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Abstract. The focus of this workshop was on the ongoing interaction be-
tween geometric aspects of matroid theory with various directions in the
study of hyperplane arrangements. A hyperplane arrangement is exactly a
linear realization of a (loop-free, simple) matroid. While a matroid is a purely
combinatorial object, though, an arrangement is associated with a range of
algebraic and geometric constructions that connect closely with the combi-
natorics of matroids.

The meeting brought together researchers involved with complementary
angles on the subject, many of whom had not met before, so an important
underlying objective was to make introductions between groups with over-
lapping interests in order to facilitate new collaborations and advances in the
subject.

Mathematics Subject Classification (2020): 32S22, 52C35, 05B35.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.

Introduction by the Organizers

The workshop “Arrangements, matroids and logarithmic vector fields” brought
together a wide range of participants. Geographically, they came from Germany,
Japan, Switzerland, France, Belgium, Spain, Poland, Sweden, Canada, the USA,
the UK, Ireland, Israel, and Italy. They ranged over all career stages, from grad-
uate students to senior faculty.

The central topics involved algebraic and geometric methods in the study of hy-
perplane arrangements and matroids. The former are (usually) finite sets of linear
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hyperplanes in affine space. Their linear dependencies carry the structure of a (re-
alizable) matroid. Algebraic varieties constructed from hyperplane arrangements
appear naturally in various contexts and have a considerable history in which
singularity theory, reflection groups and configuration spaces figure prominently.

Perhaps the first such variety, historically, is the complement of a hyperplane
arrangement in complex affine or projective space. The complement has non-
trivial topology: its fundamental group generalizes the pure braid group and for
important classes of examples, the higher homotopy groups vanish. Different ar-
rangements that realize the same matroid may have homotopically inequivalent
complements. However, the cohomology algebra of the complement was computed
by Brieskorn, Orlik and Solomon [3, 6] and, in particular, depends only on the
combinatorics of the matroid. From a contemporary point of view, the algebra
they describe is a functorial invariant of a matroid that is defined regardless of
whether or not there exists a hyperplane arrangement that realizes it.

With their wonderful compactifications, De Concini–Procesi [4] gave families
of smooth varieties for which the hyperplane arrangement complement sits as the
complement of a simple normal crossings divisor. The combinatorial nature of
their construction led Feichtner and Yuzvinsky [5] to obtain a presentation of
the Chow ring of the wonderful compactification. They showed that it depended
only on combinatorics associated with the matroid. Adiprasito–Huh–Katz [1] later
used this “Chow ring of a matroid” to great effect to prove the Rota–Heron–Welsh
conjecture.

More recently and along the same lines, another arrangement construction, the
matroid Schubert variety, was shown by Braden et al. [2] to give another matroid
invariant, in this case its intersection cohomology. This was a key part in their
celebrated proof of the top-heaviness conjecture, and gave an interpretation of the
mysterious Kazhdan–Lusztig polynomial of a matroid.

To some extent, the workshop had its precursor in January 2021 with the work-
shop “Logarithmic Vector Fields and Freeness of Divisors and Arrangements: New
perspectives and applications,” which was held in online format due to Covid-19.
It was wonderful and much rewarding to be able to bring people together now
for an in-person meeting, complementing the group of participants with numerous
early career scientists whose work has unfolded in the past 2 or 3 years. Notably,
the study of geometry of matroids has expanded considerably since 2021, which
was beautifully outlined in a number of talks.

One aim of the workshop, still maintained, was to bring together participants
from slightly different mathematical communities within the subject involved with
the themes above, have them share current developments and provide a platform
for interaction. With this in mind, the program of talks was organized into loose
themes:
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The first day was devoted to topological aspects, with talks related to the
Kpπ, 1q problem for arrangement complements and their generalizations by Deluc-
chi, Yoshinaga, Jiang, Mücksch and Kyoji Saito. Suciu’s subsequent talk on de-
composable arrangments addressed the extent to which combinatorics predicts
graded approximations to the fundamental group.

The second day was more combinatorial, with morning talks related to Chow
rings of matroids by Ferroni, Nathanson and Larson. Kühne and Dinu spoke in the
afternoon, the former highlighting some advances in computation that considerably
extend our range to test conjectures about families of arrangements that realize
the same matroid.

Talks by Mühlherr, Feigin and Tran presented new developments related to
logarithmic derivations associated with arrangements derived from reflection ar-
rangements. In a related spirit, Cuntz reported on recent work showing that
restrictions of Weyl arrangements are precisely the generalized root systems of
Dimitrov and Fioresi.

The combinatorial theme continued with talks related to matroids and
Kazhdan–Lusztig–Stanley theory by Matherne and Coron, as well as an intro-
duction to Berget–Eur–Spink–Tseng’s notion of tautological bundles for matroids
by Eur. Shiyue Li talked about combinatorics of Chow rings of moduli spaces of
curves admitting an action by certain complex reflection groups.

The clustering approach helped form a coherent picture of latest developments,
allowing for expository styles and thus making the material accessible also for
people in the audience with different backgrounds and viewpoints. The discus-
sions that evolved during the week, and away from the lecture hall, approved this
rationale. The mix of participants led to some active discussions, informal pre-
sentations, and evening working groups. We are pleased to note that some new
collaborations were forged at the meeting. At the time of writing, a new preprint
by a participant has already appeared that credits this event for its origin: see [7].
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extended ab-indices. arXiv:2406.18932 [math.CO].



1618 Oberwolfach Report 29/2024

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Uli Walther in the “Simons Visiting Professors” pro-
gram at the MFO.



Arrangements, Matroids and Logarithmic Vector Fields 1619

Arrangements, Matroids and Logarithmic Vector Fields

Table of Contents

Daniel Bath
Bernstein–Sato polynomials of hyperplane arrangements in C3 . . . . . . . . 1621

Patricia Commins (joint with Benjamin Steinberg)
Symmetries of the face monoid of the braid arrangement and extensions
to left regular bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1623

Basile Coron
Operads and Kazhdan–Lusztig–Stanley theory . . . . . . . . . . . . . . . . . . . . . . . 1626

Michael Cuntz (joint with Bernhard Mühlherr)
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Generation of the derivation module of graphic hyperplane arrangements 1654

Anastasia Nathanson (joint with Robert Angarone and Victor Reiner)
Permutation action on Chow rings of matroids . . . . . . . . . . . . . . . . . . . . . . 1656

Kyoji Saito
Second homotopy classes for elliptic Weyl group orbit spaces? . . . . . . . . . 1659

Alexander I. Suciu
Topology and combinatorics of decomposable arrangements . . . . . . . . . . . . 1661

Tan Nhat Tran (joint with Takuro Abe)
Worpitzky-compatible sets and the freeness of arrangements between Shi
and Catalan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1665

Masahiko Yoshinaga
Non Kpπ, 1q arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1669



Arrangements, Matroids and Logarithmic Vector Fields 1621

Abstracts

Bernstein–Sato polynomials of hyperplane arrangements in C3

Daniel Bath

Given a reduced polynomial f P Crx1, . . . , xns (or analytic germ) the Bernstein–
Sato polynomial bf psq P Crss is an invariant that miraculously captures almost all
other singularity invariants of the hypersurface Vpfq Ď Cn. For example, the roots
Zpbfpsqq Ď C of the Bernstein–Sato polynomial: contain the jumping numbers of
f ; determine the log canonical threshold of f ; determine the minimal exponent
of f (which is a refinement of the log canonical threshold); contain the Hodge
spectrum; give, after exponentiation, the eigenvalues of the algebraic monodromy
of the Milnor fiber; their multiplicities inform the number of terms in the weight
filtration of DXfα´k (for k " 0q, etc. Moreover, Zpbfpsqq Ď Qă0 X p´n, 0q, the
Bernstein–Sato polynomial is always divisible by s`1, and f is smooth if and only
if bf psq “ s ` 1. We refer to [5] for a survey of basic properties of Bernstein–Sato
polynomials.

The major drawback of Bernstein–Sato polynomials is that they are basically
impossible to compute. The relative impossibility is true computationally and the-
oretically: computer algebra systems exist for the task, but mostly fail to termi-
nate; very few theorems exist computing Bernstein–Sato polynomials for families
of hypersurfaces.

There is one classical family where Zpbf psqq is known. We say f is positively
weighted homogeneous if there exists positive weights w “ tw1, . . . , wnu such that
the derivation E “ ř

1ďiďn wixiBxi
acts as E ‚ f “ pnon-zero scalarqf . In this

case, the weights induce a non-standard, but positive, grading on Crx1, . . . , xns
given by deg

w
pxiq “ wi, and E ‚ f “ deg

w
pfqf . Then we have the following

result, attributed to too many independent actors to attribute easily: if f has an
isolated singularity (at 0) and is positively weighted homogeneous, then

Zpbf psqq “ t´1u Y t
ď

t

´pt `
ř

wiq
deg

w
pfq | rR{Bf st ‰ 0u.

Here: R “ Crx1, . . . , xns, the Jacobian ideal Bf Ď R is the ideal generated by
the partial derivatives pBx1

‚ f, . . . , Bxn
‚ fq; and rR{Bf st denotes the homogeneous

degree t elements of R{Bf with respect to the aforementioned w-grading.
Outside of case of positively weighted homogeneous isolated singularities, not

much is known. For example, for hypersurfaces in C2 that are not positively
weighted homogeneous, the current belief is that no similarly conclusive formula
exists. Given this hopelessness, if one wants to find the next class of polyno-
mials where there is hope for a “nice” formula for Zpbf psqq, one arrives at the
following restrictions: f P R “ Crx1, x2, x3s is positively weighted homogeneous
locally everywhere. Positively weighted homogeneous locally everywhere means
that for all x P V pfq, there exists an analytic local coordinate system so that the
hypersurfaces can be, locally at x, defined by a positively weighted homogeneous
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polynomial. This class includes affine cones CpZq Ď C3 of hypersurfaces Z Ď P2

whose only singularities are isolated positively weighted homogeneous.
This class also includes hyperplane arrangements (unions of hyperplanes) in

C3. Since every hyperplane arrangement carries the numbers Zpbfpsqq one is com-
pelled to ask the canonical hyperplane arrangement question: are the zeroes of
the Bernstein–Sato polynomial of a hyperplane arrangement combinatorially de-
termined, i.e. are the a function of the intersection lattice? Walther [4] gave
the answer “no” and showed Ziegler’s pair of arrangements demonstrate the phe-
nomenon. These are two hyperplane arrangements of degree 9 with the same
intersection lattice which differ by the property of whether or not their six triple
points lie on a quadric. In the special case where the triple points lie on a quadric,
´2 ` 2

9
is a root of the Bernstein–Sato polynomial; in the generic case where the

triple points do not lie on a quadric, ´2` 2
9
is not a root. In fact, this is the only

difference between the Bernstein–Sato polynomials of the two arrangements.
For the sake of this talk, our main result is the following:

Theorem 1 [1]: Let f P R “ Crx1, x2, x3s define a central, essential, and in-
decomposable hyperplane arrangement. Let Z Ď P2 be its projectivization and
consider the combinatorially determined numbers

CombR “

»
– ď

3ďkď2degpfq´3

´k

degpfq

fi
fl Y

»
– ď

zPSingpZq

ď

2ďjď2mz´2

´j

mz

fi
fl ,

where mz is the number of hyperplanes of Z containing z. Then

Zpbf psqq “ CombR OR Zpbf psqq “ CombR Y t´2 ` 2

degpfqu.

Moreover, the following are equivalent:

(1) ´2 ` 2
degpfq P Zpbf psqq;

(2) rH0
m
R{Bf sdegpfq´1 ‰ 0;

(3) regR{Bf “ 2degpfq ´ 5;
(4) the hyperplane arrangement V pfq is not formal.

In particular, the non-combinatorial phenomenon of the roots of the Bernstein–
Sato polynomial exhibited by Ziegler’s pair is the only pathology possible. To
explain notation, for a R-module N , the zeroeth local cohomology with respect
to m “ px1, . . . , xnq is H0

m
N “ tn P N | mkn “ 0 for k " 0u; the ith local

cohomology Hi
m

is the ith-comology of the right derived functor H0
m
. Regularity

of a graded R-module N refers to Castelnuovo–Mumford regularity and equals
maxttpmaxdegHt

m
Nq`tu. And formality is a well-studied hyperplane arrangement

property we will not define for brevity’s sake.
Let us briefly describe the ideas involved in Theorem 1’s proof. The Bernstein–

Sato polynomial is defined as the monic minimal nonzero polynomial bf psq P Crss
satisfying the functional equation

bfpsqf s P DX rssf s`1
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where X “ Cn, DX is the sheaf of C-linear differential operators on X , DX rss
is a polynomial ring extension in a new indeterminant s, and DX acts on f s`k

by formal application of the chain rule. In other words, Crss ¨ bf psq equals the
Crss-annihilator of DX rssf s{DX rssf s`1.

It can be proved that

ZpannCrsspDX rssf s{DX rssf s`1q
“ ZpannCrssExt

n`1
DX rsspDX rssf s{DXrssf s`1, DX rssq.

In [2] we used this fact to compute Zpbf psqq when f is a free hyperplane arrange-
ment. Freeness helps because due to a result of Narváez Macarro [3], the above
Ext-module is isomorphic DXrssf´s´2{DXrssf´s´1.

We have invented a complex of DX rss-modules that resolves (in the sense it is
quasi-isomorphic to its terminal cohomology module)DX rssf s in many cases. This
includes the case of positively weighted homogeneous divisors in C3. We can use
this complex to compute the above Ext-module, affording a great deal of control
over Zpbf psqq. In particular, we find that non-vanishing degrees of H0

m
pR{Bfq

give roots of the Bernstein–Sato polynomial and, after removing these roots, the
leftovers are symmetric about ´1.

None of this requires f being a hyperplane arrangement. But when f defines
a hyperplane arrangement in C3, by earlier results of ours [2], Zpbf psqq X r´1, 0q
is combinatorially determined. Combining this with the data arising from the
Ext-computation yields (with much labor) the proof of Theorem 1.
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Symmetries of the face monoid of the braid arrangement and

extensions to left regular bands

Patricia Commins

(joint work with Benjamin Steinberg)

1. Introduction

The presentation corresponding to this abstract had two themes:

(1) The face monoid of the braid arrangement and its interactions with
Solomon’s descent algebra and the symmetric group, and

(2) Extensions to left regular band semigroups carrying symmetries.
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Part (1) was based on a recent preprint [6] of the speaker and will be summarized
in section 2. Perhaps surprisingly, the key tool [6] used to understand the interplay
between the various algebraic structures was the poset topology of the intersection
lattice of the braid arrangement. Hence, like many of the topics discussed at the
workshop, the desired algebraic information was a combinatorial property of the
braid arrangement, meaning it could be determined solely from its intersection
semilattice.

Part (2) was based on the ongoing thesis work of the speaker, part of which is
joint work with Benjamin Steinberg, and will be briefly summarized in section 3.
The face monoid of the brain arrangement is a canonical example of an important
type of semigroup called a left regular band (LRB) and its intersection lattice has
an important semigroup theoretic meaning in this setting. Many popular combina-
torial and geometric objects have associated LRB structures and thus intersection
semilattice analogues. We investigate what the “intersection semilattices” can say
about an LRB semigroup algebra under symmetry.

2. The face monoid of the braid arrangement

The faces of the braid arrangement An´1 (or more generally, any real central
hyperplane arrangement) form a monoid Fn via a product structure defined by
Tits in [13]. The associated monoid algebra – the face algebra CFn– is well-
studied. It was first popularized for its connections to Markov chains (see [2]),
and has since been studied extensively as an algebra whose representation theory
is governed by the combinatorics of the arrangement (see for example [1, 3, 11].
The symmetric group Sn acts by algebra automorphisms on the face algebra.

In [12], Solomon proved the C-span of the sums of permutations with the same
descent set is closed under multiplication. Hence, this space is actually a subalgebra
of the symmetric group algebra CSn called Solomon’s descent algebra and written
Σn. The representation theory of Σn has been studied extensively, but as a rich,
nonsemisimple algebra, many mysteries remain. In [3], Bidigare explains that Σn

and CFn are initimately linked via the symmetric group action on CFn:

Theorem 1 (Bidigare). The Sn-invariant subalgebra of the face algebra CFn is
antisomorphic to the descent algebra Σn.

Inspired by classical invariant theory, Theorem 1 provides an opportunity to
study new representations of Σn. Let G be a finite group acting on a finite di-
mensional C-algebra A. Invariant theory studies the G-invariant subalgebra AG as
well as certain generalizations. For instance, A decomposes into a direct sum of its
G-isotypic subspaces Aχ, one for each irreducible character χ of G. One standard
question is to study each isotypic subspace Aχ as a module over AG.

Bidigare’s Theorem implies each Sn-isotypic subspace of CFn is a right module

over Σn. In addition to studying the trivial isotypic subspace pCFnqSn , Bidigare
also studied the sign isotypic subspace. In [6], the speaker studies the following:

Question 2. What is the structure of each Sn-isotypic subspace of CFn as a right
module over Σn?
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We conclude this section with a very informal summary of the answer [6] gives
to Question 2. The irreducible representations of both Sn and Σn are indexed
by integer partitions of n; for partitions ν and λ of n, let χν and Mλ denote the
irreducible representations of Sn and Σn respectively.

Theorem 3. The χν-isotypic subspace of the face algebra CFn decomposes into
Σn-submodules Nν

µ labelled by integer partitions µ of n :

pCFnqχ
ν

“
à
µ$n

Nν
µ .

The C-dimensions of the Nν
µ have simple combinatorial formulas (see [6, Propo-

sition 3.3]) and the composition multiplicity of the Σn-simple Mλ within Nν
µ is

dim pχνq ¨ xχν , Fλ,µy ,
where the Fλ,µ’s are certain symmetric group representations whose Frobenius im-
ages can be described with an elegant generating function (see [6, Theorem 5.39]).

The composition multiplicities in the special cases ν “ n and µ “ 1n recover
work of Garsia–Reutenauer [7] on the Cartan invariants of the descent algebra
and Uyemura-Reyes [14] on certain shuffling representations, respectively. The
proof relies on interpreting Fλ,µ as (twisted) representations on the homology of
intervals in the intersection lattice of An´1.

3. Extensions to left regular bands

An LRB is a finite semigroup B for which (i) x2 “ x and (ii) xyx “ xy for all x, y P
B. Seminal work of Brown in [5] generalized the connections between hyperplane
face semigroups and Markov chains in [2] to all LRBs. There are LRBs associated
to many beloved combinatorial and geometric objects including matroids, oriented
matroids, complex hyperplane arrangements, CATp0q-cube complexes, CATp0q-
zonotopal complexes, flags of Fn

q , and more.
Each LRB has two associated posets coming from semigroup theory. These

posets encode important algebraic information about the LRB semigroup algebra
CB including whether CB has an identity element, the structure of the quiver of
CB, and projective resolutions of the simple CB-modules (see [8, 9, 10]). One of
the associated posets, which we write as ΛpBq, plays the role of the intersection
semilattice of hyperplane arrangements. As an example, when B is the LRB
associated to a matroid, ΛpBq is the lattice of flats of the matroid.

Many LRBs in the literature carry natural group actions. For such an LRB B

and group G, it is natural to consider the structure of the invariant subalgebra
pCBqG, and more generally as in section 2, the simultaneous action of G and
pCBqG on CB. See [4] which studies these questions for the free left regular band
and a q-analogue. Studying these questions for general LRBs is ongoing thesis
work of the speaker, joint with Benjamin Steinberg.

We quickly state two directions of this ongoing work as a sample. First, whether

the invariant subalgebra pCBqG is semisimple is based on the G-orbits of ΛpBq.
Additionally, there is a large class of LRBs studied in [9] called CW LRBs which
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have analogues of the zonotopes associated to real, central hyperplane arrange-
ments. For B a CW LRB, we explain the actions of G and pCBqG on CB in terms
of twisted G-representations on the cohomology of intervals in ΛpBq.
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Operads and Kazhdan–Lusztig–Stanley theory

Basile Coron

The theory of Kazhdan–Lusztig–Stanley polynomials was introduced by Stanley
[5] in an attempt to unify the story of Kazhdan–Lusztig polynomials associated to
Coxeter groups (Kazhdan-Lusztig [4]) and the story of g-polynomials associated to
polytopes (Stanley [3]) from a purely combinatorial standpoint. This framework
would later be seen to encompass similar “Kazhdan–Lusztig–like” polynomials as-
sociated to other combinatorial objects such as geometric lattices (Elias-Proudfoot-
Wakefield [2]). In this latter case the definition of the Kazhdan-Lusztig-Stanley
polynomial of a geometric lattice L revolves around the so-called characteristic
polynomial associated to L , which is the Poincaré series of the Orlik–Solomon
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algebra of L up to an alternating sign. If L is realised by a complex hyperplane
arrangement then the Orlik–Solomon algebra of L is isomorphic to the cohomol-
ogy of the complement of the hyperplane arrangement. In the particular case of
the braid arrangement the arrangement complements are known to carry an in-
teresting algebraic structure called an operad, which passes to the cohomology. A
first objective of this work is to extend this structure to all geometric lattices. We
call the extended structure a G L -operad, which is axiomatised as follow.

Definition 1. A G L -operad O is a collection tOpL q,L geometric latticeu of
vector spaces over a given field, together with morphisms

(1) µG,L : Opr0̂, Gsq b OprG, 1̂sq Ñ OpL q

for any element G in a geometric lattice L , such that for any pair G1 ă G2 of
elements in some geometric lattice L we have the equality

(2) µG2,L ˝ pµG1,r0̂,G2s b Idq “ µG1,L ˝ pId b µG2,rG1,1̂sq.

One can develop the ground theory of G L -operads, drawing inspiration from
the theory of associative algebras. In particular, one can define the notions of a
presentation of a G L -operad, Grobner bases for G L -operads and finally Koszul-
ness of G L -operad via Koszul complexes or bar constructions. We then show that
the G L -operad of Orlik–Solomon algebras is Koszul. Finally we show how one
can find a subcomplex of the bar construction of the latter operad which categori-
fies the Kazhdan–Lusztig–Stanley polynomials of geometric lattices. The latter
Koszulness result can then be used to show that this subcomplex has homology
concentrated in one degree. As an immediate consequence we retrieve the cele-
brated result that the coefficients of the KLS polynomials of geometric lattices are
positive (Braden-Huh-Matherne-Proudfoot-Wang [1]).

References

[1] T.Braden, J.Huh, J.P.Matherne, N.Proudfoot and B.Wang, Singular Hodge theory for com-
binatorial geometries, arXiv:2010.06088(2023).

[2] B.Elias, N.Proudfoot, and M.Wakefield, The Kazhdan–Lusztig polynomial of a matroid,
Advances in Mathematics (2016), 36–70.

[3] R. Stanley, Generalized H-Vectors, Intersection Cohomology of Toric Varieties, and Related
Results, Commutative Algebra and Combinatorics (1987), 187–214.

[4] D.Kazhdan and G.Lusztig, Representations of Coxeter groups and Hecke algebras, Inven-
tiones Mathematicae (1979), 165–184.

[5] R. Stanley, Subdivisions and local h-vectors, Journal of the American Mathematical Society
(1992), 805–851.



1628 Oberwolfach Report 29/2024

Root systems for restrictions of Weyl arrangements

Michael Cuntz

(joint work with Bernhard Mühlherr)

Dimitrov and Fioresi introduced an object that they call a generalized root system.
This is a finite set of vectors in a Euclidean space satisfying certain compatibili-
ties between angles and sums and differences of elements. They conjecture that
every generalized root system is equivalent to one associated to a restriction of a
Weyl arrangement. In this talk we prove the conjecture and provide a complete
classification of generalized root systems up to equivalence.

1. Generalized root systems

Definition 1 (Dimitrov, Fioresi [4]). Let pV, p¨, ¨qq be a finite dimensional eu-
clidean vector space, H ‰ R Ď V a finite subset. The pair pR, V q is called a
generalized root system (GRS) if V “ xRy and for all α, β P R:

pα, βq ă 0 ùñ α ` β P R,

pα, βq ą 0 ùñ α ´ β P R,

pα, βq “ 0 ùñ pα ` β P R ðñ α ´ β P Rq.
α P R is called a root, the rank of pR, V q is the dimension of V .

Lemma 2. Let pR, V q be a GRS. Then the following hold.

(1) R “ ´R.
(2) @0 ‰ α P R Dβ P R, k P N: Rα X R “ tjβ | j P Z,´k ď j ď ku.

β is called primitive, k is the multiplier of β.

Example 3. (i) If A is a Weyl arrangement with root system R, then R Y t0u is
a GRS.
(ii) Let B Ď ∆ be a subset of a simple system, X :“ xBy ď V , and π : V Ñ V {X
the projection. Then πpR Y t0uq is a GRS. The corresponding arrangement is the

restriction A XK

. Dimitrov and Fioresi call πpRY t0uq a quotient of a root system.

Problem: Classify all GRS.

2. Crystallographic arrangements

Definition 4 (C. [3]). Let A be a simplicial arrangement in V , R Ď V ˚ a finite
set such that A “ tkerα | α P Ru, and Rα X R “ t˘αu for all α P R. We call
pA , V,Rq a crystallographic arrangement if for all chambers K P K pA q:

(2.1) R Ď
ÿ

αPBK

Zα,

where

BK “ tα P R | @x P K : αpxq ě 0, xkerα X Ky “ kerαu
corresponds to the set of walls of K.
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Proposition 5. Let pR, V q be a GRS and A :“ tαK | α P Ru. We identify V

with V ˚ via p¨, ¨q. Then pA , V,W pRqq is a crystallographic arrangement where

W pRq :“ tα P R | 0 ‰ α is primitiveu
is the reduced root set of pR, V q.
Theorem 6 (C.-Heckenberger [1]). There are (up to equivalence) exactly three
families of irreducible crystallographic arrangements of rank at least 2:

(1) The family of rank two parametrized by triangulations of convex n-gons by
non-intersecting diagonals.

(2) For each rank r ą 2, arrangements of type Ar, Br, Cr and Dr, and a
further series of r ´ 1 arrangements.

(3) Another 74 “sporadic” arrangements of rank r, 3 ď r ď 8.

3. Classification

Strategy: Consider each of the three families.

3.1. Rank two. This was already performed in [4].

3.2. Series. Let n ě 3, V “ Rn, B “ pb1, . . . , bnq a basis of V .

An´1 :“ tbi ´ bj | 1 ď i ‰ j ď nu,
Dn :“ tεbi ` ε1bj | 1 ď i ‰ j ď n, ε, ε1 P t1,´1uu,
Bn :“ Dn Y tεbi | 1 ď i ď n, ε P t1,´1uu

and for J Ď t1, . . . , nu we put

XJ :“ t2εbj | j P J, ε P t1,´1uu,
DCJ

n :“ Dn Y XJ and BCJ
n :“ Bn Y XJ .

We put Cn :“ DC
t1,...,nu
n . Note that Bn “ BCH

n and Dn “ DCH
n .

Proposition 7. Let pR, V q be a GRS of rank greater than two. Then the following
hold.

(1) If W pRq “ An´1, then R “ An´1 Y t0u.
(2) If W pRq “ Bn, then DJ Ď t1, . . . , nu : R “ BCJ

n Y t0u.
(3) If W pRq “ DCJ

n , then R “ DCJ
n Y t0u.

Moreover, in each case, the GRS is equivalent to a quotient of a classic root system.

3.3. Sporadic arrangements. Write pr, iq for the crystallographic arrangement
of rank r with label i. The following situations occur:

(1) The GRS is uniquely determined by the crystallographic arrangemets.
(2) The axioms of a GRS would imply the existence of α ‰ 0 with pα, αq “ 0 on

the elements of this reduced root set; in this case there is no corresponding
GRS. Use @α, β P R : pα ` β R R and α ´ β R Rq ñ pα, βq “ 0.

(3) Particular cases: (3,6), (3,8), (3,9), (3,13), (3,20).

Note that the only sporadic case which does not uniquely determine a GRS is
p3, 6q; this is a restriction of the root systems of types E7 and E8.
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Theorem 8 (C.-Mühlherr [2]). Each irreducible GRS of rank at least 2 is equiv-
alent to a quotient of a classic root system of a finite Weyl group.

References

[1] M. Cuntz and I. Heckenberger, Finite Weyl groupoids, J. Reine Angew. Math. 702 (2015),
77–108.
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Kpπ, 1q abelian arrangements and supersolvable posets

Emanuele Delucchi

(joint work with Christin Bibby)

Let A be a family of subspaces of a topological space X . Its complement

MpA q :“ Xz Y A

is a topological space with deep connections to the incidence combinatorics of the
elements of A that, at since at least [7], is represented by the poset

PpA q :“
ď

AĎA

π0pXAq; L1 ď L2 in PpA q if L1 Ě L2

of connected components of intersections of subfamilies of A .
An arrangement is Kpπ, 1q if the homotopy groups πipMpA qq are trivial for i ą 1.

Consider a connected abelian Lie group G :“ Rp ˆ pS1qq, where p, q P N, and
let Γ » Zd be a finitely generated free abelian group. Every choice of a full-rank
subset ta1, . . . , anu Ď Γzt0u defines an abelian arrangement A “ tH1, . . . , Hnu
in Gd, where

Hi :“ ker
`
HompΓ,Gq Ñ G, φ ÞÑ φpaiq

˘
Ď HompΓ,Gq » Gd

Let A æ denote the (infinite, periodic) set of affine subspaces obtained by lifting
the elements of A to the universal cover Rdpp`qq of Gd. The coveringRdpp`qq Ñ Gd

restricts to a covering map MpA æq Ñ MpA q. The arrangement A is called linear

if G » C (p “ 2, q “ 0), toric if G » C˚ (p “ 1, q “ 1), elliptic if G » S1 ˆ S1

(p “ 0, q “ 2). We call A a Coxeter arrangement if a1, . . . , an P Zd is a set of
positive roots of a Coxeter system of type ABCD.

The Kpπ, 1q-problem is to decide whether the property of being Kpπ, 1q is de-
termined by PpA q. If A is a linear arrangement, this is an important classical
problem. Outside the linear case, we know the following.
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‚ Toric Coxeter arrangements are Kpπ, 1q. In this case A æ is the com-
plexification of the arrangement of reflecting hyperplanes of the associated
affine Coxeter system and MpA æq is Kpπ, 1q by a recent result of Salvetti
and Paolini [5]. Since MpA æq covers MpA q, A is Kpπ, 1q as well.

‚ Toric arrangements of “large type” are Kpπ, 1q. We call an abelian
arrangement A of “large type” if for every rank-two element x P PpA q
satisfies |PpA qďx| ą 4. If A is of large type, then so is A æ, and a result
by Hendricks [3] shows that A æ is Kpπ, 1q. Thus, as in the previous item,
A is Kpπ, 1q as well.

‚ Fiber-type toric and elliptic arrangements are Kpπ, 1q. Below we
define this class of arrangements and explain how it can be characterized
via the poset PpA q.

The notion of “fiber-type” linear arrangements was introduced by Falk and Randell
[2]. It is a much-studied class of hyperplane arrangements. In particular, Falk and
Randell proved that fiber-type linear arrangements are Kpπ, 1q.

Definition 1 (Fiber-type abelian arrangement, generalizing [2]). An abelian ar-
rangement A in Gd “ HompΓ,Gq is fiber-type if either d “ 1 or there exists a rank-
one split direct summand Γ1 Ď Γ and an abelian arrangement B in HompΓ{Γ1,Gq
such that B is fiber-type and the projection HompΓ,Gq Ñ HompΓ{Γ1,Gq restricts
to a fibration MpA q Ñ MpBq whose fibers are homeomorphic to G with finitely
many points removed.

Remark 2. By definition, if A is fiber-type there is a sequence of arrangements
A “ Ad, Ad´1, . . . , A1 with fibrations πi : MpAi`1q Ñ MpAiq for i “ 1, . . . , d´1.

Let A be either linear, toric or elliptic. In this case the homotopy type of G
with finitely many points removed (i.e., of the fiber of each πi) is that of a wedge of
circles. An iterated application of the homotopy long exact sequence of a fibration
then yields the following.

Corollary 3. Fiber-type linear, toric and elliptic arrangements are Kpπ, 1q.

We have an analogue of Terao’s fibration theorem [6], showing that the class of
fiber-type arrangements is indeed combinatorially determined. In order to state
the theorem, we need to define supersolvable posets. We refer, e.g., to [1, §2.1,
§2.2] for the relevant poset terminology, and we recall here the notions that are
not standard.

We call a poset P locally geometric if it is bounded-below, pure (i.e., every
maximal chain has the same, finite length) and every interval of P is a geometric
lattice. The length of such a poset is defined to be one less than the cardinality of
any maximal chain if P . Call 0̂ the unique minimal element of P and write ApP q
for the set of atoms of P , i.e., ApP q “ ta P P | 0̂ ď z ă a ñ z “ 0̂u.

An M-ideal of a locally geometric poset P is a pure, join-closed, order ideal
Q Ď P such that:

(1) a _ y ‰ H whenever y P Q and a P ApP qzApQq.
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(2) for every x P maxpP q, there is some y P maxpQq such that y is a modular
element in the geometric lattice Pďx.

An M-ideal is called a TM-ideal if item (1) is strengthened by requiring that
|a _ y| “ 1 whenever y P Q and a P ApP qzApQq.
Definition 4. A locally geometric poset P is supersolvable if there is a chain
0̂ “ Q0 Ă Q1 Ă ¨ ¨ ¨ Ă Qn “ P where each Qi is an M-ideal of Qi`1 of length i. If
each Qi is a TM-ideal of Qi we call P strictly supersolvable.

Remark 5 ([1, Theorem 5.2.1]). If P is strictly supersolvable, then the charac-
teristic polynomial of P factors linearly with positive integer roots.

Theorem 6 (Fibration theorem for abelian arrangements). Let A be an abelian
arrangement. Then A is fiber-type if and only if PpA q is supersolvable.

Remark 7. As a consequence of Remark 5 and [4, Theorem 7.8], the Poincaré
polynomial of linear and toric arrangements (in fact, any abelian arrangement with
p ą 0) factors completely with positive integer roots.

Remark 8. The fibrations πi associated with a fiber-type arrangement A as in
Remark 2 have trivial monodtromy if and only if PpA q is strictly supersolvable.
If this is the case, and A is toric, then a Lower Central Series formula holds for A

[1, Theorem 5.3.10], generalizing Falk and Randell’s result in the linear case [2].
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Algebraic degrees of phylogenetic varieties

Rodica Andreea Dinu

(joint work with Martin Vodička)

Phylogenetics is a science that models evolution. One central object in phylogenet-
ics is the phylogenetic trees and they have become of interest to mathematicians,
as relationships have been found between these objects and algebraic varieties.
Such a variety is represented by a phylogenetic tree and a model of evolution by
which we mean certain constraints on the probability of mutation. We consider
the probabilities of the different mutations as entries of a matrix, which we call
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a transition matrix. By fixing a particular type of transition matrix, we obtain a
probability distribution on the species’ states. We get an algebraic map by fixing
a model and then varying the entries of the transition matrices to obtain different
probability distributions. The Zariski closure of the image of this map is a variety,
that we call a phylogenetic variety, [6, 1]. We will assume that an abelian group
G acts transitively and freely on the set of states. A general group-based model
is a maximal subspace of transition matrices invariant under this group action. A
subspace of this space is called a group-based model, see [10, 11, 16, 2]. We point
out some known facts from the literature:

‚ (Toric varieties) The varieties coming from group-based models are toric,
so they contain an algebraic torus as a dense open subset [7, 15].

‚ (Normality) Not much is known about the normality of these varieties.
When G is one of Z2,Z2 ˆZ2,Z3, the corresponding phylogenetic varieties
for any tree are normal, see [16, 2]. On the other hand, when |G| “ 2k,
k ě 3 the corresponding phylogenetic variety for any tree is not normal,
see [2, Proposition 2.1]. However, when the tree is a tripod, there is a
complete classification for normal phylogenetic varieties, see [4].

‚ (Reduction to claw trees) The defining ideals of these varieties associated
to any phylogenetic tree can be seen as toric fiber products of the defining
ideals of the phylogenetic varieties associated to claw trees (i.e. trees
that have only one node and n leaves), see [14]. This fact shows that,
in some cases, one can reduce checking a property for the phylogenetic
variety associated to any phylogenetic tree to checking that property only
in the case when the tree is a claw tree, see [5] and [10, Lemma 5.1].
As the Gorenstein property behaves well with respect to special toric fiber
products, a classification of Gorenstein Fano phylogenetic varieties coming
from any G P tZ2,Z2 ˆ Z2,Z3u and any (trivalent) tree was obtained in
[2, Theorem 5.1]. When G “ Z2 ˆ Z2, the corresponding group-based
model is also called the 3-Kimura parameter model, and it is of the greatest
biological importance, as it corresponds to the action given by the Watson-
Crick complementarity.

‚ (Facet description) The vertex description of the polytopes defining the
group-based models is known, [1, 6, 10]. However, in general it is hard to
deduce the facet descriptopn from the vertex description, and, in fact, the
facet description is known only for small groups, [6, 9, 2].

We are interested in investigating the algebraic degrees of the phylogenetic va-
rieties coming from group-based models. We call them phylogenetic degrees. In
the literature, the phylogenetic degrees are known only for some computational
examples, see [12]. As already mentioned, these varieties are toric; hence, com-
puting the phylogenetic degrees relied on computing the volume of the associated
polytopes in the lattice spanned by the vertices of the polytope, see [8, Section 5.3].
We present here our main results obtained in [3].
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Theorem. The phylogenetic degree of the projective algebraic variety XZ2,n is
equal to

n!

2
´ 2n´2.

Theorem. The phylogenetic degree of the projective algebraic variety XZ2ˆZ2,n

is equal to

p3nq!
4 ¨ 6n ´ 3 ¨ 2n´3 ¨

nÿ

i“0

p´2qi
ˆ
n

i

˙ p3nq!
p2n ` iq! ` 3 ¨ 4n´2

ˆ
2n

n

˙
´ n ¨ 4n´1.

Theorem. The phylogenetic degree of the projective algebraic variety XZ3,n is
equal to

p2nq!
3 ¨ 2n ´ 2n`1 ¨ 3n´2 ` 3n´1 ¨ n.

For proving these results, we apply a combinatorial strategy: we regard the
corresponding polytopes as embedded in higher dimensional cubes and we cut off
parts that do not lie in our polytopes. As these parts often intersect each other,
we apply the principle of inclusion and exclusion to determine their volume and
the desired phylogenetic degrees.
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Toric vector bundles from hyperplane arrangements

Christopher Eur

According to [8, Introduction], the “most important algebraic geometric invariant
of [a hyperplane arrangement] A is the module DpA q [of the sheaf logarithmic
derivations].” Questions about the extent to which the combinatorics of the ar-
rangement determines properties of DpA q has led to rich developments. Here, we
describe another sheaf, in fact a toric vector bundle, associated with a hyperplane
arrangement. Like the sheaf of logarithmic derivations, questions about the extent
to which the combinatorics determine the properties of the vector bundle leads to
rich interaction between combinatorics and geometry.

Let E “ t1, . . . , nu be a finite set, and let Hi be the i-th coordinate hyperplane
txi “ 0u of CE . Let T “ pC˚qE be the algebraic torus, (i.e. the complement of
the union of coordinate hyperplanes), which acts on CE in the standard way. An
r-dimensional linear subspace L Ď CE that is not contained in a coordinate hy-
perplane defines a central and essential hyperplane arrangement A in L consisting
of the intersections LXHi. The arrangement complement, denoted L̊, is then the
intersection LXpC˚qE . Let M denote the associated matroid, whose set of bases is
tB Ď rns : the composition L ãÑ CE Ñ CB is an isomorphismu, where CE Ñ CB

is the coordinate projection.

We construct a T -equivariant vector bundle from the data L Ď CE , as follows.
First, let us describe the base space of the vector bundle. Let PT be the projec-
tivization of T , i.e. the quotient of T by its diagonal torus. Write t for the image
of t P T in PT . The base space will be the permutohedral variety Xn, which is the
closure of the image of the rational map PpCEq 99K śH‰SĎE PpCSq. We note two
properties of this variety:

‚ It is a smooth projective toric variety, whose open dense torus is PT . We
view Xn as a T -variety.

‚ It resolves the indeterminacy of the Cremona rational map PpCEq 99K

PpCEq defined by rx1 : . . . : xns ÞÑ rx´1
1 : . . . : x´1

n s. Let π1 and π2

be the two maps from Xn to PpCEq, and denote α and β in H2pXn;Zq
(respectively) to be the pullbacks of the hyperplane class.

Let CE “ Xn ˆ CE be a trivial rank n vector bundle on Xn.

Definition 1. For a linear subspace L Ď CE , define SL to be the subbundle of
CE whose fiber over a point t P PT Ă Xn is the linear subspace t´1L. Define QL

to be the quotient bundle CE{SL.
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These vector bundles were introduced in a joint work of the author with Berget,
Spink, and Tseng [1], and were named tautological bundles of the hyperplane
arrangement of L Ď CE . One may ask: which properties of the bundles SL and
QL depend only on the matroid M of L Ď CE?

Theorem 2. We highlight a few results from [1].

‚ The (T -equivariant) K-classes (and thus the Chern classes) of SL and QL

depend only on the matroid M. Moreover, for an arbitrary, not necessarily
realizable, matroid M, one can construct K-classes rSMs and rQMs.

‚ The bundle QL admits a global section whose vanishing locus is the won-
derful compactfication of the arrangement complement PL̊ introduced in
[3].

‚ Let
ş
Xn

: H˚pXn;Zq Ñ Z be the degree map provided by Poincaré duality

on Xn. Then, the Chern classes of the vector bundles satisfy

ÿ

i`j`k`ℓ“n´1

ˆż

ΣE

`
αiβjckpSLqcℓpQLq

˘˙
xiyjp´zqkwℓ

“ px ` yq´1py ` zqrpx ` wq|E|´rTM

´x ` y

y ` z
,
x ` y

x ` w

¯

where TM is the Tutte polynomial of the matroid M.

These results explain in a unified way several previous results concerning the
interaction between combinatorics and geometry in matroid theory. See [1, Sec-
tion 1] for details. Moreover, the framework of studying matroids through these
vector bundles as opened new doors: For instance, it has led to the development
of the K-theory of matroids [7], the stellahedral geometry of matroids [6], the
Gromov-Witten theory of matroids [9], and the tropical geometry of “type B”
generalizations of matroids known as delta-matroids [5].

Let us conclude by considering the sheaf cohomologies of SL and QL, or of the
bundles constructed from them (for example their tensor powers or duals). In
general, it is expected that the sheaf cohomologies may depend on more than the
matroid of L. Matt Larson has communicated to the author that due to deforma-
tion theory considerations, one should expect the cohomologies HipXn,Q

_
L bQLq

to depend on more than the matroid of L. On the other hand, we have the fol-
lowing.

Theorem 3. [4] Let c denote the number of coloops of the matroid M. Then, we
have the following:

‚ Hip
Źp

SLq “ 0 for all i ą 0 and p ě 0, and
ř

pě0 dimH0p
Źp

SLqup “
pu ` 1qc.

‚ HipŹp
QLq “ 0 for all i ą 0 and p ě 0, and

ř
pě0 dimH0pŹp

QLqup “
un´rTMp1, 1 ` u´1q.

‚ HipSymp
QLq “ 0 for all i ą 0 and p ě 0, and

ř
pě0 dimH0pSymp

QLqup

“ p 1
1´u

qn´c.
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Our discussion have been over the field C, but all the results so far are valid
over any algebraically closed field of arbitrary characteristic. With the restriction
to only characteristic zero fields, Berget and Fink showed that HipSλQLq “ 0 for
all i ą 0 and Sλ the Schur functor of a partition λ [2]. Whether this remains true
over positive characteristic, and other questions about sheaf cohomologies of the
tautological bundles remain open; see [4, Section 5] for a partial list.
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Quasi-invariants and free arrangements

Misha Feigin

Given a divisor X in an algebraic variety M one can define a sheaf of so-called
logarithmic vector fields which is a sheaf of modules over the sheaf of functions
OM . Logarithmic fields is a sheaf of vector fields on M which are tangential to
X at non-singular points of X . The divisor X is a Saito divisor if the the sheaf
of modules of logarithmic vector fields is locally free (see e.g. [1] and references
therein).

In the case of affine space M “ Cn one may be interested in a stronger property
of (global) freeness of logarithmic vector fields for a hypersurface X as a module
over polynomial functions on M . Saito established freeness of the discriminant
hypersurface of a finite Coxeter group W [2]. This case may also be treated at the
level of the original vector space V “ Cn where the group W acts by reflections
rather than in the orbit space M “ V {{W .

More generally, for an arrangement of hyperplanes given by the equation

F :“
ź

αPA

α “ 0,
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where A Ă V ˚ is a finite set of non-collinear covectors, define the space of loga-
rithmic vector fields

(1) D “ tL P ΓpTV q : F |LpF qu.
Here divisibility is understood in the space of polynomials R “ SpV ˚q – Crx1, . . . ,

xns, and D is an R–module. This module is free in the case when A is a positive
half of a root system of a finite Coxeter group [2]. If an R-module D is free then
the corresponding arrangement (1) is called free.

There is also a generalisation of free arrangements to the case of arrangements
with multiplicities [3]. In the case of reflection arrangements the correspondingW -
invariant vector fields are closely related to m-quasi-invariants of Coxeter groups
introduced and studied in [4, 5, 6], see [7] for such a relation.

An arrangement with defining polynomial

F “ Fr “
nź

i“1

xi

nź

iăj

mź

k“´m

pxr
i ´ qkxr

jq

was recently considered in [8] for r “ 1, where its interesting combinatorial prop-
erties were established. Its freeness was established in [9] for r “ 1 and generic
q P Cˆ. Moreover, the following vector fields form a free basis of the arrangement
F1 “ 0 [10]:

E “
nÿ

i“1

xiBi, Lk “
nÿ

i“1

xip
pkq
i Bi,

where Bi “ B
Bxi

, 0 ď k ď n ´ 2, and

p
pkq
i “ p

pkq
i px1, . . . , xnq “

nÿ

s“1

ż xs

xi

tkgptqmpqqdqt.

Here

gptqmpqq “ gptqgpq´1tq . . . gpq´m`1tq,

gptq “
nź

j“1

pt ´ xjq,

and ż xs

xi

hptqdqt :“ Hpxsq ´ Hpxiq,

where H is such a function that

Hpqxq ´ Hpxq
pq ´ 1qx “ hpxq.

These q-multplicative integral formulas for a free basis may be compared with
additive discrete integral formulas for coefficients of a basis of the extended Catalan
arrangement of type An´1 [11], and to the ordinary integral formulas in case of
type An´1 multiarrangement (see [11] and references therein).



Arrangements, Matroids and Logarithmic Vector Fields 1639

Let us now recall the definition of q-deformed quasi-invariants following [12].

Let ζ “ e
2πi
r , r P N. A polynomial p P SpV ˚q is called a q-deformed cyclotomic

m-quasi-invariant, m P N, if

ppx1, . . . , xi, . . . , xj , . . . , xnq ´ ppx1, . . . , ζ
sxj , . . . , ζ

´sxi, . . . , xnq
is divisible by

mź

k“´m

pxr
i ´ qkxr

jq

for all i ă j and s P N. Let Q
pqq
m be the space of such polynomials p. It was

established in [12] that Q
pqq
m is a free SpV ˚qSn -module for generic values of q.

Previous considerations may be unified into the following statement.

Theorem 1. The arrangement Fr “ 0, where r P N, is free except for possibly
finitely many values of q P Cˆ. A free basis is given by vector fields

E “
nÿ

i“1

xiBi, Lk “
nÿ

i“1

xip
pkq
i pxr

1, . . . , x
r
nqBi,

where 0 ď k ď n ´ 2. Polynomials p
pkq
i pxr

1, . . . , x
r
nq P Q

pqq
m .

Acknowledgements. I would like to thank Shuhei Tsujie for helpful and stimu-
lating discussions as well as for allowing to include results from [10].
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Chow functions for partially ordered sets

Luis Ferroni

(joint work with Jacob P. Matherne, Lorenzo Vecchi)

In 1992, Stanley initiated the study of Kazhdan–Lusztig–Stanley (KLS) functions
associated to a P -kernel in a partially ordered set. In this talk I will introduce
a new class of functions, called “Chow functions”, that interact in a remarkable
way with the KLS functions. The name stems from the case in which the poset P
is the lattice of flats of a matroid and the P -kernel is given by the characteristic
polynomial—in this scenario, the Chow function encodes the Hilbert–Poincaré se-
ries of the Chow ring of the matroid. Although in the full generality of posets these
Chow rings need not exist, a notable number of inequalities between the coeffi-
cients for Chow functions can be extracted from the KLS functions (and viceversa).
Among other features, our theory sets a common ground for approaching some
(a priori unrelated) conjectures in combinatorics, related to the real-rootedness
of polynomials associated to Gorenstein* posets, face lattices of polytopes, and
geometric lattices.
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Real matroid Schubert varieties, zonotopes, and virtual Weyl groups

Leo Jiang

(joint work with Yu Li)

Let V be a finite-dimensional vector space over a field k, and let A “ pαeqePE Ă V ˚

be a vector configuration indexed by a finite set E and spanning V ˚. The Schubert
variety of the arrangement A (or matroid Schubert variety) YA is the closure of V
under the embedding V Ñ RE Ă pRY t8uqE “ pP1qE defined by v ÞÑ pαepvqqePE .
Since its introduction by Ardila and Boocher [1], several recent advances in matroid
theory (in particular, the proof of the Dowling–Wilson top-heavy conjecture and
the development of Kazhdan–Lusztig theory for matroids) have been motivated
by studying the topology of this singular variety. However, many of the results use
tools from algebraic geometry with the requirement that k is algebraically closed.
In our work, we study matroid Schubert varieties over the field k “ R. We are
able to construct a cell complex which is a topological model for YA pRq.

Theorem 1. The real locus YA pRq of the matroid Schubert variety associated to
a real arrangement A is homeomorphic to the zonotope ZA “

ř
ePEr´1, 1sαe with

parallel faces identified.



Arrangements, Matroids and Logarithmic Vector Fields 1641

To understand the definition of this equivalence relation on the zonotope, recall
that the faces of ZA are in bijection with the covectors of A (see for example
[4, Proposition 2.2.2]). Explicitly, if C P t`,´, 0uE is a covector, then the corre-
sponding face is

ÿ

Cpeq“`

αe ´
ÿ

Cpeq“´

αe `
ÿ

Cpeq“0

r´1, 1sαe.

The faces associated to covectors with the same zero set are translates of each
other, and the relation is simply the identification of faces by these translations.

This quotient of the zonotope was considered by Bartholdi–Enriquez–Etingof–
Rains [2] in the special case that ZA is the permutohedron, and Ilin–Kamnitzer–
Li–Przytycki–Rybnikov [5] proved Theorem 1 for Weyl arrangements (when A is
the set of positive roots of a root system). Our proof of Theorem 1 is independent
of [5] and constructs an explicit homeomorphism (in fact, one for each homeo-
morphism R Ñ p´1, 1q) from the matroid Schubert variety to the quotient of the
zonotope. These maps send the strata in the affine paving of YA (first observed
by Proudfoot–Xu–Young [6]) to the cells of the combinatorial model.

In ongoing work, we use this combinatorial model to understand the topological
invariants of real matroid Schubert varieties. For example, it is straightforward to
obtain a presentation for the fundamental group of YA pRq using Theorem 1. When
A is the braid arrangement, the fundamental group π1pYA pRqq is a quotient of the
pure virtual braid group called (among other names) the pure flat braid group [2].
We show that when A is more generally a Coxeter arrangement, the fundamental
group π1pYA pRqq is the analogous quotient of the pure virtual Artin group recently
defined by Bellingeri–Paris–Thiel [3].
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From matroids to moduli spaces

Lukas Kühne

(joint work with Daniel Corey, Dante Luber, Piotr Pokora, Benjamin Schröter)

1. Matroids

Amatroid is a combinatorial abstraction of independence, e.g., linear independence
of vectors or spanning sets of edges in a graph. Matroids were introduced by
Whitney [6] and independently by Nakasawa, see [5]. They are a central object in
mathematics connecting multiple disciplines such as combinatorics, algebra, and
geometry. Of particular importance is the work of Adiprasito, Huh and Katz [1],
who demonstrate that matroids admit a Hodge theory originally stemming from
algebraic geometry.

Let V be a d-dimensional vector space, E a finite set, and pviqiPE a sequence of
spanning vectors of V . There are various ways to record the linear dependencies
among these vectors.

‚ Independent sets : I “ tA Ď E : pviqiPA are linearly independentu.
‚ Bases : B “ tA Ď E : pviqiPA is a basis of V u.
‚ Rank : rk : 2E Ñ ZZě0; rkpAq “ dim spanpvi : i P Aq.
‚ Flats : F “ tA Ď E : vj R spanpvi : i P Aq for all j R Au.
‚ Circuits : C “ tA Ď E : pviqiPA are minimally linearly dependentu.

The notions of independent sets, bases, rank, flats, and circuits may each be ax-
iomitized, each of which leads to a definition of a matroid. We favor the description
in terms of bases:

Definition 1. A matroid M consists of a finite set E and a non-empty collection
B Ă 2E that satisfies the basis exchange axiom: for each pair A,B of distinct
elements of B and x P AzB, there is a y P BzA such that Aztxu Y tyu is in B.

Consider a vector configuration whose elements are the columns of a r ˆn full-
rank matrix X . The matroid of this configuration, denoted MrXs, is the matroid
whose groundset is t1, 2, . . . , nu and its bases are the collections of r columns that
are of full rank. Equivalently, these columns can be regarded as normal vectors of
a hyperplane arrangement. In this interpretation, the bases are the collections of
columns of size r which intersect in the origin only. Let F be a field. A matroid M

is F-realizable if there is a matrixX with entries in the field F such that M – MrXs.

2. The moduli space of a matroid

The realization space or moduli space RpM;Fq is the space of all realizations over a
field F of a matroid M. It is an affine scheme that can be explicitly computed. An
implemented to compute the realization space is contained in a new OSCAR module
for matroids [3]. We showcase the computation in the following two examples.
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Example 2. Let’s consider the Fano matroid F:

julia> realization_space(fano_matroid())

The realization space is

[0 1 1 1 1 0 0]

[1 0 1 1 0 1 0]

[1 0 1 0 1 0 1]

in the integer ring

within the vanishing set of the ideal

2ZZ

The output shows a matrix which parametrizes the realizations. Because the
vanishing ideal is x2y, the matroid is realizable only over fields of characteristic 2.
Over any such field a realization of the Fano matroid is given by this matrix. And
every realization is projectively unique to this given one. Thus over every field of
characteristic 2, the realization space of this matroid is just one point

Example 3. Another prominent matroid is the Pappus matroid as its configu-
rations of rank two flats is a Pappus configuration. Let’s begin by computing its
realization space over C:

julia> RS = realization_space(pappus_matroid(), char=0)

The realization space is

[1 0 1 0 x2 x2 x2^2 1 0]

[0 1 1 0 1 1 -x1*x2 + x1 + x2^2 1 1]

[0 0 0 1 x2 x1 x1*x2 x1 x2]

in the Multivariate polynomial ring in 2 variables over QQ

avoiding the zero loci of the polynomials

RingElem[x1 - x2, x2, x1, x2 - 1, x1 + x2^2 - x2,

x1 - 1, x1*x2 - x1 - x2^2]

Thus the realization space is the affine space A2 over C with the seven specified
curves removed. One can obtain a specific realization of this matroid by picking a
point in that space that avoids these seven exceptional curves:

julia> realization(RS)

One realization is given by

[1 0 1 0 2 2 4 1 0]

[0 1 1 0 1 1 1 1 1]

[0 0 0 1 2 3 6 3 2]

in the Rational field

3. Application to freeness of line arrangements

Recently, Corey and Luber discovered explicit rank-3 matroids on 12 elements ex-
hibiting singularities in their realization spaces [2]. This phenomenon can be used
to construct novel Ziegler pairs, i.e., pairs of line arrangements having the same
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underlying matroid but their modules of logarithmic derivations have different
shapes of free resolutions[4].

Example 4. Let M be the rank-3 matroid with groundset t1, . . . , 12u whose non-
bases are given by

t1, 2, 3u, t1, 4, 5u, t1, 6, 10u, t2, 4, 6u, t2, 5, 8u, t2, 9, 10u, t3, 4, 7u,
t3, 5, 9u, t3, 6, 11u, t4, 10, 12u, t5, 6, 7u, t5, 11, 12u, t7, 8, 11u, t8, 9, 12u.

This matroid can be realized over the complex numbers and the coordinate ring
of RpM;Cq is isomorphic to the ring

R “ P´1Crx˘, y˘, z˘s
I

,

where P is a multiplicative semigroup with 32 generators, and I1 is the principal
ideal

I “ xpxy ` xz ´ x ´ y ´ z2 ` 1qpx ´ y ´ zqy.

Hence, RpM;Cq has two maximal components, C1 and C2, corresponding to xy `
xz´x´y´z2`1 “ 0 and x´y´z “ 0, respectively. The singular locus of RpM;Cq
is given by the one dimensional subvariety at the intersection. This subvariety is
a smooth conic that is not excluded in the multiplicative semigroup P .

We sample points on the maximal components and in the singular locus, com-
puting the corresponding module of logarithmic derivations and their free resolu-
tions. We found that the minimal degree of a derivation of line arrangements on
these two components is 8. In the singular locus however, we found that the mini-
mal degree of a derivation of line arrangements is 7. Thus, the algebraic structure
of these modules changes depending on the location in the realization space.
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sawa, Birkhäuser, Basel, 2009, pp. 68–88.

[6] H. Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math., 57 (1935),
pp. 509–533.



Arrangements, Matroids and Logarithmic Vector Fields 1645

Augmented geometry of matroids

Matt Larson

(joint work with Christopher Eur, June Huh)

In recent years, “augmented” versions of several geometric constructions related
to hyperplane arrangements and matroids have been introduced in the literature.
These constructions typically involve replacing the projectivization of a vector
space by its projective completion. For example, suppose that tL1, . . . , Lmu is a
subspace arrangement in a vector space V of dimension r. For simplicity, assume
that XLi “ 0 and that each Li is proper. We allow Li to be contained in Lj. Let
W be the closure of the image of the rational map

PL 99K

ź

i

PpL{Liq.

Note that the dimension of W is r ´ 1. Then the homology class of W is difficult
to describe, see [6].

Let W be the closure of the image of the rational map

PpL ‘ Cq 99K
ź

i

PppL{Liq ‘ Cq.

Note that the dimension of W is r. Then the homology class of W admits a
simple description, as follows. The polymatroid rk: 2rms Ñ Zě0 associated to the
subspace arrangement is given by

rkpSq “ codim

˜č

iPS

Li

¸
.

A vector pa1, . . . , amq P Zm
ě0 with

ř
ai “ r is a basis of this polymatroid if, for

all S Ď rms, we have
ř

iPS ai ď rkpSq. By Poincaré duality, we can determine the
homology class of W by intersecting it with any monomials in hyperplane classes
H1, . . . , Hm of the factors. We have

(1)

ż
rW s X Ha1

1 ¨ ¨ ¨Ham
m “

#
1 pa1, . . . amq is a basis

0 otherwise.

I.e., the homology class is given by the bases of the polymatroid associated to the
subspace arrangement. Note that, because the dimension of W is r´1, there isn’t
even an obvious guess for the homology class of W .

The study of these problems can be reduced to the case of hyperplane arrange-
ment by choosing codimpLiq-many generic hyperplanes containing each Li; we
then obtain a hyperplane arrangement which contains our subspace arrangement
as some of the flats (see [2, Section 2]). Likewise, we can obtain many interesting
examples of subspace arrangements by taking the flats of a hyperplane arrange-
ment. In the case of a subspace arrangement arising in this fashion, the variety
W is called the wonderful variety of the hyperplane arrangement and the variety
W is called the augmented wonderful variety. Then (1) is a computation in the
cohomology ring of the augmented wonderful variety. This ring only depends on
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the matroid M associated to the subspace arrangement, and is called the aug-
mented Chow ring ApMq. It was introduced in [1] for unrelated reasons. It has
the presentation

ApMq “ ZrhF sF nonempty flat of M

pphF ´ hF_GqphG ´ hF_Gqq ` ph2
a, hahF ´ hahF_a : a atomq ,

where F and G vary over the nonempty flats of M, and _ is the join in the lattice
of flats of M. Then ApMq is equipped with a degree map

ş
, and (1) is generalized

by the following computation:

ż
hF1

¨ ¨ ¨hFr
“

#
1 for all S Ď rrs, |S| ď rkpYiPSFiq
0 otherwise.

This formula was proved in [4]. While the proof in [4] is conceptual, it uses many
tools from [3]. A simple combinatorial argument, using only definition of ApMq,
was given in [5].
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Multimatroids and rational curves with cyclic action

Shiyue Li

(joint work with Emily Clader, Chiara Damiolini, Christopher Eur, Daoji Huang,
Rohini Ramadas)

I will share with you a connection between multimatroids and moduli spaces of
rational curves with cyclic action. Multimatroids are generalizations of matroids
and delta-matroids that naturally arise from topological graph theory. The main
result is a combinatorial formula for certain intersection numbers on the moduli
space by relating to the volumes of independence polytopal complexes of multi-
matroids. Based on joint works with Emily Clader, Chiara Damiolini, Chris Eur,
Daoji Huang, and Rohini Ramadas.
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Poincaré polynomials associated to geometric lattices

Jacob P. Matherne

(joint work with Tom Braden, Luis Ferroni, June Huh, Nicholas Proudfoot,
Matthew Stevens, Lorenzo Vecchi, Botong Wang)

A number of graded objects associated to a matroid have played a recent role in
the resolution of long-standing conjectures in the field of matroid theory. The goal
of this report is to survey what is known about their Poincaré polynomials.

To a (loopless) matroid M, one may associate the following graded objects:

(1) the intersection cohomology module IHpMq [3],
(2) its “stalk at the empty flat” IHpMqH [3],
(3) the augmented Chow ring CHpMq [4], and
(4) the Chow ring CHpMq [13].

Each of these objects has a topological interpretation when the matroid M is
realizable by a collection of vectors in a complex vector space V . These interpreta-
tions hinge on a certain singular projective variety YA , introduced in [1] and now
called the matroid Schubert variety, that is constructed from the vector space V .
It gets its name from the analogous role it plays in the Kazhdan–Lusztig theory
of matroids [8] that the classical Schubert varieties play in the Kazhdan–Lusztig
theory of Coxeter groups [18, 19].

The matroid Schubert variety YA has a canonical resolution of singularities

πA : rYA Ñ YA , where rYA is the so-called augmented wonderful variety. In the
realizable case, the respective graded objects in the numbered list above are iso-
morphic (with a degree-doubling isomorphism) to the following topological objects:

(1) the intersection cohomology IHpYA q of YA ,
(2) the local intersection cohomology IHp8,...,8qpYA q of YA at the point

p8, . . . ,8q P YA ,

(3) the cohomology HprYA q of rYA , and
(4) the cohomology Hpπ´1

A
p8, . . . ,8qq of the fiber π´1

A
p8, . . . ,8q.

Although most matroids are not realizable [22], the miracle is that arbitrary
matroids behave as if they were geometric objects. Indeed, IHpMq, CHpMq, and
CHpMq satisfy the Kähler package [3, 2, 4], a trio of important results consisting
of Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann relations.
The Heron–Rota–Welsh conjecture on the log-concavity of the characteristic poly-
nomial of M [17, 25, 27] follows from the Hodge–Riemann relations for CHpMq,
and both the Dowling–Wilson top-heavy conjecture on the shape of the lattice of
flats of M [6, 7] and the nonnegativity of the Kazhdan–Lusztig and Z-polynomials
of a matroid [8, 15] (see the bulleted list below) follow from the hard Lefschetz
theorem for IHpMq.

There has been an industry of recent interest in studying the respective Poincaré
polynomials of the graded objects in the first bulleted list:

(1) the Z-polynomial ZMptq of a matroid M [23],
(2) the Kazhdan–Lusztig polynomial PMptq of a matroid M [8],
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(3) the augmented Chow polynomial HMptq of a matroid M [9], and
(4) the Chow polynomial H

M
ptq of a matroid M [9].

Conjecture 1 ([23, 15, 26, 11]). The polynomials ZMptq, PMptq, HMptq, and H
M

ptq
are real-rooted for every matroid M.

Real-rootedness is the strictest condition in a sequence of implications involving
interesting combinatorial patterns for single-variable polynomials whose coefficient
sequence consists of nonnegative integers and has no internal zeros:

γ-positivity1

real-rootedness log-concavity unimodality

The polynomials PMptq and ZMptq are real-rooted in the following cases: when
M “ Ud,n is uniform of rank d on n elements for all d ě 1 and all 2 ď n ´ d ď 15
[14]; when M is a fan, wheel, or whirl matroid [20]; and when M is a sparse paving
matroid with at most 30 elements [12]. Log-concavity of PMptq holds for all uniform
matroids [28].

Poincaré duality and the hard Lefschetz theorem for CHpMq and CHpMq imply
unimodality for H

M
ptq and HMptq, and the same theorems for IHpMq imply uni-

modality for ZMptq. In [9], the semi-small decomposition of CHpMq and CHpMq
from [4] are used to prove the γ-positivity of HMptq and HMptq; and, a result of
Braden–Vysogorets [5] is used to prove γ-positivity for ZMptq.2

Whereas PMptq and ZMptq were defined recursively in [8, 23], and their inter-
pretation as Poincaré polynomials was established later [3], the story for HMptq
and H

M
ptq is the reverse. In [9] a recursive formula was given for the Poincaré

polynomials HMptq and HMptq, paralleling the definition of PMptq and ZMptq. This
formula leads to several consequences [9]: HMptq and H

M
ptq are real-rooted for M

sparse paving with at most 40 elements; HMptq is real-rooted for M uniform since
it is an example of a generalized binomial Eulerian polynomial of Haglund–Zhang
[16]; and HMptq (respectively H

M
ptq) is real-rooted for allM with rank less than five

(respectively six) by using the fact that CHpMq and CHpMq are Koszul algebras
[21] together with results from [24].
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Combinatorial models of fibrations for hyperplane arrangements and

oriented matroids

Paul Mücksch

(joint work with Masahiko Yoshinaga)

Let A be a hyperplane arrangement in the real vector space V “ Rℓ with defining
linear forms αi P V ˚ pi “ 1, . . . , nq, i.e. A “ tkerpαiq | i “ 1, . . . , nu, Q “ śn

i“1 αi

its defining polynomial and LpA q the intersection lattice of A . A fundamental
problem is to decide when the complexified complement XpA q “ CℓzQ´1p0q is a
Kpπ, 1q-space.

For special classes, such as the braid arrangements or more generally super-
solvable arrangements, this can be achieved by utilizing fibrations which connect
complements of arrangements of different ranks. The fundamental result due to
Falk and Randell [5] and Terao [18] states that the natural projection of the am-
bient complex space of A to the quotient space V {X by a modular intersection
X P LpA q (i.e. X ` Y P LpA q for all Y P LpA q) of corank one, restricted to the
complement space is a fiber bundle map, its base space the complement of the
localization AX{X “ tH{X | H P A and X Ď Hu and fiber a punctured complex
plane Cztz1, . . . , zku. An arrangement is supersolvable if there is a maximal flag
X0 ă X1 ă . . . ă Xℓ Ď LpA q of modular elements. A successive application
of Falk, Randell and Terao’s theorem and the long exact sequences of homotopy
groups associated to the fibrations then yields asphericity.

Another seminal positive results regarding the Kpπ, 1q-problem is Deligne’s the-
orem [4], stating that complexified real simplicial arrangements are aspherical.

A finer combinatorial invariant of a real arrangement A is its oriented matroid
which is encoded by the subposet L pA q :“ tpsgnpαipvq | i “ 1, . . . , nq | v P
V qu Ď t0,`,´un where the partial order is given component-wise by declaring
0 ă `, 0 ă ´ and ` and ´ to be incomparable. An abstract oriented matroid
M “ pE,L q consists of a finite ground set E and a subposet L Ď t0,`,´uE
subject to certain axioms mimicking the geometry of the realizable case, see [2].

Subsequently, Salvetti [15] introduced a regular cell complex modeling the ho-
motopy type of XpA q. Gel’fand and Rybnikov [7] realized that the construction
of the Salvetti complex S pA q only depends on the oriented matroid associated to
the real arrangement. This in turn led to an extension of Deligne’s result to ori-
ented matroids in general, i.e. the Salvetti complex of an oriented matroid whose
covector complex yields a simplicial cell decomposition of the sphere is indeed
aspherical, independently established by Cordovil [3] and Salvetti [16].

The natural question appears whether the “real” version of Falk, Randell and
Terao’s theorem extends to all oriented matroids as does Deligne’s theorem.

In recent work [9], a complete answer is given in terms of combinatorial models
of fibrations for Salvetti complexes of oriented matroids. The following notion is
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motivated by Quillen’s seminal Theorem B from the homotopy theory of categories
[14].

Definition 1 ([9, Def. 5.2]). Let f : P Ñ Q be a poset map such that for all
y ď y1 py, y1 P Qq the inclusion pf Ó yq :“ f´1pQďyq ãÑ pf Ó y1q is a homotopy
equivalence. Then f is called a poset quasi-fibration.

The important property of a poset quasi-fibration f : P Ñ Q implied by
Quillen’s Theorem B is that the homotopy fiber of the realization of f (i.e. or-
der complex and geometric realization) is homotopy equivalent to the realization
of the poset pf Ó yq for any y P Q. In particular, a poset quasi-fibration yields
a long exact sequence of homotopy groups involving the realizations of P,Q and
pf Ó yq analogous to a topological fibration.

Regarding a general oriented matroid M “ pE,L q on a ground set E given by
the poset L Ď t0,`,´uE, we denote its geometric lattice by LpM q “ tzpσq “ te P
E | σe “ 0u | σ P L u Ď 2E. We have a similar notion of modularity for flats X P L.
Further, for X P LpA q we have a natural projection map ρX : L Ñ LX “ tσ|X |
σ P L u, σ ÞÑ σ|X which extends to a map rρX : S Ñ SX , where S “ S pM q is
the Salvetti-complex of the oriented matroid M and SX “ S pMXq the complex
of the localization MX “ pX,LXq. The main result of [9] is as follows.

Theorem 2 ([9, Thm. 6.4]). Let X P LpM q be a modular flat of corank 1. Then
the map rρX : S Ñ SX is a poset quasi-fibration. For a P SX the poset fiber
prρX Ó aq is homotopy equivalent to a wedge of circles S1 _ . . ._S1 (|EzX | circles).

As a direct consequence, applying the long exact homotopy sequence, we obtain
the following.

Theorem 3 ([9, Thm. 1.1]). The Salvetti complex of a supersolvable oriented
matroid is aspherical.

A further important topological object associated to an arrangement is its Mil-
nor fibration f : XpA q Ñ Cˆ, z ÞÑ Qpzq which is a smooth fibration due to Milnor
[8], and the fiber F pA q :“ f´1p1q is called the Milnor fiber of A . In contrast
to the complement XpA q, whose cohomology algebra H‚pXpA q,Zq is completely
described in terms of the poset LpA q thanks to Orlik and Solomon’s fundamental
result [12], it is still open if the first Betti number b1pF pA qq of the Milnor fiber
only depends on LpA q, cf. [17]. But there are a lot of partial results due to many
authors; the strongest up to date on this problem are due to Papadima and Su-
ciu [13], giving a formula for b1pF pA qq if either |AX | ď 3 for all codimension 2
intersections X P LpA q or 3 ∤ |AX | for all X of codimension 2.

Regarding the homotopy type of F pA q, a complete description was given for
generic arrangements by Orlik and Randell [11] and very recently by Brady, Falk
and Watt [1] for real reflection arrangements.

In joint work in progress with Masahiko Yoshinaga [10], we describe a con-
crete combinatorial model for the Milnor fibration of any complexified real ar-
rangement. Our construction works more generally for oriented matroids and
yields a “combinatorial Milnor fibration” for any oriented matroid in terms of a
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poset quasi-fibration. The key is to consider a certain natural subdivision of the
Salvetti-complex which we call the (tope-)rank subdivision rksdS . It supports a

combinatorial map rQ : rksdS Ñ C » S1 to the Salvetti-complex C of the rank 1
arrangement modeling the circle.

Our main results in [10] are as follows.

Theorem 4. The complex rksdS is PL-homeomorphic to S . In particular, if
S “ S pA q is the Salvetti-complex of a real arrangement A , then rksdS is
homotopy equivalent to the complexified complement XpA q.

Theorem 5. The map rQ : rksdS Ñ C is a poset quasi-fibration.

Theorem 6. There is a (homotopy) commutative square

rksdS pA q C

XpA q Cˆ,

rQ

» »

f

where the vertical maps are homotopy equivalences.

We can now define the combinatorial Milnor fiber of an oriented matroid M as
rF pM q :“ rQ´1pyq where y is a vertex of the circle complex C . Then, Theorem 6
and some standard results from homotopy theory yield the following.

Theorem 7. The combinatorial Milnor fiber rF pM q is homotopy equivalent to the
geometric Milnor fiber F pA q.

rksdS

p´, ´q p`, `q

C

rQ

rF “ rQ´1pp`, `qq

» S1 _ . . . _ S1 » F

ãÑ

Figure 1. The combinatorial Milnor fibration on the tope-rank
subdivision of the Salvetti complex, and its fiber, homotopy equiv-
alent to a wedge of 4 circles, consistent with the geometric Milnor
fiber.
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We illustrate this central result with the following example.

Example 8. Let A be the arrangement in R2 with defining polynomial Q “
xypx ´ yq. Then one can see that the Milnor fiber F “ Q´1p1q is a 3-punctured
torus which is homotopy equivalent to a wedge of 4 circles. Figure 1 displays
the tope-rank subdivision rksdS of S pA q and the combinatorial Milnor fibration

map rQ where the preimages of cells in C are colored accordingly. We see that

the combinatorial Milnor fiber rF is homotopy equivalent to a wedge of 4 circles as
well, in accordance with Theorem 7.

In conclusion, our regular CW -complex rF respectively its face poset can be
explicitly described in terms of the combinatorial data given by an oriented ma-
troids. Moreover, it can easily be implemented e.g. in the computer algebra system
GAP [6] to compute (co)homology or other invariants of the Milnor fiber for exam-
ples. We thus obtain a new tool to study the behavior of Milnor fiber invariants,
in particular in view of the several long standing open questions regarding their
combinatorial nature.
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Generation of the derivation module of graphic

hyperplane arrangements

Leonie Mühlherr

A hyperplane arrangement A can be studied through various lenses, e.g., its com-
binatorial structure given by the intersection lattice LpA q or its algebraic side by
analysing the module of logarithmic derivations DpA q.

We are interested in freeness of graphic hyperplane arrangements:

Definition 1. Let K be a field and let V “ Kl. Let x1, .., xl be a basis for the dual
space V ˚. Given a simple, undirected graph G “ pV,Eq, define an arrangement
A pGq by

A “ tkerpxi ´ xjq|ti, ju P Eu

In this case we are able to apply results from graph theory for our characteri-
zations. Moreover, they are specific examples of Weyl sub-arrangements.

Definition 2 (Saito ’79). A K-linear map θ : S Ñ S is a derivation if for f, g P S:

θpf ¨ gq “ f ¨ θpgq ` g ¨ θpfq.

Let DerKpSq be the S-module of derivations of S.
Define an S-submodule of DerKpSq, called the module of A -derivations, by

DpA q “ tθ P DerKpSq | θpαHq P αHS for all H P A u.

The arrangement A is called free if DpA q is a free S-module.
A well-established result by Stanley, Edelman and Reiner ([3]) equates the class

of chordal graphs with the class of free graphic hyperplane arrangements. More
recently, Tran and Tsujie ([5]) proved that the subgraph class of strongly chordal
graphs corresponds to the class of MAT-free arrangements. A result of a joint
work with Abe, Kühne and Mücksch is that the class of weakly chordal graphs
correspond to graphic arrangements with projective dimension 1, the latter being
defined again as those with derivation module of projective dimension 1 (see [1]).

This last proof partially relied on finding explicit generators for DpA pGqq for G
so-called k-antiholes. The structure of the generators is closely related to the con-
nectivity of the antiholes and their separators and with a focus on these properties,
we can generalize the concept to all graphs.
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1. Graph theory background

Based on [2], we first define a few graph theoretical objects that will be important
going forward, starting with the basic notion of a graph:

Definition 3. A simple graph G on a set V is a tuple pV,Eq, such that E Ď
`
V
2

˘
.

E is the set of edges connecting the vertices in V .

The graph GC “
´
V,

`
V
2

˘
zE

¯
is called the complement graph to G.

The complement of a cycle Ck, k ě 5 is called an antihole.

For sets A,B in V pGq we say that X Ď V pGq separates A and B if every pA´Bq-
path in G contains a vertex in X . A set of vertices X separates two vertices a, b
if it separates the sets tau, tbu, but a, b R X and we say that X separates G if it
separates some two vertices a, b P V pGq. X is called a (a,b)-separator or separator.

Definition 4. A set T Ă V pGq is called a minimal pa, bq-separator if it is an
pa, bq-separator and no proper subset of X separates a and b.

T is called a minimal separator of G if it is a minimal pa, bq-separator for some
vertices a, b.

Closely connected to the notion of separators is the connectivity of a graph:

Definition 5. A graph G is called k-connected, k P N if |V pGq| ą k and GzX is
connected for every X Ă V pGq with |X | ă k.

Stated differently, no two vertices in a k-connected graph are separated by fewer
than k other vertices.

The greatest integer, such that G is k-connected is called the connectivity of G,
denoted κpGq. For instance, the connectivity of the complete graph is n ´ 1 for
|V pGq| “ n.

2. Main characters

The motivation for the definition of these new types of generators is the following
result of a previous work (see [1]):

Theorem 6 (Abe, Kühne, Mücksch, M. ’23).

DpA pCC
ℓ qq “ xθ0, . . . , θℓ´3, ϕ1, . . . , ϕℓyS,

where

θi :“
ℓÿ

j“1

xi
jBxj

pi ě 0q and ϕi :“
ź

jPrℓszti´1,i,i`1u

pxi ´ xjqBxi
.

The connectivity of the l-antihole is l ´ 3. The sets rℓszti ´ 1, i, i ` 1u are its
minimal separators.
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The following definition generalizes this:

Definition 7. Let T be a separator of G and C a connected component of GzT .
We can define a derivation of DpA pGqq for each component by

θTC “
ÿ

jPC

ź

tPT

pxj ´ xtq ¨ Bxj
.

These derivations are elements of the derivation module for all separators T and
their components.

The following of our results establish the relations between the graph theoretical
properties mentioned in the previous section and the structure of the module of
logarithmic A -derivations.

Proposition 8 (M., ’24`). Let G be a k-connected graph on l vertices, then
à
iăk

DpA pGqqi “
à
iăk

DpA pKlqqi

That is, the derivations of polynomial degree smaller than k of DpA pGqq coincide
with the ones from the braid arrangement.

Theorem 9 (M., ’24`). Let G be a graph and A pGq the associated graphic hyper-
plane arrangement. Then DpA pGqq can be generated using only θ0, . . . , θκpGq and
separator-based A -derivations for a specific set of separators and components.
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Permutation action on Chow rings of matroids

Anastasia Nathanson

(joint work with Robert Angarone and Victor Reiner)

In groundbreaking work, Adiprasito, Huh and Katz [1] affirmed long-standing con-
jectures of Rota–Heron–Welsh and Mason about vectors and matroids via a new
methodology. Their work employed a certain graded Z-algebra A “

Àr
k“0 A

k

called the Chow ring for a matroid M of rank r ` 1, introduced by Feichtner and
Yuzvinsky [2] as a generalization of the Chow ring of DeConcini and Procesi’s
wonderful compactifications for hyperplane arrangement complements. A remark-
able integral Gröbner basis result proven by Feichtner and Yuzvinsky [2, Thm. 2]
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shows that each homogeneous component of A is free abelian: Ak – Zak for a
positive integer sequence pa0, a1, . . . , arq.

A key step in [1] shows the sequence pa0, a1, . . . , arq is not only symmetric and
unimodal, that is,

ak “ ar´k for r ď k{2(1)

a0 ď a1 ď ¨ ¨ ¨ ď at r
2

u “ ar r
2

s ě ¨ ¨ ¨ ě ar´1 ě ar,(2)

but in fact proves that A enjoys a trio of properties referred to as the Kähler
package The first of these properties is Poincaré duality, proving (1) via a natural
Z-module isomorphism Ar´k – HomZpAk,Zq. The second property, called the
Hard Lefschetz Theorem, shows that after tensoring A over Z with R to obtain
AR “ À

k“0 A
k
R
, one can find Lefschetz elements ω in A1

R
such that multiplication

by ωr´2k gives R-linear isomorphisms Ak
R

Ñ Ar´k
R

for k ď r
2
. In particular,

multiplication by ω maps Ak
R

Ñ Ak`1
R

injectively for k ă r
2
, strengthening the

unimodality assertion (2).
Feichtner and Yuzvinsky defined the Chow ring ApLM ,G q for any choice of a

building set G inside the lattice of flats LM for the matroid M and gave their
integral Gröbner basis presentation in that context. While the results of [1] were

proven for the maximal building set G “ LM zt0̂u, the Chow ring satisfies the
Kähler package for any building set (and even for Chow rings of polymatroids), as
shown by Pagaria and Pezzoli [3, Thm. 4.21].

We are interested in how the Poincaré duality and Hard Lefschetz properties
interact with symmetry. We consider any subgroup G of the group AutpMq of
symmetries of the matroid M , assuming that the building set G is also setwise
G-stable. We observe that in this situation, G acts via graded Z-algebra automor-
phisms on ApLM ,G q, giving ZG-module structures on each Ak, and RG-module
structures on each Ak

R
. One can also check that Ar – Z with trivial G-action,

under one additional technical assumption, that G contains the ground set of the
matroid. From this, the Poincaré duality pairing immediately gives rise to a ZG-
module isomorphism

(3) Ar´k – HomZpAk,Zq

where g in G acts on ϕ in HomZpAk,Zq via ϕ ÞÑ ϕ˝g´1; and Ar´k – HomRpAk,Rq
as RG-modules. Furthermore, we observe that one can pick a Lefschetz element
ω which is G-fixed, giving RG-module isomorphisms and injections

Ak
R

„ÝÑ Ar´k
R

for r ď k

2

a ÞÝÑ a ¨ ωr´2k(4)

Ak
R ãÑ Ak`1

R
for r ă k

2
a ÞÝÑ a ¨ ω.(5)
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Our goal is to use Feichtner and Yuzvinsky’s Gröbner basis result, along with
some combinatorics of nested sets , to prove a combinatorial strengthening of the
isomorphisms and injections (3), (4), (5). The building set G distinguishes certain
subsets N “ tF1, . . . , Fℓu Ă G called G -nested sets. To each flat F in the G -nested
set N , we need a crucial quantity

(6) mN pF q :“ rkpF q ´ rkp_NăF q
where _NăF denotes the lattice join in LM of all elements of N strictly below
F . Then the Chow ring ApLM ,G q of M with respect to the building set G is
presented as a quotient of the polynomial ring S :“ ZrxF s having one variable xF

for each flat F in G . The presentation takes the form ApLM ,G q :“ S{pI`Jq where
I, J are certain ideals of S. Feichtner and Yuzvinsky exhibited a Gröbner basis for
I ` J that leads to the following standard monomial Z-basis for ApLM ,G q, which
we will call the FY-monomials of M :

FY :“ txm1

F1
¨ ¨ ¨xmℓ

Fℓ
: N :“ tF1, ¨ ¨ ¨ , Fℓu is G -nested,

and 0 ď mi ă mN pFiq for all i.u

The subset FYk of FY-monomials xm1

F1
¨ ¨ ¨xmℓ

Fℓ
of total degree m1 ` ¨ ¨ ¨`mℓ “ k

then gives a Z-basis for Ak. One can readily check that the group G permutes the
Z-basis FYk for Ak, endowing Ak with the structure of a permutation representa-
tion, or G-set.

Theorem 1. Let M be a simple matroid rank r ` 1 on ground set E. Let G be
a group automorphisms of M , and G a building set in LM that contains E, is
setwise G-stable, and satisfies this stabilizer condition1:

(7) any G -nested set N “ tFiui“1,2,...,ℓ and g P G with gpNq “ N

will have gpFiq “ Fi for i “ 1, 2, . . . , ℓ.

Then there exist

(i) G-equivariant bijections π : FYk „ÝÑ FYr´k for k ď r
2
, and

(ii) G-equivariant injections λ : FYk
ãÑ FYk`1 for k ă r

2
.

References

[1] K. Adiprasito, J. Huh, E. Katz Hodge theory for combinatorial geometries, Ann. of Math.
(2) 188 (2018), 381–452.

[2] E. Feichtner, S. Yuzvinsky Chow rings of toric varieties defined by atomic lattices, Invent.
Math. 155 (2004), 515–536.

[3] R. Pagaria, G-M. Pezzoli Hodge Theory for Polymatroids, Int. Math. Res. Not. IMRN, 2023
(2023), No. 23, 20118–20168.

1The authors thank R. Pagaria for pointing out the issue.



Arrangements, Matroids and Logarithmic Vector Fields 1659

Second homotopy classes for elliptic Weyl group orbit spaces?

Kyoji Saito

We start with the back grounds and the motivation of the present work in progress.
The fundamental group of the regular orbit space for a complexified finite re-

flection group action is determined by E. Brieskorn [1], where the relations are
homogeneous 1, called Artin braid relations, and the groups are called the Artin
groups (of finite type). The higher homotopy groups of the orbit spaces are shown
to vanish, i.e. they are Kpπ, 1q-spaces, by P. Deligne [3], whose proof is based
on the fact that the monoid associated with the Artin relation, so called Artin
monoid, is embeddable into the Artin group and carries the lattice property [2].

The regular orbit space for a complexified affine Weyl group action was shown
to be Kpπ, 1q-space by G. Paolini and M. Salvetti [6]. In this case, the affine Weyl
group is still a Coxeter group and the fundamental groups are presented by the
homogeneous Artin braid relations, called an affine Artin group. However due
to the lack of the least common mulitiple of all simple generators, one need to
consider the dual Artin monoid instead of the Artin monoid [5].

As the next stage, we are interested in the topology of the regular orbit spaces of
elliptic Weyl groups, described as follows [9]. An elliptic root system pR, Iq is de-
fined as a generalized root system whose associated form I is positive semi-definite

of radical rank 2. The elliptic Weyl group ĂW pRq, generated by the reflections for

the roots in R, acts properly discontinuously on a complex half space rE, called
the elliptic period domain, so that the quotient variety ĂW pRqzzrE is isomorphic to
a smooth complex half space. The set of irregular orbits (=the quotient image in
ĂW pRqzzrE of reflection hyperplanes of ĂW pRq) form a discriminant divisor rD. Here,
we note that the elliptic Weyl group is no-longer a Coxeter group, but is presented
by relations, called elliptic Coxeter relations, defined on the elliptic diagram [8].

Recently, a homogeneous presentation of the fundamental group of the elliptic

regular orbit space pĂW pRqzzrEqz rD is given by a joint work of Yoshihisa Saito and
the author [7], where the relations are some generalizations, called elliptic braid
relations, of Artin braid relations (which are some homogenizations of elliptic
Coxeter relations). However, the elliptic Artin monoid defined by the elliptic braid
relations is no-longer canncellative [10] 2 Further more, it was observed that such
non-cancellative tuples appear not “isolatedly” but appear always as a pair or a
quadruple. This is an obvious “obstruction” if one want to proceed the analogous
of classical proof of Kpπ, 1q-ness for regular orbit spaces. This causes a doubt that

the regular orbit space pĂW pRqzzrEqz rD has non-trivial higher homotopy classes?
In order to answer (partially) to this doubt, we develop a new method to

construct second homotopy classes associated to non-cancellative monoids [11].

1We call a defining relation of a discrete group semi-positive if it is given by an equality P “Q

between two semi-positive words P and Q in the letters of the generating set L. In particular, if
the lengths of P and Q are equal, we call it homogeneous. See also Footnote 3.

2A monoid A is called canncellative if a relation abd „ acd holds for a, b, c, d P A, then the
relation b „ c holds. If b  c, we call pa, b, c, dq a non-canncellative tuple, and pb, cq its kernel.
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Namely, we start with a connected CW-complex W equipped with a semi-positive
presentation 3 pL,Rq of its fundamental group, and consider the associated monoid
A`pL,Rq :“ xL,Ry`. This algebraically defined monoid is geometrically realized
as the equivalence classes of positive loops L˚ “ Y8

k“0L
k divided by the relations

generated by geometric liftings Rg of the relations R into the relative homotopy
group π2pW,W1, ˚q. Let a twin τ :“ tpa, b, c, dq, pa1, b, c, d1qu, i.e. a pair over the
same kernel pb, cq of non-cancellative tuples, be given. Using the above geometric
description of the monoid A`pL,Rq, we construct the following two sets [11]:

‚ Πpτq Ă π2pW, ˚q a subset, called the Π-class for the twin τ ,
‚ Gpτq Ă π2pW, ˚q a subgroup, called the inertia group for the twin τ ,

where Πpτq form a single coset class of the group Gpτq.
At this writing, we have neither a characterization nor a general criterion of

the non-triviality of the Π-classes, but expect that the Π-classes are non-trivial
for “good cases”. Actually, we show that the second homotopy classes of the
complement of 3 lines arrangement studied by A. Hattori (1974) [4] is reconstructed
as the Π-classes w.r.t. Yoshinaga’s presentation of the fundamental group [12].

Finaly, we conjecture

Conjecture. The Π-classes associated with the twins of non-cancellatives of ellip-
tic Artin monoids given in [10] are non-trivial, and the inertial groups are trivial.
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Topology and combinatorics of decomposable arrangements

Alexander I. Suciu

1. Lie algebras of arrangements

The holonomy Lie algebra of a complex arrangement A is the quotient of the free
Lie algebra on degree-1 generators indexed by the hyperplanes of A , modulo the
ideal generated by a certain set of quadratic relations depending only on the first
two levels of the intersection lattice, LpA q,

(1.1) hpA q “ LiepxH : H P A q
M
ideal

!”
xH ,

ÿ
XĄK

xK

ı
:
X P L2pA q
X Ą H

)
.

For any field k, the universal enveloping algebra UphpA q bkq is isomorphic to A
!
,

the quadratic dual of the quadratic closure of the Orlik–Solomon algebra over k.
Now letM “ MpA q be the complement of A , let G “ GpA q be its fundamental

group, and let grpGq “ À
kě1 γkpGq{γk`1pGq be the graded Lie algebra associated

to the lower central series filtration of G, defined by γ1pGq “ G, γ2pGq “ G1, and
γk`1pGq “ rG, γkpGqs. There is then a surjective morphism of graded Lie algebras,
hpA q ։ grpGq, which is an isomorphism in degrees up to 3. The Chen Lie algebra
of G is defined as grpG{G2q. There is also a surjection from grkpGq ։ grkpG{G2q,
which is an isomorphism for k ď 3. Setting φkpGq “ rankgrkpGq and θkpGq “
rankgrkpG{G2q, we have φkpGq ě θkpGq, with equality for k ď 3.

Since M is formal, the group G is 1-formal; therefore, the map hpA q b Q Ñ
grpGqbQ is an isomorphism, and the LCS ranks φkpGq are determined by Lď2pA q.
As noted in [9], though, the groups grkpGq may have non-zero torsion for k large,
and this raised the question whether the torsion in grpGq is combinatorially de-
termined. This question was answered in the negative in [1]: there is a pair of
arrangements with isomorphic lattices, A ˘, such that grkpG`q – grkpG´q for
k ď 3, yet torspgr4pG`qq fl torspgr4pG´qq.

2. Decomposable arrangements

For each flat X P L2pA q, consider the localized arrangement AX “ tH P A :
H Ą Xu. This is a pencil of |X | “ µpXq ` 1 hyperplanes, where µ : LpA q Ñ
Z is the Möbius function; thus, MpAXq is a classifying space for the group
GpAXq – FµpXq ˆ Z. The inclusion AX Ă A gives rise to an injective map,

jX : MpA q ãÑ MpAXq, which in turn induces a split surjection on fundamental
groups, jX7 : GpA q ։ GpAXq. The maps jX assemble into a map j : MpA q Ñś

X MpAXq; the induced homomorphism

(2.1) j7 : GpA q ś
XPL2pA q GpAXq “: GpA qloc
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yields a morphism between the respective holonomy Lie algebras,

(2.2) hpj7q : hpA q
ś

XPL2pA q hpAXq “: hpA qloc.

It was shown in [5] that the map hkpj7q is a surjection for k ě 3 and an isomorphism
for k “ 2. Therefore, φkpGpA qq ě

ř
X φkpFµpXqq for k ě 2, with equality for

k “ 2, thereby recovering a previous result of Falk.
The arrangement A is said to be decomposable if the map h3pj7q is an isomor-

phism; that is to say, h3pA q is free abelian of rank as small as possible, namely,

(2.3) rankh3pA qloc “ 2
ÿ

XPL2pA q

ˆ
µpXq ` 1

3

˙

This purely combinatorial property is inherited by sub-arrangements and preserved
under products of arrangements. When A is decomposable, the maps h1pA q Ñ
h1pA qloc and hpA q Ñ grpGpA qq are isomorphisms, see [5]. It follows that hkpA q –
grkpGpA qq for all k ě 1, and all these groups are torsion-free, with ranks φkpGq “ř

XPL2pA q φkpFµpXqq. Moreover, if A and B are decomposable and Lď2pA q –
Lď2pBq, then grě2pGpA qq – grě2pGpBqq. In fact, as shown in [7], the nilpotent
quotients GpA q{γkpGpA qq and GpBq{γkpGpBqq are isomorphic, for all k ě 2.

We say that A is decomposable over a field k if the map h3pj7q b k is an
isomorphism (an equivalent definition for k “ Q appeared in [8]). Decompos-
ability implies k-decomposability, but the converse is not true, in general. On the
other hand, for graphic arrangements all notions of decomposability are equivalent;
moreover, A “ A pΓq is decomposable if and only if Γ contains no K4 subgraph,
see [5].

3. Alexander invariants of arrangements

Once again, let A be an arrangement, with group G “ GpA q. The Alexander
invariant of A is defined as BpA q “ G1{G2, viewed as a module over the group
ring R “ ZrG{G1s “ ZrH1pM ;Zqs, see [2, 11].

For each flat X P L2pA q, we also have a “local” Alexander invariant, BpAXq,
viewed as a module over RX “ ZrH1pMX ;Zqs. The homomorphism jX7 : GpA q Ñ
GpAXq induces a morphism BpjX7 q : BpA q Ñ BpAXq, which covers the ring map

j̃X˚ : R Ñ RX induced by jX˚ : H1pM ;Zq ։ H1pMX ;Zq. Assembling these global-
to-local morphisms, we obtain an R-morphism, Π: BpA q Ñ BpA qloc, where
BpA qloc :“

À
XPL2pA q BpAXqj̃X

˚
is the R-module obtained from

À
X BpAXq by

restriction of scalars.
Now let I “ kerpε : R Ñ Zq be the augmentation ideal, and let pB be the

completion of B “ BpA q in the I-adic topology. The R-module B is said to

be separated if
Ş

kě1 I
kB “ t0u, or, equivalently, the map B Ñ pB is injective

(alternatively, the group G{G2 is residually nilpotent).

Next, we define the infinitesimal Alexander invariant of A asBpA q“ h1pA q{h2pA q,
viewed as a graded module over the polynomial ring S “ SymrH1pMpA q;Zqs –
grpRq. This module is generated in degree 0, while B1pA q – gr1pBpA qq –
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h3pA q. Moreover, as shown in [4],
ř

ně0 θk`2pGpA qqtk “ HillpBpA q b Q, tq.
To each X P L2pA q there corresponds BpAXq, a module over the ring SX “
SymrH1pMpAXq;Zqs – grpRXq. As before, we obtain a morphism of graded S-
modules, Π̄ : BpA q Ñ BpA qloc.

Theorem 1 ([14]). The morphisms BpA q Ñ BpA qloc and BpA qbQ ÑBpA qlocb
Q are surjective.

As an application of this theorem, we recover the following lower bound for the
Chen ranks of arrangement groups, first established in [2] by other methods:

(3.1) θkpGpA qq ě pk ´ 1q
ÿ

XPL2pA q

ˆ
µpXq ` k ´ 2

k

˙
,

for all k ě 2, with equality for k “ 2.

4. Decomposable Alexander invariants

We say that the Alexander invariant of an arrangement A decomposes if the
canonical map BpA q Ñ BpA qloc is an isomorphism. A similar definition was first

made in [2] in regards to the I-adic completion of this map, {BpA q Ñ {BpA qloc.
In the same spirit, we say that the infinitesimal Alexander invariant decomposes
if the map BpA q Ñ BpA qloc is an isomorphism. In all three cases, analogous
definitions work over a field k. Furthermore, if BpA q is decomposable (over k),
then BpA q is separated (over k).

A natural question arises: What is the relationship between the decomposabil-
ity of an arrangement A —a purely combinatorial notion, that depends only on
Lď2pA q—and that of BpA q—a notion that depends a priori on the topology of
MpA q? The next result provides a fairly complete answer to this question.

Theorem 2 ([14]). Let A be a hyperplane arrangement. Then,

(1) BpA q is decomposable (over Q) if and only if A is decomposable (over Q).
(2) BpA q is decomposable (over Q) if and only if A is decomposable and BpA q

is separated (over Q).

As an application of this theorem, we show that equality holds in (3.1) for the
Chen ranks of a Q-decomposable arrangement. Similar formulas for θkpGpA qq
were given in [2, 5] under the (possibly stronger) assumption that A is decompos-
able.

As another application of Theorem 2, we determine the degree-1 resonance va-
rieties (the jump loci of the Koszul complex associated to the cohomology algebra)
and the characteristic varieties (the jump loci for homology in rank 1 local systems)
of the complement of a Q-decomposable arrangement (see [3, 6, 9, 10] for back-
ground on the jump loci of arrangements.) Fix an ordering A “ tH1, . . . , Hnu.
For each rank-2 flat with µpXq ą 1, consider the linear subspace LX “

 
x P Cn :ř

HPAX
xH “ 0 and xH “ 0 if H R AX

(
, and let TX “ exppLXq Ă pC˚qn be the

corresponding algebraic subtorus.
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Theorem 3 ([14]). Let A be a Q-decomposable arrangement. For each s ě 1,

(1) RspMq “
Ť

XPL2pA q:µpXqąs LX .

(2) If BpA q b Q is separated, then VspMq “
Ť

XPL2pA q:µpXqąs TX .

We do not know whether the separation hypothesis in part (2) may be dropped.
Without it, all the components of VspMq passing through 1 P pC˚qn are still of
the form TX for some X P L2pA q, but in principle there could also be isolated
torsion points in VspMq.

4.1. Milnor fibrations. Let A be an arrangement in Cd`1. For each hyper-
plane H P A , let fH : Cd`1 Ñ C be a linear form with kernel H . Assigning a
multiplicity vector m “ tmHuHPA P Nn to the hyperplanes, we obtain a polyno-
mial map, fm “

ś
HPA

fmH

H : Cd`1 Ñ C, whose restriction to the complement,
fm : MpA q Ñ C˚, is the projection map of a smooth, locally trivial bundle, known
as the Milnor fibration of the multi-arrangement pA ,mq. Let Fm be the typical
fiber and let h : Fm Ñ Fm be the monodromy of the fibration. A much-studied
problem is to compute the first Betti number of Fm and find the eigenvalues of
the algebraic monodromy acting on H1pFm;Cq, see e.g. [3, 6]. As an application
of Theorem 3, we prove the following result.

Theorem 4 ([14]). Let A be an arrangement of rank at least 3. Suppose A is
decomposable over Q and BpA qbQ is separated. Then, for any choice of multiplic-
ities m on A , the algebraic monodromy of the Milnor fibration, h˚ : H1pFm;Qq Ñ
H1pFm;Qq, is trivial.

Using results from [12, 13], it follows that φkpπ1pFmq “ φkpπ1pMqq and
θkpπ1pFmq “ θkpπ1pMqq, for all k ě 2. The above theorem raises a two-part
question.

Question. Let pA ,mq be a multi-arrangement, and let h : Fm Ñ Fm be the
monodromy of the corresponding Milnor fibration.

(1) If A is decomposable, is the monodromy action on H1pFm;Zq trivial?
(2) If A is decomposable over Q, is the monodromy action on H1pFm;Qq trivial?

In general, the group H1pFm;Zq may have torsion (see [3]), even for the usual
Milnor fiber F “ F pA q when mH “ 1 for all H P A (see [15]); thus, the mon-
odromy h may act trivially on H1pFm;Qq but not on H1pFm;Zq. Nevertheless,
we do not know whether this can happen within the class of (Q-)decomposable
arrangements.
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Worpitzky-compatible sets and the freeness of arrangements between

Shi and Catalan

Tan Nhat Tran

(joint work with Takuro Abe)

This presentation is based on our recent work [4]. This has a strong connection
with my presentation at MFO 2021 [2].

1. Background and motivation

Let V “ Rℓ with the standard inner product p¨, ¨q. Let Φ be an irreducible (crys-
tallographic) root system in V . Let ∆ :“ tα1, . . . , αℓu be a set of simple roots of
Φ and Φ` the positive system associated to ∆. For n P Z and α P Φ`, define an
affine hyperplane Hn

α :“ tx P V | pα, xq “ nu in V . For a hyperplane arrangement
A in V , denote by cA the cone of A . An arrangement is called free if its module
of logarithmic derivations is a free module (e.g. [7, Definition 4.5]).

Definition 1. For a nonnegative integer k P Zě0 and a subset Σ Ď Φ`, define
the following hyperplane arrangement in V :

S
k
Σ “ S

k
ΣpΦq :“ tHn

α | α P Φ`, 1 ´ k ď n ď ku Y tH´k
α | α P Σu.

The subset Σ is called Shi-free (resp. free) if the cone cS k
Σ is a free arrangement

for every k ą 0 (resp. for k “ 0).
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The (Shi-)freeness of root systems has been a central topic in the study of
free arrangements for decades. For simply-laced (type ADE) root systems, a
characterization for the Shi-freeness is known due to Yoshinaga [11] (Theorem 2).
Our goal is to complete this characterization for all root systems (Theorem 8).
First let us give more information about the freeness of cS k

Σ .

(1) Let k “ 0. When Σ “ Φ`, the arrangement AΦ` :“ S 0
Φ` is known as the

Weyl arrangement of Φ. For arbitrary Σ, AΣ :“ S 0
Σ is a subarrangement

of AΦ` . The Weyl arrangement is a well-known free arrangement, e.g. [8], [7,
Theorem 6.60]. Apart from type A, the freeness of arbitrary Σ is unknown in
general.

(2) Let k ą 0. When Σ “ H and Σ “ Φ`, the arrangements Shi
r1´k,ks
Φ :“ S k

H

and Cat
r´k,ks
Φ :“ S k

Φ` are known as the extended Shi arrangement and

extended Catalan arrangement, respectively. Thus the arrangement S k
Σ ,

when Σ varies, can be regarded as an interpolation between the extended Shi

and Catalan arrangements. The freeness of cShi
r1´k,ks
Φ and cCat

r´k,ks
Φ had

been conjectured by Edelman-Reiner [6] until they were affirmatively settled
by Yoshinaga [10].

(3) The most significant class for which the (Shi-)freeness is known to be true for
any root system is that of the ideals. The root poset pΦ`,ěq is the poset with
partial order defined by β1 ě β2 if β1 ´ β2 P řℓ

i“1 Zě0αi. A subset Σ Ď Φ`

is called an ideal if for β1, β2 P Φ`, β1 ě β2, β1 P Σ implies β2 P Σ. Then for
any ideal Σ and k ě 0, the cone cS k

Σ is always free. The case k “ 0 was first
partially proved by Sommers-Tymoczko [9] and later completely settled by
Abe-Barakat-Cuntz-Hoge-Terao [1]. The case k ą 0 was done in a follow-up
paper of Abe-Terao [3].

(4) There is another arrangement closely related to S k
Σ . Define

S
k

´Σ :“ tHn
α | α P Φ`, 1 ´ k ď n ď kuztHk

α | α P Σu.

Abe-Terao [3] showed that if k ą 0, then cS k
Σ and cS k

´Σ share the freeness,

i.e. cS k
Σ is free if and only if cS k

´Σ is free. If this occurs for some k ą 0, then

AΣ “ S 0
Σ is also free. Thus the freeness of Σ is a necessary (but not sufficient)

condition for its Shi-freeness.

(5) Towards a search for a full characterization of the Shi-freeness, it is essential
to extend the class of ideals. A subset Σ Ď Φ` is called coclosed if for any
α P Σ and β1, β2 P Φ` such that α “ d1β1 ` d2β2 with d1, d2 P Zą0, either
β1 P Σ or β2 P Σ. It is easy to see that every ideal of a root system is coclosed.
For simply-laced root systems, Yoshinaga showed that the coclosedness is the
missing piece of a sufficient condition for the Shi-freeness.

Theorem 2. [11, Theorem 5.1] Let Φ be an irreducible root system of type ADE

and Σ Ď Φ`. Then Σ is Shi-free if and only if Σ is free and coclosed.
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However, the theorem above is not always true for doubly-laced root systems.
We complete the characterization for every root system by replacing the coclosed
sets by a more general concept, the so-called Worpitzky-compatible sets due to
Ashraf-Tran-Yoshinaga [5]. The appearance of the Worpitzky-compatibility here
is interesting and unexpected as this concept has original motivation from a geo-
metric property of alcoves of root system and a lattice point counting problem
seemingly unrelated to the freeness. The Worpitzky-compatibility was the main
topic of my talk in [2].

2. The main results

Let us first recall the concept of compatibility. A connected component of
V zŤαPΦ`,nPZH

n
α is called an alcove. Let A be an alcove. A wall of A is a

hyperplane that supports a facet of A. The ceilings of A are the walls which do
not pass through the origin and have the origin on the same side as A. The upper
closure A♦ of A is the union of A and its facets supported by the ceilings of A. Let
P♦ :“ tx P V | 0 ă pαi, xq ď 1 p1 ď i ď ℓqu be the fundamental parallelepiped

(of the coweight lattice) of Φ. Then P♦ has the following partition:

P♦ “
ğ

A: alcove, AĎP♦

A♦,

which is known as the Worpitzky partition (e.g. [12, Proposition 2.5]).

Definition 3. [5, Definition 4.8] A subset Σ Ď Φ` is called Worpitzky-compat-

ible in Φ, or compatible for short, if for each alcove A Ď P♦, the intersection
A♦XHnα

α of its upper closure A♦ and any affine hyperplane Hnα
α for α P Σ, nα P Z

is either empty, or contained in a ceiling H
nβ

β of A for some β P Σ, nβ P Z. In
short, every nonempty intersection can be lifted to a facet intersection.

The compatibility was originally defined in order to make a counting formula
concerning the characteristic and Ehrhart quasi-polynomials valid [5, Theorem
4.11]. It is proved that every coclosed subset is compatible [5, Proof of Theorem
4.16].

We need a few more notations and definitions. For an arrangement A in
V , denote by LpA q the intersection poset of A . Set LppA q :“ tX P LpA q |
codimpXq “ pu for 0 ď p ď ℓ.

Definition & Notation 4. Let Φ be an irreducible root system and let A :“ AΦ`

be the Weyl arrangement of Φ. If X P LppA q, then ΦX :“ ΦXXK is a rank p root
subsystem (not necessarily irreducible) of Φ. A positive system of ΦX is taken to
be Φ`

X :“ Φ` X ΦX . Let ∆X be the set of simple roots of ΦX associated to Φ`
X .

For a subset Σ Ď Φ`, denote ΣX :“ Σ X Φ`
X .

Definition 5. A subset Σ Ď Φ` is called

(a) negatively coclosed if for any α P Σ and β1, β2 P Φ` such that α “ d1β1 `
d2β2 with d1, d2 P Zą0 and pβ1, β2q ă 0, either β1 P Σ or β2 P Σ,

(b) 2-locally compatible if for any X P L2pA q such that ΦX is irreducible, the
localization ΣX “ Σ X Φ`

X is compatible in ΦX ,
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(c) 2-locally simple if for any X P L2pA q such that ΦX is irreducible, either
ΣX contains a simple root of ΦX (i.e. ΣX X ∆X ‰ H) or ΣX “ H.

In the subsequent characterizations, we must distinguish some particular sub-
sets of positive roots in a root system of type G2.

Definition 6. Given a root system Φ “ G2 with ∆ “ tα1, α2u where α2 is the
unique long simple root, define the following subsets Σ Ď Φ`:

(a) Σ “ tα2u Y S with H ‰ S Ď t2α1 ` α2, 3α1 ` α2, 3α1 ` 2α2u.
(b) Σ “ tα1, 3α1 ` 2α2u Y S with S Ď tα1 ` α2, 2α1 ` α2, u.

We are ready to state our first main result connecting the compatibility, a geo-
metric property of alcoves and the negative coclosedness, a combinatorial property
of roots.

Theorem 7. Let Φ be an irreducible root system and Σ Ď Φ`. The following are
equivalent.

(1) Σ is compatible.
(2) Σ is 2-locally compatible.
(3) One of the following occurs:

(i) If Φ ‰ G2, Σ is negatively coclosed.
(ii) If Φ “ G2, Σ is negatively coclosed, or one of the seven exceptions in

Definition 6(a).

Our second main result is a generalization of Theorem 2 to any root system.

Theorem 8. Let Φ be an irreducible root system and Σ Ď Φ`. The following are
equivalent.

(1) Σ is Shi-free.
(2) Σ is free and 2-locally simple.
(3) One of the following occurs:

(i) If Φ ‰ G2, Σ is compatible and free.
(ii) If Φ “ G2, Σ is compatible, or one of the four exceptions in Definition

6(b).

We emphasize that the proofs of Theorems 7 and 8 require only the classification
of all rank 2 root systems (A2

1, A2, B2 “ C2, G2), and the fact that given a root
system Φ ‰ G2, any rank 2 irreducible root subsystem of Φ is of type A2 or B2.
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Non Kpπ, 1q arrangements

Masahiko Yoshinaga

Let A “ tH1, . . . , Hnu be a central hyperplane arrangement in Rℓ with ℓ ě 3. Let
us denote by MpA q the complement of the complexified arrangement A b C in
Cℓ. One of the long-standing problems is to characterize Kpπ, 1q property for such
spaces. There are lots of results onKpπ, 1q-ness. See [4, 2] for recent developments.
There are also several results on non Kpπ, 1q-ness. See [1, 3, 5]. However, we are
still far from understanding exactly when MpA q is Kpπ, 1q.

In this talk, we discuss homotopical triviality/non-triviality of certain embedded
spheres.

Our result is based on the description of the complex vector space Cℓ “ Rℓ ‘?
´1¨Rℓ. We can identify Cℓ with the total space of the tangent bundle TRℓ. More

explicitly, we consider the tangent vector v P TxRℓ is the point x `
?

´1v P Cℓ.
Now we consider the unit sphere Sℓ´1 Ă Rℓ. We shift the sphere Sℓ´1 into the

imaginary direction so that we get an embedded sphere in MpA q. Such a shift
naturally gives a system of half spaces pHε1

1 , . . . , Hεn
n q, where εi P t`,´u.

The main result asserts that such an embedded sphere is homotopically trivial
if and only if

Şn
i“1 H

εi
i ‰ H.

“If” part is easily proved just by filling the sphere by a Salvetti cell. To prove
“only if”, we construct an explicit Borel-Moore homology cycle of degree pℓ ` 1q
and showing the twisted intersection number with the sphere is nonzero, which
concludes homotopical nontriviality.

For details, see [6].
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Università di Pisa
Largo Bruno Pontecorvo, 5
56127 Pisa
ITALY

Patty Commins

Department of Mathematics
University of Minnesota
127 Vincent Hall
206 Church Street S. E.
Minneapolis, MN 55455
UNITED STATES

Dr. Basile Coron

School of Mathematical Sciences
Queen Mary
University of London
Mile End Road
London E1 4NS
UNITED KINGDOM

Prof. Dr. Michael Cuntz

Institut für Algebra, Zahlentheorie
und Diskrete Mathematik
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover
GERMANY

Prof. Dr. Emanuele Delucchi

University of Applied Arts and Sciences
of Southern Switzerland
Polo Universitario - Campus Est
Via la Santa 1
6962 Lugano
SWITZERLAND

Abraham del Valle Rodŕıguez
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Universidad de Sevilla
41012 Sevilla
SPAIN

Prof. Dr. Graham Denham

Department of Mathematics
Middlesex College
University of Western Ontario
London ON N6A 5B7
CANADA

Dr. Rodica Andreea Dinu

Fachbereich Mathematik u. Statistik
Universität Konstanz
Postfach 192
78464 Konstanz
GERMANY



1672 Oberwolfach Report 29/2024

Dr. Michael DiPasquale

Dept. of Mathematical Sciences
New Mexico State University
1290 Frenger Mall
Las Cruces, NM 88003-8001
UNITED STATES

Dr. Matthew Douglass

Division of Mathematical Sciences
National Science Foundation
2415 Eisenhower Ave.
Alexandria, VA 22314
UNITED STATES

Dr. Clément Dupont

Institut Montpelliérain Alexander
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