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Abstract. Given a smooth projective curve C, nonabelian Hodge theory
gives a diffeomorphism between two different moduli spaces associated to
C. The first is the moduli space of Higgs bundles on C of rank n, which is
equipped with the structure of an algebraic completely integrable Hamilton-
ian system. The second is the character variety of representations of the fun-
damental group of C into GL(n). In 2012, de Cataldo, Hausel, and Migliorini
[1] proposed the P = W conjecture which identifies the perverse filtration
on the cohomology of the Higgs moduli space with the weight filtration on
the cohomology of the character variety. Recently, in 2022, two independent
proofs of the P = W Conjecture appeared, in work of Maulik & Shen [2] and
Hausel, Mellit, Minets & Schiffmann [6]. The aim of the Arbeitsgemeinschaft
was to understand the P = W Conjecture and these two recent proofs.
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Introduction by the Organizers

The workshopGeometry and Representation theory around the P =W Conjecture,
organized by Tamas Hausel (Klosterneuburg), Davesh Maulik (Cambridge), An-
ton Mellit (Vienna), Olivier Schiffmann (Orsay), and Junliang Shen (New Haven),
was well attended with 48 participants with broad geographic representation and
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a blend of students and researchers with various backgrounds. Following the tra-
ditional format of an Arbeitsgemeinschaft, the organizers prepared a detailed pro-
gram in advance for the participants, who prepared and delivered the lectures.
We had a total of 16 talks of one hour each, with ample time for discussions and
questions during the rest of the week. On Wednesday afternoon, despite some
rainy weather, we took a short excursion to a nearby town for cake. On Thursday
evening, Peter Scholze moderated the vote for the next Arbeitsgemeinschaft in the
series.

The topic of the workshop was the P =W conjecture and its recent proofs. This
conjecture involves two moduli spaces associated to a smooth projective curve C.
The first space is the moduli space Mn

Dol of certain Higgs bundles - pairs (E,Φ)
of a rank n vector bundle E and a Higgs field Φ : E → E ⊗ KC . This carries
the structure of an algebraic completely integrable system, induced by the Hitchin
map

Mn
Dol → A,

a proper map to an affine space known as the Hitchin base. The second space is the
character variety Mn

B of representations of the fundamental group of C into GLn.
After suitable twistings, both of these spaces are smooth varieties. While they are
far from isomorphic, nonabelian Hodge theory [7, 13] provides a diffeomorphism

Mn
Dol

∼= Mn
B,(1)

which underlies the change of complex structures in the hyperkähler metric on
Mn

Dol. In particular, we have an identification of cohomology

H∗(Mn
Dol;Q) ∼= H∗(Mn

B;Q).(2)

Each side of this equality carries a natural filtration. For the Higgs moduli
space, the Hitchin map induces a perverse Leray filtration [1]

P0 ⊂ · · · ⊂ Pi ⊂ · · · ⊂ Pk = Hk(Mn
Dol;Q).(3)

For the character variety, Deligne’s [5] mixed Hodge structure gives a weight fil-
tration on its cohomology

W0 ⊂ · · · ⊂Wi ⊂ · · · ⊂W2k = Hk(Mn
B;Q).(4)

In 2012, de Cataldo, Hausel, and Migliorini [3] formulated the P =W conjecture,
which proposed that these filtrations essentially coincide. More precisely, after
reindexing, we have the

P∗(H
∗(Mn

Dol,Q)) =W∗(H
∗(Mn

B;Q))

under the isomorphism induced by the non-abelian Hodge theorem.
Earlier results proved this conjecture for n = 2 [3] and g = 2 [4]. Most recently

two complete proofs of the P =W Conjecture appeared in 2022, by Maulik–Shen
[9] and by Hausel–Mellit–Minets–Schiffmann [6]. The goal of the Arbeitsgemein-
schaft was to understand the P =W Conjecture and these proofs. The talks were
structured to begin with an introduction to the P = W conjecture and then to
discuss, in parallel, concepts and techniques used in its resolution, concluding with
presentations of the proofs in the final lectures.
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On Monday, the focus was on introducing the main players in the conjecture as
well as some of the necessary background. This included presentations on mixed
Hodge structures and the geometry of the character variety as well as presentations
on the moduli space of Higgs bundles and the definition and basic properties of
the perverse filtration associated to any proper map. The day concluded with the
statement of the P =W conjecture.

The next topic featured lectures on the singular cohomology of the two moduli
spaces. This included lectures on Markman’s proof [8] that tautological classes
generate the ring, Shende’s proof [12] that tautological classes lie in a specific
part of the weight filtration, and Mellit’s proof [10] of the curious Hard Lefschetz
property for character varieties. Using these results, the P = W conjecture can
be reduced to a statement on the Higgs moduli space, regarding the interaction
between tautological classes and the perverse filtration. We then had lectures on
variants of the Higgs moduli space which appear in the proofs, allowing poles in
the Higgs field or parabolic structure at marked points.

After these, we covered techniques from geometric representation theory which
appear in the arguments. This included lectures on Springer theory, both tradi-
tional finite/affine Springer theory and the more recent global Springer theory of
Zhiwei Yun [14], which plays a key role in [9]. We then had two lectures on the
cohomological Hall algebra of zero-dimensional sheaves on a surface, following [11]
and used in [6]. We first had a lecture defining this object and studying a presen-
tation of this algebra; this was followed by a lecture on applying this construction
to give an action of the algebra H2 on cohomology of the Higgs moduli space.

With this background in place, we concluded the workshop with presentations
on both proofs of the P =W conjecture, illustrating how to combine the different
techniques presented during the week to yield the final result.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
by the grant DMS-2230648, “US Junior Oberwolfach Fellows”. Moreover, the
MFO and the workshop organizers would like to thank the Oberwolfach Founda-
tion for supporting the participation of junior researchers in the Arbeitsgemein-
schaft.
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(1981).

[2] K. Corlette. Flat G-bundles with canonical metrics., J. Differential Geom. 28 (1988), no. 3,
361–382.

[3] M.A. de Cataldo , T. Hausel and L. Migliorini, ”Topology of Hitchin systems and Hodge
theory of character varieties: the case A1.” Annals of Mathematics (2012): 1329-1407.

[4] M.A. de Cataldo, D. Maulik and J. Shen, ”Hitchin fibrations, abelian surfaces, and the
P=W conjecture”, J. Amer. Math. Soc. 35 (2022), no. 3, 911–953.
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Abstracts

Recollections on Hodge theory, examples

Miguel González

We recall the fundamental aspects of Hodge theory in algebraic geometry. The
main reference used is [3]. Other important references include [1, 2].

1. Classical Hodge theory

For a smooth complex projective variety X , we can use the existence of a Kähler
form ω ∈ H2(X,C), coming from restricting the Fubini–Study form on Pn, and the
fact that X has a compact complex manifold structure. Then we have the results
of classical Hodge theory [3, Chapters 5 and 6] which are obtained analytically by
studying elliptic differential operators on the spaces Ωk(X,C) of complex-valued
forms:

• On a compact manifold there is a Laplacian ∆ : Ωk(X,C) → Ωk(X,C)
which is an order two elliptic differential operator.

• The cohomology classes Hk(X,C) are in bijection with ker∆.
• On a Kähler manifold ∆ preserves the subspaces Ωp,q(X) of complex-
valued forms of type (p, q).

Combining these, the following result is deduced:

Theorem 1.1. Let p + q = k be integers and Hp,q ⊆ Hk(X,C) be the subset of
cohomology classes that can be represented by a complex valued differential form
of type (p, q). Then we have the Hodge decomposition:

Hk(X,C) =
⊕

p+q=k

Hp,q(X)

It satisfies the symmetry Hp,q(X) = Hq,p(X).

This gives rise to a finer invariant of X called the Hodge numbers hp,q =
dimHp,q(X). Because of conjugation, they satisfy the symmetry hp,q = hq,p.

Example 1.2. We have the following easy examples of hodge numbers.

• Projective spaces Pn. In this case there is only even cohomology, and
H2k(Pn,C) is one-dimensional, generated by ωk. From the symmetry in
the Hodge numbers (or the fact that ω is real, hence of type (1, 1)) we
deduce that the genereators are of type (k, k) and hp,q = 0 for p 6= q.

• Projective curves of genus g. Here h0,0 = h1,1 = 1 and, because of
dimH1(X,C) = 2g, we must have h1,0 = h0,1 = g.
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Set V := Hk(X,C). We have an equivalent formulation in terms of filtrations:
given the direct sum decomposition above, we get a descending filtration

F pV :=
⊕

l≥p

V l,k−l

and the symmetry condition is rephrased as F pV ⊕ Fn+1−pV = V .
From the filtration we recover the decomposition as

V p,q = F pV ∩ F qV ≃ F pV/F p+1V.

This structure is called a Hodge structure of weight k.

2. Hard Lefschetz theorem

Consider the Lefschetz operator on forms

L : Ωk(X,C) → Ωk+2(X,C).

given by exterior product with ω. Since ω is closed, it descends to cohomology

L : Hk(X,C) → Hk+2(X,C).

Now consider the finite-dimensional vector space H :=
⊕
Hk(X,C). Using

the L2-adjoint of L, denoted by Λ and defined via the Hodge star operator as
Λ := (−1)k(n−k) ⋆ L⋆, H becomes an sl2-representation via {L,Λ, [L,Λ]}, and the
eigenspaces of [L,Λ] are the Hk(X,C) with eigenvalue (k − n).

From the structure of sl2-representations, the following theorem is deduced.

Theorem 2.1 (Hard Lefschetz theorem). If the (complex) dimension of X is n,
then for every k ≤ n the map

Ln−k : Hk(X,C) → H2n−k(X,C)

is an isomorphism.

Since ω is of type (1, 1), we have in fact an isomorphism between Hp,q(X) and
Hn−q,n−p(X), which corresponds to another symmetry on the Hodge numbers
(hp,q = hn−q,n−p). Notice that this theorem also implies that L is injective on
Hi(X,C) for i ≤ n/2, so that the first half of the Betti numbers are non-decreasing.

3. Mixed Hodge theory

When we try to work with a non-projective or non-smooth complex variety the pre-
vious results do not hold, since the compactness and the Kähler form are required
for classical Hodge theory. For example, we have:

H1(C×,C) =

〈[
dz

z

]〉
,

which cannot be decomposed in H1,0 and H0,1: it is one dimensional but dimH1,0

should equal dimH0,1. Moreover, [dzz ] = [dz̄z̄ ] so, unlike before, a class can be
represented by forms of different (p, q) types.
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In order to address this, Deligne [1] introduced an extension to Hodge theory,
known as mixed Hodge theory, which solves the problem by allowing different
Hodge-theoretical weights (other than k) on Hk(X,C).

To give an idea of how this should work on C×, write P = 0, Q := ∞ so that
C× = P1 \ {P,Q}. Then we have the long exact sequence on relative cohomology:

· · · → H1(P1,C×) → H1(P1) → H1(C×) → H2(P1,C×) → H2(P1) → . . .

Thus, any reasonable definition of weight should imply that H1(C×) has weight
2, as it is isomorphic to kerH2(P1,C×) → H2(P2). Moreover, since it is one-
dimensional it should have type (1, 1).

The following is the structure that arises in general.

Theorem 3.1 (Deligne). The space V := Hk(U,Q) acquires the following natural
structure:

(1) An ascending filtration, WkV , called the weight filtration, and
(2) a descending filtration on VC := V ⊗ C = Hk(U,C), denoted F pVC, called

the Hodge filtration,

such that F p induces a Hodge structure of weight k on each graded piece GrWk VC =
WkVC/Wk−1VC.

These structures are called mixed Hodge structures, and they form an
abelian category. For example, kernels and cokernels of morphisms of mixed Hodge
structures (i.e. preserving the filtrations) have an induced mixed Hodge structure.

We then have the following invariants:

• The mixed Hodge numbers hp,q;k(X) := dimGrFp GrWp+qH
k(X,C).

• The mixed Hodge polynomial HX(x, y, t) :=
∑
hp,q;k(X)xpyqtk.

We now list some useful properties for computations.

Proposition 3.2. The following hold:

• Given a morphism f : X → Y , the map f∗ : H∗(Y ) → H∗(X) preserves
the mixed Hodge structures.

• The cup product Hk(X) × H l(X) → Hk+l(X) respects the mixed Hodge
structures.

• The Künneth isomorphism H•(X × Y ) ≃ H•(X) ⊗ H•(Y ) respects the
mixed Hodge structures.

Example 3.3. As mentioned before, for C× we have thatH0(C×) is one dimensional
of type (0, 0) and H1(C×) is one dimensional of type (1, 1). The mixed Hodge
polynomial is

HC×(x, y, t) = 1 + xyt.

We can work out the example of (C×)a ×Cb using the Künneth formula property.
Clearly the mixed Hodge polynomial of C is HC(x, y, t) = 1, so that the mixed
Hodge polynomial of U := (C×)a × Cb is

HU (x, y, t) = (1 + xyt)a.
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This is a polynomial in xyt so the nontrivial elements in k-th cohomology have
type (k, k). If the coordinates are (z1, . . . , za, w1, . . . , wb), they are the ones of the

form
dzi1
zi1

∧ · · · ∧
dzik
zik

, and there are
(
a
k

)
of them.
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Recollections on perverse filtrations, examples

Matthew Huynh

1. Perverse sheaves

The reference for this section is [1]. Let X be a separated scheme over C of
finite type (i.e. a variety), and let D(X) = Db

c(X
an,Q) be the bounded de-

rived category of QX -modules with constructible cohomology sheaves. Recall that
D(X) is a triangulated category equipped with a six-functor formalism, and that
the category of perverse sheaves on X is the heart of the perverse t-structure
( pD≤0(X), pD≥0(X)), where

K ∈ pD≤0(X) ⇐⇒ dim suppHi(K) ≤ −i, ∀i ∈ Z,

K ∈ pD≥0(X) ⇐⇒ dim suppHi(K∨) ≤ −i, ∀i ∈ Z.

(In the formula above, K∨ means the Verdier dual of the complex K ∈ D(X)).
The theory of t-structures on triangulated categories produces perverse truncation
functors pτ≤i,

pτ≥i, and a perverse cohomological functor pH0.
For ease of exposition, assume from now on that X is smooth and irreducible.

Note that under these assumptions, QX [dimX ] is a perverse sheaf on X .

Theorem 1.1 (Decomposition Theorem, [1, Théorème 6.2.5]). Let X be as above,
and let Y be another variety. Let f : X → Y be a proper morphism of algebraic
varieties. Then there exists a (non-canonical) isomorphism in D(Y ):

f∗QX [dimX ] ≃
⊕

i∈Z

( pHif∗QX [dimX ])[−i].

Moreover, the perverse sheaves pHif∗QX are semisimple.

The perverse cohomology sheaves of f∗QX [dimX ] have a symmetry that we
describe next. First, recall that any cohomology class γ ∈ Hℓ

sing(X,Q) induces a

morphism γ : QX → QX [ℓ] in D(X).
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Theorem 1.2 (Relative Hard Lefschetz Theorem, [1, Théorème 6.2.10]). Let X,Y
be varieties with X smooth and irreducible, let f : X → Y be a projective mor-
phism, and let η ∈ H2(X,Q) be the first Chern class of a relatively-ample line
bundle on X. Then for each i ∈ Z≥0, the morphism

pH0 ◦ f∗ ◦ η
i : pH−if∗QX [dimX ] → pHif∗QX [dimX ],

is an isomorphism.

2. The perverse (Leray) filtration

Let X be as above, let Y be another variety, and let f : X → Y be a morphism
between them. Then we have a diagram

· · · → pτ≤if∗QX → pτ≤i+1f∗QX → · · · → f∗QX .

By taking cohomology, we obtain the following

Definition 2.1. With the above notation, the perverse (Leray) filtration on
H∗(X,Q) is defined by

PiH
∗(X,Q) = Im(H∗(Y, pτ≤if∗QX) → H∗(Y, f∗QX) = H∗(X,Q)).

The following theorem gives us a way to compute the perverse filtration in
certain situations.

Theorem 2.2 ([2, Theorem 4.1.3]). Let X be a smooth, irreducible variety, let Y
be an affine variety, and let f : X → Y be a morphism between them. Then any
generic (full) flag of linear sections of Y , denoted Y = Y0 ⊃ Y1 ⊃ · · · ⊃ YdimY ⊃
YdimY+1 = ∅, satisfies

PiH
∗(X,Q) = ker(H∗(X,Q) → H∗(f−1(Yi−∗+1),Q)).

3. Strong perversity of a cohomology class

The reference for this section is [4, §1]. For simplicity, let us assume further that
f : X → Y has equidimensional fibers, with dimX = 2dimY . We normalize the
perverse filtration so that it starts at step 0:

PiH
∗(X,Q) =

Im(H∗−dimY (Y, pτ≤i(f∗QX [dimY ])) → H∗−dimY (Y, f∗QX [dimY ])).

The notion of strong perversity helps us understand how the perverse filtration
behaves with respect to cupping with a cohomology class.

Definition 3.1. Let c be a non-negative integer, and let γ ∈ Hℓ(X,Q). We say
γ has strong perversity c if for all i ∈ Z, the composition

pτi(f∗QX) → pτ≤i(f∗QX [ℓ]) = ( pτi+ℓf∗QX)[ℓ] → f∗QX [ℓ],

factors through pτi+(c−ℓ)(f∗QX [ℓ]) = ( pτi+cf∗QX)[ℓ] → f∗QX [ℓ].
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Note that any cohomology class of degree ℓ automatically has strong perversity
ℓ. Furthermore, by taking cohomology, we see that if γ has strong perversity c,
then cupping with γ sends PiH

∗(X,Q) to Pi+cH
∗+ℓ(X,Q). A simple computation

shows that if γ1, . . . , γs have strong perversities c1, . . . , cs respectively, then γ1 ∪
· · · ∪ γs has strong perversity

∑s
j=1 cj.

The notion of strong perversity behaves well with respect to the vanishing cycles
functor. Before stating the proposition, we introduce some more notation. Let
g : X → A1 be a morphism, and let X0 = g−1(0), yielding the vanishing cycles
functor ϕg : D(X) → D(X0). Let X ′ = supp(ϕg(QX [dimX ])) ⊂ X0, and assume
that ϕg(QX [dimX ]) = QX′ [dimX ′]. Finally, assume that g fits into the following
commutative diagram,

X ′ X

Y ′ Y A1,

i

f ′
g

f

ν

where f is proper, and Y ′ = supp(ϕν(QY [dim Y ])).

Proposition 3.2 ([4, Proposition 1.4]). We use the notation from the paragraph
above. Suppose that γ ∈ Hℓ(X,Q) has strong perversity c with respect to the
morphism f : X → Y . Then the class i∗γ ∈ Hℓ(X ′,Q) has strong perversity c
with respect to the morphism f ′ : X ′ → Y ′.

4. Lefschetz structures

The reference for this section is [3].

Definition 4.1. A Lefschetz structure is the data of

(1) a finite-dimensional rational vector space V ,
(2) an increasing filtration P•V on V ,
(3) and a linear endomorphism ω : V → V ,

such that for all i ∈ Z,

(1) ω(PiV ) ⊂ Pi+2V ,
(2) and ωi : P−iV/P−i−1V → PiV/Pi−1V is an isomorphism.

A morphism of Lefschetz structures is a vector space morphism that is compat-
ible with the filtrations and intertwines the endomorphisms.

The data of a Lefschetz structure (V, P•, ω) gives rise to a finite-dimensional sl2-
representation on GrVC = ⊕iPiVC/Pi−1VC by defining the action of H on GriV as
multiplication by i, defining the action of X on GrV by ω, and defining the action
of Y by the relations [X,Y ] = H, [H,X ] = 2X, [H,Y ] = −2Y . This assignment is
functorial, and in fact we have the following

Proposition 4.2 ([3, Proposition 8.3]). The category of Lefschetz structures is
abelian, and the functor from the category of Lefschetz structures to the category
of finite-dimensional sl2-representations is exact and faithful.
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The Decomposition Theorem 1.1 and Relative Hard Lefschetz Theorem 1.2
together imply that if X is a smooth, irreducible variety, Y is another variety,
f : X → Y is projective, and η is the first Chern class of a relatively-ample line
bundle on X , then the perverse filtration on H∗+dimX(X,Q) and the cup product
with η form a Lefschetz structure.
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The Higgs moduli space, the Hitchin map

Huishi Yu

Let C be a smooth projective curve of genus g ≥ 2 over C. Let n and d be integers
that coprime to each other. Let D be any divisor of C. In this talk, we first
introduce the moduli space of stable D-Higgs bundles over C with rank n and
degree d. Then we describe this moduli space as the moduli space of stable pure
one-dimensional sheaves over the total space of OC(D). The supports of these
one-dimensional sheaves are spectral curves. We can use them to describe the
fiber of the Hitchin map.

We recall that a D-Higgs bundle is a pair (E, θ), where E is a vector bundle
over C and θ is a D-twisted Higgs field

θ : E → E ⊗OC(D).

The D-Higgs bundle (E, θ) is stable if

µ(F ) < µ(E) =
degE

rkE

holds for any non-zero proper θ-stable subbundle F of E. Then the moduli problem
of stable Higgs bundles with rank n and degree d has coarse moduli space.

Theorem 1 ([2, 4, 5]). Let the scheme MD
n,d be the moduli space of stable Higgs

bundles over C with rank n and degree d. Then it is a normal, quasi-projective
variety. This moduli space is called the Dolbeault moduli space of C. When D is
the canonical divisor KC, we denote Mn,d = MD

n,d. In this case Mn,d is smooth

and of dimension n2(2g − 2) + 2.

For a Higgs bundle (E, θ) the Higgs field θ can be regarded as a twisted endo-
morphism of E. Its characteristic polynomial is

χθ = xn + s1x
n−1 + · · ·+ sn.
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Then the Hitchin map is defined to be the morphism

hD :MD
n,d

// AD =

n⊕

i=1

H0(C,OC(iD))

(E, θ) ✤ // (s1, . . . , sn).

Theorem 2 ([2, 4, 5]). The Hitchin map is proper.

When D = KC deformation theory shows that T ∗N ⊂ Mn,d, where N is the
moduli space of stable vector bundles of rank n degree d over C. The natural
symplectic structure on T ∗N can extend to Mn,d. Moreover, Hitchin [3] proved
that the Hitchin map is a Lagrangian fibration in this case.

From now on for simplicity, we take D = KC . Let S◦ be the total space of
the cotangent bundle ΩC of C. Let S = Proj(Sym•(Ω∨

C ⊕ OC)) be the natural
compactification of S◦ and D∞ = S − S◦. Take N sufficiently large such that
H = OS(D∞)⊗ π∗OC(N) is an ample divisor of S. Simpson’s identification says
that stable Higgs bundles over C should be identified with H-Gieseker stable pure
1-dimensional sheaves E over S satisfying Supp(E) ∩D∞ = ∅.

To prove this we first show that coherent Higgs sheaves over C are identified
with coherent sheaves over S with support that doesn’t intersect with D∞. Then
we observe that this correspondence preserves support dimension and subsheaves.
Thus it identifies pure 1-dimensional sheaves on both sides. A direct calculation
also shows that OC(1)-Gieseker stability is identified with H-Gieseker stability.
Finally, slope-stable Higgs bundles over a smooth curve are just OC(1)-Gieseker
stable coherent Higgs bundles of pure dimension 1 and we are done with the proof.

We can conclude the above arguments into a theorem of Simpson.

Theorem 3. Take ξ =: n[C] ∈ H2(S,Z) and χ =: d+ n(1 − g). Let MH
ξ,χ be the

moduli space of H-Gieseker stable pure 1-dimensional sheaves E over S with

[Supp(E)] = ξ, χ(E) = χ,

where the Fitting support [Supp(E)] is the dual element of c1(E). Then there exists
an open embedding

Mn,d →MH
ξ,χ

whose image consists of those with

Supp(E) ∩D∞ = ∅.

The supporting curves of these 1-dimensional sheaves lead us to the definition
of spectral curves. Let a ∈ A be an element and x ∈ f∗Ω1

C be the tautological
section of the bundle. The zero-locus of the section

xn + f∗a1 · x
n−1 + · · ·+ f∗an

of f∗Ωn
C is a curve we denote by Ca. It is called the spectral curve over a. If

h((Eθ)) = a, then by Cayley–Hamilton theorem we see that E is set-theoretically
supported on Ca.

Following the proof of Simpson’s identification, we can prove the theorem below
which is often called the BNR correspondence.
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Theorem 4 ([1]). Let a ∈ Aint = { a ∈ A | Ca is integral }. Then torsion-
free rank 1 sheaves over Ca are identified with Higgs bundles (E, θ) satisfying
h(E, θ) = a.

Since torsion-free rank 1 sheaves over an irreducible curve are stable, we get
that

J̄χ(Ca) = h−1(a), ∀a ∈ Aint.

When a ∈ Asm = { s ∈ A | Cs is smooth }, we get

Jχ(Ca) = h−1(a), ∀a ∈ Asm

is an abelian variety. When D = KC or degD > 2g− 2, the smooth locus is open
dense in A. Thus we conclude that general fibers of the Hitchin map are abelian
varieties. Moreover the BNR correspondence shows that the smooth locus lies in
the image of h, thus h is dominant. Combining this with h is proper yields that
the Hitchin map h is surjective.
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The twisted character variety and introduction to the
P = W conjecture

Anne Larsen

We introduce the twisted character variety and proceed to state the P = W
conjecture, which we verify in the easy cases when rank or genus equals 1. The
main reference for this talk is [2].

1. The twisted character variety

Let C be a smooth projective complex curve of genus g ≥ 1, and fix positive
integers n, d with (n, d) = 1.

Definition 1.1. The twisted (Betti) character variety MB
n,d,g is defined to be the

affine GIT quotient

MB
n,d,g := {(A1, B1, . . . , Ag, Bg) ∈ GLn(C)

2g : [A1, B1] · · · [Ag, Bg] = e
2πid
n Id}//GLn(C),

where GLn(C) acts on GLn(C)
2g by simultaneous conjugation in each factor.
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We may think of MB
n,d,g as parametrizing local systems of rank n and degree

d on C \ {pt} with monodromy e2πid/n Id on the loop around the puncture. More
generally, one may replace GLn(C) by other reductive algebraic groups, such as
SLn(C) and PGLn(C). One can also consider local systems on a multiply punc-
tured curve with prescribed monodromy around each puncture; this leads to the
definition of a parabolic character variety.

Theorem 1.2. If (n, d) = 1, the twisted character variety MB
n,d,g is smooth of

dimension n2(2g − 2) + 2.

Proof. Let ζ := e2πid/n, and consider the map

µ : GLn(C)
2g → SLn(C), (A1, B1, . . . , Ag, Bg) 7→

∏

i

[Ai, Bi].

One proves that ζ Id is a regular value of this map and that the action ofGLn(C) on
µ−1(ζ Id) factors through a free action of PGLn(C). Then µ

−1(ζ Id) is a principal
PGLn-bundle over MB

n,d,g, which is thus smooth. For the regularity and freeness

assertions, one relies on the observation that A1, . . . , Bg ∈ GLn(C) such that
µ(A1, . . . , Bg) = ζ Id must act irreducibly on Cn, as for any subspace V fixed by
all the Ai, Bi we would have

1 =
∏

i

1 = det

(
∏

i

[Ai|V , Bi|V ]

)
= det(ζ IdV ) = ζdimV

and thus dim V = 0 or n. �

A similar argument can be used to show the smoothness of SLn twisted char-
acter varieties, as well as parabolic varieties with sufficiently general choice of
monodromy (see [3] for details). One can then describe the PGLn character vari-
ety as the quotient of the SLn version by µ2g

n , where µn is the group of nth roots
of unity, and µ2g

n acts on SLn(C)
2g by multiplication on each factor.

2. The P =W conjecture

We start by recalling the necessary ingredients from the first three talks: first, the
mixed Hodge structure on the rational cohomology of any complex variety, and in
particular the increasing weight filtrationW•H

i(MB
n,d,g,Q), whereW• has weights

in [0, 2i]; second, the moduli space MDol
n,d,g of semistable Higgs bundles of rank n

and degree d on C; and third, the perverse Leray filtration on H∗(MDol
n,d,g,Q)

associated to the Hitchin map MDol
n,d,g → A, where A is the affine Hitchin base.

For the purposes of the P =W conjecture, we will take the following definition of
the perverse Leray filtration (shifted so as to be graded in degrees matching those
of the weight filtration):
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Definition 2.1. Let f : X → Y be a proper map of smooth quasi-projective
varieties. We define the perverse filtration

P f
i H

j(X,Q) := Im(Hj−dX+rf (Y, pτ≤iRf∗QX [dX − rf ]) → Hj(X,Q)),

where dX := dimX and rf := dimX×Y X−dimX is the defect of semismallness.

By counting points over finite fields, Hausel and Rodriguez-Villegas [2] were able
to describe the weight filtration W•H

∗(MB
n,d,g,Q) in some cases. In particular,

they noticed a certain symmetry in the dimensions of graded pieces of the weight
filtration (“curious Poincaré duality”), and in the case n = 2, they were able to
prove that this resulted from a “curious Hard Lefschetz” isomorphism induced by
cup product with a class α ∈ H2(MB

n,d,g,Q). Although the statement in this form

does not appear to follow from the Hard Lefschetz theorem, as MB
n,d,g is affine

and α is of weight 4, the connection was clarified in [1] by the following conjecture:

Conjecture (P=W). Under the non-abelian Hodge diffeomorphism MB
n,d,g

∼=

MDol
n,d,g, the weight filtration on H∗(MB

n,d,g;Q) is identified with the perverse fil-

tration on H∗(MDol
n,d,g;Q) by

PiH
∗(MDol

n,d,g,Q) =W2iH
∗(MB

n,d,g,Q) =W2i+1H
∗(MB

n,d,g,Q).

That is, under the P =W conjecture, curious Hard Lefschetz on the Betti side
is explained by relative Hard Lefschetz on the Dolbeault side.

Although both the weight and perverse filtrations are difficult to understand in
general, here are two cases in which both are as simple as possible:

Example 2.2. If n = 1, then on the Betti side we have by definition

MB
1,d,g = GL1(C)

2g = (C∗)2g

and so by compatibility of the mixed Hodge structure with the Künneth isomor-
phisms and the fact that H1(C∗) is of weight 2, we conclude that

W2iH
∗(MB

1,d,g,Q) =W2i+1H
∗(MB

1,d,g,Q) = ⊕j≤iH
j(MB

1,d,g,Q).

On the Dolbeault side, we have the Hitchin fibration

MDol
1,d,g = Picd(C)×H0(C, ωC) → H0(C, ωC)

given by projection onto the second factor. Again we get that

PiH
∗(MDol

1,d,g) = ⊕j≤iH
j(MDol

1,d,g,Q).

Example 2.3. If g = 1, then on the Betti side one can show that

MB
n,d,1

∼= (C∗)2, (A1, B1) 7→ (An
1 = α Id, Bn

1 = β Id)

and thus the weight filtration is as described in the previous example. On the
Dolbeault side, we note that a Higgs bundle in this case consists of a pair (E , θ ∈
End(E)), which is semistable as a Higgs bundle exactly when E is semistable as a
vector bundle. Moreover, since (n, d) = 1, semistability is equivalent to stability,
and so for E semistable we have that End(E) ∼= C. In addition, the space of stable
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vector bundles of rank n and degree d on an elliptic curve C is isomorphic to C
(via the determinant map), and thus we get a Hitchin fibration

MDol
n,d,1

∼= C × C → C →֒ ⊕n
i=1H

0(C, ω⊗i
C ) = Cn,

where the first map is projection onto the factor C and the second is the em-
bedding C →֒ Cn given by taking a constant diagonal matrix to its characteristic
polynomial. Again the perverse filtration is trivial.
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Tautological classes for the Moduli of Higgs Bundles

Soumik Ghosh

1. Notations and Definitions

Let C be a smooth projective curve of genus g > 1 over C. We fix integers r, d
such that gcd(r, d) = 1. We denote by MDol

r,d the Dolbeault moduli space of stable

Higgs bundles on C of rank r and degree d. Under the above assumptions, MDol
r,d

is a smooth quasi-projective variety, which we shall denote henceforth by MDol.
Furthermore, we have a universal Higgs bundle E on MDol × C.

Definition 1.1 (Tautological classes). Given an integer k ≥ 0 and γ ∈ H•(C;Q),
we define the tautological classes ck(γ) := pMDol,∗[chk(E).p

∗
Cγ] ∈ H•(MDol;Q)

where pMDol and pC are the two projections from MDol × C to MDol and C
respectively.

We shall sketch, following the arguments of Beauville and Markman, the proof
of the following theorem due to Markman: (see Theorem 7 of [Mar01] or [HT00])

Theorem 1.2. H•(MDol;Q) is generated by the tautological classes {ck(γ) : k ∈
Z≥0, γ ∈ H•(C;Q)}.

The key idea is to use appropriate modifications of Beauville’s diagonal trick.
Remark: ck(γ)’s give the Kunneth components of the Chern characters of the
universal Higgs bundle.
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2. Beauville’s Diagonal Trick

2.1. Moduli of Stable Vector Bundles on a Curve. We illustrate Beauville’s
Diagonal trick, following [Bea92], to find generators of the cohomology ring of
M(r, d) = M the moduli space of s-6table vector bundles on C of rank r, de-
gree d. In this case M is a smooth projective variety. Let E ′ be a universal
bundle on M × C and E ′′ is a universal bundle on C × M. Consider the dia-

gram

M× C ×M

M× C M×M C ×M

π23π13
π12 . Define Ext!π13

(π∗
12E

′, π∗
23E

′′) =

∑

i≥0

(−1)i
[
Extiπ13

(π∗
12E

′, π∗
23E

′′)
]
∈ K(M×M), the K-class corresponding the ele-

ment Rπ13∗RHom(π∗
12E

′, π∗
23E

′′) in the derived category. Then by Grothendieck-
Riemann-Roch, we get

(1) ch
(
Ext!π13

(π∗
12E

′, π∗
23E

′′)
)
= π13,∗ (ch(π

∗
12E

′)∨ch(π∗
23E

′′)π∗
2 TdC)

Since C is a curve, ExtiC(E,F ) = 0 for i ≥ 2 and for two stable vector bun-

dles E,F we have the isomorphism Ext0(E,F ) ∼=

{
C if E ∼= F

0 if o.w.
. We have that

Rπ13,∗RHom (π∗
12E

′, π∗
23E

′′) is represented in the derived category by a 2-term

complex of vector bundles on M × M given by · · · → 0 → K0 θ
−→ K1 →

0 → · · · . So at the point x = (E,F ) ∈ M × M, we get the exact sequence
0 → Ext0C(E,F ) → K0(x) → K1(x) → Ext1C(E,F ) → 0. This identifies the
diagonal ∆M in M×M (at least set-theoretically but since we are working with
Q coefficients, we can afford to be a little sloppy) as a degeneracy locus of the
morphism between vector bundles θ : K0 → K1 of the set of points x ∈ M×M

such that K0(x)
θ(x)
−−−→ K1(x) is not injective. We check that the degeneracy lo-

cus has expected co-dimension. To this end, we see that rkK1 − rkK0 + 1 =
ext1C(E,E)− ext0C(E,E) + 1 = dimM = codimM×M ∆M =: m. So by Porteous
formula, we get

(2) [∆M ] = cm(K1 −K0) = cm(−Rπ13,∗RHom (π∗
12E

′, π∗
23E

′′))

It follows from equations (1) and (2) that [∆] =
∑

i

nip
∗
1Bi ∪ p

∗
2Ci where Bi, Ci ∈

the ring generated by the Kunneth components of the Chern characters of the
universal bundle E on M × C and pi is the ith projection from M × M. This
proves the classical result of Atiyah-Bott, see [AB83] and [Bea92]

Theorem 2.1. With notations as above, the Kunneth components of Chern classes
of E, a universal bundle on M× C generate H•(M;Q).

2.2. Moduli of Stable Sheaves on a Symplectic Surface. We now consider
the case where S is a projective symplectic surface (so ωS

∼= OS), L is an ample
line bundle on S and M = ML(r, c1, c2) is the moduli space of L-stable sheaves
on S of rank r, 1st Chern class c1 and 2nd Chern class c2. Then by a theorem
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of Mukai (see [Muk84]), we know M is smooth quasi-projective and symplectic,
so dimM =: m is even. We assume M is complete and say E ′ is a universal
sheaf on M × S, E ′′ is a universal sheaf on S × M. We consider the analogous

diagram

M× S ×M

M× S M×M S ×M

π23π13
π12 . Define Ext!π13

(π∗
12E

′, π∗
23E

′′)

as before. Then we have the following theorem due to Markman

Theorem 2.2. With notations as above, [∆M] = cm(−Ext!π13
(π∗

12E
′, π∗

23E
′′))

As a corollary, we get

Corollary. With notations as above, the Kunneth components of Chern classes
of E, a universal sheaf on M× S generate H•(M;Q).

Some comments on the proof of Theorem 2.2. Firstly, we observe that for

(E,F ) ∈ M × M, Ext0S(E,F )
∼=

{
C if E ∼= F

0 o.w.
, Ext2S(E,F )

∼= Ext0S(F,E ⊗

ωS)
⋆ = Ext0S(F,E)⋆ ∼=

{
C if E ∼= F

0 o.w.
and Ext1S(E,F )

∼= Ext1S(F,E ⊗ ωS)
⋆ ∼=

Ext1S(F,E)∗. Using these calculations, one can show that in the derived cate-
gory, Rπ13,∗RHom (π∗

12E
′, π∗

23E
′′) is represented by a three term complex of vec-

tor bundles · · · → V−1
g
−→ V0

f
−→ V1 → · · · with the i-th cohomology sheaf,

Exti+1
π13

(π∗
12E

′, π∗
23E

′′). Furthermore, the dual complex has i-th cohomology sheaf

Exti+1
π13

(π∗
23E

′′, π∗
12E

′), g is injective and both Coker f , Coker g∗ are supported as
line bundles on the diagonal ∆M. Further, if ri = rkVi, we see that−r−1+r0−r1 =
−χ(E,E) = 2−m. One then uses the following technical lemma due to Markman,
namely Lemma 4 of [Mar01]

Lemma 2.3. Let V−1
g
−→ V0

f
−→ V1 be a complex of vector bundles of ranks

r−1, r0, r1 respectively on a smooth variety M such that g is injective, Coker f ,
Coker g∗ are supported as line bundles on a smooth sub-variety ∆ of pure co-

dimension d and −r−1+r0−r1 = d−2 . Then we have cd(V•) =

{
[∆], m even

0, m odd
.

3. Back to Moduli Space of Higgs Bundles

Set S := P(T ∗C⊕1), π : S → C is the projection. Then there exists an ample line
bundle A on S such that MDol is an open sub-variety of M the moduli space of
A-stable sheaves of rank 0, 1st Chern class c1 = r.c1[π

∗ωC ⊗OS(D∞)] and Euler
characteristic χ = d + r(1 − g) by the BNR correspondence. So MDol consists
of those sheaves whose support is disjoint from D∞. Moreover M can be chosen
to be compact. Let FM be a universal sheaf on M × S and F is its restriction
to MDol × S. Note that F has support in MDol × T ∗C and T ∗C is symplectic.
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Using this observation and Serre Duality, we see that if F ∈ MDol, G ∈ M,

(3) ExtiS(F,G)
∼= Ext2−i

S (G,F )∗

So the proof of Theorem 2.2.1 goes through and we see that the diagonal in M×
MDol is given by cm

(
−Ext!π13

(π∗
12FM, π∗

23F)
)
. Note that even though M is not

smooth, the diagonal is contained in the smooth locus so the technical lemma still
applies. We refer to [Sim94b], [Sim94a] and [Mar01] for more details.

M̃ is a smooth compactification of M together with a morphism fM : M̃ →
M which restricts to identity on MDol. Using the fact that the cohomology of
MDol is pure (see [Hei14]), one concludes that H•(M̃;Q) → H•(MDol;Q) is

surjective. The Kunneth factors of the diagonal in M̃ × M̃ generate H•(M̃;Q)

since M̃ is smooth compact. Therefore the Kunneth factors of the diagonal in
M̃ × MDol generate H•(MDol;Q). But the diagonal in M̃ ×MDol is given by
cm
[
−Ext!π13

(π∗
12f

∗
MFM, π∗

23F)
]
. It follows that Kunneth components of Chern

classes of F generate H•(MDol;Q).

The morphism
H•(S;Q) → H•(MDol;Q)

α 7→ πMDol,∗[π
∗
S(α.TdS).ch(F)]

factors through H•(T ∗C;Q) and

hence through H•(C;Q). By the projection formula and Grothendieck-Riemann-
Roch, we see that for α ∈ H•(C;Q)

πMDol,∗[ch(F).π∗
S(TdS).(id× π)∗p∗Cα] = pMDol,∗[ch(E).p

∗
C(α.TdC)].

It follows that the Künneth components of the Chern classes of E generate the
ring H•(MDol;Q) which proves Theorem 1.2.
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Weights for the (Betti) tautological classes

Ko Aoki

In this talk, we discuss Shende’s result explained in [2].
We fix a (based) curve X of genus g ≥ 1. We also fix n and d which is coprime

to n. We consider the Betti moduli space (aka twisted character variety) MB and
the Dolbeault moduli space MDol as in the previous lectures.

As we have seen in the previous lectures, the P =W conjecture (for GLn) is a
statement about the two filtrations on the ring

H∗(MB;Q) ≃ H∗(MDol;Q).

Note that the right-hand side (and thus the left-hand side) is generated by so-
called tautological classes by Markman’s theorem. Shende’s result is about the
Betti side of the story so that we omit the superscript B from now on. Shende’s
theorem identifies the weights of the tautological classes: Namely, it says that the
tautological class ck(γ) for γ ∈ Hi(X)∨ sits inside

F kH2k−i(MPGL) ∩ F̄
kH2k−i(MPGL) ∩W2kH

2k−i(MPGL).

In particular, it says that this twisted character variety is Hodge–Tate. Combined
with Mellit’s curious hard Lefschetz theorem, the P =W conjecture is reduced to
checking that products of tautological classes have the correct perversities.

We discuss the proof of this theorem. Once the machinery of (higher) stacks
is set up, the proof is quite straightforward. First, for us, a stack means an étale
hypersheaf on Aff, the category of affine varieties. We write Stk for the (∞, 1)-
category of stacks. Note that in this proof, only 1-truncated stacks are (at least
a posteriori) used, but the (2, 1)-categorical structure there is still important.

An important stack for us is the stack of (Betti) local systems LocG(Y ). It
is defined for a homotopy type Y and an algebraic group (or any group stack
in general) G. It is simply Hom(Y,BG), where Y denotes the constant stack
associated with Y . When Y is the classifying space of a group Γ, it is computed
as the stack Homgrp(Γ, BG)/G.

Then we talk about twisted character varieties. Recall that MPGL is defined
as a GIT quotient, but there is also a version M which is obtained by taking the
stack quotient. It is a Deligne–Mumford stack and the map to the coarse moduli
space MPGL induces an isomorphism on rational cohomology. What is nice about
this version is that M is a connected component of LocPGLn

(Y ) where Y is the
homotopy type of X .

We then review Deligne’s theory. Let MHS be the abelian category of mixed
Hodge structures over Q. Essentially by Deligne, we have a functor

Aff
op → Db(MHS)

that sends an affine variety to a complex of mixed Hodge structures whose co-
homology computes the rational cohomology of the variety with a mixed Hodge
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structure. Since this satisfies étale hyperdescent, we have a unique (up to con-
tractible choices) extension

Stk
op → IndDb(MHS)

that carries colimits to limits.
With all these preparations, now Shende’s result simply follows from the com-

putation of the mixed Hodge structure of BPGLn, which is already done in [1].
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Curious Lefschetz property

Mikhail Gorsky

The goal of this talk is to present the definition of the curious Lefschetz prop-
erty introduced in [3] and to give an overview of the proof of its validity for the
cohomology of character varieties due to A. Mellit [5].

LetX be an algebraic variety of dimension d over C. Recall that the cohomology
Hk(X) carries an increasing weight filtration W• and two decreasing filtrations
F•, F •. Consider a class ω ∈ H2(X). It is known that H2(X) =W4H

2(X), which
implies that the projection [ω] of ω to W4/W3 belongs to F2 ∩ F 2.

The cup product with ω acts on the cohomology with contact support as

∪ω : WiH
j
c → Wi+4H

j+2
c .

One says that ω ∈ H2(X) satisfies the curious Lefschetz property with middle
weight 2d if all weights of X are even and for all k, i ≥ 0, the i-th power of the
cup product with ω induces an isomorphism

(∪ω)i :W2d−2iH
k
c (X)/W2d−2i−iH

k
c (X)

∼
→W2d+2iH

k+2i
c (X)/W2d+2i−1H

k+2i
c (X).

For smooth X , this property can also be naturally translated to the setting of
ordinary cohomology by means of Poincaré duality.

The notion of the curious Lefschetz property was first introduced and it was
conjectured to hold for twisted character varieties of closed Riemann surfaces by
T. Hausel and F. Rodriguez-Villegas in [3]. Such varieties fit into a more general
class of generic parabolic character varieties, whose basic properties were proved
in [2], where the same conjecture was formulated for this larger class. In [5], the
curious Lefschetz property was proved for all generic parabolic character varieties.

Let g ≥ 0, n > 0, k > 0 be integers. Let C1, . . . , Ck ∈ GLn(C) be a tuple
of diagonal matrices satisfying the genericity assumption of [2], i.e. such that∏k

j=1 det(Cj) = 1 and for every 1 ≤ r < n and every choice of r eigenvalues
αj,1, . . . , αj,r out of n eigenvalues of Cj for each j = 1, . . . , k, we have
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k∏

j=1

r∏

l=1

αj,l 6= 1.

Given such data, we first define the variety Xpar as follows:

Xpar :=
{
A1, . . . , Ag, B1, . . . , Bg, γ1, . . . , γk ∈ GLn(C) |

∏g
i=1[Ai, Bi]

∏k
j=1(γ

−1
j Cjγj) = Id

}
.

The variety Xpar admits an action of the group Gpar := GLn(C×Z(C1)× · · · ×
Z(Ck), and the parabolic character variety Xpar is defined as the GIT quotient

Xpar := Xpar // Gpar.

It is proved in [2] that, under the genericty assumption, both varieties Xpar and
Xpar are non-singular, and the map Xpar → Xpar is a principal (Gpar/C

×)-bundle.
Twisted character varieties are special cases of the varieties Xpar: they corre-

spond to k = 1, C1 = e
2πi
n Idn.

Theorem 1. [5] For an arbitrary genus g ≥ 0, any k ≥ 0, and any collection
C1, . . . , Ck ∈ GLn(C) of diagonal matrices satisfying the genericity assumption,
the corresponding character variety Xpar carries a canonical holomorphic symplec-
tic 2-form ω whose class in H2(Xpar) satisfies the curious Lefschetz property with
middle weight equal to the dimension. In particular, the curious Lefschetz property
holds for all twisted character varieties.

The following are the main steps of the proof:

(1) An explicit construction of the 2-form ω is given, adapting techniques and
results of [6]. This form agrees with the one in [1].

(2) Assume now that the matrix Ck has distinct eigenvalues. Instead of con-
sidering the principal bundle Xpar → Xpar, Mellit [5] introduces a fiber

bundle X̃par

ǫ
→ Xpar with fiber the group U of upper unitriangular matri-

ces (this bundle is thus in particular a homotopy equivalence), where X̃par

can be defined in suitable changed coordinates

A′
1, . . . , A

′
g, B

′
1, . . . , B

′
g, γ

′
1, . . . , γ

′
k−1 ∈ GLn(C), u ∈ U

by the matrix equation

g∏

i=1

[A′
i, B

′
i]

k−1∏

j=1

(γ−1
j Cjγ

′
j)u = C−1

k .

(3) Keep the same assumption on Ck, and assume further that g = 0 and
that the centralizers of all the matrices Cj are formed by block-diagonal
matrices. Denote by W = Sn the permutation group and by Wj ⊆W the
stabilizer of Cj . Then one shows that Xpar carries a stratification Xpar =
⊔π̄Xπ̄ indexed by tuples π̄ = (π1, . . . , πk−1) ∈ W/W1 × · · · ×W/Wk−1.
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Further, for each π̄, we have a diagram

(1)

X̃π̄ = ǫ−1(π̄)

Xπ̄ Yβ(π̄)(Cπ̄),

where Cπ̄ = C−1
k

∏k−1
j=1 πj(C

−1
j ), the element σπj

is the positive braid lift

of the minimal permutation representing πi, β(π) is the product braid
σπ1

σπ−1
1

· · ·σπk−1
σπ−1

k−1
. The arrow on the right is a vector bundle with

the base Yβ(π̄) being a so-called braid variety. Pullback of the form ω to

X̃π̄ coincides with the pullback of a certain explicit 2-form on Yβ(π̄), also
denoted by ω.

(4) Each braid variety Yβ(π̄) is shown to admit a decomposition (in a certain

precise sense) into pieces of the form (C×)2a ×Cb, equivalent to a certain
decomposition in [7], such that the restriction of ω to each cell is the
pullback of a form which can be written as

∑
u≤v ωuvd log xu ∧ d log xu

in some coordinates on (C×)2a. Such coordinates on a torus are called
log-canonical. In fact, for each cell of this decomposition, there exists a
closed surface such that the cocharacter lattice of the torus is isomorphic
to its first homology and ω can be identified with the intersection form.

(5) It is verified that (that class of) any 2-form on a torus which admits
log-canonical coordinates satisfies the curious Lefschetz property, and the
same is true for its pullback onto (C×)2a × Cb.

(6) The middle weights for ω on different pieces of the decomposition Yβ(π̄) all
coincide. It is proved that in this case, the existence of a decomposition
implies the curious Lefschetz property for the entire Yβ(π̄).

(7) By using diagram (1), we transfer this result to obtain the curious Lef-
schetz property for [ω] on Xπ̄.

(8) The middle weight for ω for each π̄ agrees with dimXpar. The existence of
the stratification then implies the curious Lefschetz property for Xpar.

(9) By carefully taking the genus contributions into account, the above can
be adapted to prove the curious Lefschetz property for Xpar for arbitrary
g, still under the assumption that Ck has distinct eigenvalues.

(10) Assume now that Ck may have eigenvalues with nontrivial multiplicities.
By adding one more matrix to the initial data if necessary, we may assume
without loss of generality that Ck = Idn. We further perturb it and
consider a family XUε/W over Uε/W of character varieties given by Ck =
λ ∈ Uε, where

Uε :=

{
(λ1, . . . , λn) ∈ T ⊂ GLn |

n∏

i=1

λi = 1, λi 6= λj , |λi − 1| ≤ ε

}

for sufficiently small ε > 0. The cohomology spaces of fibers form local
systems over Uε, and so the cohomology of the fiber over a base point x0
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carries an action of π1(Uε/W, x0). It is shown that it comes from a W -
action, and the class of the 2-form ω and the weight filtration are invariant
under the W -action. Further, this W -action can be identified with the
W -action coming from the Grothendieck-Springer sheaf. Together, these
results are shown to verify related conjectures from [4] and imply the
desired curious Lefschetz property for the variety corresponding to Ck =
Idn. This completes the proof of Theorem 1.
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Moduli of twisted Higgs bundles

Junhui Qin

In this talk we discuss the moduli space of Higgs bundles twisted by an effective
divisor with degree bigger than 2g−2. Even far from being a Lagrangian fibration
after twisting, the Hitchin fibration will have good geometry in another viewpoint.
For example, the support theorem can be extended to the whole Hitchin base [1].
We will review this theorem and give some applications.

1. The case of GLn

Let X be a curve with genus g. We fix (n, d) = 1. We fix an effective divisor
D with deg(D) > 2g − 2, and consider several moduli spaces of D-twisted Higgs
bundles.

Definition 1.1. A D-twisted Higgs bundle is a vector bundle E with a morphism
E → E(D). Denote MD

n,d the moduli stack of D-twisted (GLn)-Higgs bundle with
rank n and degree d.

Definition 1.2. The Hitchin base is

AD
n =

n⊕

i=1

H0(X,O(iD)).
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The Hitchin fibration is by taking the characteristic polynomial

hD : MD
n,d −→ AD

n .

Definition 1.3. For a point a ∈ AD
n , the spectral curve Xa is the zero locus of

un + p∗(a1) + · · ·+ p∗(an) = 0

in Σ = V(−O(D)), where p : Σ → X . The elliptic (resp. smooth) locus AD,ell
n

(resp. AD,sm
n ) is the open subvariety of AD

n consisting those a such that Xa is
integral (resp. smooth).

Recall from the previous talk, we have:

Theorem 1.4 (Spectral correspondence). There is a correspondence between the
rank 1 coherent torsion-free sheaf on Xa (which means ja∗j

∗
aF

∼= F for the generic
embedding ja) and D-twisted Higgs bundles of rank n lving over a ∈ AD

n . More
precisely, there is an isomorphism of stacks between the former of degree e and

h−1
D (a) ⊂ MD

n,d where d = e− n(n−1)
2 deg(D).

Over the stable part of MD
n,d, we can take the coarse moduli scheme MD,st

n,d

which is quasi-projective, smooth and with proper Hitchin fibration hD : MD,st
n,d →

AD
n . We denote MD,ell

n,d (resp. MD,ell
n,d ) the restriction on elliptic (resp. smooth)

locus.
Some dimension computations by Riemann–Roch theorem:

• dimAD
n = n(1− g) + n(n+1)

2 deg(D).

• dimMD
n,d = n2 deg(D) + 1.

Now we consider the universal natural component of Picard stack Jn over AD
n

which is defined as J (Xa) over a pointwisely. Denote Jn the associated coarse
moduli space. For example, over a smooth point a ∈ AD

n , it is the Jacobian of
Xa. Every L ∈ J (Xa) acts on rank 1 torsion-free coherent sheaf on Xa, and does
not change the degree of the sheaf, hence we obtain an action of Jn on Mn,d by
spectral correspondence. This action preserves the stable part. Moreover, over
the smooth locus, this action makes M sm

n,d a Jsm
n -torsor, hence the cohomology of

hD,sm is the same of pD,sm : Jsm
n → AD,sm

n . By general theory of abelian variety,
we compute

RihD,sm
∗ C ∼=

i∧
R1hD,sm

∗ C,

with R1hD,sm
∗ C a local system of rank n(g− 1)+ n(n−1)

2 deg(D) + 1. We conclude
that the cohomologies are local systems over the smooth locus.

Next we state the main theorem of this report, which says that when deg(D) >
2g− 2, we can extend Ngô’s support theorem [2], to the whole AD

n instead of only
the elliptic locus.
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Theorem 1.5 (Chaudouard–Laumon, [1]). The complex RhD,st
∗ C is semisimple,

and all simple factors of RhD,st
∗ C[n2 degD + 1] have full support. In particular,

we can write
RhD,st

∗ C ∼=
⊕

i

ICAD
n
(Rf i

∗h
D,smC)[−i].

Proof. The semisimplicity is due to Beilinson–Bernstein–Deligne–Gabber decom-
position. For having full support, since we have Ngô’s result on elliptic locus,
we only need to show that there is no generic point of supports of simple factors
outside the elliptic locus. We have a stratification of AD

n as follows. Define Λn the
set consisting

n1 ≥ n2 ≥ · · · ≥ ns, n =
∑

nimi.

For every such partition, we have a finite morphism

AD
n1

× · · · × AD
ns

−→ AD
n

by sending characteristic polynomial (P1, · · · , Ps) to Pm1

1 · · ·Pms
s . Since every

polynomial can be factorized uniquely, this is a stratification of AD
n . Notice AD,ell

n

is the locus defined by ((n), (1)). Denote η a generic point of support of simple
factors, and suppose it to be in the locus of ((ns), (ms)). Take (a1, · · · , as) lying
over a, then ai lies in the elliptic locus of AD

ni
. Define n′ = n1 + · · · + ns and a′

the corresponding point in AD
n′ .

Some estimation of corresponding commutative group schemes:

• There exists a surjective homomorphism Jn,a → Jn′,a′ with affine kernel.
• There exists a surjective homomorphism Jn′,a′ −→ Jn1,a1

× · · · × Jns,as

with affine kernel.

Therefore, if we decompose Jn,ā as its affine part and abelian variety part (denote
their dimensions as dab and daff),

dab(Jn,a) =
∑

dab(Jni,ai
).

Denote da the dimension of {a}. Denote dh the relative dimension of the map h
and dA the dimension of A. We have two crucial inequalities:

• Ngô’s result on weak abelian fibration gives

dhD,st
n

− dAD
n
+ da ≥ dab(Jn,a).

Here, a weak abelian fibration is in the sense of .
• Severi inequality over elliptic locus

daff(Jni,ai
) = δXai

:= length(OX̃ai

/OXai
) ≤ dAD

ni
− dai

Hence dab(Jni,ai
) ≥ dhD,st

ni

− dAD
ni

+ dai
.

Combining these two, we obtain

dhD,st
n

− dAD
n
+ da ≥

∑

i

(
dhD,st

ni

− dAD
ni

+ dai

)
,

i.e.
1− s ≥ (n− n1 − · · · − ns)(deg(D)− 2g + 2).
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It only happens when s = 1 and n1 = n since deg(D) > 2g − 2. �

Remark 1.6. If D = ΩX , then the theorem is no longer true. In fact, from [4],
we know at least every Levi subgroup of GLn contributes a support in the above
stratification.

2. The case of SLn and endoscopic decomposition

We briefly discuss the case of SLn. Fix a line bundle L of degree d. Let Γ :=
Pic0(X)[n]. We identify Γ with its dual by Weil pairing and identify γ ∈ Γ with
κ. We can form the moduli space MD

n,L of stable D-twisted SLn-Higgs bundle

following [5]. Denote hD : MD
n,L → AD the associated Hitchin fibration. Γ acts

on MD
n,L and we denote the γ-fix subvariety by Mγ which has Hitchin base AD

γ .

Denote iDγ : AD
γ →֒ AD.

Instead of having full support, the support of hD is more complicated due to
the phenomenon of endoscopy. However, we can still extend Ngô’s result from
elliptic locus to whole Hitchin base when deg(D) > 2g − 2. From this extension,
we obtain the following theorem:

Theorem 2.1 (Endoscopic decomposition, [5]). Denote dγ the codimension of
AD

γ in AD. Then we have

(RhD∗ C)κ ∼= iDγ∗((Rh
D
γ∗C)κ)[−2dγ ].

We can even do more. We have the picture

MD−p
n,L

//

��

MD
n,L

��

evp
// [sln/ SLn]

��

f

##
●

●

●

●

●

●

●

●

●

●

AD−p // AD
evp

// sln// SLn
a2

// A1

and MD−p
n,L is identified as the critical locus of f ◦ evp in MD

n,L. Moreover, by a
computation of vanishing cycle functor φf , we obtain

φf (IC(M
D
n,L))

∼= MD−p
n,L .

The same holds for Mγ . By deducing the case ΩX from ΩX + p+ q, we have:

Theorem 2.2 (Endoscopic decomposition for D = ΩX). Back to the case D =
ΩX , i.e. all Higgs bundle are non-twisted. Then

(Rh∗C)κ ∼= iγ∗((Rhγ∗C)κ)[−2dγ ].

Here by h we mean the Hitchin fibration for D = ΩX . So are iγ and hγ.

As explained in [5], this can be strengthened as an enhanced version of topo-
logical mirror symmetry.
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Moduli spaces of parabolic Higgs bundles

Mathieu Kubik

Parabolic (Higgs) bundles are (Higgs) bundles with the extra data of a choice of
flag in the fiber over some points. They were introduced by Simpson in [2], in
order to generalize the nonabelian Hodge correspondence to noncompact curves.
Their moduli space was then constructed by Yokogawa in [3]. In this talk, we
explain their role in the nonabelian Hodge correspondence, and how they are used
in the proof of P =W by [4].

Let C be a smooth projective connected curve over C. Let p ∈ C be a point.
One could more generally replace p by a reduced effective divisor; the present
discussion would carry over without any change. We restrict ourselves to consider
only full flags, but the theory is also available for any partial flag.

1. Parabolic Higgs bundles and the nonabelian Hodge
correspondence

Definition 1.1. A parabolic vector bundle on (X, p) is the data of

(i) a vector bundle E on C of rank n
(ii) a full flag E|p = E1 ⊃ E1 ⊃ · · · ⊃ En ⊃ 0 on the fiber of E at p
(iii) weights d ≤ α1 ≤ · · · ≤ αn < d+ 1 for some d ∈ Z

The weights are also called a stability condition and sometimes considered to be
additional data. As this suggest, they are mainly used to define stability:

Definition 1.2. The parabolic degree of a parabolic bundle (E , E•) is pdeg(E , α) :=
deg E +

∑n
i=1 αi dimGriE• The parabolic slope is defined for E 6= 0 by pµ(E , α) =

pdeg(E , α)/ rk E . A parabolic bundle is stable (resp. semistable) if for any sub-
bundle 0 ( F ( E , one has pµ(F , α) < pµ(E,α) (resp. pµ(F , α) ≤ pµ(E , α)),
where F inherits a filtration and weights from those of E . When α is considered as
an extra data, one can write µα(E) := pµ(E , α) and talk about α-(semi)stability.
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Definition 1.3. A parabolic Higgs bundle on (X, p) is a pair (E , θ) where E is
a parabolic vector bundle, and θ : E → E ⊗ Ω1

C(p) must respect the filtration in
the sense that Resp θ(Ei) ⊂ Ei for all i. (Semi)stability is defined as for parabolic
bundles, by only considering subbundles which are preserved by θ.

Remark 1.4. Often in the literature, the condition Resp θ(Ei) ⊂ Ei is strengthened
into Resp θ(Ei) ⊂ Ei+1. We will adopt the convention that this defines a strongly
parabolic Higgs bundle.

Simpson proves in [2] the following theorem:

Theorem 1.5. Let α be a stability condition. There is a natural bijection between

(i) α-stable strongly parabolic Higgs bundles on C with parabolic degree 0
(ii) irreducible local systems on C \ {p} with monodromy around p semisimple

with eigenvalues e2iπαj .

Actually, Simpson proves a more general statement with arbitray flags and non-
strongly parabolic bundles, but it is more difficult to state and involves filtered
(=parabolic) local systems.

2. Moduli spaces and the proof of P =W

Fix coprime integers n ≥ 1, d ∈ Z and a stability condition α which we assume to
be generic (in the sense of [5]; this implies in particular that stability = semista-
bility). Yogokawa construct a moduli space of parabolic Higgs bundles in [3]:

Theorem 2.1. α-stable parabolic Higgs bundles of rank n and degree d on (C, p)
form a smooth quasiprojective variety which we call Mn,d,p. It comes with a

Hitchin map h :Mn,d,p → A :=
⊕

iH
0(C, (Ω1

C(p))
⊗i) which is proper.

We can now define a whole zoo of moduli spaces, which all enter the proof of
P =W from [4] :

Definition 2.2. Let:

(i) M
ell

n,d,p be the open subset ofMn,d,p consisting of points whose underlying
Higgs bundle has an integral spectral curve

(ii) M ell
n,d,p be the moduli space of rank n, degree d (non-parabolic) p-twisted

Higgs bundles whose spectral curve is integral

(iii) M
nil

n,d,p be the closed subset of Mn,d,p of parabolic Higgs bundles whose
Higgs field has nilpotent residue at p

(iv) Mn,d be the closed subset of Mn,d,p of parabolic Higgs bundles whose
Higgs field has zero residue at p

(v) Mn,d be the usual moduli space of rank n, degree d stable Higgs bundles

They fit together in the following diagram:

M
ell

n,d,p Mn,d,p M
nil

n,d,p Mn,d

M ell
n,d,p Mn,d

cover

open closed closed

fibration
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The reason we consider this diagram is that the H2 action, which is key to the
proof of P =W by [4], can only be constructed on the cohomology ofM ell

n,d,p. Then,
the statement about perverse degrees of tautological classes must be transferred
all the way around this diagram to obtain the P = W statement for Mn,d. We
now explain the following isomorphism :

Theorem 2.3.

H•
pure(M

ell

n,d,p) ≃ H•(M
nil

n,d,p)

where by H•
pure(X) for X a smooth variety we mean the image of the cohomol-

ogy of a smooth compactification by the restriction map , which coincides with the
sum

⊕
nWnH

n(X) where W• is the weight filtration from mixed Hodge theory.

Observe that Mn,d,p carries a C∗ action, by scaling θ. The Hitchin map is

C∗-equivariant with respect to a contracting (=positive weight) action on A. In
particular the fixed point locus, which is closed in the proper h−1(0), is also proper,
and the action can be used to retract the whole Mn,d,p onto the fixed point locus.

They then have isomorphic cohomologies. Hence, Mn,d,p has the cohomology of a
compact variety, and because it is smooth, it has pure cohomology (more precisely,
use that for compact M , the weights of Hk(M) are ≤ k, and for smooth M , the
weights of Hk(M) are ≥ k). More formally, the C∗-action on Mn,d,p turns it
into a semi-projective variety (=smooth, quasiprojective, with a contracting C∗

action with proper fixed point locus) in the sense of [1], where it is proved that a
semi-projective variety has pure cohomology.

The key for continuing is the map

χ :Mn,d,p →
{∑

i

λi = 0
}
⊂ Cn

whose value at (E , θ) is the list of eigenvalues of Resp θ, ordered thanks to the flag.

In [5], a regular Poisson structure is constructed on Mn,d,p, whose symplectic
leaves are the fibers of χ, and they prove:

Theorem 2.4. The map χ is smooth and surjective.

Moreover, this map is C∗-equivariant for the scaling action of C∗ on Cn. In this
situation, it is proved in [1] that every inclusion map χ−1(µ) →֒Mn,d,p induces an
isomorphism in cohomology - the idea is that the action allows one to construct a
nice compactification and apply Erehsmann theorem. Applying this first to µ = 0,

we see that H•(M
nil

n,d,p) = H•(Mn,d,p). Then, choose µ to be generic, in the sense

that
∑

i∈I µi 6= 0 for I 6= {1, . . . , n}. This implies that any (E, θ) ∈ χ−1(µ) has no
nontrivial subbundle or quotient, because of the equality

∑
x trResx θ = 0. In turn,

this implies that the corresponding spectral curve must be integral : any subcurve

could be used to produce a quotient bundle. We proved that χ−1(µ) ⊂ M
ell

n,d,p.

Hence the map H•(Mn,d,p) → H•(M
ell

n,d,p), which becomes an isomorphism after

restricting to χ−1(µ), must be injective. By using a smooth compactification, we
also show that this map surjects on the pure part. The theorem is proven.
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Finite and affine Springer fibers

Rekha Biswal

1. Finite Springer fibers

Let G be a connected reductive group over an algebraically closed field k and g be
the Lie algebra of G. Let B be the flag variety of G which is the G-homogeneous
projective variety parametrizing the Borel subgroups of G. If B is a Borel subgroup
of G, then B can be identified with G/B via the map gB → gBg−1 if g ∈ G. Let

N ⊂ g be the subvariety of nilpotent elements. Let us define N̂ as the set consisting
of pairs (e,B) such that e ∈ N and e is contained in the nilpotent radical of LieB.
The springer resolution is the projection map

π : N̂ → N

where π takes (e,B) to e. For a nilpotent element e ∈ N, the springer fiber Be of
e is the inverse image of e under the projection map π i.e. the springer fiber of e is
the set of Borel subgroups B of G such that e is in the nilpotent radical of LieB.

Example: If G = SL(V ) for some vector space of dimension n then B is the moduli
space of full flags 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V because SL(V ) acts
transitively on set of full flags and the stablizer of the standard flag is the Borel
subgroup consisting of the set of upper triangular matrices. Then for a nilpotent
element e, the springer fiber of e consists of those flags such that eVi ⊂ Vi−1.

1.1. Grothendieck alteration. Let g̃ be the variety consisting of pairs (x,B)
where x ∈ g and B ∈ B such that x ∈ LieB. The projection map πg : g̃ → g

sending the pair (x,B) to x is called the Grothendieck alternation. For e ∈ N, if

we denote B̂e as the inverse image of e under πg, then Be is a subscheme of B̂e

and the two schemes have same reduced structure.
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2. Affine Grassmannian and affine flag variety

Let k be an algebraically closed field. If R is a k-algebra, then we denote R[[ǫ]] the
ring of formal power series over R and by R((ǫ)) the ring of Laurent series over R.
The affine Grassmannian for G(denoted as GrG) is the quotient k-space LG/L+G
where the quotient in the category of k-spaces is the sheafification of the presheaf
quotient R → LG(R)/L+G(R) where for R a k-algebra, LG(R) = G(R((ǫ))) and
L+G = G(R[[ǫ]]). For a Borel subgroup B of G, an Iwahori subgroup I ⊂ L+G is
by definition the inverse image of B under the projection map L+G → G taking
ǫ to zero. Then the affine flag variety for G is the quotient k-space LG/I.

The R[[ǫ]]-submodule R[[ǫ]]n ⊂ R((ǫ))n is called the standard lattice. A lattice
L ⊂ R((ǫ))n is a projective R[[ǫ]]-submodule such that there exists N ∈ Z≥0 with

(ǫNR[[ǫ]])n ⊂ L ⊂ (ǫ−NR[[ǫ]])n

The affine Grassmannian can be identified with the set of lattices in R((ǫ))n as
a k-space.

A lattice chain inside R((ǫ))n is a chain

ǫL0 ⊂ Ln−1 ⊂ Ln−2 ⊂ · · · ⊂ L1 ⊂ L0

such that each Li is a lattice in R((ǫ))n and such that each quotient Li+1/Li is a
locally free R-module of rank 1. If R is a k-algebra then the standard lattice chain
is defined to be

Λi =

n−i−1⊕

j=0

R[[ǫ]]ej+1

⊕ n−1⊕

j=n−i

ǫR[[ǫ]]ej+1

where e1, · · · , en is the standard basis of R((ǫ))n. Action of each element of LG(R)
on the standard lattice chain gives rise to another lattice chain inside R((ǫ))n and
the stabilizer of the standard lattice chain under this action is the Iwahori subgroup
I(R) ⊂ GLn(R[[ǫ]]) from which we can conclude that the affine flag variety for
GLn is the space of lattice chains in R((ǫ))n .

3. Affine springer fiber

If F = k((ǫ)), then g(F ) = g ⊗k F is the Lie algebra of the loop group LG =
G(k((ǫ))). For γ ∈ g ⊗k F a regular semisimple element, the affine springer fiber
of γ in the affine Grassmannian GrG is the underlying reduced ind-scheme Xγ of

X̂γ where X̂γ is a subfunctor of GrG whose value on the k-algebra R is

X̂γ(R) = {[g] ∈ GrG(R)|Ad(g
−1)γ ∈ g(R[[ǫ]])}

where Ad(g−1) is its adjoint action on g⊗k F . Alternatively, in terms of lattices
if G = GLn then GrG is identified with the moduli space of lattices in R((ǫ))n

and X̂γ is identified with those lattices Λ ⊂ R((ǫ))n such that γΛ ⊂ Λ i.e. those
lattices that are stable under the endomorphism of R((ǫ))n given by γ.

Example: If we consider the case G = SL2 and γ =

[
0 ǫ2

ǫ 0

]
, then Xγ consists of

exactly those lattices Λ ∈ GrG such that ǫk[[ǫ]]⊕ k[[ǫ]] ⊂ Λ ⊂ k[[ǫ]]⊕ ǫ−1k[[ǫ]].



Geometry and Representation Theory around the P=W Conjecture 983

Parahoric subgroups of the loop group LG are the connected group subschemes of
LG containing an Iwahori subgroup with finite codimension. Conjugacy classes of
parabolic subgroups of G are in bijection with the subsets of the Dynkin diagram
of G and LG-conjugacy classes of parahoric subgroups of LG are in bijection with
proper subsets of the vertices of the extended Dynkin diagram of G. For each
parahoric subgroup P there exists a canonical exact sequence of group schemes

1 → P+ → P → LP → 1

where P+ is the pro-unipotent radical of P and LP is a reductive group over
k which is the Levi quotient of P. For each parahoric subgroup P ⊂ LG, the
affine partial flag variety FlP is defined to be the sheafification of the functor
R → LG(R)/P(R) in the category of k-algebras. Then the affine Grassmannian
and the affine flag variety correspond to the special cases for P = L+G and
P = I(an Iwahori subgroup) respectively. If P ⊂ Q are two parahoric subgroups
of G, then there exists a natural projection FlP → FlQ.

For a parahoric subgroup P ⊂ LG, the closed sub-scheme X̂P,γ is defined by

X̂γ(R) = {[g] ∈ FlP|Ad(g
−1)γ ∈ (LieP)⊗̂kR}

The reduced ind-scheme XP,γ of X̂P,γ is said to be the affine springer fiber of γ of
type P. If P ⊂ Q are two parahoric subgroups of LG, then the natural projection
map FlP → FlQ induces a map XP,γ → XQ,γ . In particular, for all parahoric
subgroups P, we always have a map XI,γ → XP,γ .

4. Action of Weyl group on finite springer fibers

The map πg : g̃ → g is small implies that Rπg,∗Qℓ[dimg] is a perverse sheaf
which is the middle extension of its restriction to any open dense subset of g. If
grs is the regular semisimple locus of g, then πg restricted to grs is a W -torsor.
Hence Rπg,∗Qℓ[dimg]|grs is a local system shifted in degree -dimg and admits an
action of the Weyl group W . By functoriality of middle extension, W also acts
on Rπg,∗Qℓ[dimg]. Therefore W acts on stalks of Rπg,∗Qℓ[dimg] hence acts on

H∗(B̂x) for all x ∈ g. For a nilpotent element e, both B̂e and Be have same

reduced structure implies that H∗(B̂e) = H∗(Be) for which we get an action of
W on H∗(Be).

5. Action of affine Weyl group on affine springer fibers

Let us assume that the affine Weyl group is generated by the affine simple re-
flections s0, s1, · · · , sr. For P a parahoric subgroup of LG, let LP be the Levi
quotient of P and lP = LieLP and we define the evaluation map evP,γ as follows.
For [g] ∈ FlP such that Ad(g−1)γ ∈ LieP, the coset [g] = gP is sent to the image
of Ad(g−1)γ under the projection LieP → lP and this map is well defined upto
the adjoint action of LP. If πlP is the Grothendieck alteration for the reductive
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group lP then we have the following cartesian diagram:

X̂I,γ l̃P/LP

X̂P,γ lP/LP

evI,γ

πP,γ πlP

evP,γ

By the action of finite Weyl group on finite springer fibers, we get an action of
the Weyl group W (LP) of LP on the direct image complex RπlP,∗D where D

is the dualizing complex for l̃P/LP. Therefore by proper base change we get an
action ofW (LP) on RπP,γ,∗DX̂I,γ

and hence on H∗(XI,γ). If we take the standard

parahoric subgroup P corresponding to the i’th node of the extended Dynkin
diagram, then W (LP) =< si > and we have si acting on H∗(XI,γ). To check the
braid relations between si and si+1, we can choose a standard parahoric P such
that W (LP) = 〈si, si+1〉 and braid relation holds due to the action of W (LP) on
H∗(XI,γ).
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Global Springer Theory

Cheng Shu

The global Springer theory of Yun [3, 4] provides an action of the graded double
affine Hecke algebra on the direct image complex for a parabolic version of the
Hitchin map. Some ingredients in this theory, notably the Weyl group action and
the strong perversity of certain Chern classes, are used in Maulik-Shen’s proof [2]
of the P=W conjecture [1]. The purpose of this talk is to explain this in some
more details.

Let C be a smooth projective algebraic curve over C with genus g > 1. Let L
be a line bundle on C with degL > 2g. We fix coprime integers n > 0 and d > 0,
as well as a line bundle D on C with degD = d. The smooth fine moduli space
of L-twisted Higgs bundles with determinants isomorphic to D is denoted by M̌ .
Let Γ denote the subgroup of n-torsion points of the Jacobian variety of C. Then
Γ acts on M̌ by tensor product. Let M̂ := [M̌/Γ] be the quotient stack. It is a
connected component of the moduli stack of L-twisted PGLn-Higgs bundles. The
Hitchin base for M̂ is the affine space Â := ⊕n

i=2H
0(C,L⊗i). The Hitchin map

ĥ : M̂ → Â is a proper, flat and surjective.

We fix a Borel subgroup B ⊂ G = PGLn. Denote by M̂par the moduli stack of
parabolic PGLn-Higgs bundles. Its groupoid of C-points consists of the quadruples
(E, θ, x, EB

x ), where (E, θ) is an L-twisted PGLn-Higgs bundle on C, x is a closed
point of C and EB

x is a B-reduction of E at x. If we represent E by a vector bundle
on C, then EB

x is equivalent to a full flag on its fibre over x. We will denote by
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M̂par the open substack of M̂par where the underlying PGLn-Higgs bundles lie in

M̂ .

1. Weyl group action (see [2, §3.4 (C)])

Let π : M̂par → M̂ ×C be the morphism that sends (E, θ, x, EB
x ) to (E, θ, x). Let

T ⊂ B be a maximal torus and let W be the Weyl group of G defined by T . We
claim that

• there is an action of W on the complex π∗Q,

where Q is the constant sheaf on M̂par, and the functor π∗ is understood to be
derived. Moreover,

• (π∗Q)W ∼= Q.

It suffices to notice that π fits into the following Cartesian diagram:

M̂par [b/B]L

M̂ × C [g/G]L.

π rL

ev

Some explanations are in order. There is a Gm-action on the Lie algebra g by
homothety, which commutes with the adjoint action. It induces an action of Gm

on the quotient stack [g/G]. Regarding L as a Gm-torsor on X , we can form
[g/G]L, the twist of [g/G] by L, which is a fibration over X with fibres isomorphic

to [g/G]. Similarly, we have [b/B]L. The evaluation map sends (E, θ, x) ∈ M̂ ×C
to the endomorphism θx : Ex → Ex, regarded as a section of [g/G]L over x. The
vertical arrow rL on the right hand side is the L-twisted version of the Grothendieck
simultaneous resolution r : [b/B] → [g/G]. If we take a smooth atlas g → [g/G],
then r pullbacks to the morphism

r0 : g̃ := {(x, b) ∈ g× B | x ∈ b} −→ g

that sends (x, b) to x, where B is the flag variety parametrising Borel subalgebras.
It follows from the classical Springer theory that r0∗Q admits an action of W such
that (r0∗Q)W ∼= Q. By base change, we get the desired properties for π∗Q.

2. Splitting of the universal Higgs bundle (see [2, §3.4 (A)])

Let (U ,Θ) be the universal Higgs bundle on M̂ × C. Consider the pullback π∗U .
The fibre of this bundle over (E, θ, x, EB

x ) is Ex. But it is automatically equipped
with a full flag EB

x . This means that π∗U admits a filtration whose associated
graded is a direct sum of line bundles L1, . . . , Ln. The fibres of these line bundles
over (E, θ, x, EB

x ) are the successive quotients of the flag EB
x . Consequently, we

have a relation between Chern classes:

c1(π
∗U) =

n∑

i=1

c1(Li).
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We can give a more precise description of the line bundles Li. For this purpose,
we regard EB

x as a B-torsor, instead of a flag. Then the surjective homomor-
phism B → T allows us to obtain a T -torsor ET

x from EB
x by extension of struc-

ture groups. This defines a tautological T -torsor LT on M̂par, whose fibre over
(E, θ, x, EB

x ) is ET
x . Let T0 = (Gm)n be the rank n torus and regard T as the

quotient of T0 by the centre Z of GLn, which is a Gm diagonally embedded in T0.
For 1 ≤ i ≤ n, let xi ∈ Hom(T0,Gm) be the character that sends (t1, . . . , tn) to
ti. Let x0 be the character of Z that sends t to t. Since any subtorus is a direct
factor, we may write T0 = Z × S for some subtorus S, and let x be the character
of T0 that restricts to x0 on Z and the trivial character on S. Now, λi := xi − x
descends to a character of T , and each Li is the Gm-torsor obtained from LT by
extension of structure groups via λi.

3. Strong perversity of c1(Li) (see [2, §3.4 (B)]).

Any cohomology class c ∈ H2(M̂par) is canonically identified with a morphism

of complexes Q → Q[2] in the constructible derived category Db
c(M̂

par). Let

h̄ : M̂par → Â× C be the composition (ĥ× Id) ◦ π. Then, c induces a morphism
between the direct image complexes h̄∗Q → h̄∗Q[2]. We will denote this morphism
by the same letter. Applying the perverse truncation functor pτ≤k, we get a
morphism between the truncated complexes pτ≤kc : pτ≤kh̄∗Q → pτ≤kh̄∗Q[2]. If
pτ≤kc factors through the complexes pτ≤k−1h̄∗Q[2] that is one-step smaller, then
we say that c has stronger perversity 1. It tuns out that the line bundles c1(Li)
in (2) have strong perversity 1.

We explain this strong perversity result in the particular case of GLn and PGLn.
A first reduction is to restrict the strong perversity statement to an open dense
subset U ⊂ Â×C where h̄ is smooth. Now, the decomposition theorem says that
the complex h̄∗Q is isomorphic to the direct sum of its shifted perverse cohomology
sheaves, which are in fact shifted local systems on U . Then, the strong perversity
over U amounts to saying that the morphism Hi(h̄∗Q) → Hi(h̄∗Q[2]) between
local systems is zero. It suffices to show that for some u ∈ U , we have a zero
map between the fibres Hi(h̄−1(u)) → Hi+2(h̄−1(u)). This is the cup product
by c1(Li|h̄−1(u)). Indeed, the Chern class c1(Li|h̄−1(u)) vanishes. To see this,

we use the expression for Li given in (2); i.e., Li is associated to the character
λi = xi − x. It remains to notice that the line bundles (on the moduli space of
GLn-Higgs bundles) associated to xi and x have the same Chern class, whence the
vanishing of c1(Li|h̄−1(u)). In the case of GLn, the vanishing of c1(Li|h̄−1(u)) can
be achieved by an appropriate choice of the normalisation of the universal bundle.
To extend this vanishing result to larger open subsets, we need a support theorem
saying that h̄∗Q is the intermediate extension of its restriction to any open. In [4]
this is proved for the anisotropic locus, and in [2] over the entire base.

Finally, we briefly recall how the vanishing of Chern classes is achieved in [4].
This is the content of [4, Lemma 3.2.3], which eventually relies on [4, Lemma
A.2.1]. The key arguments go as follows. The latter lemma says that the map
of multiplication by N on a smooth commutative group scheme induces on its
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(co)homology a linear operator whose eigenvalues are completely determined by
the (co)homology degree. As a degree 2 cohomology class, c1(Li|h̄−1(u)) should

be an eigenvector of this linear operator with eigenvalue N2, whereas the univer-
sal preperty that Li satisfies implies that it should has eigenvalue N . The only
possibility is that c1(Li|h̄−1(u)) = 0, and the strong perversity follows.
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Cohomological Hall algebras and Hecke operators on surfaces

Miguel Moreira

This talk will be based on the papers [1, 3]. In the proof of P = W in [1], one
of the fundamental steps is to construct the action of a large algebra W (S) on
homology/cohomology of (the elliptic loci of) moduli spaces of Higgs bundles.
This action interacts in a controlled way with tautological classes, and hence with
the Chern filtration – which, by a result of Schende presented in a previous talk,
matches the W filtration. Using this action one, constructs a sl2 triple, which is
later used to prove that the perverse filtration matches the Chern filtration (on
the elliptic loci; further work is required to reduce the statement to the elliptic
loci).

This talk focuses on the construction of this algebra action. I will explain how
the algebraW (S) comes from the theory of Cohomological Hall algebras (CoHA),
following [3].

1. Cohomological Hall algebra

Cohomological Hall algebras are algebra structures that one can define on the
homology of a moduli stack parametrizing objects in abelian conditions satisfying
appropriate conditions. The one that we are interested in is the cohomological Hall
algebra of 0-dimensional sheaves on a surface S, which for simplicity we will assume
is projective. The main example in applications to Higgs bundles is S = T ∗C, but
we can also compactify it to P(T ∗C ⊕OC).

Let

Coh0(S) ⊆ Coh(S)

be the derived stacks parametrizing sheaves on S and 0-dimensional sheaves on
S. The CoHA of (0-dimensional) sheaves on S is the Borel–More homology of the
stack:

H(S) := H∗(Coh(S)) ⊇ H∗(Coh
0(S)) =: H0(S) .
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We define a product onH(S) andH0(S) as follows: let Ext be a stack parametrizing
short exact sequences of the form

0 → F1 → F2 → F3 → 0 ;

this stack admits a map q to Coh × Coh remembering F1, F3 and another map p
to Coh remembering F2. The product on the CoHA is defined by

H∗(Coh)⊗H∗(Coh) → H∗(Coh× Coh)
q!

−→ H∗(Ext)
p∗

−→ H∗(Coh) .

where q! is a “virtual pullback”.
The goal of the talk is to understand H0(S) and its action on the (co)homology

of moduli spaces.

2. Hecke patterns

Let M be a substack of Coh(S). Under some conditions on M, it is possible to
define a left (and also a right) action of H0(S) on H∗(M). When these appropriate
conditions are met, M is called a Hecke pattern. The most crucial property of a
Hecke pattern is that it should be closed under point modifications. Note that this
forces M to have many connected components, since point modifications change
the topological type of sheaves. The definition of the action resembles the definition
of the CoHA product.

Example 2.1. For S = P(T ∗C⊕OC), pure 1-dimensional sheaves on S with integral
support away from the ∞ divisor (=the elliptic loci of the moduli of Higgs bundles)
form a Hecke pattern,

Mell
r =

⊔

d∈Z

Mell
r,d .

On the other hand, the stack of all semistable 1-dimensional sheaves (with
support away from the ∞-divisor) is not a Hecke pattern. This is why the proof
of P =W in [1] requires a reduction to the elliptic loci.

3. Length 1 Hecke patterns and Negut’s lemma

The first step to understand H0(S) and its action on H∗(M) more concretely is to
start with the action of elements in

H∗(Cohδ) ⊆ H0(S) ,

where Cohδ is the stack of 0-dimensional sheaves of length 1. Note that Cohδ ≃
S ×BGm, so

H∗(Cohδ) ≃ H∗(S)[u]

by Poincaré duality. The (left) action of unλ ∈ H0(S), for n ≥ 0 and λ ∈ H∗(S),
produces an operator

T+
n (λ) : H∗(M) → H∗(M) .

Similarly, there is another operator T−
n (λ) coming from the right action.

Negut’s lemma [2, Proposition 2.19] gives a very concrete understanding of these
operators by identifying some of the maps that come up in the definition of the
action with (virtual) projective bundles. In particular, it gives
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(1) A formula for the image of the fundamental class [M] under T±
n (λ);

(2) A formula for the commutator between T±
n (λ) and the operators of capping

with tautological classes.

4. (Deformed) W-algebras

The main result of [3], and of this talk, is an isomorphism

H0(S) ≃W+(S)

with an explicitly defined algebra.
Let W (S) be the algebra generated by

ψn(λ), T
+
n (λ), T−

n (λ) n ≥ 0, λ ∈ H∗(S)

and a central element c, modulo certain explicit relations which have the following
shape:

(1) ψ commute.
(2) [T±, ψ] = T±.
(3) Quadratic relation on T±.
(4) Cubic relation on T±.
(5) [T+, T−] = ψ.

Let W 0,W± be the algebras generated by ψn(λ) and T
±
n (λ), respectively. Let

W≥ be the algebra generated by W0 and W+, and W≤ similarly defined.
The algebra W (S) acts on the (tautological part of the) homology H∗(M) of

a Hecke pattern; the actions of W+(S) ≃ H0(S) and W−(S) ≃ H0(S)op are
identified with the left and right CoHA actions previosuly mentioned, while the
action of W 0(S) is essentially capping with tautological classes.

There are a few important consequences that we can extract from this descrip-
tion of the algebra W (S): the CoHA is generated as an algebra by H∗(Cohδ);
W (S) contains copies of the Heisenberg and Virasoro Lie algebras; when c1 = 0,
W≥(S) is the universal envelopping algebra of a certain Lie algebra of differentials;
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Construction of the action of sl2 and H2

Wille Liu

A main ingredient of the proof of Hausel–Mellit–Minets–Schiffmann [1] of the
P =W conjecture for GLn is the construction of an action of an sl2-triple on the
cohomology H∗(Mr,d) of the elliptic locus of the moduli space of Higgs bundles
of rank r > 0 and degree d ∈ Z over a smooth complex projective curve C. The
construction makes use of the algebra W for the cotangent bundle T ∗C of a C,
which is formed by the cohomological Hall algebra of 0-dimensional Higgs sheaves
and the tautological classes (namely, Künneth coefficients of the Chern character
of a universal sheaf Fα on Mα).

According to the calculation of Mellit–Minets–Schiffmann–Vasserot [2], the al-
gebraW is the universal enveloping algebra of a Lie-super-algebra with generators
{Dm,n(ξ)}m,n≥0, ξ∈H∗(C) and relations

[Dm,n(ξ), Dm′,n′(ξ′)] = (nm′ −mn′)Dm+m′,n+n′−1(ξξ
′).

By the formalism of cohomological Hall algebras, there is a natural action of W
on
⊕

d∈ZH∗(Mr,d), where Mr,n is the moduli stack of Higgs bundles.
In order to obtain an action of operators similar to Dm,n(ξ) on H∗(Mr,d),

Hausel–Mellit–Minets–Schiffmann perform firstly degeneration on the operators

{Dm,n(ξ)}m,n,ξ to obtain a new set of operators
{
D̃m,n(ξ)

}
m,n,ξ

which act on

H∗(Mr,d) for fixed r > 0 and d ∈ Z. If one thinks of Dm,n(ξ) as linear differ-

ential operators
∑

i z
m+1
i (∂/∂zi) on an algebraic torus (C×)k, then the degener-

ation procedure is similar to the change of coordinates via the exponential map
exp : Ck → (C×)k. The new set of operators satisfy

[D̃m,n(ξ), D̃m′,n′(ξ′)] = (nm′ −mn′)D̃m+m′−1,n+n′−1(ξξ
′) + · · · ,

where secondary terms are omitted. These relations resemble those of the Lie
algebra H2 of Hamiltonian currents on C2.

As it is known that there exists a non-canonical isomorphism Mm,n
∼= Mr,d ×

BGm, one has to get rid of the extra variable from the cohomology ring H∗(BGm) ∼=
C[c1(O(1))]. This is done by finding a Weyl algebra C[y, ∂y]-action on H∗(Mr,d)

from the operators {D̃0,1(η), D̃1,0(1)} for some η ∈ H2(C). The sl2-triple (e, h, f)

are then defined as modified version of the operators (D̃0,2(η), D̃1,1(1), D̃1,0(1)) on
H∗(Mr,d), restricted to the kernel ker(∂y) ⊂ H∗(Mr,d).

The advantage of this sl2-triple is that one can calculate explicitly their action
on tautological classes and thereby determine the filtration defined by the nilpotent
element e. An argument based on perturbation of ample line bundles shows that
this filtration coincides with the perverse filtration. This concludes the P = C
part of the P =W conjecture.
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P=W conjecture after Maulik and Shen

Mirko Mauri

1. Statement of the P=W conjecture

Let C be a smooth projective complex curve, n ∈ N and d ∈ Z with gcd(n, d) = 1.
The Dolbeault moduli space MDol = MDol(n, d) is the coarse moduli space which
parametrises S-equivalence classes of semistable Higgs bundles on C of rank n and
degree d, i.e., polystable pairs (E, φ) consisting of a vector bundle E of rank n and
degree d and a section φ ∈ H0(C,End(E) ⊗ ωC), called Higgs field.

Via the non-abelian Hodge correspondence Ψ, MDol is diffeomorphic to the
Betti moduli space MB, i.e., the affine GIT quotient

MB :=
{
(A1, B1, . . . , Ag, Bg) ∈ GL2g

n

∣∣
g∏

j=1

[Aj , Bj ] = e2πi
d
n 1GLn

}
//GLn .

It parametrises isomorphism classes of semi-simple representations of the funda-

mental group of C with prescribed monodromy e2πi
d
n 1GLn

around a base point.
The P=W conjecture predicts that two filtrations of very different origins on

the rational singular cohomology H∗(MDol) = Ψ∗H∗(MB) coincide. On the Betti
side, the cohomology of MB is endowed with Deligne’s weight filtration

W•H
∗(MB,Q),

a measure of the topology of algebraic compactifications of MB. The Dolbeault
moduli space is equipped with a projective fibration called Hitchin fibration

h : MDol → A :=

n⊕

i=1

H0(C, ω⊗i
C ),

which assigns to (E, φ) the characteristic polynomial char(φ) of the Higgs field
φ. As a result, the cohomology of MDol(n, d) is endowed with the perverse Leray
filtration

P•H
∗(MDol(n, d)),

a measure of the singularities of the fibers of the Hitchin fibration.

Theorem 1.1 (P=W conjecture). For any k ≥ 0, we have

PkH
∗(MDol) = Ψ∗W2kH

∗(MB).
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The P=W conjecture was formulated by de Cataldo, Hausel and Migliorini in
[3] in 2010, and proved for the first time by Maulik and Shen [15] in September
2022. The week after the submission of [15] on arXiv, a second proof was made
available by Hausel, Mellit, Minets and Schiffmann [10]. A third proof by Maulik,
Shen and Yin appeared in [16] in the summer 2023.

2. Proof of the P=W conjecture after Maulik and Shen

The proof of Maulik and Shen is a clever reduction to a result by Yun [22, Lemma
3.2.3] concerning the perversity of the first Chern class of tautological line bundles
on a moduli space of parabolic Higgs bundles. Delving deeper into the proof of
the statement, this boils down to the classical fact that the first Chern class of the
normalized Poincaré line bundle over Jac(C)× C is the class of the identity in

(1) End(H1(C)) = H1(C)∗⊗H1(C) = H1(Jac(C))⊗H1(C) ⊂ H2(Jac(C)×C).

In particular, it does not have any component in the Künneth summand

H2(Jac(C)) ⊗H0(C).

Curiously, this was also a crucial ingredient already in the earlier paper [3]; see in
particular [3, Prop. 5.1.2].

The proof of the P=W conjecture of Maulik and Shen consists of four steps.

2.1. Step 1. Strong perversity of Chern classes. It has already been ob-
served in [6, Thm 0.6] that the P=W conjecture is equivalent to the multiplicativity
of the perverse filtration.1 Indeed, in [12], Markman showed that the cohomology
ring of H∗(MDol) is generated as an algebra by tautological classes, i.e., Künneth
components of the universal PGLn-bundle U → C ×MDol. It was known by the
work of Shende [21] and de Cataldo–Maulik–Shen [6, Thm 0.4 and 0.5] that tau-
tological classes have matching weights and perversities, but it was unclear that
the same holds for monomials in tautological classes. The weights of these mono-
mials pose no issue, since the weight filtration is multiplicative (use the definition
via logarithmic differential forms). The multiplicativity of the perverse filtration
was the missing ingredient. To this end, Maulik and Shen introduce the notion
of strong perversity, i.e., a sheaf-theoretic version of multiplicativity which in par-
ticular ensures the desired multiplicativity in cohomology. In conclusion, to show
the P=W conjecture, it is enough to show that, for all k ≥ 0, the Chern classes
chk(U) have strong perversity k, with respect to the extended Hitchin fibration
(h, id) : MDol × C → A× C.

1When the authors of [3] first presented the conjecture in early 2010s, this was one of the
very first questions asked to them, according to Hausel. We now understand that this is a very
delicate question; see [23, 24, 16, 1].
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2.2. Step 2. Splitting principle via parabolic Higgs bundles. The product
MDol ×C is dominated by the moduli space of parabolic Higgs bundles. For each
point ((E, φ), c) ∈ MDol × C, the parabolic structure consists of the additional
choice of a complete filtration on Ec, preserved by φc. The advantage is that the
grading of the filtration gives a splitting of the universal vector bundle into line
bundles. In this way, one can describe the Chern classes of the tautological bundle
as homogeneous polynomials in the first Chern classes of parabolic tautological line
bundles. Now, over a dense open set of the Hitchin base, Yun has already computed
that these line bundles have strong perversity 1. Via the homogeneity, this implies
that chk(U) have strong perversity k, at least generically over the Hitchin base.
Recall that Yun’s result follows essentially from (1), since the general fiber of the
Hitchin fibration h is a Jacobian.

2.3. Step 3. Support theorem for meromorphic Higgs bundles. In the
third step, we extend Yun’s result to the whole base of the Hitchin fibration. To
this purpose, it is convenient to enlarge MDol to the moduli space MDol(D) of
meromorphic Higgs bundles, i.e., pairs (E, φ) with φ : E → E ⊗ ωC ⊗D for some
effective divisor D > 0. Indeed, the cohomology of H∗(MDol(D)) is determined
by the geometry of any nonempty open set of MDol(D), saturated with respect
to the Hitchin fibration, in particular the open set where Yun controls the strong
perversity of tautological line bundles. More precisely, one proves that the direct
image Rh(D)∗QMDol(D) is the intermediate extension of its restriction to any open
set, equivalently that it does not contain any direct summand supported on a
proper subvariety of A(D). Classically, this property is called full support. Note
that the full support property fails for the ordinary Dolbeault moduli space MDol;
see [4, 19, 18]. The fourth and last step of the proof must take care of this issue.

Full support phenomena have been detected and exploited by Ngô for the proof
of the Fundamental Lemma [20]. Using the full support property, Chaudouard–
Laumon [2] and Maulik–Shen [14] showed that the cohomology H∗(MDol(n, d)) is
independent of the degree d. The same circle of ideas have been used by de Cataldo,
Rapagnetta and Saccà [7] to determine the Hodge numbers of the O’Grady 10
manifold.

2.4. Step 4. Vanishing cycle techniques. The strong perversity of the Chern
classes of the universal bundle on MDol(D) implies the analogous result on MDol,
via the formalism of vanishing cycles. The key idea is to enlarge the original
space MDol to MDol(D), whose geometry is more amenable (see Step 3), and then
pullback the strong perversity property to MDol, via the vanishing cycle functor.

This idea comes from Donaldson–Thomas theory, but it has been successfully
used also for the proof of the topological mirror symmetry conjecture (or Hausel–
Thaddeus conjecture) by Maulik and Shen [13], the description of the BPS sheaf
in enumerative geometry by Kinjio and Koseki [11], or the study of the K-theory
of MDol by Groechenig and Shen [9].

2.5. Singular Dolbeault moduli spaces. It would be desirable to drop the co-
primality assumption on n and d, in particular for the original and fundamental
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case d = 0. In all these cases, however, the moduli space MDol(n, d) is singular,
and Poincaré duality and relative hard Lefschetz theorems fail in general for sin-
gular cohomology. These symmetries can be restored taking instead intersection
cohomology. In [5, Question 4.1.7], de Cataldo and Maulik proposed the PI=WI
conjecture for the intersection cohomology of singular Dolbeault moduli spaces,
proved only for (d, g) = (0, 1) and (d, g, n) = (0, 2, 2) in [8, Main Thm] (leaving
aside the smooth cases). See [17, §5] for partial results in rank two, in particular
a numerical evidence for curious hard Lefschetz in [17, Cor. 1.5].

At the moment, curious hard Lefschetz is still unknown in arbitrary degree d.
The current proofs of the P=W conjecture rely on the multiplicative structure of
singular cohomology. However, intersection cohomology does not have a canonical
ring structure. This means that the proofs in the smooth context do not naturally
extend to the singular case, thus challenging the community to understand better
P=W phenomena.
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Hausel-Mellit-Minets-Schiffmann’s proof, (I)

Raphaël Picovschi (extended abstract by Olivier Schiffmann)

This talk and the following one provided an overview of the actual proof of the
P = W conjecture following the approach of Hausel, Mellit, Minets and Schiff-
mann [1]. As in the proof by Maulik and Shen, one is reduced to computing the
perverse degree of tautological classes. The starting point is to use the relative
Hard Lefschetz theorem, which describes the perverse filtration on the cohomology
H∗(Mr,d) of the moduli space of stable Higgs bundles of rank r and degree d in
terms of an action of an sl2-triple (e, h, f) for e a class in H2(Mr,d), relatively
ample with respect to the Hitchin morphism. The desired property of tautological
classes is a consequence of the commutation relation

[h, ψm(ξ)] = mψm(ξ)

for ψm(ξ) a Kunneth component of the mth Chern character of the tuatological
bundle.

The main idea of [1] is to construct the above sl2-triple using Hecke operators of
punctual modifications. The algebra generated by these Hecke operators, which is
identified with a certain W1+∞-algebra W (C) modeled on the cohomology of the
curve C, is not quite the right object. The aim of this talk was to explain how to
modify the Hecke operators in order to obtain an action

H2 ⊗H∗(M ell
r,d)[x, y] → H∗(Mr,d)[x, y]

of the Lie algebra H2 of Hamiltonian vector fields on the plane on the cohomology
of the moduli space of stable Higgs bundles –over the elliptic locus and extended
by two formal variables. The Lie algebra H2 admit the following presentation : it
is linearly generated by elements Dn,m(ξ), for n,m ≥ 0 and ξ ∈ H∗(C) subjected
to the relations

[Dm,n(ξ), Dm′,n′(µ)] = (mn′ −m′n)Dm+m′−1,n+n′−1(ξµ).

The algebra H2 contains a Weyl algebra (generated by D1,0(η), D0,1(1), D0,0(η))
and a copy of sl2 (generated by D0,2(1), D1,1(1), D2,0(1)).
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The construction of the action of H2 from that of W (C) is intricate and was
not presented in details. It relies on certain identifications between H∗(M ell

r,d) and

H∗(M ell
r,d+1) –which necessitates the restriction to the elliptic locus– as well as some

rather involved computations of commutation relations between Hecke operators.
However, the commutation relation between Hecke operators and multiplication
by tautological classes, as well as the compatibility between Hecke operators and
the perverse filtration follow from standard geometric considerations, and were
presented in some detail. A proof of the P =W conjecture over the elliptc locus,
for moduli spaces of stable (possibly twisted) Higgs bundles ensues.
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Hausel-Mellit-Minets-Schiffmann’s proof, (II)

Jiangfan Yuan

We begin with some remarks on the surfaceW -algebras. Since the Hecke operators
are destabilizing, we need to work over elliptic locus of moduli stacks.

The strategy to prove P =W is to study perverse filtration of Mparell
r,d,D and make

reduction steps to the classical case.

Let yp,i be the first chern class of the line bundle overMparell
r,d,D , with fiber the i-th

subquotient of the flag E•
p . LetXp,i be the pullback of (adjoint) Hecke modification:

Modp,i : M
parell
r,d,D → M

parell
r,d−1,D,

(
E , θ, (E•

p )p∈D

)
7→ (Ker(E → δp,i), θ

′, (E ′•
p )p∈D),

where E → δp,i sends to the i-th eigenspace of residue at p. Let Hr,D be the
orbifold cohomology H∗

orb

(
C(r,D)

)
of the stacky curve C(r,D) with r-foldings at D,

it is isomorphic to H∗(C)[pi]p∈D,i=1,...,r (deg pi = 2) modulo relations:

∑

i

pi = ω, piH
>0(C) = 0, piqj = 0

Proposition 1. We set ψn(pi) := ynp,i and Tn(pi) := ynp,iXp,i, then the surface

W -algebra generated by D̃m,n(π), π ∈ Hr,D satisfies the relations as the usual one.

The enlarged surface W -algebra acting on H∗(Mparell
r,d,D).

We conclude the proof of P =W conjecture in [1] through the following steps:

Step 1. Recall from the previous lecture we have seen the P = C holds for elliptic
parabolic moduli space. Namely, we have:

Theorem 2. The subspace PmH
∗
pure(M

parell
r,d,D ) is spanned by products

∏
i ψmi

(ξi)

with
∑

imi ≤ m+N , where −N is the h-weight of 1 ∈ H0
pure(M

parell
r,d,D ).
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By definition, for any stability condition K, the elliptic locus of parabolic Higgs

moduli stack (resp. space) is open in M
par,K
r,d,D (resp. Mpar,K

r,d,D ). We fix one stability
condition and consider the following diagram

Mparell
r,d,D Mpar

r,d,D χ−1
D (µ)

Aparell Apar ∼= AD ×A′ AD
∼= Ar|D|−1 µ

ιparell

χpar
χD

ιµ

∋

where χD :
(
E , θ, (E•

p )p∈D

)
7→ (resp(θ))p∈D sends an element in parabolic Higgs

moduli space to an ordered collection with coordinates being eigenvalues of residue
of its Higgs field at each p ∈ D. Moreover

∑
p∈D tr(resp(θ)) = 0.

We can take good µ = (µp,i) ∈ AD so that χ−1
D (µ) ⊆ Mparell

r,d,D . Thus ι∗µ factors
as:

H∗(Mpar
r,d,D)

(ιparell)∗

−→ H∗(Mparell
r,d,D ) −→ H∗(χ−1

D (µ))

Recall Markman’s argument [2], H∗
taut(M

par
r,d,D)

∼= H∗
pure(M

par
r,d,D). By semiprojec-

tivity of Mpar
r,d,D, H

∗
pure(M

par
r,d,D)

∼= H∗(Mpar
r,d,D)

∼= H∗(χ−1
D (0)).

As a result, we see that the restriction map
(
ιparell

)∗
is injective and induces

an isomorphism H∗(Mpar
r,d,D)

∼= H∗
pure(M

parell
r,d,D ). Moreover, since the elliptic locus

is open,
(
ιparell

)∗
is also a map of Lefschetz structures. We get

Corollary 3. P = C holds for Mpar
r,d,D.

Step 2. We know that the C×-action onMpar
r,d,D (by scaling the Higgs field) endows

it a structure of semi-projective variety and all the fibers of χD has isomorphic
pure cohomology H∗(Mpar

r,d,D). We consider one particular fiber χ−1
D (0).

Define the projectivization M
par

r,d,D :=
(
Mpar

r,d,D × C\(χpar)−1(0)× {0}
)
/C× of

Mpar, and we denote by χ̄ the extended Hitchin map M
par

r,d,D → A
par

. We also

have χ−1
D (0) ∼= (χpar)−1(A0) for some linear subspace A0 ⊆ Apar. Then χ−1

D (0)

also admits a projectivization M0 as above, fits into the following diagram:

M0 M
par

A0 A
par

ῑ0

χ̄par

which extends ι0 and χpar. Let ∂M :=M
par

\Mpar be the boundary.

Proposition 4. Let L ∈ H2(M
par

) be the cycle corresponding to [∂M ], we have

H∗(Mpar) ∼= H∗(M
par

)/LH∗(M
par

); H∗(χ−1
D (0)) ∼= H∗(M0)/LH

∗(M0)

here the later L is the restriction to boundary class on M0 and (ῑ0)
∗ induces an

isomorphism on the quotient

ι∗0 : H∗(Mpar)
∼=
−→ H∗(χ−1

D (0))
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Proposition 5. (i)Let n := dimMpar − dimχ−1
D (0) = codimA

par(A0). Then we

have Ln = c
[
M0

]
= c · ῑ∗0 ῑ0,∗ for some multiplicity c and Im(ῑ∗0) ⊆ Im(Ln).

(ii) For any i ≥ 0, (ι∗0)
−1
(
KerLi + ImL

)
⊆ KerLn+i + ImL.

Suppose α ∈ PiH
j(χ−1

D (0)), by definition, it can be represented by an element

in Wi+n−jH
∗(M0) ⊆ KerLi+dimχ−1

D
(0)−j+1 + ImL, recall W• is the canonical

filtration with respect to the nilpotent operator L. By Proposition 5, via (ι∗0)
−1,

it can be represented in H∗(M
par

) by an element in KerLi+dimMpar−j+1. This
shows that α in fact lies in PiH

j(Mpar). We can conclude that

Corollary 6. The inverse of ι∗0 is an isomorphism of Lefschetz structure, and thus
P = C holds for χ−1

D (0).

Step 3. Finally, we take in particular D = (p) to be one point. Let M̃r,d be the
closed subvariety of χ−1

p (0), determined by the condition resp(θ) = 0. We have:

χ−1
p (0) M̃r,d Mr,d

Apar

A

ι π

B

where π is the projection map forgetting the flag structure on M̃r,d. Note that
codim ι = reldimπ =

(
r
2

)
, we set

A := π∗ι
∗ : H∗(χ−1

p (0)) → H∗−
(
r
2

)
(Mr,d),

B := ι∗π
∗ : H∗(Mr,d) → H∗+

(
r
2

)
(χ−1

p (0))

Define ∆ :=
∏

1≤i<j≤r(yp,i−yp,j) ∈ H2
(
r
2

) (
χ−1
p (0)

)
, it is the Euler class of relative

tangent bundle of π, as well as the normal bundle of M̃ in χ−1
p (0). Thus we have:

π∗(∆) = ±r!, ι∗ι∗ = ±∆, AB = π∗ι
∗ι∗π

∗ = ±r!

Both operators A,B preserve perverse filtration. By the h-homogeneity of ∆, we
can deduce

Proposition 7. Let −N be the perversity of 1 ∈ H∗(Mr,d) and −N ′ be the per-
versity of 1 ∈ H∗(χ−1

p (0)), then N ′ = N +
(
r
2

)
.

Apply AB to f =
∏

i ψmi
(ξi) ∈ H∗(Mr,d), ξi ∈ H∗(C), combining the previous

Proposition and P = C for χ−1
p (0), we can deduce that f ∈ P∑

i mi−NH
∗(Mr,d).

Conversely, for any f ∈ PmH
∗(Mr,d), Bf = ∆f ∈ H∗(χ−1

p (0)) is of the form
∑

k

λkgk, where gk monomial of the form
∏

i

ψmi
(ξi), ξi ∈ Hr,p ⊇ H∗(C)

Define an operator Asym := 1
r!

∑
σ∈Sr

(−1)ℓ(σ)σ on H∗(χ−1
p (0)), then

Bf = ∆f =
∑

k

λk Asym(gk)
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where Asym(gk) is of the form ∆ ·
∏

l ψml
(ξl), with ξl ∈ H∗(C). We conclude that

Theorem 8. The subspace PmH
∗(Mr,d) is spanned by products

∏
i ψmi

(ξi) with∑
imi ≤ m+N , where −N is the perversity of 1 ∈ H0(Mr,d).

Theorem 8 is in fact the P = C for the stable Higgs moduli space. Combine
the result of Shende [3], we finally reach the following statement for P =W :

Corollary 9. The subspace W2mH
∗(Mr,d) is the span of products

∏
i ψmi

(ξi) with∑
imi ≤ m. Hence we have Pk =W2(k+N).
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Université de Paris-Saclay
Bâtiment 307
91405 Orsay Cedex
FRANCE

Junhui Qin
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Université Paris-Saclay
Bâtiment 307
Rue Michel Magat
91405 Orsay Cedex
FRANCE




