field of inverse prob-
lems as a prominent and promising new technique, in particular for the ability of
deep neural networks to characterise information intrinsic in data to high accu-
racy. this ability is interesting in the context of regularization. The promises and
pitifalls of machine-learned regularization were the topic of this talk, demonstrated
on the example of sparse and limited-angle computed tomography.
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Regularization properties of noise injection

Anna Shalova

(joint work with André Schlichting and Mark A. Peletier)

In an overparametrized setting (when number of parameters of the model is larger
than the number of data point) machine learning models have many global min-
imizers. Not all of the minimizers are equally good as some may lead to better
generalization. Whether the obtained solution of the optimization problem will
generalize well or not may depend on many factors including the choice of the
optimization algorithm. In particular, an algorithm can give preference to some
minimizers but not the others, this effect is often called implicit bias.

In our work [1] we study the implicit bias of noisy gradient descent systems:
given a gradient descent for some loss function L : Rk → [0,∞)

wk+1 = wk − α∇wL(wk),

we consider it’s noisy version of the form

wk+1 = wk − α∇wL̂(wk, ηk),(1a)

ηk,i ∼ ρ(σ),(1b)

such that L̂ : Rk+d → [0,∞) satisfies L̂(w, 0) = L(w) and ρ is a probability
distribution with zero mean and variance σ2. To mention some examples, our
theory applies to gradient descent with dropout noise, label noise and minibatch-
ing. The noisy gradient descent can have a different behavior compared to the
noiseless version, see Figure 1. In particular, under certain assumptions the
noisy gradient descent system quickly converges to the set of global minimizers
Γ = {w ∈ Rk : L(w) = 0} and then slowly evolves along this set. This slow drift is
a result of the stochastic nature of the algorithm and was rigorously characterized
for the gradient systems with additive noise in the work of Li et al. [2]. We extend
the result of Li et al. to a more general class of system and show that the structure
of the noise injection affects not only the drift itself but the time-scale at which it
appears.
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Figure 1. Numerical example: the left-hand panel shows the
level curves of the loss function L, with the zero-level set Γ
marked in red. The middle panel shows a gradient-descent evo-
lution, starting at the top, and converging to Γ. The right-hand
panel shows an evolution of the noisy gradient descent (1) with

L̂(w, η) := L(w + η).

To get an intuition of the limiting process assume that dynamics of the parameters
w is slow compared to the updates of the noise variables η such that we can average
over η:

wt+1 = wt − αEη

[
∇wL̂(wt, ηt)

]
.

If the noise is small σ2 ≪ 1, using Taylor expansion we get

wt+1 = wt − αEη∇wL̂(wk, ηk)

= wt − α
(

Eη

[
∇wL̂(wk, 0)

]
+ Eη

[
∇2

wk,ηL̂(wk, 0)ηk
]

+
1

2
Eη

[
∇w∇2

ηL̂(wk, 0)[ηk, ηk]
]

+ o(σ2)
)

.

Because for every k the noisy variables ηk are independent random variables with
zero mean we have Eηk = 0 and Eη [ηk ⊗ ηk] = σ2I, thus giving the resulting
dynamic of the form

wk+1 − wk = −α∇wL(wk) − α

2
σ2∇w∆ηL̂(wk, 0) + o(σ2) as σ2 → 0 .

We consider a sequence of noisy gradient descent systems which differ by step
size αn and the noise variance σn. We make the above observation rigorous by
showing that in the limit αn, σn → 0 after accelerating the evolution by a factor
1/αnσ

2
n the sequence converges to a solution of a gradient flow of the driving

functional 1
2∆ηL̂(w, 0). Here we state an informal version of the main result.
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Theorem 1. Assume αn → 0 and σn → 0. Set

Wn(αnσ
2
nk) := wk .

Then the sequence Wn converges to a limit curve W = (W (t))t>0, that satisfies
the constrained gradient flow

∂tW (t) = −1

2
PΓ∇w∆ηL̂(W (t), 0),

where PΓ is the orthogonal projection onto the tangent plane of Γ at W (t).

However for some noisy loss functions L̂ that are often used on practice, the
dynamic given by Theorem 1 is trivial while experiments indicate otherwise. This
is, for example, the case for L2 function approximation loss function with label
noise. To explain this possible mismatch we extend our analysis to the class of
noisy loss function having quadratic behaviour in η and yielding a trivial result
according to Theorem 1. Namely we study L̂ of form

(2) L̂(w, η) = L(w) + f(w) · η + 1
2H(w) : (η ⊗ η) + g(η),

for certain smooth maps f , H , and g. We assume that g(0) = 0 and that each

diagonal element Hii vanishes, so that ∆ηL̂(w, 0) =
∑d

i=1Hii(w) = 0.
It turns out that in such a case nontrivial dynamic appears at a slower time scale

1/α2σ2. The limiting process is still restricted to the set of global minimizers but
is now a stochastic process. Moreover, for convergence it is enough to consider the
case of inifinitely small step-size αn → 0 with any finite noise variance σn → σ0.
So the following theorem holds:

Theorem 2. Let L̂ be a degenerate loss function as described above. For αn → 0
and σn → σ0 ≥ 0, let (wn

k )k≥ be the noisy gradient descent and set

Wn(α2
nσ

2
nk) := wk .

Then the sequence Wn converges to a limit W = (W (t))t>0 that satisfies the
constrained stochastic differential equation

dW (t) = PΓβ(W (t))dBt + F (W (t)) : β(W (t))β(W (t))⊤dt,

with W (t) ∈ Γ for t > 0. Here β and F are given in terms of f and H, and B is
a multidimensional standard Brownian motion.

Applying our results to a few examples we show that:

(1) Dropout noise induces non-trivial dynamics at the fast time scale 1/ασ2,
(2) Label noise leads to a deterministic evolution but at a slower time-scale

1/α2σ2,
(3) Minibatch noise has a trivial dynamics at both of the discussed time-scales

if not combined with additional ways of noise injection.

In addition, both dropout and label noise limiting processes can be interpreted as
a type of weight-regularization.
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Breaking the quadratic bottleneck in non-convex matrix sensing:
Near-optimal recovery guarantees with linear rank-dependency

Dominik Stöger

(joint work with Yizhe Zhu)

Low-rank matrix recovery problems are ubiquitous in many areas of science and
engineering. Most of the methods that have been studied for these problems can
roughly be divided into two categories: Convex optimization approaches based
on nuclear norm minimization, and non-convex approaches that use factorized
gradient descent.

While methods from the latter category are typically computationally much
less expensive, basically all existing recovery guarantees for factorized gradient
descent are more pessimistic with respect to the number of samples required. In
particular, they require the number of samples to scale quadratically with the
rank of the ground truth matrix. This raises the question whether one can obtain
recovery guarantees for the non-convex methods if the samples size scales linear
in the degrees of freedom.

In this talk we consider the scenario that one obtains m observations of the
form

yi = 〈Ai,X⋆〉 := trace (AiX⋆) for i = 1, 2, . . . ,m.

Here, (Ai)
n
i=1 ⊂ Rd×d represent known and symmetric measurement matrices

whose entries are i.i.d. with standard Gaussian distribution N (0, 1) on the diagonal
and N (0, 1/2) on the off-diagonal. The goal is to recover the unknown ground truth
matrix X⋆ ∈ Rd×d which we assume to be of rank r and, moreover, symmetric
and positive definite.

For that, we follow a two-stage approach, which was originally proposed by
Keshavan, Montanari, and Oh [2] and which is widely studied in the literature. It
consists of the following two steps.

(1) Spectral initialization: Let M = VΣV⊤ be the truncated rank-r
singular value decomposition of the matrix 1

m

∑m
i=1〈Ai,X⋆〉Ai. Then the

initialization is defined as U0 := VΣ1/2 ∈ R
d×r.

(2) Gradient descent: We consider the non-convex objective

f (U) :=
1

m

m∑

i=1

(
yi − 〈Ai,UU⊤〉

)2
,
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where U ∈ Rd×r. The objective is minimized via

Ut = Ut−1 − µ∇f (Ut−1) for t = 1, 2, . . .

Here, µ > 0 represents the step size.

To state our main results, we need to introduce a few definitions. The condition
number of the rank-r matrix X⋆ is defined via

κ :=
λ1 (X⋆)

λr (X⋆)
.

Moreover, let M⋆ ∈ Rd×r such that X⋆ = M⋆M
⊤
⋆ . Then, we can define the

following notion of distance

dist (Ut,M⋆) := min
R rotation

‖UtR−M⋆‖F
Now we are prepared to state our main result.

Theorem 1. Assume that the sample size satisfies m & rdκ4. Moreover, assume
that the step size satisfies µ ≍ 1

κ‖X⋆‖ . Then, with high probability, it holds that

dist (Ut,M⋆) . r (1 − cµσmin(X⋆)))
t
√

λr(X⋆),

where c > 0 is some absolute constant.

This result shows that non-convex methods based on factorized gradient descent
can recover the ground truth matrix as soon as the number of measurements scales
linearly with the degrees of freedom of the ground truth matrix.

The talk is based on the article [1], which is currently in preparation.
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Stability and Sampling results for gabor phase retrieval

Philipp Grohs

We consider the problem of reconstructing f ∈ L2 from (samples of) the spectro-
gram

|Vϕf(w, ω)|2 =

∣
∣
∣
∣

∫

f(t)ϕ(t− x) exp(−2πiωt)dt

∣
∣
∣
∣

2

.

Our main results are twofold:

(1) The stability of this reconstruction is governed by the degree of discon-
nectedness of |Vϕf |2. This is quantified in terms of a Cheeger/Poincaré
type constant.

(2) Sampling on a regular lattice cannot yield unique recovery but one can get
uniqueness using judiciously chosen irregular sampling points.
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Mathemalchemy: a mathematical and artistic adventure

Ingrid Daubechies

Mathemalchemy is a collaborative art installation conceived as the brainchild
of mathematician and physicist Ingrid Daubechies and fiber artist Dominique
Ehrmann, and driven by the energy and enthusiasm of 24 mathematical artists
and artistic mathematicians. The installation celebrates the creativity and beauty
of mathematics. Playful constructs include a flurry of Koch snowflakes, Riemann
basalt cliffs, and Lebesgue terraces. It was designed and constructed during the
pandemic, and has been touring North America since January 2022; it will soon
move to its 5th exhibition venue. The talk will review the genesis and creation of
the installation, and highlight some of its mathematical features.

The following videos were shown during the talk:

• “Bakery – Through the Mathemalchemy Looking Glass”
• “Happy Pi Day!”

Bilipschitz invariants

Dustin G. Mixon

(joint work with Jameson Cahill, Joseph W. Iverson, Daniel Packer,
Yousef Qaddura)

Most data processing algorithms are designed for Euclidean data, and so data
scientists are inclined to represent objects in Euclidean space. Unfortunately, such
a representation can introduce ambiguity. For example, a graph on n vertices
might be represented by its adjacency matrix, which resides in the space of real
symmetric n×n matrices, but the same graph can be represented by any member
of its orbit under the conjugation action of Sn. As such, the näıve Euclidean
distance between representations fails to capture a notion of distance between the
underlying objects.

More generally, we consider the setting in which our data resides in a Hilbert
space V , and we identify points modulo a group G of linear isometries. In this
setting, it’s appropriate to consider the quotient distance defined by

d(x, y) := inf
p∈G·x
q∈G·y

‖p− q‖V .

This determines a quotient metric space V//G, whose points are the topological
closures of the G-orbits in V . In order to make use of the data science tools in
Euclidean space, we seek a bilipschitz embedding of the quotient V//G into some
Hilbert space. Furthermore, in order to preserve the signal from our metric, we
wish to minimize distortion, that is, the quotient of the optimal upper and lower
Lipschitz bounds of our bilipschitz map.

Let’s start by considering some examples. If V = R
d and G is a reflection group,

then we can achieve distortion 1 by mapping each orbit to its intersection with a

https://youtu.be/pEA8occbH5Q?si=9WQZYwthqJIWYok3
https://www.instagram.com/reel/C4gGOV8r0bd/?utm_source=ig_web_copy_link&igsh=MzRlODBiNWFlZA%3D%3D
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fixed Weyl chamber. If V = Rd and G ≤ O(d) is finite, then for generic templates
z1, . . . , zn ∈ Rd, the map

x 7→
{

max
g∈G

〈gzi, x〉
}n

i=1

descends to a bilipschitz map Rd//G → Rn provided n ≥ 2d; this can be seen
by combining the injectivity result from [3] with the fact that injectivity implies
bilipschitz for this map [1]. (In some cases, like if G is a reflection group, one may
take n to be even smaller [4, 5].) Furthermore, one may estimate the distortion of
this map for random templates. The remainder of our discussion is based on [2].

The case of V = R and G = {±1} is a simple instance of both examples consid-
ered above, in which case one is inclinded to consider the bilipschitz map deter-
mined by x 7→ |x|. By contrast, algebraic invariant theory leads one to consider
the G-invariant polynomials, namely the even polynomials, which are generated
as an algebra by the polynomial x2. Hilbert proved that more generally, for suf-
ficiently nice groups G ≤ GL(d) (e.g., finite groups), the G-invariant polynomials
separate all G-orbits and are finitely generated as an algebra, and so taking any
finite generator set as coordinate functions produces an injective G-invariant map.
However, in the case of V = R and G = {±1}, the map determined by x 7→ x2 is
not lower Lipschitz when x is small. In fact, whenever G is finite, this difficulty
emerges for any differentiable invariant near points with a nontrivial stabilizer.
In cases where the origin is the only point with a nontrivial stabilizer, one may
interpret generating polynomials as coordinate functions on the sphere and then
homogeneously extend to produce a bilipschitz embedding for the whole space. For
example, if V = Rd and G = {± id}, then the invariant polynomials are generated
by {xixj}i≤j , and the map

x 7→ x⊗ x

‖x‖
is simply x 7→ |x| when d = 1, and is bilipschitz with distortion

√
2 when d ≥ 2.

The Euclidean distortion c2(X) of a metric space X is the minimum possible
distortion of a bilipschitz map from X into an arbitrary Hilbert space. It turns
out that c2(X) equals the supremum of c2(F ) over finite sub-metric spaces F of
X , and furthermore, computing any such c2(F ) reduces to a semidefinite program.
With this reduction, one may show that

c2
(
R

d//{± id}
)

=
√

2

when d ≥ 2, meaning the embedding described above exhibits the smallest possible
distortion. We are also interested in the Euclidean distortion of other quotient
metric spaces, especially

ℓ2(N;R2)//S∞ and ℓ2(Z;R)//Z

due to their relationship with other quotient metric spaces. These are currently
open questions.
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Covariance estimation under one-bit quantization

Sjoerd Dirksen

(joint work with Johannes Maly, Holger Rauhut)

A common task in signal processing is to estimate the correlation matrix or the
covariance matrix of a high-dimensional Gaussian distribution from i.i.d. samples
that have been quantized to finitely many bits. In my talk I will consider a setup
where each entry of each sample is quantized to one bit using an efficient, memory-
less quantizer. In this setup, a well-known approach in the engineering literature
is to use the arcsin law (also known as Grothendieck’s identity) to estimate the
correlation matrix. I will present non-asymptotic, near-optimal error bounds for
this type of estimator in terms of the spectral norm. Surprisingly, the bounds
reveal that this estimator can outperform the sample covariance matrix (of the
samples before quantization) in certain scenarios. I will also show that by using
dithering, i.e., adding well-designed noise before quantization, one can estimate
the full covariance matrix of any subgaussian distribution from quantized samples
at the same (minimax optimal) rate as the sample covariance matrix. This sec-
ond result is based on a new version of the Burkholder-Rosenthal inequalities for
matrix martingales. The talk is based on [1, 2].
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A primer on physics-informed machine learning

Claire Boyer

(joint work with Francis Bach, Gérard Biau, Nathan Doumèche)

Physics-informed machine learning combines the expressiveness of data-based ap-
proaches with the interpretability of physical models. In this context, we consider
a general regression problem where the empirical risk is regularized by a partial dif-
ferential equation that quantifies the physical inconsistency. More formally, given
a sample {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. copies of (X,Y ), the goal is to construct

an estimator f̂n of f⋆ based on these n observations. The distinctive element of
PIML is the inclusion of a prior on f⋆, asserting its compliance with a known PDE.
Therefore, it is assumed that f⋆ is at least weakly differentiable, belonging to the
Sobolev space Hs(Ω) for some integer s > d/2, and that there is a known differ-
ential operator D such that D(f⋆) ≃ 0. For instance, if the desired solution f⋆ is
intended to conform to the wave equation, then D(f)(x, t) = ∂2t,tf(x, t)−∂2x,xf(x, t)
for (x, t) ∈ Ω. Overall, we are interested in the minimizer of the empirical risk
function

(1) Rn(f) =
1

n

n∑

i=1

|f(Xi) − Yi|2 + λn‖f‖2Hs(Ω) + µn‖D(f)‖2L2(Ω)

We prove that for linear differential priors, the problem can be formulated as
a kernel regression task, giving a rigorous framework to analyze physics-informed
ML. In particular, the physical prior can help in boosting the estimator conver-
gence (compared to the classical Sobolev kernel estimator).

References
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Curvature on graphs

Stefan Steinerberger

This talk is concerned with various notions of curvature on combinatorial graphs
G = (V,E), in particular:

(1) combinatorial notions derived from the Gauss–Bonnet theorem
(2) analytic notions derived from Optimal Transport, in particular, the Olivier–

Ricci curvature and the Lin–Lu–Yau curvature
(3) and a potential-theoretic notion that is defined as follows: if D ∈ Rn×n is

the graph distance matrix, meaning

Dij = d(vi, vj),

then the curvature in vertex vi is define as the i−th entry of D−1n, where

n = (n, n, . . . , n) is the constant vector.
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Note that D−1n may not be uniquely defined or not defined at all. If it is not
defined at all, then one may take the pseudo-inverse to recover much of the subse-
quent theory. However, for reasons that are still unexplained, it tends to be defined
(though not necessarily uniquely). However, one inherits a type of uniqueness.

Proposition 1. Let G be a connected graph and suppose Dw1 = n = Dw2 for
two vectors w1, w2 ∈ Rn

≥0. Then ‖w1‖ℓ1 = ‖w2‖ℓ1 .
One can now establish a result in the style of Bonnet–Myers: lower bounds on

the curvature imply upper bounds on the diameter.

Theorem 1. Let G be connected and suppose Dw = n. If wi ≥ K,

diam(G) ≤ 2n

‖w‖ℓ1
≤ 2

K
.

This mirrors Bonnet–Myers-type results for other notions of curvature. This
result, in turn, follows from a much more general result that can be derived from
the von Neumann Minimax Theorem. More details can be found in [2]. The entire
approach appears to be robust in the sense that D can be replaced by other notions
of distance, see [1].
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Generalized Norm Resolvent Convergence and Stability for Graph
Convolutional Networks

Christian Koke

Graph Convolutional Networks (GCNs) are a prominent class of machine learning
architectures adapted to operating on graph structured data. Using the standard
graph Laplacian L ∈ RN×N and node-feature matrix X ∈ RN×F to represent an
N -node graphG together with its F -dimensional node feature vectors {Xi:}1≤i≤N ,
a (graph level) graph convolutional network Φ generates a Euclidean embedding
~F ∈ Rd in a d-dimensional representation space for each such graph G as

(1) ~F = Φ(L,X).

This is done by first iteratively updating the node feature matrix X and finally
running a (graph-isomorphism invariant) aggregation scheme combining node-wise
information into a graph-level representation. The individual steps RN×Fℓ−1 ∋
Xℓ−1 7→ Xℓ ∈ RN×Fℓ in the iterative update of X are implemented (ignoring bias
terms for simplicity) as

(2) Xℓ
:i = ReLU





Fℓ−1∑

j=1

hℓθij (L)Xℓ−1
:j



 .
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Here the set of matrices {hℓθij(L)}ij arises from the application of learned functions

{hℓθij(·)}ij to the Laplacian L. The ultimate graph level representation ~F is then

obtained by calculating the ‖ · ‖1-norm for each column of the final representation
Xℓfinal ∈ RN×d.

Given two distinct graphs G, G̃ that are defined on different node sets and which
possess distinct adjacency structures but nevertheless describe the same underlying

object, we want to ensure the feature vectors ~F , ~̃F generated for these two graphs
by the same graph neural network Φ are similar in the sense that

(3)
∥
∥
∥ ~F − ~̃F

∥
∥
∥ ≪ 1.

Such a setting might e.g. occur if the two graphs arise from one-another via coarse
graining, rewiring or can be taken to discretize the same underlying manifold.

In this talk we discuss how filters {hℓθij(·)}ij in (2) need to be chosen so that (3)

can be be guaranteed. To this end, we make use of the concept of generalized
norm resolvent convergence [1] and consider two graphs G, G̃ to be close if the
resolvents R−1(L) := (L+ Id)−1 of their respective Laplacians satisfy

(4) ‖R−1(L) − J̃R−1(L̃)J‖ ≪ 1.

Here J and J̃ are linear intertwining operators, with J mapping from ℓ2(G) to

ℓ2(G̃) and J̃ mapping in the opposite direction.

We then establish that we can bound the difference of the generated graph em-

beddings ~F , ~̃F as

(5)
∥
∥
∥~F − ~̃F

∥
∥
∥ ≡

∥
∥
∥Φ(X,L) − Φ(JX, L̃)

∥
∥
∥

<
∼ ‖X‖ · ‖R−1(L) − J̃R−1(L̃)J‖

precisely if learned filter functions {hℓθij(·)}ij arise as Laplace transforms of finite

complex measures on the positive real line. More precisely, we need to demand
that each such h may be represented as

(6) h(z) =

∫ ∞

0

e−tzdµ(t)

for some finite complex Borel measure on the positive real line R≥0 = [0,∞) for
which µ({0}) = 0.

Using this result, we then discuss how stable graph neural networks that are able
to deal with noisy or multi-scale data can be designed. Finally we investigate the
performance capabilities and stability properties of such networks in real-world
experiments.
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On the frame set property of Hermite functions

Markus Faulhuber

(joint work with Irina Shafkulovska, Ilya Zlotnikov)

We denote the the Hilbert space of square-integrable functions on the line by L2(R)
and its inner product and norm by 〈. , .〉 and ||.||, respectively.

We are interested in the frame set property of Gabor systems with a Hermite
function. A Gabor system with window g ∈ L2(R) (non-zero) over a lattice Λ ⊂ R2

is a structured function system of the form

G(g,Λ) = {MωTxg | (x, ω) ∈ Λ ⊂ R
2}.

Here, Tx and Mω denote the unitary operators of translation (time-shift) and
modulation (frequency-shift), respectively:

Txg(t) = g(t− x) and Mωg(t) = e2πiωt, t, x, ω ∈ R.

The composition is called a time-frequency shift, denoted by

π(z) = MωTx, z = (x, ω) ∈ R
2.

Note that Tx and Mω do not commute in general, which also implies that time-
frequency shifts do not commute in general. We have the commutation relation
MωTx = e2πiωxTxMω.

A Gabor system is a frame for L2(R), if and only if there exist positive constants
0 < A ≤ B <∞, called frame bounds, such that

A||f ||2 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B||f ||2, ∀f ∈ L2(R).

In this case any function has a stable expansion with respect to G(g,Λ) of the form

f =
∑

λ∈Λ

cλπ(λ)g, (cλ) ∈ ℓ2(Λ).

The n-th order Hermite function hn is the Gaussian function multiplied with
the n-th order Hermite polynomial Hn, subject to normalization:

hn(t) = Hn(t)e−πt2 = cn(−1)neπt
2 dn

dtn
e−2πt2 , t ∈ R, so ||hn|| = 1, n ∈ N0,

with cn = 21/4/
√

n!(2π)n2n. Since the window is a fixed Hermite function, we
seek to find lattice parameters (a, b) ∈ R+ × R+ for the rectangular lattice

Λ(a,b) = aZ× bZ

such that the resulting Gabor system G(hn,Λ(a,b)) is a frame.

Known obstructions and results. The Balian-Low theorem [1, 6] in combina-
tion with the density condition for Gabor systems gives the following result.

If ab ≥ 1, then the Gabor system G(hn,Λ(a,b)) cannot be a frame.

In the other direction, we have a sufficiency result of Gröchenig and Lyubarskii [4].

If ab < 1
n+1 , then the Gabor system G(hn,Λ(a,b)) is a frame.
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For growing n, the gap between the known obstructions and the sufficiency result
clearly becomes large. Further known exceptions, due to Lyubarskii and Nes [7]
as well as counter-examplex provided by Lemvig [5], lead to the following result
for the square lattice Λ(

1√
n+1

, 1√
n+1

) = 1√
n+1

Z× 1√
n+1

Z = 1√
n+1

Z2.

The Gabor system G(hn,
1√
n+1

Z2) is not a frame for n = 0, 1, 2, 3.

One is tempted to see a pattern which may continue, but once n ≥ 4 our main
result from [2] shows that the opposite holds true1.

The Gabor system G(hn,
1√
n+1

Z2) is a frame for n ≥ 4.

Proof idea. The result is based on the Janssen representation of the Gabor frame
operator. The frame operator is acting on functions f ∈ L2(R) by the rule

Sg,Λf =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)g.

Assume g is “nice” (e.g., coming from Feichtinger’s algebra). By considering the
inner products 〈Sg,Λf, h〉 and an application of the Poisson summation formula
in combination with the orthogonality relations (a version of the Moyal identity),
one arrives at

Sg,Λ = vol(R2/Λ)−1
∑

λ◦∈Λ◦

〈g, π(λ◦)g〉 π(λ◦),

which is the Janssen representation of Sg,Λ. Here Λ◦ is the symplectic dual or
adjoint lattice, which is characterized by

Λ◦ = {λ◦ ∈ R
2 | π(λ)π(λ◦) = π(λ◦)π(λ), ∀λ ∈ Λ}.

In fact, it is simply a 90 degrees rotated version of the classical dual lattice. Note:

Λ◦
(a,b) =

1

b
Z× 1

a
Z, in particular

(
1√
n+ 1

Z
2

)◦
=

√
n+ 1 Z

2

With the Janssen representation at hand, we can use the Janssen test [8], [9].

Let g be such that ||g|| = 1. If
∑

λ◦∈Λ◦ |〈g, π(λ◦)g〉| < 2, then G(g,Λ) is a frame.

The condition follows by comparing vol(R2/Λ)Sg,Λ to the identity operator on
L2(R) and using a Neumann argument for the invertibility of the frame operator.

Our proof then makes use of the Laguerre connection [3] between Hermite func-
tions and Laguerre functions. Denote the n-th order Laguerre polynomial by

Ln(t) =

n∑

k=0

(
n

k

)
(−t)k
k!

.

Then, we have the following formula

|〈hn, π(z)hn〉| =
∣
∣Ln

(
π |z|2

)∣
∣ e−

π
2 |z|2 , z = (x, ω) ∈ R

2.

1 — WHAT?! —
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By rigorous analysis and new and established bounds on Laguerre polynomials,
we show in [2] that

∑

(k,l)∈Z2

∣
∣Ln(π(n+ 1)(k2 + l2))

∣
∣ e−

π
2 (n+1)(k2+l2) < 2, n ≥ 4.

This is, by the Laguerre connection and the Janssen test, sufficient for the Gabor
system G(hn,

1√
n+1

Z
2) to be a frame once n ≥ 4.
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Figure 1. Some values of the Janssen test for G(hn,
1√

(n+1)
Z2).
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Can quantum harmonic analysis explain structure in data? The
example of data augmentation

Monika Dörfler

(joint work with Franz Luef, Henry McNulty)

Data, which we strive to use, interpret, classify, depend on some kind of repre-
sentation. That means, that each data point is written in some dictionary of
building blocks by means of coefficients. For high-dimensional, complex data sets,
structured dimensionality reduction methods are essential in order to enable use-
ful further processing [1]. The guiding idea behind some approaches is the hy-
pothesis, that learning is made possible by the fact that data of interest live on
low-dimensional manifolds as opposed to the dimensionality of the space in which
the data are collected a priori. Inspired by this idea, our approach hinges on the
idea that the dimension of data is not at all canonical, but can vary according to
the chosen representation of the data. Ideally, the choice of representation avoids
loss of essential information, where the latter may depend on the application at
hand. When dealing with time-series of any kind, time-frequency methods are of-
ten applied to obtain image-like representations of time-series data such as speech
and music and to encode the impact of variance over time. Applying convolutional
neural network (CNN) architectures to the resulting TF-transformed versions of
time-series data points has been surprisingly successful in various machine learning
(ML) tasks. The underlying processes are, however, not entirely understood. One
important hypothesis is the assumption that the informative content of the data
actually lies on a manifold of significantly lower dimensions than their domain. It
is not clear, however, how these essential parts of data can be made explicit. In
our work, we propose to use quantum harmonic analysis tools for the identification
of time-frequency localized components that determine the entropy of a data set.
In particular, certain intrinsic structures, which repeat over a data set of interest,
may be encoded as TF-local components. Intuitively, these components determine
the coefficients of the convolutional kernels in the lower levels of the network and
thus can be expected to carry the essential structure for a certain problem at hand.
Thus, the TF-local components are considered useful for the identification of an
underlying data manifold.

We make a connection between data augmentation of original time-domain data
and their effective dimensionality [2] via tools from quantum harmonic analysis
developed in [3, 4, 5]. The key insight guiding these efforts is the association of
the data operator SD to a system of functions D. This allows us to capture the
structure of the data and their interaction. Data augmentation is then formalized
as the mixed-state localization operator corresponding to SD. Since augmentation
can be interpreted as a generalized convolution in the quantum harmonic analysis
context, we use existing results [6, 7] that show that operators corresponding to
augmented data sets yield smoother principle components than the original data
sets. This provides a mathematical explanation of the benefits of augmentation,
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since the principal components determine an approximation of the data set and
increased smoothness is desirable and suppresses over-fitting effect.

Future work and open questions include the hypothesis, that correct augmen-
tation augments along data manifold. Can we possibly learn an underlying data
manifold from data by using concepts of local entropy and local correlation? Can
this help to improve augmentation strategies? Is it possible to use the concept of
non-linear principal components in order tofully exploit the manifold hypothesis?

Detailed information on the technical background may be found in [9, 8].
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Optimal sampling for stochastic gradient descent

Philipp Trunschke

(joint work with Robert Gruhlke, Charles Miranda, Anthony Nouy)

Consider the problem of minimising a cost functional

minimise
v∈M

L(v), L(v) :=

∫

ℓ(v;x) dρ(x)

over a nonlinear model class of functions M ⊆ L2(ρ). When ρ is a probability
measure, and only realisations of the loss are accessible, the exact objective must
be replaced with a Monte Carlo estimate before standard first-onder methods
like gradient descent can be employed. This results in the well-known stochastic
gradient descent (SGD) method. However, replacing the true objective with an
estimate ensues a “generalisation error”. Rigorous bounds for this error usually
require L∞-compactness of M and Lipschitz continuity of ℓ while providing only
a very slow decay with increasing sample size. This slow decay is unfavourable in
settings where high accuracy is required, or sample creation is costly.
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GD Best-case Worst-case SGD

L-smoothness O(t−1) O(t−1+ε) O(t−1/2+ε) O(t−1/2+ε)
strong convexity O(at) O(at) O(t1−2ε) O(t1−2ε)
Table 2. Almost sure convergence rates for different algorithms
with ε ∈ (0, 12 ) and a ∈ (0, 1) depending on the chosen step size.

To address this issue, we draw inspiration from the linear least squares problem,
where optimal sampling methods can be used to obtain quasi-optimal minimisers.
Although the quasi-optimality results do not extend to general, nonlinear model
classes, we can leverage their existence in the linear case by performing a sequence
of updates in local linearisations of the model class.

To be specific, we suppose that in every step t ∈ N there exists a linear space
Tt that approximates M locally around the current iterate ut. Given the gradient
gt := ∇L(ut) ∈ L2(ρ) and a quasi-optimal estimate Pn

t of the L2(ρ)-orthogonal
projector Pt onto Tt, we perform a linear update ūt+1 := ut−stPn

t gt in direction of
the (empirically) projected negative gradient −Pn

t gt. This yields the intermediate
iterate ūt+1 ∈ L2(ρ). Since the ūt+1 is not guaranteed to lie in the original model
class M, we perform a recompression step ut+1 := Rt(ūt+1), where Rt : L2(ρ) →
M takes the linear update ūt+1 back to the model class M with a controllable
error in the cost L. The proposed algorithm can thus be presented in the two
equations

ūt+1 := ut − stP
n
t gt, gt := ∇L(ut),

ut+1 := Rt(ūt+1).

Under classical assumptions on the cost functional L and the sequences of projec-
tors Pn

t , step sizes st and recompressions Rt, the proposed optimisation scheme
converges almost surely to a stationary point of the true objective. The corre-
sponding convergence rates are displayed in Table 2. We find that the proposed
algorithm exhibits the same convergence rates as classical gradient descent (GD)
in the best case but can never perform worse than SGD. We pay particular at-
tention to the estimation of the projectors Pn

t , which must be carried out using
optimally weighted samples to achieve the presented rates.

Implicit bias of policy gradient in linear quadratic control:
extrapolation to unseen initial states

Noam Razin

(joint work with Yotam Alexander, Edo Cohen-Karlik,
Raja Giryes, Amir Globerson, Nadav Cohen)

In modern machine learning, models can often fit training data in numerous ways,
some of which perform well on unseen (test) data, while others do not. Remarkably,
in such cases gradient descent frequently exhibits an implicit bias that leads to
excellent performance on unseen data. This implicit bias was extensively studied
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in supervised learning, but is far less understood in optimal control, which in a
broad sense is equivalent to reinforcement learning. There, learning a controller
applied to a system via gradient descent is known as policy gradient, and a question
of prime importance is the extent to which a learned controller extrapolates to
unseen initial states. In this talk, I will present a recent work [1] that theoretically
studies the implicit bias of policy gradient in terms of extrapolation to unseen
initial states. Focusing on the fundamental Linear Quadratic Regulator (LQR)
problem, we establish that the extent of extrapolation depends on the degree of
exploration induced by the system when commencing from initial states included
in training. Experiments corroborate our theory, and demonstrate its conclusions
on problems beyond LQR, where systems are non-linear and controllers are neural
networks. We hypothesize that real-world optimal control may be greatly improved
by developing methods for informed selection of initial states to train on.
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L1 matrix norms, gauges and factorizations

Radu Balan

(joint work with Fushuai Jiang)

In this talk we consider the decomposition of positive semidefinite matrices as a
sum of rank one matrices. We introduce and investigate the properties of vari-
ous measures of optimality of such decompositions. For some classes of positive
semidefinite matrices we give explicitly these optimal decompositions. Motivated
by a question raised by H. Feichtinger at an Oberwolfach workshop in 2004 (ex-
actly 20 years ago!) we formulate the following problem. For each integer n,
find the optimal constant C(n) ≥ 1 such that for any positive semidefinite matrix
A ∈ Cn×n,

γ+(A) := inf
A=

∑

m
k=1 xkx∗

k

m∑

k=1

||xk||21 ≤ C(n)
n∑

i,j=1

|Ai,j |.

It turns out that one can choose m = n2 so the infimum is achieved. We show the
following properties:

(1) The map A 7→ γ+(A) is continuous over the closed cone of psd matrices.
(2) The optimum value is given by the following infinite dimensional linear

program:

γ+(A) = min
µ ∈ B(S1)

A =
∫

S1
xxY dµ(x)

µ(S1),

where B(S!) denotes the convex set of Borel measures over the unit sphere
S1 with respect to l1 norm in Cn.
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(3) The same constant C(n) satisfies, for every T = T ∗ ∈ Cn×n:

max
||x||1≤1

< Tx, x >≤ C(n) max
A = A∗ ≥ 0
∑

i,j |Aij | ≤ 1

trace(TA).

(4) The dual of the last SDP problem has strong duality gap:

max
A = A∗ ≥ 0
∑

i,j |Aij | ≤ 1

trace(TA) = min
S=S∗≥0

max
i,j

|Tij + Sij |.
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Sampling numbers of the Fourier-analytic Barron spaces

Felix Voigtlaender

Originally introduced and studied in the 90s [1, 2, 3], the space of Barron functions
has recently received a lot of attention [5, 7, 8, 11] in the wake of the deep learning
revolution [12], due to its close connection to neural networks.

We consider Barron functions on the d-dimensional unit cube Ωd := [− 1
2 ,

1
2 ]d.

Precisely, a function f : Ωd → R is called a (Fourier-analytic) Barron function
with smoothness α > 0 if there exists a (measurable) function F : Rd → C with

f(x) =

∫

Rd

F (ξ) · e2πi〈x,ξ〉 dξ for all x ∈ Ωd,

and ‖F‖L1
α

:=

∫

Rd

(1 + |ξ|)α · |F (ξ)| dξ <∞.

(1)

The unit ball Uα
d of the Barron space consists of all such functions f for which one

can choose F such that ‖F‖L1
α
≤ 1.

In the papers [1, 2, 3], Barron showed for the case α = 1 that functions in U1
d

can be well approximated by shallow neural networks, without suffering from the
curse of dimensionality. In modern terminology, let ̺ : R → R, ̺(x) = max{0, x}
denote the ReLU activation function [10]. Then a shallow neural network (or more
precisely, a shallow ReLU network) with N neurons is a function of the form

ΦN : R
d → R, ΦN (x) =

N∑

j=1

cj ̺(〈wj , x〉 + bj)

for certain parameters cj , bj ∈ R and wj ∈ Rd, which are collectively called the
weights of the network. The main approximation result derived by Barron [1] (in
a slightly modified form, taken from [5]) reads as follows:
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Theorem 1. There exists a universal constant κ > 0, such that for each f ∈ U1
d

and each N ∈ N, there exists a shallow ReLU network ΦN with N neurons and all
weights bounded in absolute value by κ such that ‖f − ΦN‖L∞ ≤ κ ·

√

d/N .

As noted in [3], this implies that given m random samples (Xi, f(Xi)) of an un-
known Barron function f ∈ U1

d (with Xi uniformly distributed in Ωd = [− 1
2 ,

1
2 ]d),

one can reconstruct f up to L2 error of expected size O
(
(d log(m)

m )1/4
)
.

In this talk, we present results from the preprint [14] concerning the optimal rate
of reconstructing an unknown function f ∈ Uα

d from m point samples (xi, f(xi))
m
i=1

as m → ∞. Here, the location of the sampling points xi can be chosen freely
(also using randomness, if desired) to allow for optimal reconstruction. In the
language of information-based complexity, this means that we aim to determine
the asymptotic behavior of the so-called (non-linear) sampling numbers of the
space of Barron functions with smoothness α > 0, formally given by

σm(Uα
d )Lp := inf

x1,...,xm∈Ωd

inf
R:Rm→Lp(Ωd)

sup
f∈Uα

d

∥
∥f −R

(
f(x1), . . . , f(xm)

)∥
∥
Lp .

This question was originally raised in [4, Page 34]. Our main result is as follows:

Theorem 2 ([14]). There exist constants C1, C2 > 0 depending only on d and α
such that for all m ∈ N and p ∈ [1,∞], we have

C1 ·m−( 1
max{p,2}+

α
d
) ≤ σm(Uα

d )Lp ≤ C2 · [ln(e +m)]2+8 α
dp ·m−( 1

max{p,2}+
α
d
).

Remark (Open questions).
1○ In the literature, certain other types of spaces1 are also called Barron spaces

(sometimes variational Barron spaces); see e.g. [7]. The (metric) entropy numbers
and the nonlinear dictionary approximation rates of these spaces have been studied
in [13], but the question of the asymptotic behavior of the (non-linear) sampling
numbers for these spaces is still open, to the best of the knowledge of the present
author.

2○ Ignoring logarithmic factors, the above estimate shows that the sampling

numbers exhibit the asymptotic behavior σm(Uα
d )Lp ≍ m−( 1

max{p,2}+
α
d
) as m→ ∞

for fixed d. The constants C1, C2, however, depend in an unspecified way on the
input dimension d. It is an open problem to determine the pre-asymptotic behavior
of the sampling numbers of the Barron spaces, i.e., the behavior of σm(Uα

d )Lp as
a function of d and m.

3○ The above result we allows a free choice of the sampling points. From a
statistical learning perspective, it is interesting to study the optimal reconstruction
error when using (uniform) random sampling points. The work [3] shows that one

can achieve the error O
(
(d log(m)

m )1/4
)

in this setting, but it is unclear if this is
optimal. To the knowledge of the present author, this question is still open.

1See [5] for a discussion of inclusion relations between different types of Barron spaces.
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Proof ideas. We discuss the proof ideas for the upper bound for the case p = 2; for
the full argument (also for general p ∈ [1,∞]) and for the proof of the lower bound
(also for randomized algorithms), see [14]. The proof proceeds in three steps:

1○ Let ϕ ∈ C∞
c

(
(− 1

2 ,
1
2 )d

)
be arbitrary. Then, using standard arguments from

Fourier analysis, one can show that for each f ∈ Uα
d , the localized function ϕ · f

has a Fourier series with quickly decaying coefficients. More precisely, we have2

(ϕ · f)(x) =
∑

n∈Zd

cne
2πi〈n,x〉 for all x ∈ Ωd, with

∑

n∈Zd

(1 + |n|)α|cn| . 1.

From this, simply by truncating the Fourier series to the N largest coefficients,
one sees by a variant of Stechkin’s inequality (see e.g. [9, Proposition 2.3]) that
for each N ∈ N, there exists a trigonometric polynomial pN with only N non-zero

coefficients satisfying ‖ϕ · f − pN‖L2 . N−( 1
2+

α
d
) and also deg pN .N

1
d
+ 1

2α .
Remarkably, as shown in [6], a similar estimate also holds for the L∞ norm

instead of the L2 norm. There thus exists a trigonometric polynomial qN with

deg qN .N
1
d
+ 1

2α , with only N non-zero coefficients, and ‖ϕ·f−qN‖L∞ .N−( 1
2+

α
d
).

2○ Given samples of f , one can generate corresponding samples of ϕ · f . These
samples can then be interpreted as noisy samples of the sparse trigonometric poly-
nomial qN from Step 1○. Then, using results from compressive sensing (see
[9, Corollary 12.34(b)]), one can obtain a good reconstruction of ϕf . By choosing
ϕ ≡ 1 on the smaller cube Ω∗

d := [− 1
4 ,

1
4 ]d, one can thus obtain a good reconstruc-

tion of f on the smaller cube Ω∗
d, if one has access to suitable samples of f on the

larger cube Ωd = [− 1
2 ,

1
2 ]d. This can be regarded as a local reconstruction result.

3○ Using a “Whitney-type” decomposition of the cube Ωd into infinitely many
cubes with the size of each cube being proportional to its distance to the boundary
of the “big” cube, one can “upgrade” this local reconstruction result to a global
one. This uses the fact that, since the error is measured in L2, in order to achieve
a given accuracy, only finitely many of the cubes need to be considered, since the
remaining measure will be small. �
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Johnson-Lindenstrauss Embeddings with Kronecker Structure

Felix Krahmer

(joint work with Stefan Bamberger, Rachel Ward)

The problem of embedding a finite point cloud into a lower-dimensional space in a
way that approximately preserves the structure, i.e. their pairwise Euclidean dis-
tances, was first studied by Johnson and Lindenstrauss in [1]. Their construction
is a random linear map, which is why random matrix contructions with this prop-
erty are referred to as Johnson-Lindenstrauss (JL) embedding. In distributional
form, the JL property reads as follows:

Definition: A random matrix Φ ∈ Rm×N is a Johnson-Lindenstrauss embedding
if for any x ∈ RN one has

(1) P(
∣
∣‖Φx‖22 − 1

∣
∣ > ǫ) < η.

JL embeddings have found numerous applications in many fields, such as nu-
merical linear algebra or machine learning. The general idea is typically that if
one aims to solve a high-dimensional problem, one can often find an approximate
solution by considering the corresponding problem for the low-dimensional data
obtained by applying the JL embedding. The combined approach, however, is
most advantageous if the embedding can also applied in a fast way. This in-
sight has motivated a line of research on fast Johnson-Lindenstrauss embeddings,
which aims for constructing and analyzing random matrices Φ with the JL prop-
erty, which also have structure allowing for fast matrix-vector multliplication. One
of the first constructions of this kind was the fast JL transform introduced in [7],
in the form of a randomly row-subsampled discrete Hadamard matrix with ran-
domized column signs. This construction was later improved and refined in [2],
and ultimately extended to also cover very large point clouds in [3] by establishing
a near-equivalence between the Johnson-Lindenstrauss embedding property and a
deterministic restricted isometry property [3].
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In these considerations, no distinction is made between different classes of sig-
nals. Motivated by applications in polynomial sketching [8] and least squares prob-
lems with tensor structure [9, 4], recent works have refined this objective aiming for
JL embeddings that are partircularly fast on vectors with a tensor structure. For
example, [5] proposed the use of a row-subsampled discrete Hadamard matrix with
column signs randomized according to a Kronecker-structured Rademacher vec-
tor, and conjectured that such an embedding satisfies the Johnson-Lindenstrauss
property. More precisely, these constructions are very fast for data points of the

form x = x(1) ⊗ · · · ⊗ x(d) ∈ Rnd

= RN , i.e., Kronecker products of d data vec-
tors, each of dimension n, provided the embedding matrix Φ ∈ Rm×N itself has
Kronecker structure Φ = Φ(1) ⊗ · · · ⊗ Φ(d), where the dimensions of the factors
of Φ correspond to the factor dimensions of x. Indeed, then the matrix-vector
multiplication Φx can be factored as Φx = (Φ(1)x(1)) ⊗ · · · ⊗ (Φ(d)x(d)), and can
be computed factor by factor, without constructing x explicitly. Our results re-
viewed in this presentation (see [6] for the journal article) improve, simplify, and
generalize the current embedding results for the Kronecker Johnson-Lindenstrauss
embedding [9, 8, 4] by generalizing an approach from [3] on near-equivalence be-
tween Johnson-Lindenstrauss property and the restricted isometry property to JL
embeddings with Kronecker structure to higher-degree tensor embeddings.

More precisely, we sharpen the existing bounds on the embedding dimension
for which a Johnson-Lindenstrauss embedding with Kronecker structure exists
to m = Cd

1
ǫ2 (log(1/η))d, up to logarithmic factors in log(1/η), 1/ǫ, and in N ,

improving the results in [8] by a factor of log(1/η). In particular, for the case of
d = 2 at the core of the oblivious sketching procedure [8], our results improve the
scaling of the embedding dimension in log( 1

η ) from cubic to quadratic.

We additionally establish that this embedding result is optimal in the η de-
pendence by providing a lower bound of m = Θ((log(1/η))d). We achieve the
optimal bounds by generalizing the near-equivalence between the JL property and
the restricted isometry property of [3] to higher-order tensors, in a sharper way
than what was shown in [9]. The key tool is a concentration inequality for random
tensors analogous to the Hanson-Wright inequality, that we developed and proved
in [10].
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Optimal recovery from inaccurate data

Simon Foucart

Optimal Recovery, a subfield of Approximation Theory, is regaining momentum
is the Data Science era, as it proposes a learning theory framework focusing on
worst-case scenarios by stepping away from the statistical assumption that the
data acquisition process is random. More precisely, an element f from a Banach
space F—think of f as a function—needs to be recovered from data available in
the form y = Λf for some fixed linear map Λ : F → Rm, called observation map.
Additional information translating some prior scientific knowledge is available in
the form of a model assumption f ∈ K, K being a subset of F . A recovery map for
the estimation of a linear map Q : F → Z, landing in a normed space Z, is simply
a map ∆ : Rm → Z. Its performance is assessed through its global worst-case
error

sup
f∈K

‖Q(f) − ∆(Λf)‖Z .

The goal of Optimal Recovery is, not surprisingly, to uncover recovery maps with
the smallest global worst-case error possible (or close). In realistic situations,
however, we need to adjust the ideal setting just described to account for inaccurate
data now of the form y = Λf + e for some nonzero e ∈ R

m. This is discussed in
two distinct parts of the presentation.

In a first part, taking place when F = H is a Hilbert space, we model the error
vector deterministically by assuming that it belongs to the set {e ∈ Rm : ‖e‖2 ≤ η},
while the set K is taken as {f ∈ H : ‖Pf‖ ≤ ε} for some linear operator P on H .
We reveal that a globally optimal recovery map is constructed with the help of
the regularization map

∆τ : y ∈ R
m 7→ argmin

f∈H

[
(1 − τ)‖Pf‖2 + τ‖Λf − y‖22

]
∈ H

with a parameter τ that can be selected in a principled way. Precisely, an optimal
recovery map is given by Q ◦ ∆τ♯ where τ ♯ = d♯/(c♯ + d♯) and c♯, d♯ are solutions
to

minimize
c,d≥0

cε2 + dη2 subject to cP ∗P + dΛ∗Λ � 0.
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This result, as well as extensions covering the cases of mixed accurate/inaccurate
data and ℓ1-inaccurate data, can be deduced (see [2] for full details) from the
accurate-data scenario involving the two-hyperellipsoid-intersection model set

K = {f ∈ H : ‖Rh‖ ≤ 1 and ‖Sh‖ ≤ 1}.
As an open problem, we call for a complete solution in the local optimality setting,
too.

In a second part, taking place when K is a symmetric and convex subset of an
arbitrary vector space F but restricting our attention to quantities of interest Q
that are linear functionals, we view e ∈ R

m as a random vector with log-concave
distribution (which includes Gaussian, Laplace, and uniform distributions). The
notion of global worst-case error is thus modified to

georp (∆) =

(

E

[

sup
f∈K

∣
∣
∣Q(f) − ∆(Λf + e)

∣
∣
∣

p
])1/p

, p ∈ [1,∞).

As shown in [3], linear recovery maps are now near-optimal, in the sense that there
exists a constant κp > 1 such that

inf
∆:Rm→R
∆ linear

georp (∆) ≤ κp inf
∆:Rm→R

georp (∆).

This extends a result specific to Gaussian noise obtained by Donoho in [1], who
considered instead of georp a notion of global worst-case error where the expectation
and the supremum were swapped. An open line of inquiries concerns the full
recovery problem, i.e., the case Q = IdF.
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Kernel regime of deep neural networks: insights and limitations

Mariia Seleznova

Training dynamics of non-linear Deep Neural Networks (DNNs) are notoriously
difficult to study, so the current theory heavily relies on simplifications. Remark-
ably, DNNs’ dynamics simplify dramatically in the infinite-width limit, where
DNNs enter the so-called kernel regime under certain conditions. The dynamics
in the kernel regime are linearized around the initialization and are governed by
deterministic and constant Neural Tangent Kernel (NTK). Thus, optimization and
generalization of DNNs in the kernel regime can be studied theoretically using the
NTK, and many recent works have adopted this approach. Given that modern
DNNs are typically overparametrized, it appears plausible that the infinite-width
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limit provides a promising framework for such models. However, many authors
have pointed out limitations of this approach. In this talk, we discuss whether
the kernel regime provides a good approximation for the behaviour of deep fully-
connected networks. Our results reveal that the answer depends on the network’s
depth-to-width ratio and the distribution of parameters at initialization. While
we conclude that deep networks are generally not in the kernel regime at the be-
ginning of training, we also propose a new approach to study DNNs’ dynamics
using the kernel regime in the end of training.
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Zak-OTFS for integration of sensing and communication

Robert Calderbank

(joint work with Muhammad Ubadah, Saif Khan Mohammed, Ronny Hadani,
Shachar Kons, Ananthanarayanan Chockalingam)

The Zak-OTFS input/output (I/O) relation is predictable and non-fading when
the delay and Doppler periods are greater than the effective channel delay and
Doppler spreads, a condition which we refer to as the crystallization condition.
The filter taps can simply be read off from the response to a single Zak-OTFS
point (impulse) pulsone waveform, and the I/O relation can be reconstructed for
a sampled system that operates under finite duration and bandwidth constraints.
Predictability opens up the possibility of a model-free mode of operation. The
time-domain realization of a Zak-OTFS point pulsone is a pulse train modulated
by a tone, hence the name, pulsone. The Peak-to-Average Power Ratio (PAPR)
of a pulsone is about 15 dB, and we describe a general method for constructing
a spread pulsone for which the time-domain realization has a PAPR of about
6dB. We construct the spread pulsone by applying a type of discrete spreading
filter to a Zak-OTFS point pulsone. The self-ambiguity function of the point
pulsone is supported on the period lattice Λp, and by applying a discrete chirp
filter, we obtain a spread pulsone with a self-ambiguity function that is supported
on a rotated lattice Λ∗. We show that if the channel satisfies the crystallization
conditions with respect to Λ∗ then the effective DD domain filter taps can simply
be read off from the cross-ambiguity between the channel response to the spread
pulsone and the transmitted spread pulsone. If, in addition, the channel satisfies
the crystallization conditions with respect to the period lattice Λp, then in an
OTFS frame consisting of a spread pilot pulsone and point data pulsones, after
cancelling the received signal corresponding to the spread pulsone, we can recover
the channel response to any data pulsone.
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This translates integration of communication and sensing within a single OTFS
frame into geometric properties of a lattice Λp used for data transmission and a
rotated lattice Λ∗ used for sensing. The spread pilot pulsone looks like noise to
the point data pulsones, and it is this incoherence that makes it possible to inte-
grate communications and sensing without time-sharing delay-Doppler resources.
We demonstrate that integrated sensing and communication increases effective
throughput.

Reporter: Mariia Seleznova
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Jean Leray UMR 6629
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