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Introduction by the Organizers

The conference was organized by Christophe Garban, Jason Miller and Scott
Sheffield. We proposed to study a range of hot and increasingly related topics
including the following: (1) random surface models (Liouville quantum gravity,
random planar maps, etc.) (2) random curve models (Schramm-Loewner evolu-
tion, conformal loop ensembles, etc.) (3) gauge theory models (various forms of
lattice Yang-Mills, other approximations) (4) spin models and height functions
(including delocalization problems) (5) dimer models (two and higher dimensions
versions) (6) conformal field theory (Liouville theory, other theories related to
SLE).
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The international researchers came from a wide range of career stages and
geographical locations and the talks and discussions on these topics were extremely
fruitful. The organizers and participants thank the Mathematisches Forschungs-
institut Oberwolfach for making the event possible, and for their extremely helpful
assistance in all aspects of the organization and logistics. We include here the
abstracts in alphabetical order.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Compactified Imaginary Liouville Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409

Franz Merkl and Silke Rolles (joint with Margherita Disertori)
The vertex-reinforced jump process with long range interactions . . . . . . . . 1414

Malin Palö Forsström
The phase diagram of the Ising lattice Higgs model . . . . . . . . . . . . . . . . . . 1416

Eveliina Peltola
Around the conformal anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418

Ron Peled (joint with Michal Bassan, Barbara Dembin, Dor Elboim,
Shoni Gilboa, and Daniel Hadas)
Minimal Surfaces in Random Environment . . . . . . . . . . . . . . . . . . . . . . . . . 1421

Hao Shen (joint with Ilya Chevyrev)
Intrinsic uniqueness of gauge-covariant Yang–Mills dynamic . . . . . . . . . . 1422

Xin Sun (joint with P. Nolin, W. Qian, Z. Zhuang)
Scaling exponents for 2D percolation via Liouville quantum gravity . . . . . 1423



1390 Oberwolfach Report 25/2024

Fredrik Viklund (joint with Kurt Johansson)
Coulomb gas on a Jordan domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1425

Yilin Wang
Two optimization problems of the Loewner energy . . . . . . . . . . . . . . . . . . . 1426

Wendelin Werner
Loop-soup rewiring dynamics, double points, and Φ4 models . . . . . . . . . . . 1427

Catherine Wolfram (joint with Nishant Chandgotia and Scott Sheffield)
The 3D dimer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429

Pu Yu
Winding probability for CLE and boundary CLEs . . . . . . . . . . . . . . . . . . . . 1434

Yizheng Yuan (joint with Valeria Ambrosio and Jason Miller)
The chemical distance metric for non-simple CLE . . . . . . . . . . . . . . . . . . . 1438



Statistical Physics and Random Surfaces 1391

Abstracts

Strong Characterization for the Airy Line Ensemble

Amol Aggarwal

1. Line Ensembles

In this talk we study infinite collections of random curves that “look like” non-
intersecting Brownian motions. Specifically, a line ensemble is an infinite family
x = (x1, x2, . . .) of random functions xj : R → R, which are ordered so that
x1 > x2 > · · · . A line ensemble satisfies the Brownian Gibbs property if the
following holds, for any positive integers i < j and real numbers a < b. Conditional
on

(
xk(s)

)
for (k, s) /∈ [i, j] × [a, b], the law of

(
xk(s)

)
for (k, s) ∈ [i, j] × [a, b] is

given by j − i+ 1 Brownian motions on [a, b], conditioned to satisfy the below.

(1) Boundary data: For each k ∈ [i, j], the k-th Brownian motion starts at
xk(a) and ends at xk(b).

(2) Ordering: For each s ∈ [a, b], we have xi−1(s) > xi(s) > · · · > xj+1(s)
(where x0 = ∞).

A Brownian line ensemble is one satisfying the Brownian Gibbs property; one may
informally view it as an “infinite family of non-intersecting Brownian motions.”

A basic example of a Brownian line ensemble is the parabolic Airy line ensemble
R = (R1,R2, . . .). It was originally introduced in the context of polynuclear
growth by Prähofer–Spohn [7] through its finite-dimensional distributions, which
form a determinantal point process with the extended Airy kernel; it was later
realized as an infinite family of random continuous curves by Corwin–Hammond
[5]. It arises as the edge scaling limit of the Brownian watermelon, which is
a family of N standard Brownian bridges B = (B1, B2, . . . , BN ) on [−N,N ],
starting and ending at Bi(−N) = Bi(N) = 0, conditioned to not intersect (that
is, to satisfy B1 ≥ B2 ≥ · · · ≥ BN ). At the middle of their domain [−N,N ], the
top curves in this family lie near 21/2N . After scaling around this point, these
curves exhibit fluctuations of order N1/3 and nontrivial spatial correlations on
scale N2/3; these are sometimes called the KPZ scaling exponents. In particular,
the curves x

N
j (t) = 21/2N1/3 ·

(
Bj(N

2/3t) − 21/2N
)
, admit an N → ∞ limit

x
N = (xN1 , x

N
2 , . . . , x

N
N ) −→ R, which is the parabolic Airy line ensemble.

The Airy line ensemble is broadly believed, and in various cases proven, to be
a universal scaling limit in the context of random surfaces and stochastic growth
models in the Kardar–Parisi–Zhang (KPZ) universality class (see the survey [4] of
Corwin for further information and references). Therefore, a natural question is
if there is an axiomatic characterization of the Airy line ensemble that could be
useful for proving convergence to it.
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2. Characterization

The following result from [3] indicates that, if L is a Brownian line ensemble whose
top curve is within a multiplicative error of 1+ o(1) from a parabola, then L is an
Airy line ensemble, up to rescaling and a (possibly random) affine shift.

Theorem 1 ([3, Theorem 2.9]). Fix σ > 0 and a Brownian line ensemble L =
(L1,L2, . . .) such that, for any ε, δ > 0, there is K = K(ε, δ) > 0 with

sup
t∈R

P

[∣∣L1(t) + σt2
∣∣ > εt2 + K

]
< δ.(1)

Then there exists a parabolic Airy line ensemble R and an independent pair of
random variables (l, c) ∈ R2 such that L(t) = σ ·R(t/2σ2) + lt+ c.

Let us make several comments on this theorem. First, the assumption (1) of
approximate parabolicity for the top curve L1 of L cannot be entirely omitted;
as indicated by work of Adler–Ferrari–van Moerbeke [1], there do exist different
Brownian line ensembles whose top curves decay linearly. However, it is plausible
that any Brownian line ensemble whose top curve decays at least parabolically
must be the Airy line ensemble (up to a random affine shift and scaling). Second, a
quick consequence of Theorem 1 (which was predicted by Sheffield and Okounkov
in 2006) is the following. If L is extremal (that is, it cannot be expressed as
a nontrivial mixture of Brownian line ensembles) and L(x) − x2 is translation-
invariant, then L is the parabolic Airy line ensemble up to scaling and a shift.

Third, Theorem 1 requires approximate parabolicity of L, as opposed to its full
translation-invariance; following the terminology of Sheffield [8], it may therefore
be called a strong characterization of a Gibbs measure. Fourth, this theorem only
makes an assumption on the top curve L1 of L. Along a similar vein, work of
Dimitrov–Matetski [6] showed that the full law of L1 (namely, all of its finite-
dimensional marginals) determines L, implying that L is a parabolic Airy line
ensemble, if one could manage to show in advance that L1 were an Airy2 process.

The third and fourth remarks above are particularly helpful in proving random
convergence of interfaces to the Airy line ensemble. Indeed, in various situations
one might have a family of non-intersecting random walks satisfying a Gibbs prop-
erty (either arising as level lines of a random surface, or from a stochastic growth
model) that are discrete (thus not translation-invariant), whose top curve is the
only one that is a priori controlled. If one could show that this family is tight
under the KPZ scaling, then these non-intersecting random walks would plausi-
bly converge to non-intersecting Brownian bridges, so that any limit point of this
family is a Brownian line ensemble. Then, Theorem 1 could apply to uniquely
identify its scaling limit as the Airy line ensemble. See the works of Aggarwal–
Huang [3, Section 25] and Aggarwal–Corwin–Hegde [2] for situations in which
this perspective has been useful in identifying the KPZ scaling limit of various
discrete stochastic growth models, such as random polymers, exclusion processes,
and stochastic vertex models.
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Cutting Liouville quantum gravity by SLE with mismatched
central charge

Morris Ang

(joint work with Ewain Gwynne)

Schramm–Loewner evolution (SLEκ) for κ > 0 is a one-parameter family of random
fractal curves in the plane. It describes or is conjectured to describe the scaling
limits of various discrete random curves which arise in statistical mechanics.

Liouville quantum gravity (γ-LQG) for γ ∈ (0, 2] is a one-parameter family of
random fractal surfaces (2d Riemannian manifolds) which arise in string theory
and conformal field theory, and as the scaling limits of random planar maps. LQG
surfaces are too rough to be Riemannian manifolds in the literal sense. Instead, a γ-
LQG surface can be understood as a random metric measure space with conformal
structure.

The first relationship between SLEκ and γ-LQG, called the quantum zipper,
was established by Sheffield in [1]. Roughly speaking, this result and its many
extensions (including the mating of trees theorem [2]) say the following. Suppose
we have a certain SLEκ-type curve and a certain γ-LQG surface, sampled indepen-
dently from each other, and that their parameters are matched in the sense that
their central charges sum to 26:

(1) cSLE(κ) + cL(γ) = 26,

cSLE(κ) := 1− 6

(
2√
κ
−

√
κ

2

)2

and cL(γ) := 1 + 6

(
2

γ
+
γ

2

)2

.

Then the sub-LQG surfaces parametrized by the complementary connected compo-
nents of the SLEκ curve are conditionally independent given the LQG lengths of
their boundaries, and their laws can be described explicitly. See Figure 1. This
independence property is the continuum analog of certain Markovian properties
for random planar maps decorated by statistical physics models.
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Figure 1. A Liouville quantum gravity surface parametrized by
the disk together with an independent SLEκ-type curve between
two marked boundary points. Previous works (see in particular
[1, 2]) have shown that if κ = γ2 and the precise variant of SLE
is chosen appropriately, then the sub-LQG surfaces parametrized
by the regions to the left and right of the curve are conditionally
independent given their LQG boundary lengths. We showed that
if κ 6= γ2, the sub-LQG surfaces parametrized by the left and right
sides of the curve are conditionally independent given information
about the values along the curve of certain auxiliary random fields,
sampled independently from the SLE and the LQG.

Results of the above type have a huge number of applications, to such topics
as SLE and LQG individually, conformal field theory (see, e.g., [3]), the geome-
try of random planar maps (see, e.g., [4]), random permutations (see, e.g., [5]),
and the moduli of random surfaces (see, e.g., [6]). Particularly noteworthy conse-

quences include the equivalence of γ =
√
8/3 LQG and the Brownian map [7] and

convergences of conformally embedded random planar maps to LQG [8, 9].
In this talk, we presented the first relationships between SLE and LQG in the

case when the parameters aremismatched, meaning that γ and κ are not related as
in (1). Roughly speaking, we prove the following. Suppose we have an appropriate
SLEκ-type curve and a γ-LQG surface, sampled independently from each other
as above, but whose parameters do not satisfy (1). Then the sub-LQG surfaces
parametrized by the complementary connected components of the SLEκ curve
are not independent, but they are conditionally independent if we condition on
certain extra information along the SLEκ curve. The necessary extra information
is described by one or more random generalized functions, sampled independently
from the SLE and the LQG, with the property that the sum of cSLE, cL, and
the central charges associated with the extra generalized functions is equal to 26.
These extra random generalized functions are described in terms of the theory of
imaginary geometry [10]. Conditional independence statements of the above type
were conjectured by Sheffield in private communication.

We also discussed similar conditional independence statements when the SLE
curve is replaced by other interesting random sets, such as a conformal loop en-
semble gasket, a Brownian motion path, or an LQG metric ball.
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Analogously to the matched case, our results are continuum analogs of certain
Markovian properties for random planar maps decorated by multiple statistical
physics models. Roughly speaking, these properties say the following. Suppose we
have a random planar map decorated by a two or more statistical physics models
(e.g., a uniform spanning tree and two discrete Gaussian free fields) and we con-
struct an interface from one of the models (e.g., a branch of the spanning tree).
Then the planar maps in the complementary connected components of the inter-
face are conditionally independent given the information about other statistical
mechanics models along the interface (in our example, this corresponds to the re-
strictions of the discrete Gaussian free fields to the spanning tree branch). Similar
Markovian properties also hold for related objects, such as uniform meanders.

We concluded the talk by discussing possible future directions related to our
mismatched SLE-LQG theory. The first direction is to establish scaling limit
results where the limiting object is expected to be LQG with more than one inde-
pendent SLE or imaginary geometry field. In particular, the scaling limit of the

uniform meander is expected to be γ =
√

1
3 (17−

√
145)-LQG decorated by a pair

of SLE8 loops, which are all mutually independent [11, 12]. The second direction
is the rigorous construction of a Markovian string theory in d ∈ {1, . . . , 25} di-
mensional space corresponding to bosonic string theory, via a Liouville quantum
gravity surface together with d independent Gaussian free fields. This is a problem
posed by Sheffield, see [13] for more details.
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Near-critical dimers and massive SLE.

Nathanael Berestycki

(joint work with Levi Haunschmid-Sibitz)

We consider near-critical perturbations of the planar dimer model with Temper-
leyan boundary conditions [2]. On the square lattice, these models are obtained
by changing the edge weights from 1 (corresponding to the critical case) to 1+ciδ,
for some choice of constants (ci)1≤i≤4, in a biperiodic manner, and where δ > 0 is
the mesh size. An analogous construction is also possible on the hexagonal lattice.

We analyse this model by making use of Temperley’s bijection (see Figure 1).
This leads us to the study of a pair of dual spanning trees; the primal tree with
wired boundary conditions can be sampled from Wilson’s algorithm, by erasing
the loops of a random walk on a lattice with weights of the above form. In
particular, the random walk does not scale to Brownian motion, but to Brownian
motion with drift α determined by the constants (ci)1≤i≤4. What can be said
about the associated loop-erased random walk? We introduce and prove an exact
discrete Girsanov identity on the hexagonal lattice (and an approximate one on the
square lattice) which shows that, conditionally on the endpoint, the loop-erased
random walk with drift coincides exactly with the loop-erasure of a massive (but
isotropic) random walk with constant probability ‖α‖2δ2 to be killed at each step,
but conditioned to survive until leaving the domain. Making use of results of
Chelkak and Wan [6] this implies that the scaling limit of LERW with drift is
Makarov and Smirnov’s [8] massive SLE2.

This implies that the Temperleyan tree associated to the near-critical dimer
model has a scaling limit in the Schramm topology. In turn, using the technology
based on “imaginary geometry” developed by the author with Laslier and Ray
[3, 4, 5] this implies that the height function itself converges. The law of the limit
field depends only on the drift vector α and so would be the same on the square
and hexagonal lattices.

By allowing the drift vector α = α(x) to depend smoothly on the point x ∈ D,
we obtain a larger and more interesting class of near-critical perturbations of the
dimer model. Suppose α = ∇φ derives from a potential, and suppose that

(1) ∆φ+
1

2
|∇φ|2 ≥ 0.

Then the random walk converges to the solution of the Langevin stochastic differ-
ential equation

dXt = dBt +∇φ(Xt)dt.

Under (1) we are able to prove that the loop-erasure of this random walk has a
scaling limit, and thus so does the associated height function (still using results of
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Figure 1. Temperley’s bijection transforms a dimer configura-
tion in a Temperleyan domain (left) into a pair of self-dual trees
(right). The path in the primal tree from a designated vertex
(the center of the hexagon) is highlighted in both pictures. In the
scaling limit this path converges to a massive SLE2.

[3, 4, 5]). This obeys a certain conformal covariance rule (note that the assumption
(1) is in fact conformally invariant).

We obtain strong evidence supporting the following novel conjecture. Fix a
smooth drift vector field α satisfying (1). Let hα;D denote the above scaling limit
of the dimer height function. Then hα;D has a law which coincides with the
following generalised Sine-Gordon field at the free fermion point, whose law PSG

is informally given by the following description:

PSG(dh) =
1

Z
exp

(∫

D

〈eih(x)/χ;α(x)〉dx
)
PGFF(dh),

where χ = 1/
√
2 is the imaginary geometry constant associated with the parameter

κ = 2 of SLE, and PGFF(dh) is the law of a Gaussian free field with winding
boundary conditions. (This is informal only as the integral appearing in the above
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Radon–Nikodym derivative does not literally exist, see [7]. A rigorous construction
in the full plane and for constant drift vector is provided in the recent work of
Bauerschmidt and Webb; see in particular [9] for work in this direction in this
particular case). In a sense, this conjecture says that massive SLE is a flow line of
the Sine-Gordon field.
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Temperleyan forests.” Ann. Inst. H. Poincaré (D): Combinatorics, Physics and their Inter-
actions. To appear.
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Random triangulations in high genus

Thomas Budzinski

(joint work with Guillaume Chapuy, Baptiste Louf)

1. Random triangulations

The goal of the talk was to review several aspects of uniform random triangulations
whose genus goes to infinity at the same time as their sizes. For g ≥ 0 and
n ≥ 2g− 1, let Tn,g be a random triangulation picked uniformly at random among
all triangulations with 2n triangles and genus g. The planar case g = 0 has been
the object of lots of study in the last 20 years. In particular, graph distances in
Tn,0 are typically of order n1/4 [4], and a pioneer result of the theory was the proof
of local convergence of Tn,0 to the UIPT [1].
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2. Local limits in high genus

The Euler formula shows that the average vertex degree in Tn,g is

6n

n+ 2− 2g
≈ 6

1− 2g/n
.

In particular, the average degree in the UIPT is equal to 6, so it may be seen as a
uniform randomized version of the 6-regular triangular lattice. On the other hand,
if g

n converges to θ > 0, the average degree becomes larger than 6 like in the 7-
regular hyperbolic triangulation, so it seems natural to observe random hyperbolic
triangulations in the limit. Indeed, we proved [2] that if gn

n → θ ∈
[
0, 12

)
, then

Tn,gn converges locally to a random infinite triangulation of the plane Tθ whose
distribution only depends on θ. For θ = 0 we recover the UIPT. For θ > 0, we
obtained a one-parameter family of models that were introduced in [5] and shown
to exhibit hyperbolic behaviour (exponential volume growth, positive speed of the
random walk...).

A nice byproduct of this local convergence result is the asymptotic enumeration
of triangulation of genus g and size n in any regime, up to a multiplicative error
eo(n). This contrasts sharply with the planar case, where enumerative estimates
are the main tool used to prove local convergence results.

3. Global properties in high genus

Given the hyperbolic nature of the local limit, it is natural to expect that in the
high genus regime, the global properties of Tn,g share a lot of similarities with those
of random graph models such as uniform 3-regular graphs or the giant component
of supercritical Erdös–Renyi random graphs. The end of the talk was devoted to
some results inthis direction obtained in [3]. In the regime g

n → θ > 0, we showed
that graph distances are typically logarithmic, that almost all pairs of points in
Tn,g have almost the same distance, and that Tn,g satisfy a strong isoperimetric
inequality: it has a positive Cheeger constant up to small defects whose size is
O(log n). This isoperimetric inequality is the main tool to show the other two
properties, and its proof relies heavily on the partial asymptotic results obtained
in [2].

We concluded with a few open questions on the optimal constants. In particular,
we conjecture that the distance between two typical vertices of Tn,g is close to
Dθ logn, whereas the diameter (i.e. the distance between the two furthest points)
is close to D′

θ log n with D′
θ = 3Dθ.
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Random surfaces and lattice Yang–Mills

Sky Cao

(joint work with Minjae Park, Scott Sheffield)

Euclidean Yang–Mills theory is given by the formal probability measure

Z−1 exp(−SYM(A))dA,

where A ranges over a space of Lie algebra-valued 1-forms and SYM(A) is the
Yang–Mills action of A. As a first step towards rigorously defining this probability
measure, we can replace continuous space Rn by a lattice Zn. Further replacing the
infinite lattice Zn by a finite subset Λ ⊆ Zn, we eventually obtain a well-defined
probability measure µΛ,β on the space E(Λ)G, where β ≥ 0, G is a compact Lie
group, and E(Λ) is the set of edges of Λ. Then density of µΛ,β with respect to the
product Haar measure

∏
e∈E(Λ) dUe on E(Λ)G is given by

dµΛ,β(U) = Z−1
Λ,β

∏

p∈P
eβTr(Up)

∏

e∈E(Λ)

dUe.

Here, P is the set of oriented plaquettes of Λ. Given a plaquette p with oriented
boundary edges e1, e2, e3, e4, the plaquette variable Up := Ue1Ue2Ue3Ue4 . This
model is known as lattice gauge theory, which was first introduced by Wilson [1].

The basic observables of lattice gauge theory are the Wilson loop observables.
Given a loop γ = e1 · · · en in Λ, we define for U ∈ E(Λ)G

Uγ := Ue1 · · ·Uen , Wγ(U) := Tr(Uγ).

In my talk, I discussed a recent result from [2], which gives a representation of
EWγ(U) in terms of a sum over embedded surfaces. We next discuss how these
surfaces are constructed, and then give the main theorem.

Let γ be a loop. We will construct surfaces which can be interpreted as having
boundary γ. First, fix a function K : P → N, which should be interpreted as a
plaquette count. I.e., K specifies how many copies of each plaquette I have to
work with to build my surface. Eventually, we will sum over all K in the surface
sum. To form the surfaces, we will never glue two plaquettes together, nor will we
ever glue a plaquette to an edge of the loop γ. Instead, we introduce additional
“abstract” faces, and we always glue these abstract faces to the existing plaquettes
or loop edges. A surface formed in this way can be formally described by a pair
(M, φ), where M is a map and φ : M → Λ is a graph homomorphism such that
the following hold.
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(1) The dual graph of the map M is bipartite. This condition comes from the
fact that plaquettes are never glued to each other. The faces in one partite
class are called “edge-faces”, and the faces in the other partite class are
called “plaquette-faces”.

(2) φ maps each plaquette face to a plaquette of Λ.
(3) φ maps each edge-face onto a single edge in Λ.

We refer to the pair (M, φ) as an edge-plaquette embedding. We say that
(M, φ) has boundary γ if M is a map with boundary, which is mapped under φ
to γ. Given a plaquette count K : P → N, let epe(K, γ) be the set of all edge-
plaquette embeddings such that the pre-image under φ of each plaquette p ∈ P
has size K(p).

Next, we describe the weights associated to a given edge-plaquette embedding.
For N, k ≥ 1, the Weingarten function WgN is a function on the symmetric Sk
given by

WgN (σ) :=
1

k!

∑

λ⊢k
χλ(id)χλ(σ)

∏

(i,j)∈λ

1

N + j − i
.

Here, the sum is over Young diagrams with k boxes, χλ is the character of Sk
corresponding to λ, and id ∈ Sk is the identity permutation. Since WgN is a
linear combination of class functions, it itself is a class function. Thus, WgN is
a function of the conjugacy class of σ, which is encoded by its cycle structure,
which itself is a partition of [k]. In this way, WgN can be viewed as a function on
partitions of size k.

Now, fix an edge-plaquette embedding (M, φ). For a lattice edge e ∈ E(Λ), we
can consider the set of edge-faces which are mapped under φ to e. The degrees of
these edge faces form a partition µe(M, φ) of some number ke(M, φ) into ℓe(M, φ)
parts. Define

We(M, φ) := N2ke(M,φ)−ℓe(M,φ)WgN (µe(M, φ)).

We may finally state the main result.

1. Main theorem

For any loop γ, we have that

ZΛ,βEWγ(U) =
∑

K : P→N

∑

(M,φ)∈epe(K,γ)

βarea(M,φ)Nχ(M)−1
∏

e∈E(Λ)

We(M, φ).

Here, area(M, φ) is the area of (M, φ), which is simply
∑

p∈P K(p) if (M, φ) ∈
epe(K, γ), and χ(M) is the Euler characteristic of M. This is the desired surface
sum representation of Wilson loop expectations. We remark that a more general
version of this result holds for products of multiple loops.
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S-embeddings and planar Ising model

Dmitry Chelkak

Critical and near-critical Ising model on regular and isoradial grids.
Motivated by the seminal work of Smirnov from mid-2000s, plenty of convergence
results for the planar Ising model have been obtained during the last two decades.
E.g., at the critical temperature Tcrit on Z2, this includes convergence of interfaces
to SLEs and CLEs (with κ = 3 for spin configurations and with κ = 16/3 for the
Fortuin–Kasteleyn representation) as well as convergence of correlations of local
fields (such as energy densities, spins, etc) towards CFT predictions. More recently,
latter results were also generalized to the near-critical regime T = Tcrit+mδ, where
δ stands for the mesh size of the grid andm ∈ R is a fixed parameter called a mass.
(It is worth noting that we still lack convergence results for interfaces if m 6= 0.)
The name ‘mass’ is justified by the fact that (subsequential) scaling limits f of
fermionic observables appearing in the model satisfy the massive holomorphicity
equation ∂f = 1

2mf ; in particular, they are holomorphic ifm = 0. Careful analysis
of such observables is the cornerstone for all convergence results mentioned above;
e.g., see [1] and references therein. Moreover, virtually all these results are proved
to be universal for the class of Baxter’s Z-invariant weights on isoradial graphs.
However, further generalizations in this direction – e.g., even for general doubly
periodic critical weights on Z2 – were not available until recently. The main goal
of this talk is to discuss a tool – special drawings or embeddings of weighted planar
graphs in the complex plane – that paves the way to such a progress.

Construction of s-embeddings. A relevant construction – s-embeddings of pla-
nar graphs carrying the Ising model – has been first suggested in [1, Section 6]
and later developed in [2]. It plays the same role for the Ising model as Tutte’s
harmonic embeddings play for random walks on planar graphs. These two classes
of embeddings are not immediately related to each other; however, both are par-
ticular cases of a more general construction, so-called t-embeddings; see [3, 4].

To construct an s-embedding of a given weighted planar graph (G•, x), one
starts with a complex-valued (equivalently, a pair of real-valued) solution X of the
so-called propagation equation (see [2] for the rigorous definition)

(1) X (c00) = ±X (c01) · cos θe ±X (c10) · sin θe .
Above, cpq = (v•pv

◦
q ), p = 0, 1, q = 0, 1, are four corners of the graph G• incident

to its edge e = (v•0v
•
1) = (v◦0v

◦
1)

∗, the ± signs come from a Kasteleyn orientation
in the corresponding dimer model, and θe := 2 arctanxe is the parametrization of
the Ising interaction constant assigned to e. Given (1), one defines

(2) SX (v•p)− SX (v◦q ) := (X (cpq))
2, QX (v•p)−QX (v◦q ) := |X (cpq)|2

and views (SX ,QX ) as a discrete surface in the Minkowski space R2,1. The con-
sistency of four increments along the sides of (v•0v

◦
0v

•
1v

◦
1) follows from (1). In

particular, four points SX (v•0),SX (v◦0),SX (v•1),SX (v◦1) are vertices of a tangential
quad; if there are no overlaps, then SX is a tiling formed by such quads. Real-linear
transforms X 7→ αX + βX , |α|2− |β|2= 1, correspond to isometries of R2,1.
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Combinatorially, there are at least two natural setups to consider:
(i) one starts with an infinite graph (G•, x) and aims to obtain a tiling of C;
(ii) one starts with a finite planar graph, does not require (1) along its boundary,
and aims to obtain a tiling of a finite polygon in C.

A particular example of the ‘disc’ setup (ii) is a quadrangulation G• ∪ G◦ of
a sphere with a distinguished quad (equivalently, a root edge of G•), considered
as the outer face. In this situation, there is essentially a unique (up to real-
linear transforms) choice of X and it is known that SX does not have overlaps; in
other words, in this case the discrete surface (SX ,QX ) in R2,1 is ‘canonical’. The
simplest example of the ‘plane’ setup (i) is provided by doubly periodic graphs G•

equipped with critical Ising weights. Again, in this case there exists a unique (up
to real-linear transforms) doubly periodic solution X of the equation (1), which
gives rise to a ‘canonical’ s-embedding SX of such a model into the complex plane.

Scaling limits of fermionic observables. Given a sequence of s-embeddings
Sδ with ‘mesh sizes’ δ → 0 one can look for a differential equation – a general-
ization of the (massive) holomorphicity condition – that is satisfied by the limits
of fermionic observables coming from the corresponding Ising models. The proper
language to write such an equation comes from the discrete surfaces (Sδ,Qδ): if
they approximate, as δ → 0, a space-like surface Σ = {(z, θ(z))} ⊂ C×R and f is a

(subsequential) limit of Ising fermionic observables on Sδ as δ → 0, then fdz+fdθ
is a closed differential form. Moreover, if the limiting surface Σ is smooth and ζ is

its conformal parametrization, then the function φ := f ·z1/2ζ +f ·z1/2ζ satisfies the

massive holomorphicity equation φζ = 1
2mφ, where m = zζζ/(zζzζ)

1/2 is the mean

curvature of Σ multiplied by its metric element |zζ |− |zζ| at the point (z(ζ), θ(ζ)).
Similarly to the progress obtained for the critical and near-critical Ising models

on regular grids, one can now hope to prove convergence results for energy densi-
ties, spins, etc in the general s-embeddings setup. This is a work in progress with
some results in this direction already obtained by Rémy Mahfouf and S. C. Park.

Convergence to SLE in the doubly periodic setup We conclude this talk by
an informal version of the universality result in the doubly periodic setup (see [2]):

Theorem. Let (G•, x) be a doubly periodic graph equipped with critical Ising
weigths x. Consider the corresponding ‘canonical’ doubly periodic s-embedding S
with asymptotically horizontal profile of the third coordinate Q. Then the FK-Ising
interfaces on the scaled graphs δS converge, as δ → 0, to SLE(16/3) curves.
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(Near-)critical percolation with long-range correlations on
transient graphs

Alexander Drewitz

(joint work with A. Prévost, P.-F. Rodriguez)

Percolation models have been playing a fundamental role in statistical physics for
several decades by now. They had initially been investigated in the gelation of
polymers during the 1940s by chemistry Nobel laureate Flory and Stockmayer.
From a mathematical point of view, the birth of percolation theory was the intro-
duction of Bernoulli percolation by Broadbent and Hammersley in 1957 [BH57],
motivated by research on gas masks for coal miners. One of the key features of this
model is the inherent stochastic independence which simplifies its investigation,
and which has led to deep mathematical results. On the one hand, this inde-
pendence greatly simplifies the mathematical computations and as a consequence,
the results obtained are impressively profound. On the other hand, this indepen-
dence also poses a restriction prohibiting the investigation of more realistic models.
Thus, one is naturally led to consider percolation models with correlations. While
in the case of finite range or fast decaying correlations similar phenomena as in the
case of Bernoulli percolation are to be observed, the situation changes drastically
when considering models with stronger correlations, so-called long-range correla-
tions. Models with long-range dependence exhibit interesting properties which
sometimes are in stark contrast to what is observed in Bernoulli percolation. The
lack of independence entails further obstacles such as the absence of the finite en-
ergy property. Even more dramatically, the BK inequality fails for these models.
As a result, many of the techniques which were most essential in the investiga-
tion of Bernoulli percolation break down for percolation problems with long-range
correlations.

It should be mentioned here that not only are such models oftentimes more
realistic but they also lead to beautiful mathematics as well as interesting physics
interpretations. Moreover, they sometimes exhibit certain integrability properties,
which, somewhat surprisingly, makes them easier to study for some problems than
their independent counterpart, and leads to deep results which are unknown for
Bernoulli percolation.

As we will elaborate, even though from a probabilistic perspective the strength
of correlations seems to make matters a priori only harder, they can also provide
certain integrability properties which facilitate their rigorous mathematical study.
This opens the door to the study of critical phenomena, notably in non-planar
setups, and gives access to questions which so far have remained largely elusive.

Arguably one of the most important stochastic processes giving rise to percolation
models with long-range correlations is the Gaussian Free Field (GFF). The GFF,
which also goes by the name massless harmonic crystal, has been a fundamental
model in statistical mechanics for over half a century, ever since the early days of
constructive field theory, for which it serves as a fundamental building block. More
recently, its intriguing geometric features have begun to be studied rigorously. One
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way to think of the GFF is as a generalization of a random walk with Gaussian
increments to a process with d-dimensional time. For a long time already, the GFF
has had many important applications to other branches of mathematics, with links
in two dimensions to objects such as the Schramm-Loewner evolution [SS09], or
to cover times [DLP12] and to theoretical physics (cf. [Car90, FFS92]). Literature
is abundant, however, and we content ourselves with referring to [She07] and the
references therein for further details.

The cable system. It has turned out that when endowing the discrete graphG with
a certain continuum structure, the investigation of percolation problems for the
GFF becomes in a loose sense more integrable. This continuous structure is the so-

called cable system, also sometimes referred to as metric graph, and denoted by G̃.

Heuristically, G̃ is obtained from G by adding line segments between neighboring
vertices of G so that one obtains a metric graph which is a continuum object.
While such a construction goes back to at least [Var85], it has been re-invigorated
in this setting by [Lup16].

The reasons for this model being particularly amenable for a detailed investi-
gation of its percolation are multiple, including among others its Gaussian and
continuous character as well as the understanding of the law of the capacity of its
level sets and its amenability to advanced isomorphism theorems connecting it to
the model of random interlacements (see [DPR22] for the latter two items). The
model of Random Interlacements (RI) has been introduced in 2007 by Sznitman,
see the article [Szn10]. It has been motivated by investigations in mathematics
and theoretical physics on the disconnection [BS08] and covering [BH91] of tori
and boxes by simple random walk trajectories. In addition, RI serves as a mathe-
matical model for corrosion, and it has found its way into the theoretical physics
community also, see [SHS+16, GHS17]. In the context of level set percolation for
the GFF it turns out particularly useful as it is supercritical in its entire range
of parameters, thereby providing suitable connectivity properties for certain level
sets of the GFF also by means of the isomorphism theorems.

We will report on the progress in understanding of (near-)critical percolation for
the level sets of the GFF on the cable system for rather general transient graphs,
in low dimensions. In particular, we provide explicit values for various critical
exponents for rather general underlying graphs. Such detailed understanding has
been restricted to either the case of Bernoulli percolation on very specific two-
dimensional lattices (where techniques such as conformal invariance wield their
full power) or else the mean-field regime. Surprisingly, the strong correlations
of the GFF seem to be an advantage in the investigation of its nearly critical
percolative properties.

What is more, these findings exhibit a certain universality of the critical expo-
nents which we have been able to determine. More precisely, it turned out that
– as conjectured in theoretical physics [Wei84] – they do not depend on the lo-
cal structure of the underlying graph, but only on its large scale properties, in
particular its volume growth and the Green function decay; these, however, are
well-understood for a wide range of graphs of interest.



1406 Oberwolfach Report 25/2024

This talk is based on joint works with A. Prévost (U Cambridge) and P.-F.
Rodriguez (Imperial College).
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Conformal removability of Schramm-Loewner Evolution

Konstantinos Kavvadias

(joint work with Jason Miller, Lukas Schoug)

The Schramm-Loewner evolution (SLEκ) is a one parameter family (κ > 0) of
curves which connect two boundary points of a simply connected domain. It
was introduced by Schramm in [9] as a candidate to describe the scaling limit of
the interfaces which arise in discrete models from statistical mechanics on planar
lattices at criticality, such as loop-erased random walk and the percolation model.
The value of κ > 0 determines the roughness of an SLEκ curve. In particular, the
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SLEκ curves are simple if κ ≤ 4, self-intersecting but not space-filling if κ ∈ (4, 8),
and space-filling if κ ≥ 8 [8]. The focus of this talk is on the critical value κ = 4,
which corresponds to a curve which is simple but just barely so.

In recent years, there has been a substantial amount of work centered around
the relationship between SLEκ and Liouville quantum gravity (LQG) surfaces.
Roughly speaking, LQG is the canonical model of a random two-dimensional Rie-
mannian manifold and can formally be described by its metric tensor

(1) eγh(z)(dx2 + dy2)

where h is an instance of (some form of) the Gaussian free field (GFF) on a
planar domain D and γ ∈ (0, 2] is a parameter. Since the GFF is a distribution
in the sense of Schwartz, it is non-trivial to make sense of (1) as the exponential
is a non-linear operation and this has been the focus of a tremendous amount of
mathematical work in the last two decades.

The manner in which SLEκ arises in the context of LQG is that it describes
the interfaces which are formed when one takes two independently sampled LQG
surfaces and glues them together along their boundaries. The way that the gluing
is constructed is using conformal welding, which we recall is defined as follows.
Suppose that D1, D2 are two copies of the unit disk and φ : ∂D1 → ∂D2 is a
homeomorphism. We say that a simple loop η on the two-dimensional sphere
S2 together with conformal maps ψi for i = 1, 2 from Di to the left and right
sides of S2 \ η is a conformal welding with welding homeomorphism φ if φ =
ψ−1
2 ◦ψ1|∂D1

. For a given homeomorphism φ, it is not obvious if such a conformal
welding exists but Sheffield [10] showed that for each γ ∈ (0, 2) it does exist if
one takes the welding homeomorphism to be the one which associates points along
the boundaries of two independent γ-LQG surfaces according to boundary length
using the boundary measure from (1). In this case, the welding interface is an
SLEκ with κ = γ2 ∈ (0, 4). This was extended to the case κ = 4 and γ = 2 in [3]
and we also remark that a number of welding-type results which include the case
κ > 4 were established in [1].

For a homeomorphism φ as above for which there exists a conformal welding,
it is also a non-trivial question to determine whether the conformal welding is
unique. Recall that a set X ⊆ C is said to be conformally removable if every
homeomorphism ϕ : C → C which is conformal on C \X is conformal on C. It is
not difficult to see that the welding interface being conformally removable implies
that the conformal welding interface is unique up to Mobius transformations.

In order to prove that a set X ⊆ C which is equal to the boundary of a simply
connected domain D (e.g., a simple curve) is conformally removable, one often
makes use of a condition due to Jones and Smirnov [4]. We will not describe the
Jones-Smirnov condition here, but remark that one often checks that it holds by
using one of the sufficient conditions established in [4]. For example, it is shown
in [4] that if the Riemann map D → D is Hölder continuous up to ∂D (so that
D is a so-called Hölder domain) then X = ∂D is conformally removable; in fact
it is shown in [4] that a much weaker modulus of continuity suffices (see also [6]).
Rohde and Schramm proved that the complementary components of an SLEκ curve
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for κ 6= 4 are Hölder domains hence conformally removable. The optimal Hölder
exponent was later computed in [2] in which it was also shown that SLE4 does not
form the boundary of a Hölder domain. The precise modulus of continuity of the
uniformizing map of the complementary component of an SLE4 was determined
in [5] and is given by (log δ−1)−1/3+o(1) as δ → 0. The reason for the difference in
behavior for κ 6= 4 is that SLE4 curves are barely non-self-intersecting and contain
tight bottlenecks. Another way of formulating this is that if η is an SLEκ for
κ ∈ (0, 4) and z ∈ η then the harmonic measure of B(z, ǫ) in the complement of
η decays as fast as a power of ǫ as ǫ → 0 [2] but for κ = 4 can decay as fast as
exp(−ǫ−3+o(1)) as ǫ → 0 [5]. It was further shown in [5] that the Jones-Smirnov
condition itself does not hold for SLE4.

The main result of this paper is the conformal removability of SLE4, which
implies the uniqueness of the welding problem for critical (γ = 2) LQG. (We
remark that a weaker version of the uniqueness of the welding problem for critical
LQG was proved in [7].)

Theorem 1. Suppose that η is an SLE4 in H from 0 to ∞. Suppose that f : H →
H is a homeomorphism which is conformal on H \ η. Then f is a.s. conformal on
η. In particular, the range of η is a.s. conformally removable.

We note that the first assertion of Theorem 1 implies that the range of η is
a.s. conformally removable because if f : C → C is a homeomorphism which is
conformal on C \ η then by the Riemann mapping theorem we can post-compose
its restriction to H with a conformal map so that we obtain a homeomorphism
H → H which is conformal on H \ η. We also remark that Theorem 1 applies
if η is an SLE4 in an arbitrary simply connected domain D since one can always
conformally map D to H.

One of the main steps in proving Theorem 1 is a new sufficient condition for a
set X ⊆ C to be conformally removable. One of the novelties of the new condition
is that it does not require X = ∂D for D ⊆ C simply connected as in [4]. We
also remark that in general the conformal removability for boundaries of domains
which are not simply connected is less well-understood.

Next we give a rough description of the sufficient conformal removability con-
dition that we introduce. Suppose that X ⊆ C has zero Lebesgue measure and
f : C → C is a homeomorphism which is conformal on C \ X . To show that
f is conformal on C it suffices to show that f is absolutely continuous on lines
(ACL), which we recall means that it is absolutely continuous on Lebesgue a.e.
horizontal and vertical line. To prove that X is conformally removable, it there-
fore suffices to control the variation of f on the places where a Lebesgue typical
horizontal or vertical line intersects X . We will fix a > 0 small, M > 1 large,
and assume that X has upper Minkowski dimension at most 2 − 5a. We will
further assume that we have a family of sets A = ∪∞

n=1An where each A ∈ An

has the topology of an annulus with diam(A) ≤ M2−n such that for each z ∈ X
and n ∈ N there exists (1 − a2)n ≤ k ≤ n and A ∈ Ak so that B(z, 2−n) is
contained in the bounded component of C \A and the following additional condi-
tion holds. There are finitely many open, simply connected, and pairwise disjoint
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sets U1, . . . , Um for 1 ≤ m ≤ M in A \ X with ∂Ui ∩ ∂Ui+1 6= ∅ for 1 ≤ i ≤ m
(with Um+1 = U1) which satisfy some additional assumptions on the geometry of
their pairwise intersections. This will allow us to construct a path γ which discon-
nects the inner and outer boundaries of A and whose image under f has diameter
at most 2−(1−3a)k +2(1−a)k

∫
A |f ′(w)|2dL2(w) (where L2 denotes two-dimensional

Lebesgue measure). This gives an upper bound on diam(f([z − 2−n, z + 2−n]))
which suffices because for (a compact part of) a typical line L the number of inter-
vals of length 2−n hit by X is O(2(1−5a)n) (as X has upper Minkowski dimension

at most 2− 5a) and the integral of |f ′|2 on the 2−(1−a2)n-neighborhood of (a com-

pact part of) L is O(2−(1−a2)n). In particular, the variation of f on (a compact
part of) L in X ∩L if O(2−an/2) which tends to 0 as n→ ∞, hence f is absolutely
continuous on L.
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Compactified Imaginary Liouville Theory

Antti Kupiainen

(joint work with Colin Guillarmou, Rémi Rhodes)

Statistical mechanics systems are expected to exhibit conformal symmetry at the
critical temperature of second order phase transition. This phenomenon is ex-
pected to be universal: observable quantities such as the numerical values of crit-
ical exponents describing large scale properties of the system depend only on the
underlying symmetries of the microscopic description. Universality classes of sys-
tems with same critical behaviour are believed to be described by Conformal Field
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Theories (CFT). A CFT is characterised by a minimal set of so-called primary
random fields Vi defined on Rd and their correlation functions

〈
n∏

i=1

Vi(xi)〉

Correlation functions of all the other fields in a CFT are determined by these and
the conformal symmetry.

How does one find examples of CFTs? In physics there have been two com-
plementary approaches: the axiomatic Bootstraap approach and the constructive
Path integral approach. Bootstrap approach is based on the postulate that all
the correlation functions of primary fields are determined by the 3-point functions

〈∏3
i=1 Vi(xi)〉. Then the bootstrap hypothesis implies constraints on these 3-point

functions that one can use to guess solutions [1]. In the Path integral approach
correlation functions are given as statistical averages over a Gibbs ensemble on
fields φ(x), given by a formal path integral

〈
n∏

i=1

Vi(xi)〉 =
∫ n∏

i=1

Wi(φ(xi))e
−S(φ)Dφ

where S a local action functional. The challenge then is to find examples of S
which give rise to a CFT, give a rigorous meaning and construction of the path
integral and then to justify the bootstrap hypothesis.

1. Liouville Theory

On a rigorous mathematical level these goals were achieved in the case of the Liou-
ville Conformal Field Theory (LCFT) [4, 2, 3] which plays a prominent role in the
theory of two dimensional random surfaces. A natural setup for two dimensional
CFT is a smooth compact two dimensional surface Σ equipped with a Riemannian
metric g. The Liouville action functional is defined for a smooth φ : Σ → R by

SΣ(φ, g) =
1

4π

∫

Σ

(|dφ|2g +QKgφ+ µeγφ)dvg

where the parameters are γ ∈ (0, 2), Q = γ
2 + 2

γ and µ ∈ R+. Kg is the scalar

curvature of the metric g, vg the Riemannian volume measure and | · |g the metric
on 1-forms.

The rigorous definition of the path integral is given in terms of the Gaussian
Free Field (GFF) Xg and the Gaussian Multiplicative Chaos (GMC) measureMg.
Xg is a random distribution Xg ∈ H−s(Σ) with s > 0 defined by

Xg(x) =
1√
2π

∑

n≥1

αn√
λn
en(x)

where (αn)n are i.i.d unit Gaussians and en eigenfunctions of Laplacian ∆g with
eigenvalues λn > 0. Mg is defined as

Mg = lim
ǫ→0

ǫ
γ2

2 eγXg,ǫvg
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where the convergence is the weak convergence of measures and the limit exists in
probability. Xg,ǫ is a mollification of Xg. We then define LCFT path integral by
setting φ = Xh + c with c ∈ R and defining

∫
F (φ)e−SΣ(φ,g)Dφ := Z(g)

∫

R

E

(
F (φ)e−

1
4π

∫
Σ
QRgφdvg+

µ
4π

eγcMg(Σ)
)
dc

for suitable functions F . Z(g) is a normalisation constant “partition function of
the GFF”).

The primary fields of LCFT are so called vertex opeartors and given by Vα =
eαφ with α ∈ C. Their correlation functions are defined by a regularisation and
renormalisation procedure akin to the GMC measure. In the Riemannian setup
conformal invariance is formulated as a covariance of the correlation functions
under rescaling of the metric g → eσg where σ ∈ C∞(Σ):

〈
∏

j

Vαj
(zj〉eσg = e

1+6Q2

96π

∫
Σ
(|dϕ|2g+2Kgϕ)dvge−

∑
j ∆αj

σ(zj)〈
∏

j

Vαj
(zj))〉g

where ∆α = α
2 (Q− α

2 ). This relation defines correlation functions of primary fields

of a CFT with central charge 1 + 6Q2 and scaling exponents ∆α.

2. Compact Imaginary Liouville Theory

Compact Imaginary Liouville Theory (CILT) is formally defined by the action
functional of the LCFT by replacing γ by iβ:

SΣ(Φ, g) =
1

4π

∫

Σ

(|dΦ|2g + iQKgΦ+ µeiβΦ)dvg

Here β ∈ R and Q = β
2 − 2

β . Furthermore the field Φ takes values in the circle

R/(2πRZ) of radius R. In physics this model has been introduced as a putative
scaling limit of so-called loop models (Potts and O(N) models) and models of con-
formally invariant curves. It is believed to define a non-unitary Logarithmic CFT
with primary fields having spin (non-trivial monodromy of correlation functions).
It has also been argued to provide a path integral formulation of the celebrated
Belavin-Polyakov-Zamolodchicov Minimal models. Many of its properties are not
understood even on the physical level of rigour. Thus it provides a natural math-
ematical playground for these questions.

The probabilistic formulation of CILT uses again the GMC but in addition we
need to explain how the fact that Φ takes values in the circle is taken into account.
Let first Φ : Σ → R/(2πRZ) be smooth. Then dΦ is a closed 1-form on Σ which
has a Hodge decompostion

dΦ = dΦ0 + ω

with Φ0 : Σ → R and ω a harmonic 1 form satisfying
∫

γ

ω ∈ 2πRZ(1)
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for all closed curves γ. Furthermore
∫

Σ

|dΦ|2gdvg =

∫

Σ

|dΦ0|2gdvg + ‖ω‖22

Given a basis for the homology of Σ the set R of harmonic 1 forms on Σ satisfying
(1) can be identified with Z2g so we can define the path integral of CILT by setting

Φ = c+Xg +Φω

where Φω =
∫ x

x0
ω is the primitive of ω and then

〈F 〉CILT := Z(g)
∑

ω∈R

∫

R/2πRZ

e−
1
4π

‖ω‖2

E

[
F (Φ)e−

1
4π

∫
Σ
(iQRgΦ+eiβΦ)dvg

]
dc.(2)

The formal expression eiβΦ is defined as a random distribution in terms of the
Imaginary GMC and the upshot is [5] that (2) is well defined for a large class of

F provided β <
√
2. Furthermore the result is independent of the choice of the

point x0 used to define the primitive of ω.
However, in general the definition (2) depends on the choice of the homology

basis due to the curvature term and requiring independence one is led to modifying
the curvature term by adding to it term involving a choice of branch cuts such
that the field is single valued in their complement. Upshot of this is that the
independence forces a quantisation of β and Q:

β,Q ∈ 1

R
Z.

Then the relation Q = β
2 − 2

β implies β2 ∈ Q. Thus the central charge 1− 6Q2 of

this CFT is rational.
With analogy to to LCFT some primary fields of CILT are given by the vertex

operators Ve = ei
e
R
Φ where 2πR periodicity requires e ∈ Z. These are called

electric operators with electric charge e. CILT has however also magnetic operators
Om(z) which produce a winding of the field Φ by 2πmR around the point z. To
construct them let z = (z1, . . . , zp), m = (m1, . . . ,mp) with

∑p
j=1mj = 0. There

exists a harmonic 1-form ωz,m on Σ \ ∪i{zi} s.t.
∫

γ(zj)

ωz,m = 2πRmj

with γ(zj) a small contour surrounding zj. We then replace the field Φ in (2)
by adding to it the primitive Φm,z(x) =

∫ x

z0
ωz,m. This defines the correlation

functions of the magnetic operatorsOmi
(zi). Finally the electromagnetic operators

Ve,m(z) are defined by having an electric and a magnetic charge at z. Due to the
fact that Xg is a distribution and Φm,z(x) is not continuous at zi it turns out
these fields depend on the direction the point x is taken to approach zi so the
electromagnetic field is defined at the tangent space of Σ at zi. We denote it by
Ve,m(z, v) with v ∈ TzΣ a unit vector. The following theorem summarises our
results, for more explicit formulation see [5]:
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Theorem. Let β2 ∈ Q with β2 < 2. The correlation functions 〈∏j Vej ,mj
(zj , vj))〉

are well defined if ∑

i

mi = 0 and ei > QR.

They are diffeomorphism invariant and Weyl covariant with central charge 1−6Q2

and conformal weights

∆α,m =
α

2
(
α

2
−Q) +

m2R2

4

and spin

〈
∏

j

Vαj ,mj
(zj , rθjvj))〉 =

∏

j

eiR(αj−Q)mjθj 〈
∏

j

Vαj ,mj
(zj , vj))〉

where rθ ∈ SO(2). The structure constants (three-point functions) of CILT have
an explicit expression, a generalisation of the imaginary DOZZ formula. Finally,
the correlation functions satisfy Segal’s gluing axioms under cutting and pasting
the surface Σ.

Open Questions

1. For β2 = 4 p
q with p, q co-prime, p > q, 1 − 6Q2 = 1 − 6 (p−q)2

pq are the central

charges of BPZ minimal models. Minimal models have Coulomb gas representation

for conformal blocks with two screening charges eiβφ and e
1
iβ

φ. For q = 2 only
eiβφ needed. Are these models related to CILT?

2. Spectrum of CILT consists all degenerate weights αr,s =
(r−1)p+(s−1)q√

pq whereas

minimal models have r < q − 1, s < p− 1. Is there a path integral formulation of
G. Felder’s BRST reduction?

3. CILT Hamiltonian is non-self-adjoint with Jordan cells. Is it a logarithmic
CFT?

4. For β ∈ [
√
2, 2) the GMC renormalisation is not sufficient.How to construct

CILT in this regime?

5. Is there a probabilistc theory for β2 /∈ Q?
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The vertex-reinforced jump process with long range interactions

Franz Merkl and Silke Rolles

(joint work with Margherita Disertori)

The vertex-reinforced jump process (vrjp). Let G = (Λ, E) be an undirected finite
or infinite graph endowed with edge weightsWe > 0, e ∈ E. The vertex-reinforced
jump process Y = (Yt)t≥0 is a process in continuous time, where given (Ys)s≤t,
the particle jumps from site i to site j ∼ i with rate WijLj(t), where

Lj(t) =1 +

∫ t

0

1{Ys=j} ds = local time at j with offset 1.

The process was conceived by Wendelin Werner around 2000.

Transience on Zd with long range interactions [3]. Fix a dimension d ∈ N. Consider
the vertex-reinforced jump process on the complete graph with vertex set Zd and
edge weights Wij = w(‖i− j‖∞), i, j ∈ Zd, with a decreasing weight function
w : [1,∞) → (0,∞). If

∑

i∈Zd\{0}
w(‖i‖∞) <∞ and w(x) ≥W

(log2 x)
α

x2d
for all x ≥ 1

for some α > 3 and W ≥ max
{
80 log 2, 152 e

√
2α−1

α−3

}
, then the expected number of

visits to any given vertex is finite. In particular, the vrjp is a.s. transient.

Random walk in random conductances [6]. On any finite graph G = (Λ, E), the
discrete time process (Xn)n∈N0

induced by the vertex-reinforced jump process
starting at i0 has the same distribution as a random walk in random conductances
given by

Wije
ui+uj , {i, j} ∈ E,

where (ui)i∈Λ are distributed according to the (u-marginal) of the non-linear hy-
perbolic supersymmetric sigma model µΛ

W,i0
, also called H2|2 model, introduced

by Zirnbauer in [8]. After integrating Grassmann variables out, it is given by

µΛ
W,i0 (du ds) = e−

∑
e∈E We(Be−1)

∑

S∈S

∏

{i,j}∈S

Wije
ui+uj

∏

i∈Λ\{i0}

e−ui

2π
dui dsi,

where ui0 = si0 = 0, Be := cosh(ui − uj) +
1
2 (si − sj)

2eui+uj for e = {i, j}, S is

the set of spanning trees of G, and dui dsi denotes the Lebesgue measure on R2.

The H2|2 model on Zd with long range interactions [3]. Consider the H2|2 model

µΛN

W,ρ on the d-dimensional box ΛN := {0, 1, . . . , 2N − 1}d, N ∈ N. It describes the

random environment for the discrete time process of vrjp on ΛN ∪ {ρ} starting at
ρ. There exists c > 0 such that for all m ∈ [0, cW ] one has

E
ΛN

W,ρ [(coshui)
m] ≤ 2, E

ΛN

W,ρ[(cosh(ui − uj))
m/2] ≤ 2 · 2m/2.

uniformly in i, j ∈ ΛN ∪ {ρ} and N . In particular, for W large enough eui are

uniformly in N ∈ N and i ∈ ΛN integrable with respect to µΛN

W,ρ.
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Overview of the proof. The main steps to obtain bounds for EΛN

W,ρ [(coshui)
m] are

the following.

• We compare the H2|2 model on ΛN with long-range interactions with an
H2|2 model with hierarchical interactions. The distribution of ui in the
hierarchical H2|2 model agrees with the distribution in an effective H2|2

model. Studying the effective H2|2 model can be reduced to studying a
one-dimensional model with inhomogeneous weights. In this model, the
bounds can be deduced in the spirit of [4]. In the effective H2|2 model,
all vertices interact with each other. However, using monotonicity from
Poudevigne [5] or in a determinant in our argument, we only keep the rele-
vant interactions. This yields an effective inhomogeneous one-dimensional
model.

• The measure µΛN

W,ρ is the marginal of a supersymmetric model dealing with
spin variables taking values in a supersymmetric extension of the hyper-
bolic plane. It involves both, bosonic and fermionic variables (Grassmann
variables). Supersymmetry mixes bosonic and fermionic components. Us-
ing supersymmetry, one can evaluate expectations of certain observables
explicity (Ward identities), which can then be used to derive bounds for
expectations of other (non-supersymmetric) observables.

Acknowledgment. This work was supported by the DFG priority program SPP
2265 Random Geometric Systems.

References

[1] O. Angel, N. Crawford, and G. Kozma. Localization for linearly edge reinforced random
walks. Duke Math. J., 163(5):889–921, 2014.

[2] M. Disertori, F. Merkl, and S.W.W. Rolles. The non-linear supersymmetric hyperbolic sigma
model on a complete graph with hierarchical interactions. ALEA Lat. Am. J. Probab. Math.
Stat., 19(2):1629–1648, 2022.

[3] M. Disertori, F. Merkl, and S.W.W. Rolles. Transience of vertex-reinforced jump processes
with long-range jumps. arxiv.2305.07359, 2023.

[4] M. Disertori, T. Spencer, and M.R. Zirnbauer. Quasi-diffusion in a 3D supersymmetric
hyperbolic sigma model. Comm. Math. Phys., 300(2):435–486, 2010.

[5] R. Poudevigne-Auboiron. Monotonicity and phase transition for the VRJP and the ERRW.
J. Eur. Math. Soc. (JEMS), 26(3):789–816, 2024.

[6] C. Sabot and P. Tarrès. Edge-reinforced random walk, vertex-reinforced jump process and
the supersymmetric hyperbolic sigma model. J. Eur. Math. Soc. (JEMS), 17(9):2353–2378,
2015.

[7] C. Sabot and X. Zeng. A random Schrödinger operator associated with the vertex reinforced
jump process on infinite graphs. J. Amer. Math. Soc., 32(2):311–349, 2019.

[8] M.R. Zirnbauer, Fourier analysis on a hyperbolic supermanifold with constant curvature,
Comm. Math. Phys. 141(3) (1991), 503–522.



1416 Oberwolfach Report 25/2024

The phase diagram of the Ising lattice Higgs model

Malin Palö Forsström

Ising lattice gauge theory is a spin models on the directed edges of hypercubic
lattices, which takes spins in Z2. Lattice gauge theories were introduced indepen-
dently by Wilson [11], as lattice approximations of the quantum field theories that
appear in the standard model (known as Yang-Mills theories), and by Wegner
in [10], as an example of a spin system with a phase transition without a local
order parameter. In this talk we will focus on the Ising lattice Higgs model, which
is the simplest example of a lattice gauge theory coupled to an external field. The
action of this model is given by

−β
∑

p∈C2(BN )

ρ(dσ(p))− κ
∑

e∈C1(BN )

ρ(σ(e)).

Since their introduction, lattice gauge theories and the lattice Higgs model have
attracted great interest in the physics community, and have been successfully used
both for simulations and as toy models for the Yang-Mills model [7, 9].

The natural observables in lattice Higgs models are Wilson loop observables,
Wilson line observables, and ratios of such observables, such as the Marcu–Freden-
hagen ratio ρ (see, e.g., [1, 2, 3, 8, 9]). These are all natural observables from a
physics perspective (see, e.g. [2]), but are also interesting from a mathematical
viewpoint since they are believed to undergo several phase transitions [9].

We draw the conjectured phase diagram of the Ising lattice Higgs model, in Fig-
ure 1.

β

κ

Confinement
phase

Free phase

Higgs phase

ρ 6= 0

ρ 6= 0

ρ = 0

Figure 1. The conjectured phase diagram of the Ising lattice
Higgs model. In the Higgs phase, the Marcu-Fredenhagen ratio is
believed to be non-zero, and one expects exponential decay of cor-
relations. In the free phase, one believes the Marcu-Fredenhagen
ratio is identivally zero, and expects exponential decay of corre-
lations with polynomial correction.
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In this phase diagram, there are two phases; a Higgs/confinement phase, where
the expectaion of straight Wilson lines are conjectured ot have pure exponential
decay in the length of the line, and the Marcu-Fredenhagen ratio is expected to
be non-zero, and a free phase, where the Marcu-Fredenhagen is expected to be
identically zero and the expectation of straight Wilson lines are conjectured to
have exponential decay in the length of the line with polynomial corrections.

In this talk, we present recent results which confirms parts of this phase diagram
in subsets of the three conjectured phases.

In particular, our main results show that the Marcu-Fredenhagen ratio is non-
zero in non-trivial subsets of the Higgs and confinement phases, while identically
zero in a non-trivial subset of the free phase. As a consequence, it follows that the
model undergo at least one phase transition. In addition, we are able to show that
the expected value of straight Wilson lines have a pure exponential decay. The
main tools needed to prove these results are various high temperature and cluster
expansion.

The talk is based on recent work in [4, 5, 6].
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The conformal restriction property of Schramm-Loewner evolution (SLE) type
measures has been a key feature — while still somewhat mysterious — of many
developments involving SLE/CLE problems and their relationship to discrete lat-
tice paths. For example, part of the conjecture that the self-avoiding walk (SAW)
should converge in the scaling limit to an SLE(8/3) path is based on the exact
conformal restriction invariance of SAW measures [1]. Generalizations of SLE type
curves on Riemann surfaces, i.e., natural measures on paths and loops enjoying
the symmetries underlying critical models and conformal field theory (CFT), were
proposed by Kontsevich [2] and Werner [3] building on their known conformal
restriction property [4] and on somewhat analogous conformal Markov properties
of the discrete models (especially of their phase boundaries). Geometrically, an
infinitesimal version of the conformal restriction property relates the loop mea-
sures to Malliavin’s proposal [5] for a canonical diffusion on the diffeomorphism
group Diff(S1) of the circle. These measures, also termed “MKS measures” were
soon thereafter investigated by a few people, involving Kontsevich & Suhov [6]
Friedrich [7], and Dubédat [8, 9], among others. It is believed that the conformal
restriction covariance property uniquely determines the MKS loop measures [6].

Pertaining to the general picture, the conformal restriction property can be
formulated precisely in terms of an “anomaly” that describes the response of the
system to deformations of the underlying space (domain, complex structure, etc.)
For example, if µD is an SLE(κ) measure on a domain D and µU is an SLE(κ)
measure on its subdomain U ⊂ D, then the two measures compare as

dµU

dµD
(γ) = 1{γ ⊂ U} exp

(
1
2c(κ)mD(γ,D \ U)

)

where mD(γ,D \ U) is a conformal invariant and c(κ) = (3κ−8)(6−κ)
2κ is a function

of the diffusivity parameter κ ∈ (0, 4], encoding the strength of the anomaly (being
zero for κ = 8/3). It is well known [4, 10, 11] that for chordal or loop SLE(κ),
the factor mD(γ,D \ U) equals the mass of Brownian loops in D intersecting
both γ and D \ U . (It also has other alternative expressions, e.g., in terms of
Schwarzian derivatives of uniformizing maps [4], relating it closer to infinitesimal
deformations.) Brownian loop measure being infinite in some situations (though
renormalizable), it may be preferable to seek other presentations of the anomaly.
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Sid Maibach and I have investigated the universality of this anomaly [12], in the
spirit of Kontsevich’s geometric framework [2, 6], also motivated by the point of
view of CFT à la Segal [13], and similar to the vertex operator algebra framework
for CFT initiated by Friedan & Shenker [14]. Indeed, in order to fully understand
the universal nature of the conformal restriction property and the associated anom-
aly (e.g., as a characterizing property of canonical MKS loop measures, or as an
inherent feature of any conformal field theory), it seems necessary to investigate
the relationship of MKS measures to the geometric content of CFT.

Consider the conformal anomaly concretely with both U ⊂ D simply connected.
If the Brownian loop measure were finite, the anomaly could also be written as

exp
(
1
2c(κ)mD(γ,D \ U)

)
= “

exp
(
1
2c(κ)mD(ϕD(γ))

)

exp
(
1
2c(κ)mD(ϕU (γ))

) ”,

comparing the mass mD of Brownian loops in the unit disk D intersecting ϕD(γ)
and those intersecting ϕU (γ), where ϕD : D → D (resp. ϕU ) is a uniformizing map
from D (resp. U) onto the disk. One would be thus led to considering the SLE(κ)
curve γ on two conformal structures (Riemannian metrics) on the disk induced
by the maps ϕD and ϕU . To make this more precise, one can consider the metric
dependence of CFT partition functions Zg(Σ) on surfaces (Σ, g), also related to
total masses of SLE (or MKS) measures (cf. [10, 15, 16]). Namely, two metrics g
and e2σg in the same conformal class are related by the anomaly functional

S0
L(σ, g) :=

1

12π

∫∫

Σ

(
1

2
|∇gσ|2g+Rgσ

)
volg +

1

12π

∫

∂Σ

kgσ ṽolg, σ ∈ C∞(Σ,R),

where ∇g, Rg, volg, kg, ṽolg are respectively the divergence, Gaussian curvature,
and volume form on Σ, and the boundary curvature and volume form on ∂Σ,
induced by g. Changes of metrics are thus encoded into an exponential factor
exp(c S0

L(σ, g)), where c ∈ R is the central charge. Any CFT partition function

transforms as Ze2σg(Σ) = ec S
0
L(σ,g)Zg(Σ). Dubédat formalized [15] how a compar-

ison of partition functions (e.g., determinants of Laplacians) gives the conformal
restriction anomaly (note though that partition functions might not be finite).
E.g., taking Σ = D with flat metric g0 and U ⊂ D simply connected, we expect

Zg0(D)

Z|(ϕ−1

U )′|2g0(D)

Z|(ϕ−1

U )′|2g0(D \ ϕ−1
U (γ))

Zg0(D \ γ) = exp
(
c
2 mD(γ,D \ U)

)

for γ ⊂ U a chord (or Jordan loop; in which case the identity should hold up to a
multiplicative factor that only depends on the conformal moduli of D \ γ, U \ γ).

The aim in [12] is to explicitly derive the Virasoro algebra — the Lie algebra
of infinitesimal conformal symmetries — from complex deformations DefC(S

1) as-
sociated to Jordan loops on surfaces, parameterized by the circle S1. Morally,
DefC(S

1) should be thought of as a complexification of the infinite-dimensional
Fréchet-Lie group Diffan

+ (S1) (comprising real-analytic, orientation-preserving dif-
feomorphisms of S1), whose Lie algebra Xan

R
(S1) consists of real-analytic vector

fields on S1. Its complexification Xan
C
(S1) := Xan

R
(S1) ⊗ C is known as the Witt

algebra. It can be thought of as the Lie algebra of the complex deformations
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DefC(S
1), in the sense that flows of complex vector fields yield complex deforma-

tions. One is thus led to considering a moduli space of Riemann surfaces Σ with
(analytically parametrized) boundary components (i.e., loops parameterized by the
circle), endowed with a sewing operation across boundary components (viz. confor-
mal welding), so boundary components become Jordan loops on the sewn surface.

In particular, the group Diffan
+ (S1) acts very naturally by reparameterization of

the boundary components of Σ. However, in order to see the Virasoro structure
which unifies the MKS loop measures, one defines a real determinant line bundle
DetcR on the moduli space, which is just a collection of real one-dimensional vector
spaces associated to each equivalence class of surfaces Σ (encoding the conformal
anomaly between metrics). The determinant line over Σ is defined as the collection

of (formal) multiples of metrics under the equivalence [e2σg] = ecS
0
L(σ,g)[g]. (By

choosing a section for the determinant line bundle, the conformal anomaly S0
L(σ, g)

can be written in a number of related but inequivalent ways [12], involving Loewner
energy [17], Brownian loop measure [4, 11], or determinants of Laplacians [15].)

The moduli space carries an action of the complex deformations on the boundary
components that truly change the complex structure of Σ, unlike mere reparam-
eterizations. The (nontrivial) sewing operation on the moduli space and on the
determinant line bundle then gives rise to an associative product for the associated
central extension of DefC(S

1) by the multiplicative group of positive reals,

(φ, λ) · (ψ, λ′) = (φψ, λλ′ Γc(φ, ψ)), φ, ψ ∈ DefC(S
1), λ, λ′ > 0,

where Γc is a cocycle describing algebraically the relevant central extension, and
geometrically the nontrivial twist in the sewing operation. (Note, however, that
complex deformations cannot form a well-defined Lie group, so one cannot naively
speak of their Lie algebra, nor of their central extensions.) From this structure,
one can explicitly compute the conformal anomaly in terms of the (honest) Lie
algebra cocycle by taking two flows (φt)t∈R and (ψt)t∈R of complex deformations
generated by two vector fields v, w ∈ Xan

C
(S1) in the Witt algebra [12]:

1

2

∂2

∂t∂s

(
log Γc(φt, ψs)− log Γc(ψs, φt)

)∣∣∣
t=s=0

=
c

24π
Im

∫ 2π

0

v′(θ)w′′(θ) dθ.

In particular, we see that the cocycle is nontrivial whenever the central charge
c 6= 0 is nonzero, and that it coincides with the imaginary part of the celebrated
Gel’fand-Fuks (or Virasoro) cocycle. Note that while the determinant line bundle
is topologically trivializable, the sewing operation is not. This is the key fact that
gives rise to a nontrivial central extension of DefC(S

1) and its Lie algebra, yielding
the Virasoro structure and the nontrivial conformal anomaly. However, perhaps
surprisingly the cocycle vanishes for real vector fields v, w ∈ Xan

R
(S1), which shows

that the complex deformations are necessary in order to see the conformal anomaly.
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Minimal Surfaces in Random Environment

Ron Peled

(joint work with Michal Bassan, Barbara Dembin, Dor Elboim, Shoni Gilboa,
and Daniel Hadas)

A minimal surface in a random environment (MSRE) is a surface which minimizes
the sum of its elastic energy and its environment potential energy, subject to
prescribed boundary conditions. Apart from their intrinsic interest, such surfaces
are further motivated by connections with disordered spin systems, first-passage
percolation models and minimal cuts in the ZD lattice with random capacities.

We wish to study the geometry of d-dimensional minimal surfaces in a (d+ n)-
dimensional random environment. Specializing to a model that we term harmonic
MSRE, in an “independent” random environment, we rigorously establish bounds
on the geometric and energetic fluctuations of the minimal surface, as well as a
scaling relation that ties together these two types of fluctuations. In particular,
we prove, for all values of n, that the surfaces are delocalized in dimensions d ≤ 4
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and localized in dimensions d ≥ 5. Moreover, the surface delocalizes with power-
law fluctuations when d ≤ 3 and sub-power-law fluctuations when d = 4. Our
localization results apply also to harmonic minimal surfaces in a periodic random
environment. Many of our results are new even for d = 1 (indeed, even for d =
n = 1), corresponding to the well-studied case of (non-integrable) first-passage
percolation.

Intrinsic uniqueness of gauge-covariant Yang–Mills dynamic

Hao Shen

(joint work with Ilya Chevyrev)

This talk is based on (part of) a joint work [5] with Ilya Chevyrev.
Fix a compact Lie group G with Lie algebra g. Recall that the Yang–Mills

model (on T2) is defined by the functional
∫
T2 |FA|2dx. Here A is a g valued

1-form and FA = dA + [A,A] is the curvature of A. The functional is invariant
under gauge transformation A 7→ g ◦A = gAg−1 − dgg−1.

The stochastic quantization equation is

∂tAi = ∆Ai + [Aj , 2∂jAi − ∂iAj + [Aj , Ai]] + CAi + χε ∗ ξi
where the noise ξ is convolved with a mollifier function χε. The equation is locally
well-posed in 2D and 3D [1, 2]. Moreover, in [1, 2] it is also proved that there is
a choice of C so that when two initial conditions a, b are gauge equivalent, in the
limit ε → 0 the solutions Aa and Ab from initial conditions a, b respectively are
gauge equivalent in law. This is called the gauge covariant property, which allows
us to project the dynamic to the quotient space. In [1, 2] we couple Aa and Ab by
a particular time-dependent family of gauge transformations which solve a PDE.

In [5] it is proved that the gauge covariant property holds for only one choice
of C. One of the important application is that the Langevin dynamics of a large
class of lattice Yang–Mills models have the same (universal) limit. The proof of
this result uses geometric arguments.

In the proof, we show that for a different choice of C, the solution is not gauge
covariant. To this end, we argue that the Wilson loop gauge invariant observ-
ables are different for the two solutions starting from two delicately chosen gauge
equivalent initial conditions. The loop is chosen to be the non-contractible loop
around T2. To create the desired gauge equivalent initial conditions one uses ideas
from sub-Riemannian geometry. A strictly positive lower bound for the difference
between the two Wilson loop observables is established by perturbative arguments
for the Yang–Mills SPDE and holonomy SDE.
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Scaling exponents for 2D percolation via Liouville quantum gravity

Xin Sun

(joint work with P. Nolin, W. Qian, Z. Zhuang)

This report is based on a joint work with P. Nolin, W. Qian, and Z. Zhuang
[NQSZ23].

Bernoulli percolation is a simple and very natural process of statistical mechan-
ics, defined on a lattice. It was introduced by Broadbent and Hammersley [BH57]
to model the large-scale properties of a random material. Two-dimensional (2D)
percolation is especially well understood, thanks to its connection to conformal in-
variance and Schramm-Loewner evolution (SLE). Introduced by Schramm in the
groundbreaking work [Sch00], SLE is a one-parameter family of random non-self-
crossing curves characterized by conformal invariance and domain Markov prop-
erty, denoted by SLEκ. It is conjectured to describe the scaling limits of a large
class of two-dimensional random systems at criticality. In another breakthrough
[Smi01] published shortly after, Smirnov proved that critical site percolation on
the triangular lattice converges to a conformally invariant scaling limit, which can
thus be described by SLE6.

The arm exponents are a set of scaling exponents encoding important geometric
information of percolation at and near its criticality. They describe the probability
of observing connections across annuli of large modulus by disjoint connected paths
of specified colors. When there is at least one arm of each of the two colors, such
exponents are called polychromatic arm exponents. Otherwise, they are called
monochromatic arm exponents. Based on the link with SLE, the exact values
of the one-arm exponent and all the polychromatic arm exponents were derived
rigorously for site percolation on the triangulation lattice in [LSW02] and [SW01],
respectively. The value of these exponents were also predicted in the physics
literature; see [ADA99] and references therein.

Despite the SLE connection, the evaluation of monochromatic arm exponents
beyond the one-arm case has been a longstanding mystery. In this paper, we
derive the exact value for the monochromatic two-arm exponent, namely with
two disjoint connections of the same color. This exponent is also known as the
backbone exponent, with a rich history. Prior to our work, there is no theoretical
prediction for the backbone exponent in the literature that is consistent with
numerical approximations. We show that it is the root of a simple elementary
function. Moreover, it is transcendental.
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Theorem 1. The backbone exponent ξ is the unique solution in the interval (14 ,
2
3 )

to the equation

(1)

√
36x+ 3

4
+ sin

(2π
√
12x+ 1

3

)
= 0.

The number ξ is transcendental. Namely, it is not a root of an integer-coefficient
polynomial.

Using (1), we obtain the numerical value of ξ:

(2) ξ = 0.35666683671288 . . . .

The best numerical result obtained so far is ξ = 0.35661± 0.00005 in [FKZD22],
which is based on Monte Carlo simulations. See also [Gra99, JZJ02, DBN04] for
earlier numerical approximation results on ξ.

Our derivation consists of two steps. First, we express the backbone exponent
in terms of a variant of SLE6 call the SLE6 bubble measure. Then we exactly
solve the SLE6 problem using the coupling between SLE and Liouville quantum
gravity (LQG), and the exact solvability of Liouville conformal field theory (CFT).
This approach to the exact solvability of SLE was developed by the third-named
author with Ang, Holden, Remy in [AHS21, AS21, ARS21]. Our derivation can be
viewed as an application of the KPZ relation to the derivation of scaling exponents
for lattice models. The main novelty in our application is the usage of the exact
solvability Liouville CFT.
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Coulomb gas on a Jordan domain

Fredrik Viklund

(joint work with Kurt Johansson)

Let D be a Jordan domain in the complex plane. Let β > 0 and consider the
partition function of a planar Coulomb gas in D with a hard wall along η := ∂D,

Zn,β(D) =
1

n!

∫

Dn

e−
β
2

∑
1≤k 6=ℓ≤n log |zk−zℓ|−1

n∏

k=1

d2zk.

We can view this as coming from a statistical mechanics model of n charged par-
ticles in the plane, interacting via the electrostatic energy at inverse temperature
β, with all particles constrained to D. We are interested in how the geometry
of D is reflected in the large n behavior of Zn,β(D). When β = 2 the model is
determinantal and we consider this case from now on and write Zn(D) = Zn,2(D).
The starting point is the following result.

Proposition 1 (See [3]). Let D be a bounded Jordan domain containing 0. We
have the following identity for all n ≥ 1,

(1) log
Zn(D)

Zn(D)
= n(n+ 1) log r∞(D) + log det(I − PnBB

∗Pn)ℓ2(Z+).

Here D is the unit disk, Pn is projection on the first n coordinates in ℓ2(Z+),

and B = (
√
kℓakℓ)k,ℓ is the semi-infinite Grunsky matrix associated with D. Let

D∗ be the exterior unit disc and D∗ the exterior ofD and write g : D∗ → D∗ for the
conformal map normalized so that g(z) = r∞z +O(1) as z → ∞; r∞ = r∞(D) is
the capacity of D. Then the Grunsky coefficients akℓ are defined via the expansion

log
g(ζ)− g(z)

ζ − z
= −

∞∑

k,ℓ=1

akℓζ
−kz−ℓ, |z|, |ζ| > 1.

Let f : D → D be the interior conformal map normalized so that f(0) = 0, f ′(0) >
0. The following result follows immediately from Proposition 1.

Theorem 1 (See [3]). Suppose without loss in generality that r∞(D) = 1. Then
η = ∂D is a Weil-Petersson quasicircle if and only if

−12 lim sup
n→∞

log
Zn(D)

Zn(D)
<∞,
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in which case the limit exists and equals the Loewner energy of η:

IL(η) =
1

π

∫

D

|f ′′/f ′|2d2z + 1

π

∫

D

|g′′/g′|2d2z + 4 log |f ′(0)|/|g′(∞)|(2)

is the Loewner energy of η.

Weil-Petersson quasicircles arise in a number of places in analysis and, recently,
in probability, see, e.g., [4, 1, 6]. We refer to [7] for more on Wang’s Loewner
energy and various links to SLEs and random conformal geometry.

What happens if η is not a Weil-Petersson quasicircle? In this case η must have
infinite Loewner energy and it is easy to see from (2) that one way this can happen
is if η has corners. To state our main result, consider D with piecewise analytic
boundary η with m corners of interior opening angles παp, p = 1, . . . ,m.

Theorem 2 (See [3]). We have the following asymptotic formula.

lim
n→∞

1

logn
log

Zn(D)

Zn(D)
= −1

6

m∑

p=1

(
αp +

1

αp
− 2

)
.

The expression on the right could be considered universal and appears for in-
stance in small-t heat-trace formulas, see, e.g., [2, 5].

The proof of Theorem 2 starts from Proposition 1 and is based on careful
asymptotic analysis of the Grunsky coefficients.
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Two optimization problems of the Loewner energy

Yilin Wang

Conformal welding encodes a Jordan curve into a circle homeomorphism. It is
a classical subject in geometric function theory to study the correspondence be-
tween the analytic properties of the curve and homeomorphism. More precisely,

let γ ⊂ Ĉ = C ∪ {∞} be an oriented Jordan curve. We denote the two connected

components of Ĉ \ γ on the left and right of γ by Ω and Ω∗, respectively. We
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write H2 := {z ∈ C | Im(z) > 0} and H2,∗ := {z ∈ Ĉ | Im(z) < 0}. From the
Carathéodory theorem, any conformal map f from H2 onto Ω extends continu-
ously to a homeomorphism of their closures and defines a homeomorphism from
RP1 = ∂H2 to γ. Similarly, any conformal map g from H2,∗ onto Ω∗ defines
a homeomorphism from RP

1 to γ. The welding homeomorphism (or simply the
welding) of γ is defined as

(1) hγ := g−1 ◦ f |RP1 ∈ Homeo+(RP
1)

where we denote by Homeo+(RP
1) the space of orientation preserving homeomor-

phisms of RP1. There is ambiguity in defining the welding homeomorphism as one
may possibly precompose f, g by PSL(2,R), and for any solution to the welding
problem, one may post compose γ by PSL(2,C). Hence, the conformal welding is
well-posed between the equivalent classes

PSL(2,C)\{Jordan curves} ⇐⇒ PSL(2,R)\Homeo+(RP
1)/PSL(2,R).

We first explain that the graph of any h ∈ Homeo+(RP
1) is a positive curve

in ∂AdS3 ≃ RP
1 × RP

1, the boundary of the Anti-de Sitter space. Under this
identification, the PSL(2,R) × PSL(2,R) action on Homeo+(RP

1) translates to
the isometries of AdS3 space. Similarly, viewing the Jordan curve as being on

∂H3 = Ĉ, the PSL(2,C) action translates to the isometries of H3.
We then consider two optimizing problems for the Loewner energy, one under

the constraint for the curve γ to pass through n given points on ∂H3; the other un-
der the constraint for the graph of the welding homeomorphism h to pass through
n given points on ∂AdS3. We observe that the answers to the two problems ex-
hibit interesting symmetries: optimizing the Jordan curve in ∂H3 gives rise to a
welding homeomorphism that is the boundary of a pleated plane in AdS3, whereas
optimizing the positive curve in ∂AdS3 gives rise to a Jordan curve that is the
boundary of a pleated plane in H3.

This talk is based on the work [1].
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Loop-soup rewiring dynamics, double points, and Φ4 models

Wendelin Werner

A critical Brownian loop-soup [3] in R3 or a bounded domain D in R2 is a Pois-
sonian collection of unrooted unoriented Brownian loops with intensity given by
the “natural” scale-invariant and translation-invariant measure on such Brownian
loops. The properly renormalized occupation time measure of a critical loop-soup
is known to be distributed like the (properly defined) square of a Gaussian free
field [6, 7]. In two dimensions, it has been shown [1] that one can in fact construct
a GFF in D out of a Brownian loop-soup by sampling additional independent ±1
signs for each cluster of loops (recall that the outermost boundaries of the clusters
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of loops are distributed like a Conformal Loop Ensemble CLE4, see [11]). For
more relations between the planar loop-soups, the GFF, its square and the CLE4

structure, see for instance [10, 5] and the references therein. A similar relation
between square of discrete GFF and random walk loop-soups exists also in the
discrete setting, and to make the link with the actual discrete GFF and control
the scaling limit, the cable-graph setup turns out to be very useful [8, 9].

The GFF is sometimes refered to as the bosonic free field. In the discrete set-
ting, the indistinguishability of bosons can be viewed as mirroring the “rewiring”
property [14] of the random walk loop-soups. Loosely speaking, if one sees that a
given site is actually visited “twice” by the loop-soup (i.e., twice by one single loop
or by two different loops once), then one can resample the connection probability
at that site (thereby possibly merging the two different loops into one longer one,
or splitting the one loop into two shorter ones) without changing the law of the
loop-soup.

When trying to express the analog of this rewiring property in the continuum,
one is facing the problem that the “quantity” of Brownian self-intersections cor-
responding to small loops is infinite. This feature has motivated the introduction
(see [13, 2, 4]) of renormalized Brownian self-intersection local times some 40+
years ago, already in the context of Euclidean field theory [12].

In this presentation, motivated by extensions to higher dimensions, we outline
why in two dimensions:

• For each fixed positive ǫ, when one performs the natural continuous-time
rewiring dynamics on Brownian loop-soups where any two Brownian loops
of time-length greater than ǫ can merge at a rate and point chosen accord-
ing to the corresponding intersection local time between these loops, and
on the other hand, any single Brownian loop can be split into two loops of
time-length greater than ǫ at a rate given by its self-intersection local time,
then the law of the loop-soup is invariant. This Markov process (when one
considers a loop-soup in a bounded domain) makes almost surely only
finitely many jumps during any finite time-interval.

• When ǫ tends to 0, the intensity of jumps does blow up, due to the ex-
ploding number of self-intersections. However, in two dimensions, it turns
out to be possible to show that there exists a limiting non-trivial càdlàg
Markovian dynamics with a dense set of rewiring-times.

This second point is actually closely related to following further results:

• It is possible to define for each given Brownian loop β and each loop-soup
L (not containing β), the renormalized intersection local time of β with
L. In some sense, the existence of the dynamics mirrors the fact that
the number of self-intersections of a Brownian loop is comparable to the
number of intersections with the union of all other loops in a loop-soup.
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• These double points and self-intersections in a loop-soup are very directly
connected to the square of the occupation time, i.e., to the (properly de-
fined) fourth power of the GFF (see e.g., [7] and the references therein). In-
deed, the previous considerations make it actually possible to construct di-
rectly the reweighting between Brownian loop-soups (leading to the GFF)
and reweighted Brownian loop-soups (leading to a construction of the so-
called Φ4

2 fields) – and thereby provide a construction of these Φ4
2 fields

via soups of interacting reweighted Brownian loops.

These results will be written up in an upcoming paper. How to adapt such
ideas in d = 3 is work in progress.
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The 3D dimer model

Catherine Wolfram

(joint work with Nishant Chandgotia and Scott Sheffield)

The dimer model is one of the basic lattice models of statistical physics. A dimer
tiling (a.k.a. perfect matching) τ of a graph G is a collection of edges such that
every vertex is covered by exactly one edge in the collection. If G is a subgraph
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of Zd, then τ can be drawn as a tiling by dominoes. See Figure 1 for examples in
two and three dimensions.

Figure 1. A dimer tiling of a region in Z2 called an Aztec dia-
mond and the bipartite coloring of Z2 (left) and a dimer tiling of
a cube and the bipartite coloring of Z3 (right).

The dimer model has been studied deeply in two dimensions, where it is a
model of random surfaces through the correspondence between dimer tilings and
Lipschitz “height functions” due to Thurston [1]. This talk is about the dimer
model in three dimensions [4]. The main result is a large deviation principle and
limit shape result for scaling limits of random dimer tilings of three-dimensional
regions, analogous to the two-dimensional result of Cohn, Kenyon, and Propp [2].

1. Correspondence with discrete vector fields

The height function correspondence is unique to two dimensions. However for any
dimension d, Zd is a bipartite lattice, with underlying bipartition into white and
black cubes as depicted in Figure 1. The colors of the tiles in Figure 1 indicate
the cardinal direction of the tile, viewed as a vector from its white cube to its
black cube. In this way, there is a correspondence between a dimer tiling τ and
a discrete vector field vτ , i.e., a function on oriented edges of the graph such that
for any white-to-black oriented edge e,

vτ (e) =

{
1 e ∈ τ

0 e 6∈ τ.
(1)

If −e denotes the same edge e with reversed orientation, then vτ (−e) = −vτ (e).
Subtracting a constant vector field from vτ makes it divergence-free. When d = 3,
this is

fτ (e) =

{
5/6 e ∈ τ

−1/6 e 6∈ τ.
(2)

The height function in two dimensions can be constructed as the scalar potential of
the curl-free dual of fτ (i.e., the dual of fτ is∇h). The height function construction
does not work in any higher dimension.

For the three-dimensional setting we consider in this talk, we think about dimer
tilings (e.g. to compare them, talk about scaling limits, etc.) through the corre-
sponding divergence-free vector field fτ .
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2. Set up for a large deviation principle

Fix a dimension d = 2 or 3. Suppose that R ⊂ R3 is a “reasonable” compact
region and that b is a boundary condition on ∂R (specified e.g. using a vector field
or height function). Also choose any sequence of discrete regions Rn ⊂ 1

nZ
d such

that Rn approximates R in Hausdorff distance and the boundary conditions of Rn

converge to b as n→ ∞.

Question 1. What does a random dimer tiling of Rn look like as n→ ∞?

This vague question is made precise using the correspondence with divergence-
free discrete vector fields fτ , whose scaling limits are measurable divergence-free
vector fields (in a suitable topology). A large deviation principle means quanti-
fying: given a deterministic flow g, what is the probability that a tiling of Rn is
close to g as n → ∞? There is a limit shape if is there is one limiting flow that
random tilings concentrate on as n→ ∞.

To set up the large deviation principle more formally requires the following ingre-
dients.

(1) A sequence of probability measures (ρn)n≥1 (e.g., uniform measure on
dimer tilings of Rn)

(2) A topology (to say what the scaling limits are, and to compare things)
(3) A rate function I(·), where I measures, for any fixed δ > 0,

“ρn(tiling flow fτ is within δ of deterministic flow g) ≈ exp(−nd · I(g))”
(4) When (ρn)n≥1 satisfy an LDP and the rate function I(·) has a unique min-

imizer, then the ρn-probability that a random tiling is close to minimizer
goes to 1 as n→ ∞. When this holds, there is a unique limit shape which
is given by the minimizer.

3. Differences between 2D and 3D

The large deviation principle for dimer tilings of two-dimensional regions proved
by Cohn, Kenyon, and Propp is stated in terms of the corresponding height func-
tions [2]. The limiting boundary conditions on ∂R are also specified using height
functions. In the 2D result, the items mentioned above are:

(1) The measures ρn are uniform measure on tilings of Rn;
(2) The topology is the sup norm on the corresponding height functions h;
(3) The rate function I(∇h) is a function of only the gradient ∇h and can

be written as the integral of a “local entropy” function ent2 which has an
explicit formula;

(4) Through explicit analysis of the rate function formula, a unique limit shape
exists given a region and boundary conditions.

Exact solvability (e.g., the fact that ent2 has a formula) is an extremely powerful
tool that plays a central role in many works about dimers in two dimensions. We
expect that the 3D model is not solvable, which makes it very different to study.
To give some intuition for the differences between two and three dimensions, we
give three examples.
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Example 2. (Kasteleyn determinants.) The partition function (=number of dimer
tilings) of any bipartite planar graph can be computed as the determinant of a
weighted adjacency matrix of the graph. This is called the Kasteleyn determinant
formula. The necessary condition on a bipartite graph so that the number of
perfect matchings (a.k.a. dimer tilings) is given by a Kasteleyn determinant is
that the graph does not contain K3,3 as a minor [3]. It is not hard to find an
example showing that Z3 contains K3,3 given only four lattice cubes.

Example 3. (Non-intersecting paths bijection.) Another way to compute the par-
tition function for dimers in 2D is via the bijection with non-intersecting paths in
Z2 by overlaying a tiling with a “brickwork tiling” where all tiles point in the same
cardinal direction white-to-black. There is a formula to count 2D non-intersecting
path patterns. There is an analogous bijection between dimer tilings of Z3 and
non-intersecting paths in Z3, but no known formula to count 3D non-intersecting
paths. The topology in three dimensions is much more complicated, and non-
intersecting paths are not ordered, can be braided around each other, and so on.

Example 4. (Local move connectedness.) Any two dimer tilings of a simply con-
nected region D ⊂ Z2 are connected by a finite sequence of flips, where two
adjacent and parallel vertical tiles are swapped for horizontal ones or vice versa.
Flip connectedness manifestly fails in 3D even regions as small as the 3×3×2 box.
This is also intimately related to the non-existence of Kasteleyn weights from the
first example.

4. Main result

The main theorems stated below are a large deviation principle and the uniqueness
of the limit shape in three dimensions. Examples of random tiling limit shapes
can be seen in the simulations in Figure 2. We describe the set up and then state
the theorems, i.e. specify the measures, topology (different from 2D without height
functions), and describe the rate function (abstractly, as we do not have an explicit
formula).

Figure 2. Simulations of limit shapes for 3D regions built
by stacking 2D Aztec diamonds. See https://github.com/

catwolfram/3d-dimers for videos of two-dimensional slices of
these simulations as shown in the talk.

https://github.com/catwolfram/3d-dimers
https://github.com/catwolfram/3d-dimers
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The topology we consider is the weak topology on the corresponding vector
fields (equivalently, this is the induced topology of the Wasserstein metric defined
component-wise). The scaling limits of fτ are called asymptotic flows, which are
measurable divergence-free vector fields valued in O = {(s1, s2, s3) : |s1| + |s2| +
|s3| ≤ 1}.

Fix a compact region R ⊂ R3 and a boundary condition b of an asymptotic flow
restricted to ∂R. Because of subtleties new to three dimensions, we consider two
sequences of probability measures, one where a more general theorem holds and
one more analogous to the set up in two dimensions.

• Hard boundary (HB): fix a sequence of regions Rn ⊂ 1
nZ

3 with boundary
values bn approximating b and let ρn be uniform measure on dimer tilings
of Rn.

• Soft boundary (SB): choose a sequence of “thresholds” (θn)n≥0 with θn →
0 slowly enough and let ρn be uniform measure on free-boundary tilings
of R ∩ 1

nZ
3 with boundary values within θn of b.

Theorem 5 (Large deviation principles (Chandgotia, Sheffield, Wolfram [4])).
Fix a nice region R ⊂ R3 (compact, closure of a domain, ∂R piecewise smooth)
and b a boundary value on ∂R.

The measures ρn (resp. ρn with the mild additional condition that (R, b) is
“flexible”) satisfy a large deviation principle where the rate function Ib is, for g
an asymptotic flow with boundary value b,

Ib(g) = Cb − Ent(g) := Cb −
1

Vol(R)

∫

R

ent(g(x)) dx.

Here Cb is a constant and ent(s) : O → [0,∞) is defined to be

ent(s) = max
µ∈Ps

h(µ),(3)

where h(µ) is specific entropy and Ps is the set of probability measures on dimer
tilings of Z3 which are invariant under even translations (i.e., translations that
preserve the direction of flow) such that the µ-expected flow through the origin is
s ∈ O.

Theorem 6 (Limit shape (Chandgotia, Sheffield, Wolfram [4])). For (R, b) “semi-
flexible,” the rate function Ib has a unique minimizer f with boundary value b.
Combined with the large deviation principle, this implies that random tilings sam-
pled from ρn (resp. ρn is (R, b) is flexible) concentrate on f exponentially fast as
n→ ∞.
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Winding probability for CLE and boundary CLEs

Pu Yu

The conformal loop ensemble (CLEκ), as discovered by Sheffield [She09] and also
with Werner [SW12], is a natural random collection of non-crossing planar loop.
which is simple for κ ∈ (8/3, 4] and non-simple for κ ∈ (4, 8). For κ ∈ (8/3, 4], the
loops are simple and do not touch each other or the boundary; for κ ∈ (4, 8),
the loops are non-simple and may touch each other and the boundary. For
κ ∈ (2, 8), the boundary CLE (bCLE) is a collection of non-crossing boundary
touching loops constructed via target invariant SLEκ(ρ−; ρ+) by Miller-Sheffield-
Werner [MSW17].

The first main result of this talk is to derive the exact probability that in a
simply connected domain D and a given point z, the probability that the loop
surrounding z in the non-simple CLE touches the boundary. In particular, using
the conformal invariance property of CLE, we may assume D is the unit disk D

and z = 0.

Theorem 1. For κ′ ∈ (4, 8), let L be the loop in the (non-nested) CLEκ′ sur-
rounding 0. Then we have

(1) P[L ∩ ∂D 6= ∅] = 1− sin(π(κ
′

4 + 8
κ′ ))

sin(π κ′−4
4 )

.

We also derive the exact probability that z fall in to clockwise/counterclockwise
(true/false) loops of the boundary CLE. Let BCLE�

κ (ρ) be the boundary CLE with
clockwise true loops defined in [MSW17].

Theorem 2. For κ ∈ (2, 4) and ρ ∈ (−2, κ − 4), let {0 ∈ BCLE�
κ (ρ)} (resp.

{0 6∈ BCLE�
κ (ρ)}) denote the event that the origin is surrounded by a clockwise

true (resp. counterclockwise false) loop in BCLE�
κ (ρ). Then we have

(2) P[0 ∈ BCLE�
κ (ρ)] =

sin(2πκ (κ− ρ− 4)) sin(π(4−κ)
4κ (κ− 2ρ− 4))

sin(π(4−κ)
κ ) sin(π4 (κ− 2ρ− 4))

;

(3) P[0 /∈ BCLE�
κ (ρ)] =

sin(2πκ (ρ+ 2)) sin(π(4−κ)
4κ (2ρ+ 8− κ))

sin(π(4−κ)
κ ) sin(π4 (κ− 2ρ− 4))

.

Theorem 3. For κ′ ∈ (4, 8) and ρ′ ∈ (κ
′

2 − 4, κ
′

2 − 2), let {0 ∈ BCLE�

κ′(ρ′)} (resp.

{0 6∈ BCLE�

κ′(ρ′)}) denote the event that the origin is surrounded by a clockwise
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true (resp. counterclockwise false) loop in BCLE�

κ′(ρ′). Then, we have

(4)

P[0 ∈ BCLE�

κ′(ρ
′)] =

sin(2πκ′ (κ
′ − ρ′ − 4)) sin(π(κ

′−4)
4κ′ (κ′ − 2ρ′ − 4))

sin(π(κ
′−4)
κ′ ) sin(π4 (κ

′ − 2ρ′ − 4))
;

P[0 /∈ BCLE�

κ′(ρ
′)] =

sin(2πκ′ (ρ
′ + 2)) sin(π(κ

′−4)
4κ′ (2ρ′ + 8− κ′))

sin(π(κ
′−4)
κ′ ) sin(π4 (κ

′ − 2ρ′ − 4))
.

In fact, for Theorems 1-3, we are going to prove the stronger result, which
provides an exact formula for moments of the conformal radii seen from zero of
the clockwise/counterclockwise loops.

Theorem 4. For κ′ ∈ (4, 8), let L be the loop in the (non-nested) CLEκ′ sur-
rounding 0. Let DL be the connected component of D\L containing 0, and T =
{L ∩ ∂D 6= ∅}. We have:

(1). For λ ≤ κ′

8 − 1, E[CR(0, DL)λ1T ] = ∞, and for λ > κ′

8 − 1,

(5) E[CR(0, DL)
λ
1T ] =

2 cos(π κ′−4
κ′ ) sin(π κ′−4

4κ′

√
(κ− 4)2 − 8κ′λ)

sin(π4
√
(κ′ − 4)2 − 8κ′λ)

.

(2). For λ ≤ 3κ′

32 + 2
κ′ − 1, E[CR(0, DL)λ1T c ] = ∞, and for λ > 3κ′

32 + 2
κ′ − 1,

(6) E[CR(0, DL)
λ
1T c ] =

cos(π κ′−4
κ′ ) sin(π 8−κ′

4κ′

√
(κ′ − 4)2 − 8κ′λ)

cos( π
κ′

√
(κ′ − 4)2 − 8κ′λ) sin(π4

√
(κ− 4)2 − 8κλ)

.

Theorem 5. Fix κ ∈ (2, 4) and ρ ∈ (−2, κ−4). Consider the BCLE�
κ (ρ) boundary

CLE in D. Let L be the loop surrounding 0, and DL be the connected component
of D\L containing 0. Let λ > κ

8 − 1 and θ = π
4

√
(4− κ)2 − 8κλ. Then

(7) E[CR(0, DL)
λ
10∈BCLE�

κ (ρ)] =
sin(π(4−κ)

4 ) sin(2πκ (κ− ρ− 4))

sin(π(4−κ)
κ ) sin(π4 (κ− 2ρ− 4))

· sin(
κ−2ρ−4

κ θ)

sin(θ)
.

(8) E[CR(0, DL)
λ
10/∈BCLE�

κ (ρ)] =
sin(π(4−κ)

4 ) sin(2πκ (ρ+ 2))

sin(π(4−κ)
κ ) sin(π4 (κ− 2ρ− 4))

· sin(
2ρ+8−κ

κ θ)

sin(θ)

Moreover, if λ ≤ κ
8 − 1, then the left hand side of (7) and (8) are infinite.

Theorem 6. Fix κ′ ∈ (4, 8) and ρ′ ∈ (κ
′

2 − 4, κ
′

2 − 2). Consider the BCLE�

κ′(ρ′)
boundary CLE in D. Let L be the loop surrounding 0, and DL be the connected

component of D\L containing 0. Let λ′ > κ′

8 − 1 and θ′ = π
4

√
(4− κ′)2 − 8κ′λ′.

Then
(9)

E[CR(0, DL)
λ′

10∈BCLE�

κ′ (ρ
′)] =

sin(π(κ
′−4)
4 ) sin(2πκ′ (κ

′ − ρ′ − 4))

sin(π(κ
′−4)
κ′ ) sin(π4 (κ

′ − 2ρ′ − 4))
· sin(

κ′−2ρ′−4
κ′ θ′)

sin(θ′)
;
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(10)

E[CR(0, DL)
λ′

10/∈BCLE�

κ′ (ρ
′)] =

sin(π(κ
′−4)
4 ) sin(2πκ′ (ρ

′ + 2))

sin(π(κ
′−4)
κ′ ) sin(π4 (κ

′ − 2ρ′ − 4))
· sin(

2ρ′+8−κ′

κ′ θ′)

sin(θ′)
.

Moreover, if λ′ ≤ κ′

8 − 1, then the left hand side of (9) and (10) are infinite.

In [SSW09], the authors derived the moments of the conformal radii when L
is the loop in CLE surrounding 0, and Theorems 4-6 are generalization of their
result. Furthermore, it has been shown in [KSL22] that the fuzzy Potts model has
close relation with the CLE percolations. Combining Theorem 5 and Theorem 6
with results from [MSW17, KSL22], we have the following result for the fuzzy
Potts model one arm exponent.

Theorem 7. Let q ∈ [1, 4), and suppose that the conformal invariance con-
jecture holds for the critical FK percolation with cluster weight q. Write κ =
4 arccos(−√

q/2)/π ∈ [8/3, 4). For the fuzzy Potts model with red probability r, its
blue (resp. red) bulk one-arm exponent αB(r) (resp. αR(r)) is equal to α1(r) (resp.
α1(1− r)), where α1(r) is given by the smallest positive solution in (0, 1− 2/κ) to
the equation

(11)
sin(π(κ+2ρ+8)

4κ

√
(4− κ)2 + 8κx)

sin(π(κ−2ρ−8)
4κ

√
(4− κ)2 + 8κx)

=
sin(π4 (κ+ 2ρ))

sin(π4 (κ− 2ρ))
.

with ρ = 2
π arctan

(
sin(πκ/2)

1+cos(πκ/2)−1/(1−r)

)
− 2 ∈ (−2, κ− 4).

Finally, in [MSW17], the authors proved that the labeled CLEβ
κ′ can be con-

structed using iterations of BCLEκ(ρ), and the relation between β and ρ are
derived in [MSW22, MSW21]. From the construction in [MSW17], one can show

1 + β

1− β
=

P[0 ∈ BCLE�
κ (ρ)] · P[0 ∈ BCLE	

κ′(ρ′R)]

P[0 6∈ BCLE�
κ (ρ)] · P[0 ∈ BCLE�

κ′(ρ′L)]
.

where ρ′R = −κ′

2 − κ′

4 ρ, ρ
′
L = κ′ − 4 + κ′

4 ρ. Therefore, by Theorems 2 and 3,
1+β
1−β = − sin(π(κ − ρ)/2)/ sin(πρ/2). This gives an alternative proof of [MSW21,

Theorem 1.3]. [MSW22, Theorem 1.6] can be proved similarly.
Our proof is mainly based on couplings between SLE/CLE and Liouville quan-

tum gravity (LQG), together with exact formulas from Liouville conformal field
theory (LCFT). LQG is introduced by Polyakov in his seminal work [Pol81]. LCFT
is a 2D quantum field theory rigorously developed in [DKRV16] and subsequent
works. LCFT is closely related to LQG, as it has been demonstrated that many
natural LQG surfaces can be described by LCFT [Cer21, AHS21, ASY22]. As
observed by Sheffield [She16], one key aspect of random planar geometry is the
conformal welding of random surfaces, where the interface under the conformal
welding of two LQG surfaces is an SLE curve. Similar type of results were also
proved in [DMS21, AHS23, ASY22].

The proof of Theorems 4-6 is another example of exact formula of SLE/CLE
based on conformal welding of LQG surfaces and LCFT. In earlier works of
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[MSW22, MSW21], the coupling between CLE and LQG was crucially used to
derive properties of CLE. There the authors relied on the advanced exploration
mechanisms for CLE percolations from [MSW17]. In contrast, we work directly
with the classical construction of CLE in [She09] and boundary CLE in terms of
the continuum exploration tree. Based on this construction, the boundary touch-
ing event along with the quantities in these theorems can be expressed in terms
of radial SLEκ(ρ;κ − 6 − ρ). In particular, we derive novel results on conformal
welding of γ-LQG surfaces with radial SLEκ(ρ;κ−6−ρ) being the interface. This
allows us to express the quantities in Theorems 4-6 in terms of boundary lengths of
LQG surfaces. The key LQG surfaces are the quantum triangles defined via LCFT
in [ASY22], where we prove that by gluing two of its edges together, one gets a
single disk decorated by independent radial SLE curve. Combining the structrual
constants from LCFT will finish the proof.
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The chemical distance metric for non-simple CLE

Yizheng Yuan

(joint work with Valeria Ambrosio and Jason Miller)

In this talk, I explained what is the continuum analogue of the chemical distance
metric in two-dimensional lattice models such as percolation. The chemical dis-
tance metric is the graph distance induced by the percolation clusters. Many
authors have studied chemical distance in various models (mainly supercritical
models where the metric is comparable to the Euclidean metric). The case of
critical percolation, in contrast, is much more difficult. The critical model ex-
hibits non-trivial scaling behaviour, and the exponent for the shortest length has
been numerically estimated to have value approximately 1.13 [4]. However, the
strongest rigorous results proved so far [1, 3] are that the exponent is strictly be-
tween its trivial bounds 1 and 4/3 (the latter is the dimension of SLE8/3 which
is the inner boundary of a percolation cluster). Proving anything stronger for the
chemical distance in critical percolation remains an open question. (This problem
was asked by O. Schramm in his famous ICM 2006 article [7], and is one of the
few questions that remain unsolved.)

In a joint work with Valeria Ambrosio and Jason Miller, we construct a chemical
distance metric on the CLE gasket for each κ ∈ ]4, 8[. Our metric should be the
scaling limit of the chemical distance metric in lattice models that converge to CLE.
In particular, we expect that the chemical distance metric in critical percolation
converges to our CLE6 metric. Moreover, our metric is the Euclidean analogue
of the α-stable gasket constructed in [5, 2]. Our CLE metrics are determined by
several natural properties that any notion of chemical distance on the gasket is
expected to satisfy. Concretely, we show that our metric is uniquely characterised
by being geodesic, Markovian, and conformally covariant.

In order to construct a CLE metric, we start with an approximation and show
that the resulting spaces are tight in a suitable topology. Then we identify sev-
eral natural properties that any subsequential limit satisfies, and show that they
uniquely determine a metric on the CLE gasket. The characterisation and the
proof outline are reminiscent to the LQG metric, however we emphasise that our
objects behave very differently, and hence our proof techniques also differ signifi-
cantly from those used in LQG. Two major challenges here are

1. The topology of the gasket forces paths to pass through intersections of CLE
loops, and

2. Independence arguments are much more involved because the metric is sensitive
to the shape of domain boundaries, and conditioning on regions strongly biases
the shape of the remaining region.

In the regime κ ∈ ]8/3, 4[, tightness of an approximation has been shown previ-
ously in [6]. We expect that our proof can be adapted to show uniqueness in that
regime, too.

To state our theorems, we choose to work in a scale-invariant setup. We let H
be the domain to one side of a two-sided whole-plane SLE16/κ, and let Γ a CLEκ
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in H where κ ∈ ]4, 8[. (The choice of a domain with SLE16/κ boundary is natural
considering that we want to have a metric that is defined on any region bounded
between two CLEκ loops.) We call a path in the gasket ΥΓ of Γ admissible if it
does not cross any loops of Γ.

We choose the following approximation. For an admissible path γ, let Nε(γ)
denote the Lebesgue measure of the ε-neighbourhood of γ. We then let

dε(x, y; Γ) := inf
γ admissible

x→y

Nε(γ).

Theorem 1. There exists a sequence mε such that

• the laws of (ΥΓ,m
−1
ε dε(·, ·; Γ)) are tight,

• any limit is non-trivial, geodesic, Markovian, and conformally covariant.

We call such a metric a CLEκ′ metric. Here, the metric being Markovian
means that for any open set U , if we let U∗ ⊆ U be the points not inside any loop
intersecting H \ U , then the conditional law of the internal metric in U∗ given
U∗ and the internal metric outside U is a translation-invariant function of U∗.
Conformal covariance means that for any conformal map ϕ : U → Ũ , the lengths
of ϕ(γ) under dϕ(U∗)(·, ·;ϕ(ΓU∗)) are given by

∫
|ϕ′|α dLd(γ)

where α > 0 is an exponent depending only on κ.
The (approximate) metrics m−1

ε dε, d are seen as Hölder-continuous functions
on ΥΓ ×ΥΓ with respect to the reference metric

d(x, y; Γ) = inf
γ admissible

x→y

diam(γ).

(To keep the report simple, I have not elaborated on the exact topology in which
we consider our objects to lie in.)

Theorem 2. Suppose d(·, ·; Γ) and d̃(·, ·; Γ) are CLEκ′ metrics. Then (when both
are coupled with Γ)

d = cd̃

for some deterministic constant c > 0.
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Faculté des Sciences d’Orsay
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Matemáticas
Universidad de Chile
Beaucheff 851
Estación Central Santiago 5555
CHILE

Prof. Dr. Scott Sheffield

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
UNITED STATES

Prof. Dr. Hao Shen

Department of Mathematics
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706-1388
UNITED STATES



1444 Oberwolfach Report 25/2024

Prof. Dr. Theo Sturm

Institut für angewandte Mathematik
(IaM)
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Xin Sun

Beijing International Center for
Mathematical Research (BICMR)
Beijing University
Beijing 100871
CHINA

Yi Tian

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Diederik van Engelenburg

Institut Camille Jordan
Université de Lyon I
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