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Abstract. The mathematical framework of approximate entropic learning
introduced very recently promises to provide robust, cheap and efficient ways
of machine learning in the so called “small data” regime, when the underlying
learning task is highly-underdetermined, due to a large problem dimension
and relatively small data statistics size. Such “small data” learning chal-
lenges are particularly common in the natural sciences (e.g., in geosciences,
in climate research, in economics, and in biomedicine), imposing considerable
difficulties for the numerics of common “data-hungry” Artificial Intelligence
(AI) tools like Deep Learning (DL). The aim of this workshop will be to
bring together experts in the emergent fields of entropic and DL mathemat-
ics/numerics, with some lead experts applying AI in the domain disciplines.
The goal will be to detect and to discuss the commonalities in the challenges
and in their mathematical solutions, as well as to discuss and fine-tune com-
mon mathematical problem formulations that are motivated by the AI ap-
plications in natural sciences. The establishment of a common mathematical
framework for such small-data machine learning tasks would not only bolster
future methodological developments but would also lay solid foundations to
further in-depth rigorous analysis and theoretically founded interpretation of
these methods and their results.
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Introduction by the Organizers

The mini workshopMathematics of Entropic AI in the Natural Sciences, jointly or-
ganised by Susanne Gerber (Mainz), Illia Horenko (Kaiserslautern), Rupert Klein
(Berlin) and Terence O’Kane (Hobart) aimed at bringing together a group of
experts in the field of entropic learning and leading specialists from different
disciplines to identifiy and address common challenges. Throughout the mini-
workshop, the participants had the chance to present their work, learn about
(potentially unfamiliar) scientific fields, and also to engage in fruitful discussions
about strengths and possible limitations of machine learning and AI methods in
their practical use. The use of mathematics is an invaluable aid in proposing
solutions to many of the scientific disciplines, which ranged from biomedicine to
geosciences and climate research.

One topic that was considered relevant by all the participants was that of “small
data”, i.e., the condition that arises when the task of learning from the available
data is highly underdetermined. This can occur when the data, from which learn-
ing is sought, is high-dimensional (i.e., the amount of measured features is par-
ticularly elevated) and/or is too sparse to allow for reliable statistical assessment.
Both the aforementioned conditions tend to often occur in the natural sciences
when applying traditional data-hungry Artificial Intelligence methods, such as
Deep Learning.

Perspectives on the current state of mathematical foundations of entropic and
DL AI numerics and mathematics were discussed, and promising future direc-
tions for mathematical research in this area have been identified, guided by the
problems imposed by domain applications in the natural sciences. An important
common issue that was identified for future research is the interpretability and ex-
plainability of the AI models – as well as a formulation of rigorous mathematical
criteria that would allow controlling the sensitivity and computational scalability
of AI tools in higher dimensions. Such criteria would also allow increasing the
robustness of AI tools to the so-called adversarial attacks. Recently introduced
mathematics-driven entropic AI methods were identified as a promising research
direction, potentially providing efficient and interpretable way to learn from (noisy)
and high-dimensional data.
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Abstracts

AI and the brain

Davide Bassetti

This mini workshop was opened with this presentation, in which I presented a
bird’s eye view description of Artificial Neural Networks (ANNs) as representatives
of Artificial Intelligence (AI), and compared them to the biological intelligence
systems, i.e., the brain. It was highlighted how the recent expedited development
of AI systems originates from their ability to scale efficiently. In particular, I put
some observation forward:

a) Most of the models that achieve superhuman performance on a task are not
able to generalize to multiple ones, effectively being a tool for a single type of
task or for a selection of few related ones.

b) Increasing model size translates to elevated economic cost for training a model,
which puts hard constraints in term of “affordability” to achieve a set level of
performance. Thus, at present, only private entities with sufficient investment
means are able to train large and complex models. Given the investment,
the incentive to share openly with the scientific community the models (or
sometimes even information about them) can quickly disappear. This point
includes the source of training data, which is often not specified and poses
questions relative to intellectual property.

c) The exponential rate of growth of the models in the last years is outpacing the
growth of hardware capacity (e.g., GPU memory) [1]. Moreover, the carbon
consumption of training such models should also be considered as a factor [2].

d) Providing tools for explainability of complex systems proves to be a challenging
task, especially for large models, due to their design.

A single human brain is instead effectively able to perform a broad range of tasks
(a), and does so with astounding energy (b) and carbon (c) efficiency. The compar-
ison between the brain and ANNs, therefore, poses the question of whether there
could be some additional factor in the brain that is not yet included in ANNs
and could contribute to their performance. After introducing how an ANN is a
collection of generalized linear models (GLMs) which perform a weighted sum of
the inputs based on (learned) “connectivity” parameters and apply a nonlinearity
to the result, then propagating the signal in a feed forward way, I described the
fundamental unit of the brain’s computation: the neuron. Particular focus was
put on the modality of communication (Action Potentials) and the biophysical
mechanisms that contribute to their generation (using the Hodgkin-Huxley model
[3]). Another accent, besides the different level of complexity between a GLM and
the Hodgkin-Huxley neuron, was on the heterogeneity of neurons in the brain, in
terms of morphology, physiology and connectivity, which is structured and includes
feedback and specialization between inhibition and excitation.
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Next, I described how the connections between neurons are fundamentally far
from being static weights, but are a non-linear and non-stationary system them-
selves, and can operate simultaneously at different time scales.

This leaves open questions in terms of:

• How far are current neural networks from having the level of complexity of
the human brain

• Where is the line between the complexity that is necessary for the function
and that which is a necessary part of the embodiment of intelligence (e.g., the
necessity to maintain a metabolism which could be avoided when modeling
the system). In other terms: how much should we worry about biological
plausibility of neuronal networks?

• What could be the “missing steps” that could potentially bridge the gap
between the systems?

My closing remarks contained a wish for future research to develop and use
small efficient and scalable models, which are also interpretable. The advantage of
this mathematical development would be models trainable by a significant portion
of the scientific community, and could be shared along with the training data,
and thus benefit research and promoting open scientific practice. Neuroscientific
research, would greatly benefit from such tools, as they could help addressing many
unanswered questions, whose answer can provide the basis for further development
in AI tools, as it happened in the past.

References

[1] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. Mahoney & K. Keutzer, Ai and memory wall,
IEEE Micro (2024)

[2] https://aiindex.stanford.edu/report/
[3] https://en.wikipedia.org/wiki/Hodgkin-Huxley model

Thoughts on Machine Learning

Rupert Klein

This is a repetition of the author’s report contributed to
Workshop 2331 “Transport and Scale Interactions in Geophysical Flows”.

Concerns: Techniques of machine learning (ML) and what is called “artificial in-
telligence” (AI) today find a rapidly increasing range of applications touching upon
social, economic, and technological aspects of everyday life. They are also being
used increasingly and with great enthusiasm to fill in gaps in our scientific knowl-
edge by data-based modelling approaches. I have followed these developments
over the past almost 20 years with interest and concern, and with mounting dis-
appointment. This leaves me sufficiently worried to raise here a couple of pointed
remarks.

Obviously, when these technologies are being employed to take over decisive
functionality in safety-critical applications, we would like to exactly know how to
guarantee their compliance with pre-defined guardrails and limitations. Moreover,
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when ML techniques are utilized as building blocks in scientific research, it would
violate scientific standards – in the authors opinion – if these building blocks were
used without a thorough understanding of their functionality, including inaccura-
cies, uncertainties, and other pitfalls.

The most frequently used tools in ML and AI today are deep neural networks
(DNNs) and, to the best of my knowledge, they currently constitute a particularly
severe breach of what I postulate to be desirable for safety-critical applications
and for their utilization in scientific research. In fact, I see the following related
and further drawbacks:

a) Interpretability/Explainability: It is remarkable that the issue of how to reli-
ably interpret the workings of DNN technology has become a topic of intense
research only relatively recently, see [1], and can by far not be considered fully
explored today.

b) Generalizability and out-of-sample performance: The quality of ML-learned
functions is quite usually tested via some version of cross-validation [2]: Split
the available data into a training and one or more testing sets, train the func-
tion on the former and test “generalizability” utilizing the latter. A key prob-
lem with the often rather high-dimensional spaces of function arguments is
that no explicit definition of the domain of the learned function is provided.
Therefore, when a new input argument is to be used in an application, there
seem to be no systematic qualifiers that would indicate whether this argument
may or may not be used as an argument of the learned function with any
confidence.

c) Inefficiency in terms of data needed: DNNs are “big data” techniques, and
it turns out they do, in fact, need rather large data sets for training – with
consequences for the computational expense of their training, [3].

d) Inefficiency of function representation: DNNs based on ReLU (rectified linear
unit) activation functions are popular in AI generically and as building blocks
of more complex function constructions. ReLU-DNNs are known to represent
piecewise linear functions on polygones in the space of function arguments,
and He et al. [4] show that ReLU-DNNs require on the order of DκDN free
parameters to represent a piecewise linear function on a simplicial grid with
N nodes in D dimensions, with κ ≥ 2. Comparing this, for large D, with the
number of degrees of freedom needed for the same task by a standard finite
element ansatz, i.e., with (D + 1)N , we find another reason for the extensive
computational costs of DNN training.

e) Inefficiency of optimization algorithms: Thus far, (variants of) stochastic gra-
dient descent methods for the solution of the DNN parameter estimation prob-
lem seem to be essentially the only reliable option [5]. Yet, these come with at
most first order convergence, with further consequences for the computational
expense of DNN training in comparison with methods the structure of which
allows employing second order convergent Newton-type techniques in solving
their parameter estimation problem.
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f) Condition / Sensitivity: A mounting number of examples in the literature show
that ML-learned functions can be tricked by so-called “adversarial attacks” to
yield clearly false or low-quality results by effectively exploiting the often bad
conditioning of the function learning problem, see [6, 7, 8, 9] and references
therein.

Alternatives: We are not bound to utilizing neural network technology for ma-
chine learning and in the context of artificial intellence, however. Alternatives that
overcome many of the abovementioned drawbacks and limitations are being devel-
oped. In this context, I have become aware of the recent family of “Sparse Prob-
abilistic Approximations” (SPA) [3, 10, 11, 13] by Illia Horenko and co-workers.
These methods turn out to be (i) at least as – and in many cases much more –
powerful than DNNs in terms of the quality of functions learned; they (ii) come
with natural indicators for the domain of the learned functions; targeting small

data problems by design, they are (iii) generically much less data hungry than
DNNs (thereby avoiding concern c), see above); their parameter estimation can
(iv) be cast into optimization problems that are amenable to far-reaching partially
analytical and iterative methods yielding second-order convergence; versions are
available that (v) address a wide range of ML tasks, such as clustering, classifi-
cation, regression, and more. On problems it has been used for, such as cancer
classification, data-based El Niño prediction, or financial decision making [12], the
recent eSPA+1 technique for data classification in [13] has out-performed DNNs
and other machine learning techniques decisively in terms of the quality of re-
sults or computational efficiency or both. As regards computational efficiency, the
method comes with complexity T ·D ·K, where, T , is the number of available data
samples, D is dimension of the function argument (or feature) space, and K is
akin to the number of allowed input data clusters one would impose when apply-
ing some clustering technique for dimension reduction. In fact, this complexity is
that of the K-means clustering algorithm, which is highly efficient but all by itself
insufficient to solve machine learning problems beyond data clustering.

As is the case for the entire SPA family of methods, eSPA+ comes with a
clean mathematical structure in which each ingredient has a transparent role and
interpretation. This is seen in the following example: The parameter estimation
problem of eSPA+ for the El Niño prediction problem reads as

(1) (S,Γ,W ,Λ)◦ = argmin
S,Γ,W ,Λ

L+
eSPA

(
S,Γ,W ,Λ

∣
∣ X,Π∆t

)
.

Here X = (Xt)
T
t=1 ∈ IRD×T is the set of D-dimensional function arguments in the

available data set. In the example, each Xt ∈ IRD consists of D = 200 degrees of
freedom characterizing tropical pacific ocean sea surface and equatorial deep ocean
water temperatures. Π∆t = (Π∆t

t )Tt=1 ∈ {0, 1}T is the set of observations stating
whether at time t + ∆t an El Niño did (Π∆t

t = 1) or did not (Π∆t
t = 0) occur;

S ∈ IRD×K is a matrix whose columns Sk ∈ IRD are K centers of data clusters

1eSPA+ = entropy-optimal scalable probabilistic approximation, with algorithmic efficiency
enhancements
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or “boxes” in the space of function arguments akin to cluster centers in the K-
means scheme, and Γ ∈ [0, 1]K×T is a columnwise probabilistic matrix such that,
when the problem has been solved, (S◦Γ◦)t ≈ Xt provides a reduced approximate
representation of the argument-space input data X; W ∈ [0, 1]D is a probability
distribution over the dimensions of the argument (or feature) space with small Wd

indicating weak influence of the dth data dimension on the prediction outcome,
and Λ ∈ [0, 1]K is the set of probabilities Λk of El Niño occuring a time of ∆t

down the road if a data point belongs to the kth cluster.
The functional to be minimized then reads as

(2)

L∗

eSPA

(
S,Γ,W ,Λ

∣
∣ X,Π∆t

)
=

1

T

D∑

d=1

Wd

T∑

t=1

(Xd,t − (SΓ)d,t)
2

︸ ︷︷ ︸

D-red.: state approximation error

− εW

D∑

d=1

Wd log

(
1

Wd

)

︸ ︷︷ ︸

D-red.: feature discrimination

−
εΛ

T

T∑

t=1

Π∆t
t (ln (Λ)Γ)t

︸ ︷︷ ︸

supervision

.

All terms in this functional have a clear interpretation: The first term on the right
is a W -weighted Euclidian norm measuring the quality of approximating X by
(SΓ). The role of this term is to enable an effective dimension reduction in that
the key information in the space of arguments is stored in theK reference points (or
cluster centers) S◦

k , with K ≪ T when the approach is successful. The dimension-
wise weighting byWd of the components (Xd,t−(SΓ)d,t)

2 of the Euklidian distance
enables a further effective dimension reduction in that dimensions (or features)
that only minimally affect the El Niño prediction receive a lesser weight in the
solution and therefore contribute only marginally to the functional’s value when
the problem is solved. To achieve a least-biased discrimination of features in this
way, the Shannon entropy of the distribution W is subtracted from the functional
as a penalty in the second term on the right. That is, we seek to maximize
Shannon-entropy and thus find the broadest possible distribution W under the
given conditions.

The third term on the right, which implements the supervision of the clas-
sification learning problem, stems from interpreting the data Π∆t

t ∈ {0, 1} as
probabilities for the occurance of El Niño some time ∆t in the future, and then

(3) −

T∑

t=1

Π∆t
t (ln (Λ) Γ)t ≈

T∑

t=1

Π∆t
t ln

(
1

(ΛΓ)t

)

is an approximation to that part of the Kullback-Leibler (KL) divergence between
the data Π∆t

t and their approximations (ΛΓ)t which depends explicitly on the
unknowns Λ and Γ. It turns out that this latter approximation provably generates
an upper bound for the functional utilizing the original KL-divergence, and in this
sense the approximation is robust.
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Now, once we have (S,Γ,W ,Λ)◦ determined by solving the above minimiza-
tion problem, and today’s state of ocean temperature data X∗ is observed, then
a probabilistic El Niño forecast is obtained as follows: Find the best-possible ap-
proximation of X∗ by a convex combination SΓ∗ of the reference points Sk, with

Γ∗ ∈ [0, 1]K ,
∑K

k=1 Γ
∗

k = 1. This yields the pertinent probabilistic weights Γ∗

k

and the eSPA+-predicted probability for El Niño occurance a time ∆t from today

becomes ΛΓ∗ =
∑K

k=1 ΛkΓ
∗

k.
Besides the clear interpretability of this method (concern a) taken care of), there

is also an exceedingly efficient algorithm for its training: The idea detailed in [13]
is to iteratively solve for one of the unknowns in (S,Γ,W ,Λ) while keeping the
other three fixed. Each of these steps allows for either an analytical or a numerical
solution that scales linearly in the complexity parameters (D, T , K), and the
entire iteration procedure can be cast as a Newton-type method [14]. This yields
very fast (second order) convergence, so that concern e) does not arise for the
SPA-family of methods.

Note also, that the convex hull of the reference points S◦

k serves as a natural and
robust estimate of the domain of the learned function. Thus, concern b) would at
least in part be taken care of as well.

As regards concern d), it is shown in [3, 10] that the variant of eSPA+ described
in (1)–(3) produces piecewise linear solutions on simplices with corners defined
by the references points Sk. Therefore, these solutions are classical linear finite
element functions, and the number of degrees of freedom needed to represent them
is (D + 1)K. Hence, eSPA+ does not suffer from concern d) either.

Addressing the remaining robustness concern f) for the SPA-family of methods
is work in progress at the time of this writing.
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Numerically stable generative modelling using diffusion maps with

application to subgridscale parametrization

Georg Gottwald

We consider the problem of sampling from an unknown distribution which is ac-
cessible only via a sufficiently large number of training samples. Such settings have
recently drawn considerable interest in the context of generative modelling. Op-
posed to typical score-based generative models we do not attempt to estimate the
score function and the generator of the underlying stochastic process but instead
estimate a semi-group which admits the unknown probability density function as
an asymptotic state. In particular, we propose a generative model combining dif-
fusion maps and Langevin dynamics. Diffusion maps are used to approximate the
drift term from the available training samples, which is then implemented in a
discrete-time Langevin sampler to generate new samples. By setting the kernel
bandwidth to match the time step size used in the unadjusted Langevin algorithm,
our method effectively circumvents any stability issues typically associated with
the time-stepping of stiff stochastic differential equations. Moreover, we introduce
a novel split-step scheme, ensuring that the generated samples remain within the
convex hull of the training samples. Our framework can be naturally extended to
generate conditional samples. We demonstrate the performance of our proposed
scheme through experiments on synthetic datasets with increasing dimensions and
on a stochastic subgrid-scale parametrization conditional sampling problem. This
is joint work with Fengyi Li, Youssef Marzouk and Sebastian Reich.

Tutorial on eSPA-Implementations

Davide Bassetti, Michael Groom

In this session, we provided a practical demonstration of the efficient implemen-
tation of various methods, between those discussed in other talks. Specifically, we
provided the code and described the interface to generate synthetic datasets, load
external ones and apply to them eSPA+, with different configurations. Moreover,
we showed how to obtain insight on the output model through the use of plotting
functions and via an implementation of the MAD algorithm.
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eSPA for time series

Davide Bassetti

Analysis of (time) ordered data is a very common application for machine learning,
for example we can consider classification of noisy time series, when assumptions
of the persistence of the underlying states are available. In this talk, we present a
novel methodology for performing supervised classification of (time) ordered data,
which we call Entropic Sparse Probabilistic Approximation with H1 regularization
(eSPAH1). It is an extension of entropic learning methodologies, that allows to
learn H1-smooth segmentation patterns and simultaneously learning the optimal
discretization and Bayesian classification rules.

Moreover, we also introduce cluster affiliation based on likelihood rather than
Euclidean distance (as in ”regular” entropic methods), which grants the ability to
distinguish between states with overlapping mean but different distribution.

We demonstrate how this technique can be used for computationally-scalable
identification of persistant (metastable) regime affiliations and regime switches
from high-dimensional non-stationary and noisy time series, i.e., when the size
of the data statistics is small compared to its dimensionality and when the noise
variance is larger than the variance of the signal. Thus, we retain the advan-
tages of entropic learning methodologies, expanding them to a new domain. We
furthermore demonstrate the performance on a comprehensive set of toy learning
examples, comparing it to state of the art techniques.

One particular application of this framework that was showcased was the direct
learning of a model from training data, without iterative procedure. This can be
performed if there exist a bijective map between the affiliation matrix Γ and the
label probability matrix Π. As an example, this modality of learning was applied
on a simplified RNA sequencing toy dataset.

Mathematics of adversarial AI attacks

Illia Horenko

The ubiquitous and boosting rise of AI technologies like AlphaGo, AlphaFold and
GPT-4 heralded a new historic era. Multiple areas of human activity currently are
affected by these rapid and - in many aspects, alarming and potentially dangerous
- developments. Recent studies [1, 2, 3]indicate a high level of vulnerability of
advanced AI platforms like AlphaGo through the several orders of magnitude more
simple AI tools that can be trained to find and use the critical vulnerabilities to
the so-called adversarial attacks.

In this talk, the problem of finding an optimal adversarial attack was formulated
mathematically as an optimisation problem of finding the Minimal Adversarial
Path (MAP) and Minimimal Adversarial Distance (MAD) [4]. Simply-verifiable
mathematical conditions for existence, uniqueness and explicit analytical com-
putability of MAP and MAD for (locally) uniquely-invertible classifiers, for gener-
alized linear models (GLM), and for entropic AI (EAI) are formulated and proven.
Practical computation of MAP and MAD, their comparison and interpretations for
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various classes of AI tools (for neuronal networks, boosted random forests, GLM
and EAI) was demonstrated on the common synthetic benchmarks from mathe-
matics (including the number series challenges of Vladimir Arnold), climate re-
search (prediction of the El Nino climate phenomenon), economics and biomedical
sciences (finding minimal risk-mitigating policies for the health insurance holders).
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Approximation rates for neural networks on Sobolev and Besov spaces

Jonathan W. Siegel

Machine learning techniques and especially neural networks [1] have recently been
widely applied to a variety of problems in scientific computing (see for instance
[2, 3, 4, 5]). Despite the empirical success of many of these methods, developing a
theoretical understanding of their properties is still an active research problem. In
particular, the questions of whether neural network-based methods can provably
solve partial differential equations (PDEs), and if so, what advantages they have
over traditional numerical methods, do not yet have satisfactory answers.

Some partial progress on this problem has been made in recent work demon-
strating that shallow neural networks, i.e. neural networks with a single hidden
layer, can be provably used to solve elliptic PDEs [6, 7]. However, the resulting
methods are not yet competitive with traditional finite element solvers. Other
recent work suggests that neural networks do not actually outperform traditional
methods, such as finite element methods, for the solution of a variety of different
PDEs [8]. We remark that we will mostly discuss the problem of solving PDEs
using neural networks, which is typically low dimensional, instead of the more
difficult problem of operator learning [5, 9], which is inherently high dimensional.

The perspective that we will take on these problems is to study the approx-
imation theory of neural networks. Specifically, we will address the problem of
how many parameters a neural network requires to achieve a specified accuracy
on a given class of target functions, and will use this perspective to compare them
with traditional numerical methods. The class of target functions we consider are
functions from Sobolev and Besov spaces, and we consider approximation in the
Lp-norm.
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We recall that the class of Sobolev function W s(Lq(Ω)) for a domain Ω ⊂ R
d,

1 ≤ q ≤ ∞, and s > 0 an integer, is defined by the norm

(1) ‖f‖W s(Lq(Ω)) = ‖f‖Lq(Ω) + ‖f (s)‖Lq(Ω),

where f (s) denotes the weak derivatives of f of order s (see [10], Chapter 5). The
results we describe also apply to more general function spaces, such as fractional
Sobolev spaces [11] and Besov spaces [12]. These function spaces play a funda-
mental role in analysis, approximation theory, and PDE theory [10, 13, 14]. For
this reason, determining how efficiently neural networks can approximate func-
tions from these spaces is an important theoretical problem for understanding the
application of neural networks to scientific computing problems.

In order to approximate functions from the Sobolev class W s(Lq(Ω)) with error
in the Lp(Ω) norm, with 1 ≤ p, q ≤ ∞ and p and q not necessarily equal, it is
necessary that the Sobolev embeddingW s(Lq(Ω)) ⊂ Lp(Ω) hold. If Ω is a bounded
domain in R

d, this is guaranteed by the Sobolev embedding condition

(2)
1

q
−

1

p
<

s

d
,

and in this case the embedding is guaranteed to be compact. At the embedding
endpoint, i.e. when equality holds in (2), there may or may not be an embedding
depending upon the values of s, p, q, d, but it will never be compact. We remark
that similar embedding results hold also for Besov spaces [15].

Given that the Sobolev embedding condition (2) holds, we are interested in how
efficiently the class W s(Lq(Ω)) can be approximated in Lp(Ω) by various methods
of approximation. For linear methods of approximation, i.e. approximating via a
linear map of rank n, the best error which can be achieved is given by the linear
n-widths

(3) δn(W
s(Lq(Ω)))Lp(Ω) ∼

{

n−
s
d
+max( 1

2
−

1
p
, 1
q
−

1
2 ) 1 ≤ q ≤ 2 ≤ p ≤ ∞

n
−

s
d
+( 1

q
−

1
p )+ otherwise.

We refer to [16, 17] for the proof of this result and the theory of widths more gen-
erally. This implies that the rate of approximation by linear methods deteriorates
when q < p. Using classical non-linear, i.e. adaptive, methods such as variable
knot splines or non-linear wavelet expansions, one can recover an approximation
rate of n−s/d even when q < p (see [18]). For this reason the regime where q < p

is typically called the non-linear regime of approximation.
For approximation by deep neural networks with the ReLU activation func-

tion, we have been able to determine the optimal rates of approximation using n

parameters [19], which are given by

(4) ENN
n (f)Lp(Ω) ≤ C‖f‖W s(Lq(Ω))n

−
2s
d

whenever the embedding condition (2) is satisfied. This generalizes prior work [20,
21, 22] which only considered the case q = ∞, and in particular gives the optimal
rate even in the non-linear regime where q < p. Remarkably, the rate obtained
by deep neural networks significantly improves upon the rate that classical (even
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non-linear) methods can achieve. However, this improved rate comes at the cost
of parameters which cannot be encoded using a fixed number of bits. For this
reason, these improved rates cannot really be obtained numerically. This can be
made precise through the concept of metric entropy (see [17]), which shows that
adaptive classical methods are optimal for classical smoothness spaces such as
Sobolev and Besov spaces.

Interestingly, the corresponding problem for shallow ReLUk neural networks is
still open and appears to be much more difficult. Some partial results have been
obtained [23, 24, 25], but determining the correct approximation rates for all s, p
and q for which the compact embedding condition (2) is still an active research
problem.
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rSPA and numerical W-solvers for eSPA

Lukas Pospisil

This contribution summarizes the solution aspects of so-called Entropy-optimal
Scalable Probabilistic Approximation (eSPA, [1]) problem given by

(1)

[S∗,Γ∗,Λ∗, w∗] = argmin
K∑

k=1

T∑

t=1

D∑

d=1

wd(Xd,t − Sd,t)
2

−εKL

T∑

t=1

M∑

m=1

K∑

k=1

Πm,tΓk,t log Λm,k

+εw
D∑

d=1

wd logwd,

where X ∈ R
D,T are given data, Π ∈ R

M,T is given left-stochastic matrix of
data labeling probabilities, Γ ∈ R

K,T is left-stochastic matrix with probability
affiliations, S ∈ R

D,K are probabilistic centroids, w ∈ R
D is stochastic vector

of feature importance, and Λ ∈ R
M,K is a left stochastic matrix of conditional

probabilities from Bayesian model Π = ΛΓ.
The problem is formulated as an extension of original SPA algorithm [2] by

Entropic regularization for dealing with feature sparsification.
Although the problem (1) is non-convex and hard to be solved directly, it is easy

to prove (even on the blackboard) that if one solves the problem using Subspace
algorithm (when the problem is solved in one variable and all others are fixed),
the objective function is monotonically decreasing and all subproblems enjoy the
analytic solution. To be more specific

• Γ-problem can be solved using the analytic formula from K-means clus-
tering algorithm,

• S-problem is unconstrained quadratic programming problem and the so-
lution can be obtained from the 1-order necessary optimality conditions,
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• Λ-problem has similar solution to well-known transitional probabilities
problem in discrete Markov chains,

• w-problem leads to softmax function.

Using the idea of affiliation regularization [4] by H1-seminorm (to enforce the
persistency of classification in time or space), one can extend the formulation by
the regularization of affiliation with respect to time or space [5]. In this case,
problem in variable Γ does not have analytic solution, but can be solved efficiently
using the Spectral Projected Gradient method for Quadratic programming [6].
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On the comparative utility of entropic learning versus deep learning

for long-range ENSO prediction

Michael Groom

This talk compares the ability of deep learning and entropic learning methods to
predict the probability of the Niño3.4 index being above 0.4◦ (El Niño), below
−0.4◦ (La Niña) or within both of these thresholds (neutral) at lead times of 3
up to 24 months. In particular, the performance, robustness, interpretability and
training cost of entropic learning methods, represented by the entropy-optimal
Scalable Probabilistic Approximation (eSPA) algorithm, are compared with deep
learning methods, represented by a Long Short-Term Memory (LSTM) classifier,
trained on the same dataset. Using only data derived from sea surface tempera-
ture observations over the period 1958-2018 and a correspondingly surface-forced
resimulated ocean model, the problem becomes a canonical small-data challenge,
where the number of examples for learning is of similar size to the number of
features. Relative to the LSTM model, eSPA exhibits substantially better out-of-
sample performance in terms of area under the ROC curve (AUC) for all lead times
at ∼ 0.02% of the computational cost. Comparisons of AUC with other state-of-
the-art deep learning models presented in the literature show that eSPA appears
to also be more accurate than these models across all three classes. Examining the
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feature importance for eSPA shows that it induces a strong sparsification of the
feature space, while looking at the statistical significance of each of the obtained
clusters shows that, in general, incorrect predictions on the test set are made from
the least significant clusters. Composite images are generated for each of the clus-
ter centroids from each trained eSPA model at each lead time. At shorter lead
times the composite images for the most significant clusters correspond to pat-
terns representing mature or emerging/declining El Niño or La Niña states, while
at longer lead times they correspond to precursor states consisting of extra-tropical
anomalies. Furthermore, an increased diversity is observed in the precursor pat-
terns with the highest predictive skill as lead time increases. Finally, modifications
to the baseline dataset are explored, showing that improvements can be made in
the parsimony of the trained eSPA model without sacrificing predictive power.

An iterative method for the solution of Laplace-like equations in high

and very high space dimensions

Harry Yserentant

The talk dealt with the equation −∆u+ µu = f on high-dimensional spaces Rm,
where the right-hand side f(x) = F (Tx) is composed of a separable function F

with an integrable Fourier transform on a space of a dimension n > m and a linear
mapping given by a matrix T of full rank and µ ≥ 0 is a constant. For example,
the right-hand side can explicitly depend on some or all differences xi − xj of
the components of x. We have shown that the solution of this equation can be
expanded into sums of functions of the same structure and have developed in this
framework an equally simple and fast iterative method for its computation. The
method is based on the observation that in almost all cases and for large problem
classes the expression ‖T ty‖2 deviates on the unit sphere ‖y‖ = 1 the less from its
mean value the higher the dimension m is, a concentration of measure effect. The
higher the dimension m, the faster the iteration converges.
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Understanding and computing with physical patterns

Karin Everschor-Sitte

To overcome the limitations of our modern computing technology, novel compu-
tational paradigms in combination with suitable hardware solutions are required.
Physical reservoir computing [1, 2] exploits natural dynamical systems to efficiently
transform complex tasks into simple ones. Reservoir computing is a universal com-
putational paradigm that, in contrast to neural networks, requires fewer compu-
tational resources while considerably reducing computing time by several orders
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of magnitude [3, 4]. In physical reservoir computing, the role of the reservoir is
assumed by a physical material, see Figure 1.

Figure 1. Sketch of the functional principle of physical reservoir
computing. The physical reservoir (center) is stimulated by suit-
able physical input (left). The complex, non-linear response of
the reservoir is then measured (right). The measurement can be
done in different modes as indicated in the figure. The measured
values serve as input data for training a linear classifier (indicated
by the equation below). Fig. from Ref [5].

We showed that patterns in magnetic materials are a competitive ultra-low power
and high-performing physical realization of the reservoir [6, 7, 8]. These magnetic
patterns contain so-called skyrmions. Skyrmions are topologically stable whirls
that are realized in different areas of physics and were initially discovered by Tony
Skyrme in particle physics in the 1960’s, see for example [9, 10]. Skyrmions, which
occur in magnetic systems, were first observed experimentally in 2009 [11]. Since
then, the field of magnetic skyrmions has developed into a very active area of
research (see for example Ref. [12]), with the aim of exploiting the topological
properties of the magnetic whirl-like particles for spintronics applications. For ex-
ample, the peculiar twist of the magnetization in skyrmions leads to a very efficient
coupling to electric currents and allows for “banana kicks” analogous to those in
soccer (see Ref. [13] and references therein). More recently, magnetic skyrmions
have been of strong interest for unconventional computing schemes such as stochas-
tic computing, quantum computing and reservoir computing [14, 18, 15]. Using
such magnetic patterns comprising skyrmions we have performed the benchmark
test of classifying spoken digits [17]. Here, a model employing a nonlinear filtering
technique has been developed, achieving a 97.4% accuracy in recognizing individ-
ual digits regardless of the speaker, and an even higher accuracy of 98.5% among
female speakers. This represents the highest accuracy recorded for in-materio
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reservoir computing. Our results are on par with state-of-the-art non-in-materio
reservoir systems.

Figure 2. Sketch of spoken digit classification using a multi-
channel skyrmion fabric reservoir computer. The dark points
represent skyrmion cores and the cyclic colormap around them
represents the orientation of in-plane magnetization. Graphical
abstract from Ref. [16].

To generally characterize how good a physical reservoir is, we developed efficient
task-agnostic metrics benchmarking spatially resolved the reservoir’s key features
– non-linearity, complexity, and fading memory [17]. Experimental realizations
of skyrmion reservoirs further highlight the potential for energy-efficient high-
performance skyrmion-based RC, see Ref [18] for an overview. Suitably combining
reservoirs allows for improving the reservoir’s properties and solving more complex
tasks [19]. While on the one hand, we can employ materials to compute efficiently,
on the other hand, we can use advanced inference methods to understand and
improve materials. To improve materials for applications in general, knowledge of
their inhomogeneities and defects is beneficial. We developed two computationally
scalable data measures (the latent dimension and the latent entropy) taking into
account latent temporal relations between processes of interest that provide deeper
insight into experimentally observed noisy video data [20].

Figure 3. Analysis of the microscopy video of lymph flow in a
mouse brain from Ref. [21].
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We demonstrate their effectiveness by using the latent entropy and latent dimen-
sion on various examples in the natural sciences, uncovering previously unseen
phenomena like a gradient in magnetic measurements and a hidden network of
glymphatic channels in microscopy data from the mouse brain [21]. What makes
these techniques unique is their independence from the typical restricting assump-
tions such as identical and independent distribution (i.i.d.), as well as, Gaussianity
of the data found in many machine learning models.
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Overview of recent progress in an active research field, Journal Of Applied Physics 124

(2018)
[13] K. Everschor-Sitte, & M. Sitte, Real-space Berry phases: Skyrmion soccer, Journal Of

Applied Physics 115 (2014)
[14] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S. Fukami & M. Stiles, Neuro-

morphic spintronics, Nature Electronics 3 (2020), 360-370
[15] G. Finocchio, J. Incorvia, J. Friedman, Q. Yang, A. Giordano, J. Grollier, H. Yang,

F. Ciubotaru, A. Chumak, A. Naeemi & Others Roadmap for unconventional computing
with nanotechnology, Nano Futures (2023)

[16] R. Msiska, J. Love, J. Mulkers, J. Leliaert & K. Everschor-Sitte, Audio classification with
skyrmion reservoirs, Advanced Intelligent Systems 5 (2023), 2200388

[17] J. Love, R. Msiska, J. Mulkers, G. Bourianoff, J. Leliaert & K. Everschor-Sitte, Spatial
analysis of physical reservoir computers, Physical Review Applied 20 (2023), 044057
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Bayesian structure learning for climate

Terence O’Kane

Climate general circulation models are the main tools used for determining cli-
mate change risks associated with anthropogenic forcing. A severe limitation on
our ability to determine such risks arise due to significant biases in represent-
ing the temporal behavior and seasonal phase locking of key climate teleconnec-
tions such as the El Nino Southern Oscillation (ENSO). Climate model biases and
performance is typically assessed against observational products via systematic
comparison of individual metrics, usually focused on the mean climate, over the
recent historical period. These relationships are typically studied by regressing the
postulated response on lagged values of the driver and vice versa. If substantial au-
tocorrelations exist in the data, this approach can lead to the detection of spurious
relationships. Where autoregressive models are employed, large uncertainties can
arise over model selection. We demonstrate how Bayesian structure learning can
enable a systematic probabilistic framework for process-based model evaluation of
both the temporal behaviour of individual climate modes but also to identify and
assess the causal teleconnections between those modes. Specifically, time homoge-
neous Dynamic Bayesian Network (DBN) models are constructed from observed
(reanalyzed) data and climate model simulations from the leading Meteorological
Centres as time series of empirical climate teleconnection indices. Reversible jump
Markov Chain Monte Carlo (RJMCMC) is used to provide uncertainty quantifi-
cation for selecting the respective network structures. The incorporation of confi-
dence measures in structural features provided by the Bayesian approach is key to
yielding informative measures of the differences between products if network-based
approaches are to be used for model evaluation, particularly as point estimates
alone may understate the relevant uncertainties. We show that network structures
can be fitted simultaneously and feasibly across a representative sample of climate
model simulations affording uncertainty estimation of the robustness of differences
across models and observations and to robustly identify model biases between
teleconnections in the climate simulated over the past six decades. Differences
in the high confidence posterior probabilities assigned to edges of the respective
directed acyclic graphs (DAG) provides a quantitative summary of departures in
the CMIP5 models from reanalyses as quantified using Wasserstein distance and
Kullback-Leibler divergences. In general terms the climate model simulations are
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in better agreement with reanalyses where tropical processes dominate, and auto-
correlation time scales are long. Seasonal effects are shown to be important when
examining tropical-extratropical interactions with the greatest discrepancies and
largest uncertainties present for the Southern Hemisphere teleconnections.
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Unresolved scales in weather and climate models: learning uncertainty

from data

Nikki Vercauteren

Limited computer resources lead to a simplified representation of unresolved small-
scale processes in weather and climate models, through parameterisation schemes.
These approximate models of the unresolved scales express unresolved processes
using the resolved variables of the prediction model as input and are often deter-
ministic, but should sometimes be stochastic.

A systematic data-driven approach can help quantifying the uncertainty of pa-
rameterisations and inform us on how and when to incorporate uncertainty in the
modelling, through stochastic parameterisation schemes. To enable such a system-
atic data-driven approach, methods from entropy-based learning and uncertainty
quantification were combined in a model-based clustering framework, where the
model is a stochastic differential equation with piecewise constant parameters. As a
result, stochastic parameterisation can be learned from observations. The method
is able to retrieve a hidden functional relationship between the parameters of a
stochastic model and the resolved variables. As a result, a coarse-grained model
is obtained, where the unresolved scales are expressed as stochastic differential
equations whose parameters are continuous functions of the resolved variables.

Among the parameterised processes in weather and climate models, turbulent
fluxes exert a critical impact on the exchange of heat, water and carbon between
the land and the atmosphere. Turbulence theory was, however, developed for
homogeneous and flat terrain, with stationary conditions. The theory fails in
unsteady flow contexts or with heterogeneous landscapes, leading to important
uncertainty in the parameterization of turbulence. Using field measurements of
turbulence, the stochastic modelling framework is able to uncover a stochastic
parameterisation that represent unsteady mixing in difficult conditions. Such
methodology will be explored for further derivation of stochastic parameterisa-
tions, and should help to quantify uncertainties in climate projections related to
uncertainties of the unresolved scales dynamics.
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Machine learning in epigenetics

Nicolò Alagna

Epigenetics is the science that study stable and effective changes in the cell func-
tionality that are not linked to the native DNA sequence, which links the gap be-
tween genetics and environmental influences on gene expression, offering insights
into how the same genetic code can produce different phenotypes under various
environmental contexts. One example is Chromatin remodelling and protein ex-
pression control, which control, part of the stem cells differentiation. Another
aspect of epigenetics is to explore the chemical modifications of DNA and his-
tone proteins which influence gene activity. Some of these modifications include
methylation, acetylation, phosphorylation, and ubiquitylation, which can be in-
herited through cell division and potentially across generations, thereby affecting
how genes are expressed. This field has profound implications for understanding
the biological mechanisms underlying development, aging, and disease. Recent
advancements highlight its role in the regulation of gene expression in response to
environmental changes, the maintenance of cellular identity, and the reprogram-
ming of cells. Furthermore, epigenetic mechanisms are implicated in numerous
diseases, including cancer, neurological disorders, and autoimmune diseases, by
governing genes that control cell cycle, apoptosis, and metabolism.

In our work, we focus on the analysis and identification of these modifications
at both the DNA and RNA levels. In details, in our research we use deep neural
network technology to track and identity possible DNA/RNA modifications with
single base accuracy. Starting with epigenetic in DNA, DNA/RNA-hybrid systems
were investigated, which are responsible for aging effects on the telomer. During
cell splicing, Single based of RNA are included in the DNA sequence by coding
errors due to the similarity of the DNA and RNA bases. This affects specific en-
zymes during the telomer formation, reducing their length and affecting life span
of the system. It is possible to track small changes using deep learning? To answer
this question, a neural network was trained to identify and distinguish RNA and
DNA bases based on their experimental signal from Oxford Nanopore Technolo-
gies (ONT), which produce an electric signal depending on chemical structure of
the base that it is reading. The deep learning results show the possibility to track
the RNA bases in DNA strands with the accuracy of the single base. Moreover,
it was able to establish what kind of RNA base was wrongly replaced in the DNA
strand, classifying the four possible cases over the DNA strand. Similarly to the
DNA-RNA hybrid, Neural networks were used to analyse RNA modifications in
RNA strands, which present a more substantial chemical differences compared
to the unmodified base. However, RNA modifications are much more in number
(about 200) compared to the possible combination of DNA-RNA hybrid, making
the problem to scale in terms of complexity. For the RNA modification analy-
sis, we focused on four modifications (pseudouridine, M6A methylation, Inosine
and Gm methylation) and see if the neural network can track modifications posi-
tion and understands significant signal patters that are unique for modifications
classifications. Also in this case, the neural network was able to distinguish and
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classify the four different modifications, if they are present in the strand or not,
and pointing the correct position in the RNA sequence reference.

These results underline the potential of deep learning in support our under-
standing of epigenetic mechanisms at the molecular level, especially understanding
the crucial role and interplay between modifications and diseases. although this
is a small step in the field of epigenetics, the ability of neural networks to local-
ize and identify these modifications opens the question: can we leverage machine
learning and deep learning to predict disease progression or response to therapy
based on epigenetic signatures? What is the next step in the field of bioinformatics
to explore and understand epigenetics in complex life systems?

Reporter: Davide Bassetti
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