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Abstract. The workshop aimed to unite researchers from diverse fields of
mathematics and statistics to explore the foundations of high-dimensional
modeling and computational studies. It addressed recent advancements in
numerical analysis, dynamical systems, and stochastic differential equations
that support model reduction for large-scale complex systems.

Incorporating targeted geometric structures, such as Riemannian mani-
folds, into large-scale statistical models is known to enhance the stability,
reliability, and efficiency of numerical methods. However, algorithms are of-
ten presented in application contexts without adequate attention to their
fundamental properties, limiting the adoption of these advanced modeling
methods.

The workshop emphasized understanding the fundamental properties of
these structures, their impact on dynamics and stochastic dynamics, and
the need to redesign algorithms to capture essential properties, aiming for
robustness and suitability for high-performance computation.

By bringing together numerical analysts, statisticians, and modelers, the
workshop sought to improve the quality of methods and identify new model
frameworks to guide future development.
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Introduction by the Organizers

The aim of this workshop was to convene researchers from various disciplines within
mathematics and statistics to discuss recent advancements and innovative ideas in
the modeling of complex systems. These discussions focused on the integration of
model reduction, machine learning, statistical inference, and numerical analysis.

In recent years, these fields have been creatively combined to tackle complex
problems, such as characterizing large datasets through machine learning. As
mathematical modelers evolve their frameworks to better incorporate real-world
observations and improve uncertainty quantification, statistical algorithms have
become crucial components within larger schemes. Ensuring the convergence and
stability of these methods is essential, particularly in addressing the scale couplings
and stochastic perturbations inherent in large-scale systems.

Our workshop provided a platform to explore the incorporation of geometric
structures, such as Riemannian manifolds, into statistical models to enhance their
stability, reliability, and efficiency. We emphasized understanding the fundamental
properties of these structures, their impact on dynamics and stochastic processes,
and the redesign of algorithms to capture essential properties for robust and effi-
cient computation.

Bringing together numerical analysts, statisticians, and modelers, the workshop
aimed to improve existing methods and identify new frameworks to guide future
developments. Topics discussed included the role of Bayesian paradigms in data
approximation, the influence of numerical errors on sampling processes, and the
performance of state-of-the-art algorithms.

The compilation of extended abstracts in this report captures the diverse in-
sights and visions shared during the workshop, offering a roadmap for future re-
search in this critical and evolving field.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of Franca Hoffmann
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
The workshop organizers would also like to thank the MFO for supporting the par-
ticipation of Eugen Bronasco, Alexander Lewis, Simon Schwarz and Peter Whalley
in the workshop by the “Oberwolfach Leibniz Graduate Student” program.
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Abstracts

Stochastic partial differential equations on surfaces and evolving
random surfaces: a computational approach

Annika Lang

(joint work with David Cohen, Erik Jansson, Mike Pereira and
Christoph Schwab)

Looking at ice crystals in clouds or moving cells as shown in data in [7] and [4], we
observe that the shapes of different individuals are similar but not equal. What
are possible ways to model this difference and to efficiently generate many such
similar shapes that are possibly changing over time?

The main tool of the talk is the use of stochastic models and more specifically
random fields and solutions to stochastic partial differential equations on spheres
and other surfaces. These are used to transform a sphere to a random surface.
With this approach, shapes are similar in the sense of being samples of the same
distribution that are described by the mean and the covariance in the considered
Gaussian examples.

An important question when modeling with uncertainty is how to add the ran-
domness such that surface structures are not destroyed. We start by taking the
spherical harmonic functions (Yℓ,m, ℓ ∈ N,m = −ℓ, . . . , ℓ) on the unit sphere S2 as
basis of L2(S2) and looking at the basis expansion

(1) U =

∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓ,mYℓ,m,

where we perturb each mode with a standard Gaussian random number.
In a simulation of the truncated series at some mode L, we see that the samples

get more and more spiky the more modes we include as shown in Figure 1. For

(a) L = 1 (b) L = 2 (c) L = 4 (d) L = 8 (e) L = 16 (f) L = 32 (g) L = 64

Figure 1. Random field generated by the series expansion (1)
with different truncation levels L.

a better intuition for the spikes and therefore roughness of the field, we introduce
next a transformation of the random field to a random surface as was used for
the modeling of ice crystals in [7]. We compute first the lognormal random field
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exp(U) of (1) and shift every point y on the sphere in normal direction to the
point x given by

(2) x = exp(U(y)) y, y ∈ S
2.

This transformation generates out of the random samples in Figure 1 the random
surfaces shown in Figure 2.

(a) L = 1 (b) L = 2 (c) L = 4 (d) L = 8 (e) L = 16 (f) L = 32 (g) L = 64

Figure 2. Random surfaces generated by the transformation (2)
with different truncation levels L.

A natural question is if the obtained surfaces make sense when taking L to
infinity. The generation of a surface without cracks and holes requires the conti-
nuity of the random field U . To approach this question, we first extend the class of
random fields by adding weights corresponding to the inverse of Bessel potentials

(3) U =

∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓ,m(1 + ℓ(ℓ+ 1))−α/2 Yℓ,m

with a smoothness parameter α. The variant of the Kolmogorov–Chentsov theorem
developed in [6] tells us that the random field U has a continues modification for
α > 1 and that it is differentiable for α > 2. This means that looking at the sample
in Figure 2(g) with different parameters α in Figure 3, we see the smoothing and
that for α = 1/2 the continues surface just exists due to the truncation of the
series expansion (1).

(a) α = 1/2 (b) α = 1 (c) α = 3/2 (d) α = 2 (e) α = 5/2 (f) α = 3 (g) α = 7/2

Figure 3. Random surfaces generated by the transformation (2)
with different smoothness index α in (3).

Next, we simulate isotropic Wiener processesW on the sphere by adding up the
Gaussian random fields (3) scaled by the square root of the time step size similarly
to the simulation of sample paths of one-dimensional Brownian motions, i.e.,

W (tn+1)−W (tn) ∼
√
tn+1 − tn U.
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With this construction at hand, we are able to solve the linear stochastic wave
equation on the sphere

∂ttu(t)−∆S2u(t) = Ẇ (t)

based on an expansion with respect to the spherical harmonic functions and its
truncation. We discuss strong and weak convergence that depend on the smooth-
ness of W and of the initial condition as shown in [1].

In the last part of the presentation, we look at alternatives to generate Gaussian
random fields on surfaces when the eigenexpansion of the covariance operator is
unknown. In [3], we extend our earlier results from [2, 5] and consider random
fields of the form

u = γ(L)W

on a hypersurface M of dimension d = 1, 2 with the differential operator L =
−∇MD∇M + V and a power spectral density γ that decays asymptotically with
rate α. Here, W denotes white noise on M. We approximate the solution using a
surface finite element method with linear elements and a Chebyshev approximation
as in [5]. We give strong convergence results of essentially order min(α − d/4, 2)
in the mesh width of the surface approximation and exponentially in the degree
of the Chebyshev polynomials.
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Convergence of kinetic Langevin samplers for non-convex potentials

Katharina Schuh

(joint work with Peter A. Whalley)

We study three kinetic Langevin samplers to sample a given target measure

π(dx) ∝ e−U(x)dx in R
d.

The samplers include the Euler discretization, the BU and the UBU splitting
scheme and form approximations of the kinetic Langevin dynamics given by

{
dXt = Vtdt

dVt = −∇U(Xt)dt− γVtdt+
√
2γdBt,

where γ > 0 is the friction parameter and (Bt)t>0 is a d-dimensional standard
Brownian motion. The unique invariant measure of the continuous dynamics is

the Boltzmann-Gibbs measure π̃(dxdv) ∝ e−U(x)−1/2|v|2dxdv where the marginal
measure in the position component is the target measure.

We are interested in how well the numerical schemes sample π if U is a non-
convex potential which includes double-well potentials. In particular, we assume
that the potential is only strongly convex outside a Euclidean ball and has a
Lipschitz continuous gradient.

We show contraction results in L1-Wasserstein distance for these schemes. The
results are based on a carefully tailored distance function taken from the continuous
framework [1] and an appropriate coupling construction. If the two copies of the
coupling are far apart a synchronous coupling is considered. Then due to the
friction term and the convexity local contraction is obtained. If the two copies
are close to each other a coupling containing partially a reflection coupling is
constructed. Together with the concavity of the distance function this results in
local contraction on average. By combining the two local contraction results we
obtain global contraction in L1-Wasserstein distance.

Additionally, we analyse the error in the L1-Wasserstein distance between the
target measure and the invariant measure of the discretization schemes. To get
an ε-accuracy in L1-Wasserstein distance, we show complexity guarantees of or-
der O(

√
d/ε) for the Euler scheme and O(d1/4/

√
ε) for the UBU scheme under

appropriate regularity assumptions on the target measure. Here, a global error
result is obtained by first showing local error bounds and combining them with
the contraction result.

The results can also be applied to interacting particle systems and provide
bounds for sampling probability measures of mean-field type.

References
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Stable generative modelling using diffusion maps

Sebastian Reich

(joint work with Georg Gottwald, Fengyi Li and Youssef Marzouk)

Generative modelling is the process of learning a mechanism for synthesizing new
samples that resemble those of the original data-generating distribution, given only
a finite set of samples. In my blackboard talk, I sketched out a new nonparametric
approach to generative modelling that combines ideas from diffusion maps and
Schrödinger bridges [2] with discretised reversible Langevin dynamics.

More specifically, suppose we are given M training samples x(i) ∼ π, i =
1, . . . ,M , from an unknown distribution π on Rd. Then the key ideas put for-
ward in [1] are

(i) to approximate the conditional expectation value E[Xǫ|X0 = x], where Xt

satisfies the reversible Langevin process with invariant measure π (see (1)
below), by

E[Xǫ|X0 = x] ≈
M∑

i=1

x(i)pi,ǫ(x),

where pǫ(x) ∈ RM is a state-dependent probability vector which can be
obtained from a Schrödinger bridge problem of the data {x(i)}Mi=1 with
itself [2, 1], and

(ii) to note that, for ǫ > 0 sufficiently small and M sufficiently large, we can
approximate the score s(x) = ∇x log π(x) by

s(x) ≈
∑M

i=1 x
(i)pi,ǫ(x) − x

ǫ
.

These approximations suggest to consider the following split-step time-stepping
scheme with step-size ∆t = ǫ:

noising: Xn+1/2 = Xn +
√
2ǫΞn,

denoising: Xn+1 =
M∑

i=1

x(i)pi,ǫ(Xn+1/2)

for the reversible Langevin process

(1) dXt = ∇ log π(Xt)dt+
√
2dBt

with invariant measure π, where Ξn ∼ N(0, I) and Bt denotes standard multi-
dimensional Brownian motion.

Provided the support of π is compact, it can be shown that the proposed time-
stepping scheme is stable and geometric ergodic. The accuracy of the scheme
will depend on the chosen time-step, ǫ, and the number, M , of data points. See
the theoretical analysis in [2]. It is also clear by construction that the generated
samples Xn will be contained in the convex hull of the samples {x(i)}Mi=1.



1456 Oberwolfach Report 26/2024

Numerical results can be found in [1] including implementations with variable
bandwidth. The proposed methodology naturally extends to Bayesian inference
with negative log-likelihood l(x, y), i.e.,

Xn+1/2 = Xn − ǫ∇l(Xn, y) +
√
2ǫΞn,(2a)

Xn+1 =

M∑

i=1

x(i)pi,ǫ(Xn+1/2),(2b)

conditional sampling, and score generative modelling. The time-stepping (2) is
particularly attractive in the context of sequential data assimilation where the
prior π at any data assimilation cycle is provided by a forecast ensemble only [3].
Future challenges include extensions to high-dimensional problems building upon
the concept of localisation [3]. In this context, we note the resemblance of (2b)
with the ensemble transform particle filter [3].

References

[1] G. Gottwald, F. Li, Y. Marzouk, and S. Reich, Stable generative modeling using diffusion
maps, arXiv:2401.04372 (2024).

[2] C.L. Wormell and S. Reich, Spectral convergence of diffusion maps: Improved error bounds
and an alternative normalization, SIAM J. Numer. Anal. 59 (2021), 1687–1734.

[3] S. Reich and C. Cotter, Probabilistic forecasting and Bayesian data assimilation, Cambridge
University Press, Cambridge, 2015

Learning of neural networks with low-dimensional and multiscale
structures in data

Juncai He

(joint work with Lewis Liu, Richard Tsai and Rachel Ward)

The low-dimensional manifold hypothesis posits that data found in many ap-
plications, such as those involving natural images, lie (approximately) on low-
dimensional manifolds embedded in a high-dimensional Euclidean space. In this
setting, a typical neural network defines a function that takes a finite number of
vectors in the embedding space as input. However, one often needs to consider
evaluating the optimized network at points outside the training distribution. In
the work of [1], we consider the case in which the training data are distributed in
M, a linear subspace of Rd. We derive estimates on the variation of the learning
function fθ : Rd 7→ R, defined by a parameterized family of both linear and ReLU
neural networks, in the direction transversal to the subspace. We study the po-
tential regularization effects associated with the network’s depth and noise in the
codimension of the data manifold. Furthermore, we demonstrate the multiscale
structure in the training dynamics of learning fθ when the noise has a small posi-
tive variance in the orthogonal complement of M for deep linear neural networks
based on the result in [2].

In the next work of [3], we present that the data manifold’s extrinsic geometry
can lead to a multiscale structure in linear regressions. Specifically, we analyze
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the impact of the manifold’s curvatures (or higher-order nonlinearity in the pa-
rameterization when the curvatures are locally zero) on the uniqueness of the
regression solution. Our findings suggest that the corresponding linear regression
does not have a unique solution when the embedded submanifold is flat in some
dimensions. Otherwise, the manifold’s curvature (or higher-order nonlinearity in
the embedding) may contribute significantly, particularly in the solution associ-
ated with the normal directions of the manifold. Our findings thus reveal the
data manifold’s geometry in ensuring the stability of regression models for out-of-
distribution inferences. All these results are essentially established based on the
multiscale structure of loss functions in terms of the manifold’s curvatures.

In our most recent work [4], we investigate the impact of multiscale structure in
data on machine learning algorithms, particularly in the context of deep learning.
A dataset is multiscale if its distribution shows large variations in scale across
different directions. This work reveals multiscale structures in the loss landscape,
including its gradients and Hessians inherited from the data for both linear and
logistic regressions and deep neural networks. More precisely, let us assume the
data have the structure

xi =
(
x0i , ǫ1x

1
i , · · · , ǫmxmi

)
∼ (O(1),O(ǫ1), · · · ,O(ǫm))

with 1 ≫ ǫ1 ≫ · · · ≫ ǫm > 0. Then, for both linear and logistic regressions, one
can have the following multiscale expansion of the gradients of loss functions

∂L
∂θ

= (O(1),O(ǫ1), · · · ,O(ǫm)) .

However, for deep neural networks, the explicit multiscale expansion only exists
for parameters in the first hidden layer. For general parameters in the ℓ-th layer,
we have

∂L
∂W ℓ

=
1

N

m∑

k=0

ǫkAℓ
k

(
x0, · · · , xk

)
,

where ǫk = ǫk, Aℓ
k is of O(1) and more details can be found in [4]. Given this

structure, correspondingly, we introduce a novel gradient descent approach called
Multirate Gradient Descent (MrGD), drawing inspiration from multiscale algo-
rithms used in scientific computing [5]. This approach seeks to transcend empiri-
cal learning rate selection, offering a more systematic, data-informed strategy to
enhance training efficiency, especially in the later stages. The key to the success of
this method is to choose the number of iterations for different learning rates with
different scales. Theoretically, we establish a comprehensive and rigorous theory
demonstrating that the MrGD scheme achieves a quasi-optimal convergence rate
for linear problems and can be extended to convex functions. Numerical examples
are also provided to demonstrate the efficiency of MrGD.
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A structure-preserving kernel method for learning Hamiltonian
systems on symplectic and Poisson manifolds

Juan-Pablo Ortega

(joint work with Jianyu Hu and Daiying Yin)

Hamiltonian systems are essential tools to model physical systems [1, 6, 2]. In the
simplest case in which the phase space is Euclidean and is endowed with a constant
symplectic form, Hamiltonian systems are determined by a scalar-valued Hamil-
tonian function H : R2d −→ R, d ∈ N, and when using the so-called canonical
Darboux coordinates, the corresponding dynamics is governed by the well-known
Hamilton’s equations

(1) ż(t) = J∇H(z(t)),

where z = (q⊤,p⊤)⊤ ∈ R2d is the phase space vector comprising the positions and
the momenta of the system, and J is the canonical symplectic matrix. Modern
technology has made collecting trajectory data directly from physical systems in-
creasingly feasible. This motivates us to address the fundamental inverse problem:
determining the underlying Hamiltonian function and the governing Hamilton’s
equations from trajectory data.

1. Kernel ridge regression setup

Let K ∈ C3
b (R

2d ×R2d) be a Mercer kernel and let HK be the reproducing kernel
Hilbert space (RKHS) associated to it. the symbol Cs

b (R
d) denotes the set of

bounded s-continuously differentiable functions with bounded derivatives. The
main purpose of this work is to learn in a structure-preserving fashion the unknown
Hamiltonian function H : R2d −→ R of the system (1) out of realizations of
random samples containing N noisy observations of the Hamiltonian vector field.
More explicitly, the observed data consists of N independent random samples of
states in the phase space and noisy observations of the Hamiltonian vector fields
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at the corresponding N states. We shall write the associated random samples as:

ZN := Vec
(
Z(1)| · · · |Z(N)

)
∈ R

2dN ,

Xσ2,N := Vec
(
X

(1)
σ2 | · · · |X(N)

σ2

)
∈ R

2dN ,
(2)

where Z(n) ∈ R2d is the phase space vector containing the position and the conju-
gate momenta of the system, and

{
Z(1), · · · ,Z(N)

}
are IID random variables with

the same distribution µZ. The symbol ‘Vec’ stands for the vectorization of the

corresponding matrices and X
(n)
σ2 ∈ R2d denotes a noisy vector field value at Z(n),

that is, X
(n)
σ2 = J∇H(Z(n))+ε

(n), where ε(n) are IID R2d-valued random variables

with mean zero and variance σ2. In the sequel, if f : R2d → Rs is a function, we
then shall denote the value Vec

(
f(Z(1))| · · · |f(Z(N))

)
∈ RsN by f(ZN ).

To address the above-mentioned learning problem, we propose a structure-
preserving kernel ridge regression method. In contrast to traditional kernel ridge
regressions, our approach guarantees that the learned vector field is indeed Hamil-
tonian. Structure-preservation is achieved by searching for vector fields f : R2d →
R2d with Hamiltonian form, that is, fh := Xh = J∇h, where h : R2d −→ R is
an element of HK . More precisely, we will be studying the following optimization
problem

ĥλ,N := argmin
h∈HK

1

N

N∑

n=1

∥∥∥Xh(Z
(n))−X

(n)
σ2

∥∥∥
2

+ λ‖h‖2HK
,(3)

where Xh = J∇h and λ > 0 is a Tikhonov regularization parameter. We call the

solution ĥλ,N of the optimization problem (3) the structure-preserving kernel
estimator of the Hamiltonian function.

2. Some Results

The following result shows that the optimization problem (3) can be cast as the
solution of a convex Gramian regression. This convexity feature is a comparative
advantage with the (potentially non-convex) maximum likelihood problem intro-
duced that we would face when using Gaussian processes or neural networks.

Theorem 2.1 (Differential Representer Theorem for Symplectic Vector
Spaces). For every λ > 0, the optimization problem (3) has a unique solution

ĥλ,N ∈ HK that can be represented as

(4) ĥλ,N =
N∑

i=1

〈ĉi,∇1K(Z(i), ·)〉,

with ĉ1, . . . , ĉN ∈ R2d, 〈·, ·〉 the Euclidean inner product in R2d, and where
∇1K(z, ·) ∈ R2d denotes the gradient of K with respect to the z variable. More-
over, if we denote by ĉ ∈ R2dN the vectorization of (ĉ1| · · · |ĉN ), then we have

ĉ = (∇1,2K(ZN ,ZN ) + λNI)−1
J
⊤Xσ2,N .
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The matrix ∇1,2K(ZN ,ZN ) (the symbol ∇1,2 denotes partial derivatives with re-
spect to all the entries in K) is the differential Gram matrix that can be shown to
be positive semidefinite.

PAC bounds and convergence upper rates for the total reconstruction error can
be formulated using additional conditions. The first one is a customary restriction
on the target Hamiltonian function introduced in [3] under the name of source
condition, an alternative way to handle the approximation error using universal
kernels. Let γ ∈ (0, 1), S > 0, and B = A∗A with A : HK −→ H2d

K given by
Ah = J∇h with h ∈ HK . The source condition consists of assuming that

H ∈ Ωγ
S := {h ∈ HK | h = Bγψ, ψ ∈ HK , ‖ψ‖HK

< S}.(5)

Theorem 2.2 (PAC bounds of the total reconstruction error). Let ĥλ,N
be the unique minimizer of the optimization problem (3). Suppose that H ∈ Ωγ

S as
defined in (5). Then, for any ε, δ > 0, there exist λ > 0 and n ∈ N+ such that for
all N > n, it holds that

P

(∥∥∥ĥλ,N −H
∥∥∥
HK

> ε

)
< δ.

In order to get a convergence upper rate of ‖ĥλ,N −H‖HK
as N → ∞, we shall

work not with a fixed, but with a dynamical λ that is adapted with respect to the
sample size N . More specifically, we shall assume that λ ∝ N−α, α > 0.

Theorem 2.3 (Convergence upper rate of the total reconstruction error).

Let ĥλ,N be the unique minimizer of the optimization problem (3). Suppose that
H satisfies the source condition (5), that is, H ∈ Ωγ

S. Then for all α ∈ (0, 13 ), and
for any 0 < δ < 1, with probability as least 1− δ, it holds that

∥∥∥ĥλ,N −H
∥∥∥
HK

6 C(γ, δ, κ) N−min{αγ, 12 (1−3α)},

where

C(γ, δ, κ) = max
{
‖B−γH‖HK

, 8
√
4 log(8/δ)d

3
2κ3‖H‖HK

}
.

3. A Numerical Illustration

It is generally a challenging task to learn a Hamiltonian function that has a highly
non-convex potential function. We showcase our algorithm by learning the follow-
ing Hamiltonian function

H(q1, q2, p1, p2) =
1

2
(p21 + p22) + sin

(
2π

3
· q1
)
cos

(
2π

3
· q2
)
+

sin(
√
q21 + q22)√
q21 + q22

,

whose potential function is visualized below in Figure 1 together with the solution
given in Theorem 2.1 with N = 1500.
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(a) (b) (c)

Figure 1. Learning with N = 1500 (a) Ground truth potential
(b) Potential of the learned Hamiltonian (c) Mismatch error after
vertical shift

4. Additional results

Improved convergence rates can be formulated by invoking additional hypotheses
like the so-called coercivity hypothesis. See [5] for a detailed presentation.

The results presented in this abstract for symplectic vector spaces admit a gen-
eralization to symplectic and Poisson manifolds (see [4]). In that case, the learning
problem is far more degenerate since any modification of the original Hamiltonian
function using a Casimir of the Poisson algebra yields the same Hamiltonian vector
field and, hence, the same dynamics. It can nevertheless be proved that the ridge
regularization term using the RKHS norm also guarantees the uniqueness of the
solution of the learning problem.
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Using exotic aromatic forests to construct order two scheme for the
invariant measure sampling of Langevin dynamics with

variable diffusion

Eugen Bronasco

(joint work with Benedict Leimkuhler, Dominic Phillips and Gilles Vilmart)

Exotic aromatic forests [6] are an extension of aromatic forests into the stochastic
context and serve pivotal roles in generating order conditions for invariant measure
sampling and studying the algebraic properties [2] of stochastic integrators.

Let φ denote a test function Rd → R. Consider a system of stochastic differential
equations with multiplicative noise with smooth vector field F : Rd → Rd and
smooth diffusion D : Rd → Rd×d:

dX = F (X)dt+ σD(X)dW, X(t) ∈ R
d,

where W (t) ∈ Rd is a standard Wiener process. The weak Taylor expansion of the
solution X(t) is given by

E[φ(X(h))] = φ(X0) + hLφ(X0) + · · ·+ hk

k!
L◦kφ(X0) + · · · ,

with generator, using Hessian matrix ∇2φ, given by

Lφ = φ′F +
σ2

2

d∑

a=1

φ′′(Da, Da) = F · ∇φ+
σ2

2
Tr((∇2φ)DDT ).

An integrator X1 = Φh(X0) with the weak Taylor expansion

(1) E[φ(X1)] = φ(X0) + hA1φ(X0) + · · ·+ hkAkφ(X0) + · · · ,
has weak order p if Ak = 1

k!L◦k for k = 1, . . . , p. [9]
For an ergodic model (e.g. overdamped Langevin dynamics where F = −∇V

and mild assumptions) with invariant measure µ, the solution X(t) satisfies

lim
T→∞

1

T

∫ T

0

φ(X(t))dt =

∫

Rd

φ(x)dµ(x), a.s.

An ergodic integrator Xn 7→ Xn+1 has order q with respect to invariant measure
sampling if

(2)

∣∣∣∣∣ limN→∞

1

N + 1

N∑

k=0

φ(Xk)−
∫

Rd

φ(x)dµ(x)

∣∣∣∣∣ 6 Chq,

Given the differential operators Ak from the weak Taylor expansion (1) of
E[φ(X1)], the condition (2) is satisfied if,

(3)

∫

Rd

Akφ(x)dµ(x) = 0, k = 1, . . . , q.

For details see [1, 9].
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1. Exotic aromatic forests

An exotic aromatic forest is a forest with edges oriented from top to bottom. This
forest can contain cycles with edges oriented counterclockwise, and some of its
vertices may be paired. For example:

In these forests, vertices represent vector fields, and edges represent directional
derivatives. Cycles allow us to represent divergences, while paired vertices corre-
spond to Laplacians. [2, 6]

Using forests to check inv. measure sampling order. We can use integration
by parts denoted by ∼ to modify Ak without changing the value of the integral in
(3)[2, 5]. The order conditions become

(a ◦A)(τ) = 0, for all τ ∈ EAT, |τ | 6 q,

where A is an adjoint operation of the integration by parts. For example, we
obtain among the order two conditions:

In our recent work, we use integration by parts to develop a new order 2 method
for the sampling of the invariant measure of Langevin dynamics with variable
diffusion.

2. New scheme

Let D(x) ∈ Rd×d be a symmetric matrix with D = (D1, . . . , Dd) being smooth
with respect to x ∈ Rd with columns Di = (D1

i , . . . , D
d
i )

T . Then, we consider an
SDE model with variable diffusion in Rd of the following form:

(4) dX = D2(X)f(X)dt+
σ2

2
div(D2)(X)dt+ σD(X)dW,

where X(t) ∈ Rd with X(0) = X0 being deterministic, f = −∇V with V : Rd → R

being a smooth and globally Lipschitz potential, σ > 0 is a constant, and W (t) is
d-dimensional Wiener process fulfilling the usual assumptions. Divergence of the
symmetric matrix D is defined as

div(D) =
( d∑

j=1

∂jD
j
i

)d
i=1

=



divD1

...
divDd
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In [7, 8], Leimkuhler-Matthews scheme is introduced for constant D case. It has
order 2 with respect to the invariant measure, requires only one evaluation of f ,
and has the following form:

(5) Xn+1 = Xn + hD2f(Xn) +
√
hσD

Rn +Rn+1

2
.

We generalize the Leimkuhler-Matthews scheme to the Langevin equation with
variable diffusion. The new method has order 2 w.r.t. the invariant measure
sampling, requires only one evaluation of the drift, and has the form:

Xn+1 = Xn + hF (Xn) + Φ̂D
h (Xn +

1

4
hF (Xn−1)),

Xn = Xn +
1

2

√
hσD(Xn)Rn, with X−1 = X0,(6)

where ΦD
h (Xn) = Xn + Φ̂D

h (Xn) is an integrator of weak order 2 applied to the
problem,

dX = σD(X)dW,

where ΦD(X0) = X0+
√
hσD(X0)Rn+O(h). We study its stability properties and

use the exotic aromatic forests framework to prove its convergence in the invariant
measure. This work will be published in [5].

Related ongoing work.

(1) study of the algebraic properties of exotic aromatic forests and description
of the backward error analysis and modified equation of ergodic stochastic
differential equations in collaboration with Adrien Laurent, [4]

(2) implementation of a software package to automate the computations in-
volving exotic aromatic forests in collaboration with Jean-Luc Falcone and
Gilles Vilmart. [3]

Funding. This work was partially supported by the Swiss National Science Foun-
dation, projects No 200020 214819 and No. 200020 192129.
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Wasserstein convergence and bias estimates for discretized kinetic
Langevin dynamics

Peter A. Whalley

(joint work with Benedict Leimkuhler and Daniel Paulin)

We consider kinetic Langevin dynamics on Rd within the context of sampling. The
dynamics are given by

dXt = Vtdt

dVt = −∇U(Xt)dt− γVtdt+
√
2γdWt,

where γ > 0, (Wt)t>0 is a d-dimensional standard Brownian motion and U :
Rd → R is the potential energy function. The dynamics has invariant measure π
with density proportional to exp

{
−U(x) + 1

2‖v‖2
}
. Ultimately, one is interested

in sampling from π, which is typically done by discretizing the dynamics. We
consider the setting where U is M -∇Lipschitz and m-convex.

For some initial measure π0 and a discretization with transition kernel Ph, step-
size h > 0 and invariant measure πh, one is often interested in the distance to the
target measure π after n ∈ N steps

W2(π0P
n
h , π) 6 W2(π0P

n
h , πh)︸ ︷︷ ︸

Convergence Rate

+W2(πh, π)︸ ︷︷ ︸
Bias

,

which can be split up in terms of the convergence rate of the discretization and
the bias of the invariant measure.

We introduce methods to study the convergence rate and bias in the invariant
measure separately. We provide convergence rates of O(m/M), with explicit step-
size restrictions, which are of the same order as the stability threshold for Gaussian
targets and are valid for a large interval of the friction parameter. We apply this
methodology to various integration schemes which are popular in the molecular
dynamics and machine learning communities. Further, we introduce the property
“γ-limit convergent” (GLC) to characterize underdamped Langevin schemes that
converge to the overdamped dynamics in the high-friction limit and which have
stepsize restrictions that are independent of the friction parameter; we show that
this property is not generic by exhibiting methods from both the class and its
complement.

We next consider the invariant measure bias of the BAOAB scheme [3], typi-
cal approaches for quantifying the asymptotic bias in Wasserstein distance rely on
strong order estimates. However, BAOAB is only strong order one in stepsize with
respect to the continuous dynamics, but it has weak order two in stepsize in the
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Figure 1. Contour plots of convergence rate for various schemes
in the case of an anisotropic Gaussian with parameters m = 1
and M = 10. Regions of white indicate instability.

invariant measure. Our approach to achieve second-order estimates is to strongly
approximate the BAOAB scheme by a modified stochastic dynamics which pre-
serves the invariant measure. In particular, we introduce the HOH scheme, where
H corresponds to exact Hamiltonian steps and this approximates the BAOAB
scheme up to second order in stepsize uniformly in time, whilst preserving the
invariant measure.

We refer to the works [1] and [2] for more details.
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Constrained and partitioned training of neural networks

Tiffany Vlaar

(joint work with Jonathan Frankle, Matthias Hein, Benedict Leimkuhler,
Maximilian Müller, Timothée Pouchon, David Rolnick and Amos Storkey)

In the first half of the talk I discussed the use of constrained stochastic differential
equations to train deep neural networks. Common techniques used to improve the
generalization performance of deep neural networks (such as e.g. L2 regulariza-
tion [1, 2] and batch normalization [3]) are tantamount to imposing a parameter
constraint, but despite their widespread use are often not well understood [4, 5]. I
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described an approach for efficiently incorporating hard constraints into a stochas-
tic gradient Langevin dynamics framework [6]. Our constraints offer direct control
of the parameter space, which allows us to study their effect on generalization.
In the second half of the talk, I focused on the role played by individual layers
and substructures of neural networks: layer-wise sensitivity to the choice of ini-
tialization and optimizer hyperparameter settings varies [7] and training different
neural network layers differently may lead to enhanced generalization and reduced
computational cost [8]. In particular, I showed that a multirate approach can be
used to train deep neural networks for transfer learning applications in half the
time, without reducing the generalization performance of the model [9].
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High order integration of stochastic dynamics in Rd, on manifolds, and
in the neighbourhood of manifolds

Adrien Laurent

(joint work with Eugen Bronasco, Hans Z. Munthe-Kaas and Gilles Vilmart)

On a Riemannian manifold (M, g), the overdamped Langevin dynamics write
as the following equation defined using the Eells-Elworthy-Malliavin construction
(see [9]):

(1) dX(t) = f(X(t))dt+ dWM(t), f = −∇V.
We are interested in particular in the Euclidean case M = Rd with the standard
Euclidean overdamped Langevin dynamics,

(2) dX(t) = f(X(t))dt+ dW (t),
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and in the case M = {x ∈ Rd|ζ(x) = 0}, where the manifold is defined as the
zero-level set of a smooth constraint ζ : Rd → Rq,

(3) dX(t) = ΠM(X(t))f(X(t))dt+ΠM(X(t)) ◦ dW (t),

with ΠM the orthogonal projection on TM. These models appear naturally when
modelling the motion of a set of particles subject to a potential V in a high friction
regime. The constraints can for instance represent fixed distances or angles in
molecules. The constraints encoded by ζ are often satisfied only up to a small
parameter ε, yielding dynamics that evolve in the neighbourhood of M,

dXε(t) = f(Xε(t))dt + dW (t) +
1

4
∇ ln(det(G))(Xε(t))dt

− 1

ε
(gG−1ζ)(Xε(t))dt, g = ∇ζ, G = gT g.(4)

Our focus is the simulation of the law of overdamped Langevin dynamics in
finite time (weak approximation) and in long time (approximation of the invariant
measure dµ∞ ∝ e−2V dvolM). Following [20], a method of high weak order also
samples the invariant measure with high order. It is, however, well known that
there exists method of low weak order, typically one, that sample the invariant
measure with high order. For instance, the Leimkuhler-Matthews method [16] has
order two for sampling the invariant measure of (2) for a similar cost as the Euler
Maruyama method. The methodology for the creation of such high order methods
for sampling the invariant measure of (2) was studied in [6, 1] and in [7, 11] in
the case of embedded manifolds (3). We introduce the algebraic formalism of
exotic aromatic Butcher series in [14, 15] to deal with the tedious calculations.
This generalisation of the standard Butcher series [8] was later studied for its
far-reaching algebraic and geometric properties [4, 13, 5].

The contributions presented in the talk are the following. We uncover in [14] a
class of stochastic Runge-Kutta integrators with the order conditions for reaching
up to any order for sampling the invariant measure of (2). We extend these
results for sampling (3) on embedded manifolds in [15], where we introduce the
first stochastic projection methods of order two (see Figure 1). We emphasize
that one cannot use standard Euclidean methods in this context as the measure
sampled by the numerical scheme would then be absolutely continuous w.r.t. the
Lesbesgue measure on Rd and not w.r.t. the measure on the manifold. It is thus
crucial that the chosen integrator lies on M.

We then present a new approach for the creation of projection methods of
high weak order for the dynamics (4) in the neighbourhood of manifolds. In this
context, a constrained method works only for small ε, while a Euclidean method
will face severe timestep restriction for small ε. Taking advantage of the geometry
of the problem, we propose a new projection method in [12] with accuracy and
cost independent of ε. In the case of a manifold of codimension one, and under
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technical assumptions (see [12]), the method is the following:

Xε
n+1 = Xε

n +
√
hσξn + hf(Xε

n) +
(1 − e−h/ε)2

2
(ζ2G−2g′(g))(Xε

n)

+
σ2ε

4
(1 − e−2h/ε)(G−1g′(g))(Xε

n) + g(Xε
n)λ

ε
n+1,

ζ(Xε
n+1) = e−h/εζ(Xε

n) + σ

√
ε

2
(1− e−2h/ε)gT (Xε

n)ξn

+ ε(1− e−h/ε)(gT f +
σ2

2
G−1gT g′(g) +

σ2

2
div(g))(Xε

n).

Figure 1. A trajectory (left) and the convergence curves for the
invariant measure (right) (from [15]).

While the approach using projection methods is computationally efficient, easy
to implement, and widely used in applications, projection methods rely on an
embedding of M into a possibly high-dimensional vector space and on the use
of non-intrinsic quantities. In the spirit of [3], we shall propose in future works
new stochastic Lie-group methods [10, 17] of high order in the weak sense and for
sampling the invariant measure of (1). The extension of Lie group methods for
the approximation of stochastic dynamics on general Riemannian manifolds is a
challenging problem as its deterministic counterpart is already an active field of
research [2, 19, 18]. This is exciting matter for future work.
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Retraction-based simulations of Brownian motion on Riemannian and
sub-Riemannian manifolds

Simon Schwarz

(joint work with Michael Herrmann, Anja Sturm and Max Wardetzky)

Probabilistic models in continuous time with geometric constraints lead to Brown-
ian motion and stochastic differential equations (SDEs) on Riemannian manifolds.
A naive approach to simulate such a process is to use geodesic random walks on a
Riemannian manifold (M, g): In each step one can

(1) sample a tangent vector at the current position and
(2) follow a geodesic for some fixed stepsize in the sampled direction.
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Jørgensen proved in [2] that under some mild assumptions geodesic random walks
converge to diffusion processes on manifolds (depending on the mean and variance
of the probability measure on the tangent bundle) as the stepsize decreases. Com-
puting geodesics, however, is computationally expensive – we therefore propose
to use retractions in Step (2) of the algorithm. Retractions are computationally
efficient approximations of the exponential map that were originally introduced
for numerical optimization on manifolds, see [1].

Definition 1. Let Ret : TM → M be a smooth map, and denote the restriction to
the tangent space TxM by Retx for any x ∈M . Ret is a retraction if the following
two conditions are satisfied for all x ∈M and all v ∈ TxM :

(1) Retx(0) = x, where 0 is the zero element in TxM and
(2) d

dτ Retx(τv)
∣∣
τ=0

= v (where we identify T0TxM ≃ TxM).

A retraction is a second-order retraction if it additionally satisfies that for all
x ∈M and for all v ∈ TxM one has that

D

dτ

(
d

dτ
Retx(τv)

) ∣∣∣∣∣
τ=0

=
D

dτ

(
d

dτ
Expx(τv)

) ∣∣∣∣∣
τ=0

= 0 ,

where D
dτ (

d
dτ γ(τ)) denotes covariant differentiation of the tangent vector field

γ̇(τ) = d
dτ γ(τ) along the curve γ.

We prove in [4] that retraction-based random walks converge to the correct
limiting process if and only if the respective retraction is a second-order retrac-
tion. Moreover, we give several examples of second-order retractions and therefore
provide an efficient and convergent way of simulating diffusion processes on Rie-
mannian manifolds. Our retraction-based algorithms can also be generalized to
sub-Riemannian manifolds, see [3].
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XAI meets quantum chemistry

Klaus-Robert Müller

(joint work with ML group, QCML, BIFOLD and others)

In this talk I describe the recently developed field of explainable AI (XAI) [5, 6, 7],
which has now many applications in the sciences and industry [5, 4]. XAI allows
to study how machine learning methods (ML) such as deep learning, LSTMs and

https://arxiv.org/abs/2311.17289


1472 Oberwolfach Report 26/2024

kernel methods come to their decision (in terms of input variables) on a single
sample basis despite of their non-linearities. The concept of Clever Hans is intro-
duced for learning models [8]. Using this, we analyse ML for quantum chemistry
and demonstrate that novel scientific insights emerge from trained ML models
[2, 1, 10, 11, 12, 3, 9]. Finally ML for PDEs are discussed using a particularly
challenging application, namely, the control of the curling robot Curly [13].
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Sampling and generative modeling on Lie group

Molei Tao

(joint work with Lingkai Kong, Yuchen Zhu and Tianrong Chen)

My talk and this report are based on two articles, [1] and [2]. Interested readers
are strongly encouraged to read the full articles.

1. Sampling of Probability Distributions on Lie Groups

Explicit, momentum-based dynamics for optimizing functions defined on Lie
groups was recently constructed, based on techniques such as variational optimiza-
tion and left trivialization. We appropriately add tractable noise to the optimiza-
tion dynamics to turn it into a sampling dynamics, leveraging the advantageous
feature that the trivialized momentum variable is Euclidean despite that the po-
tential function lives on a manifold. We then propose a Lie-group MCMC sampler,
by delicately discretizing the resulting kinetic-Langevin-type sampling dynamics.
The Lie group structure is exactly preserved by this discretization. Exponential
convergence with explicit convergence rate for both the continuous dynamics and
the discrete sampler are then proved under W2 distance. Only compactness of the
Lie group and geodesically L-smoothness of the potential function are needed. To
the best of our knowledge, this is the first convergence result for kinetic Langevin
on curved spaces, and also the first quantitative result that requires no convexity
or, at least not explicitly, any common relaxation such as isoperimetry.

2. Generative Modeling of Data on Lie Groups

The generative modeling of data on manifold is an important task, for which diffu-
sion models in flat spaces typically need nontrivial adaptations. We demonstrate
how the trivialization technique used in Part I can transfer the effectiveness of
diffusion models in Euclidean spaces to Lie groups. In particular, an auxiliary
momentum variable was algorithmically introduced to help transport the position
variable between data distribution and a fixed, easy-to-sample distribution. Nor-
mally, this would incur further difficulty for manifold data because momentum lives
in a space that changes with the position. However, our trivialization technique
creates to a new momentum variable that stays in a simple fixed vector space.
This design, together with a manifold preserving integrator, simplifies implemen-
tation and avoids inaccuracies created by approximations such as projections to
tangent space and manifold, which were typically used in prior work, hence facili-
tating generation with high-fidelity and efficiency. The resulting method achieves
state-of-the-art performance on protein and RNA torsion angle generation and
sophisticated torus datasets. We also, arguably for the first time, tackle the gen-
eration of data on high-dimensional Special Orthogonal and Unitary groups, the
latter essential for quantum problems.
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Computational methods for Bayesian inverse problems

Konstantinos Zygalakis

(joint work with Yoann Altmann, Paul Dobson, Teresa Klatzer, Marcelo Pereyra
and Jesus Maria Sanz-Serna)

Bayesian (imaging) inverse problems provide a coherent mathematical and algo-
rithmic framework that enables researchers to combine mathematical models with
data. A problem of typical interest in this setting is the recovery of an unknown
image x ∈ Rd through a measurement y ∈ Rm (typically m 6 d) which is assumed
to be related with x by a statistical model p(y|x). The simplest example of such
relation between the image x and the measurement y is the following one

y = Ax + w

where A ∈ Rm×d (rank-deficient) and w is additive (Gaussian noise).
The fact that A is rank deficient implies that the recovery of x from y is ill-

posed resulting in significant uncertainty about x. In order to reduce the overall
uncertainty and deliver accurate results one needs a prior distribution pr(x) that
is meant to reflecting the properties of true image x. Given the prior distribution
pr(x) and the statistical model p(y|x) we can write down the posterior distribution
using Bayes rule:

π(x|y) ∝ p(y|x)pr(x),
which models our knowledge of x after observing y. The ability thus to solve such
(imaging) inverse problems depends crucially on the efficient calculation of quan-
tities relating to the posterior distribution. In particular, one might be interested
in calculating

x̂MAP := argmax
x∈Rd

π(x|y),

the point estimate that maximises the posterior distribution or some other statistic
of the form

(1) Eπ(f) :=

∫

x∈Rd

f(x)π(x|y)dx.

Calculations of terms of the form (1) can be done using the discretizations of the
Langevin equation

(2) dXt = ∇ log π(Xt|y)dt+
√
2dWt,

where Wt is the standard d-dimensional Brownian motion. One of the main com-
putational challenges in the case of imaging inverse problems is the non-smoothness
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of the prior pr(x). To deal with this, one replaces π(x|y) with a smooth approx-
imation πλ(x|y) for which λ log πλ(x|y) is gradient Lipschitz with constant that
behaves like λ−1 which results in time-step restrictions for standard stochastic
integrators. To address this issue one needs to use tailored stochastic numerical
integrators that are based either on explicit stabilised solvers [1] or they are im-
plicit [2]. In the case of the implicit methods each step of the stochastic integrator
corresponds to solving an optimization step. In particular, we have

Xn+1 = argminx∈RdF (x;Xn; ξn+1), ξn+1 ∼ N (0, Id)

F (x;u, z) := −θ−1 log πλ(θx+ (1 − θ)u) +
1

2δ
‖x− u−

√
2δz‖2.

which for the case θ = 1/2 we call implicit midpoint Langevin algorithm. One can
show that this integrator is exact for Gaussian targets while in the case of strongly
log-concave potentials converges towards the biased invariant measure with similar
speed to accelerated optimization methods. An interesting open research question
is to study this algorithm in the case where an accept-reject correction is introduced
to remove the bias from the discretization.
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Random batch methods for interacting particle systems and
molecular dynamics

Shi Jin

We first develop random batch methods for classical interacting particle systems
with large number of particles [1, 5]. These methods use small but random batches
for particle interactions, thus the computational cost is reduced from O(N2) per
time step to O(N), for a system with N particles with binary interactions. For
one of the methods, we give a particle number independent error estimate under
some special interactions [1, 2, 7].

This method is also extended to molecular dynamics with Coulomb interactions,
in the framework of Ewald summation [3]. We will show its superior performance
compared to the current state-of-the-art methods (for example PPPM) for the
corresponding problems, in the computational efficiency and parallelizability [4, 6].
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Entropy of convex hulls revisited

Sara van de Geer

Let Q be a probability measure on a measurable space X. We consider the convex
hull F of a set X ∈ L2(Q) which is defined as

F := {f =

p∑

i=1

βjxj : xj ∈ X, βj > 0, j = 1, . . . , p,

p∑

j=1

βj = 1, p ∈ N}.

We study the (metric) entropy of F. Metric entropy is a key concept in approxima-
tion theory, with numerous applications in various areas such as statistics, signal
processing, probability and information theory. For example, the entropy of the
parameter space in a statistical model typically (in an asymptotic sense where the
number of samples goes to infinity) determines the estimation error.

We assume that X is “small” in the sense that it has polynomial covering
numbers.

Definition 1. For ǫ > 0, the ǫ-covering number N(ǫ, T ) of a set T ⊂ L2(Q) is
defined as the minimum number of balls with radius ǫ, necessary to cover T . The
entropy of T is H(·, T ) := logN(·, T ).

Let ‖ · ‖ be the L2(Q)-norm. We assume that supx∈X ‖x‖ 6 1 and that, for
some constant V > 0,

N(ǫ,X) . ǫ−V .

We cite the following result of [1]:

Theorem 1.

H(ǫ,F) . ǫ−
2V

2+V .

The above bound is tight in certain cases, but it is not tight in general. We
therefore introduce another concept, namely the approximation number.

Definition 2. For ǫ > 0 the ǫ-approximation number M(ǫ, T ) of a set T ⊂ L2(Q)
is defined as the smallest dimension M such that there exists a linear space V ⊂
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L2(Q) with dimension M that has δ(T,V) 6 ǫ, where δ(T,V) is the distance of T
to V:

δ(T,V) := max
t∈T

min
v∈V

‖t− v‖.

Clearly, M(ǫ,X) 6 N(ǫ,X) for all ǫ > 0.

Theorem 2. If, for some constants W > 0 and w > 0,

M(ǫ,X) . ǫ−W logw(1/ǫ).

Then

H(ǫ,F) . ǫ−
2W

2+W log
2w

2+W (1/ǫ) log
W

2+W (1/ǫ).

Here are two examples.

Example 1. Let µ be Lebesgue measure on [0, 1] and Ψ = {ψv : v ∈ [0, 1]} be the
collection of heaviside functions, that is the collection of indicators of halfintervals

ψv(·) := l{· > v}, v ∈ [0, 1].

Then

X := Ψ⊗ · · · ⊗Ψ︸ ︷︷ ︸
d times

is the collection of indicators of halfintervals in [0, 1]d, and F is the collection of
all d-dimensional distribution functions. Let Q = µ× · · · ×µ be Lebesgue measure
on [0, 1]d. Then it can be shown that

M(ǫ,X) . ǫ−2 log2(d−1)(1/ǫ).

Hence

H(ǫ,F) . ǫ−1 logd−
1
2 (1/ǫ).

Thus we recover the bound of [2].

Note that in the above example, the dimension d occurs only in the logarithmic
term. The same is true for the second example.

Example 2. Consider the convolution U + V , where U and V are independent
random vectors in [0, 1]d and the components of U are independent and all have
a Beta(q1, q2)-distribution with (q1, q2) ∈ N2. Let F be the class of all possible
densities of U + V , with respect to Lebesgue measure on [0, 2]d. Then for q :=
min{q1, q2} one can show that

M(ǫ,X) . ǫ−
2

2q−1 log
2q(d−1)
2q−1 (1/ǫ).

We conclude that

H(ǫ,F) . ǫ−
1
q logd−

1
2q (1/ǫ).



1478 Oberwolfach Report 26/2024

References

[1] K. Ball, and A. Pajor, The entropy of convex bodies with “few” extreme points, London
Math. Soc. Lecture Note Series 158 (1990), 25–32.

[2] R. Blei and F. Gao and W. Li, Metric entropy of high dimensional distributions, Proceedings
of the American Mathematical Society 135 (2007), 4009–4018.

Infinite-dimensional Wishart Processes

Sonja Cox

(joint work with Christa Cuchiero and Asma Khedher)

The goal is to introduce and analyse infinite-dimensional Wishart processes. An
infinite-dimensional Wishart processes is a stochastic process X = (Xt)t>0 taking
values in S+

1 (H), the cone of positive self-adjoint trace class operators on a sepa-
rable real Hilbert space H , and satisfying (in some sense) the following stochastic
differential equation:

(1) dXt = (αQ+XtA+A
∗Xt) dt+

√
Xt dWt

√
Q+

√
QdW ∗

t

√
Xt, t > 0, X0 = x0.

Here α ∈ R, A : D(A) ⊂ H → H is the generator of a C0-semigroup, x0 and Q
are positive self-adjoint bounded operators, and (Wt)t>0 is an L2(H)-cylindrical
Brownian motion (where L2(H) is the space of Hilbert Schmidt operators on H).

Finite-dimensional Wishart processes, i.e., processes taking values in S+(Rn),
the cone of positive semidefinite n × n matrices, have been thoroughly studied:
in [1, 2] the existence of finite-dimensional Wishart processes was established un-
der certain conditions on the parameters, and stochastic differential equations
were derived for the eigenvalues and eigenvectors. It was soon recognised that
these finite-dimensional Wishart processes are affine, i.e., Markov processes whose
Laplace transform depends in an exponentially affine way on the initial value.

Wishart processes are popular because they provide tractable stochastic covari-
ance models. Indeed, one important application of finite-dimensional Wishart pro-
cesses is multivariate asset price modelling with stochastic covariances. The fact
that certain models for bond and commodity markets call for infinite-dimensional
stochastic covariance models inspired us to consider the infinite-dimensional ana-
logue. Moreover, so-called matrix-valued Volterra-Wishart processes can be inter-
preted as infinite-dimensional Wishart processes by an appropriate lift.

The difficulty we face when studying infinite-dimensional Wishart processes is
that there are strong indications from the finite-dimensional theory that in the
presence of a non-degenerate diffusion part, i.e., when Q in (1) is of infinite rank,
then an infinite-dimensional Wishart process is necessarily of finite rank almost
everywhere. To explain this statement, let us return for a moment to the finite-
dimensional setting: a Wishart process X taking values in S+(Rn) is a process
satisfying

(2) dXt = (αQ +AXt +XtA
∗) dt+

√
XtdWt

√
Q +

√
QdW ∗

t

√
Xt, t > 0,
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where A ∈ Rn×n, Q ∈ S+(Rn), and W is a standard Rn×n-valued Brownian
motion. It is well-known (see, e.g., [2, 4, 5, 7, 8]) that if Q is injective, then such
a finite-dimensional Wishart process exists if and only if either α ∈ [n− 1,∞), or
α ∈ {0, . . . , n− 2} and rank(x0) 6 α. In case of the latter one has rank(Xt) 6 α
a.s. for all t > 0. When translated to the infinite-dimensional setting this suggests
that Wishart processes of infinite rank are hard to come by. Indeed, we prove the
following:

Theorem. Assume that H is infinite-dimensional. If Q is of trace class and
injective and A is bounded then an analytically and probabilistically weak solution
to (1) exists if and only if α ∈ N and rank(x0) 6 α. In this case, rank(Xt) = α
a.s. for almost all t > 0.

In fact, our results go beyond the realm of the Theorem above. In general, we only
assume that A : D(A) ⊂ H → H is the generator of a C0-semigroup (etA)t>0 and Q

a bounded positive self-adjoint operator onH satisfying
∫ t

0
‖ esA √

Q‖L2(H) ds <∞
for all t > 0. For this setting we have the following results:

(1) If α ∈ N and rank(x0) 6 α, then there exists a probabilistically and
analytically weak solution X to (1). By construction, this solution is
necessarily of rank at most α.

(2) Formulas for the Fourier-Laplace transform (below, tr denotes the trace)

E [exp(− tr((u− iv)Xt)) |x0]
of a Wishart process X for
(a) u ∈ S+(H) (the positive self-adjoint operators) and v = 0;
(b) v ∈ S+(H) or −v ∈ S+(H) and u = 0;
(c) u ∈ S+(H), and v ∈ S(H) (the self-adjoint operators) and u, v, Q,

A, and x0 all jointly diagonizable;
(d) α ∈ N, u ∈ S(H), v ∈ S(H), and t sufficiently small.
In all cases the Fourier-Laplace transform is of exponential affine form,
i.e.,

E [exp(− tr((u − iv)Xt)) |x0] = exp(− tr(ψ(t, u− iv)x0)− φ(t, u− iv)), t > 0 ,

where ψ and φ are solutions of operator valued Riccati equations that can
be solved explicitly in all the cases listed above. As a consequence we
obtain that an infinite-dimensional Wishart process is an affine process
satisfying the Markov property and is thus unique in law.

(3) If Q is injective and if there exists a t > 0 such that etA is injective, then
the existence of a probabilistically and analytically weak solution X to (1)
implies that α ∈ N, rank(x0) 6 α and rank(Xt) = α a.s. for almost all
t > 0.

(4) If there exists a probabilistically and analytically weak solution X to (1),
then either rank(Xt) > rank(Q) a.s. for almost all t > 0, or α ∈ N and
rank(Xt) = α a.s. for almost all t > 0. This provides new insights even in
the finite-dimensional setting, since a characterisation of Wishart processes
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in S(Rn) that are of rank at most k is only known when A ≡ 0 and
Q = idRn see [5, Theorem 3.10]. Moreover, in the infinite-dimensional
setting under the condition that rank(Q) = ∞, this result implies that
finite-rank Wishart processes exist if and only if α ∈ N.

(5) If etA is injective for all t > 0, then a probabilistically and analytically
weak solution to (1) is Feller with respect to (a minor refinement of) the
weak-∗-topology on the space of self-adjoint trace class operators. We
make use of the Feller property to prove the existence of unique limit
distribution of the constructed Wishart process.

Our results also give rise to various intriguing questions. Firstly, we were not
able to rule out the existence of a Wishart process when Q is injective, α /∈ N, and
etA is not injective for all t > 0:

Open probem 1. Let Q in (1) be injective. Does there exist an unbounded
operator A such that (1) allows for a solution for some α /∈ N?

Secondly, we have little insight (even for H = Rn) of existence of Wishart
processes when Q is not injective and α /∈ N:

Open probem 2. If Q is not injective, for what α ∈ R \N and what x0 ∈ S+
1 (H)

does a solution to (1) exits? Which role does the operator A play?
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HJ-sampler: a Bayesian sampler for inverse problems of a stochastic
process by leveraging Hamilton–Jacobi PDEs and score-based

generative models

Tingwei Meng1

(joint work with Zongren Zou1, Jérôme Darbon and George Em Karniadakis)

The interplay between stochastic processes and optimal control has been exten-
sively explored in the literature. With the recent surge in the use of diffusion
models, stochastic processes have increasingly been applied to sample generation.
This paper builds on the log transform, known as the Cole-Hopf transform in
Brownian motion contexts, and extends it within a more abstract framework that
includes a linear operator. Within this framework, we found that the well-known
relationship between the Cole-Hopf transform and optimal transport is a partic-
ular instance where the linear operator acts as the infinitesimal generator of a
stochastic process. We also introduce a novel scenario where the linear operator
is the adjoint of the generator, linking to Bayesian inference under specific initial
and terminal conditions. Leveraging this theoretical foundation, we develop a new
algorithm, named the HJ-sampler, for Bayesian inference for the inverse prob-
lem of a stochastic differential equation with given terminal observations. The
HJ-sampler involves two stages: solving viscous Hamilton-Jacobi (HJ) partial dif-
ferential equations (PDEs) and sampling from the associated stochastic optimal
control problem. Our proposed algorithm naturally allows for flexibility in select-
ing the numerical solver for viscous HJ PDEs. We introduce two variants of the
solver: the Riccati-HJ-sampler, based on the Riccati method, and the SGM-HJ-
sampler, which utilizes diffusion models. Numerical examples demonstrate the
effectiveness of our proposed methods.

B-stability of geodesic integrators on Riemannian manifolds

Brynjulf Owren

(joint work with Elena Celledoni and Ergys Çokaj)

Nonlinear stability of numerical methods for differential equations in Euclidean
spaces is often realised in the form of non-expansiveness. The idea is to consider
the behaviour of a numerical approximation method when it is applied to a vector
field X which satisfies a monotonicity condition

(1) 〈X(y)−X(z), y − z〉 6 ν |y − z|2

for any pair y, z belonging to the space V where ν 6 0 is a monotonicity constant,
and where 〈·, ·〉 is an inner product and | · | the induced norm. Flows, ϕt,X of
vector fields X satisfying (1) yield the bound

|ϕt,X(y)− ϕt,X(z)| 6 eνt|y − z|

1These authors contributed equally to this work.
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and are thus non-expansive when ν 6 0. A one-step integrator φh,X is called
B-stable if

(2) |φh,X(y)− φh,X(z)| 6 |y − z|, ∀y, z, h > 0.

whenever (1) holds with ν 6 0. In the literature, see e.g. [1, 2], conditions for
B-stability of Runge–Kutta methods can be found.

These definitions can be extended to Riemannian manifolds. A manifold M
with a metric g, induces a Riemannian distance d(y, z) between points on M . A
straightforward generalisation of B-stability is to demand that, given any pair of
points y, z in some appropriately chosen subset of M , whenever the exact flow,
ϕt,X of a vector field X satisfies

d(ϕt,X(y), ϕt,X(z)) 6 d(y, z), ∀t > 0,

a B-stable numerical method φh,X should verify

d(φh,X(y), φh,X(z)) 6 d(y, z), ∀h > 0.

We need a monotonicity condition which generalises (1) to M . In order to
do this we use the Levi-Civita connection ∇XY associated to the metric g, and
writing 〈u, v〉 for g(u, v) we introduce the condition

(3) 〈∇YX,Y 〉 6 ν|Y |2, ∀Y ∈ X (U), U ⊆M,

where U is a suitably chosen open subset of M to be made precise later. See also
[4]. We recall from [3] that the flow of a vector field X satisfying (3) has the
property that

d(ϕt,X(y), ϕt,X(z)) 6 eνtd(y, z)

Geodesic integrators. On a Riemannian manifold, we can use geodesics to define
numerical integrators. Examples of these are

GIE.: The geodesic implicit Euler method, defined implicitly as φIE : y 7→ y1
where

expy1
(−hX(y1)) = y

GIMP.: The Geodesic implicit midpoint rule defined in terms of a mid point ȳ
as y 7→ y1 through

y = expȳ(−
h

2
X(ȳ)), y1 = expȳ(

h

2
X(ȳ))

Stability and uniqueness results. The following result was proved in [3]: The GIE
method is B-stable if the manifold (M, g) has non-negative sectional curvature.
It is of interest to understand the behaviour of such geodesic integrators also
on positively curved spaces. For this, a number of numerical experiments were
conducted on the 2-sphere S2. One can then find instances of non-expansive
vector fields (ν 6 0), such as Killing fields, and initial points y, z ∈ S2 which cause
the GIE method to exhibit an expansive behaviour. The following plot from [3]
shows this, since for small stepsizes, h, clearly d(φh,X(y), φh,X(z)) > d(y, z). For
the exact flow, the distance between y(t) and z(t) remains constant.
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Figure 1. The Riemannian distance between to initial points
y, z ∈ S2 for increasing values of the step size h in the GIE method
applied to a Killing vector field.

Another issue with positively curved manifolds, such as S2, is the non-uniqueness
of the solution to the equations which arise due to the implicitness of the scheme.
For the same Killing vector field used above, the GIE method exhibits multiple
solutions. It is interesting to observe that in the Euclidean case, non-expansivity
ensures unique solutions for the implicit Euler method, see [2, Theorem 14.4]. The
solutions can be depicted in a bifurcation plot that is borrowed from [3].

Figure 2. The solutions to the third cartesian coordinate for a
range of step sizes h when the GIE method is applied to a Killing
vector field.

Some technical assumptions hitherto omitted. As indicated above, one needs to
constrain the B-stability to some subset U of the manifold M , defined in terms of
the vector field X . We here list some conditions that must be imposed on such a
set:
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- U is geodesically convex
- The vector field X is forward complete on U , meaning that ϕt,X(y) exists
for every y ∈ U and t > 0

- The vector field X is forward invariant on U , meaning that ϕt,X(y) ∈ U
for every y ∈ U and t > 0

- The numerical solution is also defined and invariant on U for all h > 0

Conclusion and further work. We have introduced the notion of B-stability on
Riemannian manifolds. This is an unconditional stability definition, meaning that
no upper bound on the stepsize h > 0 is imposed. The main result is that the
Geodesic Implicit Euler method is B-stable on manifolds (M, g) of non-positive
sectional curvature. We also show through numerical experiments that B-stability
does not seem to hold in general for positively curved spaces, here demonstrated on
the compact manifold S2. Future work will aim at considering explicit integrators
and conditional stability, and we intend to apply the theory in the design of neural
networks with manifold valued features and parameters.
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A dynamical systems view to deep learning: contractivity and
structure preservation

Elena Celledoni

(joint work with Davide Murari and Brynjulf Owren)

1. Introduction

Deep learning neural networks have recently been interpreted as discretisations of
an optimal control problem subject to an ordinary differential equation constraint.
There is a growing effort to mathematically understand the structure in existing
deep learning methods and to design new approaches preserving (geometric) struc-
ture in neural networks. The (discrete) optimal control point of view to neural
networks offers an interpretation of deep learning from a numerical analysis per-
spective and opens the way to mathematical insight [9, 8, 1]. We discuss a number
of interesting directions of current and future research in structure preserving deep
learning [2].
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2. Stable networks

Some deep neural networks can be designed to have desirable properties such as
invertibility and group equivariance or can be adapted to problems of manifold
value data. Equivariant neural networks are effective in reducing the amount of
data for solving certain imaging problems [3].

We show how classical results of stability of ODEs are useful to construct con-
tractive neural networks architectures. Thus, neural networks can be designed with
guaranteed stability properties. This can be used to ensure robustness against ad-
versarial attacks and to obtain converging “Plug-and-Play” algorithms for inverse
problems in imaging [2, 7, 12].

We consider vector fields of the type

X(t, y(t)) = −A(t)Tσ(A(t)y(t) + b(t)),

with σ increasing activation function1, A ∈ Rn×k, b ∈ Rn, and use the forward
Euler discretizations of the corresponding differential equations to build the neural
network. These vector fields are contractive in the ℓ2 norm [2], which means that
there is ν < 0 such that for all y1, y2 ∈ Rn and t ∈ [0, T ]:

〈X(t, y2)−X(t, y1), y2 − y1〉 6 ν‖y2 − y1‖2.
As a consequence for any two integral curves solutions of ẏ = X(t, y), y(0) = y0
and ż = X(t, z), z(0) = z0 we have that

‖y(t)− z(t)‖ 6 etν‖y(0)− z(0)‖.
For the vector field X(t, y(t)) = −A(t)Tσ(A(t)y(t) + b(t)), one can also prove

that the following, stronger monotonicity condition

〈X(t, y2)−X(t, y1), y2 − y1〉 6 ν̄‖X(t, y2)−X(t, y1)‖2, ν̄ < 0

holds with ν̄ = − 1
‖A‖2L where L is the Lipschitz constant of the activation function

σ [12]. The latter condition is essential to guarantee also contractivity of the
forward Euler method for small enough step-sizes.

Stable networks can be constructed composing layers of contractive and expan-
sive vector fields and using the above ideas to restrict the Lipschitz constant of
the overall network.
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1For x ∈ Rn, σ(x) is a scalar function applied to each component of the vector x.
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3. Optimal shape parametrisation and learning Hamiltonian systems

from data

Shape analysis is a framework for treating complex data and obtaining metrics
on spaces of data. Examples are spaces of unparametrized curves, time-signals,
surfaces and images [10, 4].

A computationally demanding task for estimating distances between shapes, e.g.
in object recognition, is the computation of optimal reparametrizations. This is an
optimisation problem on the infinite dimensional group of orientation preserving
diffeomorphisms Diff+(Ω), for some domain Ω. The optimisation problem takes
the form

inf
ϕ∈Diff+(I)

E(ϕ).

We approximate the diffeomorphisms with neural network parametrizations
(with a finite number of parameters) and where each layer is a diffeomorphism,
and we solve a finite dimensional optimisation problem for the parameters on a
finite dimensional space [5]. It is useful to consider geometric properties in this
context e.g. reparametrization invariance of the distance function, invertibility
and contractivity of the neural networks.

We can show that finite compositions of diffeomorphisms of the type

ϕℓ = id + fℓ, ℓ = 1, . . . , L

with fℓ a 1-Lipschitz vector field can be used to describe the whole group of
diffeomorphisms fixing the boundary of Ω a compact, convex subset of Rd; and of
diffeomorphisms on a cube Ω = [0, 1]d.

We also consider applications of deep learning to mechanical systems, for learn-
ing Hamiltonians on manifolds and from noisy data [6, 11].

References

[1] M. Benning, E. Celledoni, M. J. Ehrhardt, B. Owren, and C. B. Schönlieb, Deep learning
as optimal control problems: models and numerical methods. Journal of Computational
Dynamics 6(2):171–198, 2019.

[2] E. Celledoni, M. J. Ehrhardt, C. Etmann, R. I. McLachlan, B. Owren, C. B. Schönlieb,
F. Sherry, Structure preserving deep learning, European Journal of Applied Mathematics
(2021).

[3] E. Celledoni, M. J. Ehrhardt, C. Etmann, B. Owren, C. B. Schönlieb, F. Sherry, Equivariant
neural networks for inverse problems, Inverse Problems (2021).

[4] E. Celledoni, M. Eslitzbichler, and A. Schmeding, Shape analysis on Lie groups with appli-
cations in computer animation, J. Geom. Mech. 8(3):273–304, 2016.
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Reservoir kernels and Volterra series

Lyudmila Grigoryeva

(joint work with Lukas Gonon and Juan-Pablo Ortega)

Reservoir computing. In this talk we consider input/output systems deter-
mined by SSSs. The symbols Z and Y denote the input and the output spaces,
respectively, and X is the state space (typically finite or infinite-dimensional man-
ifolds). A discrete-time SSS is determined by:

xt = F (xt−1, zt), yt = h(xt), t ∈ Z,(1)

with z ∈ ZZ, y ∈ YZ,x ∈ X Z. The map F : X × Z → X is called the state map
and h : X → Y the readout/observation map. Cases in which F is randomly
generated and h is functionally simple are known as reservoir computing (RC)
([6, 7, 4, 5]; a popular family is echo state networks).

We focus on (1) that determine an input/output system, which happens in the
presence of the echo state property (ESP): when for any z ∈ ZZ there exists a
unique y ∈ YZ s.t. (1) holds. In that case, the state-space (SS) filter UF

h :
ZZ → YZ is defined by UF

h (z) := y, with z ∈ ZZ, y ∈ YZ linked by (1) via the
ESP. If the ESP holds at the level of (1), we can define a state or reservoir filter
UF : ZZ → X Z and, in that case, we have that UF

h := h ◦ UF . The SS filters are
causal (C) and time-invariant (TI) [1] and it suffices to work with their restriction
UF
h : ZZ− → YZ− . Moreover, UF

h determines an SS (reservoir) functional HF
h :

ZZ− → Y as HF
h (z) := UF

h (z)0, ∀z ∈ ZZ− . The same holds for UF and HF with
the ESP at the level of the state equation. If Z is a compact metric space and
ZZ− is endowed with the product topology we say that HF

h or HF have the fading
memory property (FMP) when they are continuous [2].

Reservoirs with a linear readout and the RKHS associated to a state
system. This talk is based on [3] in which RKHS was associated to any ESP SSS
F : X × Z → X , using HF : ZZ− → X as a feature map. This allows, using
the Representer Theorem, to reduce the search for a linear h which is optimal
with respect to the regularized empirical risk minimization (ERM) associated to
any loss to the search for h defined on the linear span of reachable states XR :=
span{XR} = span{HF (z) | z ∈ ZZ−}. Let F : X ×Z → X be a state map s.t. the



1488 Oberwolfach Report 26/2024

pair (X , 〈·, ·〉X ) is a Hilbert space and F has the ESP. Let HF : ZZ− → X be the
corresponding state functional. Define the reservoir kernel map

(2)
K : ZZ− ×ZZ− → R

(z, z′) 7−→ 〈HF (z), HF (z′)〉X .
The reservoir kernel K is symmetric and positive semidefinite. Let (H, 〈·, ·〉H) be
the corresponding RKHS given by

(3) H := span{Kz := K(z, ·) : ZZ− → R | z ∈ ZZ−}.
Proposition 1. [3] Let (X , 〈·, ·〉X ) be a finite-dimensional Hilbert space and let
F : X × Z → X be a state map that satisfies the ESP. Let (H, 〈·, ·〉H) be the
associated RKHS in (3). Then

(4) H = {〈W, HF (·)〉X | W ∈ XR}.
Moreover, for any W1,W2 ∈ XR, 〈〈W1, H

F (·)〉X , 〈W2, H
F (·)〉X 〉H = 〈W1,W2〉X ,

and the map Ψ : (XR, 〈·, ·〉X ) → (H, 〈·, ·〉H), W 7→ 〈W, HF (·)〉X =: HF
W
(·) is an

isometric isomorphism.

For infinite-dimensional state-space representations, the RKHS H is infinite-
dimensional and (4) {〈W, HF (·)〉X | W ∈ XR} ⊂ H. Moreover, if X is infinite-
dimensional, Ψ is an injective isometry but ceases to be surjective in general.

Estimation of the empirical risk minimizing readout. Consider the ESP
map F : X ×Z → X and a finite sample {(Z−i, Y−i)}i∈{0,...,n−1} of input/output

observations. For i ∈ {0, . . . , n− 1} define the truncated input samples Z−n+1
−i :=

(. . . ,0,0,Z−n+1, . . . ,Z−i−1,Z−i), and the empirical risk R̂n(H
F
W
) associated to

the loss L : Y × Y → R for the system HF
W
(·) = 〈W, HF (·)〉X with readout

W ∈ X as R̂n(H
F
W
) = 1

n

∑n−1
i=0 L(〈W, HF (Z−n+1

−i )〉X , Y−i).

Proposition 2 (Implicit reduction and kernelization). Let F : X × Z → X
be an ESP state system and let L : Y × Y → R be a loss function. Let
{(Z−i, Y−i)}i∈{0,...,n−1} be a sample and let Ω : (0,∞) → R be a strictly increasing
function. Then, the regularized ERM problem admits the following reformulations:

• Implicit reduction: Let H be the RKHS in (3). Then,

min
W∈X

{R̂n(H
F
W) + Ω(‖W‖2X )} = min

W∈XR

{R̂n(H
F
W) + Ω(‖W‖2X )}

= min
HF

W
∈H

{R̂n(H
F
W
) + Ω(

∥∥HW

F

∥∥2
H
)}.(5)

If X is finite-dimensional, these minima coincide with minf∈H{R̂n(f)+Ω(‖f‖2
H
)}.

• Kernelization: The problem (5) in X can be written in terms of the Gramian
K ∈ Mn, defined as Ki,j = K(Z−n+1

−(n−i),Z
−n+1
−(n−j)), i, j ∈ {1, . . . , n}, that is

min
f∈H

{R̂n(f) + Ω(‖f‖2
H
)} = min

α∈Rn
{ 1
n

n∑

i=1

L((Kα)i, Y−(n−i)) + Ω(α⊤Kα)}.
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1. Main results

Consider Z = Rd and Y = Rm, and denote by 〈·, ·〉 and ‖·‖ the Euclidean inner
product and norm, as well as certain inner products and norms induced by it. For
any z ∈ (Rd)Z− define the p-norms as ‖z‖p := (

∑
t∈Z−

‖zt‖p)1/p, for 1 6 p < ∞,

‖z‖∞ := supt∈Z−
{‖zt‖} for p = ∞. Given M > 0, KM := {z ∈ (Rd)Z− |

‖zt‖ 6 M for all t ∈ Z−}. It is easy to see that KM = BM ⊂ ℓ∞− (Rd), with

BM := B‖·‖
∞

(0,M) and ℓ∞− (Rd) := {z ∈ (Rd)Z− | ‖z‖∞ < ∞}. We define

B̃M := BM ∩ ℓ1−(Rd), ℓ1−(R
d) := {z ∈ (Rd)Z− | ‖z‖1 < ∞} and write L(V,W ) for

the space of linear maps between the real vector spaces V and W .

Theorem 1 (The Volterra reservoir). Let M > 0 and let τ > 0 be s.t. τ2M2 < 1.

Let 0 < λ <
√
1− τ2M2. Consider the state system with inputs in KM ⊂ ℓ∞− (Rd)

and states in T2(R
d) given by the recursion

(6) xt = λxt−1 ⊗ z̃t + 1, t ∈ Z−,

where z̃t ∈ T (Rd) is the τ-tensorization of zt. Then,

(i) This system has the ESP and defines a unique CTI and FMP filter UVolt
λ :

KM ⊂ ℓ∞− (Rd) → {x ∈ (T2(R
d))Z− | ‖xt‖ 6 L for all t ∈ Z−} for

t ∈ Z− is given by UVlt
λ (z)t = 1 +

∑∞
j=0 λ

j+1z̃t−j ⊗ z̃t−(j−1) ⊗ · · · ⊗ z̃t,

with L = 1/(1− λ/
√
1− τ2M2).

(ii) Let U : KM ⊂ ℓ∞− (Rd) → KL ⊂ ℓ∞− (Rm) be a CTI, FMP filter whose
restriction U |BM

is analytic as a map between open sets in the Banach
spaces ℓ∞− (Rd) and ℓ∞− (Rm), and U(0) = 0. Then, there exists a unique

map W ∈ L(T2(R
d),Rm), s.t. U(z)t = WUVlt

λ (z)t, for any z ∈ B̃M ,
t ∈ Z−.

We refer to FVlt
λ : T2(R

d)× {z ∈ Rd | ‖z‖ 6M} → T2(R
d) given by FVlt

λ (x, z) :=
λx ⊗ z̃ + 1 as the Volterra reservoir map, to the filter UVlt

λ as the Volterra filter,
and to the equality in (ii) as the Volterra filter representation of the FMP filter U .
We call the corresponding functional HVlt

λ (z) := UVlt
λ (z)0 the Volterra functional.

Let τ ∈ Z− and define the τ-time delay operator T−τ : (Rd)Z− → (Rd)Z−

by T−τ (z)t := zt+τ , for any z ∈ (Rd)Z− , t ∈ Z−. For any t ∈ Z−, denote by
pt : (R

d)Z− → Rd the t-projection given by pt(z) = zt. Finally, recall that a filter
U : (Rd)Z− → (Rm)Z− is TI when U ◦ T−τ = T−τ ◦ U , for any τ ∈ Z−.

Proposition 3 (The Volterra reservoir kernel). Let M > 0, τ > 0 be s.t. τ2M2 <

1. Let 0 < λ <
√
1− τ2M2. The reservoir kernel KVlt : KM × KM → R of

the Volterra reservoir in (6) defined using λ, τ-tensorization, and with inputs in
KM ⊂ ℓ∞− (Rd) is well-defined and can be calculated for z, z′ ∈ KM using

(7) KVlt(z, z′) = 1 +
λ2KVlt(T1(z), T1(z

′))

1− τ2〈p0(z), p0(z′)〉
.

The Volterra kernel recursion. Expression (7) can be used to compute the
Gram matrix of KVlt ∈ Mn for a truncated input {Z−i}i∈{0,...,n−1}, defined as
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KVlt
i,j = KVlt(Z−n+1

−(n−i),Z
−n+1
−(n−j)), i, j ∈ {1, . . . , n}. By setting KVlt

0,0 = KVlt
i,0 =

1/(1− λ2), ∀i ∈ {1, . . . , n}, for j ∈ {1, . . . , i} it holds

KVlt
i,j = 1 + λ2

KVlt
i−1,j−1

1− τ2〈Z−(n−i),Z−(n−j)〉
.

The Gram matrix can be completed by using its symmetry.

Theorem 2 (Universality of the Volterra reservoir kernel). Let KVlt : KM ×
KM → R be the reservoir kernel map in Proposition 3 and let KVlt(KM ) be the
associated space of kernel sections. Then

KVlt(KM ) = C0(KM ),

that is, the Volterra reservoir kernel is universal.
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Mean field limits for interacting particle systems: phase transitions,
inference and control

Grigorios A. Pavliotis

We report on a recent research program on the study of interacting particle sys-
tems, described by systems of weakly interacting diffusions, and of their mean
field limit. We consider {X i

t}i=1,...,N ⊂ Rd, the positions of N indistinguishable
interacting particles at time t > 0, satisfying the following system of SDEs:

(1)





dX i
t = −∇V (X i

t) dxt−
1

N

N∑

j=1

∇1W (X i
t , X

j
t ) dxt+

√
2β−1 dBi

t ,

Law(X1
0 , . . . , X

N
0 ) = ρ⊗N

in ∈ P2,sym((R
d)N ),

where V : Rd → R, W : Rd × Rd → R, β−1 > 0 is the inverse temperature,
Bi

t , i = 1, . . . , N are independent d-dimensional Brownian motions, and the initial
position of the particles is i.i.d with law ρin. We consider the dynamics both in the
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whole space, as well as on the torus Td with periodic boundary conditions. Under
appropriate assumptions on the confining and interaction potentials, we can pass

to the mean field limit to show that the empirical measure µN
t := 1

N

∑N
j=1 δXj

t

converges, in an appropriate sense, to ρt(x) dx the solution of the McKean-Vlasov
PDE

∂ρt
∂t

= ∇ · (∇V ρt) +∇ · ((∇W ⋆ ρt)ρt) + β−1∆ρt,(2a)

ρt(x, 0) = ρin.(2b)

The mean field McKean SDE is

(3) dXt = −∇V (Xt) dt− (∇W ⋆ ρt)(Xt) dt+
√
2β−1 dWt, X0 ∼ ρin.

In a series of recent papers we studied phase transitions for the McKean-Vlasov
PDE on the torus [4], the stability of multipeak steady states [1], Γ−convergence
approaches to the study of propagation of chaos [3], multiscale problems and the
noncommutativity between the diffusive and mean field limits [5, 9], mean field
limits or interacting generalized Langevin particles [7], we developed spectral nu-
merical methods for solving mean field PDEs with colored noise [8], explored the
link between (the absence of) uniform propagation of chaos and (the absence of)
uniform logarithmic Sobolev inequalities [6]. In addition, we have developed infer-
ence methodologies for the McKean SDE given observations of trajectories of the
interacting particle system [11, 12, 13] and we have also studied the fully nonpara-
metric problem of inferring the interaction potential from noisy measurements of
the solution to the McKean-Vlasov PDE in a purely nonparametric framework [10].

Finally, in recent work we developed techniques for identifying all, stable and
unstable, steady states of the McKean-Vlasov PDE and for stabilizing unstable
steady states [2]. In particular, we developed an efficient numerical scheme for
identifying all steady states (both stable and unstable) of the mean field McKean-
Vlasov PDE, based on a spectral Galerkin approximation combined with a deflated
Newton’s method to handle the multiplicity of solutions of the Kirkwood-Monroe
integral equation

(4) ρ∞ =
1

Z
e−β(V+W∗ρ∞), Z =

∫

Td

e−β(V+W∗ρ∞) dx.

Having found all possible stationary states, we then formulate an optimal control
strategy for steering the dynamics towards a chosen unstable steady state. The
control is computed using iterated open-loop solvers in a receding horizon fash-
ion. Our proposed methodology was applied to several examples, including the
noisy Hegselmann-Krause model for opinion dynamics and the Haken-Kelso-Bunz
model from biophysics. For the Heglselmann-Krause model, it is well known that
it exhibits a discontinuous phase transition: at sufficiently high temperatures, the
uniform distribution, describing non-consensus, is the unique stationary state of
the mean field systems. A discontinuous phase transition occurs at at critical tem-
perature, below which a localized state, describing consensus formation, becomes
a stable steady state.
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The proposed inference and computational framework opens up new possibilities
for the calibration of mean field models and for understanding and controlling
the collective behavior of noise-driven interacting particle systems, with potential
applications in various fields such as social dynamics, biological synchronization,
and collective behavior in physical and social systems.
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Unbiased kinetic Langevin Monte Carlo with inexact gradients

Daniel Paulin

(joint work with Neil Chada, Benedict Leimkuhler, and Peter A. Whalley)

We present the unbiased UBU (UBUBU) method for Bayesian posterior means
based on kinetic Langevin dynamics that combines advanced splitting methods
with enhanced gradient approximations. Our approach avoids Metropolis correc-
tion by coupling Markov chains at different discretization levels in a multilevel
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Monte Carlo approach. Theoretical analysis demonstrates that our proposed es-
timator is unbiased, attains finite variance, and satisfies a central limit theorem.
It can achieve accuracy ǫ > 0 for estimating expectations of Lipschitz functions
in d dimensions with O(d1/4ǫ−2) expected gradient evaluations, without assuming
warm start. We exhibit similar bounds using both approximate and stochastic
gradients, and our method’s computational cost is shown to scale independently
of the size of the dataset. The proposed method is tested using a multinomial re-
gression problem on the MNIST dataset and a Poisson regression model for soccer
scores. Experiments indicate that the number of gradient evaluations per effective
sample is independent of dimension, even when using inexact gradients. For prod-
uct distributions, we give dimension-independent variance bounds. Our results
demonstrate that the unbiased algorithm we present can be much more efficient
than the “gold-standard” randomized Hamiltonian Monte Carlo.

Burn-in Samples

KB0 Level 0
Stepsize h

KB0+B

KB0+2B

Level 1
Stepsize h

Level 2
Stepsize h

0

1

2

N copies of 
Level 0

}N0,1 copies

}N1,2 copies

Figure 1. Elimination of bias by increasing burn-in lengths at
higher discretization levels.
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Unbiased sampling using reversibility checks

Tony Lelièvre

(joint work with Mathias Rousset, Régis Santet, Gabriel Stoltz and Wei Zhang)

Let us consider a probability measure π(dx), on a measurable space (X,F) and
a Markov kernel T (x, dx′) on this same space. The standard Metropolis Hastings
algorithm writes: for a given sample Xn at iteration n,





Sample X̃n+1 ∼ T (Xn, dx′)

If Un 6 min(1, r(Xn, X̃n+1))

accept the proposal: Xn+1 = X̃n+1

else reject the proposal: Xn+1 = Xn

where Un is a random variable uniformly distributed, and r(x, x′) = π(dx′)T (x′,dx)
π(dx)T (x,dx′)

is the so-called Metropolis-Hastings ratio. It is standard to check that the Markov
chain (Xn)n>0 is invariant with respect to π. Our objective is to generalize this

algorithm in the case when the sampling X̃n+1 ∼ T (Xn, dx′) requires to solve

an implicit problem. In particular, X̃n+1 may be ill-defined (no solution to the
implicit problem, or multiple solutions to the implicit problem).

We have more precisely two applications in mind, which are related to the
(Generalized) Hamiltonian Monte Carlo algorithm:

• (Generalized) Hamiltonian Monte Carlo algorithm with non-separable hamil-
tonians;

• Sampling measures on submanifolds with the projected (Generalized) Hamil-
tonian Monte Carlo algorithm.

In the former case, the generalized Verlet algorithm, which is used to build the
proposed move, is implicit because of the non-separability of the hamiltonian.
In the latter case, the projection steps used in the Rattle discretization of the
constrained Hamiltonian dynamics also require to solve an implicit problem, in
order to compute the Lagrange multipliers associated with the projection on the
submanifold of interest. We propose a generic method to build a reversible Markov
chain in both cases, by modifying the proposal by a so-called reversibility check,
very much inspired by [4]. In the specific case when the implicit problems can be
solved exactly, for example by root finding softwares for polynomial equations such
as Bertini and HomotopyContinuation.jl, we show how this reversibility check can
be bypassed.

We refer to the works [1, 2, 3] for more details and numerical illustrations.
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Analysis of a positivity-preserving splitting scheme for some
semilinear stochastic heat equations

David Cohen

(joint work with Charles-Edouard Bréhier and Johan Ulander)

Introduction and motivation. Let Ω be a nice domain in Rd. Consider the de-
terministic linear heat equation with homogeneous Dirichlet boundary conditions{

ut(t, x) = ∆u(t, x) , t > 0, x ∈ Ω,

u(0, x) = u0(x) , x ∈ Ω,

where ∆ = ∂2x1x1
+ . . .+∂2xdxd

and where the given initial value u0 is non-negative.
Using the semi-group notation, the solution to the above partial differential

equation (PDE) may be written

u(t) = E(t)u0,

with the solution operator E(t) = e∆t which is non-negative by the maximum
principle, see for instance [7]. This implies that the solution to the above PDE
remains non-negative: u(t) = E(t)u0 > 0 in Ω for all time t > 0.

In this extended abstract, we are interested in investigating if the above property
of u(t, x) remains valid when the PDE is driven by a random noise, that is ut(t, x) =
∆u(t, x) + NOISE. Furthermore, we derive and analyse a positivity-preserving
numerical integrator for stochastic partial differential equations (SPDEs).

In order to explain the main ideas and obtained theoretical results, we will first
consider a linear heat equation driven by a standard Brownian motion (see [3] for
details) and then present the results in the case of a linear heat equation driven
by a space-time white noise in dimension one (see [2] for details).

Heat equations driven by a standard Brownian motion. Let
(
β(t)

)
t>0

be

a standard real-valued Brownian motion defined on a probability space (Ω,F ,P)
satisfying the usual conditions. Let an integer d > 1. Define the spatial domain
D = (0, 1)d. Let T ∈ (0,∞) denote the finite time horizon.

In this part, we consider the time discretisation of the semilinear stochastic heat
equation driven by a purely time-dependent Brownian motion (Itô sense)

(1)





du(t, x) = ∆u(t, x) dt+ g(u(t, x)) dβ(t) , t > 0, x ∈ D,
u(t, x) = 0 , t > 0, x ∈ ∂D,
u(0, x) = u0(x) , x ∈ D,

where the (non-random) initial value u0 : D → R is non-negative and the nonlin-
earity satisfies g(0) = 0. Under some technical assumptions on the nonlinearity
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g : R → R and the initial value u0, it is known that solutions to the SPDE (1) are
Hölder continuous with exponent 1/2− in time and 1− in space, furthermore these
solutions remain non-negative almost surely: u(t, x) > 0 for all (t, x) ∈ [0, T ]×D,
see for instance [4].

We now present the efficient time integrator for the SPDE (1) studied in [3].
Let us define the time-step size τ = T/M where M ∈ N is an integer. Set
tm = mτ for all m ∈ {0, . . . ,M}. Define the increments δβm = β(tm+1) − β(tm)
for all m ∈ {0, . . . ,M − 1}. Next, introduce the bounded and continuous function
f : R → R defined by

f(v) =
g(v)

v
1v 6=0 + g′(0)1v=0.

The positivity-preserving Lie–Trotter splitting scheme uLTm (·) ≈ u(tm, ·) is based
on a Lie–Trotter splitting strategy: given uLTm for some m ∈ {0, . . . ,M − 1}, the
numerical solution uLTm+1 is obtained by solving successively two subsystems on the
time interval [tm, tm+1]:

• first, a family of linear Itô stochastic differential equations (corresponding
to geometric Brownian motions)

• second, a deterministic PDE (the linear heat equation).

The Lie–Trotter splitting scheme can be written as

(2) uLTm+1(x) =

∫

D
G(τ, x, y)

(
exp
(
f(uLTm (y))δβm − f(uLTm (y))2τ

2

))
dy,

where G(t, x, y) is the fundamental solution to the deterministic heat equation.
The time integrator (2) satisfies the following, see [3] for precise statements:

• Almost surely, uLTm (x) > 0 for all x ∈ D and m ∈ {0, . . . ,M},
• It is exact when applied to the SPDE (1) when g(v) = v, i. e. f(v) = 1,
• It has mean-square order of convergence 1/2, that is:

sup
06m6M

sup
x∈D

(
E[|uLTm (x) − u(tm, x)|2]

)1/2
6 C τ1/2.

These properties have been illustrated numerically in [3].
We conclude the first part of the extended abstract by mentioning some possible

future research questions: It has been noted that the LT splitting scheme remains
positive and has a rate of mean-square convergence 1/2 even in the case of the
non-globally Lipschitz nonlinearity g(v) = v1.25. To prove this remains an open
question. In addition, the rate of weak convergence of the LT splitting scheme
has been investigated in [1] for finite-dimensional SDEs. To prove a rate of weak
convergence of the LT splitting scheme when applied to the SPDE (1) is still open.

Heat equations driven by a space-time white noise. In this second part,
we consider the discretisation in space and time of the semilinear stochastic heat
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equation (in the Itô sense)

(3)





∂tu(t, x) = ∂2xxu(t, x) + g(u(t, x)) Ẇ (t, x),

u(t, 0) = u(t, 1) = 0,

u(0, x) = u0(x)

for t ∈ [0, T ] and x ∈ [0, 1], where Ẇ (t, x) is a space-time white noise, see for
instance [8].

The spatial discretisation of the SPDE (3) is analysed in [5]. For any integer
N ∈ N, let h = 1/N be the space mesh size, and let xn = nh for 0 6 n 6 N be the
grid points. A standard finite difference discretisation gives the N−1-dimensional
stochastic differential equation (SDE)

duN (t) = N2DNuN (t) dt+
√
Ng(uN(t)) dWN (t)

with initial value uN(0) =
(
u(0, xn)

)
16n6N−1

, DN = diag(1,−2, 1) is a tridiagonal

matrix and WN
n (t) =

√
N
(
W (t, xn+1)−W (t, xn)

)
for 1 6 n 6 N − 1. We use the

notation
(
g(uN(t)) dWN(t)

)
n
= g(uNn (t)) dWN

n (t).
This system of SDEs is then discretised in time by the Lie–Trotter splitting

scheme presented in the first part of this extended abstract. The fully-discrete
numerical approximation of the SPDE (3) then reads:
(4)

uLTm+1 = eτN
2DN

(
exp
(√

Nf(uLTm,n)∆m,nW − Nf(uLTm,n)
2τ

2

)
uLTm,n

)

16n6N−1

,

where ∆m,nW =WN
n (tm+1)−WN

n (tm).
Under some technical assumptions, the fully-discrete numerical scheme (4) sat-

isfies the following, see [2] for precise statements:

• Almost surely, uLTm,n > 0 for all m ∈ {0, . . . ,M} and n ∈ {1, . . . , N − 1},
• It has mean-square order of convergence 1/4, that is: For all γ ∈ (0,∞)
and T ∈ (0,∞), there exists C = Cγ,T (u0) ∈ (0,∞) such that for all
τ = T/M and h = 1/N satisfying the condition τ 6 γh2,

sup
06m6M

sup
06n6N

(
E[|uLTm,n − u(tm, xn))|2]

) 1
2 6 Cτ

1
4 .

It is possible to get an upper bound, not uniformly with respect to h, for
the mean-square error under the condition τ 6 γh, see [2] for details.

These properties have been illustrated numerically in [2].
We conclude this extended abstract by mentioning some possible future research

questions: It has been observed numerically in [2] that the LT splitting scheme
remains positive and has a rate of mean-square convergence 1/4 even in the case
of the non-globally Lipschitz nonlinearity g(v) = v1.25. To prove these properties
for the SPDE (3) with g less regular than in [2] remains an open question. In
addition, the rate of weak convergence of the LT splitting scheme when applied to
the SPDE (3) has not yet been investigated.
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Extended dynamic mode decomposition and error rates

Caroline Wormell

Computation of nonlinear dynamical systems is a complicated area, and there are
few universal tools at our disposal. One of these tools is the Koopman operator,
which allows us to study the action of a dynamical system as a linear object.
Given a map f : M →M (which could be stochastic and Markov), the Koopman
operator acts on functions ϕ :M → R as

Kϕ = E[ϕ ◦ f ].
Various ergodic and geometric properties of the map can be revealed by studying
the Koopman operator on appropriate spaces of functions: for instance, autocor-
relation functions, Birkhoff variances, and almost-invariant subsets of phase space.
This is particularly useful for quantifying e.g. outputs of the dynamical system
that drive other systems.

Given its utility, we might wonder how we can compute with the Koopman oper-
ator, especially when our information on the dynamical system is relatively limited.
The most natural idea is to project K onto a subspace of functions, for example
those spanned by a dictionary of observables {ψn}|n|<N (or some other set of in).
Computationally, we can achieve this most easily by least squares approximation,
and that ideally with respect to a finite set of data points {(xm, f(xm))}m=1,...,M .
In practice, these data points usually are taken from some sampling measure µ (If
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the points form an orbit, so f(xm) = xm,+1, this measure is an ergodic measure
of f).

To do this, one constructs a design matrix and fitting matrix

ΨX = (ψn(xm))m=1,...,M,|n|<N ,ΨY = (ψn(f(xm)))m=1,...,M,|n|<N

and the Koopman matrix is given as KM,N = Ψ+
XΨY , where A+ denotes the

pseudoinverse of A. Such a method of approximating the Koopman operator
is known as Extended Dynamical Mode Decomposition (EDMD). Thousands of
papers are published about it, but little is known about the interpretation or
quality output, particularly in chaotic dynamics.

The goal of this talk is to understand what the output of EDMD converges to,
and some principles governing its corresponding error rates. As a simple metric
for “error”, we’ll talk about the error in eigenvalues of the Koopman operator.

As a starting point, we choose our phase space to be the periodic interval M =
R/2πZ, and on this space compare stochastic dynamics (with, say, smooth kernel)
with uniformly expanding dynamics (i.e. smooth maps with |f ′| > γ > 1). We
will choose our observables to be the Fourier basis {einx}|n|<N , but the sampling
measure may not be Lebesgue—although for both kinds of dynamical system, the
physically observed ergodic measure has a smooth Lebesgue density.

For these kinds of dynamics, it is possible to show that, as the amount of data
converges to infinity the Koopman matrix KN,M converges to a limiting matrix

KN , with an O(1/
√
M) error in each matrix entry [2]. For these observables, it is

also possible to see that the errors in each entries are sufficiently uncorrelated that
the ℓ2 norm of this 2N − 1 × 2N − 1 matrix is of order O(

√
N/

√
M): by Fourier

duality this is the corresponding L2(dx) distance in function space between the
operators KN,M and KN .

This limiting operator KN is at first sight fairly easy to characterise: if we define
PN to be the orthogonal projection onto the subspace spanned by the observables
in L2(µ), then we have KN = PNK|imPN

. For our choice of observables, it turns
out the effectiveness of this projection is quite similar to (but cannot be reduced
to) truncation of Fourier modes (which is what you get when µ is equal to Lebesgue
measure). We can quantify this by studying the operator error in Sobolev spaces
Hs, consisting of functions whose sth derivative is in L2.

Theorem 1 (Theorem 1.1,[3]). There exists C such that for all s > r > 0,

‖I − PN‖Hs→Hr 6 CN−(s−r).

In the case of our stochastic dynamics, the smoothness of the kernel implies that
for all s K is bounded from L2 → Hs, and so we have that ‖K−KN‖L2 6 C′N−s.
Since K is compact on L2 for stochastic maps, we can put this together with the
noise bound to get the following:
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Corollary 1. For every simple eigenvalue λ ∈ σ(K, L2), there exists a sequence
{λN,M ∈ σ(KN,M )}N,M so that

|λN,M − λ| 6 O(N−s +
√
N/

√
M)

for each N,M with high probability, for every s > 0.

With some more work, we could probably remove the
√
N factor in the last

term.
We would hope that the same is possible for chaotic systems. However, in this

case, there are some obstacles. The first is that K is not bounded from a stronger
Sobolev space to a weaker Sobolev space. However, there are ways to get around
this, and we can show the following resolvent bound

Theorem 2. For every λ ∈ C\σ(K, Hs) and every s, t > 0,

‖Rλ(KN )−Rλ(K)|imPN
‖Hs = O(N−t).

This implies that

Corollary 2. For every λ ∈ C\σ(K, Hs) and every s, t > 0,

‖Rλ(KN,M )−Rλ(K)|imPN
‖Hs = O(N−t + ‖KN,M −KM‖Hs)

6 O(N−t +N1/2+s/
√
M),

with high probability for each N,M .

with the last inequality obtained by comparing the Sobolev norms in Fourier
space. (It seems for these maps that there is no special covariance structure in
the “random matrix” that allows a better bound.) Setting H0 = 0 we recover the
same kind of decay we had for stochastic systems.

However, the other problem we have is that the spectrum of K in L2 is very
boring (essential spectrum filling the unit disk), and isn’t even the limit of σ(KN )
as N → ∞. However, if we study the spectrum of Hs as s > 0, we get something
more interesting. There are a discrete set of values (with multiplicity) that are
known as the Ruelle–Pollicott resonances σ(f), which can be defined by means
independent of function spaces. It is known that for s > 0,

σ(K, Hs) = σ(f) ∪ σess(KN , H
s).

The essential spectrum σess(KN , H
s) is contained in a ball of radius e−P (s) about

zero, where P (s) can be quantified in terms of expansion rates of f , and is
∼ Lexps + o(s) for s small [1]. Furthermore, increasing s shrinks the essential
spectrum.

We can use Corollary 2 to bound the eigenvalue error between some λN,M ∈
σ(KN,M ) and λ ∈ σ(f) as

inf
s:λ∈σpt(K,Hs)

O(N−t +N1/2+s/
√
M)
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This is obviously (asymptotically) increasing in s, so we want to minimise s. By
the bounds on the essential spectrum, we know we can take s = P−1(log |λ|) + ǫ,
so, for any t,

|λ− λN,M | 6 O
(
N−t +

N1/2+P−1(log |λ|)
√
M

)
.

The upshot of this is that the dependence on the size of λ here suggests that
smaller eigenvalues require much larger amounts of data to be resolvable. The
variable essential spectral radius phenomenon is a standard property of chaotic
systems, so we can expect to see this phenomenon to more realistic dynamics.
Fortunately, smaller eigenvalues tend to be less physically meaningful than larger
ones, and the extra penalty on eigenvalues close to the unit circle is relatively
small.

The results in this talk suggest that when it comes to estimating Koopman
operator spectra, there is a disjunction between stochastic and chaotic dynamics:
all eigenfunctions of stochastic systems are L2 objects, whereas the internal spec-
trum of chaotic systems are creatures of higher regularity, even though can have
set-based interpretations. This means it is harder to study the internal spectra of
chaotic systems.
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Sampling on Riemannian manifolds via stochastic
differential equations

Alexander Lewis

(joint work with Karthik Bharath, Akash Sharma, Michael V. Tretyakov)

The general objective we wish to pursue is the sampling from a general probability
measure dµφ ∝ e−φdvol on a Riemannian manifold M of dimension q, where dvol
is the canonical volume form. WhenM is Euclidean, it is well known that sampling
may be carried out by discretizing an overdamped Langevin SDE.

Our analysis centres around the intrinsic (overdamped) Langevin equation

(1) dXt = dBM
t − 1

2
∇φ(Xt)dt, X0 = x,

where BM
t is an M -valued Brownian motion constructed by the Eells–Elworthy–

Malliavin approach (e.g. [3]). When M is compact, the geometry guarantees that
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the distribution of the solution Xt converge exponentially to the stationary distri-
bution µφ. So by discretizing (1), it should be possible to approximately sample
from the target measure µφ.

Previous methods (e.g. [4, 5]) for numerical schemes on manifolds have relied
upon embedding the manifold in some higher dimensional Euclidean space (typ-
ically with codim(M) = 1). The constrained diffusion then lies on the manifold.
This technique may be inefficient since the discretized process lives in a higher-
dimensional space, and needs to be projected onto M . Moreover numerically, as
time increases, the repeated application of the projection will accumulate error
that can interfere with the order of convergence. Instead we shall rely on an in-
trinsic based approach, where we do not rely on any particular choice of embedding
and the number of random variables driving the discretization at each step is equal
to the intrinsic dimension of the manifold. An intrinsic approach which provided
orders of convergence of an Euler discretization was first developed in [2], however
their method of proof relied heavily upon choice of coordinate charts. Calculus
was performed on the entirety of charts, and the exit time of a chart had to be
tracked. For this reason, the random variables driving the Euler discretization had
to be restricted. Our approach on the other hand enables coordinate-free analysis
of the algorithm.

We define the geodesic Langevin algorithm as

(2) Xh
n+1 = expXh

n

(
− h

2
∇φ(Xh

n) +
√
hg−1/2(Xh

n)ξn+1

)
,

where ξ is i.i.d. Rq-valued random vector that satisfies the following moment
matching conditions:

E[ξi] = 0, E[ξiξj ] = δij , E[ξ
iξjξk] = 0, E[(ξi)2(ξj)2] <∞.

Examples of such random variables that are usable are standard Gaussian and the
discrete random variable ξi = ±1 w.p. 1/2.

Theorem 1 (Global convergence theorem). Let M be a compact Riemannian
manifold and assume gij ∈ C3(M), φ ∈ C3(M) and ϕ ∈ C4(M). Define the

estimator µ̂φ,N(ϕ) = 1
N

∑N
n=1 ϕ(X

(n),h
N ). Then,

(3) |E[µ̂φ,N (ϕ)]− Eµφ
[ϕ]| 6 C

(
h+ e−λT

)
.

For a global order 1 convergence, we aim for a local, one step approximation,
in order 2.

Lemma 1 (One-step approximation lemma). Let M be a compact Riemannian
manifold and assume gij ∈ C3(M), φ ∈ C3(M) and ϕ ∈ C4(M). Given x ∈ M ,
let Xh

1 be computed according to the following formula:

Xh
1 = expx

(
− h

2
∇φ(x) +

√
hg−1/2(x)ξ

)
.
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Let u(t, x) be the solution to the backward Kolmogorov equation of the diffusion
(1). Then

E[u(t+ h,Xh
1 )− u(t, x)] 6 Ch2e−λ(T−t),

where C > 0 is independent of T and h.

The proof of Lemma 1 (see e.g. [1]) exploits the Taylor expansion of u(t+h,Xh
1 )

along a geodesic.
Hence, a key ingredient in our coordinate-free approach to the proofs is to write

the Taylor expansion of a function f ∈ C4(M) along geodesics. Let γ : [0,
√
h] →

M be a geodesic with γ(0) = x and γ̇(0) = V , then we write the Taylor series
f(γ(s)) in the parameter s as

f(γ(s)) = f(γ(0)) + s
d

ds
f(γ(s))

∣∣∣∣
s=0

+
s2

2

d2

ds2
f(γ(s))

∣∣∣∣
s=0

+
s3

6

d3

ds3
f(γ(s))

∣∣∣∣
s=0

+
s4

24

d4

ds4
f(γ(s))

∣∣∣∣
s=α

for some α ∈ [0,
√
h].

Then by recognising that dk

dsk f(γ(s))|s=0 = Dkf(V, . . . , V ), we see that the only
random part in the derivative terms are the vector fields V . Hence, the problem
of evaluating expectations on the manifold is changed into evaluating expectations
on the tangent space, and because TxM is isomorphic to Rq, makes calculating
the expectations much simpler.

We obtain the same order (both local and global) of convergence when compared
to the Euclidean case [6].

For non-compact manifolds, the issue of convergence of the diffusion (1) is a

subtle one, tied intimately to the geometry of M . The Bakry–Èmery criterion is
one such condition that is sufficient for exponential erogidicty. However, we must
impose very stringent conditions on both the geometry and density to ensure it
is satisfied; when setting M = Rq, this is akin to demanding that the target
density is strongly log-concave. To broaden the class of allowed densities we can
theoretically sample from, we are able to split the Bakry–Èmery criterion into two
separate assumptions on the Ricci curvature and Hessian: For constants b, c > 0,

(4) Ric > (−c− b2ρ2o)g,

where ρo = ρ(o, x), o, x ∈M . And

(5) Hessφ > δg

outside of a compact set in M , where the constant δ relates to the constants
from (4) as δ > (1 +

√
2)b

√
q − 1 > 0. If both (4) and (5) are satisfied, then the

log-Sobolev inequality on M holds [8].
Experiments were performed on S2 and P3 (the space of 3×3 symmetric positive

definite matrices) to numerically illustrate the convergence rate of the algorithm
(2).
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Theorem 1 and Lemma 1 can also be adapted when the algorithm (2) moves
along retractions [7]. Define the first order retraction Fx : TxM → M approxi-
mating the exponential map in (2), and further define c(s) a corresponding curve

satisfying c(0) = x and ċ(0) = −
√
h
2 ∇φ(x) + g−1/2(x)ξ. Then the convergence

rates in Theorem 1 and Lemma 1 are the same when expx is replace with Fx in
(2) if |E[Dċ(s)ċ(s)|s=0]| 6 Ch and |E[Dċ(s)Dċ(s)ċ(s)|s=0]| 6 Ch1/2.

Further avenues of research include; e.g.,

(1) Higher order intrinsic weak order algorithms;
(2) Alternative sampling methods such as splitting in the underdamped Langevin

diffusion;
(3) Modifying the algorithm to cater to manifolds with a boundary by introduc-

ing a reflection term.

Further details, proofs for Theorem 1 and Lemma 1, and numerical experiments
can be found in [1].
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Deterministic simulation of SDEs driven by α-stable processes

Georg A. Gottwald

(joint work with Ian Melbourne)

We present a novel framework to numerically integrate stochastic differential equa-
tions (SDEs) which are driven by Lévy noise [1]. Whereas classical methods dis-
cretize continuous-time SDEs using Taylor expansions, we view an SDE as a lim-
iting slow equation of a discrete slow-fast map using rigorous theory for homog-
enization of deterministic weakly chaotic systems [2, 3]. Our method naturally
deals with the notorious Marcus-integral appearing in SDEs driven by multiplica-
tive Lévy-noise. As a by-product this implies an entirely deterministic procedure
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to generate α-stable noise. In particular, we devise an explicit method to inte-
grate α-stable stochastic differential equations (SDEs) with nonglobally Lipschitz
coefficients. To mitigate against numerical instabilities caused by unbounded in-
crements of the Lévy noise, we use a deterministic map which has the desired
SDE as its homogenised limit. We present an example of an SDE with a natu-
ral boundary showing that our method naturally respects the boundary whereas
Euler-Maruyama discretisation fails to do so and shows leakage into forbidden
regions.

We further report on recent results for multi-dimensional decorated α-stable
processes which were recently discovered [4].
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A mathematical analysis of autoencoders for free energy calculations

Gabriel Stoltz

(joint work with Tony Lelièvre, Thomas Pigeon and Wei Zhang)

Autoencoders fall into the class of unsupervised machine learning methods. They
can be used a dimension reduction tool, to extract salient features of the data at
hand. They can be seen as a nonlinear extension to principal component analysis.
They are used in particular in molecular dynamics to find so-called collective
variables, in the context of free energy calculations [11].

In essence, autoencoders aim at representing the identity function with a model
of limited capacity. More precisely, for a given input data point x ∈ X ⊂ RD,
we denote by fθ(x) the prediction of the neural network. The parameters θ ∈ Θ
(weights and biases for each layer) are chosen to minimize the loss function

(1) L (θ) = E

[
‖X − fθ(X)‖2

]
,

where the expectation is over the realizations of the input data X distributed
according to some probability measure denoted by µ. In practice, the population
loss L is replaced by the empirical loss over a training set of Ndata given input
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data points {x1, . . . , xNdata}:

L̂ (θ) =
1

Ndata

Ndata∑

n=1

‖xn − fθ(x
n)‖2 .

There are various classes of autoencoders, as reviewed in [10, Section 2.1]. It is
useful to distinguish between undercomplete and overcomplete models. Under-
complete models have a limited capacity that prevents them from achieving zero
training loss. The most prominent example is provided by (feedforward) bottle-
neck autoencoders for which

(2) fθ = fdec,θ2 ◦ fenc,θ1 ,
where the parameters θ = (θ1, θ2) have been decomposed into parameters used in
the encoder and decoder parts, respectively. The limitation in the capacity of the
autoencoder arises from the fact that the encoding function fenc,θ1 has values in
a latent space Z ⊂ Rd of dimension d strictly smaller than the dimension D of
the input/output space X , usually much smaller in fact. Autoencoders are often
symmetric in their structures. In some cases, tied weights are being used, i.e. the
weights θ2 are the transpose of the weights θ1 when writing the prediction function
as (2). However, there is no particular motivation to use symmetric architectures,
and the results in Section 1.2 below in fact suggest to resort to very expressive
decoders.

1. Interpretations of the loss function

We discuss in this section various reformulations and reinterpretations of the loss
function (1) for bottleneck autoencoders (2) when the loss function is the square
loss, and discuss in particular the relationship with principal curves/manifolds [9,
14], and conditional expectations.

1.1. Three viewpoints on the loss function. We consider an ideal setting
where we minimize upon all measurable functions fenc : X → Z and fdec : Z → X .
We denote by Fenc and Fdec the sets of measurable functions from X to Z and
from Z to X , respectively; and by F the set of measurable functions obtained by
composing functions of Fenc with functions of Fdec:

F = {f = fdec ◦ fenc, fenc ∈ Fenc, fdec ∈ Fdec} .
Minimizing the reconstruction error over the set of functions in F can be then
rewritten as

(3) inf
f∈F

E

[
‖X − f(X)‖2

]
.

Note that we do not consider a regularization term here, so that overfitting may
occur in practice (for instance, even with Z of dimension 1, fdec can parametrize
a space-filling curve).

As discussed in [6] (which complements [8] which was already hinting at autoen-
coders), the unsupervised least-square problem (3) can be thought of in various
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ways. In particular, there is some duality in the way the minimization over f ∈ F
is performed, as one can decide to either

(i) simultaneously minimize over fenc and fdec, which is the standard way to
proceed when training neural networks;

(ii) minimize first over the encoder part, which allows to reformulate the min-
imization as the well-known problem of finding principal manifolds;

(iii) minimize first over the decoder part, which is natural when thinking of
the reconstruction error as some total variance to be decomposed using
a conditioning on the values of the encoder. This approach is discussed
more precisely in Section 1.2.

The chosen numerical approach has a natural impact on the topology of the net-
works which are considered: in situation (i), encoders and decoders are treated on
an equal footing, and it is therefore natural to consider them to be of a similar
complexity; whereas options (ii) and (iii) suggest to consider asymmetric autoen-
coders. For instance, in option (iii), the minimization over the decoder part, which
is performed first, could be done more carefully, with more expressive networks in
order to better approximate the optimal decoder for a given encoder.

1.2. Reformulating autoencoders with conditional expectations. We dis-
cuss here how to reformulate the training of autoencoders with conditional expec-
tations, and provide alternative interpretations to the reconstruction error. We
minimize the reconstruction error (3) by first minimizing over the decoder part for
a given encoding function, as already considered in [7]. This approach is natural in
molecular dynamics, as it is reminiscent of free energy computations [3, 11] where
average quantities are computed for a fixed value of the collective variable fenc.
From a mathematical viewpoint, it corresponds to introducing conditional averages
associated with fixed values of the encoder.

The loss function for unsupervised least-squares can be rewritten as

inf
f∈F

E

[
‖X − f(X)‖2

]
= inf

fenc∈Fenc

{
inf

fdec∈Fdec

E

[
‖X − fdec ◦ fenc(X)‖2

]}

= inf
fenc∈Fenc

E

[∥∥X − g⋆fenc ◦ fenc(X)
∥∥2
]
,(4)

where the ideal decoder g⋆fenc for a given encoder fenc is the Bayes predictor asso-

ciated with the least square regression problem (see [2, Section 2.2.3]):

(5) g⋆fenc(z) = E[X | fenc(X) = z].

Let us recall that, in all these expressions, expectations are taken with respect
to the probability distribution µ of the input data (which is not necessarily the
Boltzmann–Gibbs distribution). Equations (4)-(5) show that the question of find-
ing the best autoencoder can be reduced to finding the best encoding function,
provided that one is able to compute good approximations of the conditional ex-
pectation.
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The reconstruction error (4) can be reinterpreted in terms of variances. Indeed,

(6)
E

[∥∥X − g⋆fenc ◦ fenc(X)
∥∥2
]
= E [Var(X |fenc(X))]

= Var(X)−Var [E(X |fenc(X))] .

A consequence of (6) is that the minimization problem (4) can be reformulated as
the following equivalent maximization problem:

(7) sup
fenc∈Fenc

Var [E(X |fenc(X))] = sup
fenc∈Fenc

E

[∥∥g⋆fenc ◦ fenc(X)
∥∥2
]
.

In words, this reformulation translates the equivalence between (the “classes” re-
ferring here to the level sets of fenc)

• minimizing the intraclass dispersion (4): the distribution of configura-
tions x ∈ X for a fixed value z of fenc should concentrate around the mean
value g⋆fenc(z) by having a variance as small as possible;

• maximizing the interclass dispersion (7): the values of the conditional
averages of X for fixed values of fenc should be as spread out as possible
over the range of fenc.

1.3. Formal characterization of the optimal encoding function. The al-
ternative optimization problem (6) allows to characterize the optimal encoding
function fenc by some orthogonality condition similar to the self-consistency con-
dition of principal curves, see [8, Section 2]. In fact, it is formally shown in [10]
that critical points of (6) satisfy
(8)

∀j ∈ {1, . . . , d}, ∀x ∈ Supp(µ),
[
x− g⋆fenc(fenc(x))

]⊤
∂zjg

⋆
fenc(fenc(x)) = 0,

where Supp(µ) is the support of the probability measure µ. The derivation of this
condition, performed using the co-area formula [5, 1] together with the use of weak
derivatives, can be seen as a variation of derivations of optimality conditions for
principal curves, as written already in [9]; see also [8] where (8) is used to construct
a new objective function to minimize in order to find fenc.

An interesting implication of (8) is that the intersection of Supp(µ) and the
submanifold

(9) Σz = f−1
enc{z} = {x ∈ X | fenc(x) = z}

is in fact included in the (D − d)-dimensional hyperplane containing the point
g⋆fenc(z) and orthogonal to the vectors ∂z1g

⋆
fenc

(z), . . . , ∂zdg
⋆
fenc

(z) (recalling that X
and Z have dimensions D and d, respectively). As these hyperplanes generally
have a non-empty intersection, finding a regular function fenc which satisfies (8)
is only possible for distributions µ which have a support sufficiently concentrated
around the principal manifold.

We finally discuss the limit β → +∞ in (8), when the probability measure µ
under consideration is the Boltzmann–Gibbs measure with a density proportional
to e−βV (x), with V the potential energy function; and the latent space is one-
dimensional. We consider two local minima xA and xB of the potential energy
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function V , located respectively on ΣzA and ΣzB with zA = fenc(xA) and zB =
fenc(xB) (assuming zA 6 zB without loss of generality). Similarly to the discussion
in [15] for principal curves, it can formally be shown in the low temperature limit
that the decoder path {g⋆fenc(z)}z∈[zA,zB ] converges to a minimum energy path

(MEP).

2. Extensions and generalizations

To conclude this brief presentation of autoencoders and some of their properties,
we list some generalizations, described more precisely in [10].

In a situation where multiple transition paths link two metastable states, the
autoencoder may fail to properly represent the system in the transition region
between local minima for a one-dimensional latent space Z, as it constructs only
a single curve for the conditional expectations. An idea to address this issue is to
consider multiple decoders associated with a common encoder, and to choose for
a given configuration the decoder which best reconstructs the state through some
assignment function reminiscent of the one considered for clustering.

Another idea is to put more emphasis on transition states to better describe the
transition from one metastable state to another. This can be done by changing the
reference measure from the Boltzmann–Gibbs measure to a probability measure
putting more mass on regions between metastable states, such as the reactive
trajectory measure [4, 12] (which is the distribution of configurations sampled by
portions of trajectories switching from one metastable state to another).

A last idea is to use extra physical information encoded via additional terms in
the loss functions (as considered in [13] for instance); see [10, Sections 2.6 and 2.7].
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P.O. Box 64
1211 Genève 4
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