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Introduction by the Organizers

The workshop highlighted recent theoretical advances and views on statistics,
learning theory and artificial intelligence (AI) based on the interplay of techniques
from mathematical statistics, machine learning, theoretical computer science and
related areas. The workshop brought together researchers from these areas in order
to exchange ideas and explore open mathematical problems at the intersection of
mathematical statistics and machine learning. The anticipated long-term intellec-
tual impact of the workshop is the enrichment of each of the represented disciplines
through collaborations born during the meeting. The practical outcomes are the
development of new theory and computationally efficient algorithms for machine
learning based on a strong mathematical foundation.

The practice of AI has advanced at an unprecedented pace in recent years. How-
ever, progress in developing a rigorous mathematical framework for understanding
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advanced AI models, such as deep neural networks, has lagged behind. Establish-
ing solid mathematical foundations is crucial for creating principled engineering
practices that ensure future AI systems will be reliable, interpretable, and safe.

The research lectures and discussions in this workshop mark the beginning of
this foundational effort. Our understanding of high-dimensional statistical models,
particularly for pattern classification and regression, is already well-developed.
Many talks illustrated how rigorous mathematics can offer profound insights into
the design, strengths, and limitations of such models. Ongoing work seeks to
extend this understanding from classical models, such as linear models, to the
more complex modern models used in AI.

Several lectures delved into the emerging theory of deep learning, which con-
cerns neural networks with many layers. These models construct function spaces
through compositions of functions, where each function is expressed as a linear
combination of atoms from continuous dictionaries – the so-called neurons of the
network. Unlike traditional nonparametric methods in statistics and data science,
often grounded in reproducing kernel Hilbert spaces (RKHS), the compositional
nature of neural network function spaces represents a significant departure. The
talks and collaborations during the workshop addressed many challenges in this
new domain.

A major difficulty in deep learning and related machine learning methods is the
non-convexity of the optimization problems involved in training neural networks,
a stark contrast to the typically convex problems in RKHS-based methods. Many
lectures explored the challenges posed by non-convex optimization in machine
learning and AI. The research presented paves the way for a deeper understanding
of both the methods and models used in practice and improved strategies for
optimizing them.

The lectures can be roughly categorized into three groups:

Regularization in High-Dimensional Models: This group of lectures focuses
on advanced techniques and methods for regularizing models in high-dimensional
spaces, a key challenge in modern machine learning. Speakers, including Schmidt-
Hieber, Yang, Skalski, Schneider, Nadler, Wegkamp, Kato, Rohde, Sen, Bradic,
Neubert, Blum, Suvorikova, and Katsevich, explored the theoretical foundations
and practical applications of regularization to enhance model performance and
generalization in complex, high-dimensional datasets.

Theory for Understanding Deep Neural Networks: These lectures provide
insights into the theoretical underpinnings of deep neural networks. Experts such
as Jacot, Bach, Belkin, Willett, Rigollet, and Hundrieser discussed recent devel-
opments in fundamental theory related to the learning dynamics, expressivity,
and generalization of neural networks, offering deeper comprehension of how these
models function and their limitations.

Theory for Optimization inAI and Machine Learning: This set of lectures
centers on the mathematical and algorithmic theory behind optimization tech-
niques crucial for artificial intelligence and machine learning. Researchers like
Bellec, Vinayak, Chamon, Brunel, Niles-Weed, Tibshirani, Manole, Hucker, and
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Spokoiny discuss cutting-edge approaches to improving optimization methods,
which are vital for training models efficiently and effectively in both theory and
practice.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Statistical analysis of dropout in the linear model

Johannes Schmidt-Hieber

(joint work with Gabriel Clara, Sophie Langer)

Applying gradient descent for the loss function θ 7→ L(θ) leads to the iterates

θk = θk−1 − αk∇L
(
θk−1

)
, k = 1, 2, . . .

with θ0 the initialization, αk > 0 the learning rate, and ∇L the gradient of L with
respect to θ.

DropConnect samples in every iteration a diagonal d×d random matrix Dk with
diagonal entries independently drawn from a Bernoulli distribution with success
probability p. We refer to a matrix with this distribution as a dropout matrix (with
success probability p). The gradient descent parameter updates with dropout are
then given by

θk = θk−1 − αk∇L
(
Dkθk−1

)
, k = 1, 2, . . .(1)

It is important to notice that DropConnect first applies the dropout matrix and
then takes the gradient. This means that ∇L

(
Dkθk−1

)
has to be understood as

taking the gradient with respect to the function θ 7→ L(Dkθ), which is different
from evaluating the gradient of ∇L at Dkθ.

The dropout matrices randomly select subsets of the parameters that are up-
dated. For the k-th round, the j-th parameter is in this subset if and only if the
Bernoulli variable on the j-th diagonal entry of Dk is 1.

DropConnect forces the model to still perform well if arbitrary subsets of the
parameters are deactivated. One can then argue that this makes the model more
robust and possibly also prevents overfitting.

Dropout is a similar procedure that is more specifically designed for training
deep neural networks. In every gradient step, dropout randomly drops units in
the network (except the output units). This is equivalent to randomly dropping
columns in the weight matrices.

The effect of DropConnect can be decomposed in two parts that separates the
variability of the dropout matrices from the mean behavior. If the matrix D has
the same distribution as Dℓ+1 and ED is the expectation with respect to D, define

θk = θk−1 − αkED

[
∇L
(
Dθk−1

)]
.

Since the gradient is taken with respect to θ 7→ L(Dθ), this means that the
gradient descent scheme (θk)k aims to minimize the averaged loss function

θ 7→ ED

[
L(Dθ)

]
.(2)

In some cases, ED

[
L(Dθ)

]
can be rewritten as penalized loss L. This shows that

(θk)k aims to minimize a regularized objective. All the regularization that is
induced by (θk)k is called explicit regularization.
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The differences (θk − θk)k add noise to the gradient scheme. This can have a
regularizing effect that is then called the implicit regularization of dropout.

For dropout, [3] compared the generalization behavior of the dropout iterates
with the dynamics of (θk)k. They observe a difference and dropout performs bet-
ter. It is also shown that by adding suitable random noise to (θk)k, one recovers
a very similar performance than the dropout scheme. This suggests that the dif-
ferences (θk − θk)k just adds extra noise to the gradient descent. We will show
this theoretically for the linear model.

Assume that we want to fit parameters β = (β1, . . . , βd)⊤ to the data (X1, Y1),

. . . , (Xn, Yn) via the least squares functional L(β) = 1
2

∑n
i=1

(
Yi − β⊤Xi

)2
. This

can also be written as L(β) = 1
2‖Y−Xβ‖22 with response vector Y = (Y1, . . . , Yn)⊤

and X the n× d matrix with X⊤
i as the i-th row. The linear model can be viewed

as a neural network without hidden layers. In the linear model, dropout and
DropConnect are the same.

The explicit regularizer has been studied in the original dropout article [2]. We
investigate the implicit regularizer for fixed learning rate. For that we rewrite the
gradient descent iterates as vector autoregressive process with random coefficients.
If βk denotes the k-th gradient descent iterate, we use an extension of the Gauss-
Markov theorem to show that the implicit effect of dropout in the linear model is

characterized by the covariance Cov(βk − β̂) with β̂ the estimator that minimizes
the averaged loss function β 7→ ED[L(Dβ)] defined in (2). An analysis of this
covariance reveals that there is no implicit effect of dropout if the Gram matrix
X⊤X is diagonal, but an implicit effect occurs whenever X⊤X has at least two
non-zero entries in every column. In the latter case we can quantify how much
extra noise is added by the implicit regularization. All details can be found in [1].

References
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2-penalization in the

linear model, Journal of Machine Learning Research, to appear.
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Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research,
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How DNNs break the Curse of Dimensionality: Compositionality and

Symmetry Learning

Arthur Jacot

(joint work with Seok Hoan Choi, Yuxiao Wen)

We show that deep neural networks (DNNs) can efficiently learn any composition
of functions with bounded F1-norm, which allows DNNs to break the curse of di-
mensionality in ways that shallow networks cannot. More specifically, we derive a
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generalization bound that combines a covering number argument for composition-
ality, and the F1-norm (or the related Barron norm) for large width adaptivity. We
show that the global minimizer of the regularized loss of DNNs can fit for example
the composition of two functions f∗ = h ◦ g from a small number of observations,
assuming g is smooth/regular and reduces the dimensionality (e.g. g could be the
modulo map of the symmetries of f∗), so that h can be learned in spite of its low
regularity. The measures of regularity we consider is the Sobolev norm with differ-
ent levels of differentiability, which is well adapted to the F1 norm. We compute
scaling laws empirically and observe phase transitions depending on whether g or
h is harder to learn, as predicted by our theory.

References

[1] A. Jacot, S.H. Choi, Y. Wen, How DNNs break the Curse of Dimensionality: Composition-
ality and Symmetry Learning, https://arxiv.org/abs/2407.05664 (2024).

Surprising phenomena of max-ℓp-margin classifiers in high dimensions

Fanny Yang

In recent years, the analysis of max-ℓp-margin classifiers has gained attention from
the theory community not only due to the implicit bias of first-order methods,
but also due to the observation of harmless interpolation for neural networks.
Here, interpolation refers to the classifier achieving zero classification error on the
training data. Our work contributes to this active area of research with two re-
sults for linear classification in ambient dimension d given n i.i.d. samples. We
first show that surprisingly, in the noiseless case, while minimizing the ℓ1-norm
achieves minimax-optimal rates for regression for hard-sparse ground truths [1],
this adaptivity does not directly apply analogously to max-ℓ1-margin classifica-
tion [2]. In particular, while known interpolating estimators that are based on
minimizing non-convex optimization problems achieve an O(1/n) rate, the max-
ℓ1-margin estimator (minimizing a relaxed convex objective) only achieves rates
of order O(1/n1/3).

Further, when the observations are noisy, we prove how max-ℓp-margin classi-
fiers can achieve O(1/

√
n) rates for p slightly larger than one when d > n2, while

the maximum ℓ1-margin classifier only achieves rates of order 1√
log(d/n)

for all

d > ω(n) [3, 2]. Notably, for p > 1, max-ℓp-margin classifiers can achieve a faster,
minimax-optimal O(1/

√
n) rate in the noisy case, than the max-ℓ1-margin estima-

tor in the noiseless case. Together, these two results suggest a number of new open
problems for future work: What is the underlying mechanism that p > 1 can lead
to a better noiseless recovery? The minimizer of a non-interpolating max-average-
margin objective subject to an ℓ1-norm constraint, also achieves minimax-optimal
rates for noisy recovery. Could this regularized max-average-margin estimator
achieve the optimal O(1/n) rate in the noiseless case, while interpolating max-
margin interpolators can only achieve O(1/

√
n)?
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Pattern Recovery by SLOPE

Tomasz Skalski

(joint work with Ma lgorzata Bogdan, Xavier Dupuis, Piotr Graczyk,
Bartosz Ko lodziejek, Patrick Tardivel, Maciej Wilczyński)

Sorted L-One Penalized Estimator (SLOPE), a generalization of the LASSO esti-
mator, was introduced by Bogdan, van den Berg, Sabatti, Su and Candès in 2015.
It is a convex regularization method for fitting high-dimensional regression models.
While LASSO can eliminate redundant predictors by setting the corresponding re-
gression coefficients to zero, SLOPE can also identify clusters of variables with the
same absolute values of regression coefficients.

In this talk I discuss sufficient and necessary conditions for the proper identi-
fication of the SLOPE pattern, i.e. of the proper sign and of the proper ranking
of the absolute values of individual regression coefficients, including a proper clus-
tering. I also mention the strong consistency of pattern recovery by SLOPE in an
asymptotic case when the number of columns in the design matrix is fixed, but
the sample size diverges to infinity.

References

[1] M. Bogdan, X. Dupuis, P. Graczyk, B. Ko lodziejek, T. Skalski, P. Tardivel, M. Wilczyński,
Pattern Recovery by SLOPE, ArXiv 2203.12086.

[2] P. Graczyk, U. Schneider, T. Skalski, P. Tardivel, A Unified Framework for Pattern Recovery

in Penalized and Thresholded Estimation and its Geometry, ArXiv 2307.10158.
[3] T. Skalski, P. Graczyk, B. Ko lodziejek, M. Wilczyński, Pattern recovery and signal denoising

by SLOPE when the design matrix is orthogonal, Probability and Mathematical Statistics
42(2) (2022), 283–302.
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A unified framework for pattern recovery in penalized estimation

and its geometry

Ulrike Schneider

(joint work with Patrick Tardivel, Tomasz Skalski, Piotr Graczyk)

We consider the framework of penalized estimation where the penalty term is given
by a polyhedral norm, or more generally, a polyhedral gauge, which encompasses
methods such as LASSO and generalized LASSO, SLOPE, OSCAR, PACS and
others. Each of these estimators can uncover a different structure or “pattern” of
the unknown parameter vector. We define a novel and general notion of patterns
based on subdifferentials and formalize an approach to measure pattern complexity.
For pattern recovery, we provide a minimal condition for a particular pattern to
be detected with positive probability, the so-called accessibility condition. We
make the connection to estimation uniqueness by showing that uniqueness holds
if and only if no pattern with complexity exceeding the rank of the X-matrix is
accessible. Subsequently, we introduce the noiseless recovery condition which is a
stronger requirement than accessibility and which can be shown to play exactly
the same role as the well-known irrepresentability condition for the LASSO – in
that the probability of pattern recovery is bounded by 1/2 if the condition is not
satisfied. Through this, we unify and extend the irrepresentability condition to a
broad class of penalized estimators using an interpretable criterion. We also look
at the “gap” between accessibility and the noiseless recovery condition and discuss
that our criteria show that it is more pronounced for simple patterns. Finally, we
prove that the noiseless recovery condition can indeed be relaxed when turning
to so-called thresholded penalized estimation: in this setting, the accessibility
condition is already sufficient (and necessary) for sure pattern recovery provided
that the signal of the pattern is large enough. We demonstrate how our findings
can be interpreted through a geometrical lens throughout the talk and illustrate
our results for the Lasso as well as other estimation procedures.

References

[1] K. Ewald and U. Schneider, Model selection properties and uniqueness of the Lasso estima-
tor in low and high dimensions, Electronic Journal of Statistics 14 (2020), 944–969.
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nalized estimation, Journal of Machine Learning Research 23 (2022), 1–36.
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Uncertainty quantification for iterative algorithms in linear models

Pierre Bellec

This paper investigates the iterates b̂1, . . . , b̂T obtained from iterative algorithms
in high-dimensional linear regression problems, in the regime where the feature
dimension p is comparable with the sample size n, i.e., p ≍ n. The analysis and
proposed estimators are applicable to Gradient Descent (GD), proximal GD and



1690 Oberwolfach Report 30/2024

Figure 1. Generalization error rt along the trajectory of accel-
erated gradient descent and its estimate r̂t, over 100 repetitions

their accelerated variants such as Fast Iterative Soft-Thresholding (FISTA). The
paper proposes novel estimators r̂t for the generalization error rt of the iterate

b̂t for any fixed iteration t along the trajectory. These estimators are proved
to be

√
n-consistent under Gaussian designs. Applications to early-stopping are

provided: when the generalization error of the iterates is a U-shape function of the
iteration t, the estimates allow to select from the data an iteration t̂ that achieves
the smallest generalization error along the trajectory. Additionally, we provide a
technique for developing debiasing corrections and valid confidence intervals for the

components of the true coefficient vector from the iterate b̂t at any finite iteration
t.

Semi-Supervised Sparse Gaussian Classification. Provable Benefit

of Unlabeled Data

Boaz Nadler

The premise of semi-supervised learning (SSL) is that combining labeled and unla-
beled data yields significantly more accurate models. Despite empirical successes,
the theoretical understanding of SSL is still far from complete. In our work, we
study SSL for high dimensional sparse Gaussian classification. To construct an
accurate classifier, a key task is feature selection, detecting the few variables that
separate the two classes. For this SSL setting, we analyze information-theoretic
lower bounds for accurate feature selection as well as computational lower bounds,
assuming the low-degree polynomial likelihood hardness conjecture. Our key
contribution is the identification of a regime in the problem parameters where
SSL is guaranteed to be advantageous for classification. Specifically, there is a
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regime where it is possible to construct in polynomial time an accurate SSL clas-
sifier. However, any computationally efficient supervised or unsupervised learning
schemes, that separately use only the labeled or unlabeled data would fail.

Our work highlights the provable benefits of combining labeled and unlabeled
data for classification and feature selection in high dimensions.

Linear Discriminant Analysis and Regularized Regression

Marten Wegkamp

(joint work with Xin Bing, Bingqing Li)

Linear Discriminant Analysis (LDA) is an important classification approach. Its
simple linear form makes it easy to interpret and it is capable to handle multi-class
responses. It is closely related to other classical multivariate statistical techniques,
such as Fisher’s discriminant analysis, canonical correlation analysis and linear
regression.

In this talk we strengthen its connection to multivariate response regression by
characterizing the explicit relationship between the discriminant directions and the
regression coefficient matrix. This key characterization leads to a new regression-
based multi-class classification procedure that is flexible enough to deploy any
existing structured, regularized, and even non-parametric, regression methods.
Moreover, our new formulation is amenable to analysis: we establish a general
strategy of analyzing the excess misclassification risk of the proposed classifier
for all aforementioned regression techniques. We provide complete theoretical
guarantees for using the widely used ℓ1-regularization as well as for using the
reduced-rank regression, neither of which has yet been fully analyzed in the LDA
context. Our theoretical findings are corroborated by extensive simulation studies
and real data analysis.

References

[1] X. Bing, B. Li and M. Wegkamp, Linear Discriminant Regularized Regression, arXiv:
2402.14260 (2024).

[2] X. Bing and M. Wegkamp, Interpolating Discriminant Functions in High-Dimensional
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An alternative view of diffusion models

Francis Bach

(joint work with Saeed Saremi, Ji-Won Park)

We introduce a theoretical framework for sampling from unnormalized densities
based on a smoothing scheme that uses an isotropic Gaussian kernel with a single
fixed noise scale. We prove one can decompose sampling from a density (minimal
assumptions made on the density) into a sequence of sampling from log-concave
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conditional densities via accumulation of noisy measurements with equal noise
levels. Our construction is unique in that it keeps track of a history of samples,
making it non-Markovian as a whole, but it is lightweight algorithmically as the
history only shows up in the form of a running empirical mean of samples. Our
sampling algorithm generalizes walk-jump sampling [1]. The “walk” phase be-
comes a (non-Markovian) chain of (log-concave) Markov chains. The “jump” from
the accumulated measurements is obtained by empirical Bayes. We study our
sampling algorithm quantitatively using the 2-Wasserstein metric and compare it
with various Langevin MCMC algorithms. We also report a remarkable capacity
of our algorithm to “tunnel” between modes of a distribution.

References

[1] S. Saremi, J.-W. Park, F. Bach. Chain of Log-Concave Markov Chains. International Con-
ference on Learning Representations (ICLR), 2024.
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The puzzle of dimensionality and feature learning in neural networks

and kernel machines

Misha Belkin

Remarkable progress in AI has far surpassed expectations of just a few years ago.
At their core, modern models, such as transformers, implement traditional statisti-
cal models – high order Markov chains. Nevertheless, it is not generally possible to
estimate Markov models of that order given any possible amount of data. There-
fore these methods must implicitly exploit low-dimensional structures present in
data. Furthermore, these structures must be reflected in high-dimensional inter-
nal parameter spaces of the models. Thus, to build fundamental understanding
of modern AI, it is necessary to identify and analyze these latent low-dimensional
structures. In this talk, we discuss how deep neural networks of various archi-
tectures learn low-dimensional features and how the lessons of deep learning can
be incorporated in non-backpropagation-based algorithms that we call Recursive
Feature Machines. We provide a number of experimental results on different types
of data, as well as some connections to classical sparse learning methods, such as
Iteratively Reweighted Least Squares. The discussion is based on papers [1, 2].
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ReLU Neural Networks with Linear Layers are Biased Towards Single-

and Multi-Index Models

Rebecca Willett

(joint work with Suzanna Parkinson, Greg Ongie)

Neural networks often operate in the overparameterized regime, in which there
are far more parameters than training samples, allowing the training data to be
fit perfectly. That is, training the network effectively learns an interpolating func-
tion, and properties of the interpolant affect predictions the network will make on
new samples. This manuscript explores how properties of such functions learned
by neural networks of depth greater than two layers. Our framework considers
a family of networks of varying depths that all have the same capacity but dif-
ferent representation costs. The representation cost of a function induced by a
neural network architecture is the minimum sum of squared weights needed for
the network to represent the function; it reflects the function space bias associated
with the architecture. Our results show that adding additional linear layers to
the input side of a shallow ReLU network yields a representation cost favoring
functions with low mixed variation - that is, it has limited variation in directions
orthogonal to a low-dimensional subspace and can be well approximated by a
single- or multi-index model. Such functions may be represented by the compo-
sition of a function with low two-layer representation cost and a low-rank linear
operator. Our experiments confirm this behavior in standard network training
regimes. They additionally show that linear layers can improve generalization and
the learned network is well-aligned with the true latent low-dimensional linear
subspace when data is generated using a multi-index model.
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Emergence of clusters in self-attention dynamics

Philippe Rigollet

Our goal in this talk was to study a simple model for the self-attention mechanism,
which is the main innovation behind the transformer architecture in deep learning.
We study dynamics of the form:

ẋ(t) = Pxi(t)

∑n
j=1 xj(t)e

β〈xj(t),xi(t)〉

∑n
j=1 e

β〈xj(t),xi(t)〉
, i = 1, . . . n,

or the unnormalized version

ẋ(t) = Pxi(t)
1

n

n∑

j=1

xj(t)e
β〈xj(t),xi(t)〉, i = 1, . . . n.
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Here, Px denotes the projection onto the tangent space of the unit sphere Sd−1 at
x ∈ Sd−1.

Pxz = z − 〈z, x〉x.
The above-mentioned dynamics describe the dynamics of the particles on the
sphere, and we study their asymptotic configuration.

First, it can be shown that unnormalized dynamics converge to a single cluster,
reminiscent of synchronization of Kuramoto oscillators, ∀β ≥ 0 and d ≥ 3 (the
d = 2 question is still open today).

Then, we studied metastable states, where particles are tightly clustered into
k ≥ 2 clusters. These states are reached in time ∝ β, and particles get stuck there
for time ∝ ecβ.

Finally, we showed that k = Õ(
√
β) by studying the number of modes of a

kernel density estimator.

Towards Plurality: Foundations for learning from Diverse Human

Preferences

Ramya Korlakai Vinayak

(joint work with Greg Canal, Blake Mason, Zhi Wang, Geelon So, Daiwei Chen,
Yi Chen, Aniket Rege, Rob Nowak)

Large pre-trained models trained on internet-scale data are often not ready for safe
deployment out-of-the-box. They are heavily fine-tuned and aligned using large
quantities of human preference data, usually elicited using pairwise comparisons
of outputs for a given input context. While aligning these artificial intelligent
and/or machine learning models to human preferences, it is important to ask whose
preferences are we aligning them to? The current approaches used for alignment
are severely limited due to their inherent assumption uniformity of preferences
and the need for plurality, i.e., capturing the diverse or heterogeneous human
preferences, is getting recognised as an important challenge to address in this
arena. We aim to overcome the limitations of current approaches by building
mathematical foundations for learning from heterogeneous human preferences.

In this talk, I discuss a series of recent results with my collaborators that focus on
how we can reliably capture diverse preferences while pooling together data from
a large number of individuals in a given population. In the first part, we focus on
fundamental questions pertaining to simultaneous metric and preference learning
from pairwise comparisons [1]. Under the ideal point model [2], we characterize
the sufficient conditions for identifiability and provide sample complexity bounds
for learning an shared unknown Mahalanobis metric and different unknown prefer-
ences of individuals from pairwise comparisons. In particular, in Rd, we show that
if we have Ω(d) individuals, then with Õ(d) comparison queries per individual, we
can simultaneously learn the unknown metric as well as the individual user pref-
erences. We note that even when the metric is known, Ω̃(d) queries per individual
are necessary to learn their prefrence point in Rd. We then address the question
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of whether it is possible to learn the unknown metric without having to localize
user preference [3] and show a general impossibility result with o(d) queries per
individual. We then consider the setting with structure in the data, particularly,
union of low-dimisional subspaces, and provide a divide-and-conquer approach for
learning the mertric with o(d) queries per individual. Using the insights gained
from these theoretical understanding, we then propose a practical framework for
pluralistic alignment using preference queries [4]. We apply our framework on both
vision and language generation tasks and show that we can obtain state-of-the-art
results with simple 2-layer multi-layer perceptron (MLP) learned on top of the
pre-trained models compared to previous approaches that need fine-tuning of very
large models.
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Learning large softmax mixtures

Jonathan Niles-Weed

(joint work with Xin Bing, Florentina Bunea, Martin Wegkamp)

We study the softmax mixture model, which has come to occupy an important role
in machine learning, discrete choice theory, and text analysis. In this model, ob-
servations are drawn according to a discrete mixture given by convex combination
of vectors of the form

Aθ(xj | xp) =: softmax(x⊤
j θ) =

exp(x⊤
j θ)

∑p
i=1 exp(x⊤

i θ)
, for each j ∈ [p] ,

where xp = {x1, . . . , xp} denotes a collection of observed “embedding vectors.”
Explicitly, we work in the setting where x1, . . . , xp are the observed values of a

collection X1, . . . , Xp of i.i.d. N (0,Σ) vectors. We view the data as arising from a
discrete mixture on xp, with masses given by

πω(xj | xp) =:

K∑

k=1

αkAθk(xj | xp), for each j ∈ [p] .

The goal is to estimate the parameters ω := (θ1, . . . , θK , α).
We study:

(1) Method of Moments (MoMMS) parameter estimation in softmax mixtures,
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(2) EM-based parameter estimation with MoMMS warm-start in softmax mix-
tures.

We show that the MoMMS procedure as a warm start followed by our EM-
estimator provably recovers the parameters at a nearly minimax rate in polynomial
time.

Probably Approximately Correct Constrained Learning

Luiz F. O. Chamon

(joint work with Miguel Calvo-Fullana, Santiago Paternain, Alejandro Ribeiro)

Requirements are integral to systems that are always defined as compromises be-
tween competing specifications such as accuracy, robustness, safety, and efficiency.
As data plays an increasingly central role in systems design, requirements have
also become of growing interest in machine learning (ML). Learning to satisfy re-
quirements is, however, antithetical to the standard ML practice of minimizing
individual losses. Constrained learning overcomes this challenge by incorporating
requirements as statistical constraints rather than modifying the training objec-
tive. Explicitly, constrained learning is defined as

(P-CSL)
P ⋆ = min

θ∈Θ
E(x,y)∼D0

[
ℓ0
(
fθ(x), y

)]

subject to E(x,y)∼Di

[
ℓi
(
fθ(x), y

)]
≤ ci, i = 1, . . . ,m,

where Di, i = 0, . . . ,m, denote probability distributions over data pairs (x, y) ∈
Rd × R; the ℓi : Rk × Y → [0, B], i = 0, . . . ,m, together with the ci, encode the
performance metric and the desired statistical properties of the solution; and fθ :
Rd → Rk is a function associated with the parameter vector θ ∈ Θ ⊆ Rp. Observe
that (P-CSL) considers statistical constraints rather than parameter constraints,
such as quadratic reqularization (‖θ‖2 ≤ c) or sparsity (‖θ‖1 ≤ c). The latter,
embedded in Θ, are deterministic and can be directly imposed using projections [1,
2].

In this talk, I develop a theory of constrained learning that establishes when
and how (P-CSL) can be solved using only samples from the Di. This is akin
to what classical learning theory does for unconstrained learning problems (i.e.,
(P-CSL) with m = 0). Our main result shows that the solution of (P-CSL) can
be approximated by solving the empirical dual problem

D̂⋆ = max
µi≥0

min
θ∈Θ

1

N0

N0∑

n0=1

ℓ0
(
fθ(xn0

), yn0

)
+

m∑

i=1

µi

[
1

Ni

Ni∑

ni=1

ℓi
(
fθ(xni

), yni

)
− ci

]
,

which uses on Ni samples (xni
, yni

) ∼ Di. Indeed, assume that the ℓi are convex
and M -Lipschitz continuous functions and that the hypothesis class is probably
approximately correct (PAC) learnable with respect to each ℓi and is ν-universal,
i.e., there exists ν ≥ 0 and a (convex) function space H such that for each φ ∈ H
there exists θ ∈ Θ such that EDi

[|φ(x)−fθ(x)|] ≤ ν. Then, we show that |P ⋆−D̂⋆|
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is bounded with high probability over draws of the samples [1, 2]. This result can
be extended to non-convex ℓi using techniques developed to tackle sparsity on the
continuum [3]. Additionally, if the ℓi are smooth, i.e., have M -Lipschitz gradients,
and ℓ0 is strongly convex, we can provide a bound on the infeasibility of the solu-
tions, namely |EDi

[
ℓi(fθ̂⋆(x), y)−ℓi(fθ⋆(x), y)

]
|, where θ⋆ is a solution of (P-CSL)

and θ̂⋆ achieves D̂⋆ [4]. This result enables a practical constrained learning rule

that uses dual ascent methods to tackle D̂⋆. Hence, under mild conditions, it is
possible to tackle constrained learning tasks by solving only unconstrained empir-
ical risk minimization (ERM) problems [1, 2, 4].

These advances can be used to directly tackle challenging problems in ro-
bust learning [1, 5], fair learning [1, 2], learning under invariance [6], and semi-
supervised learning [7]. These contributions suggest how we can go beyond the
current objective-centric learning paradigm towards a constraint-driven learning
one.
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Nonparametric bootstrap of high-dimensional sample

covariance matrices

Angelika Rohde

(joint work with Holger Dette)

Let Y1, . . . , Yn be iid p-dimensional centered random vectors with covariance ma-

trix Σn and corresponding sample covariance matrix Σ̂n = 1
n

∑n
i=1 YiY

⊤
i . We de-

note by λ̂1, . . . , λ̂p its eigenvalues, by µΣ̂n = 1
p

∑p
i=1 δλ̂i

its (normalized) spectral

measure and by mΣ̂n
its Stieltjes transform. Our goal is to provide a fully non-

parametric and computationally tractable tool to obtain accurate approximations
for the distribution of particular eigenvalue statistics of the sample covariance ma-
trix in the high-dimensional context where the dimension grows proportionately
with the sample size.
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Model assumptions. Aligning with the common framework in random matrix
theory, we shall work under the same type of conditions and study a triangular
array of p = p(n)-dimensional observations Y1, . . . , Yn of the form

(1) Yi = AnXi, i = 1, . . . , n.

Here, Xi = (Xi1, Xi2, . . .)
⊤ (i ∈ N) are iid infinite dimensional random vectors

and An is a p×∞ matrix such that the following assumptions are satisfied:

(A1) The matrix An has square summable rows and supn∈N
‖An‖S∞

< ∞.
(A2) p/n → c for some real constant c > 0 as n → ∞.
(A3) The vector X1 has iid entries X1k, k ∈ N, with EX11 = 0 and EX2

11 = 1.

Under these conditions, Y1 = AnX1 is well defined as limit in L2(P) with covariance
matrix

Σn = E[Y1Y
⊤
1 ] = AnA

⊤
n .

As concerns normal approximation of linear spectral statistics, the existence of the
fourth moment EX4

11 < ∞ is known to be necessary. Therefore, we shall impose
in that case the stronger assumption

(A3+) In addition to assumption (A3), EX3
11 = 0 and EX4

11 = 3.

Coincidence of the third and fourth moment with those of the standard nor-
mal distribution can be avoided in the CLT for linear spectral statistics of high-
dimensional covariance matrices at the expense of additional regularity assump-
tions on the eigenvectors, see [1]. We refrain from this generalization to keep the
technical expenditure as small as possible.

Results of [2, 3] indicate that the classical bootstrap for the LSD is untrust-
worthy when the problem is genuinely high-dimensional. In Theorem S2.2 in the
supplementary material of their paper, [2] showed that the limiting spectral distri-
bution (LSD) of the bootstrapped covariance matrix is completely different from

that of Σ̂n. The traditionally in a wider range applicable m out of n bootstrap
does not even preserve the limiting ratio c of dimension and sample size if m ≪ n,
which appears already explicitly in the characterizing Marc̆enko-Pastur equation
for the Stieltjes transform of the LSD.

Condition 1 (Representative Subpopulation Condition). The triangular array of
p-dimensional vectors Y1, . . . , Yn in model (1) is said to satisfy the Representative
Subpopulation Condition, if the following conditions are satisfied.

(1) For every q ≤ p, there exists a possibly random strategy (independent of
Y1, . . . , Yn) of selecting q out of p coordinates such that the covariance

matrix Σ̃n of the resulting q-dimensional subvectors Yi,sub (i = 1, . . . , n)
satisfies

(2) µΣ̃n − µΣn ⇒ 0 as q, n → ∞ in probability.

(2) If Πn = Πn,q denotes the projection corresponding to the possibly random
selection strategy, that is Yi,sub = ΠnYi (i = 1, . . . , n), then there exists
for almost all realizations a decomposition of the form

(3) ΠnAn = Ln + Rn ,
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where the sets of non-zero entries of the matrices Ln and Rn are disjoint,
the matrix Ln has a most q′ non-zero columns with q′ a possibly random
integer of deterministic order O(q), and EΠn

[
||Rn||2S2

]
= o(1) as q, n →

∞. Here, EΠn
denotes expectation with respect to the random projection

Πn.

The Representative Subpopulation Condition being granted, we propose the
following resampling scheme.

Algorithm 2 ((m,mp/n) out of (n, p) Bootstrap).

(i) For m = o(n), draw an iid sample Y ∗
1 , . . . , Y

∗
m from the empirical distri-

bution P̂n = 1
n

∑n
i=1 δYi

.
(ii) Define the bootstrap sample

Z∗
i = ΠnY

∗
i = (Y ∗

ij1 , . . . , Y
∗
ijq )⊤, i = 1, . . . ,m,

using the q = ⌊mp/n⌋ coordinates j1, . . . , jq selected according to the Rep-
resentative Subpopulation Condition.

(ii) Output: the estimator

Σ̂∗
n =

1

m

m∑

i=1

Z∗
i Z

∗
i
⊤ = Πn

( 1

m

m∑

i=1

Y ∗
i Y

∗
i
⊤
)

Π⊤
n

and its corresponding spectral distribution µΣ̂∗

n .

Our first result demonstrates that Σ̂∗
n mimics the sample covariance matrix

in terms of spectral distributions. Besides being of interest in its own, this is
a necessary ingredient for the CLT for linear spectral statistics as the limiting

spectral distribution of the Σ̂n explicitly enters the limiting variance expression of
linear spectral statistics.

Theorem 3 (Spectral distribution). Grant assumptions (A1)–(A3). Suppose that
the triangular array of p-dimensional vectors Y1, . . . , Yn in model (1) satisfies the
Representative Subpopulation Condition 1. If m = o(n), then

µΣ̂n − µΣ̂∗

n =⇒ 0 in probability.

A further important step in the proof of the CLT for linear spectral statistics
is the following result.

Theorem 4. Grant assumptions (A1)–(A3) and EX4
11 < ∞. Suppose that the tri-

angular array of p-dimensional vectors Y1, . . . , Yn in model (1) satisfies Condition
1. Let c′ = lim sup(q′/m).

(a) If m = o(
√
n), then there exists a constant Kr > 0 such that

P

(wwΣ̂∗
n

ww
S∞

> Kr

)
= o(m−l) for every l ∈ N.(4)

If m = o(logn), then (4) holds even for every Kr > lim supn∈N
‖Σn‖S∞

(1+√
c′)2.
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(b) If m = o(
√
n), then we have for any Kl < lim infn∈N ‖Σn‖S∞

max{(1 −√
c′)2, 0}

P

(
λmin

(
Σ̂∗

n

)
< Kl

)
= o(m−l) for every l ∈ N .

Finally, we study linear spectral statistics

T̂ ∗
n(f) =

q∑

j=1

f
(
λ̂∗
j

)
= q

∫
f(x)dµΣ̂∗

n(x),(5)

where λ̂∗
1, . . . , λ̂

∗
q denote the eigenvalues of the matrix Σ̂∗

n. We set f equal to 0

outside its domain and fm := fI{|f | ≤ mℓ} for some arbitrary ℓ ∈ N. This

definition ensures the existence of ET̂ ∗
n(f) for functions that grow faster than any

polynomial.

Theorem 5 (Linear spectral statistics). Grant assumptions (A1)–(A3+) and sup-
pose that the triangular array of p-dimensional vectors Y1, . . . , Yn in model (1)
satisfies Condition 1. Let f be a real-valued function which is analytic in a region
of the complex plane containing the interval

(6) I =
[
Kl − lim sup

n→∞
‖Σn‖S∞

,Kr + lim sup
n→∞

‖Σn‖S∞

]
,

where Kl and Kr are the constant in Theorem 4. Furthermore, assume that m =
o(
√
n). If E|X11|6 < ∞, then

dBL

[
L
(
T̂ ∗
n(f) − E

∗T̂ ∗
n(fm)

)Y1, . . . , Yn

)
,L
(
T̂n(f) − ET̂n(fn)

)]
−→P 0,(7)

where dBL denotes the dual bounded Lipschitz metric. Moreover, the conditional
distribution of T̂ ∗

n(f)−E∗T̂ ∗
n(fm) is asymptotically centered normal with variance

− 1

2π2
�

∫
�

∫
f(z1)f(z2)

(mµΣ̂n
(z1) −mµΣ̂n

(z2))2
m′

µΣ̂n
(z1)m′

µΣ̂n
(z2)dz1dz2 + oP(1).
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Estimation of barycenters in metric spaces

Victor-Emmanuel Brunel

(joint work with Jordan Serres)

In metric spaces that lack a linear structure, barycenters provide a canonical ex-
tension of linear averaging. In this talk, we are interested in the problem of esti-
mating the barycenter of a distribution, given iid data. We work under a geometric
assumption on the underlying space, ensuring that barycenters are defined as so-
lutions to (geodesically) convex optimization problems and we present statistical
guarantees for several estimators, some of which that can be computed efficiently
from streamed data.

Stability and statistical inference for semidiscrete optimal

transport maps

Kengo Kato

(joint work with Ritwik Sadhu, Ziv Goldfeld)

We study statistical inference for the optimal transport (OT) map (also known as
the Brenier map) from a known absolutely continuous reference distribution onto
an unknown finitely discrete target distribution. We derive limit distributions for
the Lp-error with arbitrary p ∈ [1,∞) and for linear functionals of the empirical
OT map, together with their moment convergence. The former has a non-Gaussian
limit, whose explicit density is derived, while the latter attains asymptotic normal-
ity. For both cases, we also establish consistency of the nonparametric bootstrap.
The derivation of our limit theorems relies on new stability estimates of function-
als of the OT map with respect to the dual potential vector, which may be of
independent interest. We also discuss applications of our limit theorems to the
construction of confidence sets for the OT map and inference for a maximum tail
correlation. Finally, we show that, while the empirical OT map does not possess
nontrivial weak limits in the L2 space, it satisfies a central limit theorem in a dual
Hölder space, and the Gaussian limit law attains the asymptotic efficiency bound.

Empirical partially Bayes multiple testing and compound χ2 decisions

Bodhisattva Sen

(joint work with Nikolaos Ignatiadis)

A common task in high-throughput biology is to screen for associations across
thousands of units of interest, e.g., genes or proteins. Often, the data for each unit
are modeled as Gaussian measurements with unknown mean and variance and are
summarized as per-unit sample averages and sample variances. The downstream
goal is multiple testing for the means. In this domain, it is routine to “moderate”
(that is, to shrink) the sample variances through parametric empirical Bayes meth-
ods before computing p-values for the means. Such an approach is asymmetric
in that a prior is posited and estimated for the nuisance parameters (variances)
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but not the primary parameters (means). Our work initiates the formal study
of this paradigm, which we term “empirical partially Bayes multiple testing”. In
this framework, if the prior for the variances were known, one could proceed by
computing p-values conditional on the sample variances–a strategy called partially
Bayes inference by Sir David Cox. We show that these conditional p-values satisfy
an Eddington/Tweedie-type formula and are approximated at nearly-parametric
rates when the prior is estimated by nonparametric maximum likelihood. The
estimated p-values can be used with the Benjamini-Hochberg procedure to guar-
antee asymptotic control of the false discovery rate. Even in the compound setting,
wherein the variances are fixed, the approach retains asymptotic type-I error guar-
antees.

Conformal PID control for time series prediction

Ryan J. Tibshirani

(joint work with Anastasios N. Angelopoulos, Emmanuel J. Candès)

Machine learning models run in production systems regularly encounter data dis-
tributions that change over time. This can be due to factors such as seasonality
and time-of-day, continual updating and re-training of upstream machine learning
models, changing user behaviors, and so on. These distribution shifts can degrade
a model’s predictive performance. They also invalidate standard techniques for
uncertainty quantification, such as conformal prediction [1].

To address the problem of shifting distributions, we consider a (possibly) ad-
versarial time series of deterministic covariates xt ∈ X and responses yt ∈ Y, for
t ∈ N = {1, 2, 3, . . .}. As in standard conformal prediction, we are free to define
any conformal score function st : X ×Y → R, which we can view as measuring the
accuracy of our forecast at time t. We will assume with a loss of generality that st
is negatively oriented (lower values mean greater forecast accuracy). For example,
we may use the absolute error st(x, y) = |y−ft(x)|, where ft is a forecaster trained
on data up to but not including data at time t.

The challenge in the sequential setting is as follows. We seek to invert the score
function to construct a conformal prediction set,

(1) Ct = {y ∈ Y : st(xt, y) ≤ qt},
where qt is an estimated 1 − α quantile for the distribution of the score st(xt, yt)
at time t. Recall, in standard conformal prediction, we would take qt to be a
level 1 − α sample quantile (up to a finite-sample correction) of st(xi, yi), i < t;
if the data sequence (xi, yi), i ∈ N were i.i.d. or exchangeable, then this would
yield 1 − α coverage [1] at each time t. However, in the sequential setting, which
does not assume exchangeability (or any probabilistic model for the data for that
matter), choosing qt in (1) to yield coverage is a formidable task. If we are not
willing to make any assumptions about the sequence, then a coverage guarantee
at time t would only be possible with trivial methods, which construct prediction
intervals of infinite sizes.
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Therefore, our goal is to achieve long-run coverage in time. That is, letting
errt = 1{yt /∈ Ct}, we would like to achieve, for large integers T ,

(2)
1

T

T∑

t=1

errt = α + o(1)

under few or no assumptions, where o(1) denotes a quantity that tends to zero as
T → ∞. Furthermore, going beyond (2), we also seek to design flexible strategies
to produce the sharpest prediction sets possible, which not only adapt to, but also
anticipate distribution shifts.

We call our proposed solution conformal PID control. It treats the system for
producing prediction sets as a proportional-integral-derivative (PID) controller. In
the language of control, the prediction sets take a process variable, qt, and then
produce an output, errt. We seek to anchor errt to a set point, α. To do so,
we apply corrections to qt based on the error of the output, gt = errt − α. By
reframing the problem in this language, we are able to build algorithms that have
more stable coverage while also prospectively adapting to changes in the score
sequence, much in the same style as a control system.

Three design principles underlie our methods:

(1) Quantile tracking (P control). Running online gradient descent on the
quantile loss (summed over all past scores) gives rise to a method that we
call quantile tracking, which achieves long-run coverage (2) under no as-
sumptions except boundedness of the scores. This bound can be unknown.
Unlike adaptive conformal inference (ACI) [2], quantile tracking does not
return infinite sets after a sequence of miscoverage events. This can be
seen as equivalent to proportional (P) control.

(2) Error integration (I control). By incorporating the running sum
∑t

i=1 gt
of the coverage errors into the online quantile updates, we can further
stabilize the coverage. This error integration scheme achieves long-run
coverage (2) under no assumptions whatsoever on the scores (they can be
unbounded). This can be seen as equivalent to integral (I) control.

(3) Scorecasting (D control). To account for systematic trends in the scores—
this may be due to aspects of the data distribution, fixed or changing,
which are not captured by the initial forecaster—we train a second model,
namely, a scorecaster, to predict the quantile of the next score. While
quantile tracking and error integration are merely reactive, scorecasting is
forward-looking. It can potentially residualize out systematic trends in the
errors and lead to practical advantages in terms of coverage and efficiency
(set sizes). This can be seen as equivalent to derivative (D) control.

These three modules combine to make our final iteration, the conformal PID
controller :

(3) qt+1 = ηgt

︸︷︷︸
P

+ rt

(
t∑

i=1

gt

)

︸ ︷︷ ︸
I

+ g′t

︸︷︷︸
D

.
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In traditional PID control, one would take rt(x) to be a linear function of x. Here,
we allow for nonlinearity and take rt to be a saturation function obeying

(4) x ≥ c · h(t) =⇒ rt(x) ≥ b, and x ≤ −c · h(t) =⇒ rt(x) ≤ −b,

for constants b, c > 0, and a sublinear, nonnegative, nondecreasing function h—we
call a function h satisfying these conditions admissible. An example is the tangent
integrator rt(x) = KI tan(x log(t)/(tCsat)), where we set tan(x) = sign(x) · ∞ for
x /∈ [−π/2, π/2], and Csat,KI > 0 are constants. The choice of integrator rt is a
design decision for the user, as is the choice of scorecaster g′t.

We find it convenient to reparametrize (3), to produce a sequence of quantile
estimates qt, t ∈ N used in the prediction sets (1), as follows:

(5)

let q̂t+1 be any function of the past: xi, yi, qi, for i ≤ t,

then update qt+1 = q̂t+1 + rt

(
t∑

i=1

(erri − α)

)
.

Taking q̂t+1 = ηgt + g′t recovers (3), Now we view q̂t+1 as the scorecaster, which
directly predicts qt+1 using past data. Our main result [3] is that the conformal
PID controller (5) achieves long-run coverage for any choice of integrator rt that
satisfies the appropriate saturation condition, and any scorecaster q̂t+1.

Theorem 6. Let {q̂t}t∈N be any sequence of numbers in [−b/2, b/2] and let {st}t∈N

be any sequence of score functions with outputs in [−b/2, b/2]. Here b > 0, and
may be infinite. Assume that rt satisfies (4), for an admissible function h. Then
the iteration (5) achieves long-run coverage (2).
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Adaptive Split Balancing for Optimal Random Forest

Jelena Bradic

(joint work with Yuqian Zhang, Weijie Ji)

Random forests are widely used for regression problems, but existing methods
often lack adaptability in complex scenarios and fail to maintain optimality in
simple, smooth cases. In this study, we introduce the adaptive split balancing
forest (ASBF), a novel approach that learns tree representations from data while
achieving minimax optimality under the Lipschitz class. To further enhance per-
formance, we propose a localized version that attains the minimax rate under the
Hölder class Hq,β for any q ∈ N and β ∈ (0, 1].
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Our contributions are threefold: 1) While many methods achieve minimax rates
of estimation, uniform minimax optimality for all Hölder classes Hq,β for any
q ∈ N and β ∈ (0, 1] has remained elusive for random forests, except in purely
random forests. The ASBF effectively addresses this gap. 2) We demonstrate
that excessive randomness in selecting the splitting variable can negatively impact
estimation rates and the model’s ability to adapt to the function’s underlying
smoothness. To mitigate this, each time a leaf is split, we only randomly select
a direction from one of the sides that has been split the least times. In other
words, the splitting directions are chosen in a balanced fashion – we have to split
once in each direction before proceeding to the next round. This approach helps
reduce the impact of auxiliary randomness and enables more efficient splitting,
enhancing both estimation accuracy and adaptability. 3) Our primary motivation
is to justify and enable the use of random forests for computing root-n confidence
sets for average treatment effects, representing a significant advancement in the
practical application of random forests.

Additionally, through extensive simulation studies and real-data applications,
we demonstrate the superior empirical performance of the proposed methods com-
pared to existing random forest techniques.
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Quadratic functional estimation from observations with multiplicative

measurement error

Bianca Neubert

(joint work with Fabienne Comte, Jan Johannes)

We consider a multiplicative deconvolution problem, in which a quadratic func-
tional of the density of a strictly positive random variable X is estimated non-
parametrically based on an iid. sample from a noisy observation Y = X · U of X .
The multiplicative measurement error U is supposed to be independent of X . The
objective of this work is to construct a fully data-driven estimation procedure of
quadratic functionals of the density of X when the error density is known. The
proposed estimation procedure is based on the estimation of the Mellin transfor-
mation of the density. The main issue addressed in this work is the data-driven
choice of the cut-off parameter using an approach in the spirit of Goldenshluger
and Lepski. We discuss conditions under which the fully data-driven estimator can
attain the oracle-risk up to a logarithmic deterioration. We compute convergence
rates under classical smoothness assumptions.



1706 Oberwolfach Report 30/2024

Central Limit Theorems for Smooth Optimal Transport Maps

Tudor Manole

(joint work with Sivaraman Balakrishnan, Jonathan Niles-Weed,
and Larry Wasserman)

One of the central objects in the optimal transport framework is the quadratic op-
timal transport map: the unique monotone transformation which pushes forward
an absolutely continuous probability law onto any other given law. Several recent
works have analyzed the L2 risk of plugin estimators of optimal transport maps,
which are defined as the unique optimal transport map between density estimates
of the underlying distributions. In this work, we show that such estimators enjoy
pointwise central limit theorems. These results provide a first step toward the
problem of performing statistical inference for smooth optimal transport maps in
general dimension. Our proofs hinge upon a quantitative linearization of a Monge-
Ampère equation, which allows us to reduce our problem to that of deriving limit
laws for the solution of a uniformly elliptic partial differential equation with a
stochastic right-hand side.

Consistency for a general class of Random Forest type algorithms

Ricardo Blum

(joint work with Munir Hiabu, Enno Mammen, Joseph Theo Meyer)

We present a unifying consistency theorem for a broad class of tree-based algo-
rithms by introducing a probabilistic sufficient impurity decrease condition. Our
theory can be applied to algorithms that vary from traditional Random Forests
due to additional randomness for choosing splits, allowing partitions into more
than two cells in a single iteration step, and combinations of these. For example,
our theory can be used to derive consistency of Extremely Randomized Trees and
Interaction Forests. Furthermore, we demonstrate consistency for a larger function
class compared to previous results on Random Forests if one allows for additional
random splits.
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Early stopping for conjugate gradients in statistical inverse problems

Laura Hucker

(joint work with Markus Reiß)

The conjugate gradient (CG) algorithm is arguably one of the computationally
most efficient off-the-shelf methods for solving systems of linear equations. Like
for standard gradient descent methods, stopping the algorithm early, that is before
terminating at the solution, induces a regularisation. In the context of determinis-
tic ill-posed inverse problems the seminal work by Nemirovskii [5] and Hanke [3] has
shown that a stopping criterion based on the discrepancy principle, which monitors
when the residual norm reaches a given threshold depending on the noise level, can
lead to optimal convergence rates under bounded noise. Despite its importance
in applications, the case of statistical noise has been understood only partially
for CG so far. Major reasons are the nonlinearity of the CG algorithm and that
canonical Gaussian white noise ξ on an infinite-dimensional Hilbert space has in-
finite norm ‖ξ‖ = ∞ almost surely. Therefore, the discrepancy principle cannot
be well-defined.

In this talk, we consider estimators obtained by iterates of the standard CGNE
(conjugate gradients for the normal equation) algorithm, also popular under the
name partial least squares, applied to a prototypical statistical inverse problem un-
der Gaussian white noise. When implemented, the CGNE algorithm is necessarily
finite-dimensional, and we analyse it carefully, keeping explicitly track of the un-
derlying dimension D. This is in line with the approach by Blanchard, Hoffmann
and Reiß [1, 2] for linear spectral methods. Due to the nonlinear dependence on
the noise, however, the analysis must be undertaken for every noise realisation
and often requires more sophisticated arguments. The main contributions of our
work [4] presented in this talk are the following:

• We identify two random quantities, called stochastic error and approxi-
mation error, which share important properties of variance and bias and
allow for a precise nonasymptotic CG error control.

• Interpolating linearly between CG iterates allows us to equilibrate sto-
chastic and approximation error. The oracle stopping time defined in this
way achieves optimal prediction error control under minimal assumptions
on the unknown signal and on the noise.

• We construct a data-driven residual-based stopping rule τ , depending on
previous iterates t ≤ τ only, that satisfies an oracle-type inequality for
the prediction error and achieves optimal convergence rates whenever the
error in estimating the noise level ‖ξ‖2 is not dominant. The choice of
τ circumvents the computational drawback of classical model selection
criteria, which make use of the entire iteration path.

• The convergence rates transfer to the reconstruction error, thus establish-
ing minimax optimality of the best iterate along the CG iteration path
and – under restrictions on the dimension D – of the iterate selected by
our early stopping criterion τ .
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Low intrinsic dimensionality is all you need

Shayan Hundrieser

(joint work with Thomas Staudt, Michel Groppe, Axel Munk)

The theory of optimal transport (OT) offers versatile tools for the comparison of
probability measures in a geometrically faithful way. Formally, given a measurable
cost function c : Rd × R

d → [0,∞) and two probability measures P,Q on R
d, the

OT cost is defined

Tc(P,Q) := inf
π∈Π(P,Q)

∫
c(x, y)dπ(x, y),

where Π(P,Q) denotes the collection of couplings between P and Q. This quantity
has found various applications, e.g., in economics, machine learning and biology.
Oftentimes, for computational benefits, practitioners relies a regularized variant,
namely the entropy penalized OT (EOT) cost with regularization parameter ε > 0,

T ε
c (P,Q) := inf

π∈Π(P,Q)

∫
c(x, y)dπ(x, y) + εKL(π||P ⊗Q),

with KL(π||P ⊗Q) :=

{∫
log
(

dπ
dP⊗Q (x, y)

)
if π ≪ P ⊗Q,

+∞ else.

In applied contexts, one often relies on estimating the OT and EOT cost by
an empirical plug-in approach. Assuming i.i.d. random variables X1, . . . , Xn ∼ P
and Y1, . . . , Yn ∼ Q, with corresponding empirical measures P̂n := 1

n

∑n
i=1 δXi

and

Q̂n := 1
n

∑n
i=1 δYi

, the resulting plug-in estimators for the OT and EOT cost are

given by Tc(P̂n, Q̂n) and T ε
c (P̂n, Q̂n). The convergence behavior of the empirical

OT and EOT cost for increasing sample size is dictated by various aspects and
affected by the curse of dimensionality. Indeed, when only imposing boundedness
of the support of the population measures it follows for costs c(x, y) = ‖x − y‖p
with p ≥ 1 and n ≥ 1 according to [3] that

inf
T̂c

sup
P,Q∈P([0,1]d)

E

[∣∣∣T̂c − Tc(P,Q)
∣∣∣
]
≥ K

[
(n log(n + 1))−min(p,2)/d + n−1/2

]
,
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where the infimum is taken over all estimators based on X1, . . . , Xn, Y1, . . . , Yn

and K > 0 is a positive constant that depends on d and p. Likewise, for the EOT
cost we show in our work [1] for small ε > 0 that

inf
T̂ ε
c

sup
P,Q∈P([0,1]d)

E

[∣∣∣T̂ ε
c − T ε

c (P,Q)
∣∣∣
]

≥ K
[
(n log(n + 1))−min(p,2)/d + n−1/2

]
− 2dε| log(ε)|,

confirming when ε > 0 is small that estimation of the EOT cost is also affected by
the curse of dimensionality .

The central contribution of our works [1, 2] concerns the statistical convergence
rate of the empirical OT and EOT cost under structural assumptions on the intrin-
sic dimensions of the population measures. Under distinct population measures
with different intrinsic dimensions, we establish that the convergence rate for the
empirical OT cost adapts to the population measures in the most favorable way,
being determined by the lower dimensional measure. More precisely, we show in
[2] for the empirical OT cost based on a cost function that is α-Hölder regular
and assuming P and Q are concentrated on compact submanifolds of dimension s
and t, respectively, that

E

[∣∣∣T̂c(P̂n, Q̂n) − Tc(P,Q)
∣∣∣
]
≤ K ·





n−min(α,2)/min(s,t) if min(s, t) > 2 min(α, 2),

n−1/2 log(n + 1) if min(s, t) = 2 min(α, 2),

n−1/2 if min(s, t) < 2 min(α, 2),

where K only depends on the cost function and the manifold with the lower di-
mension. This phenomenon represents a hallmark feature of empirical optimal
transport and we term it lower complexity adaptation. In addition, we also con-
firm the empirical EOT cost to benefit from low intrinsic dimensionality of one
measure. More precisely, we show in [1] for an α-Hölder regular cost function with
α > min(s, t)/2 that

E

[∣∣∣T̂ ε
c (P̂n, Q̂n) − T ε

c (P,Q)
∣∣∣
]
≤ K(1 + ε−min(s,t)/2)n−1/2,

which highlights that the adaptation to lower complexity manifests in the de-
pendency of the regularization parameter. Overall, our works establish that low
intrinsic dimensionality of a single population measure is sufficient in order to
expect fast convergence rates of the empirical OT and EOT cost.
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Bernstein-type inequalities for unbounded martingales

Alexandra Suvorikova

(joint work with Alexey Kroshnin)

Nowadays, concentration inequalities are pivotal in many areas, offering crucial
insights into the non-asymptotic analysis of the behavior of random variables.
Among the various forms of concentration inequalities, Bernstein-type ones have
garnered significant attention due to their scope of applicability. They are es-
sential in numerous fields, including statistical learning theory, empirical process
theory, and high-dimensional statistics. Their applicability ranges from deriving
error bounds for machine learning algorithms to ensuring the reliability of high-
dimensional data analysis.

The classical Bernstein inequality, derived in the early 20th century by Sergei
Bernstein, provides a probabilistic bound for the sum of independent, centered
random variables with bounded absolute values [1]. Over the decades, the scope
and utility of Bernstein-type inequalities have expanded, leading to various gener-
alizations and refinements. It is worth noting that Sergei Bernstein himself relaxed
the assumption on bounded random variables and replaced it with the assumption
on bounded moments.

George Bennett obtained a tighter bound for bounded independent observations
[2]. Several years later, Vadim Yurinskii generalized Bernstein’s result to the case
of random variables in Banach spaces, assuming Bernstein’s moment condition on
the norm [3]. Around the same time, David Freedman relaxed the independence
assumption and derived the concentration inequality for bounded martingales [4].

In the 2000s, there was increased interest in the matrix case: Joel Tropp gener-
alized Freedman’s result to the case of matrix-valued martingales satisfying Bern-
stein’s moment condition [5]. At the same time, Vladimir Koltchinskii obtained a
Bernstein-type result for independent random Hermitian matrices with bounded
Orlicz norm [6].

This work suggests a novel result in the same direction: we consider matrix-
valued martingale differences, assuming their Orlicz norm to be bounded. Further-
more, we illustrate the applicability of the result by deriving a McDiarmid-type
inequality.
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Non-asymptotic and non-minimax estimation of a smooth functionals

Vladimir Spokoiny

The talk discusses a general framework of statistical estimation by a quasi max-
imum likelihood method without specifying any particular structure of the data.
The obtained results are stated first for linear models and then extended to so-
called stochastically linear models with a linear stochastic component (SLS).

Later it is shown how a general model can be transformed to fit the SLS frame-
work by extending the parameter space. The approach is illustrated by the case
of estimation of a smooth functional.

Laplace asymptotics in high-dimensional Bayesian inference

Anya Katsevich

Developing cheap and accurate computational techniques for Bayesian inference
is an important goal, as Bayesian inference tasks can be very computationally
intensive. These tasks include computing posterior credible sets, posterior mean
and covariance, and the evidence (marginal likelihood) of the data. Computing all
of these quantities involves either sampling from the posterior π, taking integrals∫
gdπ against the posterior, or integrating the unnormalized posterior. When the

dimensionality d of the parameter is large, these tasks can be very expensive.
A popular approach to simplify such computations is to find a simple distribu-

tion γ̂ which approximates π, and to use this distribution as a proxy for π to do
all of one’s inference tasks. In particular, we approximate

∫
fdπ by

∫
fdγ̂ and in

the ideal scenario, many integrals against γ̂ are computable in closed form. The
idea of using an approximation γ̂ to π is at the heart of approximate Bayesian
inference methods such as variational inference, expectation propagation, and the
Laplace approximation (LA), the focus of our studies. The idea of the LA is to
exploit large sample properties of the posterior. Namely if certain conditions are
met (e.g. if the statistical model is well-specified), then the uncertainty in the
posterior decreases as more and more samples are collected. Therefore as sample
size n → ∞, the mass of the posterior π concentrates in a small neighborhood
of the mode, which we call x̂. Since most of the mass of π is near x̂, we should
incur only a small error by replacing the log posterior with its second order Taylor
expansion about x̂. This gives rise to the LA, the Gaussian γ̂ given by

(1) γ̂ = N
(
x̂, ∇2V (x̂)−1

)
, x̂ = arg min

x∈Θ
V (x)

where π ∝ e−V is a density on Θ ⊆ Rd. The concentration of π about the mode
can also be explained by the fact that we can write

V = nv, π ∝ e−V = e−nv
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for a function v which only weakly depends on n as n → ∞. Thus π ∝ e−nv

concentrates around the global minimizer θ̂ of v.
The LA has proved to be an invaluable tool for Bayesian inference in appli-

cations ranging from deep learning to inverse problems to variable selection in
high-dimensional regression. Quantifying the LA’s error as a function of dimen-
sion d, sample size n, and model parameters, is a worthy task given its widespread
use. It is also a challenging theoretical endeavor when dimension d is large, and
currently a very active research area. Major contributions have been made e.g.
by [5, 12, 3]. But arguably, it is even more important to go beyond the LA to
develop new, more accurate approximations which better capture the complexity
of the posterior π. For example, a known downside of the LA γ̂ is that it is sym-
metric about the mode and therefore cannot capture skewness of π. Instead of
constructing an entirely new kind of approximation, a natural idea is to correct
the LA in some way to get a higher-order accuracy approximation. Only a single
work [2] rigorously derives a higher-order accurate LA. However, it is only shown
to be accurate in constant dimension d. So far, no prior work has obtained a
higher-accuracy LA which is rigorously justified in high dimensions.

In the work [6], we develop a powerful technique to analyze the Laplace ap-
proximation more precisely than was possible before. This technique leads us to
derive the first ever correction to the LA which provably improves its accuracy by
an order of magnitude, in high dimensions. At the same time, the more accurate,
skew-corrected LA — which we call γ̂S — retains the useful property of γ̂ that
integrals

∫
fdγ̂S can be computed in closed form when f is a polynomial.

Our approach allows us to prove error bounds on the approximation π ≈ γ̂S
in terms of a variety of error metrics. It also improves our understanding of the
accuracy of the uncorrected LA itself: we prove both tighter upper bounds and
the first ever lower bounds on the standard LA in high dimensions. In particular,
we prove that d2 ≪ n is in general necessary for accuracy of the LA.

If π ∝ e−nv then
∫
fdπ =

∫
fe−nv/

∫
e−nv, which is the ratio of two Laplace-

type integrals (i.e. integrals involving an exponential, with a large parameter n in
the exponent). In the second part of the talk we consider directly approximating
Laplace-type integrals by an asymptotic expansions in powers of n−1, whose coeffi-

cients are given in terms of derivatives of f and v at θ̂ = argminθ v(θ). This allows
us to a) directly approximate

∫
fdπ by a ratio of two numbers, rather than by a

second integral which still may not be so simple to compute, and b) compute the
normalizing constant

∫
e−nv, which is inaccessible using only an approximation of

the density π by a second density γ̂ or γ̂S . The normalizing constant, or evidence,
is of central importance in Bayesian model selection.

Asymptotic expansions of Laplace-type integrals are a classical subject in as-
ymptotic analysis [14], but most results in this area consider dimension d to be
constant relative to the large parameter n. Works obtaining remainder bounds
depending explicitly on dimension either have exponential dimension dependence,
consider particular forms of f and v, or only consider the expansion of

∫
e−nv to

zeroth order. See [10, 4, 9, 1, 11, 13] for partial results on Laplace expansions.
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In [7], we derive the asymptotic expansion of Laplace-type integrals in high
dimension. Namely, we show that if 0 = argminθ v(θ) and ∇2v(0) = Id (the
general case can be derived through a change of variables), then under appropriate
regularity conditions it holds

env(0)

(2π/n)d/2

∫

Rd

f(x)e−nv(x)dx = f(0) +

L−1∑

k=1

akn
−k + RemL.

The coefficients ak coincide with those derived explicitly for the first time in [8].
The main contribution lies in our remainder error bound, which takes the form

|RemL| .L C

(
d√
n

)2L

,

C = C
(
d, |f |, ‖∇f‖, . . . , ‖∇2Lf‖, ‖∇3v‖, . . . , ‖∇2L+2v‖

)
.

Here, C is a fully explicit function, and ‖∇kg‖ is shorthand for
sup

‖x‖≤R
√

d/n
‖∇kg(x)‖, for some absolute constant R. The dependence of C

on the terms ‖∇kg‖ is polynomial, and the dependence on d is only beneficial: d
appears raised to various negative powers in front of the terms ‖∇kg‖. Our result
is a complete extension of the classical Laplace expansion to the high-dimensional
setting. The expansion can now be used in applications where dimension cannot be
considered constant relative to the large parameter n, both in Bayesian inference
and beyond.
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Department of Computer Science and
Information Theory
Budapest University of Technology
and Economics
Stoczek u. 2
1521 Budapest
HUNGARY

Dr. Niao He

Institute of Machine Learning
ETH Zürich
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