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Introduction by the Organizers

The workshop Complexity Theory was organized by Peter Bürgisser (TU Berlin),
Irit Dinur (Weizmann Institute), and Salil Vadhan (Harvard). The workshop
was held on June 2–7 2024. It was attended by approximately 50 participants
spanning a wide range of interests within the field of Computational Complexity.
The plenary program featured thirteen long lectures, plus three short (10-minute)
reports by students and postdocs. In addition, intensive interaction took place in
smaller groups.

The Oberwolfach Meeting on Complexity Theory is marked by a long tradition
and a continuous transformation. Originally starting with a focus on algebraic
and Boolean complexity, the meeting has continuously evolved to cover a wide
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variety of areas, most of which were not even in existence at the time of the first
meeting (in 1972). While inviting many of the most prominent researchers in the
field, the organizers try to identify and invite a fair number of promising young
researchers and researchers involved in major developments in adjacent areas. In
particular, approximately 30% of the participants in the 2024 meeting were not at
either of our previous two meetings (2018 and 2021). The meeting usually features
a few special focus topics which vary from meeting to meeting. The special focus
topics of the current meeting were fine-grained complexity, algorithmic fairness,
and structure vs. randomness in combinatorics.

Computational complexity (a.k.a. complexity theory) is a central field of theo-
retical computer science with a remarkable list of celebrated achievements as well
as a vibrant research community. The field is concerned with the study of the
intrinsic complexity of computational tasks, and this study tends to aim at gen-
erality: it focuses on natural computational resources, and considers the effect of
limiting these resources on the class of problems that can be solved. Computa-
tional complexity is related to and has substantial interaction with other areas of
mathematics such as algebra, analysis, combinatorics, geometry, number theory,
optimization, probability theory, and quantum computation.

The workshop focused on several sub-areas of complexity theory and its nature
may be best illustrated by a brief survey of some of the meeting’s highlights.

Recent Developments in Fine-Grained Complexity. The goal of this ac-
tive area is to understand the precise time complexity of fundamental computa-
tional problems in the class P. Amir Abboud surveyed the state of the art and
current research directions. On the one hand, he mentioned recent algorithmic
breakthroughs, e.g. for max-flow and matrix multiplication. On the other hand,
Abboud highlighted the role of three primary conjectures, used to structure the
landscape of the class P. The talk ended with a somewhat controversial discussion
of the notion of “combinatorial algorithms” for triangle detection and Boolean
matrix multiplication.

Algorithmic Fairness. The goal of algorithmic fairness is to ensure that al-
gorithms, for example machine learning models, do not discriminate. Cynthia
Dwork surveyed a variety of definitions that have been proposed for algorithmic
fairness, and described how some of them are closely related to concepts in compu-
tational complexity and graph theory. In particular, the recently proposed notion
of multicalibration (Hébert-Johnson et al. 2018) turns out to be a generalization of
the graph regularity notion that appears in Szémeredi’s Regularity Lemma and a
strengthening of the complexity-theoretic notion of regularity proposed in 2009 by
Trevisan, Tulsiani, and Vadhan. Several past applications of complexity-theoretic
regularity become much more immediate consequences of multicalibration, and we
expect that multicalibration will prove to be a powerful tool for future results in
complexity theory. Informal presentations related to this topic were then given by
Reingold and Vadhan.
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New Frontiers In Structure vs Randomness. What is the largest cardinality
of a subset S ⊆ {1, 2, ..., N} that dos not have a three-term arithmetic progression?
Behrend’s construction (1946) of a large such set may be considered the starting
point of the field of additive combinatorics. Raghu Meka’s talk began with an
overview of this problem. He then described his recent breakthrough on this
question with Kelley, which gave another example of complexity-theoretic thinking
yielding payoffs for problems in pure mathematics. The main idea is a new variant
of the “structure vs. randomness” paradigm. This is a technique with many
applications in complexity theory, algorithm design, and number theory, and the
new variant may lead to further progress. The new idea was explained in detail
for the analogous question for subsets of Fn

3 . The key concept is the notion of
spread subsets S ⊆ Fn

3 and the insight that simple operations on spread sets can
lead to nearly-uniform distributions. Applications to communication complexity
and algorithm design (triangle detection) were discussed, and were followed up by
more detailed presentations in informal sessions by Meka and Fischer.

Reading Turing’s papers. Avi Wigderson, recently announced recipient of the
2024 Turing Award (the highest prize in computer science), gave a wonderful pre-
view of his “Turing Award Lecture” to be delivered a few weeks later at STOC
conference. In his talk he covered several of Alan Turing’s papers, giving a mod-
ern perspective on the same topics. A theme that came out was the power of
modeling real world questions into a mathematical format. These topics span
an amazingly broad range: from undecidability (Entscheidungsproblem), to code
breaking (enigma in WW II) and advances in probability, statistics and informa-
tion theory. Moreover, Alan Turing was a pioneer in machine intelligence (Turing
test). Avi’s talk ended with the discussion of Turing’s influential paper in biology
(morphogenesis). In this work, the symmetry breaking necessary for developing
specialized cells is modelled by ordinary differential equations.

Advances in Polynomial Identity Testing. Pranjal Dutta presented a com-
prehensive overview on the history and recent advances on this important prob-
lem. A seminal paper by Kabanets and Impagliazzo from 2004 made it clear
that finding fast deterministic algorithms for testing polynomial identities (PIT)
and proving complexity lower bounds are intimately linked. In particular, it was
shown that the assumed computational hardness of explicit polynomials can be
used for solving the PIT problem without using randomness. This relied on a
combinatorial construction due to Nisan and Wigderson (1994). For a long time,
researchers sought to replace the combinatorial construction with a purely alge-
braic one, given that the problem at hand is algebraic. Recently, such construction
was found by Guo, Kumar, Saptharishi, and Solomon (2022). Their result leads
to a significantly better understanding of the parameter dependence, e.g., as seen
from their optimal bootstrapping result. Besides explaining this breakthrough,
the talk also overviewed the state of the art of unconditional derandomization of
the PIT problem .



1520 Oberwolfach Report 27/2024

When Sunflowers Meet Thresholds. Jinyoung Park is a young mathemati-
cian working in combinatorics and random graph theory. In a brilliant talk, she
reported on her recent work with several coauthors, in which two related conjec-
tures were proven: the Kahn-Kalai Conjecture (2006) and its relaxation by Tala-
grand (2010). The motivation came from the famous, still unresolved Erdös-Rado
Sunflower Conjecture, which has no randomness in it, and which is of relevance
in complexity theory. A breakthrough on that conjecture was made by theoretical
computer scientists Alweiss et al. (2021, presented in our previous meeting), which
uses ideas of the structure versus randomness paradigm, which was also the topic
of Raghu Meka’s plenary talk.

Pseudorandom permutations. In this talk, Ryan O’Donnell surveyed recent
developments in the construction of pseudorandom subsets of groups, with par-
ticular attention to symmetric groups and unitary groups. Such constructions
have a variety of applications in theoretical computer science, including in clas-
sical and quantum cryptography. O’Donnell argued that a good notion of pseu-
dorandomness is that of fooling group representations. In addition to the usual
pseudorandomness goal of constructing small sets that are ε-approximately k-wise
independent, significant attention has been paid recently to finding sets in which
all elements have highly efficient reversible circuit representations.

Spectral Refutation and bounds for local codes. Pravesh Kothari presented
a powerful new technique, based on the spectral analysis ofKikuchi matrices, which
has been used to resolve several major open problems. The problems solved include
exponential lower bounds on the length of 3-query “locally correctable” error-
correcting codes, improved refutation algorithms for “smoothed” instances of the
SAT problem (a model that lies between worst-case and average-case complexity),
and a (positive) resolution of the Feige’s conjecture on the hypergraph Moore
bound. Related results were presented in the informal sessions by Guruswami,
Kothari, Mohanty, and O’Donnell.

Brief Reports. In one plenary session, the postdocs Nick Fischer, Rahul Ilango,
and Sidhanth Mohanty gave brief reports on their research interests.

Informal specialized sessions. Outside formal plenary program, intense inter-
action between the participants took place in smaller groups. Part of these took
place in the form of specialized sessions, which included a mixture of interactive
presentations (abstracts enclosed) and discussion/brainstorming. The topics of
the specialized sessions included:

• Local characterizable expanders, or another benefit of the zig-zag construction
(Goldreich), Computing polynomial gcd in AC0 (Wigderson). What is in #P?
(Ikenmeyer). Robust orbit problems and abc-conjecture (Bürgisser).
• Interactive proofs for verifying distrbution properties (Rothblum). Open prob-
lems on learning for indistinguishibility, regularity lemmas (Reingold). Multi-
calibration and the Hardcore Lemma (Vadhan).
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• Near tight bounds for 3-query locally correctable binary codes (Guruswami).
Quartic quantum speedups for Kikuchi-type problems (O’Donnell). Batch
verification, recent progress (Rothblum).
• Explicit number-on-forehead separations in communication complexity (Meka).
Combinatorial algorithms for triangle detection and new regularity lemma
(Fischer).
• Update on complexity of matrix multiplication (Umans). Graph limits and
Shannon capacity (Zuiddam).
• Attempts at explaining benign overfitting (Lin). Separating computational
and statistical differential privacy (Ilango). New techniques in space complex-
ity (Tal, Williams).
• Proving properties: answers of ML models (Goldwasser).
• Near optimal alphabet versus soundness tradeoff (Minzer). Feige’s conjecture
via Kuikui’s matrix method (Kothari and Mohanty).
• Near-optimal average samplers (Zuckerman). Improved seedless condenser for
Chor-Goldreich sources (Li).
• Depth reduction for algebraic formulas and circuits (Tavenas). Exponential
lower bounds from Tau-Conjecture (Bläser).

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

New Frontiers In Structure vs Randomness

Raghu Meka

(joint work with Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett)

In 1936, Erdös and Turan asked the following: Suppose you have a set S of integers
from {1, 2, ..., N} that contains at least N/C elements. Then, for large enough N ,
must S have three equally spaced numbers (i.e., a 3-term arithmetic progression)?
Behrend in 1946 showed that C can be at most exp(Ω(

√
logN)). Since then, the

problem has been a cornerstone of the area of additive combinatorics, with the
best bound being C = (logN)1+c for some constant c > 0. In a recent work with
Zander Kelley [1], we obtained a sub-exponential improvement showing that C
can be as big as exp(O(logN)0.09), thus getting closer to Behrend’s construction.

In this talk, I described this result and the main ingredient, a new variant of the
“structure vs. randomness” paradigm. The latter is an old technique with many
applications in complexity theory, algorithm design, and number theory, and the
new variant can potentially lead to further progress.

The talk focused on presenting the main new ideas for the special case of the
problem over finite fields Fn

3 . A key ingredient in the new technique is the idea
that “spreadness implies mixing”. A set S ⊆ Fn

3 is d-spread if the density of S
when restricted to any affine-space of co-dimension d is no more than a factor 1.01
larger than its original density. One of the main ingredients in the new improved
bounds on 3-term arithmetic progressions is that while a spread set is only weakly
pseudorandom, convolving two spread sets leads to a distribution that is very
close to the uniform distribution on the entire space. That is, “spreadness implies
mixing”. The idea that simple operations on spread sets can lead to nearly-uniform
distributions is key for the other applications discussed in the talk.

1. Communication complexity: An important question in communication com-
plexity is to understand the relative powers of various communication models. In
particular, the differences between randomized and deterministic protocols has
been long-studied and well-understood in the two-party case. For example, the
simple equality function, EQ : [N ]× [N ]→ {0, 1} defined by EQ(x, y) = 1 if and
only if x = y has deterministic communication complexity at least log2 N −O(1),
whereas its (public-coin) randomized communication complexity is O(1).

However, the situation is vastly different when we have three communicating
parties in the powerful “number-on-forehead” (NoF) communication model. Here,
it is known that there exist functions that have as large a separation between ran-
domized and deterministic communication protocols, but we did not have strong
explicit separations. The talk described how the spreadness implies mixing frame-
work could be used ([2]) to show such a separation for three-party NOF protocols
leading to an explicit function F : [N ] × [N ] × [N ] → {0, 1} whose randomized
NoF complexity is O(1) but deterministic NoF complexity is Ω((logN)1/3).
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2. Algorithm design: A classical question in algorithm design is to detect if a
given input graph onN vertices has a triangle (three vertices with all edges present
between them). The naive algorithm runs in time O(N3), whereas one can use fast
matrix-multiplication to solve the problem in time O(N2.37...), i.e., get polynomial
savings over the naive algorithm. However, for various applications and exten-
sions (e.g., to hypergraphs) it is desirable to have “combinatorial algorithms” that
could beat the naive algorithm. The techniques developed for the communication
complexity application above, actually lead to a new “spread-regularity lemma”
for graphs ([3]) which in turn can be used to obtain fast combinatorial algorithms
for triangle detection: leading to a combinatorial algorithm for triangle detection

that runs in time N3/2(logN)Ω(1)

.

References

[1] Z. Kelley, R. Meka, Strong Bounds for Arithmetic Progressions, FOCS 2023.
[2] Z. Kelley, S. Lovett, R. Meka, Explicit separations between randomized and deterministic
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Recent Developments in Fine-Grained Complexity

Amir Abboud

A large body of works, colloquially referred to as Fine-Grained Complexity or
Hardness within P, aims to understand the precise time complexity of fundamen-
tal and important computational problems. While traditional complexity theory
classifies problems into the polynomial time solvable ones and those that require
super-polynomial time (under widely-believed conjectures), this more modern the-
ory aims to classify problems based on the constant in the exponent of the poly-
nomial.

The first part of the talk motivates this theory (e.g. by referring to practical
considerations), presents the general technical framework (namely, a web of fine-
grained reductions that translate a small set of conjectures about the complexity
of certain core problems into a large number of tight conditional lower bounds),
and offers a high-level overview of the state of affairs.

The second part of the talk surveys the research directions taken by the com-
munity in recent years, while going into the details of only a small fraction. The
research directions can be categorized into three kinds.

• The first kind aims to boost the theory by making its hardness results
more robust and applicable in settings beyond the basic worst-case set-
ting. For example, the community has been trying to obtain hardness of
approximation results, hardness for the average-case, and an analysis of
the fine-grained quantum time complexity. Each of these topics deserves
its own survey, and this talk will focus only on the hardness of approxi-
mation. We will discuss the main open questions, e.g. whether there is a
(1+ ε)-approximation for the Edit-Distance between two strings of length
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n in near-linear time. Then, we will survey the known techniques for
fine-grained gap amplification and present a recent technique called Short
Cycle Removal [2] that has lead to strong lower bounds for approximate
shortest path problems and distance oracles.
• The second kind are the works that aim to close any remaining gaps that
exist for the most basic problems. As an example, we will present an open
question asking whether subgraph isomorphism, i.e. checking whether a
constant-size pattern graph H exists as a subgraph of an input graph G,
can be solved in near-linear time if and only ifH is acyclic. We will also dis-
cuss the impact of recent algorithmic breakthroughs on fine-grained com-
plexity, e.g. for max-flow, matrix multiplication, and all-pairs max-flow.
We will focus on the latter and discuss a surprising separation between
all-pairs shortest-paths and all-pairs max-flow, as well as the credit due to
fine-grained lower bounds towards making such algorithmic breakthroughs
[3].
• The third kind investigates the conjectures that are the foundation of this
theory. Why this many conjectures? Why these? Can we unify them? We
will discuss some barriers for reductions between certain problems, which
stand in the way of unifying the conjectures. We will also attempt to
make order in the increasing number of conjectures used in the field, by
distinguishing between the three primary conjectures and the more than
ten secondary conjectures that can be derived from them.

The third and final part of the talk will discuss the notion of “combinatorial
algorithms” for Triangle Detection and Boolean Matrix Multiplication, and the
(lack of a) formal definition of this notion. It is based on the discussion in [1].

References

[1] A. Abboud, N. Fischer, Z. Kelly, S. Lovett, and R. Meka, New Graph Decompositions and
Combinatorial Boolean Matrix Multiplication Algorithms, STOC 2024.

[2] A. Abboud, K. Bringmann, S. Khoury, and O. Zamir, Hardness of Approximation in P via
Short Cycle Removal: Cycle Detection, Distance Oracles, and Beyond, STOC 2022.

[3] A. Abboud, R. Krauthgamer, J. Li, D. Panigrahi, T. Saranurak, and O. Trabelsi, Breaking
the Cubic Barrier for All-Pairs Max-Flow: Gomory-Hu Tree in Nearly Quadratic Time,
FOCS 2022.

Echoes of Rorschach: Complexity Theory and the Inkblots of
Multi-group Fairness

Cynthia Dwork

(joint work with Silvia Casacuberta, Daniel Lee, Rachel Lin, Pranay Tankala,
Salil Vadhan)

We identify and explore connections between the recent literature on multi-group
fairness for prediction algorithms and classical results in graph regularity and
computational complexity.
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A predictor p̃ : X → [0, 1] maps individuals in a domain X to a number in
[0, 1] that is often interpreted as a probability, for example, the probability that
individual x will complete college within four years of matriculation. While the
meaning of the probability of a non-repeatable event is an open question in the phi-
losophy of probability, we assume that “real-life” probabilities p∗(x) ∈ [0, 1] exist
and that the real-life outcome for x ∈ X is a draw from the Bernoulli distribution
Ber(p∗(x)).

Multiaccuracy and multicalibration [5] are two widely-studied desiderata that
arose in the study of the theory of algorithmic fairness [2]. Let C ⊆ 2X be a
collection of arbitrarily intersecting subsets of X , and let ε ≥ 0. Abusing notation,
let c : X → {0, 1} denote the characteristic function for the set c ∈ C. Formally, p̃
is (C, ε)-multiaccurate iff ∀c ∈ C,

|E[c(x)(p̃(x) − p∗(x))]| ≤ ε.

Multicalibration is a strengthening of multiaccuracy requiring that p̃ be calibrated
on each c ∈ C.

A key result in [5] is the existence of low-complexity multicalibrated predictors.
The level sets of a predictor p̃ induce a partition on the domain X . A particularly
useful form of the multicalibration theorem says that there is a low-complexity
partitioning of X such that (1) the level sets are few (O(1/ε)); determining for
i ∈ X which piece of the partition contains i requires few (O(1/ε2)) calls to
functions c ∈ C, and within each (sufficiently heavy) level set P , p∗ is (C, ε)-
indistinguishable from the constant-Bernoulli function with parameter equal to
Ex∈P [p∗(x)] [4]. (The definition in [5] (calibration on each c ∈ C) is slightly
weaker than this partition form, but their algorithm achieves this “strict” notion.)

The complexity-theoretic regularity lemma [6] says, informally, that, given any
class F of functions f : X → {0, 1}, an arbitrary function g : X → [0, 1] can be
approximated by a low-complexity function h that makes a small number of oracle
calls to F , in the sense that h is (F , ε)-indistinguishable from g: ∀f ∈ F ,

|E[f(x)(h(x) − g(x))| ≤ ε.

The regularity lemma has powerful consequences [6, 7], including Impagliazzo’s
hardcore lemma (1995); the Dense Model Theorem (Greene and Tao, 2008; Tao
and Ziegler (2008)); Frieze-Kannan (1996) graph regularity; and a complete char-
acterization [7] of pseudo-average min-entropy, a computational analogue of aver-
age min-entropy defined by Dodis, Ostrovsky, Reyzin and Smith (2008).

The starting point for our work is the observation that multiaccuracy is exactly
regularity: simply substitute p∗ for g, p̃ for h, and c ∈ C for f ∈ F . Given that
multiaccuracy (“TTV regularity”) is so generous, what can the more powerful
multicalibration give us?

Complexity Theory ([1]). By definition, each piece of an (F , ε)-multicalibrated
partition for an arbitrary function g enjoys (F , ε)-multiaccuracy, so we can ap-
ply the results of [6] to each piece independently. However, by exploiting the
fact that on each piece of the partition the function g is (F , ε)-indistinguishable
from a constant-Bernoulli function with parameter vP = Ex∈P [g(x)], we can do
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more. Each of the complexity-theoretic applications of TTV regularity requires
a hardness assumption. For example, Impagliazzo’s hardcore theorem assumes
that g is (F , δ)-weakly hard. Extending Yao’s lemma (1982) on the equivalence
of unpredictability and pseudorandomness (indistinguishability from a constant
1/2 Bernoulli function) to the case of general constant-Bernoulli functions, we get
(some) unpredictability on each piece of the partition with no assumptions. The
precise degree of unpredictability is governed by the bias bP = min{vP , 1 − vP }
of the constant vP -Bernoulli function (and the ε of multicalibration). This yields,
without assumptions, a collection of “little hard cores,” one on each (sufficiently
heavy) piece of the partition, leading to a characterization of the average-case
hardness of a function in terms of a weighted sum of the O(1/ε) biases bP , for
P ∈ P . Moreover, by stitching together the little hardcore sets, we can recover
the hardcore theorem with optimal parameters (Holenstein 2005). We also obtain
analogous extensions of the results in [6] for pseudo-average min-entropy and the
dense model theorem.

Graph Regularity ([3]). Szemerédi’s regularity lemma (1975) states that any
large, dense graph can be decomposed into parts that behave “pseudorandomly”
in a certain precise sense. The Frieze-Kannan weak regularity lemma (1996) is a
related result with a qualitatively weaker conclusion but parameter dependencies
much better suited for algorithmic applications.

As noted in [6], given a graph G = (V,E), we can relate graph regularity to
complexity-theoretic regularity by setting the domain X to be V × V , and letting
g : V × V → {0, 1} be the indicator function for E. A regular partition of the
graph is a partitioning of the vertex set (not the domain X ), so that the densities
of the cross-partition cuts capture the behavior of the graph. Every partitioning
P of V immediately yields a partitioning of V × V , but the converse is false.

For a graph G = (V,E), the two regularity requirements can be rephrased in
terms of the fairness (multiaccuracy and strict multicalibration) of the paritioning
P × P of the domain X = V × V , where P is in turn a partitioning of V into
m parts V1, . . . , Vm, with the collection of sets C being given (in both cases) by
C = {S × T | S, T ⊆ V }. Letting djk be the edge density for the (Vj , Vk) cut,
j, k ∈ [m], and e(A,B) denote the number of edges between A,B ⊆ V , we have:

Frieze-Kannan regularity:

max
S,T⊆V

∣

∣

∣

∣

∣

∣

m
∑

j=1

m
∑

k=1

e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|

∣

∣

∣

∣

∣

∣

≤ ε|V |2;

equivalently, P × P is (C, εΘ(1))-multiaccurate.

Szemerédi regularity:

m
∑

j=1

m
∑

k=1

max
S,T⊆V

|e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|| ≤ ε|V |2;

equivalently, P × P is (C, εΘ(1))-strictly multicalibrated.
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Phrased in this way, we immediately see the possibility of an intermediate reg-
ularity notion fitting strictly between Frieze-Kannan and Szemerédi regularity:

max
S,T⊆V

m
∑

j=1

m
∑

k=1

|e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|| ≤ ε|V |2;

equivalently, P × P is (C, εΘ(1))-multicalibrated as originally defined in [5]. This

intermediate notion has part complexity m = 41/ε
2

equal to that of Frieze-Kannan
regularity, much smaller than the tower of O(1/ε2) 2’s required for Szemerédi
regularity (Fox and Lovàsz 2014).

For the case of unstructured partitions (and Boolean-valued outcomes), the
original (not strict) definition of multicalibration [5] most closely resembles this
intermediate notion. Unlike in the case with the structured partitions P×P , in the
unstructured case ordinary multicalibration and strict multicalibration are closely
related (provided the number of level sets is small, which is easily obtained in the
unstructured case because adjacent level sets can be merged).
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Spectral Independence and Applications to Analysis of Markov chains

Kuikui Liu

(joint work with Dorna Abdolazimi, Nima Anari, Zongchen Chen, Shayan Oveis
Gharan, Nitya Mani, Ankur Moitra, Eric Vigoda, Cynthia Vinzant,

Thuy-Duong Vuong)

Let µ be a probability distribution over an exponentially large domain Ω; for
simplicity, we take Ω = {±1}n. We study the complexity of sampling from the
distribution µ, assuming we have query access to a function w : Ω→ R≥0 such that
µ(x) ∝ w(x) for all x ∈ Ω. One of the most ubiquitous approaches to sampling,
both in theory and in practice, is to simulate a Markov chain whose equilibrium
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distribution is µ. Over the Boolean cube, one natural Markov chain is given by
Glauber dynamics, whose evolution can be described as follows. In each step, the
chain

(1) selects a uniformly random coordinate i ∼ [n], and
(2) resamples the assignment σi conditioned on the current assignments σ−i

to the remaining coordinates; in other words, σi ← +1 with probability
µ(σ−i,+1)

µ(σ−i,+1)+µ(σ−i,−1) and σi ← −1 otherwise.

Since each step can be implemented efficiently, the fundamental question is how
long to simulate the chain. In other words, we wish to bound the mixing time of
the chain

Tmix := min{t ∈ N : DTV(δxP
t, µ) ≤ ǫ, ∀x ∈ Ω},

where P denotes the chain’s transition probability matrix. In this talk, we survey
a recently developed technique for bounding mixing times of Markov chains called
spectral independence.

Definition 1 (Spectral Independence (Boolean Case); [3]). Let µ be a probability
distribution over {±1}n. Define its conditional influence matrix Ψµ ∈ Rn×n by

Ψµ(i→ j) := Pr
σ∼µ

[σj = +1 | σi = +1]− Pr
σ∼µ

[σj = +1 | σi = −1], ∀i, j ∈ [n].

We say µ is η-spectrally independent if λmax(Ψµ) ≤ 1 + η.

Note that Ψµ = D−1µ Σµ, where Σµ(i, j) = Covσ∼µ(σi, σj) is the usual covari-
ance matrix, and Dµ is a diagonal matrix with entries given by the variance of
each coordinate; in particular, the eigenvalues of Ψµ are all real. If µ is a product
measure (e.g. uniform over {±1}n), then µ is 0-spectrally independent. At the
other extreme, if µ = 1

2δ+1 + 1
2δ−1, then Ψµ = 11⊤ and so µ is (n− 1)-spectrally

independent. This property of the distribution µ was originally distilled from the
recently emerging theory of high-dimensional expanders. We have the following
local-to-global theorems connecting spectral independence with the theory of mix-
ing times.

Theorem 1 (Informal; [1, 3] building on [25, 21, 26]). Suppose there exists η ≤
O(1) such that for every S ⊆ [n] with |S| ≤ n − 2 and every partial assignment
τ : S → {±1}, the distribution of σ ∼ µ conditioned on agreeing with τ on S is
η-spectrally independent. Then Glauber dynamics mixes in O(n2+η)-steps.

If we impose an additional graphical assumption on the structure of µ, then
we can improve the mixing time to the optimal O(n logn). More specifically, we
say µ satisfies the global Markov property w.r.t. a graph G = ([n], E) if for every
partition of [n] into three sets A,S,B such that S separates A from B, and every
partial assignment τ : S → {±1} on the separator, the marginal assignments
σA, σB are independent conditioned on σS = τ .

Theorem 2 (Informal; [16]). Suppose µ satisfies the following properties.

(1) µ and all of its conditional distributions are all η-spectrally independent
for some η ≤ O(1).



1532 Oberwolfach Report 27/2024

(2) µ satisfies the global Markov property w.r.t. a graph of bounded maximum
degree ∆ ≤ O(1).

(3) For every i ∈ [n], S ⊆ [n] \ {i}, and τ : S → {±1}, the marginals
Prσ∼µ[σi = +1 | σS = τ ],Prσ∼µ[σi = −1 | σS = τ ] are both lower bounded
by a constant b ≥ Ω(1)

Then Glauber dynamics mixes in Oη,∆,b(n logn) steps.

The spectral independence technique has led to the resolution of several long-
standing open problems in the theory of approximate counting and sampling.

• Bases of Matroids: It was shown in [5] that the uniform distribution
over bases of any matroid is 0-spectrally independent.1 Hence, the natural
basis exchange walk mixes in O(r2 logn)-steps, where r is the rank of the
matroid and n is the number of elements in the ground set. In particular,
this led to the first provably correct algorithm for sampling forests in
graphs. The mixing time has been subsequently improved to O(r log r)
[12, 6], leading to the first nearly-linear time sampler for spanning trees.
• Hardcore Gas Model: For a graph G = (V,E) and a parameter λ ≥ 0,
define the Gibbs distribution of the hardcore gas model on G to the dis-
tribution µ(I) ∝ λ|I| for all independent sets I ⊆ V . This a discretization
of the classical hard spheres model of a gas in statistical mechanics. It
is well-known that there is a critical threshold λc(∆), depending on the
maximum degree of the graph, such that approximate counting and sam-
pling is NP-hard when λ > λc(∆) [29, 30], and efficient algorithms exist
when λ < λc(∆) [31]. We proved that whenever λ < λc(∆), the Gibbs
distribution is O(1)-spectrally independent, and hence Glauber dynamics
furnishes a nearly-linear time sampling algorithm [3, 15, 16]. In particular,
there is an extremely sharp complexity phase transition.

Several classes of techniques for establishing spectral independence have also
been developed.

• Correlation Decay: In a sequence of works [3, 15, 16, 13, 23], it was
established that correlation decay implies spectral independence. Correla-
tion decay is a well-studied property of graphical distributions in statistical
physics, which says that

∣

∣

∣

∣

Pr
σ∼µ

[σv = +1 | σS = τ ]− Pr
σ∼µ

[σv = +1 | σS = τ ′]

∣

∣

∣

∣

. exp(−O(distG(v, S)))

for all v ∈ [n], S ⊆ [n] \ {v} and τ, τ ′ : S → {±1}.
• Geometry of Polynomials: The distribution µ can be fruitfully encoded
into its generating polynomial gµ(z) :=

∑

σ∈{±1}n µ(σ)
∏

i:σi=+1 zi. Ana-

lytic and algebraic properties of gµ, such as zero-freeness and log-concavity,
can then be leveraged to bound the spectral independence of µ [5, 2, 17].

1As this distribution is supported over sets of a fixed size, a minor adjustment to the definition
of spectral independence is required.
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• Measure Decompositions: If one can find a decomposition of µ into
a mixture ξ of component distributions µι such that ξ satisfies some nice
mixing properties (e.g. a Poincaré Inequality), and each component µι is
O(1)-spectrally independent, then one can deduce O(1)-spectral indepen-
dence for µ itself. Trickle-down-type methods [28, 4, 9], as well as tech-
niques based on localization and the Hubbard–Stratonovich transform all
fall under this umbrella [22, 10, 27, 8].
• Disagreement Percolation: Similar to correlation decay, one can es-
tablish spectral independence by exhibiting a coupling ξ of the conditional
distributions µi←+1 and µi←−1 such that E(τ,σ)∼ξ[dH(τ, σ)] ≤ O(1), where
dH(·, ·) denotes Hamming distance. Constructing such couplings has been
used to great effect in several works on sampling solutions to constraint
satisfaction problems [19, 20, 18, 14, 11, 24].

The spectral independence technique has since been strengthened and general-
ized considerably [10, 7]. We conclude with an open problem.

Conjecture 1. Let G = (V,E) be a graph of maximum degree ∆. Then for every
q ≥ ∆+2, the uniform distribution over proper q-colorings of G is O(1)-spectrally
independent.

This has been verified for q ≥ ∆+ 3 for graphs of girth at least some constant
depending only on ∆ [14], and for q ≥ (1 + o∆(1)) · ∆ for line graphs [32]. Es-
tablishing various spatial and temporal mixing properties of random colorings on
general graphs is a major open problem in approximate counting and sampling.
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Reading Turing’s Papers

Avi Wigderson

Note from reporter: In this session, Avi Wigderson gave a preview of his 2024
Turing Award lecture.

Alan Turing was a giant intellectual figure of the 20th century. During his short
life he thought deeply about a stunning variety of fundamental issues in several
disciplines, and has contributed uniquely original models and results about them,
which science (especially, but not only computer science) follow and develop. We
review some of the ideas in his papers, and discuss how some evolved within TCS.
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Recent Advances in Polynomial Identity Testing

Pranjal Dutta

Polynomial Identity Testing (PIT) is the problem of checking whether an n-variate
polynomial over a field F is identically zero. For e.g., (x+ y)(x− y)−x2− y2 is an
identically zero polynomial. PIT is easy to solve if the polynomial is given in the
sum of monomials form: f(x1, x2, . . . , xn) =

∑

0≤e1,··· ,en≤d ce1,··· ,en xe1
1 · · ·xen

n ,
simply by checking whether all coefficients ce1,··· ,en ∈ F are zero. However, it is
often inefficient to have such an explicit representation of polynomials. In our
context, we consider a compact representation of polynomials known as algebraic
circuits. An algebraic circuit is a directed acyclic graph whose input nodes (nodes
of in-degree zero) are labeled by variables {x1, x2, . . . , xn}, and constants from
the underlying field F, the internal nodes labeled by ‘+’ (addition gate) and ‘×’
(multiplication gate). The two main complexity parameters of a circuit are the
following: (1) size: the number of edges in the graph which is equal to the number
of addition and multiplication we perform to compute the polynomial, (2) depth:
the length of the longest path in the graph which captures the notion of parallel
complexity. A circuit can compute a polynomial with exponentially large degree
w.r.t. its size. For our purpose, we only focus on low degree circuits.

For algebraic circuits, the PIT problem is defined as follows. Given a circuit
C, decide whether C computes the zero polynomial. One trivial way to compute
the sum of monomials representation fails because it can have exponentially many
monomials. For example, f(x1, x2, . . . , xn) =

∏n
i=1(1+αixi)+

∏n
i=1(1+βixi) has

a circuit of size O(n), but the number of nonzero monomials in f can be as large
as 2n. Therefore, this trivial approach does not produce an efficient solution for
PIT. However, we can evaluate a circuit at any point in size(C) many operations
over F by assigning values to the variables in the input nodes. This gives us a
simple polynomial-time randomized algorithm for PIT due to the following.

Lemma 1 (Polynomial Identity Lemma [1, 4, 2, 3]). Let f ∈ F[x1, x2, . . . , xn] be
a nonzero polynomial of degree at most d and S ⊆ F. Then,

Pr
a1,...,an∈S

[f(a1, . . . , an)] 6= 0] ≥ 1− d

|S| .

In blackbox PIT setting, we are not allowed to see the internal structure of
the circuit, instead we are only allowed to evaluate the circuit at points from
F
n. Additionally, we assume that the information about the size, degree, and the

number of variables of the input circuit is given in unary. A hitting set for a set
of n-variate polynomials P is a set of points H ⊆ Fn such that for any nonzero
polynomial f ∈ P there exists a point a ∈ H for which f(a) 6= 0. A polynomial
map Gen(y) = (g1, g2, . . . , gn) from Fℓ to Fn is called a hitting set generator (HSG)
for a class P if for every P ∈ P , P 6= 0 if and only if P ◦ Gen 6= 0. Typically, we
want ℓ to be as small as possible. These notions are known to be equivalent.

The PIT lemma ensures that for any n-variate nonzero polynomial f with in-
dividual degree at most d, the set Sn contains a point a ∈ Sn such that f(a) 6= 0.
Therefore, Sn works as a hitting set for the set of all n-variate polynomials of
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degree at most d. If we consider C(n, s, d), defined as the set of all size s circuits
computing n-variate polynomials of degree at most d, then poly(sn)-size hitting set
for C(n, s, d) exists as shown by Heintz and Schnorr [5]. To derandomize PIT in the
blackbox setting, our goal is to explicitly construct a hitting set of size poly(snd)
for C(n, s, d) in time poly(snd). However, the current best explicit construction
puts this problem in PSPACE [6].

We organize the known PIT results in two different categories; (1) conditional
and (2) unconditional. Under these categories, we try to chronologically cover
some of the major results,

Conditional PIT. In this regime, we design efficient PIT algorithms based on
unproven complexity-theoretic assumptions like the existence of an explicit hard
polynomial family. Let (Pd)d be an explicit univariate polynomial family where
deg(Pd) = d. We say that Pd is hard if size(Pd) = (log d)ω(1). A random univari-
ate polynomial requires dΩ(1) size circuit. Although there are non-explicit hard

polynomials, e.g. Pd ∈ {
∑d

i=0 2
2i

2

xi,
∑d

i=0

√
pix

i, . . .}, no explicit univariate poly-
nomial family is shown to be hard. Here, explicitness means that the coefficients
are polynomially large and computable efficiently.

Interestingly, explicit and hard univariate polynomial Pd can be uniquely
converted into multilinear explicit hard multivariate polynomial P̃n, where n =

⌈log(d+1)⌉ by reverse Kroneckermap: P̃n(x
20, . . . , x2n−1

) := Pd. In fact, size(Pd) =

dΩ(1) =⇒ size(P̃n) = 2Ω(n).
It turns out that not only univariate hard polynomials can be converted into

hard multivariate polynomials, it can also be used to design efficient PIT algo-
rithms. Kabanets and Impagliazzo [7] showed how to use (optimal) hard univariate
polynomials to get a quasipolynomial-time algorithm for PIT for the class C(s, s, s).
The proof is based on NW-design families. Nisan and Wigderson [8] showed that
there exists a family of subsets S1, S2, . . . , Ss ⊆ [ℓ] with ℓ = O(m2/ log s), |Si| = m,
and |Si ∩ Sj | ≤ log s for all i 6= j. Furthermore, they constructed such a design
deterministically in time poly(s, 2ℓ). Such a family is called a NW-design.

Let P̃ be an explicit, multilinear and exponentially hard polynomial. Such
polynomials can be found by converting a hard univariate polynomial by the re-
verse Kronecker map as mentioned above. Given an NW-design, let Si = {i1 <
i2 < · · · < im}, and y|Si

= (yi1 , yi2 , . . . yim). The HSG in [7] (KI generator)

is defined as follows: GenP̃KI = (P̃ (y|S1), P̃ (y|S2 ), . . . , P̃ (y|Ss
)). They showed

C 6= 0 ⇐⇒ C ◦ GenP̃KI 6= 0.
Building upon the template provided in [7], Dvir, Shpilka, and Yehudayoff [9]

gave a more fine-grained version of the KI generator, which yielded an efficient
black-box PIT for ∆ − 5 depth circuits of bounded individual degree, assuming P
does not have small size ∆ depth circuits. Later, Chou, Kumar, and Solomon [10]
removed the bounded individual degree restriction in the conclusion, but they need
a stronger hardness assumption in the hypothesis, that is, the degree of P is low.

In [11], Guo etal. gave a different construction of HSG from an explicit univariate
hard degree d polynomial P . Their generator does not rely on combinatorial
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designs like NW-design, and is purely algebraic. The HSG GenPGKSS : Fℓ → Fs by
Guo etal. is defined as follows:

GenPGKSS(y, z) := (∆0(P )(y, z),∆1(P )(y, z), . . . ,∆s−1(P )(y, z)) ,

where ∆i(P ) is the degree i (in z) of the Taylor expansion of P (y + z). The

analysis of GenPGKSS is quite different from the analysis of the KI generator. [11]

constructed a small circuit for P from the equation C ◦GenPGKSS = 0, via a careful
inductive analysis similar to Newton iteration. This shows that size(P ) = dΩ(1),
then there is a poly(s)-size explicit HSG for C(s, s, s). Combining this with PIT-
to-hardness result of [12], one gets the surprising bootstrapping results. A general
template of the bootstrapping results assumes a hypothesis that there is a slightly
better-than-the-trivial hitting set for a restricted class of circuits and then one
aims to bootstrap it to get a hitting set for general C(s, s, s). In the same spirit,
[11] achieves the following.

Theorem 2 (Optimal Bootstrapping [11]). Let k, δ be constants. Let C(k, ind :
s, sδ) be the class of k-variate polynomials of individual degree s which are com-
putable by sδ size circuits. Suppose, there is an explicit hitting set of size ≤
(s + 1)k − 1 (1 less than the trivial hitting set). Then, there is a poly(s) size
explicit hitting set for C(s, s, s).

Unconditional PIT. Due to various structural results in algebraic circuits [13,
14], it is known that complete derandomization of restricted classes like depth-
3 and depth-4 will lead to significant progress in derandomizing PIT for general
circuits. Thus, restricted classes not only provide various challenges to generate
new techniques but they can also be seen as stepping stones toward the general
problem. For depth-2 circuits ΣΠ, often referred as sparse polynomials, there is a
polynomial-size explicit hitting set due to Klivans and Spielman [15].

A depth-3 diagonal circuit, denoted by Σ ∧ Σ, is of the form f(x) :=
∑k

i=1 ℓ
di

i ,
where ℓi are linear polynomials. The best-known hitting set for this model is
due to Forbes and Shpilka [17], and Gurjar, Korwar and Saxena [18], which has
size (knd)O(log log kd), where d = max di. On the other hand, when the number of
variables is small, then Forbes, Ghosh and Saxena [16] designed a poly(kd2n)-size
explicit hitting set. Coming up with a polynomial-size hitting set remains open.

A depth-3 circuit computes a polynomial of the form
∑k

i=1

∏d
j=1 ℓi,j , where ℓi,j

are linear polynomials. For this model, there is an (knd)O(k)-size hitting set due
to Saxena and Seshadri [19].

A depth-4 circuit computes a polynomial of the form
∑k

i=1

∏d
j=1 fi,j , where

fi,j are sparse polynomials. When the top fanin k and deg(fi,j) ≤ δ, are arbitrary
constants Dutta, Dwivedi and Saxena [20] designed a quasipolynomial-size explicit
hitting set using Jacobian techniques. For general constant-depth circuits, Limaye,
Srinivasan and Tavenas [21] designed a subexponential-size explicit hitting set.
Coming up with a better size hitting sets for both these models remain open.
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When Sunflowers Meet Thresholds

Jinyoung Park

(joint work with Keith Frankston, Jeff Kahn, Bhargav Narayanan,
Huy Tuan Pham)

In this survey talk, we discuss the connection between Alweiss-Lovett-Wu-Zhang’s
breakthrough [1] on the Erdos-Rado Sunflower Conjecture and the recent develop-
ments around thresholds in probabilistic combinatorics, including the resolution
of a conjecture of Talagrand due to Frankston-Kahn-Narayanan-Park [2] and the
Kahn-Kalai Conjecture due to Park-Pham [4].

A collection of sets S1, . . . , Sr is an r-sunflower if

Si ∩ Sj = S1 ∩ · · · ∩ Sr ∀i 6= j,

and the celebrated Erdős-Rado Sunflower Conjecture is:

Conjecture 1. Let r ≥ 3. There exists c = c(r) such that any k-set system F of
size |F| ≥ ck contains an r-sunflower.
(a k-set system means every set in F has size at most k.)

A few years ago, Alweiss, Lovett, Wu, and Zhang [1] made a huge breakthrough
towards Conjecture 1, showing that the conjecture holds if

|F| ≥ (Cr3 log k log log k)k.

Actually, Alweiss-Lovett-Wu-Zhang’s result was stronger, using the notion of ro-
bust sunflower.

Definition 2. (Robust sunflower) 0 < α, β < 1, F a set system on X , K =
⋂

S∈F S. We say F is an (α, β)-robust sunflower if

(1) K /∈ F
(2) FK satisfies

P(Xα contains some member of FK) > 1− β.

(FK := {S \K : S ∈ F ,K ⊆ S}, and Xα is an α-random subset of X .)

It is easy to see that any (1/r, 1/r)-robust sunflower contains an r-sunflower.

Theorem 3. (Alweiss-Lovett-Wu-Zhang [1]) There exists C such that any k-set
system F of size |F| ≥ (Cr3 log k log log k)k contains a (1/r, 1/r)-robust sunflower.

The proof of Theorem 3 uses the framework of “structured vs. pseudorandom.”
The key part is the pseudorandomness, which uses the notion of “κ-spread.” In
fact, the key theorem in [1] is:

Theorem 4. If κ ≥ (Cr3 log k log log k)k, then any κ-spread F satisfies

P(X1/r contains some member of F) > 1− 1/r.

Theorem 4 provides a sufficient condition (i.e., spread) for an α-random subset
of X contains a member of given set system F with a certain probability, which
is closely related to the notion of thresholds in random graph theory.
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As usual, we use Gn,p for the Erdős-Renyi random graph, and say Fn ⊆ 2E(Kn)

is an increasing property if A ⊇ B ∈ Fn, then A ∈ Fn. Given an increasing
property Fn, p0 = p0(n) is the threshold for Fn if

P(Gn,p satisfies Fn)→
{

0 if p≪ p0;

1 if p≫ p0

as n→∞.
In 2006, Kahn and Kalai [3] suggested an extremely bold conjecture, which

roughly says that, given an increasing property Fn, if p is large enough to avoid
both “first moment” and “coupon collector” constraints, then Gn,p contains a
member of F with a good probability.

The result by Alweiss-Lovett-Wu-Zhang and the Kahn-Kalai Conjecture, which
are seemingly unrelated, turned out to be surprisingly closely related. By taking
a linear relaxation of the integral constraints in the Kahn-Kalai Conjecture and
applying the linear programming duality, Talagrand [5] suggested the following
conjecture that is weaker than the Kahn-Kalai Conjecture. This is proved by
Frankston, Kahn, Narayanan, and Park [2]:

Theorem 5.(Frankston-Kahn-Narayanan-Park [2]) There exists K > 0 such that,
for any finite X and increasing F ⊆ 2X , if there is a q-spread probability measure
supported on F , then for p = Kq log ℓ(F),

P(Xp contains a member of F) ≥ 1/2.

(ℓ(F) is the size of a largest minimal element of F .)
Here “q-spread” is essentially equivalent to the notion of κ-spread in [1], in

the sense that the only difference is that q is the reciprocal of κ. The proof of
Theorem 5 is based on the ingenious algorithm in [1], and [2] tightened the analysis
of the algorithm to obtain the optimal bound of p = Θ(q log ℓ).

Theorem 5 has been very influential in random graph theory, often providing
tight thresholds for many interesting increasing properties, some of which have
been historically very hard. The algorithm used in [1] inspired the resolution
of the Kahn-Kalai Conjecture [3] due to Park and Pham [4]. In the following
statement, we use q(F) for the “expectation threshold” given in [3].

Theorem 6. There exists K > 0 such that for any finite X and increasing
F ⊆ 2X , if p ≥ Kq(F) log ℓ(F), then

P(Xp contains a member of F) ≥ 1/2.

As a final remark, we note that the “graphic” Kahn-Kalai Conjecture, which
was the original motivation for Theorem 6, is still open. We define the graphic
expectation threshold for a graph H to be

pE(H) := min{p : E [#F ’s in Gn,p] ≥ 1 ∀F ⊆ H}.
Conjecture 7. (Conjecture 2 in [3]) There exists K > 0 such that for any graph
H ⊆ Kn, if p ≥ KpE(H) log v(H), then

P(Gn,p contains H) ≥ 1/2.
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Spectral Refutation for Semirandom CSPs and Applications to
Local Codes

Pravesh K. Kothari

A 3-SAT formula is a collection of disjunctive 3-clauses (i.e., OR of 3 literals) on
a given collection of n truth variables. In the well-known 3-SAT problem, we are
given such a 3-SAT formula with m clauses on n variables and our goal is to find an
assignment that satisfies all the constraints (if one exists) and if not, find a short
(i.e., polynomial size in n) witness or certificate of unsatisfiability of the formula.
3-SAT is a well-known (and in many a sense, the first) NP-complete problem. It
is also a problem that turns out to be hard to approximate. In a more fine-grained
picture, denser instances of 3-SAT (i.e., when m grows super-linearly in n) ap-
pear intuitively easier (more “easily accessible” information about the satisfying
assignment, in the form of additional clauses, if there is one or more “likelihood”
of a short contradiction when there are more clauses) but this ease only amounts
to an asymptotic gain for formulas with ω(n2) constraints. Specifically, we know a

2O(n1−δ) time algorithm to find an assignment that gets within (1− ǫ) factor of the
optimal (along with a certificate of approximate optimality) if the formula has at

least Õ(n2+δ) constraints and a polynomial time algorithm if the formula has at
least O(n3) constraints. Back in the late 1980s, in the context of proof complex-
ity, researchers [5] posed the question of whether random 3-SAT formulas could
be easier than the worst-case. Such formulas are unsatisfiable with high proba-
bility if m ≥ O(n). Indications of comparative easiness of such formulas finally
arrived with the work of Goerdt and Krivilevich [9] and Coja-Oghlan, Goerdt and

Lanka [6] in 2004 who proved that random 3-SAT formulas with Õ(n1.5) clauses
admit efficient refutation algorithms, i.e., polynomial time algorithms that gener-
ate a certificate of unsatisfiability of the given formula. And about a decade later,
Raghavendra, Rao and Schramm [15], building on the work of Allen, O’Donnell

and Witmer [2] proved that there is a 2n
1−δ

time algorithm to find certificates of

unsatisfiability with high probability for formulas with at least Õ(n1.5−δ/2) clauses.
To top this work off, while we lack tools for proving NP-hardness of such average-
case problems, there are lower bounds in various restricted models [14] (e.g., the
sum-of-squares hierarchy of convex relaxations) that show that the running time
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vs clause density trade-offs achieved in the above works are nearly tight. Finally,
all the above story extends naturally to k-SAT (and in fact, all constraint satisfac-
tion problems that generalize k-SAT) for any constant k ∈ N with the two relevant

threshold values of m being Õ(nk/2) and Õ(n1+(1−δ)(k/2−1)).
Random k-SAT formulas appear a lot easier than their worst-case counterparts.

But could this ease simply be a quirk of the specific random model? Said differ-
ently, how “robust” are our conclusions (and our algorithms) with respect to the
specific, and rather arbitrary, choice of the random model for the formulas? Such
questions [8] were posed in pioneering works of Blum and Spencer and later Feige
and Kilian in the 1990s for graph problems. In 2007, Feige [7] proposed a semi-
random model to formally tackle this question for k-SAT. Feige’s goal was to pose
a model where an instance is chosen by a combination of random and worst-case
choices. The random choices will hopefully steer clear of the worst-case hard for-
mulas while the worst-case component would, in principle, prevent overfitting to
specific, brittle properties of a specific random model. Formally, he proposed the
smoothed model of j-SAT where a formula is chosen by 1) starting with an ar-
bitrary, worst-case k-SAT formula, and, 2) perturbing each literal pattern (i.e.,
negation pattern on each literal appearing in every clause) independently with
some small constant probability, say, 0.1. If the number of clauses m ≥ O(n) then
such a formula is unsatisfiable with high probability no matter what formula we
begin with. Feige asked the question of whether such smoothed k-SAT formu-
las admit efficient refutation algorithms and in particular, are they easier than
worst-case and in fact, as easy as random k-SAT formulas?

The algorithms that work for random k-SAT formulas strongly exploit the ran-
domness in the variables appearing in the clauses – an aspect completely lost in the
smoothed model where the only randomness is the random perturbation of worst-
case literal patterns that we begin with. Nevertheless, he managed to find new
combinatorial techniques that, when combined with some spectral methods allow
weak1 refutation algorithms for such smoothed 3-SAT formulas. These ideas, how-
ever, did not yield strong refutation algorithms for 3-SAT and did not generalize
to k-SAT for any k ≥ 4.

In this talk, we presented recent progress and some surprising applications
thereof on Feige’s smoothed model. In a joint work with Abascal and Guruswami
[1], we found strong refutation algorithms for smoothed k-SAT formulas with

Õ(nk/2) clauses based on new combination of combinatorial and spectral meth-
ods. These results were then generalized to obtain the same running time vs clause

density trade-off (i.e., 2n
1−δ

time for formulas with Õ(n1+(1−δ)(k/2−1)) clauses) in
a later joint work with Manohar and Guruswami [10] based on a new tool called
Kikuchi matrices combined with a new regularity decomposition for hypergraphs.

1A weak refutation algorithm certifies unsatisfiability of a 3-SAT formula, as opposed to
a strong refutation algorithm that certifies that the every assignment must violate a constant
fraction of the clauses in the input formula. The results discussed for random 3-SAT above all
yield strong refutation algorithms.
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Simpler proof was later found in a joint work with Hsieh and Mohanty [11] and
with Munha-Correia and Sudakov.

Somewhat surprisingly, these new algorithms have applications to problems in
combinatorics and coding theory that we also discussed in the talk. The principle
behind these applications is simple if somewhat strange. In principle, the truth
of any mathematical statement can be efficiently encoded into a satisfiability of a
3-SAT formula thus reducing a mathematical problem to understanding whether
the formula produced by the reduction is satisfiable. This abstract idea, however,
is too general to be useful as a tool for actually establishing mathematical results.
In our applications, however, we’d be able to encode the truth of certain kinds
of combinatorial statements as the satisfiability of a family of SAT formulas and
thus, to disprove the truth of such a statement, it is enough to prove that one of
these formulas, say a randomly chosen member, is unsatisfiable. While this may
appear to get us closer to random SAT formulas, the resulting formulas are far from
random. In fact, in a precise sense, they can be described by a number of random
bits that is significantly smaller (in applications nǫ for ǫ ≪ 1 or even poly logn)
than the number of variables that disallows straightforward probabilistic analy-
ses. Nevertheless, it turns out that the analysis of the refutation algorithms for
smoothed formulas above can be adapted with some work to apply to even such
randomness-starved formulas. Notice that we do not need any efficient algorithm
for proving unsatisfiability of the SAT formula in such an application. The algo-
rithm arises purely as a tool for arguing the unsatisfiability (indeed, we know of
no other proofs, in general, for establishing such a result).

The applications of this technique so far include a new cubic (improving on the
quadratic) lower bounds on the blocklength of a 3-query locally decodable codes [3],
exponential (improving on cubic) lower bounds [12] on the block length of 3-query,
linear, locally correctable codes (with applications to almost resolving the Hamada
conjecture from the theory of algebraic designs for 4-designs), a super-polynomial
lower bound [13] for non-linear 3-query locally correctable codes, the resolution of
Feige’s conjecture [10] on the hypergraph Moore bound, and improved bounds on
three-term arithmetic progressions with random common differences [3, 4]. In the
talk, we focused largely on the lower bounds on the local codes.
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Meta-complexity, One-way Functions and Zero Knowledge

Shuichi Hirahara

(joint work with Mikito Nanashima)

This talk consists of two parts. In the first part, I survey recent progress towards
eliminating Heuristica via meta-complexity. In the second part, I present new
characterizations of the existence of one-way functions by worst-case complexities
of zero knowledge, based on the joint work with Mikito Nanashima [HN24].

1. Meta-complexity

Although P 6= NP is the central open problem in complexity theory, it does not
provide an efficient way to generate hard instances of NP, which makes P 6= NP

irrelevant in practice. More relevant is whether NP is hard on average, e.g.,
DistNP 6⊆ AvgP, which means that there exists a polynomial-time samplable dis-
tribution with respect to which NP is hard on average. Whether P 6= NP and
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DistNP 6⊆ AvgP are equivalent is a central open problem in complexity theory,
known as “excluding Heuristica from Impagliazzo’s five possible worlds [Imp95]”.
This is an important step towards another significant problem of constructing a
one-way function whose security is based on the worst-case hardness of NP, known
as the problem of excluding Heuristica and Pessiland from Impagliazzo’s five pos-
sible worlds.

There are three types of barriers that explain why standard proof techniques are
incapable of ruling out Heuristica: limits of (nonadaptive) black-box reductions
[FF93, BT06], impossibility of hardness amplification [Vio05], and relativization
barriers [Imp11, HN21]. Thus, it is crucial to develop new proof techniques that
are not subject to these barriers.

Meta-complexity — complexity of problems that ask for complexity — played
a key role in developing proof techniques that bypass the barriers. The Minimum
Circuit Size Problem (MCSP) asks for the size of a minimum circuit that computes
a given function f : {0, 1}n → {0, 1} (encoded as the truth table of length 2n).
Using such meta-computational problems, it was shown that each barrier can be
overcome:

• In [Hir23], we showed the equivalence between the average-case complexity
of MCSP with respect to the uniform distribution and the worst-case com-
plexity of GapMCSP (an approximate version of MCSP). This is proved by
non-black-box reductions and bypasses the limits of black-box reductions
[BT06].
• In [Hir21], we showed that NP 6⊆ DTIME(2O(n/ logn)) implies DistNP 6⊆
AvgPP, which eliminates a strong variant of Heuristica. This result cannot
be proved by neither black-box reductions [BT06] nor hardness amplifica-
tion [Vio05].
• In [Hir22], we showed that the partial function variant of GapMCSP, de-
noted by GapMCSP∗, is NP-complete. This result does not relativize
[Ko91].

What remains to rule out Heuristica is to combine these proof techniques and to
bypass the barriers simultaneously. A specific approach for ruling out Heuristica is
to extend the NP-completeness of GapMCSP∗ to GapMCSP. Then, it follows from
the worst-case to average-case connection of [Hir23] that the worst- and average-
case complexities of NP are equivalent. Ilango [Ila23] showed that this approach
can be realized under the random oracle model, by proving that NP reduces to
GapMCSPO for a random oracle O.

2. One-way functions and zero knowledge

Although it remains open whether Heuristica can be ruled out unconditionally,
Hirahara and Nanashima [HN24] ruled out Heuristica and Pessiland if NP has
zero knowledge systems, which provides new worst-case characterizations of one-
way functions.

A zero knowledge proof system for a language L is a system in which a prover
convinces a polynomial-time verifier that an input is in L without revealing any
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other information. The celebrated theorem of Goldreich, Micali and Wigderson
[GMW91] shows that a one-way function is sufficient for constructing a zero knowl-
edge proof system for every problem in NP. Ostrovsky and Wigderson [OW93]
studied whether a one-way function is necessary, and showed that the average-
case hardness of computational zero knowledge implies the existence of a one-way
function. Their work leaves as a main open problem a gap between the average-
and worst-case complexities of zero knowledge.

[HN24] presents characterizations of the existence of a one-way function based
on worst-case complexities of zero knowledge. Specifically, the following are equiv-
alent.

• A one-way function exists.
• Every problem in NP has a computational zero knowledge proof system,
and NP 6⊆ i.o.P/poly (i.e., NP is hard in the worst case for polynomial-size
circuits).

This equivalence does not refer to meta-complexity, yet meta-complexity plays a
key role in the proof.1

The statements above are also equivalent to the following.

• GapMCSP has a computational zero knowledge proof system, and some
worst-case hard problem has a computational zero knowledge proof sys-
tem.
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The Lens of Abelian Embedding

Dor Minzer

(joint work with Amey Bhangale, Subhash Khot)

The primary topic of this talk is the approximation dichotomy conjecture and
some progress towards it. We also discuss relations to discrete Fourier analysis,
multi-player parallel repetition, additive combinatorics and more. To describe the
conjecture we begin with some background.

Setup: let Σ be a finite alphabet and let k ∈ N be a parameter; we think of both
|Σ| and of k as constants. Given a collection of predicates P ⊆ {P : Σk → {0, 1}},
we define an associated constraints satisfaction problem CSP-P , as follows. An
instance (X,E) of CSP-P is composed of a set of variables X and a collection E
of constraints of the form P (xi1 , . . . , xik) = 1, where xi1 , . . . , xik ∈ X are variables
and P is a predicate from the collection P .
The Dichotomy Theorem: with the definition of CSP-P in mind, one can
consider the decision problem of determining satisfiability of instances CSP-P .
By that, we mean that for a fixed collection P , we may consider the problem of
deciding whether an instance Ψ = (X,E) of CSP-P is satisfiable or not. Schaefer
Theorem [15] asserts that for Boolean alphabets, i.e. for |Σ| = 2, the decision
problem CSP-P is always either in the class P or else it is NP-hard. Feder and
Vardi [17] conjectured that this result extends to all finite alphabets: this is the
well known dichotomy conjecture. The dichotomy conjecture has been open for a
long time until it was resolved independently by Zhuk [16] and Bulatov [11]. In
words, the dichotomy theorem asserts that the complexity of CSP-P can never be
intermediate: it is either computationally tractable (in the class P), or else it is
computationally hard (namely, NP-hard).

Raghavendra’s Theorem: Raghavendra [14] established a similar dichotomy
behaviour for approximation problems, albeit in the case of almost satisfiable
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instances. Towards stating this result, we define the promise problem gap-CSP-
P [c, s] for 0 ≤ s ≤ c ≤ 1: in this problem one is given an instance Ψ of CSP-
P promised to either be at least c-satisfiable (namely, there is an assignment
satisfying at least c fraction of the constraints), or at most s-satisfiable (namely,
no assignment satisfies more than s fraction of the constraints), and the goal is to
distinguish between these two cases. With this in mind, Raghavendra proved that
for all finite alphabets, k and collections of predicates P and for all 0 < c < 1,
there exists a number s such that gap-CSP-P [c, s] can be solved in polynomial
time, but for all δ > 0 the problem gap-CSP-P [c, s+ δ] is NP-hard (assuming the
Unique-Games Conjecture [13]). In fact, Raghavendra gives a polynomial time
algorithm for solving gap-CSP-P [c, s], which consists of solving the natural semi-
definite programming relaxation of the problem and then applying an appropriate
Gaussian rounding scheme.

Satisfiable instances versus almost satisfiable instances: Ragahvendra’s
theorem [14] does not address the case of satisfiable instances, and at first glance
it may seem as a mere technicality. After all, what is the big difference between
almost satisfiable instances and fully satisfiable instances? Alas, it turns out that
this makes a dramatic difference for some problems. Consider, for instance, the
problem 3-LinF2, in which one is given a system of linear equations over F2 wherein
each equation contains 3 variables; the goal is to find an assignment satisfying as
many of the equations as possible. If the instance is promised to be satisfiable, then
one can perform the Gaussian elimination algorithm and thereby find a satisfying
assignment in polynomial time. Thus, gap-CSP-3LIN[1, s] is in P for every s < 1.
However, if the instance is only promised to be c-satisfiable for c < 1 (which may
be very close to 1), a well known result of H̊astad [12] shows that the best one
can do is a random guessing algorithm, and in fact that gap-CSP-3LIN[c, 1/2+ δ]
is NP-hard for all δ > 0. This brings us to the main question that we considered
in the talk: for what predicates can there be such a dramatic difference between
satisfiable instances and almost satisfiable instances?

Abelian embeddings: in [3], we suggest that the notion of Abelian embeddings
plays a crucial role in the above question. We say a predicate P : Σ1× · · · ×Σk →
{0, 1} has a non-trivial Abelian embedding if there exists an Abelian group (G,+)
and maps σi : Σi → G for i = 1, . . . , k, not all constant, such that

∀(x1, . . . , xk) ∈
k
∏

i=1

Σi, P (x1, . . . , xk) = 1⇒ σ1(x1) + . . .+ σk(xk) = 0G.

In words, the definition says that after applying the re-labelings σ1, . . . , σk of the
alphabets Σ1, . . . ,Σk, the support of P is contained in the set of solutions to a
linear equation over G. We conjecture that, in some sense, there could only be a
difference between the complexity of the problems gap-CSP-P [1, s] and gap-CSP-
P [1 − ε, s] if P admits non-trivial Abelian embeddings.1 In the talk we discussed

1The precise formulation has to do with the structure of integrality gaps for the natural semi-
definite programming relaxation of gap-CSP-P [1, s], and we do not elaborate on it for simplicity.
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relationship between this problem and the following analytical problem: let µ be a
distribution over P−1(1); what 1-bounded functions fi : Σ

k
i → C can satisfy that

∣

∣

∣

∣

E
(x1,...,xk)∼µ⊗n

[f1(x1) · · · fk(xk)]

∣

∣

∣

∣

≥ Ω(1)?

We discussed some progress on the case that k = 3 from the works [5, 6, 7, 8]. In
particular, we discussed the solution to the above inverse problem and argued that
under mild assumptions about µ, any f1, f2, f3 achieving such non-trivial 3-wise
correlations must come from “Fourier characters” and “low-degree functions”. We
discussed applications of this result to the problem of restricted 3-AP free subsets
of Fn

p from [4] and to 3-player parallel repetition theorem of the GHZ game [9] and
more generally of 3-XOR games [1, 2].

The hybrid algorithm: lastly, we discussed the hybrid algorithm from [8]. This
is a candidate optimal approximation algorithm for certain classes of constraints
satisfaction problems (that include CPSs with sufficient symmetries). This algo-
rithm consists of solving the natural semi-definite programming relaxation of the
problem as well as solving a certain system of linear equations over an Abelian
group associated with the predicate, and then applying some rounding function.
We analyze this algorithm for some class of predicates and show a dictatorship
test that matches the performance of this algorithm, giving evidence that this
is indeed the best efficient approximation algorithm (assuming a variant of the
Unique-Games Conjecture called the Rich 2-to-1 Games Conjecture [10]).
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Pseudorandom permutations and unitaries: recent developments

Ryan O’Donnell

In this talk, we survey some recent developments in the construction of pseudo-
random subsets of (families of)groups GN , with particular attention being paid to
the symmetric groups GN = Sym(N) and the unitary groups GN = U(N), where
N = 2n. Other possibilities include GN = FN

2 (though this is already extremely
well-studied) and the orthogonal groups GN = O(N).

We first argue that a good notion of pseudorandomness is that of fooling repre-
sentations. Specifically, if ρ : GN → {d×d matrices} is a representation (meaning
ρ(gh) = ρ(g)ρ(h)), we say that a (multi)set D ⊆ GN ǫ-fools ρ if

(1)

∥

∥

∥

∥

E
g∼D

[ρ(g)]− E
g∼GN

[ρ(g)]

∥

∥

∥

∥

≤ ǫ.

Here g ∼ GN denotes that g is drawn from the uniform/Haar distribution. As
an example, when GN = FN

2 we have the d = 1 representations ρ = χS : x 7→
∏

i∈S(−1)xi . If D ǫ-fools all of these it is an “”ǫ-biased set”; if D ǫ-fools just those
with |S| ≤ k, it is “ǫ-approximate k-wise independent”.

The main case we focus on is when GN is a group of N × N matrices (e.g.,
Sym(N) thought of as permutation matrices, or U(N)), and when ρ is the rep-

resentation ρk : M 7→ M⊗k/2 ⊗M
⊗k/2

. (This is just M 7→ M⊗k for real matri-
ces M .) In this case, ρk(M) encodes all the degree-k monomials in the entries
of M , and a set D ⊆ GN that ǫ-fools ρk can be thought of as “ǫ-approximately
k-wise independent” (or an “ǫ-approximate k-design”).

In addition to the usual pseudorandomness goal of constructing small sets D
that are ǫ-approximately k-wise independent, significant attention has been paid
recently to finding sets D in which all elements g ∈ D have highly efficient circuit
representations. Here, in the case of GN = Sym(2n), we wish for each g ∈ D to
be computable by a small n-bit reversible circuit with gates of fan-in/out, say, 3.
In the case of GN = U(2n), we wish for each g ∈ D to be computable by a small
n-qubit quantum circuit with gates of fan-in/out at most 2 or 3. For practical
reasons, we may even wish for additional structure/simplicity, such as circuits
of low depth, circuits with only nearest-neighbor gates, or “brickwork” circuits
(meaning ones with complete layers of nearest-neighbor gates). See Figure 1 for
depictions.

One way to construct small k-designs is to show that the setD1 = {a single gate}
is (1− δ)-fooling for ρk. Then it is not hard to show that DT = {all circuits of T
gates} is ǫ-fooling provided T ≥ ln(1/ǫ)/δ. One most often wants ǫ = 1/NCk
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Figure 1. The first circuit is an example of a circuit with generic
3-bit gates. The second is an example of a circuit with 1D nearest-
neighbor 3-bit gates. The third is an example of a brickwork
circuit.

(since ρk(g) is Nk × Nk when g ∈ GN ), and this means that circuits of size
T = O(nk/“gap”) suffice, where “gap” denotes δ.

In the last part of the talk, we describe past and present results for constructing
ǫ-approximate k-wise independent subsets of Sym(N) and U(N), including:

• Works [Gow96, HMMR05, BH08, FI24, HO24] that bound “gap” for a
single classical reversible gate. The last work mentioned shows the gap is
at least 1

n·Õ(k)
, meaning that random reversible circuits of size n2 · Õ(k)

are good k-designs for Sym(2n). Indeed, this is shown even for brickwork

circuits of depth n · Õ(k).
• Works [BHH16, HHJ21, OSP23] that bound “gap” for a single quantum
gate. These works achieve that gap is at least 1

n·poly(k) , meaning that

random quantum circuits of size n2 ·poly(k) are good k-designs for U(2n).
Again, this is shown even for brickwork circuits of depth n · poly(k).
• Works [KNR09, OSP23] that use pseudorandomness technology to show
that only O(nk) bits of true randomness are needed to draw from such
designs.
• Works [Kas07, CK23] giving constant-size sets D ⊆ Sym(N) (of seemingly
small circuit complexity) that (1 − Ω(1))-fool all representations.

Connections to classical and quantum cryptography were also discussed, as well
as additional works with improved results appearing online right around the time
of the talk, including [GHP24, CHH+24].
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Recent Developments of SNARGs

Yael Tauman Kalai

In this talk we focused on the problem of constructing succinct non-interactive
arguments (SNARGs) for NP. Fix any NP language L. For any x ∈ L with a
corresponding witness w, the goal is for a prover, who is given (x,w), to prove to
a verifier that x ∈ L, where the length of the proof is succinct, i.e., significantly
smaller than the length of the witness w. Both the prover and the verifier are
required to be efficient. Namely, the prover is required to run in time poly(|x|, |w|)
and the verifier who is given x and a proof π, is required to run in time poly(|x|, |π|).

This task is only possible if we relax the soundness condition to be a compu-
tational one, where we require soundness to hold only against cheating provers
who are computationally bounded. The reason is that we do not expect that it
is possible to shrink any witness w into a more succinct one that can be veri-
fied efficiently. Instead this is achieved by assuming that both the prover and
verifier have access to a common random string (CRS), in which a cryptographic
assumption is embedded. The (computational) soundness requirement is that for
every x /∈ L and for every polynomial-time cheating prover P ∗, the probability
that P ∗(x,CRS) outputs an accepting proof π is negligible. A proof system where
the soundness guarantee is only computational is called an argument, and such
succinct non-interactive argument systems are called SNARGs.

The holy grail in this area is to construct SNARGs for all of NP under standard
cryptographic assumptions. Starting with the seminal work of Micali [1] there were
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many results that construct SNARGs for NP under non-standard assumptions or
in idealized models (such as the random oracle model). Sahai and Waters [2]
construct a SNARG for NP assuming indistinguishability obfuscation (iO), though
in this SNARG CRS is not random, and is instead structured and also long (as long
as the instance and witness). While recently, Jain, Lin and Sahai [3] constructed
iO under standard assumptions, these assumptions are quantumly broken and also
rely on sub-exponential hardness.

In this talk we presented a recent result due to Jin, Kalai, Lombardi and Math-
ialagan that under the LWE assumption (which is a standard cryptographic as-
sumption believed to be post-quantum secure), constructs a universal SNARG for
NP. Namely, for every language L ∈ NP and for every length bounds ℓcrs and
ℓproof , they construct a SNARG with CRS of length poly(ℓcrs) and proof length
poly(ℓproof), and argue that if there exists any SNARG for L with CRS of length ℓcrs
and proof length ℓproof that has a poly-size Extended Proof of correctness, then
their construction is sound under LWE.

Moreover, they prove something stronger: their SNARG is sound under LWE

even if there exists a two-message argument for L where the first message from
the verifier to the prover (which may depend on the instance x) is of length ℓcrs
and the second message from the prover to the verifier is of length ℓproof (and may
require the secret state of the verifier to verify), assuming this 2-message argument
has a poly-size Extended Proof of correctness. As a corollary they conclude that
their SNARG is secure assuming the existence of a witness encryption which has a
poly-size Extended Proof of correctness. A witness encryption is a weaker primitive
than iO and is known to imply the existence of a two-message argument for NP

where the message from the prover to the verifier is succinct. The techniques used
to obtain this result heavily rely on a recent work due to Jin, Kalai, Lombardi and
Vaikuntanathan [4].
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The Parameterized Inapproximability Hypothesis

Venkatesan Guruswami

(joint work with Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu)

Abstract. The Parameterized Inapproximability Hypothesis (PIH) asserts that
no fixed parameter tractable (FPT) algorithm can distinguish a satisfiable CSP
instance, parameterized by the number of variables, from one where every assign-
ment fails to satisfy an ǫ fraction of constraints for some absolute constant ǫ > 0.
PIH plays the role of the PCP theorem in parameterized complexity, with many
downstream inapproximability consequences. This talk introduced the context and
statement of the PIH, and then gave a high level view of a recent proof showing
that the well-known Exponential Time Hypothesis (ETH) implies the PIH. Previ-
ously PIH had only been established under Gap-ETH, a very strong assumption
with an inherent gap.

We begin with some basic definitions concerning parameterized complexity and
CSP before stating the PIH formally.

Fixed parameter tractability. In parameterized complexity, each input in-
stance x of a problem of interest is associated with a parameter k := k(x), and we
treat the input as the pair (x; k). A fixed parameter tractable (FPT) algorithm is
one which runs in time f(k)|x|c for an arbitrary computable function f : N → N

and a finite c. That is, we decouple the dependence of the runtime on the param-
eter k and the instance size |x|, and allow super-polynomial (or indeed arbitrary)
dependence on the parameter k which is to be thought of as a growing parameter
that is much smaller than the instance size n := |x|.

A language L is said to belong to FPT if there is an FPT algorithm that on
input instance (x; k) correctly determines if x ∈ L in time f(k)|x|c.

For instance, the Vertex Cover problem, consisting of instances (G; k) where G
is a graph that has a vertex cover of size k is in FPT, as it admits an algorithm
running in time O(2kn), that is much better than the brute force nk algorithm for
small values of the parameter k. The Clique problem, consisting of instances (G; k)
where G is a graph that has a clique of size k, on the other hand, is not believed
to be in FPT. In fact, no algorithm with running time no(k) is known for this
problem, and indeed such an algorithm is ruled out under the ETH (which states
that 3SAT on n variable instances requires 2Ω(n) time). The parameterized Clique
problem is complete for the class W [1] (under FPT reductions), and W [1] 6= FPT
is the counterpart of the NP 6= P assumption in the parameterized world.

CSP. A constraint satisfaction problem (CSP) instance consists of a directed graph
G = (V,E), an alphabet Σ, and a relation Re ⊆ Σ×Σ for each edge e = (u, v) ∈ E
which constrains the values to be assigned to u, v. (Here we are defining arity two
CSPs, which are of sufficient generality for our purposes.) The goal is to find an
assignment σ : V → Σ that maximizes the fraction of “satisfied” edges e = (u, v)
for which (σ(u), σ(v)) ∈ Re, and in the optimization version to maximize the
fraction of satisfied constraints/edges.
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Parameterized CSP. Usually for a CSP, we treat the alphabet Σ as fixed and
the number of variables |V | as growing. For parameterized CSPs, the alphabet Σ
is considered as growing (so n := |Σ| is the input size) and we treat the number
of variables |V | as the parameter k. Note that there is a brute force |Σ||V | = nk

time algorithm to determine the optimum solution to a parameterized CSP.
One can easily encode the W [1]-hard Multicolored k-Clique problem (where

the vertices are partitioned into k parts and the goal is to find a k-clique with
one vertex per part) as a parameterized CSP, and thus the problem in general is
W [1]-hard. The PIH asserts the inapproximability of parameterized CSP, akin to
how the PCP theorem shows hardness of approximating CSP.

Parameterized Inapproximability Hypothesis (PIH). There is an absolute
constant ǫ > 0 such that no FPT algorithm can distinguish satisfiable instances of
a parameterized CSP (with number of variables as the parameter) from instances
where every assignment fails to satisfy more than ǫ fraction of the constraints.

The PIH was implicitly mentioned in several works as the surrogate of the PCP
theorem in the parameterized world, and explicitly highlighted in [6]. PIH uni-
fies several inapproximability results for fundamental parameterized problems like
k-Clique and k-Set-Cover that were established using ingenious, problem-specific
techniques. It is thus a desirable goal for the theory of parameterized approxima-
bility.

The main result highlighted in this talk, shown in [4], can be compactly de-
scribed as:

Theorem 3. ETH implies PIH.

In comparison, previously PIH was known under the assumption of linear-sized
PCPs, or the implied Gap-ETH [3] which asserts that even approximating 3SAT
within some constant factor (as opposed to solving it exactly) requires 2Ω(n) time.

The proof of Theorem 3 in [4] proceeds in two steps: (i) a reduction from 3SAT
to a special vector-structured CSP called VecCSP , and (ii) a “short” PCP for
testing satisfiability of VecCSP. The identification of the specific form of VecCSP,
which is general enough to accommodate the reduction step (i), and at the same
time highly structured enough to facilitate the design of the PCP in step (ii), is
one of the crucial insights and contributions of our work [4].

The (parameterized) VecCSP instances have k variables V (where k is thought
of as the parameter) each to take as values vectors in Fd over some fixed finite
field. The constraints are of two kinds: (a) parallel, and (b) linear. A parallel
constraint between u, v ∈ V is specified by a relation Πu,v ⊂ F × F, and the
vector assignments σ(u), σ(v) ∈ Fd should satisfy (σ(u)i, σ(v)i) ∈ Πu,v for each
coordinate i ∈ {1, 2, . . . , d}. The key point is that the same constraint is applied
in parallel to the i’th coordinate for every i.

The advantage of parallel constraints is that one can take a PCP for the con-
straints involving each coordinate independently, and “stack” them together into
a PCP that can be checked in parallel by making the same queries into each of the
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PCPs. In each coordinate, we have a CSP with k variables and a constant-sized
alphabet, so we can construct “short” PCPs whose size only depends on k.

Of course, a VecCSP with only parallel constraints will be easy to decide in
FPT time, as one can solve the CSP instance for each coordinate independently.
A linear constraint between u, v ∈ V is specified by a matrix Mu,v ∈ Fd×d and
stipulates that σ(u) = Mu,vσ(v).

The combination of parallel and linear constraints is surprisingly enough to
make the VecCSP instance hard, in the sense that an FPT algorithm will lead
to a sub-exponential algorithm for 3SAT, contradicting ETH. The talk sketched
most details of this reduction, which is based on a sequence of elementary steps
which bestow increasingly more structure on the constraints, culminating with the
parallel-linear combination mentioned above.

At the same time, the linear constraints turn out to be amenable to testing via
the well-known Walsh-Hadamard code PCP, of length exponential in k. Together,
we get a reduction from 3SAT on n variables to a parameterized gapCSP on k =

2O(k′4) variables over an alphabet Σ of size 2O(n/k′) with a constant gap between
completeness and soundness. Chasing through the parameters, assuming ETH this

implies a |Σ|Ω( 4
√
log k) running time lower bound for approximating parameterized

CSP, which in turn rules out an FPT algorithm.
In a recent follow-up to [4], the authors improved the running time lower bound

for approximating parameterized CSP within a constant factor to |Σ|k1−o(1)

which
is near-tight [5]. This is based on an even more structured form of VecCSP, and
using the Reed-Muller code to design a near-linear size PCP for it, employing
constructions and ideas from [2, 1].
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Recent Developments in the Theory of Randomness Extractors

Xin Li

Randomness extractors are fundamental objects in the study of pseudorandom-
ness. In short, a randomness extractor for a class C of weak random sources with
support in {0, 1}n is a function Ext : {0, 1}n → {0, 1}m such that for any weak
source X ∈ C with entropy H∞(X) ≥ k for some threshold k, the output distri-
bution over {0, 1}m is statistically close to the uniform distribution. Many models
of randomness extractors have been studied over the past four decades.

A long line of work in the past two decades or so established close connections
between several different randomness extractors and applications, including seeded
or seedless non-malleable extractors, two source extractors, (bipartite) Ramsey
graphs, privacy amplification protocols with an active adversary, non-malleable
codes and many more. These connections essentially show that an asymptotically
optimal construction of one central object will lead to asymptotically optimal
solutions to all the others. However, despite considerable effort, previous works
can get close but still lack one final step to achieve truly asymptotically optimal
constructions.

In this talk we describe a recent work [1] that provides the last missing link,
thus simultaneously achieving explicit, asymptotically optimal constructions and
solutions for various well studied extractors and applications, that have been the
subjects of long lines of research. These results include:

• Asymptotically optimal seeded non-malleable extractors, which in turn give
two source extractors for asymptotically optimal min-entropy of O(log n), ex-

plicit constructions of K-Ramsey graphs on N vertices with K = logO(1) N ,
and truly optimal privacy amplification protocols with an active adversary.
• Two source non-malleable extractors and affine non-malleable extractors for
some linear min-entropy with exponentially small error, which in turn give the
first explicit construction of non-malleable codes against 2-split state tamper-
ing and affine tampering with constant rate and exponentially small error.
• Explicit extractors for affine sources, sumset sources, interleaved sources, and
small space sources that achieve asymptotically optimal min-entropy of
O(log n) or 2s+O(log n) (for space s sources).
• An explicit function that requires strongly linear read once branching programs
of size 2n−O(logn), which is optimal up to the constant in O(·). Previously,
even for standard read once branching programs, the best known size lower

bound for an explicit function is 2n−O(log2 n).

The formal definitions of these objects and a history of related research can
be found in [1]. At the core of the techniques, we show a general way to con-
struct a one-source non-malleable condenser from any multi-source non-malleable
extractor. This construction together with known constructions of multi-source
non-malleable extractor with exponentially small error [5] is then used to achieve
an asymptotically optimal seeded non-malleable extractor, which in turn gives the
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improvements of all the applications mentioned above, via various connections
established in previous works [3, 6, 8, 4, 2].

There are still interesting and important open problems left. For example, one
natural open question is to improve the output length and error of the seedless
extractors constructed. Currently for asymptotically optimal entropy, the con-
structions can only output 1 bit (or a constant number of bits by the techniques
in [7]) with constant error, while it is desirable to achieve negligible, or exponen-
tially small error in cryptographic applications. Interestingly, improving the error
may also lead to an improvement in output length by the techniques in [7]. As
observed in previous works, one possible approach is to design t-non-malleable ex-
tractors with better dependence on t, which appears to be a challenging problem.
One could also ask if we can construct explicit two-source extractors with entropy
logn+ O(1), which would give optimal Ramsey graphs. For non-malleable codes
it would be interesting to improve the rates of our codes to optimal. Finally, it is
always interesting to find other applications of the pseudorandom objects studied
in this literature.
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