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Introduction by the Organizers

The workshop Real and Logarithmic Enumerative Geometry, covered several key
research topics in the field of algebraic geometry, focusing on recent advancements
and methodologies.

One major area of discussion was Enumerative Geometry and Gromov-Witten
invariants. Two talks reported about quadratic enrichments that extend inariants
to general ground fields (Pauli, Solomon) and the correspondence with tropical
counting (Pauli, Gräfnitz). New results about refined invariants in several direc-
tions were reported by Itenberg, Schuler, Bousseau and Kennedy-Hunt. Van Garrel
covered refined BPS integrality and Parker emphasized the context of holomor-
phic Lagrangian correspondences coming from stable map markings constrainted
in complex surfaces inside Calabi-Yau threefolds. New developments in topolog-
ical recursion and Givental reconstruction in the real context were reported by
Guidoni and Garcia-Failde.
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Another significant topic is Moduli Spaces and Mirror Symmetry. The proof
about the KSBA moduli space of stable log Calabi-Yau surfaces being a finite
quotient of a toric variety was reported by Argüz. The enumerative geometry of
intrinsic mirror families for maximal log smooth degenerations of Fano varieties
was addressed in van Garrel’s talk.

The topology and degenerations of algebraic varieties, both real and complex,
was another theme of the workshop. Bounds for the individual Betti numbers
of smooth real fibers using real logarithmic geometry were covered by Manzaroli.
Degenerations of Hilbert schemes of points on surfaces were identified in the log
context by Tschanz. Gräfnitz encoded the enumerative geometry of a maximal
degeneration of the complex plane in scattering diagrams.

Further highlights include new results on Brill-Noether theory (Carocci), the
construction of logarithmic tautological classes on moduli spaces of stable curves
via the log double ramification cycle (Schmitt) and an elegant new formula for
the genus one generating series of Gromov-Witten invariants of Hilbert scheme of
points of C2 (Pandharipande).

Overall, the workshop report highlights the interplay between real and tropical
geometry, mirror symmetry, and enumerative invariants, showcasing the latest
research and methodologies in these interconnected fields.

We collect the personal summaries by the three organizers.

Penka Georgieva: I very much enjoyed to learn about the recent develop-
ments around the refined counts which we saw from 3 different points of
view (real, log, and physics); another more unexpected common point was
around the Givental formalisme that we saw in Rahul, Elba, and Thomas
talks that I thought tight very well together and were hopefully a base for
discussion (again very sorry I couldn’t come in person !). Within topolog-
ical recursion there are also refined invariants and I’ll be interested to see
if they are related to those discussed at the workshop. I also followed with
interest the still mysterious A1 homotopy theory and the results around
mirror symmetry. Besides the math, I also enjoyed the fact that we had
I’d say more than usual number of women speakers and a very good dis-
tribution of early, mid, and advanced career speakers.

Dan Abramovich: I was particularly happy with the many fruitful discus-
sions that took place informally. Strikingly, every evening Rahul Pand-
haripande held court, in group conversations eagerly attended by young
participants, in a setting for which MFO is perfect. I myself discussed a
joint project with Pandharipande. I also got to discuss an exciting idea
of Jake Solomon regarding spin groups and their cousins “pin” groups. I
learned from Sabrina Pauli about the subtle nuances of Chern classes and
equivariant Chern classes when one attempts to enhance them quadrat-
ically. We were both frustrated by the lack of sufficiently introductory
material, a frustration reinforced in discussion with Solomon, perhaps an
impetus for a future endeavor. I discussed equivariant Chow groups in
great detail with Barbara Fantechi, especially work of my students, as well
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as the work of her students. Argüz, Bousseau, and Carocci collaborated
intensely on a lecture series we presented together in August.

Helge Ruddat: I spent four evenings working with Bernd Siebert and
Michel van Garrel making good progress on explicit enumerative period
integral computations for spaces constructed from wall structures. Miss-
ing out on the social parts of the evenings, I made up for that by various
chats with different sets of participants over meals and in breaks, for ex-
ample with Calla Tschanz and Patrick Kennedy-Hunt about log Hilbert
schemes of points; with Argüz and Bousseau about virtual counts via trop-
ical curves; with Andres Gomez and Bernd Siebert about K-stability and
SYZ; with Sabrina Pauli, Jake Solomon and Rahul Pandharipande about
the existence of an orientation on the space of stable maps to P3; while
hiking, with Brett Parker about Hyperkähler structures in the boundary
condition of enumerative geometry of log Calabi-Yau threefolds. I greatly
benefited from presentations of speakers that I hadn’t seen before, for ex-
ample Thomas Guidoni, Johannes Schmitt, Matilde Manzaroli and Yannik
Schuler.

We were pleased with the success of the three lightning talks by Anna-Maria
Raukh, Andres Gomez and Xianyu Hu. These short presentations allowed these
junior participants to introduce themselves and to share ideas about their PhD
projects.

We also benefited from the possibility to attend lectures online because

(1) one of the organizers could not personally attend for private reasons and
this new circumstance arose only two weeks before the conference,

(2) the local trains broke down on the day of scheduled arrival and were re-
placed by hard-to-find and irregularly departing coaches. One participant
got stranded in a hotel elsewhere but he could watch the first day’s lectures
online before finally arriving,

(3) we had further online participants in the US for whom the travel didn’t
fit their busy schedule.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Tim Gräfnitz (joint with Helge Ruddat, Eric Zaslow and Benjamin Zhou,
and with Per Berglund and Michael Lathwood)
Tropical correspondence and mirror symmetry for log Calabi-Yau surfaces 1298

Rahul Pandharipande
Hodge integrals, Abelian varieties, and the Hilbert scheme of points of the
plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301

Johannes Schmitt
Logarithmic Tautological Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303

Elba Garcia-Failde
The negative counterpart of Witten’s conjecture . . . . . . . . . . . . . . . . . . . . . 1306

Pierrick Bousseau (joint with Hülya Argüz)
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Abstracts

Refined invariants for real curves

Ilia Itenberg

(joint work with Eugenii Shustin)

Refined enumerative geometry, initiated in [1, 4], became one of the central topics
in enumerative geometry with important links to closed and open Gromov-Witten
invariants and to Donaldson-Thomas invariants. In a big part of known examples,
refined invariants appear as one-parameter deformations of complex enumerative
invariants (see, for example, [1, 2, 3, 4]). In his groundbreaking paper [5], G.
Mikhalkin has proposed a refined invariant provided by enumeration of real ra-
tional curves and has related this invariant to the refined tropical invariants of
F. Block and L. Göttsche [1]. Namely, he introduced an integer-valued quantum
index for real algebraic curves in toric surfaces. To have a quantum index, a real
curve should satisfy certain assumptions: it has to intersect toric divisors only at
real points and to be irreducible and separating; the latter condition means that,
in the complex point set of the normalization of the curve, the complement of the
real part is disconnected, i.e., formed by two halves exchanged by the complex
conjugation (in fact, the quantum index is associated to a half of a separating
real curve, while the other half has the opposite quantum index). Mikhalkin [5]
showed that, for an appropriate kind of constraints, a Welschinger-type enumer-
ation of real rational curves (cf. [7, 8]) in a given divisor class and with a given
quantum index produces an invariant and can be directly related to the numerator
of a Block-Göttsche refined tropical invariant (represented as a fraction with the
standard denominator).

The main purpose of the talk is to introduce refined invariants of Mikhalkin’s
type in the case of curves of genus 1 and 2. We follow the ideas of [6] and choose
constraints so that every counted real curve of genus g = 1 or 2 appears to be
a maximal one (i.e., it has g + 1 global real branches), and hence is separating.
More precisely, given a toric surface with the tautological real structure and a very
ample divisor class, we fix maximally many real points in a generic Menelaus po-
sition on the toric boundary of the positive quadrant, where genus g curves from
the given linear system must be tangent to toric divisors with prescribed even
intersection multiplicities, and we fix g more generic real points inside different
non-positive quadrants as extra constraints (through which the curves under con-
sideration should pass). There are finitely many real curves of genus g matching
the constraints and all these curves are separating. Their halves have quantum
index, and we equip each curve with a certain Welschinger-type sign.

For some toric surfaces (including the projective plane), we prove that the
signed enumeration of (halves of) real curves of genus g = 1 or 2 that match
given constraints, belong to a given linear system, and have a prescribed quantum
index does not depend on the choice of a (generic) position of the constraints.
The resulting invariants are said to be refined. In particular, we get new real
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enumerative invariants (without prescribing values for quantum index) in genus
one and two.

We also discuss tropical counterparts of the above refined invariants and estab-
lish a tropical algorithm allowing one to compute them.
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Quadratically enriched Gromov-Witten invariants and how to

compute them

Sabrina Pauli

We introduce quadratically enriched Gromov-Witten invariants, which special-
ize to both Gromov-Witten and Welschinger invariants and take their values in
the Grothendieck-Witt ring. We then explain how to compute them using tropi-
cal methods based on joint work with Andrés Jaramillo Puentes [4] and work in
progress with Andrés Jaramillo Puentes, Hannah Markwig, and Felix Röhrle [3].

Let’s first recall the definition of a special case of a non-quadratically enriched
Gromov-Witten invariants. Namely, let Nd be the number of rational degree d
plane curves passing through n = 3d− 1 points in general position. This number
is an invariant, i.e. it is independent of the choice of the point configuration. There
is a topological interpretation of this in terms of degree from algebraic topology.
LetM0,n(P

2
C, d) be the moduli space of n-marked stable maps of genus 0 to P2 of

degree d. Then the degree of the evaluation map ev :M0,n(P
2
C, d)→ (P2

C)
n is equal

to the number of n-marked stable maps whose image is a plane rational curve of
degree d passing through n points in P2 in general position, i.e.

Nd = deg ev .

If you only consider curves defined over a non-algebraically closed field, you
lose invariance. For example, the number of real degree 3 rational plane curves
through n = 3d − 1 = 8 real points can be 8, 10 or 12 depending on the point
configuration. Welschinger restores invariance by introducing a signed real count
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[1]. That is, he counts a real curve with a sign depending on the types of real
nodes of the real curve. Namely, say a real node is of type +1 if it is split, i.e.
locally given by x2 − y2 = 0 or in other words, the two branches live over R, and
say it is of type −1 if it is non-split, i.e. locally given by x2 + y2 = 0 and the two
branches live over C. For a real plane curve, let

WelR(C) :=
∏

nodes z

type(z).

Consider a point configuration in P2
R consisting of n1 real points and n2 complex

points in P2
R in general position with n1 + 2n2 = n = 3d − 1. Welschinger shows

that

Wd,n2
:=
∑

C

WelR(C)

where the sum over all real rational degree d plane curves passing through such
a point configuration is invariant, i.e. independent of the choice of point config-
uration. There is also a topological interpretation of Wd,n2

as the degree of an
evaluation map.

In A1-homotopy theory one defines a homotopy category of smooth varieties
over an arbitrary field k. Here one has most of the tools of classical algebraic
topology at one’s disposal, and analogous phenomena over C and R are usually
specializations of a common result in A1-homotopy theory. Since both Nd and
Wd,n2

can be interpreted as the degree of an evaluation map, the idea to define
the quadratically enriched Gromov-Witten invariants is to define them as the A1-
degree, i.e. the degree in A1-homotopy theory, of an evaluation map. Let k be
a field of characteristic not equal to 2. Then the A1-degree takes values in the
Grothendieck-Witt ring GW(k) of non-degenerate quadratic forms over k. Recall
that GW(k) is generated by the isometry classes 〈a〉 of quadratic forms x 7→ ax2

with a ∈ k× a unit and that for L/k a finite separable field extension there is a
trace map Tr: GW(L)→ GW(k).

From now on let k be a perfect field of characteristic not equal to 2 or 3. Let
σ = (L1, . . . , Lr) be a sequence of finite field extensions such that

∑r
i=1[Li : k] =

n = 3d− 1. Then there exists a twisted evaluation map

evσ : (M0,n(P
2
k, d))σ →

r∏

i=1

ResLi/k P
2
k.

A point in the target corresponds to a point configuration of r points in P2
k with

residue fields L1, . . . , Lr. Kass-Levine-Solomon-Wickelgren show that there is a
well-defined A1-degree of this evaluation map valued in GW(k) [7, 6]. This A1-
degree is equal to the sum of the local A1-degrees at the stable maps mapping to
rational degree d plane curves through a point configuration of r points in P2

k with
residue fields L1, . . . , Lr in general position. Furthermore, Kass-Levine-Solomon-
Wickelgren identify the local A1-degree at such a stable map with the following
generalization of WelR(C) [7]. Let C be a plane rational curve defined over κ(C).
Let z be a node of C with residue field κ(z). Then the two branches of z are
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defined over κ(z)(
√
αz) ∈ κ(z)×. Set

WelA
1

κ(C)(C) :=

〈 ∏

nodes z

Nκ(z)/κ(C)(αz)

〉
∈ GW(κ(C))

where Nκ(z)/κ(C) is the field norm. Kass-Levine-Solomon-Wickelgren show that

the local A1-degree at a stable map with image C equals Trκ(C)/k(WelA
1

κ(C)(C)) ∈
GW(k) and thus

NA1

d,σ := degA
1

(evσ) =
∑

C

Trκ(C)/k(WelA
1

κ(C)(C))

where the sum goes over all rational degree d plane curves through a point config-
uration through r points with residue fields L1, . . . , Lr in general position.

Now let’s turn to the computation of NA1

d,σ. Tropical geometry provides a pow-
erful tool for solving problems in enumerative geometry, pioneered by Mikhalkin’s
correspondence theorem, which shows that the number of plane curves satisfying
point conditions is equal to the number of its tropical counterpart counted with
multiplicities. More specifically, Mikalkin proves that

Nd = N trop
d :=

∑

Γ

multC(Γ)

and

Wd,0 =W trop
d,0 :=

∑

Γ

multR(Γ)

where both sums are over all tropical rational degree d curves passing through a
point configuration of 3d− 1 points in tropical general position.

Shustin proves a tropical correspondence theorem for computing Wd,n2

Wd,n2
=W trop

d,n2
:=
∑

Γ

multR(Γ)

where the sum now goes over all so-called “Shustin (tropical) curves” through n−
2n2 “thin” points (corresponding to real points) and n2 “fat” points (corresponding
complex points) in [2].

So one can ask if there is also a tropical correspondence theorem that identifies

NA1

d,σ with some weighted count of tropical curves. The answer is partly yes. If

σ = (k, . . . , k) is just a sequence of n times k, then by joint work with Jaramillo
Puentes [4] we have

NA1

d,σ = N trop
d,σ :=

∑

Γ

multA
1

(Γ)

where the sum goes over all tropical rational degree d curves passing through a
point configuration of n = 3d− 1 points in tropical general position. In particular,
we sum over the same tropical curve as for N trop

d and W trop
d,0 . Also,

multA
1

(Γ) =

{
multC(Γ)−1

2 (〈1〉+ 〈−1〉) + 〈multR(Γ)〉 if multC(Γ) odd
multC(Γ)

2 (〈1〉+ 〈−1〉) if multC(Γ) even
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A direct consequence is that

NA
1

d,σ =
Nd −Wd,0

2
(〈1〉+ 〈−1〉) +Wd,0〈1〉

in GW(k). Furthermore, taking the rank respectively the signature of NA1

d,σ recov-
ers Nd respectively Wd,0.

For more general σ there are first results in this direction the joint work in
progress of Jaramillo Puentes, Markwig and Röhrle [3]. When σ = (k(

√
d1), . . . ,

k(
√
dn2

), k, . . . , k) consists of quadratic and trivial field extensions, one can define

multA
1

(Γ) such that

NA1

d,σ = NA1,trop
d,σ :=

∑

Γ

multA
1

(Γ)

where the sum now goes over all curves through n − 2n2 “thin” points (corre-
sponding to k-points) and n2 “fat” points (corresponding to k(

√
di)-points). Again

taking the rank respectively the signature of NA1

d,σ recovers Nd respectively Wd,n2
.

The techniques in [3] in principle also work for general σ, but this still needs to
be worked out.
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Expansions for Hilbert schemes of points

Calla Tschanz

The study of moduli spaces is a central topic in algebraic geometry; among mod-
uli spaces, Hilbert schemes form an important class of examples. They have been
widely studied in geometric representation theory, enumerative and combinatorial
geometry and as two of the only four known deformation classes of hyperkähler
manifolds, namely Hilbert schemes of points on K3 surfaces and generalised Kum-
mer varieties. A prominent direction in this area is to understand the local moduli
space of such objects and, in particular, methods for describing modular simple
normal crossing degenerations of smooth Hilbert schemes. This talk focuses mainly
on the results of our paper [17], in which we study how the technique of expanded
degenerations applies to this problem for Hilbert schemes of points on surfaces.

Expanded degenerations are first introduced by Li [4] and then used by Li and Wu
[5] to study Quot schemes on degenerations π : X → A1 such that (X, π−1(0)) is
a simple normal crossing pair, where the singular locus of π−1(0) is smooth. We
explore the connection between two ideas:

(1) The logarithmic geometry approach to this problem considered by Maulik
and Ranganathan in [6], which builds upon previous work of Ranganathan
[15] on logarithmic Gromov-Witten theory with expansions.

(2) The Geometric Invariant Theory (GIT) perspective of Gulbrandsen, Halle
and Hulek [1].

This construction is the first instance of a logarithmic moduli space of coherent
sheaves built using ideas from GIT. As, historically, GIT has been used to consider
stability of objects, we hope that this work can provide insights into describing
stability for logarithmic sheaves.

We construct two equivalent modular simple normal crossing degenerations of
smooth Hilbert schemes of points on surfaces. These extend [5] and [1] to the
case where the singular locus of π−1(0) is singular. The first is a stack Mm

LW

which uses a generalisation of Li-Wu stability to this situation. The second is a
stack Mm

SWS which uses a stability condition called SWS stability derived from
GIT. This provides an explicit model of the degenerations theorised in [6] and we
describe how these can be interpreted in the language of logarithmic geometry.
The main results we present are the following.

Theorem 1. The stacks Mm
LW and Mm

SWS are Deligne-Mumford and proper.

Theorem 2. There is an isomorphism of stacks

Mm
LW
∼= Mm

SWS.

Setup. Let k be an algebraically closed field of characteristic zero. Let X → C
be a projective family of surfaces over a curve C ∼= A1 such that the total space
is smooth and the central fibre X0 has simple normal crossing singularities. At a
triple point of the singular fibre, X is étale locally given by Speck[x, y, z, t]/(xyz−
t). In this étale local model, the general fibres are smooth and the central fibre
X0 is given by three planes intersecting transversely in A3. We may rephrase the
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question of constructing simple normal crossing degenerations of Hilbert schemes
of points as the following compactification problem. Let X◦ := X \X0, which lies
over C◦ := C \ {0}. Given such a family X → C, we explore how techniques of
expanded degenerations may be used to construct good compactifications of the
relative Hilbert scheme of m points Hilbm(X◦/C◦).

The aim is to construct a modular compactification in which all limit subschemes
can be chosen to satisfy some transversality condition in some modification of
X0. In the case which interests us here, namely Hilbert schemes of points, it
will just mean that we would like the length m zero dimensional subschemes to
have support in the smooth loci of the underlying two-dimensional fibres (we will
refer to this condition as the subschemes being smoothly supported). The problem
therefore is to construct expansions (birational modifications of the central fibre
of X in a 1-parameter family) in which all limits of families of length m zero-
dimensional subschemes needed to compactify Hilbm(X◦/C◦) can be chosen to
be smoothly supported. This allows us to break down the problem of studying
Hilbert schemes of points on X0 into smaller parts, by studying the products of
Hilbert schemes of points on the irreducible components of the modifications of
X . The work of Li and Wu only covers the case where the singular locus of X0

is smooth. Understanding how these problems work in general for simple normal
crossing surfaces is quite powerful, as we can always use semistable reduction to
reduce to this case.

Application to hyperkähler varieties. So far, we have only required that X is a
degeneration of surfaces with a simple normal crossing special fibre. A natural
question is to study the more specific case where X is a type III good degeneration
of K3 surfaces and try to construct a family of Hilbert schemes of points on X
which will be minimal in the sense of the minimal model program, meaning a
good or dlt minimal degeneration (see [11] and [7] for definitions of the minimality
conditions). The singularities arising in such a degeneration X are of the type
described here, i.e. we can restrict ourselves to the local problem where X0 is
thought of as given by xyz = 0 in A3. Among other reasons, Hilbert schemes
of points on K3 surfaces are interesting to study because they form a class of
examples of hyperkähler varieties. The question of minimality is addressed in [16].
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Tropical correspondence and mirror symmetry for log

Calabi-Yau surfaces

Tim Gräfnitz

(joint work with Helge Ruddat, Eric Zaslow and Benjamin Zhou, and with
Per Berglund and Michael Lathwood)

Log Calabi-Yau pairs (X,D) consisting of a smooth projective surface X and a
smooth anticanonical divisor D correspond under mirror symmetry to Landau-
Ginzburg models W : X̌ → C, with a superpotential function W . For toric Fano
varieties this is the Hori-Vafa potential given by a sum of toric monomials [1]. For
more general cases, the potential is the primitive Gross-Siebert theta function ϑ1,
defined by a sum over broken lines in the consistent scattering diagram on the dual
intersection complex of (X,D) [4]. This depends on the chamber. In the central
chamber there is no scattering (in the Fano case), and ϑ1 is equal to the Hori-Vafa
potential. For (X,D) = (P2, E), with E an elliptic curve, we have

ϑ1 = t ·
(
x+ y +

s

xy

)
.

The corresponding broken lines are shown in Figure 1.
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Figure 1. The potential ϑ1 of P2 in the central chamber, in two
different charts.

In an unbounded chamber (at “infinity”), by tropical correspondence [6], ϑ1 is a
generating function for 2-marked logarithmic Gromov-Witten invariants
R1,β·D−1(X, β), which can be seen as a logarithmic/relative analogue of Maslov
index 2 disks:

ϑ1(y) = y +
∑

β∈NE(X)

1
β·D−1R1,β·D−1(X, β)s

βtβ·Dy−(β·D−1).

It has infinitely many terms. For (X,D) = (P2, E) the first terms are

ϑ1(y) = y + 2st3y−2 + 5s2t6y−5 + 32s3t9y−8 + . . .

The corresponding broken lines are shown in Figure 2.
The open mirror map relates coordinates on X to coordinates on its mirror X̌ .

Its definition involves the classical period of the potential ϑ1, which is a solution
to a Picard-Fuchs type differential equation,

F0(z) =
∑

k>0

1

k
coeff1(ϑ

k
1)t

−k.

This is independent of the chamber by a result of [4]. We [7, 8] use a combinatorial
identity of Bell polynomials to show that the open mirror map is equal to ϑ1 at
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Figure 2. The potential ϑ1 of P2 at infinity.

infinity: Consider the open mirror map q0 = z0e
F0(z) and insert the inverses of the

closed mirror maps qi = zie
(βi·D)F0(z) to obtain M(q) := eF0(z(q)). Then, under

the change of variables qi = zi(t/y)
βi·D, at infinity we have

ϑ1(y) = yM(q).

This shows that ϑ1 is a coordinate on the mirror, as predicted by intrinsic mirror
symmetry [5].

In the non-Fano case there is internal scattering, so ϑ1 in the central chamber
is different from the Hori-Vafa potential, with correction terms coming from scat-
tering. For F2 and F3 this had been observed in [2] and [4]. With this corrected
potential, the equality ϑ1(y) = yM(q) is still valid [3]. Conjecturally, the Newton
polytope of ϑ1 gives a toric degeneration of X , which is related to other toric
degenerations by mutations [9]. For F4, the potential is shown in Figure 3 and its
mutation to the toric model F0 = P1 × P1 is shown in Figure 4.

x−1 x

y

x−4y−1
3x−3

3x−2y

y

x−1

Figure 3. The potential ϑ1 of F4 in the central chamber.
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Figure 4. Mutations ϑ1(F4)→ ϑ1(F2)→ ϑ1(F0).
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Hodge integrals, Abelian varieties, and the Hilbert scheme of points of

the plane

Rahul Pandharipande

The Deligne-Mumford moduli space of stable curvesMg,n is by far the most stud-
ied moduli space of varieties in algebraic geometry. The Hilbert scheme Hilb(C2, d)
of d points of the plane C2 is arguably the moduli of space of sheaves with the rich-
est known structure. Gromov-Witten theory, via the virtual class of the moduli
space of stable maps, provides a system of correspondences between these moduli
spaces of varieties and sheaves:

Mg,n ← [Mg,n(Hilb(C
2, d), β)]vir → Hilb(C2, d)n .

The data of all these correspondences as the genus g, the marking number n,
and the curve class β ∈ H2(Hilb(C

2, d)) vary constitutes the CohFT associated to
Hilb(C2, d) called GW(Hilb(C2, d)).
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The study of the genus 0 part of GW(Hilb(C2, d)) was undertaken 20 years ago
by myself and A. Okounkov [OP1]. We found that the entire genus 0 part (in
other words, the quantum cohomology of Hilb(C2, d)) is controlled by the operator
of quantum multiplication by the (unique up to scale) divisor class of Hilb(C2, d).
The main result of [OP1] is the calculation of this operator in the Fock space
description by Nakajima [N] and Grojnowski [G] of the cohomology of Hilb(C2, d).
The genus 0 study played an important role in the investigation of the GW/DT
correspondence of [MNOP] for local curves [BP,OP2]

The main goal of my lecture was to show the richness of the higher genus ge-
ometry of GW(Hilb(C2, d)). In the past year, the picture in genus 1 has become
clearer. There are several approaches to GW(Hilb(C2, d)) in higher genus (see [PT])
including Hodge integrals for the families Gromov-Witten theory of the universal
curve overMg,n. In the case of the genus 1 series for Hilb(C2, d) corresponding to
a single insertion of the divisor class (parallel to the fundamental genus 0 calcula-
tion discussed above), a complete solution is obtained via the Hodge integral study.
Moreover, the result is connected in an essential way to the Noether-Lefschetz the-
ory of the moduli space Ag of principally polarized abelian varieties of dimension
g as computed recently by A. Iribar López.

The formula of the basic genus 1 series (a result in 2024 of myself with A. Iribar
López and H.-H. Tseng) and is:

−
〈
(2)
〉Hilb(C2,d)

1
= − 1

24

(t1 + t2)
2

t1t2

(
Trd +

d−1∑

k=2

σ(d− k)
d− k Trk

)
.

Here, (2) denotes the divisor class of Hilb(C2, d) viewed as an element in Fock
space. The variables t1 and t2 are the standard equivariant parameters for the
scaling actions on the components of C2. The trace of the operator of quantum
multiplication by the class −(2) on the cohomology of Hilb(C2, d) is defined to be
(t1 + t2) · Trd. The function σ(m) is the sum of the divisors of the integer m. We
note that 〈

(2)
〉Hilb(C2,d)

1
,Tr2 . . . ,Trd

are all q series, where q is the Novikov parameter associated to the curve classes
of Hilb(C2, d). In fact, these are all rational functions in q.

The study of the above genus 1 formula relies also upon related results of S.
Canning, F. Greer, C. Lian. D. Oprea, S. Molcho, and A. Pixton.
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Logarithmic Tautological Rings

Johannes Schmitt

The logarithmic Chow ring of a normal crossing pair (X,D) describes the inter-
section theory of all iterated boundary blow-ups of X simultaneously. We discuss
past applications and explain how the language of Artin fans and cone stacks can
be used to describe the blow-ups and to construct interesting cycle classes on them.
We report some work in progress with R. Pandharipande, D. Ranganathan, and
P. Spelier on logarithmic tautological classes on moduli spaces of stable curves.

1. Introduction

The study of smooth normal crossings pairs (X,D), where X is a smooth variety
or algebraic stack and D is a normal crossings divisor, has significant implications
in various areas of algebraic geometry, including moduli spaces and enumerative
geometry. Motivated by the desire for a combinatorial framework for intersection
theory on such pairs, we explore the notion of logarithmic Chow rings and their
applications.

1.1. Logarithmic Chow Rings. Let (X,D) be a smooth normal crossings pair.

A log blow-up of (X,D) is a birational map π : X̂ → X obtained by a sequence of
blow-ups along smooth strata closures of D.

The logarithmic Chow ring logCH∗(X,D) is defined as the direct limit

logCH∗(X,D) = lim−→
π:X̂→X

CH∗(X̂),

where the limit is taken over all log blow-ups of (X,D) and the transition maps are
pullbacks along the corresponding morphisms. This construction incorporates in-
formation from various compactifications of the interiorX \D (which is unchanged
by the log blow-ups) while maintaining a combinatorial perspective.

The logarithmic Chow ring is a graded Q-algebra and admits a natural map
from the usual Chow ring:

CH∗(X)→ logCH∗(X,D), α 7→ [(X,α)].

This map is injective, so the logarithmic Chow ring refines the information cap-
tured by the usual Chow ring.
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1.2. Artin Fans and Cone Stacks. A crucial tool in understanding the struc-
ture of logarithmic Chow rings is the Artin fan A(X,D). The Artin fan is an
Artin stack of essentially combinatorial nature that encodes the stratification of
X induced by D and provides a bridge between the geometry of (X,D) and the
combinatorics of its boundary stratification.

• In the case of toric varieties, the Artin fan is simply the quotient stack
[X/T ], where T ⊆ X is the open torus. The Chow ring of the Artin fan is
isomorphic to the ring of piecewise polynomials on the associated fan ΣX .
• For general smooth normal crossings pairs, the Artin fan is constructed
from a more general object called a cone stack Σ(X,D). This cone stack
encodes the combinatorial data of the strata closures and their intersec-
tions, including information about monodromy actions (of the fundamen-
tal group of the strata S acting on the branches of D containing S).

There exists a smooth and surjective morphism

q(X,D) : X → A(X,D)

that relates the geometry of (X,D) to its Artin fan.

1.3. Intersection Theory on Artin Fans. The Chow ring of the Artin fan has
an elegant description in terms of piecewise polynomials:

Theorem 1 ([1]). The Chow ring of the Artin fan A(X,D) admits an isomorphism

Φ : sPP∗(Σ(X,D))→ CH∗(A(X,D))

from the ring of strict piecewise polynomials on the cone stack Σ(X,D).

This theorem allows us to explicitly describe classes in CH∗(A(X,D)) using con-
vex geometric data. Furthermore, composing Φ with the pullback map

q∗X,D : CH∗(A(X,D))→ CH∗(X)

allows us to construct geometric classes on X (which turn out to be fundamental
classes of strata closures decorated by Chern classes of their normal bundles).

The logarithmic Chow ring of A(X,D) is similarly described in terms of piecewise
polynomials on Σ(X,D), but with the added flexibility of subdivisions of the cone
stack, corresponding to log blow-ups of (X,D).

2. Applications to Moduli of Curves

The framework of logarithmic Chow rings proves particularly useful in studying
the moduli space of stable curvesMg,n with its boundary divisor ∆.

2.1. Logarithmic Double Ramification Cycle. One important application is
the construction of the logarithmic double ramification cycle logDRg(A), which
generalizes the classical double ramification cycle to the logarithmic setting. To
introduce it, let g ≥ 0 and A = (a1, . . . , an) ∈ Zn with

∑
ai = 0 (and 2g− 2+n >
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0). Then we can first consider the locus DR0
g(A) ⊂ Mg,n of smooth curves

(C, p1, . . . , pn) satisfying the condition

OC

(∑
aipi

)
∼= OC .

In [2] Holmes constructs a compactification of (the fundamental class of) DR0
g(A)

by specifying a log blow-up π : M̂A
g → Mg,n and intersecting some Abel–Jacobi

sections of the universal Jacobian over M̂A
g . Even though the construction involves

some choices for the log blow-up M̂A
g , Holmes proves that the resulting cycle

D̂Rg(A) on M̂A
g gives a well-defined element

logDRg(A) = [(M̂A
g , D̂Rg(A))] ∈ logCHg(Mg,n),

invariant under those choices. The logarithmic double ramification cycle exhibits
remarkable properties that distinguish it from the classical double ramification

cycle (obtained as DRg(A) = π∗D̂Rg(A)):

Theorem 2 ([3], [4, 5], [6], [7]). The log double ramification cycle satisfies:

• logDRg(A) · logDRg(B) = logDRg(A) · logDRg(A+B) ∈ logCH2g(Mg,n).

• logDRg(A) belongs to the subring divlogCH∗(Mg,n) of logCH
∗(Mg,n) gen-

erated by divisor classes.
• The double Hurwitz number1 Hg(A) can be expressed as an intersection

number on M̂A
g :

Hg(A) =

∫

M̂A
g

logDRg(A) · brg(A),

where brg(A) is a specific class encoding the fixed simple branch points.
• There are piecewise polynomials fL, fP ∈ PP∗(ΣMg,n

) such that

logDRg(A) = [exp (η +Φ(fL)) · Φ(fP )]g ∈ logCHg(Mg,n) ,

where η =
∑

i a
2
i /2 · ψi and [ ]g denotes the codimension g part.

These properties show that both the structural properties and the enumerative
applications of logDR are more rich than those of the classical double-ramification
cylces DR.

2.2. Logarithmic tautological rings of moduli spaces of stable curves.

The talk concluded with a discussion of some work in progress:

Theorem 3 (joint with Pandharipande, Ranganathan, and Spelier). The ring
homomorphism

PP∗(ΣM0,n
)→ logCH∗(M0,n)

is surjective, with kernel ideal generated by explicit piecewise-polynomial incarna-
tions of the WDVV-relations.

1The number Hg(A) counts branched covers of P1 with ramification profile A over 0 and ∞

and fixed simple branch points elsewhere.
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The talk concluded with a discussion of more general tautological classes in
logCH∗(Mg,n) which allow to combine boundary blow-ups with decorations via
κ- and ψ-classes only defined on the blown-up strata.
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The negative counterpart of Witten’s conjecture

Elba Garcia-Failde

In 1990, Witten [Wit90] conjectured that the generating series of intersection
numbers of psi classes is a tau function of the KdV hierarchy. This was first
proved by Kontsevich [Kon92]. In 2017, Norbury [Nor23] conjectured that the
generating series of intersection numbers of psi classes times a negative square
root of the canonical bundle is also a tau function of the KdV hierarchy, which
corresponds to the Brézin–Gross–Witten (BGW) tau function. In joint work with
N. Chidambaram and A. Giacchetto [CGG22], we prove Norbury’s conjecture and
obtain polynomial relations among kappa classes which were recently conjectured
by Kazarian–Norbury [KN23].

Furthermore, we introduce a new collection of cohomology classes, which cor-
respond to negative r-th roots (r = 2 in the previous paragraph) of the canonical
bundle and form a cohomological field theory (CohFT), the negative analog of Wit-
ten’s r-spin CohFT, which turns out to be geometrically much simpler. We prove
that the corresponding intersection numbers can be computed recursively using a
universal procedure called topological recursion and, equivalently, W-constraints.

The strategy draws inspiration from our proof, together with S. Charbonnier
[CCGG24], of Witten’s r-spin conjecture from 1993 (Faber–Shadrin–Zvonkine’s
theorem from 2010) that claims that (positive) r-spin intersection numbers satisfy
the r-KdV hierarchy. We also obtain new (tautological) relations on the moduli
space of curves in a (negative) analogous way to Pandharipande–Pixton–Zvonkine
[PPZ15]. The talk will be an overview of these four topics (r = 2 and r > 2;
positive and negative) and their connections.
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The Theta Θr classes. We are interested in the counterpart of Witten’s r-
spin class for “negative” spin. More precisely, for r ∈ Z≥2 and (a1, . . . , an) ∈
{0, . . . , r−1} (called the primary fields), consider the moduli space of twisted r-spin

curvesMr,−1

g;a which parametrizes the data of a stable curve (C, x1, . . . , xn) ∈Mg,n

together with a line bundle L on C such that

L⊗r ∼= ω−1
log

(
−

n∑

i=1

aixi

)
,

where ωlog is the log canonical bundle of C. Let C be the universal curve toMr,−1

g;a

and L be the universal line bundle on the universal curve: L −→ C π−→ Mr,−1

g;a .
By forgetting the extra data of the line bundle L, we also have a forgetful map

f :Mr,−1

g;a →Mg,n to the moduli space of stable curves.
Following Chiodo [Chi08], we take the derived pushforward E := R•π∗L. Given

a point p = (C, x1, . . . , xn, L) ∈M
r,−1

g;a , since degL < 0, we know that H0(C,L) =

0, and hence E is an honest vector bundle overMr,−1

g;a (whose fiber over p is given

by H1(C,L)). One can compute the rank of this vector bundle using Riemann–
Roch:

rkCE = h1(C,L) = − degL+ g − 1 =
(r + 2)(g − 1) + n+ |a|

r
=: Dr

g;a = D,

where |a| :=∑n
i=1 ai. Our main interest in this work is in the top Chern class of E,

which is the top degree of the so-called Chiodo class. LetW = spanQ(v0, . . . , vr−1),

and define the collection of maps Υr
g,n : W

⊗n −→ H•(Mg,n) as

Υr
g,n(va1

⊗ · · · ⊗ van) := (−1)n r 2g−2+|a|+n
r f∗ctop(E) ∈ HD(Mg,n) .

Theorem 1. Let V := spanQ(v1, . . . , vr−1) and η(va, vb) = δa+b,r. If we restrict
the arguments va of Υr

g,n to 1 ≤ a ≤ r − 1, then

Θr
g,n := Υr

g,n

∣∣
V

is a rank (r-1) (generically) non-semisimple CohFT on (V, η) with a modified unit
vr−1.

Having a non-vanishing cohomology class when setting some primary fields to
zero (opposite to what happens for Witten’s r-spin class (Ramond vanishing)),
allows us to deform the Theta class along the direction v0:

Θr,ǫ
g,n(va1

⊗ · · · ⊗ van) :=
∑

m≥0

ǫm

m!
pm,∗Υ

r
g,n+m(va1

⊗ · · · ⊗ van ⊗ v⊗m
0 ) ,

where pm :Mg,n+m →Mg,n is the map that forgets the last m marked points. As
v0 is not part of the vector space underlying the Theta class, the above deformation
is not a shift along any direction of the associated Dubrovin–Frobenius manifold
(differing from what occurs for shifted Witten classes).

Since deg pm,∗Υ
r
g,n+m(va1

⊗ · · · ⊗ van ⊗ v⊗m
0 ) = D − (r−1)m

r (which is negative
for big m), the sum in the definition of the deformed Theta class is finite. This
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also implies that Θr,ǫ
g,n is equal to the class Θr

g,n in top degree, with possibly some
correction terms in strictly smaller degree (analogous to the situation of shifted
Witten classes).

We prove that for any ǫ 6= 0, the deformed Theta class is semisimple and
homogeneous with respect to an Euler field. Then, we compute all the ingredients
of the Teleman reconstruction theorem to find an expression for Θr,ǫ in terms of
tautological classes. Teleman’s reconstruction theorem for CohFTs without a flat
unit does not apply for n = 0, which results in the exception for n = 0.

Theorem 2. For all stable (g,n), except for (g, n) = (g, 0) and degree d = 3g− 3,

Θr,ǫ
g,n = RTwg,n ,

where R, T and wg,n are an explicit R-transform, translation and topological field
theory, respectively. The Theta class is the term of degree d = D:

Θr
g,n(va1

⊗ · · · ⊗ van) = [degC = D]RTwg,n(va1
⊗ · · · van) .

All the terms of degree d > D vanish and thus produce (new) tautological relations:

[d]RTwg,n(va1
⊗ · · · van) = 0 , for d > D, except for n = 0 and d = 3g − 3 .

When r = 2 the statement takes a very simple form, involving κ-classes only,
and proves a conjecture of Kazarian–Norbury [KN23, conjectures 1 and 4].

Topological recursion and integrability. A very useful tool to find connections
between CohFTs and integrability is topological recursion, which is a universal for-
malism that takes as input an algebraic curve along with some extra data, called
a spectral curve, and recursively constructs multidifferentials known as correlators
on the underlying curve. From the spectral curve, one can build a semisimple
CohFT such that the multidifferentials can be expressed in terms of descendant
integrals of this CohFT [DOSS14]. We find a global spectral curve whose topolog-
ical recursion correlators encode the descendant theory of the (deformed) Theta
class.

Theorem 3 (Topological recursion). The CohFT associated to the 1-parameter
family of spectral curves Sǫ on P1 given by

x(z) =
zr

r
− ǫz , y(z) = −1

z
, B(z1, z2) =

dz1dz2
(z1 − z2)2

,

is Θr,ǫ. More precisely, the correlators corresponding to the spectral curve Sǫ are

ωg,n(z1, . . . , zn) =

r−1∑

a1,...,an=1

∫

Mg,n

Θr,ǫ
g,n(va1

⊗ · · · ⊗ van)

n∏

i=1

∑

ki≥0

ψki

i dξ
ki,ai(zi) ,

where the dξk,a(z) are certain explicit differentials.

This is a powerful result, as it allows one to calculate any descendant integral
by a recursion on 2g − 2 + n. By taking the parameter ǫ → 0, we obtain as a
corollary that the descendant integrals of the Theta class Θr

g,n are computed by
the Bouchard–Eynard topological recursion on the r-Bessel spectral curve S0. The
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Bouchard–Eynard topological recursion was analysed thoroughly in the context of
higher Airy structures in [BBC+24] and proved to be equivalent to a set of W-
constraints in general. Putting together the identification of the correlators of the
r-Bessel spectral curve with descendant integrals of the Theta class and the results
of [BBC+24], we prove the negative spin analog of the Witten r-spin conjecture.
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Generalized Block-Göttsche polynomials and Welschinger invariants

Pierrick Bousseau

(joint work with Hülya Argüz)

Let S be a smooth projective rational surface over C, obtained as a blow-up of
the projective plane at n points in general position. For every homology class
β ∈ H2(S,Z), there is a Gromov–Witten count GWS

0,β ∈ Z of complex rational

curves in S passing through m := c1(S) · β − 1 points in general position. The
numbersGWS

0,β can be computed recursively using the WdVV relation in Gromov–

Witten theory [4]. On the other hand, if all the n blown-up points are in the real
projective plane, then S inherits a natural structure of real algebraic variety, and
one can consider the counts with Welschinger signsWS

β ∈ Z of real rational curves

in S passing through m real points in general position [10]. The numbers WS
0,β

can be computed recursively using the real WdVV equation [6].
When S is a toric del Pezzo surface, that is when n ≤ 3, the counts GWS

0,β and

WS
β of complex and real rational curves can be determined tropically by counting
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tropical curves in R2 with appropriate multiplicities [7, 8] – see also [1]. Accord-
ing to Block-Göttsche, the tropical multiplicities admit a natural q-deformation.
Moreover, counting tropical curves with these refined q-multiplicities produces
Laurent polynomials BGS

β (q) ∈ Z[q±] which have the remarkable property to spe-

cialize to the complex Gromov–Witten counts GWS
0,β when q = 1, and to the real

Welschinger counts WS
β when q = −1 [3].

Our main goal is to provide a generalization of Block–Göttsche polynomials
for general S. The tropical definition does not extend in an obvious way beyond
the toric case. Instead, we will take as a starting point an algebro-geometric
interpretation of Block-Göttsche polynomials in terms of higher genus Gromov–
Witten invariants, as shown in [2]. For any g ∈ Z≥0, we define a higher genus
generalization GWS

g,β of the invariants GWS
0,β , using the insertion of a class λg

to cut out the virtual dimension to zero. Our first main result is the following
theorem.

Theorem [Argüz–Bousseau]. There exists a unique Laurent polynomial BPSS
β (q)

∈ Z[q±] such that, after the change of variables q = eiu, we have the equality

BPSS
β (q) =

∑
g≥0GW

S
g,βu

2g−2+c1(S)·β

(
2 sin

(
u
2

))c1(S)·β−2
.

We propose to view the polynomials BPSS
β (q) as generalizations of Block-

Göttsche polynomials. By the main result of [2], the polynomials BPSS
β (q) in-

deed recovers the Block-Göttsche polynomials when S is a toric del Pezzo surface.
Moreover, for general S, the specialization at q = 1 of BPSS

β (q) recovers the com-

plex Gromov–Witten count GWS
0,β . We conjecture that we also recovers the real

Welschinger counts at q = −1:
Conjecture [Argüz–Bousseau]. For every n ≥ 0, we have the equality

BPSS
β (−1) =WS

β .

Using degeneration arguments, we prove this conjecture when S is a del Pezzo
surface, that is, when n ≤ 8.

Theorem [Argüz–Bousseau]. For every n ≤ 8, we have the equality

BPSS
β (−1) =WS

β .

While no WdVV relation is known for the polynomials BPSS
β (q), we provide

an effective way to compute the polynomials BPSS
β (q) using a q-generalization of

the work of Parker computing the invariants GWS
0,β by degeneration [9].

Finally, we conjecture that the polynomials BPSS
β (q) have an alternative de-

sciption in terms of refined Donaldson–Thomas theory of the Calabi–Yau 3-fold
KS given by the total space of the canonical line bundle of the surface S. This
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conjecture is a generalization of a conjectural interpretation proposed by Göttsche–
Shende of Block-Göttsche polynomials using χy-genera of relative Hilbert schemes
of points [5].
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Towards quadratically enriched Gromov-Witten theory

Jake Solomon

The talk discussed progress on a program to develop quadratically enriched
Gromov–Witten theory. A relative orientation of a morphism f : M → N of
smooth k-schemes is an invertible sheaf L on M together with an isomorphism
ρ : Hom(detTM, detTN) → L⊗2. Let S be a del Pezzo surface over k, in the
sense that S is a geometrically connected, smooth, projective k-scheme of dimen-
sion 2 with ample anticanonical bundle −KS. Let dS = KS ·KS denote the degree
of S.

Let M̄0,n(S,D) denote the space of genus zero stable maps with nmarked points
in the class D ∈ Pic(S) and consider the total evaluation map ev : M̄0,n(S,D)→
Sn. Let σ = (L1, . . . , Lr) be an r-tuple of field extensions k ⊂ Li ⊂ k̄ such that∑k

i=1[Li : k] = n. For an L-scheme X , let ResL/kX denote the restriction of
scalars to k. We construct a corresponding Galois twist

evσ : M̄0,n(S,D)σ → (Sn)σ =
r∏

i=1

ResLi/k S.

We fix n = d− 1 and work under the following hypothesis.
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Hypothesis 1. Assume that D is not an m-fold multiple of a −1-curve for m > 1.
Moreover, assume that dS ≥ 4, or dS = 3 and d := −KS ·D 6= 6, or dS = 2 and
d ≥ 7.

1. Characteristic zero

Assume first that k has characteristic zero. In [KLSW23, Theorem 4.5], we identify
a closed subset A ⊂ (Sn)σ such that M̄0,n(S,D)goodσ := M̄0,n(S,D)σ \ev−1(A) has
the following two properties.

(1) The restriction of the total evaluation map evgoodσ : M̄0,n(S,D)goodσ →
(Sn)σ is relatively oriented.

(2) The codimension of A ⊂ (Sn)σ is at least 2.

Properties 1 and 2 allow us to define the degree of evgoodσ . However, the degree
is no longer valued in the integers Z. Rather, we build on F. Morel’s A1-degree
[Mor04, KW19] to define a degree in the Grothendieck–Witt ring GW(k). We
recall the definition and basic properties of GW (k) in Section 3 below. One of our
main results is the following.

Theorem 1. Let S,D, σ satisfy Hypothesis 1 and assume that S is A1-connected.
Then there exists an invariant NS,D,σ in the Grothendieck–Witt ring GW(k) given
by the degree of evgoodσ .

2. Positive characteristic

We turn to the case when k has positive characteristic. LetMbir
0 (S,D) ⊂M0(S,D)

be the open subscheme of maps u : P → S from irreducible genus 0 curves such
that P → u(P) is birational. Such u is said to be unramified if u∗T ∗S → T ∗P is
surjective.

Hypothesis 2. In addition to Hypothesis 1, assume k is perfect of characteristic
not 2 or 3. If dS = 2, assume additionally that for every effective D′ ∈ Pic(S),
there is a geometric point f in each irreducible component of Mbir

0 (S,D′) with f
unramified.

Let Λ be a complete discrete valuation ring with reside field k and quotient field
K of characteristic 0. In [KLSW23, Section 9] we construct S̃ → SpecΛ a smooth

del Pezzo surface equipped with an effective D̃ ∈ Pic(S̃) with special fibers S̃k
∼= S

and D̃k
∼= D. We construct a Galois twist

ẽvσ : M̄0,n(S̃, D̃)σ → (S̃n)σ

that agrees with evσ on the special fiber. Moreover, we identify a closed subset
Ã ⊂ (S̃n)σ such that M̄0,n(S̃, D̃)goodσ := M̄0,n(S̃, D̃)σ \ ev−1(Ã) has the following
two properties.

(1) The restriction of the total evaluation map ẽvgoodσ : M̄0,n(S̃, D̃)goodσ →
(S̃n)σ is relatively oriented.

(2) The codimension of Ã ⊂ (S̃n)σ is at least 2.
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Properties 1 and 2 again allow us to define the degree of ẽvgoodσ in GW(k). Thus
we obtain the following result.

Theorem 2. Let S,D, σ satisfy Hypothesis 2 and assume that S is A1-connected.
Then, there exists an invariant NS,D,σ in the Grothendieck–Witt ring GW(k) given

by the degree of ẽvgoodσ . It is independent of the choice of S̃, D̃.

3. The Grothendieck–Witt ring

In order to explain the enumerative meaning of the invariants NS,D,σ, we recall
the definition and basic properties of the Grothendieck-Witt ring GW(k). The
Grothendieck–Witt ring is defined as the group completion of the semi-ring of
non-degenerate symmetric bilinear forms over k. Since symmetric bilinear forms
over a field are stably diagonalizable, an arbitrary element of this group can be
expressed as a sum of rank 1 bilinear forms. Let 〈a〉 denote the element of GW(k)
corresponding the rank 1 bilinear form k × k → k given by (x, y) 7→ axy for a in
k∗.

For finite rank field extensions L ⊆ E, there is an additive transfer map

TrE/L : GW(E)→ GW(L),

which has the following simple description when L ⊆ E is separable: for a sym-
metric, non-degenerate bilinear form β : V × V → E over E, we can view V as a
vector space over L and consider the composition

V × V β→ E
TrE/L−→ L

where TrE/L is the sum of the Galois conjugates. Since L ⊆ E is separable,
TrE/L ◦ β is a non-degenerate symmetric bilinear form over L. The value of the
transfer map on the class [β] of the form β is given TrE/L[β] = [TrE/L ◦ β].

4. Enumerative meaning

To see the enumerative meaning of the degree NS,D,σ, we generalize the sign
associated to a node with two complex conjugate branches over R. Suppose u :
Pk(u) → S is a rational curve on S defined over the field extension k(u) of k. Let
p be a node of u(Pk(u)). The two tangent directions at p define a degree 2 field

extension k(p)[
√
D(p)] of k(p), for a unique element D(p) in k(p)∗/(k(p)∗)2. By

[SGA73, Exposé XV Théoréme 1.2.6], the extension k(u) ⊆ k(p) is separable. Let
Nk(p)/k(u) : k(p)∗ → k(u)∗ denote the norm of the field extension k(u) ⊆ k(p)
given by the product of the Galois conjugates.

Definition 4.1. The mass of p is defined by

(1) mass(p) = 〈Nk(p)/k(u)D(p)〉 in GW(k(u)).

This makes sense because multiplying D(p) by a square in k(p) multiplies the norm
by a square in k(u).
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The following is valid under the same hypotheses as Theorem 1 for k of char-
acteristic zero and under the same hypotheses as Theorem 2 for k of positive
characteristic.

Theorem 3. If there exist p1, p2, . . . , pr points of S with k(pi) ∼= Li in general
position, we have the equality

NS,D,σ =
∑

u degree D
rational curve

through the points
p1,...,pr

Trk(u)/k
∏

p node of u(P1)

mass(p).

in GW(k). So the weighted count of degree D rational plane curves through the
points p1, p2, . . . , pr given on the right hand side is independent of the general
choice of points. When k is an infinite field and S is rational over k, such a
general choice of points exists.

Consequently, for k = C the rank of NS,D,σ coincides with the corresponding
Gromov–Witten invariant. For k = R, the signature of NS,D,σ recovers the signed
counts of real rational curves of Degtyarev-Kharlamov and Welschinger. For k =
Fp,Qp,Q etc., one obtains a new Gromov–Witten invariant. Andrés Jaramillo
Puentes and Sabrina Pauli have work in progress giving an enriched count of
rational curves of a fixed degree through rational points on a toric surface via a
tropical correspondence theorem, building on their previous work [JPP22].

General position of the points p1, p2, . . . , pr of S with k(pi) ∼= Li means the
following. There is a dense open subset U of

∏r
i=1 ResLi/k S such that for any

rational point of U, the theorem holds for the corresponding r-tuple of points
p1, p2, . . . , pr of S with k(pi) ∼= Li. The open subset U may not contain a rational
point. Even for S = P2, this may happen over a finite field. Nonetheless, NS,D,σ is
a meaningful invariant. It is the A1-degree of an evaluation map and an analogue
of a Gromov–Witten invariant defined over perfect fields of characteristic not 2 or
3, including finite fields. Just as Gromov–Witten invariants make sense of curve
counts when general position can not be achieved, these analogues give meaning
to curve counts when rational points do not exist.
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http://arxiv.org/abs/2208.00240


Real and Logarithmic Enumerative Geometry 1315

Givental reconstruction for real Gromov-Witten invariants

Thomas Guidoni

The all-genus Gromov-Witten theory of targets with semi-simple small quantum
cohomology can be expressed in terms of its genus 0 restriction through Givental
reconstruction formula. It was discovered by Givental for the equivariant theory
of projective spaces - and more generally of targets with hamiltonian toric actions
with isolated fixed points - using localization formulas [1, 2, 3]. Teleman proved
the general non-equivariant statement by classifying homogenous semi-simple co-
homological field theories [6].

In this note, we describe a Givental-type reconstruction for real Gromov-Witten
theory with conjugate constraints. We prove it for the equivariant theory of the
targets (P2N−1

C , θN ), where

θN : [x+1 : x−1 : . . . : x+N : x−N ] 7→ [x−1 : x+1 : . . . : x−N : x+N ].

Equivariant refers to the action of the N -dimensional torus T = (C∗)N , where the
i-th factor C∗ acts with weight (0, 0, . . . ,−1, 1, . . . , 0, 0) on P2N−1.

For g, n, d ≥ 0, let

Mg,n(P
2N−1, θN , d)

be the moduli space of stable real maps f : (Σ, σ; p+1 , p
−
1 , . . . , p

+
n , p

−
n )→ (P2N−1, θN)

of degree d, where Σ is a connected Riemann surface of genus g, σ is an anti-
holomorphic involution on Σ, the 2n-marked points (p±i ) are pair-wise distinct
and satisfy σ(p±i ) = p∓i , and f ◦ σ = θN ◦ f . We also consider the moduli space

DMg,n(P
2N−1, θN , d) of genus g doublets, defined similarly with domains (Σ, σ)

such that Σ is the disjoint union of two connected Riemann surfaces of genus g
and σ exchanges the two connected components.

The target (P2N−1, θN ) is real-orientable in the sense of Georgieva-Zinger and it
carries a canonical real orientation [5]. It provides the moduli spaces of stable real
maps with a virtual fundamental class [4] and allows to define the real Gromov-
Witten invariants

〈
ψk1γ1, . . . , ψ

knγn
〉R
g
=

∞∑

d=0

qd
∫

[Mg,n(P2N−1,θN ,d)]vir
T

n∏

i=1

ψki

i ev
∗
i (γi) ∈ H•

T(pt,C)[[q]]

for integers k1, . . . , kn ≥ 0 and classes γ1, . . . , γn ∈ H•
T(P

2N−1,C). The ψ-class
ψi and the evaluation map evi are taken at the positive marked point p+i . For
t ∈ H•

T(P
2N−1,C), let

〈〈
ψk1γ1, . . . , ψ

knγn
〉〉R

g
=

∞∑

m=0

1

m!

〈
ψk1γ1, . . . , ψ

knγn, t/2, . . . , t/2︸ ︷︷ ︸
m times

〉R

g

We define similarly the doublet invariants
〈〈
ψk1γ1, . . . , ψ

knγn
〉〉D

g
as integrals over

the corresponding doublet moduli spaces. The real Givental-type reconstruction
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describes the invariants

(1) 〈〈·, . . . , ·〉〉R+D
g = 〈〈·, . . . , ·〉〉Rg + 〈〈·, . . . , ·〉〉Dg+1

2
.

The doublet contribution vanishes for even g. We allow the value g = −1 for
which there is no real contribution. The invariants (1) can be computed using
localization [5]

The Givental-type reconstruction for the invariants (1) is expressed as a sum over
real stable graphs. A real graph of type (g, n) is a connected graph Γ with some
decorations. Each vertex v ∈ V (Γ) has a genus gv ∈ Z+, leaves labelled by a
subset Iv of {1, . . . , n} in such a way that (Iv) is a partition of {1, . . . , n}, and an
arbitrary number of additional leaves that we refer to as real leaves. If nv is the
sum of the numbers of half-edges, marked and real leaves incident to v, we require

1− g − n =
∑

v∈V (Γ)

2− 2gv − nv.

The real graph is stable if 2− 2gv−nv < 0 for all v ∈ V (Γ). Let ΓR
g,n be the finite

set of isomorphism classes of stable real graphs of type (g, n).
For each stable real graph [Γ] ∈ ΓR

g,n, we define

(2)
〈〈
ψk1γ1, . . . , ψ

knγn
〉〉Γ

=
∏

v∈V (Γ)

1

2

∞∑

k=0

1

k!

∫

Mgv,nv+k

Ωt,q2

gv,nv+k(· · · )

where Ωt,q
gv ,nk+k is the topological field theory

H•
T(P

2N−1,C)⊗(nv+k) → H0(Mgv ,nv+k,C)⊗H•
T(pt,C)[[q]].

In order to describe the vectors inserted into these multilinear forms in (2), we
need formal series involved in Givental reconstruction for the complex invariants :

• A formal series St,q(z) in 1/z with endomorphism coefficients.
• A formal series Rt,q(ψ) in ψ with endomorphism coefficients.
• A formal series Et,q(ψ, ψ′) in ψ, ψ′ with bivector coefficients.
• A formal series T t,q(ψ) in ψ with vector coefficients.

All these formal series are defined from the complex genus 0 theory of P2N−1, see
[1, 2]. For the real Givental-type reconstruction, we also consider :

• The involution τ = −θ∗N on H•
T(P

2N−1,C). It induces the involution

τ̂

(
∞∑

k=0

γkψ
k

)
=

∞∑

k=0

τ(γk)(−ψ)k

on H•
T(P

2N−1,C)[[ψ]].
• A formal series U t,q(ψ′) in ψ′ with coefficients in linear forms. It is ob-
tained from the asymptotic expansion at ψ′ = 0 of

√
−1
2

〈〈 ·
ψ′ − ψ

〉〉R

0

.
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We can now describe the vectors inserted into the (nv + k)-linear form associated
to a vertex v ∈ V (Γ) in (2). The insertions are labelled by the half-edges, marked
and real leaves incident to v, and an arbitrary number k of additional insertions.
Each insertion corresponds to one of the nv + k marked points in Mgv ,nv+k - in

particular each insertion corresponds to a ψ-class ψj ∈ H2(Mgv ,nv+k,C), at which
we evaluate the formal variable ψ in what follows.

• In the insertion corresponding the i-th marked point, we plug the coeffi-
cient of 1/zki+1 in

(id+ τ̂) ◦ R
t,q2(−ψ)T ◦ St,q2(z)(γi)

z − ψ .

The transpose is taken with respect to the Poincaré pairing.
• An edge corresponds to two insertions - possibly at different vertices - one
for each half-edge. We insert the bivector

(id+ τ̂)⊗ (id+ τ̂ ′)

2
◦ Et,q2(ψ, ψ′).

• The additional insertions are filled with
id+ τ̂

2
◦ T t,q2(ψ).

• Into the real leaves, we plug

U t,q(−ψ)T .
Theorem 1. The real Gromov-Witten theory of (P2N−1, θN ) satisfy

√
−11−g 〈〈

ψk1γ1, . . . , ψ
knγn

〉〉R+D

g
=

∑

[Γ]∈ΓR
g,n

1

|Aut(Γ)|
〈〈
ψk1γ1, . . . , ψ

knγn
〉〉Γ

for 1− g − n < 0 at any point t such that τ(t) = t.

The right-hand side involves only integrals of ψ-classes over the moduli spaces
of curves and the genus 0 complex and real Gromov-Witten theory of the target.

Conjecture 1. The real Gromov-Witten of every real-orientable target whose
quantum coholomogy is semi-simple satisfy Theorem 1 for a suitable U t,q(ψ).
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Logarithmic linear series

Franchesca Carocci

(joint work with Luca Battistella, Jonathan Wise)

1. Introduction: history and motivations

For C a smooth, projective curve a grd, namely rank r, degree d linear series is

the data of L ∈ Picd(C) together with V ⊆ H1(C,L) of dimension r + 1. Linear
series are the main object of study of classical Brill–Noether theory. The funda-
mental theorems in the theory were established in the 1980s, using degenerations
to singular curves [5, 4]; among these classical results is the following:

Theorem 1. Let C be a general smooth projectuve curve of genus g. Let ρ(g, r, d) :=
g−(r+1)(g−d+r). Then the moduli space Gr,d(C) of grd on C is a smooth projective
variety of the expected dimension ρ(g, r, d) := g − (r + 1)(g − d+ r).

Although the original results of classical Brill-Noether theory can be proved
without degenerations more recent progress depends on passing to nodal curves.
It is then natural to ask:

Question 1.

(1) How does the data of a linear series degenerate when C degenerate to a
nodal curve C0, i.e.: How does the line bundle L degenerate and how does
V degenerate ?

(2) What can we say about the moduli space of linear series on C0 ?
(3) How can we detect when a linear series on C0 is the limit of a linear series

on a smooth curve?

In the talk I explain how in a joint work with Luca Battistella and Jonathan
Wise we give an answer to this question using logarithmic geometry.

First, we will recall that for degenerations to nodal curves of compact type we
have the satisfying theory of limit linear series, [3]. We review Eisenbud-Harris
definition and at the end of the talk explain how to re-interpret it in terms of our
logarithmic linear series.

Then we will introduce the necessary ingredients to define linear series on log-
arithmic curves.

2. Logarithmic ingredients

2.1. Logarithmic curves and Artin Fans. A log curve over S is a proper,
integral and logarithmically smooth morphism π : C → S with connected one-
dimensional (geometric) fibres. F. Kato [6] provided a classification of log smooth

curves. To C
π−→ S a log curve we can associate AC

π̄−→ AS a morphism of Olsson
Fans [1]. We consider the Olsson fan relative to S Γ = S ×AS AC obtained by
base change. By [2] the category of Olssons’s fans is equivalent to the data of
generalized cone complexes. Thus Γ (relative to S) should really be thought as a
combinatorial object. We refer to τ as the tropicalization. Notice that Γ, thought
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as an algebraic stack, is naturally endowed with a logarithmic structure MΓ such
that the map τ is strict.

The following is the only example we need for the talk:

Example 2. Let C → Spec(N→ k) be a log curve over the standard log point with
C ∼= Cv ∪qe Cw a curve with one node qe. Then AS

∼= [A1/Gm] with associated
cone complex the ray ρ ∼= R≥0; AC

∼= [A2/G2
m] with associated cone complex the

positive quadrant σ ∼= R2
≥0. The morphism AC → AS is induced by the multipli-

cation map A1 t=xy−−−→ A1. Then Γ ∼= [Spec k[x,y]
xy /Gm] where Gm acts with opposite

weights λ, λ−1 on x, y. The associated combinatorial onject is now a polyhedra cone
complex, namely a edge e.

2.2. Logarithmic Picard group.

Definition 3. Let C
π−→ S be a log curve, then a logarithmic line bundle is an

Mgp
C -torsor L such that on the fiber L|Cs satisfy a technical condition called the

bounded monodromy condition.

Theorem 4. [8] The logarithmic Picard group

LogPic(C/S) = R1 π∗G
†
log

is a stack over LogSch in the strictly étale topology. It admits a logarithmic smooth
cover by log smooth schemes and it is proper over S.

In order to understand how to think of log line bundles for us will be important
that bounded monodromy implies:

Fact. For any L ∈ LogPic(C/S) there exist a log modification S′ → S and a

subdivision C′ f−→ C×S S
′ such that the M̄gp

C′ torsor f∗L induced by f∗L is trivial.

For any trivialization γ ∈ f∗L we have a representative line bundle f∗L(γ).
These trivializations are a torsor under CL(Γ′) ∼= π′

∗M
gp

C′ . In particular, we have
the following interpretation of LogPic.

lim
C′→S′

Pic(C′/S′)/π′
∗M

gp

C′
∼= LogPic(C/S)

Since the map τ is strict, M̄gp
C
∼= M̄gp

Γ . Thus we can identify M̄gp
C -torsors L with

M̄gp
Γ -torsosr.
The theory of logarithmic line bundle tells us how to take degenerations of line

bundles when the curve degenerate to a nodal one.

2.3. Vector bundle up to homothety.

Definition 5. AMgp
Γ ⊗OΓ

GLn-torsor E is called a vector bundle up to homothety.
on the tropical curve Γ.

To a vector bundle up to homothety we can associate a M̄gp
Γ -torsor E . Then,

as for logarithmic line bundles, for each section γ ∈ E , there is a locally free sheaf
E(γ),representing E . In the key example of the edge:
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Example 6. Using Klyachko’s description of equivariant vector bundles on toric
varieties (see for example [7] we will see that vector bundle on a edge e is the data
of two filtered vector spaces E•

1 , E
•
2 together with an isomorphism of the associated

graded gr•(E
•
1 )
∼= gr−•(E

•
2 ). where the change of sign comes from the fact that the

action of Gm on the two branches is with opposite weight. This will allow us to
explain that a vector bundle up to homothety on e is the data of two vector bundles
up to homothety on the rays with an isomorphism also only well defined up to some
shifts d gr•(E

•
1 )
∼= grd−•(E

•
2 ).

We explain that theory of vector bundles on families of tropical curve present
some difficulties: the stack of vector bundles of rank r on Γ/S is not algebraic.
We resolve this issue working with realizable bundles; the stack Br of realizable

bundles on Γ
p−→ S a tropical curve is algebraic and irreducible of dimension −(r)2

over S.
Once we have all the ingredients, we define logarithmic linear series and state

the main results.

3. Logarithmic linear series: definition and results

Definition 7. A logarithmic linear series on C → S with tropicalization τ : C →
Γ/S ;

(1) a logarithmic line bundle L on C of degree d with associated M̄gp
C = M̄gp

Γ -
torsor L̄ over Γ;

(2) an homothety vector bundle E of rank r+1 on Γ together with an isomor-

phism of M̄gp
Γ -torsors L̄ ∼= E ;

(3) a morphism τ∗E x−→ L of locally free sheaves up to homothety;

such that

non-degeneracy: For each (equivalently, any) local section α ∈ L̄ the mor-

phism E(α) x−→ τ∗L(α) is universally injective.
stability: there is a stability condition.

We explain how to interpret limit linear series of Eisenbud-Harris as logarithmic
linear series.

Theorem 8. Gd
r(C/S) → LogSchsfs /S is logarithmic stack in the strict étale

topology, which is moreover algebraic of finite type, Deligne-Mumford and proper
relative to LogPic(C/S). In particular Gd

r(C/S)→ S is proper.

Theorem 9. Gd
r(C/S) is endowed with a perfect obstruction theory Rp∗L ⊗ E∨

relative to the irreducible stack Br parametrizing log curves together with a real-
izable vector bundle. In particular Gd

r(C/S) is endowed with a virtual class of
expected dimension ρ(g, r, d) relative to S.

Corollary 10. Every irreducible component of Gd
r(C/S) has dimension at least

ρ(g, r, d) relative to S. A sufficient condition for a logarithmic linear series lgdr to
be smoothable is that the dimension of Gd

r(C/S) at lg
d
r over S is exactly ρ(g, r, d).
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Gromov–Witten invariants of log Calabi–Yau 3-folds are holomorphic

Lagrangian correspondences

Brett Parker

Motivated by geometric quantisation, Alan Weinstein famously proposed using
Lagrangian correspondences as morphisms in a symplectic category. Weinstein
proposed this in unpublished work in the 1970s, but a modern survey can be
found in [1]. Analytic difficulties plague this idea in the smooth setting, but a
holomorphic version of Weinstein’s symplectic category overcomes such difficul-
ties. The evaluation space for the moduli stack of holomorphic curves in a log
Calabi–Yau 3-fold has a natural holomorphic symplectic structure constructed
from the 3-fold’s holomorphic volume form. Moreover, the image of the moduli
stack of holomorphic curves is a holomorphic Lagrangian, and the pushforward of
the virtual fundamental is a holomorphic Lagrangian cycle.

A smooth symplectic manifold is a smooth manifold M with non-degenerate,
closed 2-form ω, and a Lagrangian submanifold of M is a half–dimensional sub-
manifold on which the symplectic form vanishes. Symplectic manifolds arise as
phase spaces in classical mechanics. A primary example is the cotangent bundle
T ∗X of a smooth manifoldX , and examples of Lagrangian submanifolds are cotan-
gent fibers, and the graphs of exact 1–forms. To motivate the Weinstein category,
consider a symplectomorphism f : (M,ωM ) −→ (N,ωN ); that is is a diffeomor-
phism such that f∗ωN = ωM . A diffeomorphism f is a symplectomorphism if and
only if the symplectic form −ωM+ωN vanishes on graph of f withinM×N , so the
graph of f is a Lagrangian submanifold of the symplectic manifoldM−×N , where
M− indicates M with the symplectic form −ωM . Weinstein proposed expanding
the definition of morphisms from M to N to include all Lagrangian submanifolds
of M− ×N , and composing these morphisms as correspondences between M and

https://doi.org/10.1142/S0129167X0000012X


1322 Oberwolfach Report 23/2024

N . This idea was partially motivated by pioneering work of Hörmander on the
semiclassical limit of operators; [3]. In the case of cotangent bundles, Hörmander
associates ‘classical’ Lagrangian correspondences in (T ∗X)− × T ∗Y as wave-front
sets of certain ‘quantum’ operators between the spaces of functions on X and Y .
For example, Fourier integral operators in the form f 7→

∫
eiΦ(x,y)a(x, y)f(x)dx

are associated to the correspondence defined by the image of graph of dφ under the
symplectic map T ∗X × T ∗Y −→ (T ∗X)− × T ∗Y defined by multiplying fibres of
T ∗X by −1. Moreover, when Lagrangian correspondences are sufficiently trans-
verse, the classical composition of correspondences coincides with the quantum
composition of operators. For a modern symplectic perspective, see [2].

The Weinstein symplectic category is a wonderfully enticing idea, but suffers dif-
ficulties: the composition of Lagrangian correspondences is only a Lagrangian cor-
respondence when the correspondences intersect cleanly. In this talk, we consider
various holomorphic versions of Weinstein’s symplectic category. The patholo-
gies of smooth intersection theory do not occur in the more rigid holomorphic
or algebraic setting, so we can overcome the complications plaguing Weinstein’s
symplectic category in the smooth setting.

A correspondence between sets X and Y is a subset R ⊂ X × Y . The set-
theoretic composition of correspondences R1 ⊂ X × Y and R2 ⊂ Y × Z is the set
R2 ◦R1 ⊂ X×Z consisting of points (x, z) such that there exists some point y ∈ Y
such that (x, y) ∈ R1 and (y, z) ∈ R2. So, R2◦R1 is constructed by taking the fibre
product of R1 and R2 over Y , then projecting out the Y direction. This notion
of relations as sets is not quite what we use for our holomorphic versions of the
Weinstein category. Instead, our relations consist of a formal linear combination
of Lagrangian cycles, and composition uses fibre products and pushforwards of
cycles, so differs from the set theoretic composition in that it assigns canonical
integer weights to the components of the set theoretic composition. With this
version of relations, we can canonically encode Gromov–Witten invariants of log
Calabi–Yau 3-folds as Lagrangian cycles, and composition of these Lagrangian
cycles is compatible with gluing of Gromov–Witten invariants.
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The KSBA moduli space of stable log Calabi–Yau surfaces

Hülya Argüz

(joint work with Valery Alexeev, Pierrick Bousseau)

A higher dimensional analogue of a “stable curve” [5] is a stable pair, introduced
by Kollár–Shepherd-Barron [9] and Alexeev [2], given by a tuple (Y,B), where Y
is a projective variety, and B is a Q-divisor satisfying the following conditions:
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i) (Y,B) has semi-log-canonical (slc) singularities
ii) KY +B is Q-Cartier and ample.

The moduli space of stable pairs, often referred to as the KSBA moduli space, is
defined as follows.

Fix d ∈ Z, ω1, . . . ωn ∈ Q>0, and v ∈ Q>0. Then, the KSBA moduli space
MKSBA(d, ω1, . . . , ωN , v) is the moduli space parametrising all stable pairs (Y,B),
where Y is a projective variety of dimension d, B is a Q-divisor in Y which admits
a decomposition B =

∑n
i=1 ωiBi where Bi’s are effective divisors. Moreover,

one requires the volume of (Y,B), which by definition is the intersection number
(KY +B)d, to be equal to v ∈ Q>0.

Note that choosing d = 1 and ωi = 1 for all 1 ≤ i ≤ n, we get stable pairs
(C,
∑n

i=1 pi) given by n-marked curves of arithmetic genus g such that the volume
KC +

∑n
i=1 pi = 3g − 3 + n = v. In dimension one, the condition to have slc

singularities amounts to requiring C to have at worst nodal singularities, and
furthermoreKC+

∑n
i=1 pi being ample is equivalent to the automorphism group of

(C,
∑n

i=1 pi) to be finite. Therefore,MKSBA(1, 1, . . . , 1, v) is the classical Deligne–

Mumford moduli space of stable curvesMg,n. The KSBA moduli space of higher

dimensional stable pairs, similarly toMg,n, is a Deligne–Mumford stack – in what
follows we just consider the coarse moduli space and forget the stacky structure.
However, the connected components of the KSBA moduli space are generally not
irreducible, due to the fact that the deformation theory of slc singularities in
high dimensions is significantly more challenging than the deformation theory of
nodal curves. One generally may wish to describe the geometry of the irreducible
components of the KSBA moduli space.

For instance, in the toric situation for a polarised toric variety Y with an ample
line bundle L, denoting the toric boundary divisor by D, we define M(Y,D,L) as

the closure inMKSBA of the locus of stable pairs (Y,D+ ǫC), where C ∈ |L| and
0 < ǫ << 1. In this case, the geometry of the KSBA moduli space is described in
[3], where Alexeev showed that the (normalization of the) moduli spaceM(Y,D,L)

is a toric variety with associated fan given by the secondary fan of the momentum
polytope of (Y,D,L). Here the secondary fan for the momemtum polytope P of
(Y,D,L), defined by Gelfand–Kapranov–Zelevinsky [6], also known as the GKZ
fan is a toric fan whose maximal cones are in one-to-one correspondence with the
regular triangulations of P . In [4], we generalize this result to the KSBA moduli
space of log Calabi–Yau surfaces and show that (up to a finite cover) it is also a
toric variety. In what follows we shortly explain how this is done, after defining
the KSBA moduli space in the context of log Calabi–Yau surfaces.

Let (Y,D,L) be a polarized log Calabi–Yau surface given by a projective surface
Y with an ample line bundle L on it, and D ⊂ Y a reduced, anticanonical divisor.
While mostly in the literature log Calabi–Yau surfaces are assumed to be given
by smooth projective varieties with such divisors, we allow (Y,D) to be singular,
and assume it has log canonical singularities [4]. Furthermore assume that (Y,D)
is maximal, that is, D 6= ∅ and admits a 0-dimensional strata. In this case, the
KSBA moduli space for (Y,D,L), denoted by M(Y,D,L), is the closure in the
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moduli space of stable pairs of the locus of stable pairs deformation equivalent to
(Y,D+ǫ C), where C ∈ |L| and 0 < ǫ << 1. In this case, Hacking–Keel–Yu (HKY)
conjectured thatM(Y,D,L) should be, up to a finite cover, a toric variety defined
by a generalized version of the “secondary fan” coming from mirror symmetry [8]
(in fact, the HKY conjecture concerns more generally log Calabi–Yau varieties of
any dimension). Apart from the toric cases proven by Alexeev, this conjecture
was previously proven for del Pezzo surfaces Y of degree n where 1 ≤ n ≤ 6, with
D a cycle of n many (−1)-curves, and moreover L = −KY . In [4] we prove this
conjecture for all log Calabi–Yau surfaces. Our main result shows:

Theorem: The moduli spaceM(Y,D,L) of polarized log Calabi–Yau surfaces, up
to a finite cover, is a toric variety.

To prove this, we use mirror symmetry and study the “double mirror” to
(Y,D,L). As a first step we construct semi-stable mirrors to maximal degen-
erations of (Y,D,L), which are given by projective crepant resolutions X →
X → Spec C[|t|] where X is an affine threefold with canonical singularities. We
then study the double mirror family, that is, the mirror to the semistable mirror
X → X → Spec C[|t|], using “intrinsic mirror symmetry” of Gross–Siebert [7],
which uses as a main ingredient punctured log Gromov–Witten theory developed
by Abramovich–Chen–Gross–Siebert [1]. We show that the double mirrors to all
maximal degenerations of (Y,D,L), or the intrinsic mirrors to all crepant resolu-
tions of X glue to a family over the toric variety Msec whose fan is the relative
Mori fan of X/X . One of our key results then shows that this family is a family of
KSBA stable log Calabi–Yau surfaces, with general fiber deformation equivalent
to (Y,D,L). By the universal property of KSBA moduli spaces this gives a map
Msec →M(Y,D,L). As a final step we show that this map is finite and surjective.
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Topology of totally real degenerations

Matilde Manzaroli

(joint work with Emiliano Ambrosi)

We present the content of [AM22], where we study the topology of totally real
semi-stable degenerations. The main result is a bound for the individual Betti
numbers of a smooth real fiber in terms of the complex geometry of the degenerated
fiber. The main ingredient is the use of real logarithmic geometry, which makes it
possible to study degenerations that are not necessarily toric, and therefore to go
beyond the case of smooth tropical degenerations, studied by Renaudineau-Shaw.

Let X be a real algebraic variety, let X(C) be the set of its complex points
and X(R) the set of its real points. For a topological space Y , set bi(Y ) :=
dimF2

(Hi(Y,Z/2Z)) for its ith Betti number.

1. Complex semistable degeneration

A classical tool to study irreducible smooth projective varieties is to degener-
ate them to a union of irreducible simpler varieties. A celebrated theorem of
Steenbrink [Stee76] shows that if C is a smooth complex curve and X → C is
a semistable degeneration of projective varieties with singular fiber X0, then the
rational cohomology of a general smooth fiber Xt can be computed from the ge-
ometry of X0. More precisely, Steenbrink shows that, for every q ≥ 0, there exists
a complex Eq,•

2 of Q-vector spaces, depending only on X0, such that

(1) dim(Hi(Xt,Q)) =
∑

p+q=i

dimHp(Eq,•
2 ).

The goal of [AM22] is to try to extend this kind of results to real semistable
degenerations and to understand to which extent the topology of the real special
fiber control the topology of the real general fiber.

2. Real semistable degeneration

Assume from now on that X → C is a real semistable degeneration with singular
fiber X0. Of course, one cannot expect equalities similar to (1) to hold in the
real setting, since the real topology of the special fiber can drastically change in
different fibers near 0. The idea is then to try to compare the real part of the
special fiber with its complex counterpart and, afterwards, to relate the latter
with the real part of a fiber near 0. In order to do this, let us first recall the
Smith-Thom inequality,

(2)
∑

i

bi(X(R)) ≤
∑

i

bi(X(C))

which bounds the total Betti number of the real topology of a real variety X with
the one of its complexification. This is one of the few general results comparing
the real and the complex topology of real algebraic varieties. A special role, in the
study of the topology of real algebraic variety, is played by maximal varieties, i.e.
the ones for which (2) is an equality.



1326 Oberwolfach Report 23/2024

Inspired by (2), one could hope to obtain a bound for the topology of a real fiber
near 0 in terms of data that depends only on its complexification. Recently, using
tropical geometry, Renaudineau-Shaw proved [RS23, Theorem 1.4], confirming a
conjecture of Itenberg [Ite17], that for a fiberXt near 0 of a real hypersurface inside
a real toric degeneration constructed via primitive combinatorial Viro patchwork-
ing [Vi80], one has that

(3) bi(Xt(R)) ≤
∑

j

hi,j(Xt),

where hi,j(X) := dim(Hi(X,Ωj
X)).

While these conjectures and results were limited to combinatorial and toric
situations, we go one step further giving a purely algebraic geometric setting in
which an inequality close to (3) holds. Theorem 1 and Corollary 4) show that if
X0 can be stratified with components that are cohomologically simple, then Xt

satisfies (3), up to the dimension of the 2-torsion in some cohomology group. The
main novelty of our approach is the use of (real) logarithmic geometry ([Arg21])
[Kat89], which allows to extend previous results for toric degenerations to more
general families.

3. Main result

Assume that C is a smooth real curve and f : X → C a real projective morphism
which is smooth outside a real point 0 ∈ C(R) and strictly-semistable around 0,
in the sense that the irreducible components of X0 are smooth and, locally an-
alytically around 0, the family f : X(C) → C(C) is isomorphic to the standard
semistable degeneration Spec(C[x1, . . . , xn, T ]/(x1 . . . xn − T ))→ Spec(C[T ]). As-
sume furthermore that f : X → C is totally real, i.e. that the irreducible compo-
nents of X0(C) are real. Write

X0 =
⋃

i∈I

Xi

for the decomposition of X0 in irreducible components and for every subset J ⊆ I
set

XJ :=
⋂

i∈J

Xi and X0
J := XJ \

⋃

i6∈J

Xi.

Then

X0 =
∐

J⊆I

X0
J

is a stratification I := {X0
J}J⊆I of X0 by smooth real algebraic subvarieties. Fix

a refinement Z := {X0
∆} of I, made of smooth real algebraic varieties.

In [AM22], we construct, for every ring A and every q ≥ 0 a canonical cochain
complex C•

q,Z,A of A-modules depending only on the complex geometry of the
stratification Z. Inspired by the geometry of degenerations constructed via prim-
itive patchworking (see Remark 1), we consider the following conditions on the
members of Z.
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(a) Hi(X0
∆(R),Z/2Z) = 0, for all i ≥ 1 and X0

∆ ∈ Z;
(b) X0

∆ is maximal, for all X0
∆ ∈ Z;

(c) the mixed Hodge structure on Hi(X0
∆(C),Q) is pure of type (i, i) and

Hi(X0
∆(C),Z) is torsion free, for all i ≥ 1 and X0

∆ ∈ Z.

Our main result is then the following.

Theorem 1.

(1) Assume that (a) and (b) hold. Then, for every t ∈ C(R) close to 0 one
has:

bp(Xt(R)) ≤
∑

q

dim(Hp(C•
q,Z,Z/2Z)).

(2) Assume that (a),(b) and (c) hold. Then for every t ∈ C(R) close to 0, one
has:
(i) dim(Hp(C•

q,Z,Z ⊗Q)) = hp,q(Xt)

(ii) C•
q,Z,Z ⊗ Z/2Z ≃ C•

q,Z,Z/2Z.

Remark 1. If X0 comes from a degeneration constructed via primitive combi-
natorial patchworking, then it admits a stratification made by complements of
hyperplane arrangements, which satisfy the (a),(b),(c) above. This shows that
Theorem 1 generalizes the main result of [RS23] to a more general setting. Re-
cently, there have been other two generalizations of [RS23]: on the combinatorial
side [BLMR23]; on the geometric side, [RaReSh23].

Theorem 1 implies the following (the main motivation for [AM22]).

Corollary 4. Assume that (a), (b), (c) hold and that Hp(C•
q,Z,A) is torsion free

for every p, q ∈ N. Then for every t ∈ C(R) close to 0 and every p ∈ N one has

bp(Xt(R)) ≤
∑

q

hp,q(Xt).
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Gromov-Witten theory and the refined topological string

Yannik Schuler

(joint work with Andrea Brini)

Since the initiation of the field, developments in Gromov–Witten theory were
often inspired by analogies with mathematical physics. Given a smooth Calabi–
Yau threefold X and an effective curve class β, one such example is Gopakumar–
Vafa or BPS integrality which predicts that there are a finite number of integer
invariants underlying the generating series

GWβ(X) :=
∑

g≥0

u2g−2

∫

[Mg(X,β)]virt
1 ∈ Q((u)) .

of Gromov–Witten invariants of all genera. For example when X is local P2 and
β = [L] the class of a line we find

(1) GW[L](KP2) = 3 ·
(
2 sin u

2

)−2
.

Here, the leading factor 3 should be viewed as the single integer invariant — called
BPS invariant — governing the Gromov–Witten invariants in every genus. In my
talk I will introduce a refinement of this BPS integrality conjecture in the context
of equivariant Gromov–Witten theory of Calabi–Yau fivefolds of the form X ×C2

concentrating on the case where X = KS is a local surface.

The refinement. Let S be a smooth projective surface. There is a natural action
of (C×)3 on the fibres of KS×C2 → S where the ith C×-factor scales the ith fibre
direction with weight one. Via the embedding

T := (C×)2 →֒ (C×)3, (t1, t2) 7→
(
(t1t2)

−1, t1, t2
)

we obtain a T -action on KS×C2 which fixes the holomorphic five-form. This lifts
to an action on the moduli space of stable maps with this target.

We define the generating series of T -equivariant Gromov–Witten invariants

GWβ(KS × C2) :=
∑

g≥0

T

∫

[Mg(KS×C2,β)]virtT

1

where the right-hand side integral is defined via virtual T -localisation. The sum
is a well-defined element in the completed and localised T -equivariant Chow co-
homology of a point. Since HT

∗ (pt)
∼= Q[ǫ1, ǫ2] the expression can naturally be

viewed as a power series in two parameters ǫ1 and ǫ2. In the one parameter limit
ǫ1 = −ǫ2 = iu, which we will refer to as the unrefined limit, we recover a quantity
we have already encountered before:

Lemma 1. We have

GWβ(KS × C2)
∣∣∣
ǫ1=−ǫ2=iu

= GWβ(KS) .
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Refined BPS invariants. Now let S be a del Pezzo surface. In this case we can
recursively define power series

BPSβ(S)(ǫ1, ǫ2) ∈ Q[[ǫ1, ǫ2]]

labelled by effective curve classes β in S by demanding that these series satisfy

GWβ(KS × C2) =:
∑

k∈Z>0

k | β

1

k

BPSβ/k(S)(kǫ1, kǫ2)

2 sinh kǫ1
2 2 sinh kǫ2

2

.

Conjecture 1. BPSβ(S) lifts to an integer valued Laurent polynomial in e
ǫ1
2 , e

ǫ2
2 .

To come back to our earlier example, when X = KP2 and β = [L] a low-genus
computer calculation yields

BPS[L](P
2) = eǫ1+ǫ2 + 1 + e−ǫ1−ǫ2 +O(ǫ8i ) .

In the unrefined limit this expression specialises to

BPS[L](P
2)
∣∣∣
ǫ1=−ǫ2=iu

= 3 +O(u8)

which via Lemma 1 is consistent with equation (1). More generally, in the unrefined
limit Conjecture 1 specialises to the original conjecture of Gopakumar and Vafa
[3] which was proven by Ionel–Parker [5] and Doan–Ionel–Walpuski [2].

Geometric interpretation. We expect BPSβ(S) to have a geometric interpreta-
tion in terms of Gieseker stable sheaves on S with support β and fixed Euler char-
acteristic one. If we denote by Mβ the moduli space of such stable sheaves, then
the Hilbert–Chow morphism induces a perverse grading on cohomology groups:

Hi,j := grPj H
i
(
Mβ,Q[dimMβ]

)
.

Conjecture 2. Identifying q± = e
ǫ1±ǫ2

2 we have

(2) BPSβ(S) =
∑

i,j

qi+q
j
− (−1)i+j dimHi,j .

In the unrefined limit the conjecture specialises to Maulik and Toda’s proposal
for Gopakumar–Vafa invariants [8].

Evidence. Orthogonal to the unrefined limit we have the following evidence for
our conjectures.

Theorem 2. Conjecture 1 and 2 hold for S = P2 in the limit ǫ2 = 0.

Idea of the proof. The theorem is proven by passing through a correspondence
with the Gromov–Witten theory of the surface relative a smooth anticanonical
curve E. To be more precise, let us denote by Mg(S/E, β) the moduli stack of
genus g, class β stable maps to S with a marking of maximal tangency (E · β)
along E. Then via a degeneration to the normal cone argument one can show that

ǫ2 GWβ(KS × C2)
∣∣∣
ǫ2=0

=
(−1)E·β+1

E · β
∑

g≥0

ǫ2g−1
1

∫

[Mg(S/E,β)]virt
λg .
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The theorem then follows from the work of Bousseau [1] (with the addition of [7])
who establishes the analogous statement of the theorem for the right-hand side of
the last equation when S = P2. �

Motivation & context. Conjecture 1 and 2 are informed by analogies with
mathematical physics and expected correspondences with other curve counting
theories. In each case these relations are natural refinements of their already known
unrefined versions. To give more detail, if X is a smooth Calabi–Yau threefold
which admits a non-trivial C×-action we expect the equivariant Gromov–Witten
theory of X × C2 to be the counterpart of

• the refined topological string on X as studied in physics literature.
Especially, Conjecture 1 is very much informed by Huang–Klemm’s study
of the anticipated B-model interpretation of this quantum field theory [4].
• K-theoretic Pandharipande–Thomas theory of X as introduced by
Nekrasov and Okounkov [9]. Indeed, Kononov–Pi–Shen observed that for
X = KP2 in low degree these invariants can be matched with the right-
hand side polynomial in equation (2) [6].
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q-refined tropical curve counts with descendents

Patrick Kennedy-Hunt

Fix a multiset ∆◦ of vectors in Z2 \ {(0, 0)} with sum zero, together with non-
negative integers n and k1, . . . , kn such that

n− 1 + |∆◦| = 2n+

n∑

i=1

ki.

Associated to this discrete data are two enumerative invariants.
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(1) The vectors ∆◦ determine a toric surface X equipped with curve class β.
There is an associated moduli spaceMg,∆ whose points correspond to (stable)
parameterised curves. This moduli space comes equipped by a homology class
[Mg,∆]

vir and cohomology classes λg, ψi, see [15, Section 2.1.1]. For every
genus g ≥ 0, there is an associated logarithmic Gromov–Witten invariant with
λg insertion defined as the following intersection product

Nk

g,∆ =

∫

[Mg,∆]vir
(−1)gλg

n∏

i=1

ev⋆i (pt)ψ
ki

i .

The above logarithmic Gromov–Witten invariant captures information about
algebraic curves passing through a generic collection of n points in X subject
to stationary descendant constraints.

(2) Fixing a generic ordered tuple of n points p = (p1, . . . , pn) in R2, the data
(∆◦,k) defines a finite set of genus zero parameterised tropical curves T k

∆,p,

see [15, Section 1.1] for the definition of parameterised tropical curves and the
set T k

∆,p. The cardinality of T k

∆,p is not constant for a dense choice of p. To

obtain a quantity invariant of p, one assigns to each tropical curve h ∈ T k

∆,p a

rational function mh(q) of formal variable q1/2. We define a count of tropical
curves

N∆,k
trop (q) =

∑

h∈Tk

∆,p

mh(q).

The rational function N∆,k
trop (q) is independent of p, defined in terms of poly-

hedral geometry first defined by Blechman and Shustin [10], generalising work
of Block and Göttsche [21].

Theorem A. After the change of variables q = eiu we have the equality
∑

g≥0

N k

g,∆ u
2g−2+|∆◦|−

∑
i ki = N∆,k

trop (q).

Theorem A, established in joint work with Qaasim Shafi and Ajith Urundolil-
Kumaran [15] is an example of a tropical correspondence theorem [23, 9, 16, 17,
18, 19, 20, 13, 6, 12]. The theorem generalises work of Bousseau to the descendant
situation [1], and relates to work of Mandel and Ruddat who handled the case
without λg descendents [13].

Under the (logarithmic) Gromov–Witten/ Donaldson–Thomas correspondence
[2, 3, 22], the data of Nk

g,∆ is encoded by a logarithmic Donaldson–Thomas in-
variant. Logarithmic Donaldson–Thomas invariants are defined in terms of the
intersection theory of logarithmic Hilbert schemes which parameterise embedded
curves in the setting of logarithmic geometry [8, 14, 7].

One can interpret Theorem A as asserting that the combinatorics of tropical
curves is encoded in the intersection theory of Mg,∆. The logarithmic Gromov–
Witten/ Donaldson–Thomas correspondence thus asserts that the combinatorics
of tropical curves is reflected in the intersection theory of the logarithmic Hilbert
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scheme P of curves of class β in X . We will state Theorem B, see [14], which gives
an alternative way to understand this fact.

Associated to polytope ∆ is a fan Ptrop whose points parameterise tropical curves
of degree ∆ superimposed on the fan of X . The combinatorial complexity of Ptrop

is entirely governed by the secondary fan of ∆, as defined by Gelfand, Kapranov,
and Zelevinsky [4].

Theorem B. The logarithmic Hilbert scheme of curves in X of degree ∆ is a
toric stack with fan Ptrop.

The intersection theory of the toric stack P is controlled by Minkowksi weights
on the fan of Ptrop. Thus the intersection theory of the logarithmic Hilbert scheme
is controlled by the geometry of tropical curves and their moduli. Theorem B
therefore gives a different perspective on how the structure of tropical curves arise
in logarithmic enumerative geometry.
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Enumerative intrinsic mirror symmetry

Michael van Garrel

1. Intrinsic Mirror Construction

Definition LSD. Let Y be a smooth projective variety of dimension N and let D
be a smooth effective divisor. A maximal LSD (maximal log smooth degeneration)
of (Y,D) is a log smooth morphism

f : Y −→ S

such that:

(1) S is (the germ of) an affine curve with distinguished point 0 ∈ S and
generic point η, and the log structure of S is the divisorial log structure
(S, 0);

(2) Yη = f−1(η) = Y ⊗ k(η);
(3) The log structure of Y is the divisorial log structure (Y,D) for D a maximal

boundary normal crossings divisor such that D = Dhor +Dvert where:
(a) Dhor is irreducible and f

∣∣
Dhor

is surjective;

(b) Dvert = f−1(0) = D1 + · · ·+Dl.
In particular, log dim(Y,D) = N + 1 is maximal.

Definition LSD Fano. A maximal LSD Fano variety is a triple (Y,D, f) con-
sisting of:

• A smooth complex projective Fano variety Y .
• A smooth anticanonical divisor D ∈ | −KY |.
• A maximal LSD f : Y → S of (Y,D).

Remark 1. Given Y , it is an open question of how restrictive the existence of
(Y,D, f) is. In what follows, we work with a maximal LSD Fano (Y,D, f).

Remark 2. Note that f
∣∣
Dhor

: Dhor → S is a maximal log smooth degeneration of

D. In particular, log dim(Dhor,Dvert ∩ Dhor) = N = dim(D) + 1 is maximal.
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Given a maximal LSD Fano (Y,D, f), we apply the intrinsic mirror construction
(relative case) [5] to f : (Y,D)→ (S, 0). The outcome is the intrinsic mirror family
over C[[NE(Y)]], which we restrict to a family X overC[[t]] via zβ 7→ tc1β . Applying
the analyticity result of [6], this is an analytic family over a disc in C centered
around the origin. By abuse of notation, we also denote by Xt the fiber over an
element t of the disc.

Roughly speaking, (Y,D) determines a ring of theta functions, f determines
a grading of the theta functions and X is given as the formal Proj construction
of the ring of theta functions. Thus X is projective over the ring of degree 0
theta functions R(Y,D), which is also obtained by applying the intrinsic mirror
construction to (Y,D). As a vector space,

R(Y,D) =
∞⊕

i=0

C[[t]]ϑi,

with ϑ0 = 1 and the structural coefficients of the multiplication are given by
punctured Gromov–Witten invariants [5, 1], in fact, in this setting, by 2-pointed log
Gromov–Witten invariants using [7]. By composing with the natural isomorphism
C[[t]][ϑ1]→ R(Y,D), we obtain a commutative diagram

X

vv♠♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠

ϑ1

��

Spf R(Y,D) // Spf C[[t]][ϑ1] .

The proper function ϑ1 determines a Calabi–Yau (N − 1)-fibration on X. We
recall [2, Theorem 5.9]. There is an asymptotic open X ⊂ X, a canonical proper
function w on X, and a commutative diagram

X

vv♥♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

ϑ1

��

X?
_oo

w

��

Spf R(Y,D) // Spf C[[t]][ϑ1] Spf C[w±1][[t]]
Φoo

with

Φ#(ϑ1) = w


1 +

∑

p≥1

∑

β∈NE(Y )
p=c1β−1

pNβ
p,1(Y,D)

tc1β

wc1β


 .

Here Nβ
p,1(Y,D) is the log Gromov–Witten invariant counting rational curves of

class β that meet D in one fixed point of tangency p = (β ·D)−1 and in one point
of tangency 1. Following [2, Definition 5.8], we call Φ the LG mirror map, which
was studied in [3].

Let X
1
:= w−1(1) ⊂ X. By [2, Corollary 5.13], the Calabi–Yau (N−1)-fibration

X
1 → Spf C[[t]]
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is the twisted mirror family toD, twisted by a certain unidirectional wall structure.

We denote by X
1

t ⊂ X
1
the ‘fiber’ over t with the same caveat as above, namely

that by the analyticity result of [6], we alternately view t as a formal variable and
as an element of a small analytic disc.

We recall the main result of [6] in this context. A tropical 1-cycle βtrop in
the pseudo-manifold associated to f

∣∣
Dhor

: Dhor → S determines a (N − 1)-cycle

βt ∈ HN−1(X
1

t ,Z). Then, by [6, Theorem 1.7],

exp

(
1

(
2π
√
−1
)N−2

∫

βt

Ω
X

1

t

)
= 〈s(t), βtrop〉 t〈c1(ϕ),βtrop〉,

where:

• The unidirectional wall structure paired with βtrop determines 〈s(t), βtrop〉
∈ C[[t]], which is invertible under the multiplication of power series, i.e.
has non-zero constant coefficient.
• The topological term 〈c1(ϕ), βtrop〉 ∈ Z measures the monodromy of βtrop.

Theorem 1 (van Garrel–Ruddat–Siebert, [4]). Assume there is a critical value

wcrit of ϑ1 with 0 < wcrit < 1. Then the cycle βt ∈ HN−1(X
1

t ,Z) extends to a

relative cycle βt(wcrit, 1) ∈ HN (Xt,X
1

t ;Z). Moreover, the period integral

1
(
2π
√
−1
)N−2

∫

βt(wcrit,1)

ΩXt

is the generating function of maximal tangency log Gromov–Witten invariants of
(Y,D) with insertion given by by a curve class β ∈ H2(D,Z) whose tropicalization
is βtrop.
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Leray
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Institut de Mathématiques de Jussieu -
Paris Rive Gauche
Sorbonne Université
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