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Abstract. In 1945 Gerhard Hochschild published On the cohomology groups
of an associative algebra in the Annals of Mathematics and thereby created
what is now called Hochschild theory. The subject not only provides interest-
ing homological invariants; it also serves as a link connecting algebra, topol-
ogy, and geometry. The focus of the meeting was on recent developments, for
instance in the study of singularities, deformations, and representations.
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Introduction by the Organizers

At the end of the nineteenth century, Poincaré created invariants to distinguish
different topological spaces and their features, foreshadowing the homology and
cohomology groups that would appear later. Towards the middle of the twentieth
century, these notions were imported from topology to algebra. The subject of
group homology and cohomology was founded by Eilenberg and MacLane, and
the subject of Hochschild homology and cohomology by Hochschild.

The meeting was devoted to Hochschild (co)homology, which now appears in the
settings of representation theory, algebraic geometry, category theory, functional
analysis, topology, and beyond. There are strong connections to cyclic homology
and K-theory. Many mathematicians use Hochschild (co)homology in their re-
search, and many continue to develop theoretical and computational techniques
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for better understanding. Hochschild (co)homology is a broad and growing field,
with connections to diverse parts of mathematics.

A similar meeting with title Hochschild (co)homology and derived categories
was planned as a Satellite for the ICM 2022 in St. Petersburg (https://indico.
eimi.ru/event/315/). The meeting was cancelled, but the organizers are grateful
that the Oberwolfach Institute provided a second chance for this event.

There were 22 talks and the extended abstracts provide more details. Almost all
talks were given in person, except the ones of Claude Cibils and Travis Schedler
who joined via Zoom (the latter giving his talk at SLMath in Berkeley). The
following additional short contributions were presented during a Gong Show :

• Tekin Karadag: Nonabelian Hochschild cohomology and abelian Hopf co-
homology

• Naageswaran Manikann: Chromatic graph homology and its relation to
Hochschild homology

• Matt Booth: Nonsmooth Calabi–Yau algebras
• Isambard Goodbody: Reflexivity and Hochschild cohomology
• Julie Symons: An equivalence of derived deformations
• Miantao Liu: Categorification of Goncharov–Shen’s basic triangle
• Jules Besson: Categorification of cluster algebras through hereditary ex-
triangulated categories

• Arne Mertens: Quasi-categories in modules as weak dg-categories
• Violeta Borges Marques: Hochschild cohomology for quasi-categories in
modules

• Øyvind Solberg (report on work by Mads Hustad Sandøy): Radical cube
zero selfinjective algebras with finitely generated Hochschild cohomology

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Keller’s conjecture for singular Hochschild cohomology

Xiao-Wu Chen

(joint work with Huanhuan Li, Zhengfang Wang)

Let A be a finite dimensional algebra over a field k. Denote by Ae = A⊗k A
op its

enveloping algebra. Recall that the Hochschild cohomology algebra of A is defined
to be the graded algebra

HH∗(A) =
⊕

n≥0

ExtnAe(A,A),

whose multiplication is known as the cup product which makes HH∗(A) a graded-
commutative algebra.

Let T be a small k-linear triangulated category with Σ its suspension functor.
For any integer n, we denote by Hom(IdT ,Σ

n) the k-space formed by all natural
transformations η : IdT → Σn between triangle functors. The graded center of T
is a graded algebra

Z∗(T ) =
⊕

n∈Z

Hom(IdT ,Σ
n),

whose multiplication is defined such that η′η = Σn(η′) ◦ η with η′ ∈ Zm(T ). We
observe that ηη′ = (−1)mnη′η, that is, Z∗(T ) is also graded-commutative.

Denote by A-mod the abelian category of finite dimensional left A-modules,
and by Db(A-mod) its bounded derived category. The characteristic morphism of
A is the following homomorphism between graded algebras

χA : HH∗(A) −→ Z∗(Db(A-mod)), ζ 7→ ζ ⊗L

A −.

The homomorphism χA plays a role in support varieties and deformation theory.
Let C be a small dg category. Its Hochschild cohomolgy algebra is defined to be

HH∗(C) =
⊕

n∈Z

HomD(Ce)(C,Σ
n(C)),

where D(Ce) is the derived category of right dg modules over the enveloping dg
category Ce = C ⊗k Cop.

Denote by D(C) the derived category of right dg C-modules. By the Yoneda
embedding, the homotopy category H0(C) is viewed as a full subcategory of D(C).
The dg category C is called pretriangulated if H0(C) is a triangulated subcategory
ofD(C), in which case, C is called a dg enhancement ofH0(C). We have a canonical
morphism

can: HH∗(C) −→ Z∗(H0(C)), ζ 7→ ζ ⊗L

C −.

Here, each morphism ζ : C → Σn(C) in D(Ce) gives rise to a natural transformation

ζ ⊗L

C − : IdD(C) −→ Σn,

which restricts to the required element ζ⊗L

C− : IdH0(C) → Σn in the graded center.



1102 Oberwolfach Report 20/2024

The bounded dg derived category Db
dg(A-mod) is a canonical dg enhancement

of Db(A-mod). Furthermore, we have the following well known result.

Proposition 1. There is an isomorphism φA of graded algebras making the fol-
lowing triangle commutative.

HH∗(A)

χA ((❘❘
❘❘❘

❘❘
φA

// HH∗(Db
dg(A-mod))

cantt✐✐✐✐
✐✐✐✐

Z∗(Db(A-mod))

Set D = Db
dg(A-mod). By [2], the isomorphism φA is induced by a fully-faithful

triangle functor

Db(Ae-mod) −→ D(De), X 7→ D(−, X ⊗L

A −).

Denote by C∗(A,A) the Hochschild cochain complex of A, and by C∗(D,D)
the Hochschild cochain complex of D. They are both brace B∞-algebras [1], with
their cup products and brace operations. We recall that a B∞-algebra structure
on a graded space V is equivalent to a dg bialgebra structure (T c(sV ),∆, D, µ) on
the tensor coalgebra (T c(sV ),∆). The inverse of φA is induced by the restriction
C∗(D,D) → C∗(A,A), where we identify A with the full dg subcategory of D
given by the single object A.

We have the following fundamental result.

Theorem 2. (Keller, Lowen-Van den Bergh) The isomorphism φA above lifts to
an isomorphism

C∗(Aop, Aop) ≃ C∗(D,D)

in the homotopy category of B∞-algebras.

To better understand the appearance of the opposite algebra Aop above, we
define the transpose B∞-algebra V tr of a given B∞-algebra V : they have the same
underlying graded space, and the dg bialgebra corresponding to V tr is isomorphic
to (T c(sV ),∆op, D, µ). This definition is motivated by the following fact: there is
a strict B∞-isomorphism

C∗(A,A)tr ≃ C∗(Aop, Aop).

For a B∞-algebra V , its opposite B∞-algebra V opp corresponds to the dg bial-
gebra (T s(sV ),∆, D, µopp). In particular, V opp and V have the same underlying
A∞-algebra structure. We have the following duality theorem [1].

Theorem 3. Let V be a B∞-algebra. Then there is a B∞-quasi-isomorphism
V tr → V opp.

Combining the two theorems above, we obtain an isomorphism

C∗(A,A)opp ≃ C∗(D,D)

in the homotopy category of B∞-algebras.
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Recall that the singularity category of A is defined by the Verdier quotient
triangulated category

Dsg(A) = Db(A-mod)/Kb(A-proj).

Denote by P the full dg subcategory of D formed by perfect complexes. Then the
dg singularity category Sdg(A) = D/P canonically enhances Dsg(A).

The singular Hochschild cohomology algebra ofA is defined to the graded algebra

HH∗
sg(A) =

⊕

n∈Z

HomDsg(Ae)(A,Σ
n(A)).

It is graded-commutative. The following result is analogous to Theorem 2.

Theorem 4. (Keller [2]) Assume that D is smooth. Then there is an isomorphism

ψA : HH∗
sg(A) ≃ HH∗(Sdg(A))

of graded algebras.

In view of Theorems 2 and 4, Keller conjectures that the isomorphism ψA lifts
to the B∞-level. To make it more precise, we recall that both the left singu-

lar Hochschild cochain complex C
∗

sg,L(A,A) and right singular Hochschild cochain

complex C
∗

sg,R(A,A) compute HH∗
sg(A), and are brace B∞-algebras.

Conjecture. (Keller [2]) Assume that D is smooth and set S = Sdg(A). Then
there is an isomorphism

C
∗

sg,L(A
op, Aop) ≃ C∗(S,S)

in the homotopy category of B∞-algebras.

There is a stronger version of Keller’s conjecture, which claims that the isomor-
phism above lifts ψA. We only treat the weak version. The following invariance
theorem [1] justifies Keller’s conjecture to some extent.

Theorem 5. Keller’s conjecture is invariant under one-point (co-)extensions and
singular equivalences with level.

Since any derived equivalence induces a singular equivalence with level, then
Keller’s conjecture is invariant under derived equivalences.

Let Q be a finite quiver without sinks. Denote by AQ = kQ/J2 the correspond-
ing algebra with radical square zero. The Leavitt path algebra L(Q) is naturally
Z-graded, and is viewed as a dg algebra with trivial differential. We verify Keller’s
conjecture for AQ; see [1].

Theorem 6. Let Q be a finite quiver without sinks. Write SQ = Sdg(AQ). Then
there are isomorphisms

C
∗

sg,L(A
op
Q , A

op
Q ) ≃ C∗(L(Q), L(Q)) ≃ C∗(SQ,SQ)

in the homotopy category of B∞-algebras.

Theorems 5 and 6 imply that finite dimensional gentle algebras satisfy Keller’s
conjecture.
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A generalization of cyclic homology for operads

Vladimir Dotsenko

Similar to how associative algebras give an abstraction of the notion of an endo-
morphism of a vector space V , (symmetric) operads [6] give an abstraction of the
notion of a multilinear map. Matrices of the given size can be multiplied, and the
product is bilinear and associative, which is precisely how one defines an associa-
tive algebra. A multilinear map has a certain number of arguments, say n, and
one has the following structural features:

• an action of the symmetric group Sn on multilinear operations with n
arguments,

• if we consider all multilinear operations together, one can substitute op-
erations into one another, forming operations with more arguments,

• moreover, substitutions of multilinear operations in one another are linear
in each of the operations, are, in a sense, associative, and are reasonably
equivariant with respect to the symmetric group actions.

Graphically, it is convenient to visualize iterated substitutions of multilinear
operations using rooted trees.

'&%$ !"#

'&%$ !"#5'&%$ !"# 2

3 41 6

☛☛
☛☛✬✬

✬

tt
tt
tt

❀❀
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✴✴
✴

☛☛
☛✰✰

✰
✓✓
✓

Here, one can decorate each vertex with k incoming edges by a multilinear
map with k arguments, and then compose them “along the tree”, and the proper-
ties above (associativity and equivariance) simply mean that the result of such a
composition does not depend on the order of “partial” calculations that contract
edges of a tree one by one. Now if we replace multilinear maps by a collection
O = {O(n)} of representations of symmetric groups that can be composed along
trees, we obtain an operad. Moreover, if we assume that O is augmented, one
can define the bar construction B(O), which is the chain complex made of rooted

trees whose vertices with k inputs are decorated by elements of sO(k), the ho-
mological shift of the k-th component of the augmentation ideal of O, with the
differential that computes the alternating sum of edge contractions. This chain
complex carries all crucial information on the homotopy theory of O. If O(k) = 0
for k 6= 1, this recovers the usual bar construction of an augmented associative
algebra A = O(1); that chain complex computes TorA• (k, k).
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Suppose now that the vector space V is finite-dimensional. In this case, there is
one more bit of structure one can consider: computing traces with respect to one of
the arguments, thus obtaining multilinear scalar functions from multilinear maps.
The combinatorial objects that one need to add to rooted trees to encode the
properties of compositions and traces are now as follows: one needs rooted trees
without an output (then the root vertex can be decorated by a scalar multilinear
function) and the “wheel graphs”, which are directed graphs of genus one where
each vertex has only one outgoing edge. Here are examples of these:
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Now if we replace multilinear maps by a collection O = {O(n)} of representations
of symmetric groups and multilinear functions by another collection W = {W(n)}
of the same kind, and require that those can be evaluated along the graphs above,
we obtain a wheeled operad [7]. Moreover, if we assume that (O,W) is augmented,
one can define the wheeled bar construction B	(O,W), which is the chain complex
made of our graphs whose vertices with k inputs and one output are decorated
by elements of sO(k) and whose vertex with k inputs and no outputs (if exists)

is decorated by an element of sW(k), with the differential that computes the
alternating sum of edge contractions.

In particular, for an operad O one can construct two canonical wheeled operads:
one can consider O as a wheeled operad where all contractions along graphs with-
out an output vertex are zero, and one can consider the wheeled completion O	

which is the left adjoint functor (we add all formal evaluations along our graphs,
and nothing else). If O(k) = 0 for k 6= 1, this recovers the usual bar construction
of an augmented associative algebra A = O(1) (computing the Tor groups as men-
tioned above) and the cyclic bar complex (computing the cyclic homology of A).
It is thus not unreasonable to say that the wheeled bar construction generalizes
cyclic homology.

Let O be an augmented operad over a field k of zero characteristic. Consider
the Lie algebra Der(O(x1, . . . , xn)) of all derivations of the free O-algebra with n
generators, and its subalgebra Der+(O(x1, . . . , xn)) that is the kernel of the Lie
algebra homomorphism Der(O(x1, . . . , xn)) → gln arising from the augmentation
of O. Using the above Lie algebra homomorphism, one can view every gln-module
as a Der(O(x1, . . . , xn))-module. In my recent preprint [1], the following result
was proved.
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Theorem 1. As n→ ∞, the homology H•(Der(O(x1, . . . , xn)), (kn)⊗p⊗ (kn∗)⊗q)
stabilizes, and can be explicitly out of the homology of the wheeled bar construc-
tion B	(O): the collection of these homology groups for all p, q is the coPPROP
completion Sc(H•(B

	(O))). Moreover, the multiplicity of each finite-dimensional
irreducible gln-module in the homology H•(Der+(O(x1, . . . , xn))) stabilizes and can
be explicitly computed out of the same coPPROP completion Sc(H•(B

	(O))).

In particular, this theorem implies the theorem of Loday–Quillen [5] and Tsy-
gan [8] on the homology of the Lie algebra of infinite matrices, its non-unital
version of Feigin–Tsygan [2] and Hanlon [4], and the theorem of Fuchs [3] on sta-
bility of the homology of the Lie algebra of vector fields on kn. The proof relies on
classical invariant theory for gln, and brings the wealth of operadic methods into
matters of Lie algebra homology, allowing to prove various new results of similar
flavour.

It turns out [1] that if one considers the bar construction of the wheeled com-
pletion B	(O	), it has a similar relationship to another, arguably even more
important Lie algebra, the algebra SDer(O(x1, . . . , xn)) of divergence zero deriva-
tions of the free algebra, for appropriately defined divergence. In many interesting
cases, tangent derivations of automorphisms of free algebras have zero divergence,
so these results can be viewed as some infinitesimal K-theory computations.
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On the Hochschild homology of the category of finitely generated
projective modules

Antoine Touzé

(joint work with A. Djament)

If K be a k-linear category over a field k, we denote by HH∗(K, B) the Hochschild
homology of K with coefficient in the K-K-bimodule B, as defined by Mitchell [7].
In this talk, we focus on the Hochschild homology of the k-linear category k[PR].
The objects of k[PR] are the finitely generated projective right modules over a ring
R, its vector spaces of morphisms are given by:

Homk[PR](P,Q) := k[HomR(P,Q)]

(where k[X ] is a notation for the free k-vector space on a set X), and its compo-
sition law is the unique k-bilinear map which extends the composition of R-linear
maps. The data of a k[PR]-k[PR]-bimodule is equivalent to the data of a (non-
necessarily additive) bifunctor

B : PR × Pop
R → Vectk ,

where PR ⊂ ModR is the full subcategory of finitely generated projective modules.

One reason to consider the Hochschild homology HH∗(k[PR], B) is its close relation
with the homology of general linear groups. Namely, for all positive integers n,
the k-vector space

Bn := B(Rn, Rn)

is naturally endowed with an action of GLn(R), where every g ∈ GLn(R) acts
as B(g, g−1) on Bn. These k-linear representations Bn assemble into a a k-linear
representation B∞ =

⋃
n>0Bn of GL∞(R) =

⋃
n>0GLn(R). Scorichenko has

shown [8] that if the bifunctor B is polynomial in the sense of Eilenberg and Mac
Lane [3], there is an isomorphism of graded vector spaces:

H∗(GL∞(R), B∞) ≃ H∗(GL∞(R), k)⊗k HH∗(k[PR], B). (∗)

(Scorichenko’s result is actually formulated in terms of stable K-theory, we refer
the reader to [1] for a published proof formulated in terms of group homology.)

The remarkable isomorphism (∗) is a strong motivation to try to understand
and compute HH∗(k[PR], B) for polynomial coefficients B. The next example
gives a typical polynomial bifunctor, for which it would be interesting to have a
computation.

Example 1. Given a (k,R)-bimodule M and a (R, k)-bimodule N , one can con-
sider the bifunctor

B(P,Q) = Sd(HomR(P,M))⊗k S
e(Q⊗R N) ,

where Si denotes the i-th symmetric power of a k-vector space. This bifunctor is
polynomial, of degree d with respect to P and of degree e with respect to Q.
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Until now, the Hochschild homology was understood only when k is a field of
characteristic zero (folklore) or when k = R = Fq [5, 4, 6]. In a recent work [2]
with A. Djament, we obtain explicit formulas computing HH∗(k[PR], B) , when k
is a perfect field of positive characteristic p, R is a ring of characteristic p, and for
a wide family of polynomial coefficients B (including the ones given in example
1). Our results show that for these coefficients, the Hocschild homology of k[PR]
is controlled by two classical quantities, namely:

(1) Tor∗ of modules over R⊗Z k,
(2) Tor∗ of modules over classical Schur algebras.

In this talk, we explain the computations of [2] in the ”easy case”, that is,
when the characteristic of k is big enough. In the case of the typical polynomial
coefficients B given in example 1, we obtain the following computation.

Example 2. Assume that k is a perfect field of characteristic p, that R is a ring
of characteristic p and that B is the polynomial bifunctor of example 1. Assume
furthermore that d and e are less than p. Then

HH∗(k[PR], B) = 0 if d 6= e.

If d = e, let T∗ denote the graded k-vector space which is equal to k in nonnegative
even degrees and zero elsewhere, and let T(M,N)even and T(M,N)odd denote the
even degree summand and the odd degree summand of the graded k-vector space

T(M,N)∗ = T∗ ⊗k Tor
R⊗Zk
∗ (M,N) .

Then there is a graded isomorphism:

HH∗(k[PR], B) =
⊕

0≤i≤d

Λi(T(M,N)odd)⊗k S
d−i(T(M,N)even)

where Λi refers to the i-th exterior power of a k-vector space.
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How to enhance categories, and why

Dmitry Kaledin

It has become an accepted wisdom by now that when one localizes a category C
with respect to a class of maps W , the resulting object should be treated as more
than just a category hW (C) — it has to be equipped with an additional structure
colloquially known as “enhancement”. A well-known example of this is the derived
category D(A) of an abelian category A, obtained by localizing the category of
chain complexes in A with respect to the class of quasiisomorphisms, where one
should at least equip D(A) with a triangulated structure, and even this is not
enough for many practical applications. However, the phenomenon is actually
much more widespread and deep.

One example of localization that is so ubiquitous that it passes almost unno-
ticed is that of the category Cat of small categories, with W being the class of
equivalences of categories. Namely, recall that a commutative square of categories
and functors is commonly understood as a square

(*)

C01
γ1
01−−−−→ C1

γ0
01

y
yγ1

C0
γ0

−−−−→ C

of categories and functors equipped with an isomorphism α : γ0 ◦ γ001 → γ1 ◦ γ101
that is rarely written explicitly but always implied. A square can be cartesian or
cocartesian if it satisfies the usual universal properties (in particular, localization is
an example of a cocartesian square). A square (*) is an honest commutative square
in Cat if all the categories are small and α = id, but this is not what we want in
practice, and gives the wrong version of the universal property. If one localizes Cat
with respect to W , the resulting category Cat0 is easy to describe explicitly – its
objects are small categories, and morphisms are isomoprhism classes of functors –
an a square (*) of small categories always defines a commutative square in Cat0,
but the universal property of a cartesian square is lost: for uniqueness, one needs
to remember α, while passing to Cat0 forgets it, and only remembers the fact that
some α exists. This behaviour is typical; it also occurs for cones in triangulated
categories, and for homotopy cartesian and cocartesian products.

In practice, for Cat, we know what to do: we actually work in Cat0, but we
remember that Cat is somewhere in the background, and go up to that level when-
ever needed. For a more general pair 〈C,W 〉, the problem is more complicated. At
the very least, we expect to have a “homotopy type” of morphisms HW (C)(c, c′)
for any objects c, c′ ∈ hW (C) in the localized category such that the set of map
hW (C)(c, c′) is π0 of this homotopy type (for Cat, the corresponding homotopy
types are 1-truncated and correspond to the groupoids of functors and isomor-
phisms between functors). This is difficult to formalize since already a “homotopy
type” is something only defined up to an equivalence of some sort, thus sits in a
category obtained by localization, so the argument becomes unpleasantly circular.



1110 Oberwolfach Report 20/2024

A common perception is that this curcularity is unavoidable. Namely, there are
categories of “models for homotopy theories”, equipped with a model structure in
the sense of Quillen [4], and in particular, with a class of “weak equivalences”. The
simplest to state is the category Top-Cat of small categories enriched in topological
spaces, considered modulo some rather complicated notion of a weak equivalence.
We have the truncation functor π0 : Top-Cat → Cat, and a topological category
is taken to provide an enhancement for its truncation. There are many other
models that are more convenient to work with, such as “quasicategories” of A.
Joyal and J. Lurie [3], or “complete Segal spaces” of Ch. Rezk [R]. All these
categories of models are “Quillen-equivalent”, and it is accepted as an axiom that
this means that they define the “same” homotopy theory. In particular, it is a
theorem that the naive localized categories are then canonically equivalent, and
a localized category HW (C) is defined as an object in this “localized category of
homotopy theories”. The curcularity of such a definition is accepted as a necessary
evil: if one cannot do better, it is better to do something rather than not do
anything at all.

The point of my talk is that this perception is not quite correct: one can do
better. The idea actually goes back to Grothendieck [2], and it is quite simple.
For any category C and small category I, we have the category IoC of functors
from the opposite category Io to C, and for any class W of maps in C, we have
the class W (I) of maps in IoC that are pointwise in W . Thus we not only have
the localized category hW (C), but a whole bunch of categories hW (I)(IoC) indexed
by I ∈ Cat; the question is, is this family of categories enough to recover the
enhanced for hW (C)?

We have found out that the answer to this question is positive. Moreover, it
is not necessary, nor in fact desirable, to use all small categories I ∈ Cat, and
it suffices to restrict out attention to the full subcategory Pos ⊂ Cat of partially
ordered sets. A family of categories indexed by J ∈ Pos is conveniently axiomatized
by a Grothendieck fibration C → Pos in the sense of [1], with morphisms between
families given by functors cartesian over Pos. For any C ∈ Top-Cat and J ∈ Pos,
we have the functor category JoC ∈ Top-Cat and its truncation π0(J

oC) ∈ Cat,
and taken together, these define a Grothendieck fibration K(C) → Pos with fibers
K(C)J ∼= π0(J

oC). Our main result is the following.

• For any C, C′ ∈ Top-Cat fibrant with respect to the model structure, and
any functor γ : K(C) → K(C′) cartesian over Pos, there exists a map
f : C → C′ such that γ ∼= K(f), and two maps f, f ′ : C → C′ are homotopic
if and only if K(f) and K(f ′) are isomorphic over Pos.

Informally, we can consider the category (Cat /Pos)0 of categories fibered over Pos,
with morphisms given by isomorphism classes of cartesian functors, and then our
main result claims that K provides a fully faithful embedding K : hW (Top-Cat) →
(Cat /Pos)0. This is not quite correct since Pos is large, so isomorphism classes of
cartesian functors can form a proper class and not a set; part of our result is that
this does not happen for fibrations of the form K(C) → Pos.
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For the category Cat, our main results gives nothing: at the end of the day,
our enhancements are again categories considered up to an equivalence. What we
do, however, is reduce the localization problem for a general category to the case
〈Cat,W 〉 – where, as mentioned above, we in any case know what to do.

Of course, our main result is just the beginning of the story. Here are some
other things one can do: characterize the essential image of the full embedding K
(this requires about six axioms, similar to the Steenrod-Eilenberg axiomatization
of generalized cohomology theories), construct an enhancement for the category of
enhanced categories (that is, of fibrations C → Pos lying in the image of K), de-
scribe homotopy cartesian and cocartesian squares by a universal property. Some
of the important categorical notions are generalized verbatim – this includes fully
faithful functors and adjoint pairs. In general, developing the whole enhanced cat-
egory theory in this setting becomes a rather pleasant exercise, and the arguments
are the usual categorical arguments; only very rarely one has to remember the
representing objects in the category Top-Cat.
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On the ring theory of differential graded rings

Alexander Zimmermann

Let R be a commutative ring. Cartan defined in [3] a differential graded R-algebra
as a Z-graded algebraA together with anR-linear endomorphism d of degree 1 with
d2 = 0 satisfying d(ab) = d(a) · b + (−1)|a|a · d(b) for all homogeneous elements
a, b ∈ A of degree |a|, resp. |b|. A differential graded (A, d)-module (M, δ) (or
dg-module over a dg-algebra for short) is a Z-graded A-module with an R-linear
endomorphism δ of degree 1 satisfying δ2 = 0 and δ(a·m) = d(a)·m+(−1)|a|a·δ(m)
for all homogeneous a ∈ A and m ∈M . Similarly we define dg-right modules and
dg-bimodules. A dg-submodule of a dg-module (M, δ) is a graded submodule
stable under the action of δ. A dg-module is dg-simple (S, δ) if there is no dg-
submodule of S other than S or 0. A dg-algebra is dg-simple if it is simple as
dg-bimodule over itself.

The ring theory of dg-algebras laid unexplored until very recently. Aldrich
and Garcia Rozas characterised in [1] dg-algebras with semisimple dg-module cat-
egories. Orlov [7, 8] studied finite dimensional dg-algebras over a field mainly
under a geometric perspective. Goodbody [4] used Orlov’s work to define dg-
Jacobson radicals and shows a version of Nakayama’s lemma for finite dimensional
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dg-R-algebras over a field R, such that the quotient modulo the ordinary Jacobson
radical is separable.

We propose a more systematic concept. Consider the set of dg-left ideals of
(A, d). The intersection of the maximal elements in this poset will produce a dg-
left ideal. If d = 0 and the grading is trivial, then this is the classical Jacobson
ideal, whence two-sided. However, consider the following

Example 1. [9] The endomorphism complex of a dg-module (M, δ) is a dg-algebra,
as is well-known. In case of a field K with trivial grading and 0 differential we

consider the complex K
id
→ K, being a dg-K-module concentrated in degree −1

and 0. Its endomorphism complex (A, d) is then

(
K K
K K

)
with differential

d(

(
0 0
1 0

)
) =

(
1 0
0 1

)
, d(

(
x 0
0 y

)
) =

(
0 y − x
0 0

)
, and of course the

differential of the upper right corner elements being 0. Then there is only one
dg-left module over A, namely the right column.

Definition 2. [9] The dg-Jacobson radical dgrad2(A, d) of a dg-algebra (A, d) is
the intersection of the left annihilators of the dg-simple dg-left modules.

It is not hard to see that dgrad2(A, d) is a twosied dg-ideal. A dg-module is
said to be dg-Noetherian (resp. dg-Artinian) if it satisfies the ascending (resp.
descending) chain condition on dg-submodules.

Theorem 3. (dg-version of Nakayama’s lemma) [9] Let (A, d) be a dg-algebra
over a commutative ring R, and let (M, δ) be a dg-Noetherian and dg-Artinian
dg-module over (A, d). Then for any dg-submodule (N, δ) of (M, δ) we get

N + dgrad2(A, d) ·M =M ⇒ N =M.

In a similar philosophy dgnil(A,d) is defined to be the sum of nilpotent twosided
dg-ideals of (A, d), and dgPrad(A, d) is the intersection of twosided dg-prime ideals.
Here a dg-ideal is said (P, d) to dg-prime if whenever (T, d) and (S, d) are twosided
dg-ideals with ST ⊆ P , then S ⊆ P or T ⊆ P .

Proposition 4. [10] Let (A, d) be a left dg-Noetherian and left dg-Artinian dg-
algebra. Then dgnil(A, d) = dgrad2(A, d) = dgPrad(A, d).

I do not know yet if any dg-Artinian algebra is dg-Noetherian, whence if Hop-
kins’ theorem holds in the dg-version.

Proposition 5. [9] If (A, d) is dg-Noetherian and dg-Artinian then dgrad2(A, d)
is the smallest twosided dg-ideal such that the quotient is a finite direct product
of dg-simple dg-algebras. Hence the left and the right version of dgrad2(A, d)
coincide.

So, how to produce dg-simple dg-algebras? Of course, simple algebras which
happen to be dg-algebras, such as Example 1, are dg-simple. Orlov [7] calls these
algebras formally dg-simple. However, there are more, such as the algebra of
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dual numbers K[X ]/X2 with |X | = −1 and d(X) = 1. Note that Example 1 is
dg-simple, but by [1] the dg-module category is not semisimple.

In order to do produce more dg-simple algebras, we first study Ore localisation
for dg-algebras.

Theorem 6. [10] Let (R, d) be a dg-ring, and let S be a multiplicative set of
homogeneous elements. Let assℓ(S) := {r ∈ R | ∃s ∈ S : sr = 0}. Assume that
either S consists of regular elements, or else S ⊆ ker(d) is a left Ore set and the
image of S in R/assℓ(S) consists of regular elements of R/assℓ(S). Then

dS(b, s) := (−1)|s|+1(d(s), s) · (b, s) + (−1)|s|(d(b), s)

defines a differential graded structure on RS , and the natural homomorphism is a
dg ring homomorphism λ : (R, d) → (RS , dS) such that λ(S) ∈ R×

S , the group of
invertible elements of RS , and such that for any q ∈ RS there exists s ∈ S with
λ(s) · q ∈ im(λ). Similar statements hold for the right version.

Note that Braun-Chuang-Lazarev [2] gave a very abstract construction for lift-
ing an Ore localisation of the homology algebra of a dg-algebra at a multiplicative
Ore set S to an Ore localisation of the dg-algebra. We give here an explicit version,
for an Ore set S formed by elements of ker(d), giving then by reduction the set S.

We now use this result to construct dg-simple dg-algebras. Recall that a graded
algebra is gr-prime if the zero ideal is a gr-prime ideal (i.e. dg-prime for the zero
differential). A graded ring is called graded left Goldie if it does not allow an
infinite direct sum of graded left ideals, and in addition it satisfies the ascending
chain condition on left annihilators.

Theorem 7. [10] Let R be a commutative ring and let (A, d) be a differential
graded R-algebra. Suppose that ker(d) is a gr-prime ring and suppose that ker(d)
is left gr-Goldie.

• If (A, d) is dg-Noetherian as bimodule, then the localisation of A at the
homogeneous regular elements SA of A exists and is dg-simple.

• If the homogeneous regular elements Sker(d) of ker(d) form a left Ore set
in A,

– then the left Ore localisation of (A, d) at Sker(d) is a dg-simple differ-
ential graded R-algebra.

– Further, Sker(d) ⊆ SA and hence in case SA is left Ore as well, ASA

and ASker(d)
both exist, are dg-simple rings, and the natural homo-

morphism ASker(d)
→ ASA

is injective.

Recall that the classical Goldie theorem only asks for a semiprime ring obtaining
then a semisimple Artinian algebra. However, Goodearl and Stafford [5] show that
for A = K[X,Y ]/XY where K is a field, X is of degree 1 and Y is of degree 0
is graded Goldie, graded semiprime, but not graded semisimple. Though, the
only non invertible homogeneous regular elements are the elements of K. Hence,
the assumption of being prime is necessary. Goodearl and Stafford show in [5] a
Goldie’s theorem of group graded graded prime rings, graded by an abelian group.
We use their result in an essential way.
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We finally mention that we are able to prove in [11] a differential graded version
of Posner’s theorem using Karasik’s result [6]. This then gives again dg-simple
algebras using the theory of polynomial identity algebras.

We note that in [11] again, as in Theorem 7, and as in [1], the hypothesis of
the classical theorem we want to generalise is assumed in the graded version for
ker(d), and under a few additional technical assumptions we show the dg-version
of the classical results. We suspect that this is a general pattern.
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Cohomology of monoidal categories

Sarah Witherspoon

The Hochschild cohomology of an associative algebra and the cohomology of a
finite tensor category may each be viewed as a special case of the cohomology
of an exact monoidal category. In this talk, we briefly introduced the types of
monoidal categories and cohomology in which we are interested, and made some
general definitions and statements while mostly focusing on these two special cases.

A monoidal category is a category C with a bifunctor ⊗ : C × C → C that is
associative up to a natural isomorphism (satisfying a pentagon axiom) and a unit
object 1 that is a multiplicative identity for ⊗ up to natural isomorphisms. It is an
exact monoidal category if it is abelian (or more generally additive) and⊗ preserves
exact sequences (for a suitable notion of exact sequences). See e.g. [1, 3, 11] for
details. We briefly explain next the two main classes of examples mentioned above.
For our purposes here, in case the algebra A is finite dimensional as a vector space
over the field, it suffices to restrict to finitely generated (bi)modules if desired.
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(1) Let A be an associative algebra over a field k. Let Aop denote its opposite
algebra and Ae = A ⊗k A

op, the enveloping algebra of A. The category of A-
bimodules is equivalent to the category of left Ae-modules, where the tensor factor
Aop of Ae acts on the right as A. To obtain an exact monoidal category, we take
the full subcategory lrp(Ae) of left-right projective Ae-modules, those that are
projective as left A-modules and as right A-modules. The category lrp(Ae) is an
exact monoidal category with tensor product ⊗A and unit object A.

(2) Let A be a Hopf algebra over a field k. That is, there are linear maps ∆ :
A→ A⊗kA (coproduct), ε : A→ k (counit), and S : A→ A (antipode), satisfying
some properties. See e.g. [7] for details. The category A-Mod of left A-modules
has tensor product ⊗k of underlying vector spaces with A-module structure given
by ∆. The field k is an A-module via ε. The category A-Mod is an exact monoidal
category with tensor product ⊗k and unit object k. As a particular case, let G
be a finite group. The group algebra kG is a Hopf algebra with ∆(g) = g ⊗ g,
ε(g) = 1, S(g) = g−1 for all g ∈ G, and kG-Mod is an exact monoidal category.

Cohomology. Assume an exact monoidal cagtegory C has enough projectives,
that is each object is a homomorphic image of some projective object of C. The
cohomology of C is

H∗(C) := Ext∗C(1,1) :=
⊕

n≥0

ExtnC (1,1),

graded by the natural numbers. When C = lrp(Ae) for an associative algebra A
over the field k, the cohomology H∗(C) is also known as HH∗(A,A), the Hochschild
cohomology of A. When C = A-Mod for a Hopf algebra A over k, the cohomol-
ogy H∗(C) is also known as H∗(A, k), the Hopf algebra cohomology of A, and in
particular when A = kG, this is the group cohomology H∗(G, k).

Cup product. The cohomology H∗(C) has a graded associative multiplication
that may be defined in more than one way. We will give a definition that uses the
monoidal structure. Let P be a projective resolution of the unit object 1 in C:
· · · −→ P2 −→ P1 −→ P0 −→ 1 −→ 0. Assume that (the total complex of) P ⊗P
is also a projective resolution of 1 ∼= 1⊗1, and more generally that P⊗r is as well
for all r ≥ 2. By the comparison theorem, there is a chain map ∆P : P → P ⊗ P
lifting 1

∼
−→ 1 ⊗ 1. Let f ∈ HomC(Pm,1) and g ∈ HomC(Pn,1) be cocycles.

They can be extended to chain maps (abusing notation) f ∈ HomC(P, P [−m])
and g ∈ HomC(P, P [−n]) where a number in brackets indicates a degree shift.
Define the convolution product fg by the composition of functions

Pm+n
∆P−−→ (P ⊗ P )m+n

π
−−→ Pm ⊗ Pn

f⊗g
−−→ 1⊗ 1

∼
−−→ 1,

where π is projection onto the indicated summand, or equivalently as a map in
the Hom complex, fg ∈ HomC(P, P [−m − n]). This induces a well defined mul-
tiplication on cohomology H∗(C) that turns out to be graded commutative. This
fact enables support variety theory—a geometric tool for studying the objects
and the structure of the category—that is particularly rich in settings where the
cohomology H∗(C) is also finitely generated as an algebra.
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Lie bracket. The cohomology H∗(C) has a second useful binary operation, a
graded Lie bracket, that may also be defined in more than one way. We will give
here a definition that is a direct generalization of the Gerstenhaber bracket on
Hochschild cohomology, under the above assumptions on a projective resolution
P of the unit object 1. The following theorem, a compilation of results from the
indicated papers, defines a Lie bracket.

Theorem. [6, 10, 11] Let f ∈ HomC(P, P [−m]) and g ∈ HomC(P, P [−n]) be

cocycles. There exist morphisms f̃ ∈ HomC(P, P [1−m]) and g̃ ∈ HomC(P, P [1−n])

such that [f, g] := f g̃−(−1)(m−1)(n−1)g f̃ induces a well defined graded Lie bracket

on cohomology H∗(C). Moreover: (i) up to chain homotopy, the morphism f̃ (and
similarly g̃) is determined by the equation

df̃ + (−1)mf̃d = (f ⊗ idP − idP ⊗ f)∆P

where d is the differential on P , together with another technical equation involv-
ing the augmentation, and (ii) in the cohomology H∗(C), the image of [f, g] is

independent of choices of P , ∆P , f̃ , and g̃.

The morphism f̃ described in the theorem is termed a homotopy lifting of f .
This graded Lie bracket [f, g] generalizes the historical Gerstenhaber bracket on
Hochschild cohomology, as may be shown by taking P to be the bar resolution with

some standard choices for ∆P , f̃ , and g̃. This operation arises, for example, in
algebraic deformation theory. One advantage of the definition of the bracket [f, g]
in the theorem above is its flexibility in allowing a choice of projective resolution.

Gerstenhaber algebra. The following theorem combines the two binary opera-
tions on cohomology H∗(C) described above. For details, see the indicated papers.

Theorem. [6, 11] Under the above assumptions, H∗(C) is a Gerstenhaber algebra.

In particular, the Lie bracket is a graded derivation with respect to the cup
product. The proof of the theorem realizes the Lie bracket as a graded commutator

of infinity coderivations on P ; each homotopy lifting f̃ is the first map in a sequence
defining an infinity coderivation [6, 11]. In [11] the Lie bracket is shown to be the
same as that defined topologically in [3], a generalization of results for Hochschild
cohomology [8].

We close with a brief summary of some recent results on Lie brackets and some
open questions. If C is braided, that is the tensor product is commutative up
to natural isomorphism, then the graded Lie structure on the cohomology H∗(C)
is abelian in positive degrees (i.e. all brackets are 0) [3]. This generalizes [2, 9]
for quasitriangular Hopf algebras. For Hopf algebras that are not quasitriangular
(i.e. their module categories are not braided), it is unknown whether this Lie
bracket is always 0. Some nonquasitriangular examples for which it is known to
be 0 are the quantum elementary abelian groups [4]. For Hopf algebras A having
bijective antipode S, the cohomologies H∗(A, k) and HH∗(A,A) are related via the
functor F : A-Mod → lrp(Ae) given by tensor induction, F (M) = Ae⊗AM , where
A is embedded as a subalgebra of Ae by the map (idA⊗kS)∆. This functor induces
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an embedding of Hopf algebra cohomology H∗(A, k) into Hochschild cohomology
HH∗(A,A) under which the Gerstenhaber bracket on HH∗(A,A) restricts to the
bracket on H∗(A, k) defined as above or as in [3]. See [5] for details.
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Hochschild cohomology and deformation theory via reduction systems

Severin Barmeier

(joint work with Zhengfang Wang, Philipp Schmitt)

Reduction systems go back to the theory of abstract rewriting systems which are
used in a variety of disciplines including computer science, logic and linguistics. In
algebra reduction systems were popularized by Bergman’s 1978 paper titled “The
Diamond Lemma in ring theory” and they belong to the circle of ideas including
(noncommutative) Gröbner bases.

1. The geometry of reduction systems

Throughout k denotes a field of characteristic 0. In our work [BWa] on deforma-
tions of reduction systems, a conceptual viewpoint on the geometry of reduction
systems emerged, paralleling the geometry of associative algebras. To draw this
analogy let us consider associative structures on a finite-dimensional k-vector space
V and finite reduction systems for a finite quiver Q with a set S ⊂ Q≥2 of “leading
terms” of path length ≥ 2. We have the following parallel description:
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associative algebras

µ ∈ Homk(V
⊗k2, V )

associativity of A = (V, µ)

affine variety of associative algebras

AlgV ⊂ Homk(V
⊗k2, V ) ≃ k(dimV )3

algebra isomorphism

GL(V ) y AlgV
group action

reduction systems

ϕ ∈ HomkQe
0
(kS, kIrrS)

confluence of R = {(s, ϕ(s))}s∈S

set of confluent reduction systems

RedS ⊂ HomkQe
0
(kS, kIrrS)

equivalence of reduction systems

GS y RedS
groupoid action

(If k is not algebraically closed, then “variety” should be replaced by “scheme of
finite type over k”.)

Deformations of associative algebras can be understood as moving a point inside
AlgV and similarly for deformations of reduction systems. Although the set RedS
carries no immediately obvious geometric structure, it contains finite-dimensional
varieties as subsets

Red<S ⊂ Red≺S ⊂ RedS .

Here < and ≺ correspond to compatibility of the points in RedS with respect to
path length or with respect to a chosen noncommutative Gröbner basis.

Although the k-linear world of associative multiplications is well-behaved, it
can be difficult to work with in practice, whereas the description via reduction
systems is often much more tractable.

2. Deformation theory

In [BWa] we proved the following general result giving a formal counterpart to the
non-formal geometric picture outlined in §1

Theorem 1 ([BWa]). Let A = kQ/I be the path algebra of a finite quiver Q with
ideal of relations I. Let R = {(s, ϕ(s))}s∈S be any reduction system satisfying the
diamond condition for I. Then the following are equivalent

(1) formal deformations of A as associative algebra
(2) formal deformations of R as confluent reduction system.

When looking at first-order deformations — from the geometric viewpoint of
§1 at the tangent spaces of AlgV and RedS — we have the following corollary.

Corollary 2 ([BWa]). In the setting of Theorem 1 there is an isomorphism

HH2(A,A) ≃ {first-order deformations of R}/equivalence.

The right-hand side is often easily computed from any reduction system for A.

3. Applications

3.1. Strict deformation quantization of Poisson structures. Let k = C

(for quantum-mechanical reasons) and consider the algebra A = C[x1, . . . , xd] of
C-valued polynomial functions on Rd. Then A admits a natural reduction system
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R = {(xjxi, xixj)}1≤i<j≤d whose associated bimodule resolution is the Koszul
resolution.

In the context of deformation quantization, one considers formal deformations
of A over C[[t]], where the formal parameter t stands in for the Planck constant
~ and the first-order term is given by a Poisson structure on Rd. It is a widely
open problem to find “strict” convergent quantizations for (classes of) Poisson
structures. From Theorem 1 we obtain the following result.

Theorem 3 ([BWa]). Let η be any polynomial Poisson structure on Rd. Any
formal deformation of R gives a formal deformation quantization of η and the
resulting star product can be given by the graphical formula

f ⋆ g =
∑

n≥0

∑

Λ∈G∗

2,n

CΛ(f, g) for all f, g ∈ C[x1, . . . , xd]

where CΛ is a formal power series of differential operators associated to a certain
graph Λ.

In [BS23] we used the results of [BWa, Ch. 10] in combination with tools from
functional analysis to extend convergent star products obtained from algebraiza-
tions of Theorem 3 from polynomial functions to analytic functions with infinite
radius of convergence. The resulting algebras of quantum observables can in ex-
amples even be represented as adjointable operators on pre-Hilbert spaces [BS23,
§3.4], as dictated by the standard formulation of quantum mechanics.

3.2. Deformations of Abelian categories of quasi-coherent sheaves. Let
X be any separated scheme of finite type over k. Then X admits a finite affine
open cover U closed under ∩ and the restriction OX |U of the structure sheaf to the
open sets in U can be viewed as a presheaf of commutative algebras on U. This
presheaf can be encoded into a single associative algebra A = OX |U!. Building on
work of Lowen–Van den Bergh [LVdB05], we have the following result.

Theorem 4 ([BW24]). Let X be any separated scheme of finite type over a field
k of characteristic 0. There exists a finite reduction system R for A = OX |U!. In
particular, there is an equivalence between

(1) formal deformations of R as confluent reduction system
(2) formal deformations of Qcoh(X) and coh(X) as Abelian categories.

The non-formal deformations using the setup of §1 can be used to find non-
formal deformation of Abelian categories of (quasi)coherent sheaves which play
a central role in noncommutative algebraic geometry. This setup can also pro-
duce noncommutative deformations of singularities, for example when X is the
geometric resolution of a cyclic surface singularity [BW24, §5].

3.3. A∞ deformations of extended Khovanov arc algebras. Let m,n ≥ 1
and let Kn

m be the extended Khovanov arc algebra introduced by Stroppel. These
algebras are finite-dimensional Koszul algebras with a diagrammatic basis and a
multiplication rule derived from a 2D TQFT. The module category of Kn

m describes
perverse sheaves on Grassmannians (Stroppel), parabolic category O for glm+n(C)
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(Brundan–Stroppel) and their perfect derived category describes the Fukaya–Seidel
category of Hilbert schemes of points on type A Milnor fibres (Mak–Smith).

Theorem 5 ([BWb]). For all m,n ≥ 2 we have the following:

(1) HH2
i−2(K

n
m,K

n
m) is 1-dimensional for i = 2mn− 4.

(2) Kn
m admits an explicit nontrivial A∞ deformation.

Theorem 5 settles Stroppel’s Conjecture given in her ICM 2010 address [Str10]
negatively for all m,n ≥ 2 but at the same time proves the existence of nontrivial
algebraic deformations of Fukaya–Seidel categories of Hilbert schemes of type A
Milnor fibres. It is not (yet) known, whether the A∞ deformations of Theorem 5
may give rise to new or already-known knot invariants.

Further applications of [BWa] to symplectic geometry [BSWa, BSWb] are re-
ported by Zhengfang Wang in this volume.
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Filtered derived categories of curved deformations

Alessandro Lehmann

(joint work with Wendy Lowen)

Let A be a dg-algebra over a field k. It is a well-known issue [1, 2, 3, 4] that the
Hochschild complex of A does not govern the deformations of A as a dg-algebra,
but as a curved dg-algebra. Since modules over a curved algebra have differentials
which do not square to zero, it is impossible to define a derived category of a
curved deformation using classical methods. In particular, this creates a significant
obstacle in developing a satisfactory deformation theory for differential graded
algebras and, by extension, triangulated categories.

In my talk I reported on the recent preprint [5], where we associate to a curved
deformation an invariant which takes the place of the nonexistent derived category.
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Let Rn be the commutative ring k[t]/(tn+1), and let An be a curved deformation
of A over Rn. Then if M is a cdg An-module, one has the t-adic filtration

0 = tn+1M ⊆ tnM ⊆ . . . ⊆ tM ⊆M ;

since A has no curvature, the curvature of An lies in tAn and each associated piece

Grit(M) = tiM
ti+1M is an A-module. We define the n-derived category Dn(An) of the

deformation An as the quotient of the category of An-modules by the subcate-
gory of those modules for which the whole associated graded is acyclic; we call
these modules n-acyclic. This quotient turns out to be surprisingly well behaved,
exhibiting the following properties:

• There exist n+1 explicit compact modules Γ1, ...,Γn that generateDn(An)
as a triangulated category;

• The quotient functor

H0(An -Mod) → Dn(An)

from the homotopy category of cdg An-modules admits both a left and a
right adjoint, which are then automatically fully faithful;

• Denoting with Am the induced deformation of order m ≤ n, there is a
system of fully faithful embeddings

D(A) →֒ D1(A1) →֒ . . . →֒ Dn−1(An−1) →֒ Dn(An)

where each functor is induced by the restriction of scalars along the pro-
jection An → Am.

• Denoting with Dsi(An) the semiderived category from [10], there exists an
admissible embedding

Dsi(An) →֒ Dn(An)

whose essential image is given by the An-modules which are free as graded
Rn-modules;

• If An has no curvature, all n-acyclic modules are acyclic and there exists
a localization Dn(An) → D(An) which has both a left and a right adjoint.
In particular, there exist two fully faithful embeddings D(An) →֒ Dn(An)
- one left admissible, one right admissible.

Define the full subcategories Ti ⊆ Dn(An) as

Ti = {M ∈ Dn(An)| Grjt (M) ∼= 0 in D(A) for all j 6= i}.

The main feature of the n-derived category is the existence of a semiorthogonal
decomposition

Dn(An) = 〈T0, T1, . . . , Tn〉;

moreover, the functors Grit : D
n(An) → D(A) induce equivalences Ti

∼
→ D(A).

One sees that the embeddings Ti →֒ Dn(An) are both left and right admissible, so
the semiorthogonal decomposition also has a recollement-type formulation.

This has two interesting consequences. First of all, an analysis of the gluing
bimodules induced by the decomposition shows that as soon as D(A) is smooth,
the same holds for Dn(An). In the case where An has no curvature, this implies
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that Dn(An) is a categorical resolution of D(An) in the sense of [7] (see also [8]
and [9] for similar constructions).

Moreover, the decomposition suggests a way in which Dn(An) can be inter-
preted as a deformation of D(A). Assume n = 1 for simplicity: in this case, the
semiorthogonal decomposition is expressed via the following recollement

D(A) D1(A1) D(A).

Coker t

Ker t

Im t

This should be thought as a categorification of the short exact sequence

0 → A→ A1 → A→ 0

witnessing A1 as a first order deformation of A. Our current goal is to fully un-
derstand what kind of categorical extensions can emerge as n-derived categories of
deformations, and to classify all such extensions in terms of Hochschild cohomol-
ogy. The final picture we expect to obtain is a threefold correspondence between
HH2(A), cdg Morita deformations of A (in the spirit of [1]) and deformations of
D(A) as an (enhanced) triangulated category in the sense above.
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Finite generation of cohomology: the things we know (a little) and the
ones we don’t (a lot)

Julia Pevtsova

Disclaimer: the title for this talk was suggested as a joke; I did not expect the
organizers to take it seriously. But when it was already on the program, pinned
to the wall in the Oberwolfach dining hall, it was official and too late to change!
I would still replace the word “we” with “I” so that all omissions can only be
blamed on my own ignorance.
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Let C be a finite tensor category over a field k. That is, we put the following
conditions on C (see [4]):

(1) C is an abelian rigid monoidal category
(2) Hom-sets are finite
(3) C has finitely many simple modules; each simple has a projectve cover
(4) length of any object in C is finite
(5) The tensor unit 1 is simple

These conditions in particular imply that the tensor product on C is exact in each
variable.

Conjecture (Etingof-Ostrik, ’04). For any finite tensor category C,

(CFG1) Ext∗C(1,1) is Noetherian,
(CFG2) For any M,N ∈ C, Ext∗C(M,N) is a finite Ext∗C(1,1)-module.

Whenever the conditions of the conjecture hold, we say that C satisfies the
Cohomological Finite Generation (CFG) property. One might compare this to the
terminology introduced in [3].

One motivation for the finite generation question is that one expects to express
the Balmer spectrum of the corresponding stable category, which is small tensor
triangulated, in terms of the cohomology ring:

Conjecture (Nakano-Vashaw-Yakimov, ’21). Let C be a finite tensor category.
Then

SpecBal(StabC)
∼= ProjZc Ext ∗C(1,1),

where Zc stands for the “categorical center of the cohomology ring of C” (see [9]).

The main example of a finite tensor category we’ll consider is Repk A, the cat-
egory of finite–dimensional representations of a finite–dimensional Hopf k-algebra
A. For the majority of the examples, k is a field, but not always. Here is what is
known about the CFG property in this case (this list is not claimed to be exhaus-
tive).

(1) Suppose A is cocommutative, and k is a field. Then Repk A satisfies CFG
([6])

(2) This holds more generally, due to a recent result of W. van der Kallen; the
notes with the outline of the complete proof are currently being written up
by two participants of the workshop, Chris Parker and Juan Omar Gomez.
Let R be a Noetherian commutative ring, let A be a finite projective
cocommutative Hopf algebra over R. Then LattR(A), the category of
A-lattices over R, satisfies CFG ([11]).

(3) Let A be a finite dimensional pointed Hopf algebra over C with abelian
group of group-like elements. Then (modulo several isolated cases) Repk A
satisfies CFG ([1]). This last example uses the full force of the classification
of such Hopf algerbas, due in particular to Andruskiewitsch, Angiono,
Schneider, Heckenberger, and includes small quantum groups for which
more precise information about cohomology is known ([7]).
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Remark. In the first two cases, the Nakano-Vashaw-Yakimov conjecture is known
to hold, see [5], [8], [2]. Note that in the cocommutative case it simplifies to the
statement

SpecBal(Stab(Repk A))
∼= ProjExt∗A(1,1),

Moving to a big open field of what we don’t know, I discussed the Etingof Ostrik
conjecture for other classes of Hopf algebras, mentioning Fomin-Kirillov algebras
FKn associated to a symmetric group Sn. In the case of FK3 the cohomology
ring H∗(FK3,C) was computed in the case of S3 in [10] - and is finitely generated
- but the question is completely open for large n.

One can observe that all the examples already listed live “over vector spaces”,
that is, there is a forgetful (fiber = exact, tensor) functor Repk A → Vectk. One
discovers a vast open field of unsolved problems in cohomological finite generation
if one moves to – even cocommutative – finite dimensional algebras (or finite
group schemes) living over other incompressible categories starting with Verlinde
categories Verp for a prime p.
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Entropies of Serre functors for higher hereditary algebras

Yang Han

In this talk, we report the main results of my paper [5].
A topological dynamical system (X, f) consists of a topological space X and

a continuous function f : X → X . The topological entropy htop(f) measures
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the complexity of (X, f). As a categorical analog of topological dynamical sys-
tem, in [2], Dimitrov, Haiden, Katzarkov and Kontsevich introduced categorical
dynamical system (T , F ) which consists of a triangulated category T and a (tri-
angle) endofunctor F : T → T of T , and (categorical) entropy which measures
the complexity of a categorical dynamical system. Roughly speaking, the entropy
is the asymptotically exponential growth rate of the complexity of a categorical
dynamical system. In [3], Fan, Fu and Ouchi introduced (categorical) polynomial
entropy which is the asymptotically polynomial growth rate of the complexity of
a categorical dynamical system. Moreover, in [9], Kikuta and Ouchi introduced
Hochschild (co)homology entropy. Hochschild (co)homology entropy is defined not
for a categorical dynamical system, but for a “dg categorical dynamical system”.
Meanwhile, Kikuta and Ouchi posed a question ([9, Question 2.13]): When does
the Hochschild (co)homology entropy for a “dg categorical dynamical system”
coincide with the entropy for the corresponding categorical dynamical system?

As a generalization of representation-finite hereditary algebras, Iyama and Op-
permann introduced higher representation-finite algebras in [8]. As a generaliza-
tion of representation-infinite hereditary algebras, Herschend, Iyama and Opper-
mann introduced higher representation-infinite algebras in [7]. Meanwhile, they
also introduced higher hereditary algebras which are shown to be either higher
representation-finite algebras or higher representation-infinite algebras ([7, The-
orem 3.4]). Many classical results in the representation theory of hereditary al-
gebras have higher dimensional analogs for higher hereditary algebras. More-
over, as a generalization of fractionally Calabi-Yau algebras, Herschend and Iyama
introduced twisted fractionally Calabi-Yau algebras in [6], which contain higher
representation-finite algebras as typical examples ([6, Theorem 1.1]).

For a higher hereditary algebra, we will calculate the entropy and polynomial
entropy of Serre functor, and the Hochschild (co)homology entropy of Serre quasi-
functor. Given Serre functor and higher hereditary algebra have congenital rela-
tionship, the calculations become feasible.

Our main results are the following.

Theorem 1. Let A be a twisted q
p -Calabi-Yau algebra. Then

(1) the entropy of Serre functor ht(S) =
q
p t.

(2) the polynomial entropy of Serre functor hpolt (S) = 0.

(3) the Hochschild (co)homology entropy of Serre quasi-functor hHH•

(S̃) =

hHH•(S̃) = 0 if we assume further that A is elementary.

Theorem 1 (1) and (2) generalize the corresponding results [2, 2.6.1] and [3, Re-
mark 6.3] for fractionally Calabi-Yau algebras. To date, it is not known whether
every higher representation-finite algebra, or more general, twisted fractionally
Calabi-Yau algebra, is fractionally Calabi-Yau or not ([1, Question 1.6]). So The-
orem 1 should have its own place.

From Theorem 1 and [6, Theorem 1.1], we get immediately the following corol-
lary.
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Corollary. Let A be an indecomposable d-representation-finite algebra, r the num-
ber of isomorphism classes of simple A-modules, and p the number of indecompos-
able direct summands of the basic d-cluster tilting A-module. Then

(1) the entropy of Serre functor ht(S) =
d(p−r)

p t.

(2) the polynomial entropy of Serre functor hpolt (S) = 0.

(3) the Hochschild (co)homology entropy of Serre quasi-functor hHH•

(S̃) =

hHH•(S̃) = 0 if we assume further that A is elementary.

Applying the Hirzebruch-Riemann-Roch type theorem ([4, Theorem 1]) and
Wimmer’s formula ([10, Theorem]), we can obtain the following Theorem 2 which
gives the Yomdin type inequality on Hochschild homology entropy.

Theorem 2. Let A be a finite dimensional elementary algebra of finite global di-
mension, M a perfect A-bimodule complex, and ΨM := −CMC

−1
A the dual Coxeter

matrix of M . Then hHH•(M) ≥ log ρ(ΨM ). Here, ρ(ΨM ) is the spectral radius of
the square matrix ΨM .

I do not know whether the Gromov type inequality on Hochschild homology
entropy, that is, hHH•(M) ≤ log ρ(ΨM ), and the Gromov and Yomdin type in-

equalities on Hochschild cohomology entropy, that is, hHH•

(M) ≤ log ρ(ΨM ) and

hHH•

(M) ≥ log ρ(ΨM ), hold or not.
The Theorem 2 above will be applied to show the following Theorem 3.

Theorem 3. Let A be an elementary d-representation-infinite algebra, and Φ the
Coxeter matrix of A. Then

(1) the entropy of (inverse) Serre functor: ht(S) = dt + log ρ(Φ) and ht(S
−1)

= −dt+ log ρ(Φ−1). Furthermore, ρ(Φ) = ρ(Φ−1).

(2) the polynomial entropy of (inverse) Serre functor: hpolt (S) = s(Φ) and

hpolt (S−1) = s(Φ−1). Furthermore, s(Φ) = s(Φ−1). Here, s(Φ) is the polynomial
growth rate of the square matrix Φ.

(3) the Hochschild (co)homology entropy of (inverse) Serre quasi-functor:

hHH•

(S̃) = hHH•(S̃) = h(S) = log ρ(Φ) = log ρ(Φ−1) = h(S−1) = hHH•(S̃−1)

= hHH•

(S̃−1). Here, h(S) is the value h0(S) of the entropy ht(S) of the Serre
functor S at t = 0.

Partial results of Theorem 3 (1) and (2) for representation-infinite hereditary
algebras had been obtained in [2, Theorem 2.17] and [3, Proposition 4.4]. The
equalities ρ(Φ) = ρ(Φ−1) and s(Φ) = s(Φ−1) seem to be new. Serre functor is a
categorification of Coxeter matrix. Theorem 3 (1), (2) and (3) suggest that, for
an elementary higher representation-infinite algebra, the entropy of Serre func-
tor and the Hochschild (co)homology entropy of Serre quasi-functor are the cate-
gorifications of spectral radius of Coxeter matrix, and polynomial entropy is the
categorification of polynomial growth rate of Coxeter matrix, in some sense.

Furthermore, our main results imply that the Kikuta and Ouchi’s question on
the relations between entropy and Hochschild (co)homology entropy has positive



Hochschild (Co)Homology and Applications 1127

answer, that is, hHH•

(S̃) = hHH•(S̃) = h(S), and the Gromov-Yomdin type
equalities on entropy and Hochschild (co)homology entropy hold, that is, h(S) =

log ρ([S]) and hHH•

(S̃) = hHH•(S̃) = log ρ([H0(S̃)]), for the Serre functor S

on the perfect derived category and the Serre quasi-functor S̃ on the perfect dg
module category of an elementary twisted fractionally Calabi-Yau algebra or an
indecomposable elementary higher hereditary algebra.
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Tamarkin-Tsygan calculus for gentle algebras

Sibylle Schroll

(joint work with Christian Chaparro, Andrea Solotar, Mariano Suárez-Álvarez)

The Tamarkin-Tsygan calculus of an associative algebra is the comprehensive data
of its Hochschild cohomology and homology and their algebraic structures. In
general, it is next to impossible to obtain the entire information of this calculus,
since already the explicit calculation of the Hochschild cohomology and homology
are of exceeding computational complexity. However, in certain cases, when there
is much structural information about the algebras available, one might attempt
such a calculation. One such case is given by the class of gentle algebras.

Gentle algebras date from the 1980s where they first appeared in the context
of iterated tilted algebras of type A. Since then, their representation theory has
been intensely studied, both in terms of their module categories and their derived
categories. Remarkably, gentle algebras appear in many different settings such
as cluster theory where Jacobian algebras of quivers with potentials from ideal
triangulations of surfaces with marked points in the boundary are shown to be
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gentle [1, 7], in N = 2 gauge theories [4] and in the context of homological mirror
symmetry of surfaces with stops where it is shown in [6, 8] that the perfect derived
category of a graded gentle algebra is triangle equivalent to the partially wrapped
Fukaya category of such a surface.

Conjecturally, the Hochschild cohomology of a gentle algebra should hence cor-
respond to the symplectic cohomology of the associated marked surface, see for
example, upcoming work of Abouzaid and Ganatra. One of our motivations to
calculate the Tamarkin-Tsygan calculus of gentle algebras was to understand this
statement from a representation theoretic point of view.

Another motivation was to see if it is possible to completely and explicitly cal-
culate the whole calculus for the class of gentle algebras and what new information
could be extracted from the knowledge of the Tamarkin-Tsygan calculus.

Let k be a field, which for the purposes of this abstract we assume to be of
characteristic not 2, a restriction which we do not impose in [5], on which this
abstract is based.

Definition 1. A gentle algebra kQ/I is given by a quiver Q = (Q0, Q1) and an
ideal I of kQ such that

(1) for every vertex v ∈ Q0, there are at most two arrows ending and at most
two arrows starting at v,

(2) for any arrow a ∈ Q1 there is at most one arrow b (resp. b′) such that ab is
non-zero in kQ and ab ∈ I (resp. ab′ /∈ I) and there is at most one arrow
c (resp. c′) such that ca is non-zero in kQ and ca ∈ I (resp. c′a /∈ I).

(3) The ideal I is generated by the quadratic monomial relations in (2).

The Tamarkin-Tsygan calculus of an associative k-algebra A is the data of

(HH∗(A),⌣, [−,−],HH∗(A),⌢,B)

where HH∗(A) = Ext∗Ae(A,A), for Ae = A ⊗k A
op, is the Hochschild cohomology

of A, which, with the multiplication given by the cup product ⌣, is a graded
commutative algebra. Under the Gerstenhaber bracket [−,−], the shifted coho-
mology HH∗(A)[1] is a graded Lie algebra. The Hochschild homology HH∗(A) =

TorA
e

∗ (A,A) is a (right) HH∗(A)-module with the action given by the cap product
⌢. Finally, the Connes differential B is a morphism on the Hochschild homology
of degree one and which squares to zero.

For monomial algebras, Bardzell has given a presentation of the minimal pro-
jective bimodule resolution of A which we will denote by R [2]. Furthermore,
Strametz [11] showed that there is a morphism of complexes of vector spaces
HomAe(R, A) ≃ (k(Γm||B), dm) where Γ0 = Q0,Γ1 = Q1,

Γm = {a1a2 . . . am, ai ∈ Q1, aiai+1 ∈ I}

and B is a basis of paths of kQ/I. Then k(Γm||B) is the k-vector space generated
by all (γ, α) ∈ Γm ×B such that γ and α begin and end at the same vertex in Q.

With this notation at hand we can present (HH∗(A),⌣) as a graded commu-
tative algebra by giving a set of generators and their relations.
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Theorem 2. [5] Let A = kQ/I be a gentle algebra. Then (HH∗(A),⌣), as a
graded commutative algebra is generated by the following elements, given here in
terms of cohomology classes of cocyles in k(Γ∗||B)

(I)
∑

v∈Q0
(v, v) ∈ HH0(A),

(II) (s(α), α) ∈ HH0(A), for α a cycle in Q with a unique relation at s(α),

(III) 〈〈α〉〉 =
∑r−1

i=0 (s(rot
i(α)), roti(α)) ∈ HH0(A), for α a primitive cycle in Q of

length r with no relations and where roti(α) for 0 ≤ i ≤ r− 1 runs through
the rotations of α,

(IV) (c, c) ∈ HH1(A), where c is an arrow in Q1 \ T for a fixed spanning tree T
of Q,

(V) (γ, α) ∈ HHm(A), for m ≥ 1 such that γ and α do not start or end with
the same arrow and where there is no arrow a in Q1 pre- or postcomposing
with γ such that aγ ∈ I or γa ∈ I,

(VI) 〈〈C〉〉 =
∑r−1

i=0 ((rot
i(C)), s(roti(C))) ∈ HHεm(A) where C = Dε and D =

γm . . . γ1 is a primitive cycle in Q with γiγi+1 ∈ I and γmγ1 ∈ I and where
ε = 1 if m is even and ε = 2 otherwise.

and with relations in terms of generators g and h of HH∗(A) given by

• all products g ⌣ h except when
– g = h and both are of type (III) or both of type (V I)
– g = (c, c) is of type (IV ) and h is of type (III) or (V I) with the

underlying cycle passing through the arrow c
• (c, c) ⌣ h − (d, d) ⌣ h, for any generator h of type (III) or (V I) such
that the cycle underlying h contains two distinct arrows c and d in Q1 \T .

We note that the generators and, more generally, basis elements of HH∗(A) can
be interpreted in terms of a surface associated to A. More precisely, by [10, 9, 3,
6, 8] a ribbon graph is associated to every gentle algebra, which, when embedded
in the corresponding marked ribbon surface, cuts the surface into polygons that
have exactly one boundary segment as an edge, or have no boundary segment as
an edge but have a fully marked boundary component in the interior.

Building on this, we establish in [5] an explicit bijection of simple closed curves
around the boundary components with zero or one marked point and fully marked
boundary components and generators of HH∗(A) of types (II), (III), (V ) and
(V I) in such a way that the winding number of the closed curve gives the degree
in HH∗(A) of the associated generator. The generator of type (I) corresponds to
the edges of the ribbon graph which have winding number zero. The generators
of type (IV ) do not fit into this description in terms of boundary components
but can also be given a surface interpretation. Namely, a generator of HH1(A) of
type (IV ) corresponds to a curve of winding number 1 connecting two unmarked
boundary segments.

This geometric interpretation of generators as special curves in the surface turns
out to be compatible with the algebraic structure of cohomology: the cup product
of generators corresponds to the concatenation of the associated curves, and there
is a similar way to interpret the Gerstenhaber bracket. More precisely, it is shown
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in [5], that the Gerstenhaber bracket of the generators of the Hochschild coho-
mology is almost always zero. The only non-zero brackets arise from brackets of
generators of type (IV ) given by elements (c, c) for c an arrow in the complement
of a (fixed) spanning tree of Q and other generators passing through the arrow c.
In this case, the Gerstenhaber bracket counts how often the curve defining c and
the curve corresponding to the other generator run in parallel. For more details,
as well as the complete Tamarkin-Tsygan calculus of a gentle algebra, see [5].
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Complexes with small homology

Petter Andreas Bergh

Our starting point is a conjecture from algebraic topology by Gunnar Carlsson.
Let p be a prime number and G an elementary abelian p-group of rank d; in other
words, G is isomorphic to (Z/pZ)d. It was conjectured in [3] that if G acts freely
on a non-trivial finite CW-complex X , then

∑

n∈Z

dimk Hn(X ; k) ≥ 2d

where k denotes the field Z/pZ (note that the sum is actually finite). Carlsson
settled the case when p = 2 and d is at most 3 in [4], but the conjecture remains
open at the time of writing.

In [3], Carlsson also stated an algebraic version of the conjecture. Namely,
suppose that p, d and G are as before, and take now a non-trivial (meaning non-
acyclic) finite complex D of finitely generated free kG-modules. The conjecture
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then states that ∑

n∈Z

dimk Hn(D) ≥ 2d

Again, in [4] Carlsson settled the case when p = 2 and d is at most 3.
As explained in [3], the algebraic version actually implies the topological one,

in the sense that if the algebraic version were true, then so would the topological
version be. However, the algebraic version turned out not to be true; in [6],
Srikanth Iyengar and Mark Walker showed that a counterexample always exists
when p is odd and d is at least 8. To construct these counterexamples, they
used certain properties of exterior algebras, in particular the existence of so-called
Lefschetz elements.

In the recent paper [2], Jon Carlson extended Iyengar and Walker’s counterex-
amples to arbitrary groups. Namely, suppose that k is a field of odd characteristic
p, and that G is an arbitrary finite group whose p-rank d is at least 8. Carlson
showed that there exist infinitely many non-isomorphic and non-trivial perfect
complexes D over kG, with

∑

n∈Z

dimk Hn(D) < 2d

Here, a perfect complex means a finite complex of finitely generated projective
left kG-modules. In the special case when G is a p-group, the projective modules
are free, and so Carlson’s result provides an abundance of counterexamples to the
original conjecture.

In recent work, we have proved a version of Carlson’s result for complexes over a
finite tensor category (C ,⊗,1). Thus C is a locally finite k-linear abelian category
(for some field k), with a finite set of isomorphism classes of simple objects. There
are enough projective objects, and every object admits a projective cover, and
therefore also a minimal projective resolution. The tensor product is an associative
bifunctor, and comes with a unit object 1 which is simple. Finally, the category
is rigid, meaning that all objects have left and right duals. A typical example is
the category of finitely generated left kG-modules, for G a finite group, or, more
generally, the category of finitely generated left modules over a finite-dimensional
Hopf-algebra.

It was conjectured in [5] that the cohomology ring H∗(C ) of C , that is, the
Ext-algebra of the unit object 1, is finitely generated as a k-algebra, and that the
cohomology of C is finitely generated over this ring. When this holds, we say that
(C ,⊗,1) has finitely generated cohomology. In [1], we proved the following result.

Theorem. Let k be a field of characteristic not 2, and (C ,⊗,1) a finite tensor
k-category with finitely generated cohomology. If the Krull dimension d of H∗(C )
is at least 8, then there exist infinitely many non-isomorphic and nontrivial perfect
complexes D over C , with

∑

n∈Z

ℓ (Hn(D)) ≤
∑

n∈Z

FPdimC (Hn(D)) < 2d
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Here ℓ(−) denotes length, and FPdimC (−) the so-called Frobenius-Perron di-
mension (which is always at least the length). For modules over a Hopf-algebra,
the latter equals the vector space dimension, and so the theorem recovers Carlson’s
result for group algebras.
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Koszul, Calabi–Yau deformations of q-symmetric algebras

Travis Schedler

(joint work with Mykola Matviichuk, Brent Pym)

Let Aq := C〈x0, . . . , xn−1〉/(xixj − qijxjxi) be the q-symmetric algebra, defined
in terms of an n × n matrix q = (qij) with qij ∈ C×, qijqji = 1 for all i 6= j, and
qii = 1 for all i. This algebra is Koszul and has Koszul dual the q-exterior algebra,
A!

q = C〈∂0, . . . , ∂n−1〉/(∂i∂j + qji∂j∂i), with (∂i) interpreted as the dual basis to
(xi). In this talk we explained how to construct some filtered and non-filtered
deformations of Aq. In some cases, notably where Aq is related via deformation
quantisation to toric log symplectic structures on Pn−1, i.e., Poisson brackets of
the form

∑
i<j πijxi∂i ∧ xj∂j for some π = (πij) forming a skew-symmetric n× n

matrix of corank one, we construct deformations which are formally universal.
They give many new families of quadratic, Koszul, and twisted Calabi–Yau (and
hence Artin–Schelter regular) algebras. These results are motivated by the work
[2] of the authors on Poisson deformations of toric log symplectic structures (and
more generally, log symplectic structures whose polar divisor is normal crossings).

The basic technique we use is the Hochschild cohomology of Aq together with
its Zn grading coming from dilations on each of the variables x0, . . . , xn−1. We
describe this structure (which is not new, and is a special case of results appearing
in the literature, such as [1, Theorem 3.3]): HH∗(Aq) is concentrated in the
weights (indexing Zn from 0 to n− 1):

Φ := {w ∈ Z
n | wj ≥ −1, ∀j,

∏

k

qwk

jk = 1 whenever wj ≥ 0} ⊆ Z
n.
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Setting Φi := {w ∈ Φ | #{j | wj = −1} = i} and Φ≤i :=
⋃

j≤i Φj , we see that

HHi(Aq) is concentrated in weights Φ≤i. Let Zn := {w ∈ Zn |
∑

iwi = 0} be
the weights summing to zero, i.e., the ones appearing in the dilation invariant

subspace HH∗(Aq)
C

×

. Let Φ≤i := Φ≤i ∩ Zn. It follows that infinitesimal graded

deformations are in weights Φ≤2 and the possible obstructions are in weights Φ≤3.

Therefore, given a subset Ψ ⊆ Φ≤2 of weights such that no sum of ≥ 2 ele-

ments of Ψ lies in Φ≤3, the deformations in the direction Ψ are unobstructed. We
explained that these infinitesimal deformations extend to filtered quadratic defor-

mations Ãq over C, with the property that gr Ãq
∼= Aq, and if no elements of Ψ are

sums of other elements of Ψ, then the filtered degree −1 part matches the original
first-order deformation. The filtration is defined on Aq, with FmAq the sum of
all weight spaces with weights w ∈ Nn such that w ≥ w′ for w′ a sum of some
m elements of Ψ (with w ≥ w′ meaning wi ≥ w′

i for all i). As filtered deforma-
tions preserve the property of being both Koszul and twisted n-Calabi–Yau, these
deformations enjoy these properties (in particular, are Artin–Schelter regular).

We give several new examples of such filtered deformations. These examples
include filtered deformations of Aq for n = 3 and n = 4 which give irreducible
components of the moduli space of quadratic algebras with the same graded di-
mension as A1 but which do not pass through A1. One example had, for ζ a

primitive seventh root of unity, q =




1 1 ζ ζ−2 ζ
1 1 ζ−1 ζ−2 ζ3

ζ−1 ζ 1 ζ ζ−1

ζ2 ζ2 ζ−1 1 ζ−3

ζ−1 ζ−3 ζ ζ3 1



. This Aq is

untwisted Calabi–Yau and we found a family of filtered Calabi–Yau deformations
given by replacing three of the q-commutation relations by the following:

x0x1 − x1x0 = ax3x4, x0x2 − ζx2x0 = bx24, x0x3 − ζ5x3x0 = cx22.

Note that, for a, b, c nonzero, these algebras are all isomorphic to the one for
a = b = c = 1 by dilating the variables. We show moreover that the centres of
these algebras form a flat family, generated by x7i for all variables xi, together with
a deformation of the element x0x1x2x3x4. For a = b = c = 1 this deformation is

x0x1x2x3x4 +
1

7
(−5ζ5 − 3ζ4 − ζ3 + ζ2 − 4ζ − 2)x4x

3
2x1+

1

7
(−ζ5+5ζ4+4ζ3+3ζ2+2ζ+1)x24−x

2
3x2+

1

7
(ζ5−5ζ4−4ζ3−3ζ2−2ζ−1)x34x3x1.

For another example, with n = 3, we set q =




1 −1 i i
−1 1 i i
−i −i 1 −1
−i −i −1 1


, with

weights of HH(Aq)
C

×

given by 0, (−1,−1, 1, 1), (1, 1,−1,−1), (3,−1,−1,−1),
(−1, 3,−1,−1), (−1,−1, 3,−1), and (−1,−1,−1, 3). This Aq is untwisted Calabi–
Yau, and we produce from this the filtered Calabi–Yau deformation of Aq given by
replacing the relation x0x1 + x1x0 by x0x1 + x1x0 + tx2x3 for a parameter t ∈ C.
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This example is particularly interesting because q is conjugate by a diagonal matrix

to the one q′ =




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


. Here, Aq′ is a graded Clifford algebra (now

twisted Calabi–Yau), and its deformations include a twelve-parameter family of
graded Clifford algebras (thanks to Colin Ingalls for pointing this out). The weights
for these deformations are given by (−1,−1, 2, 0) and permutations of this, so
they are different from the previous weights; generic deformations can be given by
replacing relations xixj + xjxi by xixj + xjxi + ax2k + bx2ℓ for i, j, k, ℓ all distinct,
and a, b ∈ C. Since q, q′ are conjugate, Aq and Aq′ define equivalent categories
qgrAq ≃ qgrAq′ of Z-graded modules modulo modules of elements annihilated by
powers of the augmentation ideal (x0, x1, x2, x3). Thus one can construct from
the preceding an abelian category deformation qgrAq which is not obtainable by
deforming Aq itself (as an algebra).

We then proceed to consider the case where Aq is related to toric log symplectic
structures on Pn−1 by deformation quantisation. According to our paper [2], the
weights occurring in the second Poisson cohomology HP ∗(Pn−1, π) for the latter
type of Poisson structures have a rigid structure: other than the zero weight, they
are given by weights w ∈ Zn with wi = −1 for exactly two values of i. For each
such weight w with wi = wj = −1, colour the corresponding edge i—j of the
complete graph on n vertices. Then in [2] we proved that the resulting couloured
set has connected components which are cycles and segments. We additionally
colour in the angles ∠ikj opposite to coloured edges i—j when the weight w with
wi = wj = −1 has wk > 0; we colour it darkly if wk = 2, and lightly if wk = 1,
so that there are either two lightly coloured angles or one darkly coloured angle
opposite to each coloured edge. We call the resulting graph the smoothing diagram
due to its geometric interpretation: it specifies which codimension-one singularities
of the degeneracy locus of π (i.e., the union of coordinate hyperplanes of Pn−1)
can be removed under deformation.

If π =
∑

i,j πijxi∂i ∧ xj∂j is a toric Poisson structure on Pn−1, then for generic

~, setting qij := exp(~πij), the weights of HH
∗(Aq) are the same as the weights of

the Poisson cohomology of (Pn−1, π). In fact, by work in progress by Lindberg and
Pym, for ~ a deformation parameter, Aq is the Kontsevich canonical deformation
quantisation of (Pn−1, π).

Our main theorem shows that, when HH∗(Aq) has the same weights as those
occurring in the Poisson cohomology of a toric log symplectic structure (for exam-
ple, qij = exp(~πij) for π log symplectic and ~ generic), then we can construct a
formally universal family of actual quadratic deformations of Aq by a combination
of modifying q, applying filtered deformations over the coulored components of the
smoothing diagram which are segments, and replacing couloured cycles by Feigin–
Odesskii elliptic algebras [3], and finally tensoring the elliptic algebras together
with the aforementioned filtered deformation on the complement of the couloured
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cycles. Note that, unlike the examples considered at the beginning of this re-
port, all of these families are obtained by analytic continuation of deformation
quantisations of A1, and in particular have A1 on the closure.

Unlike our paper [2], which considers more general varieties than Pn−1 and
which need not be toric, we do not need to consider the algebraic structures on
the Hochschild cohomology (L∞ structures) and it is enough to only consider the
weight decomposition. We also recover the corresponding statement to our main
theorem for Poisson deformations of (Pn−1, π), a special case of the main result of
[2], without requiring the algebraic structures on Pn−1. The reason why we do not
need the algebraic structure is because the unobstructedness follows by the explicit
construction of the deformations (the filtered ones above and the Feigin–Odesskii
ones).
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Hochschild cohomology of Hilbert schemes of points

Pieter Belmans

(joint work with Lie Fu, Andreas Krug)

We will start from an algebro-geometric question which, a priori, has nothing to
do with Hochschild cohomology. Yet, with the right approach, it turns out that
(a generalization of) Hochschild cohomology is precisely the tool to answer this
question, and at the same time the methods and tools also suggest interesting
invariants to study outside this specific geometric setup.

Geometric motivation. Let S be a smooth projective surface. Its Hilbert
scheme of points Hilbn S (where n ≥ 2) is a smooth projective variety arising as an
important example of a moduli space: the moduli space of length-n subschemes,
whilst at the same time it is a crepant resolution of singularities of Symn S =
Sn × / Symn, through the Hilbert–Chow morphism

(1) Hilbn S → Symn S.

Its geometry has been the topic of significant interest.
We are interested in its deformation theory, which we will approximate by

trying to understand the vector space H1(Hilbn S,THilbn S) classifying first-order
deformations of the Hilbert scheme. It always contains the first-order deforma-
tions H1(S,TS) of the surface, but what else might be in there?
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The following intermediate results exist:

(a) Fantechi [5] has shown that if H1(S,OS) = 0 or H0(S,TS) = 0, and at the
same time H0(S, ω∨

S ) = 0, then

H1(Hilbn S,THilbn S) = H1(S,TS),

i.e., they have the same deformation theory. These conditions hold, e.g.,
whenever S is a surface of general type.

(b) Hitchin [6] has shown that if H1(S,OS) = 0, then

H1(Hilbn S,THilbn S) = H1(S,TS)⊕H0(S, ω∨
S ),

thus linking the Poisson structures on S to the deformations of Hilbn S.

Both proofs are very geometric and heavily rely on the geometry of (1). A more
categorical proof of Hitchin’s result, moreover assuming that H2(S,OS) = 0 is
given in [3], which uses Hochschild cohomology and its limited functoriality.

But in complete generality, by [2, Corollary B] the answer for an arbitrary
surface is given by

(2) H1(Hilbn S,THilbn S) = H1(S,TS)⊕H0(S, ω∨
S )⊕

(
H1(S,OS ⊗H0(S,TS)

)
.

Hochschild–Serre cohomology. In order to prove (2) we (re)introduce a bi-
graded algebra that contains Hochschild cohomology and Hochschild homology as
graded subspaces. This definition has an obvious analogue for an arbitrary smooth
and proper dg category A (and we will come back to this later), with Db(X) for X
a smooth projective variety (or Deligne–Mumford stack) recovering the geometric
definition we make now.

The Hochschild–Serre cohomology of X is

HS∗•(X) ··=
⊕

j,k∈Z

HSjk(X)

where

HSjk(X) ··= Extj+k dimX
X×X (∆∗OX ,∆∗ω

⊗k
X ).

One recognizes the powers of the Serre functor of Db(X), which explains how to
define this for every dg category which admits a Serre functor.

We have that

(1) k = 0 recovers the Hochschild cohomology of X ,
(2) k = 1 recovers the Hochschild homology of X .

There are some obvious questions one should ask about this object. But first we
explain the relation to the deformation theory of Hilbn S.

Main result. The Hochschild–Serre cohomology can be shown to be a categor-
ical invariant. And we can extend (1) to include the stacky symmetric quotient

(3)

Hilbn S [Symn S] = [Sn/ Symn]

Symn S

Hilbert–Chow coarse moduli space
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which also acts as a crepant resolution, it just happens to be a Deligne–Mumford
stack. The Bridgeland–King–Reid–Haiman equivalence gives the equivalence

(4) Db(Hilbn S) ∼= Db([Symn S])

making it possible to compute the Hochschild (and Hochschild–Serre) cohomology
of Hilbn S by computing it for [Symn S].

There is an orbifold Hochschild–Kostant–Rosenberg decomposition [4], which
makes it possible to compute the Hochschild–Serre cohomology of any symmetric
quotient stack [SymnX ], which is where all the algebro-geometric work takes place.
By suitably decomposing the computation using orbifold Hochschild–Kostant–
Rosenberg, and then combining the components for all n simultaneously we can
get a short answer. It depends on the parity of dimX , so let us just give the
conclusion for Hilbn S:

(5)
⊕

n≥0

HS∗
k(Hilb

n S)tn ∼= Sym∗



⊕

i≥1

HS∗
1+(k−1)i(S)t

i


 .

To prove (2) we take k = 0, so that all of the negative Hochschild–Serre cohomol-
ogy of S is used, and subsequently we take ∗ = 2 to compute HH2(Hilbn S). To
obtain the geometric deformations in the Hochschild–Kostant–Rosenberg decom-
position of HH2(Hilbn S), one bootstraps from earlier results which describe the

components H2(Hilbn S,OHilbn S) and H2(Hilbn S,
∧2

THilbn S), and cancels these
contributions in the Hochschild–Serre calculation.

Questions. We have the following obvious questions, which are of interest even
if you do not care at all about (2):

(1) Equip the Hochschild–Serre cohomology of a smooth and proper dg cat-
egory with the structure of a Gerstenhaber algebra (and also a Connes
differential), recovering the usual Gerstenhaber calculus structure on the
pair (HH•(X),HH•(X)).

(2) Relate this Gerstenhaber algebra structure to the geometric Gerstenhaber
algebra structure on the Hochschild–Kostant–Rosenberg decomposition of
the Hochschild–Serre cohomology, generalizing the work of Kontsevich,
Căldăraru, Calaque–Van den Bergh, . . . These two questions are work-in-
progress by Lie Fu and collaborators.

(3) Extend the picture beyond smooth and proper dg categories.
(4) There is a Heisenberg algebra controlling the properties of symmetric quo-

tient stacks (and symmetric powers of dg categories). This originates in
the computation of Betti and Hodge numbers of Hilbert schemes of points.
Is there a Heisenberg algebra controlling the Hochschild–Serre cohomology
of symmetric quotient stacks?

There are some obvious problems that arise: Hochschild–Serre cohomol-
ogy is not very functorial (yet), and the description of the Hochschild–Serre
cohomology does not obviously fit in the usual description of a Fock space.
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(5) Compute the Hochschild–Serre cohomology of the symmetric power of a
dg category A in terms of the Hochschild–Serre cohomology of A in geo-
metrically meaningful examples, e.g., for the noncommutative projective
planes and quadrics from [1].
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Some applications of Hochschild cohomology in physics

Evgeny Skvortsov

(joint work with Alexey Sharapov)

The main goal of the presentation is to explain what some of the applications
of Hochschild cohomology in physics are. One of the biggest problems of the
theoretical high energy physics is the quantum gravity problem, to which there
exists a number of approaches, e.g. string theory, asymptotic freedom, higher
spin gravity (HiSGRA), see e.g. [1], etc. HiSGRA is perhaps the unique topic in
physics where the main structures are determined by Hochschild cohomology. Via
AdS/CFT correspondence some HiSGRA are related to the second order phase
transitions, which carries over the same mathematical structures.

Let us explain first why many problems in (quantum) field theory are controlled
by Chevalley-Eilenberg cohomology and not by Hochschild one. A classical field
theory is often a useful starting point to get a quantum one. The former is usually
given as an action functional, which leads to classical equations of motion. The
equations of motion can always be written in the form of a sigma-model dw =
Q(w), where fields w are maps of zero degree w : N1 → N2 between two Q-
manifolds: N1 is the Q-manifold (ΠTM, d), the parity shifted tangent bundle of
a spacetime manifold M , the algebra of functions being the exterior algebra of
differential forms Ω•(M) and d is the de Rham differential; N2 is a nonnegatively
graded Q-manifold with a homological vector field Q. The maps w (fields) are
required to relate the Q-structures, w⋆(d) = Q, which can be written as a set
of PDEs dw = Q(w). Examples include numerous AKSZ-models [2]. Additional
properties are Q(0) = 0. Then, as is well-known, the Taylor series of Q can
be interpreted as the structure maps of an L∞-algebra. One can also achieve
Q′(0) = 0 and, hence, the L∞-algebra is minimal and its first (bilinear) map defines
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some (graded) Lie algebra g. The trilinear map is a Chevalley-Eilenberg cocycle
of g. More generally, many questions about a given field theory (counterterms,
charges, anomalies, etc.) can be reduced to the Chevalley-Eilenberg of g.

HiSGRAs are very special types of field theories that extend gravity with mass-
less fields of all spins and are controlled by infinite-dimensional symmetries, called
higher-spin symmetries. Higher-spin algebras are associative algebras that can be
defined in many different ways, e.g. as the deformation quantization of coadjoint
orbits of Lie groups that represent the spacetime symmetry. A toy model is the
Moyal-Weyl star-product algebra on R2n, which realizes the Weyl algebra An. It is
also important that any higher-spin algebra, say A, can be tensored with Matn(k)
to get Matn(A) and the corresponding HiSGRA theory should exist for any n.

As a result, the dynamics of HiSGRA is determined by the Chevalley-Eilenberg
cohomology of gln(A) = L(Matn(A)), where L is the canonical map that sends
any associative algebra to a Lie algebra. Thanks to the Tsygan–Loday–Quillen
theorem the Chevalley-Eilenberg cohomology of gln(A) can be related to the cyclic
cohomology of A and the latter can be related to the Hochschild cohomology. As
a matter of fact, interactions in HiSGRAs and various observables are directly
related to/determined by the Hochschild cohomology of A and there are no ex-
amples where any additional information enters. Not surprisingly, thanks to the
effect of ’big matrices’ the L∞-algebra (Q structure) that determines the equations
of motion originates from an A∞-algebra, say A, via the symmetrization map.

Let us explain some of the technical details with one example — Chiral HiS-
GRA, see e.g. [3]. The higher-spin algebra is just A1 (A1 is the smallest Weyl
algebra). The free theory is encoded by an A∞-algebra A0 that is built on A1 and
its bimodule A∗

1. It is convenient to replace A1 with A0 = A1 ⋊ Z2 (skew group
algebra, where the nontrivial element r of Z2 realizes the reflection map on R2)
since there is a direct relation between the twisted bimodule A1r and A∗

1. As a
graded vector space A0 is concentrated in degrees 0 and 1. The maps of A0 are

m2(a, b) = a ⋆ b m2(a, u) = a ⋆ u m2(v, a) = −v ⋆ a ,(1)

where a, b, ... ∈ A0 (have degree 1) and u, v, ... ∈ A0 its bimodule (have degree 0).
The A∞-maps m all have degree (−1) and satisfy m ◦m = 0.

The interactions correspond to the deformations of A0. The first order de-
formation corresponds to trilinear structure maps m3(•, •, •) and it does exist
thanks to the AFLS (Alev-Farinati-Lambre-Solotar) theorem [4], which implies
that HH2(A0, A0) ≃ k. To give an example, we find for one of the m3-components

m3(a, b, u) = φ1(a, b) ⋆ u ,(2)

where φ1 ∈ HH2(A0, A0). There are no obstructions HH3(A0, A0) ≃ 0 and the
deformation can be continued. In fact, it can be shown that any one-parameter
family of associative algebras Aν (the product in A0 is denoted by ⋆)

a ⋄ b = a ⋆ b+
∑

k≥1

νkφk(a, b)(3)
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can be used to construct an A∞-algebra whose associated field theory equations
dw = Q(w) are integrable [5, 6]. Here φ1 ∈ HH2(A0, A0) that determines the
leading deformation. All A∞ structure maps can be constructed out of φi.

There is an interesting relation to the deformation quantization. A1 can be
understood as the deformation quantization of the algebra C(R2) of functions on
R

2. However, as we see, the field theory requires B = C(R2) ⋊ Z2. Another
closely related algebra is the orbifold algebra C(R2)/Z2 ∼ C(R2/Z2). In general,
the deformation quantization of orbifolds is an open problem, see e.g. [7, 8]. We
see that B admits two deformations, one deforming C(R2) into A1 and another
one that relies on the reflection map from Z2. The Hochschild cocycle φ1 above
is directly related to the Feigin-Felder-Shoikhet cocycle ψ ∈ HH2(A1, A

∗
1) [9].

The latter can be obtained as a consequence of the Kontsevich-Shoikhet-Tsygan
formality [10].

Therefore, we observed that the first two ’floors’, m2,3, of the A∞-algebra are
related to the Kontsevich and the Kontsevich-Shoikhet-Tsygan formalities. The
higher structure maps can also be explicitly constructed as certain configuration
space integrals of the Kontsevich-type. The configuration space is that of compact
concave polygons and is related to the totally nonnegative Grassmannian [3]. The
A∞-relations can be proven via Stokes theorem. This points towards an existence
of a structure encompassing the known formality theorems.

Holographically Chiral HiSGRA is related to a rich class of 3d conformal field
theories — Chern-Simons vector models. The latter were recently conjectured to
exhibit a new duality — 3d bosonization duality. Via AdS/CFT correspondence
the same A∞-algebras can be seen to realize a certain new type of a symmetry in
the vector models. The 3d bosonization duality can be reduced to proving that
the corresponding L∞-algebra admits a unique set of invariants that play the role
of correlation functions. Again, the proof of the duality can be reduced to the
Hochschild cohomology [5, 11, 12].
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Deformations of graded gentle algebras and orbifold surfaces

Zhengfang Wang

(joint work with Severin Barmeier, Sibylle Schroll)

Definition 1. Let k be a field. An associative algebra is graded gentle if it is
isomorphic to a graded algebra A ≃ kQ/I, where Q is a finite graded quiver and
I ⊂ kQ is a two-sided ideal generated by quadratic monomial relations, where

• at each vertex of Q there are at most two incoming and two outgoing
arrows

• for each arrow y of Q there is at most one arrow x such that xy /∈ I, at
most one arrow x′ such that the path x′y ∈ I, at most one arrow z such
that yz /∈ I and at most one arrow z′ such that the path yz′ ∈ I.

A maximal configuration of arrows at a vertex is illustrated in Fig. 1, where we
follow the widely adopted notation of marking the relations directly in the quiver
by a dotted line, i.e.

Figure 1. A maximal configuration of edges at a vertex of a
gentle quiver

Given a gentle algebra A = kQ/I, we may define a ribbon graph [10]. The
combinatorial geometric model of A consists of the surface associated to this rib-
bon graph which was shown in [9, 6, 8] to describe the derived category of A,
together with a line field and a dissection into topological disks by curves on the
surface connecting certain marked points, all of which can be determined from A.
Moreover, in [6] it is shown that the derived category of A is triangle equivalent
to the partially wrapped Fukaya category of the associated graded surface with
stops.

In this talk we give a complete and explicit description of the A∞ deformation
theory of graded gentle algebras which in the homologically smooth case gives a

http://arXiv.org/abs/2207.08916
http://arXiv.org/abs/2006.13986
http://arXiv.org/abs/2108.05441
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complete description of the algebraic deformation theory of the partially wrapped
Fukaya category of graded surfaces with stops in the sense of [6, 8].

The deformation theory of associative algebras is naturally controlled by the
Hochschild cohomology in degree 2. Inspired by [5] we have the following descrip-
tion of HH2(A,A) for a graded gentle algebra A in terms of its surface model.

Theorem 2. Let A be a graded gentle algebra with surface model (S,Σ, η). Then
dimHH2(A,A) coincides with the number of boundary components ∂iS of Σ sat-
isfying one of the following conditions

• ∂iS has a single stop with winding number −1,
• ∂iS is fully stopped with winding number −1 or −2,
• ∂iS has no stops with winding number −1 or −2,

Note that the cocycles corresponding to boundary components without stops
of winding numbers −1 or −2 give rises to curved A∞ deformations, which will be
excluded in this talk.

A natural question is that what the geometric meanings of the (un-curved) A∞

deformations of graded gentle algebras are. To answer this question, we need to
study the partially wrapped Fukaya categories of orbifold surfaces.

Definition 3. Let Γ be an arc system in an orbifold surface (S,Σ) and let x ∈
Sing(S) be an orbifold point. Denote by Γx the set of half-edges of arcs in Γ
connecting to x. By a linear order ≺x at x we shall mean a linear order on the set
Γx which is compatible with the natural cyclic order obtained from the orientation
of S.

A dissection ∆ = (Γ, {≺x}x∈Sing(S)) of an orbifold surface with stops (S,Σ) is
given by an arc system Γ, where Γx 6= ∅ for each x ∈ Sing(S), together with a
collection of linear orders at all orbifold points such that the complement of the
arcs in ∆ is a disjoint union of

• (topological) disks containing no orbifold points in the interior and at most
one stop or one missing relation in their boundary

• (topological) annuli with one boundary component being a fully stopped
boundary component and the other boundary component containing no
stops or missing relations

See Fig. 2 for an illustration.

Definition-Proposition 4. Let S = (S,Σ, η) be a graded orbifold surface with
stops. To any dissection ∆ on S we associate an A∞ category A∆ whose objects
are the arcs in Γ.

Given two arcs γi and γj in Γ, a k-linear basis of morphism from γi to γj is
given by the boundary paths and orbifold paths from γi to γj . There are three
types of A∞ products on A∆

• µ̄2 for the (associative) concatenation of paths
•

◦

µn for n ≥ 3, which is given by smooth disk sequences

•
×

µn for n ≥ 1, which is given by an orbifold disk sequences
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p1

p2

p3

p4

×

q

Figure 2. Arcs on a disk with a single orbifold point and 6 stops

For instance, for the dissection ∆ in Figure 2 the only nonzero product in A∆

is given by
×

µ4(p1 ⊗ p2 ⊗ p3 ⊗ p4) = q.

Theorem 5. Let S = (S,Σ, η) be a graded orbifold surface with stops. We have
the following

(1) The idempotent completion tw(A∆)
♮ of the DG category of twisted com-

plexes of A∆ is independent of the choice of the dissection ∆ on S. We
call tw(A∆)

♮ the partially wrapped Fukaya category of S and denote it by
W(S).

(2) Let S̃ = (S̃, Σ̃, η̃) be the double cover of the orbifold surface S. Then W(S)

of S is quasi-equivalent to the partially wrapped Fukaya category W(S̃) of

the smooth graded surface S̃ studied in [6].

Remark 6. A good indication that this is the right construction is the fact we
just learnt that there is in [4] a similar construction independently.

As an application of the above theorem we may describe the geometric meaning
of A∞ deformations of graded gentle algebras using orbifold surfaces.

Theorem 7. Let A be a graded gentle algebra whose surface model is given by
S = (S,Σ, η).

(1) Let θ be a linear combination of cocycles which correspond to boundary
components of winding number −1 in Theorem 2. Denote by Aθ the cor-
responding (un-curved) A∞ deformation. Then the idempotent comple-
tion tw(Aθ)

♮ is quasi-equivalent to the partially wrapped Fukaya category
W(S) of the orbifold surface S = (S,Σ, η). Here S is obtained from S by
compactifying the boundary components of θ into orbifold points.

(2) Any (uncurved) A∞ deformation of A is derived equivalent to a graded
skew-gentle algebra, except the case where S is a genus zero surface with
four boundary components each of which has exactly one stop and the
winding number −1.

Remark 8. Conversely, we expect that any algebra B which is derived equivalent
to a skew gentle algebra comes from a formal dissection on the orbifold surface.
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Note that some special dissections which give skew-gentle algebras were studied
by [7, 1].
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Higher structure on the Gerstenhaber-Schack complex: rich and
(box) operadic

Lander Hermans

(joint work with Hoang Dinh Van, Wendy Lowen, Ricardo Campos)

The Gerstenhaber-Schack (GS) complex for prestacks takes up the pivotal role of
the Hochschild complex for associative algebras: GS cohomology computes Ext-
cohomology, the complex captures the algebraic structure of the prestack and it
is endowed with a L∞-structure governing its deformations. Prestacks generalize
presheaves of associative algebras and are motivated by (noncommutative) alge-
braic geometry where they appear as structure sheaves and (noncommutative)
deformations thereof. Indeed, Lowen and Van den Bergh observed in [1][2] that
Hochschild cohomology of presheaves parametrizes their first order deformations,
not as presheaves, but as prestacks.

We present our work on rich higher structure on the GS complex, from which
the L∞-structure is obtained as a shadow. We have, joint with Hoang Dinh Van
and Wendy Lowen, the following main results:

(1) In [3], we establish an action of the operad Quilt from [7] on the GS com-
plex. Quilt induces a L∞-structure which we twist by a part of the algebraic
structure of the prestack.

(2) In [4], we describe an action of a new operad �p, whose algebras are called
‘box operads’, on an extension of the GS complex. In a next step, we show
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that every box operad is endowed with a L∞-structure and prove that the
GS complex is a L∞-subalgebra of its box operadic extension.

In this talk, I touch upon both (1) and (2), and I present (1) in detail via a
calculus of rectangles. This allows us to describe the higher operations coming
from Quilt explicitly, such as the resulting L∞-structure.

The above two approaches each have their own advantage as follows. Approach
(2) establishes the right analogy with the seminal work of Gerstenhaber-Voronov
on operads [5] which I recall in the talk. On the other hand, I explain how,
in joint work with Ricardo Campos, we build on (1) to obtain our solution to
the Deligne conjecture in [6] showing that the GS complex is an algebra over
(an operad homotopy equivalent to) the chain little disks operad. Concretely, we
solve Hawkins’ conjecture by computing the homology of Quilt and show that it
is isomorphic to the operad Brace encoding brace algebras. As a corollary, the
twisted operad TwQuilt is homotopy equivalent to the chain little disks operad.
This is work in preparation.
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Hochschild-Pirashvili homology and outer functors

Christine Vespa

(joint work with Geoffrey Powell)

In 2000, Pirashvili [1] associated to any topological space X a homology theory.
For X the circle, this homology identifies with the classical Hochschild homology
and Pirashvili studied the case where X is a sphere. For X a wedge of n circles,
Hochschild-Pirashvili homology has been first studied by Turchin and Willwacher
[2]. In particular, they obtained that this homology gives rise to interesting rep-
resentations of the groups Out(Fn) named bead representations. Recently Gadish
and Hainaut proved that these representations appear naturally in the study of
configuration spaces on a wedge of circles [3].

In this talk I will give an overview of the previous results and, noting that
Hochschild-Pirashvili homology for a wedge of circles gives rise to a functor on
finitely generated free groups, I will explain how functorial tools such as polynomial
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functors, exponential functors and, what we called, outer functors can be used to
study Hochschild-Pirashvili homology for a wedge of circles. [4] (This is a joint
work with Geoffrey Powell).
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On the first τ -tilting Hochschild cohomology of an algebra

Claude Cibils

(joint work with M. Lanzilotta, E.N. Marcos, A. Solotar)

Let k be a field, Λ be a finite dimensional k-algebra and τ be the Auslander-Reiten
translation of Λ-bimodules, see for instance [6]. We introduce, according to one
of the main ideas of τ -tilting theory mentioned in [4], the τ -tilting Hochschild
cohomology

τHH1(Λ) = DHomΛ−Λ(Λ, τΛ).

This relies on the Auslander-Reiten duality formula, see for instance [1]. In a sense
τHH1(Λ) amounts to recover the missing morphisms from Λ to τΛ which factors
through injective bimodules, see [2].

We define the excess e(Λ) = dimk
τHH1(Λ)− dimkHH

1(Λ).
One of the main results is that for a zero excess bound quiver algebra Λ =

kQ/I, the Hochschild cohomology in degree two HH2(Λ) is isomorphic to the
space of morphisms HomkQ−kQ(I/I

2,Λ). This may be useful to determine when
HH2(Λ) = 0 for these algebras.

We recall that the algebras the following about algebras Λ with HH2(Λ) =
0. Let V be a -vector space of dimension n over an algebraically closed field k.
Let Algn be the affine open subscheme of algebra structures with 1 of the affine
algebraic scheme defined by Sn(R) = {associative R-algebra structures on R ⊗k

V }, whereR is a commutative k-algebra. Corollary 2.5 of [3] states thatHH2(Λ) =
0 if and only if the orbit of Λ ∈ Algn under the general linear group GL(V ) is
an open subscheme of Algn. Moreover, P. Gabriel in [3, p. 140] mentions that
it should be one of the main tasks of associative algebra to determine for every
n the number of irreducible components of Algn. The determination of algebras
with zero Hochschild cohomology in degree 2 makes it possible to obtain lower
bounds for the number of irreducible components of Algn, as G. Mazzola did in
[5, p. 100].



Hochschild (Co)Homology and Applications 1147

In [2] we compute the excess for hereditary, radical square zero and monomial
triangular algebras. For a bound quiver algebra Λ, a formula for the excess of Λ
is obtained. We also give a criterion for Λ to be τ -rigid.

Let Λ = kQ/I a bound quiver algebra, and let ZΛ be its center. We have

dimk
τHH1(Λ) = dimkZΛ−

∑

x∈Q0

dimkxΛx+
∑

a∈Q1

dimkt(a)Λs(a).

Questions arise about Morita invariance, Morita derived invariance or derived
invariance of τHH1(Λ). Also about a possible Lie structure, and an eventual
prolongation towards a cohomological theory.
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Universal Massey products in representation theory of algebras

Gustavo Jasso

(joint work with Fernando Muro)

We work over an arbitrary field. Recall Kadeishvili’s Intrinsic Formality Crite-
rion [Kad88]:

Theorem. Let A be a graded algebra whose Hochschild cohomology vanishes in
the following bidegrees:

HHp+2,−p(A,A) = 0, p ≥ 1.

Then, every minimal A∞-algebra structure on A is gauge A∞-isomorphic to the
trivial A∞-structure, whose higher operations mp+2 = 0, p ≥ 1, vanish.
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In our joint work we generalise Kadeishvili’s Criterion as follows.

Definition. Fix an integer d ≥ 1. A graded algebra is d-sparse if it is concentrated
in degrees that are multiples of d (hence this condition is empty if d = 1). A d-
sparse Massey algebra is a pair (A,m) consisting of a d-sparse graded algebra A
and a Hochschild cohomology class

m ∈ HHd+2,−d(A,A), Sq(m) = 0,

of bidegree (d+ 2,−d) whose Gerstenhaber square vanishes.

For example, if

(A,md+2,m2d+2,m3d+2, . . . )

is a minimal A∞-algebra structure on a d-sparse graded algebra A (in which case

mi+2 = 0, i 6∈ dZ, for degree reasons), then md+2 ∈ Cd+2,−d(A,A) is a Hochschild
cocycle whose associated Hochschild cohomology class

{md+2} ∈ HHd+2,−d,

its universal Massey product (of length d+ 2), has vanishing Gerstenhaber square

Sq({md+2}) = 0.

Consequently, the pair (A, {md+2}) is a d-sparse Massey algebra.

Remark. It is an easy consequence of the d-sparsity assumption that the universal
Massey product of a minimal A∞-algebra is invariant under A∞-isomorphisms.

Remark. Universal Massey products of length 3 have been investigated previously
in representation theory, see for example [BKS04].

Definition. The Hochschild–Massey cohomology of a d-sparse Massey algebra
(A,m) is the cohomology

HH•,∗(A,m)

of the Hochschild–Massey (cochain) complex, that is the bigraded cochain complex
with components

HHp+2,∗(A,A), p ≥ 0,

and differential

HH•,∗(A,A) −→ HH•+d+1,∗−d(A,A), x 7−→ [m,x],

in source bidegrees different from (d+1,−d), where the differential is instead given
by the formula by

HHd+1,−d(A,A) −→ HH2(d+1),−2d(A,A), x 7−→ [m,x] + x2.

Remark. That the differential of the Hochschild–Massey complex squares to zero
is a consequence of the Gerstenhaber relations and the assumption Sq(m) = 0.
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Theorem ([JKM22, Theorem B]). Let (A,m) be a d-sparse Massey algebra whose
Hochschild–Massey cohomology vanishes in the following bidegrees:

HHp+2,−p(A,m) = 0, p > d.

Then, any two minimal A∞-algebras

(A,md+2,m2d+2,m3d+2, . . . ) and (A,m′
d+2,m

′
2d+2,m

′
3d+2, . . . )

such that {md+2} = m = {m′
d+2} are gauge A∞-isomorphic.

Remark. Kadeishvili’s Intrinsic Formality Criterion is indeed a corollary of the
above theorem: Take d = 1 and notice that the hypothesis in the criterion implies
that every minimal A∞-algebra structure on A has vanishing universal Massey
product {m3} = 0.

The proof of the theorem relies in an essential way on an enhanced A∞-
obstruction theory developed by F. Muro in [Mur20a]. We also mention that the
theorem is one of the key ingredients in the proof of the main theorem in [JKM22]
which, as explained by B. Keller in the Appendix to loc. cit., in a special case yields
the final step in the proof of the Donovan–Wemyss Conjecture in the context of
the Homological Minimal Model Program for threefolds [DW16, Wem23].

The aforementioned applications of the theorem rely on the following obser-
vation: The Hochschild–Massey cochain is equipped with a canonical bidegree
(d+ 2,−d) endomorphism given by

HH•,∗(A,A) −→ HH•+d+2,∗−d(A,A), x 7−→ m⌣ x,

in source bidegrees different from (d+ 1,−d), where it is given by

HHd+1,−d(A,A) −→ HH2(d+1)+1,−2d(A,A), m ⌣ x+ {δ/d}⌣ x2.

Here,

δ/d ∈ C1,0(A,A), x 7−→ |x|
d x,

is the fractional Euler derivation (notice that |x|
d is an integer due to the assumption

that the graded algebra A is d-sparse). The above endomorphisms is in fact null-
homotopic. An explicit bidegree (1, 0) null-homotopy is given by

HH•,∗(A,A) −→ HH•+1,∗(A,A), x 7−→ {δ/d}⌣ x.

Thus, a sufficient condition for the assumptions in the theorem to be satisfied is
that the components of above endomorphism of the Hochschild–Massey complex
of (A,m) are bijective in all non-trivial source bidegrees. The latter condition is
satisfied by the d-sparse Massey algebras investigated in [JKM22].
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The homotopy theory of operated algebras

Guodong Zhou

A general philosophy of deformation theory of mathematical structures, as evolved
from ideas of Gerstenhaber, Nijenhuis, Richardson, Deligne, Schlessinger, Stasheff,
Goldman, Millson etc, is that the deformation theory of any given mathematical
object can be described by a certain differential graded (=dg) Lie algebra or more
generally an L∞-algebra associated to the mathematical object (whose underlying
complex is called the deformation complex). This philosophy has been made into
a theorem in characteristic zero by Lurie [17] and Pridham [18], expressed in terms
of infinity categories. It is an important problem to construct explicitly the dg Lie
algebra or L∞-algebra governing deformation theory of the mathematical object
under consideration.

Another important problem about algebraic structures is to study their ho-
motopy versions, just like A∞-algebras for usual associative algebras. From the
perspective of operad theory, specifically, the task is to formulate a cofibrant reso-
lution for the operad of an algebraic structure. The most desirable outcome would
be providing a minimal model of the operad governing the algebraic structure.
When this operad is Koszul, there exists a general theory, the so-called Koszul
duality for operads [9, 8], which defines a homotopy version of this algebraic struc-
ture via the cobar construction of the Koszul dual cooperad, which, in this case,
is a minimal model. However, when a operad is NOT Koszul, essential difficulties
arise and few examples of minimal models have been worked out.

These two problems, say, describing controlling L∞-algebras and constructing
homotopy versions, are closed related. In fact, given a cofibrant resolution, in par-
ticular a minimal model, of the operad in question, one can form the deformation
complex of the algebraic structure and construct its L∞-structure as explained by
Kontsevich and Soibelman [14] and van der Laan [24, 25]. However, in practice, a
minimal model or a small cofibrant resolution is not known a priori.

Recently, we succeeded in resolving completely the above two problems for
a large class of non-Koszul operads, say operads of operated algebras (that is,
associative or Lie algebras endowed with certain kinds of linear operators), such as
Rota-Baxter algebras with arbitrary weight and differential algebras with nonzero
weight. Surprisingly, our method returns to the original method of Gerstenhaber
[6, 7]. The method consists of several steps.
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• Study formal deformations of an operated algebra and found its deforma-
tion equations, and inspired by the deformation equations, try to found
the deformation complex;

• try to found the L∞-structure on the deformation complex which controls
deformations and deduce from it the homotopy version of the operated
algebra in question;

• try to show that the dg operad of the homotopy version is the minimal
model of the operad of the operated algebra in question;

• use the method given in Kontsevich and Soibelman [14] and van der Laan
[24, 25] to show that the deformation complex as well as its L∞-structure
found above are exactly those deduced from the minimal model.

Note that there is another method for finding the L∞-structure, say, by derived
bracket technique in the sense of Voronov [26, 27]; see [23, 22, 15].

Generalising classical derivation operation of smooth functions in Analysis
(weight 0) and difference operators in Numerical Analysis (weight ±1), Guo and
Keigher introduced differential operators of arbitrary weight. Let k be a base field
of characteristic zero. A differential (associative) algebra of weight λ ∈ k is an
associative algebra (A, µA) together with a linear operator dA : A→ A such that

dA(ab) = dA(a)b + adA(b) + λ dA(a)dA(b), ∀a, b ∈ A.

Note that the defining relation of differential operators is not quadratic in case
that λ 6= 0. In fact, Loday showed that the operad of differential algebras of
weight zero is Koszul and he asked to extend Koszul duality from weight zero
case to nonzero weight case. In a joint work with Guo, Li, Sheng, we develop a
cohomology theory for differential algebras of arbitrary weight in [13] and finally
with Chen, Guo and Wang, we found the minimal model [3] which in turn justifies
the cohomology theory found in [13].

Another class of operated algebras are Rota-Baxter algebras. Closed related to
Yang-Baxter equations [20], Rota-Baxter algebras emerged from Baxter’s research
in probability theory [1] and in Rota [19]. From 2000, renewed interest in the
subject arose with the research of Connes and Kreimer [5], Guo and Keigher
[11, 12] etc. Let (A, µ = ·) be an associative algebra over field k and λ ∈ k. A
linear operator T : A → A is said to be a Rota-Baxter operator of weight λ if it
satisfies

µ ◦ (T ⊗ T ) = T ◦ (Id⊗ T + T ⊗ Id) + λ T ◦ µ.

In this case, (A, µ, T ) is called a Rota-Baxter (associative) algebra of weight λ. It
is obvious that the operad for Rota-Baxter algebras of weight λ is not a Koszul
operad, not even a quadratic operad. Together with Wang [28, 29], we succeeded
in finding the minimal model of the operad for Rota-Baxter (associative) algebras
of weight λ, which enables us to develop cohomology theory as its L∞-structure
controlling deformations and introduce homotopy Rota-Baxter algebras.

We also deal with other operated algebras such as Rota-Baxter Lie algebras [4],
Nijenhuis algebras [21] with applications to Nijenhuis geometry [2] in mind.
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Towards (Fg) for Brauer graph algebras

Karin Erdmann

Let Λ be a finite-dimensional algebra over some field K. It satisfies the finite
generation condition known as (Fg) if its Hochschild cohomology HH∗(Λ) =
Ext∗Λe(Λ,Λ) is Noetherian, and its Ext algebra E(Λ) = Ext∗Λ(Λ/J,Λ/J) is finitely
generated as a module for HH∗(Λ). If so then every Λ-module has a support
variety with properties similar to support varieties from group cohomology. One
of the consequences is that modules with bounded projective resolution must be
Ω-periodic (see [5]). One can show that this property holds for any tame sym-
metric algebra, and one might expect that such algebras satisfy (Fg). As one sees
from [2], there are weakly symmetric tame algebras which do not satisfy (Fg).

We focus on Brauer graph algebras, that is, special biserial symmetric algebras.
Inspired by past work on a class of such algebras which are local (see [3], [4]), we
compute a minimal bimodule resolution for any Brauer graph algebra which has
a 2-regular Gabriel quiver.

The shape of this bimodule resolution suggested that it may be possible to
understand homomorphisms Ωn

Λe(Λ) → Λ well enough, and show that the (com-
mutative) subalgebra HH4∗(Λ) of the Hochschild cohomology is Noetherian, and
that the ext algebra is finitely generated over this subalgebra. As explained in [8],
this is sufficient to prove (Fg). We give a brief outline of results so far.

1. Brauer graph algebras

Assume Λ = KQ/I where Q is 2-regular, that is two arrows start and two arrows

end at each vertex. Let ( ) be the involution on the arrows so that α 6= α start
at the same vertex. We fix a permutation f of the arrows such that an arrow α
can be composed with f(α), so that αf(α) is a path of length two. Then g is the

permutation on the arrows such that g(α) = f(α). For an arrow α let nα be the
length of the g-cycle containing α. As well, for each g-cycle we fix a multiplicity
mα. At each vertex, we fix two cyclic paths along g-cycles of α and α, denoted
by these by Bα and Bα. The path Bα is assumed to have length nαmα ≥ 2, and
similarly for Bα.

Definition 1.1. The Brauer graph algebra Λ is the algebra Λ = KQ/I where I
is given by αf(α) = 0 and Bα = Bα, for all arrows α.
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2. The minimal bimodule resolution

We construct an explicit minimal projective bimodule resolution

. . . → Pn
dn→ Pn−1 → . . .

d1→ P0 → Λ → 0

By [7], the multiplicity of the indecomposable projective Λ(ei ⊗ ej)Λ as a direct
summand in the n-th term Pn is equal to the dimension of ExtnΛ(Si, Sj) where Si

is the simple module corresponding to vertex i.
With this information, we find a set of minimal generators for Pn as follows.

Lemma 2.1. Pn has a set of generators labelled by the paths along f -cycles of
lengths t where 0 < t ≤ n and n − t even, together with one generator for each
i ∈ Q0.

Fix an f -cycle (α1, . . . , αr) of length r, where αs : s → s + 1. We label the
generators of Pn as [hnαs,t] where t = n, n − 2, . . . , 2 or 1, they generate direct
summand isomorphic to Λes⊗es+tΛ. In addition when n is even we have generators
[hni ] generating a direct summand isomorphic to Λei ⊗ eiΛ of Pn, for each vertex
i of Q.

3. Homomorphisms

To study homomorphisms, we assume that f -cycles have no self-crossing, and
moreover that the socle elements Bα of Λ have lengths > 2, so that paths of
length 2 other than αf(α) do not occur in minimal relations. We do not expect
that this is essential but the conditions avoid additional technicalities.

With these, we define elementary homomorphisms from Pn → Λ which induce
homomorphisms Ωn

Λe(Λ) → Λ, which are supported either on the set of elements
{[hnαs,t] | 1 ≤ s ≤ r} for a fixed f -cycle (with t, n fixed), or are supported on the
set {[hni ] | i ∈ Q0}. The maps Pn → Λ must take generators of ΩΛe(Λ) to zero,
that is they must satisfy explitly given identities. The images belong to a subspace
Cα,t which depends only on the residue t̄ of t modulo r. We fix a basis Bα,t for
Cα,t ∩ J2 such that Bα,t = Bα,t̄. The crucial result is

Proposition 3.1. Every homomorphism ϕ : Ωn
Λe(Λ) → Λ is a K-linear combina-

tion of elementary homomorphisms.

We describe the elementary maps, and in each case we specify ones which we
call minimal.

(i) Maps with support [hni ] for i ∈ Q0, and image in KQ0. For n = 4 this is
the special map π, which is minimal. In general, if n = 4k, this map is πk.

(ii) Maps with support [hni ] for i ∈ Q0 labelled as ϕn
z where z varies through a

basis of Z(Λ) ∩ J . The minimal such maps occur when n = 4.
For each fixed cycle of f as above we have the following elementary maps.
(iii) Maps with image in J2: For each even t with 0 ≤ t ≤ n, we have maps

are ϕn
α,t:u where u varies through the basis Bα,t. For the minimal maps, we take

t = 2, 4, 6, . . . , 2r if r is odd, and t = 2, 4, . . . , r when r is even. In each case, the
minimal n is either n = 2t if t ≡ 2, or n = t otherwise.
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(iv) Maps with image in KQ0: Let rα be the least common multiple of r and
4. Then we have for any t ≡ 0 which is a multiple of r the map ϕ̃n

α,t which takes
[hnαs,t] to es. This is defined for any n ≥ rα and n divisible by 4. The minimal
such map is when t = n = rα.

(v) Maps with image in KQ0: Assume r is even but not divisible by 4. For
any t ≡ 2 such that r divides t we have ϕ̂n

α,t which takes [hnαs,t] to (−1)ses. The
minimal such map is t = r and n = 2r.

(vi) Maps with image in KQ1: Suppose r divides t − 1 (hence r is odd), and
t ≡ 0 modulo 4. Then we have the map ϕn

α,t;α which takes [hnαs,t] to αs. Here r is
odd and t is of the form t = r · k + 1. The minimal t is t = r + 1 if r ≡ 3 modulo
4 and t = 3r + 1 otherwise. In each case n = t.

4. Finite generation

Using the explicit formulae we construct chain maps lifting the element π in degree
4, and the polynomial generators ϕ̃rα

α,rα .

Proposition 4.1. All elementary maps which are not minimal, are products of
minimal maps and the polynomial generators. We have product formulae, such as

ϕn
α,t;u ◦ π = ϕn+4

α,t:u and ϕm
α,t:α ◦ π = ϕn+4

α,t;α

for 0 ≤ t ≤ n and t even.

Corollary 4.2. (a) The elements π together with ϕ̃rα
α,rα and (when it exists) ϕ̂2r

α,r

generate a polynomial subalgebra of HH4∗(Λ).
(b) These together with the images of the minimal elementary maps in the above
list generate HH4∗(Λ).

The proof that the Ext algebra is finitely generated overHH4∗(Λ) is in progress.
The ext algebra is finitely generated, see [1], [6] which might help.
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GERMANY

Prof. Dr. Pieter Belmans
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Jussieu-Paris Rive Gauche (IMJ-PRG)
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7 rue René Descartes
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