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Preludes to the Eilenberg–Moore and the Leray–Serre
spectral sequences

Frank Neumann and Markus Szymik

Abstract. The Leray–Serre and the Eilenberg–Moore spectral sequences are fundamental tools for
computing the cohomology of a group or, more generally, of a space. We describe the relationship
between these two spectral sequences when both of them share the same abutment. There exists
a joint tri-graded refinement of the Leray–Serre and the Eilenberg–Moore spectral sequence. This
refinement involves two more spectral sequences, the preludes from the title, which abut to the initial
terms of the Leray–Serre and the Eilenberg–Moore spectral sequence, respectively. We show that
one of these always degenerates from its second page on and that the other one satisfies a local-to-
global property: it degenerates for all possible base spaces if and only if it does so when the base
space is contractible.

1. Introduction

We consider principal fibration sequences �Z ! X ! Y ! Z for connected spaces X ,
Y , and Z, with the latter also simply-connected or at least nilpotent. For instance, these
could be classifying spaces for a central extension of discrete groups, with Z ' K.A; 2/
an Eilenberg–Mac Lane space for the abelian kernel A. In general, there are two spectral
sequences that converge to the cohomology of X with coefficients in a field K, say: a
Leray–Serre spectral sequence for �Z! X ! Y in the first quadrant and an Eilenberg–
Moore spectral sequence for X ! Y ! Z in the second. It has long been recognised that
these two spectral sequences often process the same information in different ways (e.g.,
see [12]).

The main goal of this paper is to replace intuition with certainty. We provide system-
atic tools and examples showing that our assumptions are reasonable. It turns out that
a comparison is always possible and that, in favourable cases, it leads to computational
effects. Our main point is the following result.

Theorem 1.1. For every principal fibration sequence �Z ! X ! Y ! Z there are
two spectral sequences starting with the same tri-graded groups Es;t;u1 , involving differ-
ent pairs .s; u/ and .t; u/ of indices and converging to the E1 pages of the Leray–Serre
spectral sequence for �Z ! X ! Y and the Eilenberg–Moore spectral sequence for
X ! Y ! Z, respectively, in turn abutting both to HsCtCu.X/.
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These two spectral sequences, which are introduced at the beginning of Section 3, are
the preludes from the title. Existence results for spectral sequences are nowadays mostly
a formality, and our Theorem 1.1 follows a pattern introduced by Deligne [4] (see also
Miller [14]). The crucial point of the above result is the agreement of the initial terms of
the preludes, and its main thrust comes from our two accompanying degeneracy results.
For the Eilenberg–Moore spectral sequence, we have the following.

Theorem 1.2. The preludes to the Eilenberg–Moore spectral sequences always degener-
ate from their E2 page on. They degenerate from their E1 page on if and only if the space
Y is K-minimal.

This is proven as Theorem 3.5 below. It requires the notion of K-minimality, which
refers to the existence of a cellular structure such that the cellular chain complex with
coefficients in the field K is minimal in the sense that the differential is trivial (see Defin-
ition 2.2). Needless to say, many important classes of spaces have this property (see
Examples 2.3 for a start). The counterpart of Theorem 3.5 for the Leray–Serre spectral
sequence is Theorem 3.10, a local-to-global principle for degeneracy.

Theorem 1.3. Given a space Z, the preludes to the Leray–Serre spectral sequences
degenerate for all Y from their E2 page on if and only if this holds for a single point Y D ?.

We will say that a space Z to which the result applies is K-unbarred (see Defin-
ition 2.9). Once again, many important classes of spaces have this property (see Ex-
amples 2.10). In particular, spaces with polynomial cohomology (Proposition 2.11) and
suspensions (Proposition 2.12) are unbarred.

An abundance of examples demonstrates that neither the Eilenberg–Moore nor the
Leray–Serre spectral sequence is more efficient (i.e., closer to the abutment) than the other.
Sometimes, one is broken in half, with either algebraic or geometric differentials prepen-
ded in one of the preludes. Still, in general, both of them are necessary, and our results sug-
gest always considering the whole quartet of spectral sequences featured in Theorem 1.1.

Here is an outline of this article. In the following Section 2, we briefly review the
construction of the spectral sequence of a filtered complex and how the Leray–Serre and
the Eilenberg–Moore spectral sequences are particular cases of that. We also discuss the
classes of K-minimal and K-unbarred spaces, the two conditions that appear naturally as
assumptions in the following Section 3, where we prove our main comparison results. The
final Section 4 includes some elementary but illustrative examples of degenerate cases and
the principal fibrations in which the Hopf fibration features. Its purpose is purely didactic;
more substantial applications will appear elsewhere.

Convention 1.4. We are working with a field K of coefficients throughout.

2. Spectral sequences

This section provides the necessary definitions and notations used later on. We start with
the briefest review of the spectral sequence defined by a cochain complex that comes with
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a decreasing filtration. We also explain how the Leray–Serre and Eilenberg–Moore spec-
tral sequences are both instances of this general construction. The reader may want to skip
this section and refer back to it when needed, but we point out the two non-standard Defin-
itions 2.2 and 2.9. As a standard reference for spectral sequences, we refer to McCleary’s
textbook [13].

2.1. The spectral sequence of a filtered cochain complex

We consider cochain complexes C with differentials dW C n ! C nC1 that increase the
cohomological degree. Occasionally, we will have to use the shifted complex C Œd � that
satisfies C Œd �n D C dCn.

When given a descending filtration F on such a cochain complex C by subcomplexes,
so that F pC > F pC1C , the associated graded is defined as GrpF C D F

pC=F pC1C . We
set

Zp;qr .C; F / D ¹x 2 F pCpCq j dx 2 F pCrCpCqC1º; (2.1)

and this leads to a spectral sequence .Er ; dr / that starts with

Ep;q0 .C; F / D GrpF C
pCq;

and the differential is of the form dr W E
p;q
r .C; F /! EpCr;q�rC1r .C; F / induced by the

differential d of the original cochain complex C . We have

Ep;q1 .C; F / D HpCq.GrpF C/:

The spectral sequence abuts to the associated graded of the corresponding filtration on the
cohomology H�.C /. Suitable references for the theory are Godement [7], Grothendieck
[8, Sec. 11], and Deligne [4].

2.2. Filtrations on spaces and minimality

LetX be a space with an increasing filtration by subspacesX s 6X sC1. Any such increas-
ing filtration on X gives a decreasing filtration of the cochain complex C.X/ by setting

F sC.X/ D Ker
�
C.X/! C.X s�1/

�
D C.X;X s�1/; (2.2)

and this results in a spectral sequence starting from

Es;t0 D GrsF CsCt .X/ D
C.X;X s�1/sCt

C.X;X s/sCt
D C.X s; X s�1/sCt :

Passing to cohomology, we get

Es;t1 D HsCt .X s; X s�1/ H) HsCt .X/: (2.3)

The following turns out to be a conceptually important special case.
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Example 2.1. Let X be a CW complex endowed with the skeletal filtration. We shall
write

Cells.X IV / D Hom
�
H�.X s; X s�1/; V

�
D H�.X s; X s�1/˝ V

for the cellular cochains of X with coefficients in aK-vector space V . The E1 page of the
spectral sequence (2.3) is concentrated in the row with t D 0, and

Es;01 D Cells.X IK/

is the vector space ofK-valued functions on the s-cells of X . The d1 differential turns the
groups above into the cellular cochain complex of X with coefficients in the field K, and
from its E2 page on, this spectral sequence necessarily degenerates.

We often need to refer to the situation when a spectral sequence as in Example 2.1
degenerates from its E1 page on. There does not seem to be established terminology for
the following.

Definition 2.2. Given a fieldK, a space is calledK-minimal if there exists a CW structure
on it such that the cellular chain complex with respect to this CW structure and coefficients
in the field K has trivial differential.

Examples 2.3. The circle S1 ' BZ, and more generally the spheres Sr and tori .S1/r are
K-minimal for any field K. The real projective space RP1 ' BZ=2 is K-minimal with
respect to the field F2, but not with respect to the field Q.

Remark 2.4. Spaces with polynomial K-cohomology are not automatically K-minimal.
For instance, for trivial reasons, any K-acyclic space automatically has polynomial K-
cohomology, but it is K-minimal if and only if it is contractible.

2.3. Leray–Serre spectral sequences

The filtrations on a space X that we mostly care about come, more generally, from maps
to another space Y . Such a map X ! Y allows us to pull back a skeletal filtration of Y ,
for instance. Then (2.3) is what we will refer to as the Leray–Serre spectral sequence for
the map X ! Y with respect to the given filtration on Y . The E1 page of a Leray–Serre
spectral sequence is particularly easy to describe when the map X ! Y is a fibration with
a simply-connected base Y , in terms of the fibre. More generally, if the map in question
might not be a fibration, we have to use the homotopy fibre, and then the E2 page is

Es;t2 Š Hs
�
Y IHt

�
hofib.X ! Y /

��
:

This does not depend on the filtration on Y any longer. In our standard situation

�Z ! X ! Y ! Z; (2.4)

the homotopy fibre of the map X ! Y is a loop space �Z, and the Leray–Serre spectral
sequence looks as follows:

Es;t2 Š Hs
�
Y IHt .�Z/

�
H) HsCt .X/: (2.5)
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We refer to Remark 3.13 for an argument showing that this description is valid in our
specific situation (2.4), even if Y is not simply-connected.

2.4. Eilenberg–Moore spectral sequences

Let A be an augmented differential graded K-algebra, for the ground field K, with aug-
mentation ideal xA. Given a differential graded rightA-moduleM and a differential graded
left A-module N , let

B.M;A;N / (2.6)

denote the (normalized) bar complex [5, Ch. II] of Eilenberg and Mac Lane. In our
conventions, the object B.M; A; N / is a cochain complex of K-vector spaces, and its
homogeneous elements are expressions

m
�
a1j � � � jak

�
n:

The grading is such that this element sits in degree

deg
�
m
�
a1j � � � jak

�
n
�
D deg.m/C

X
j

deg.aj /C deg.n/ � k: (2.7)

The differential on the bar complex is the sum of an internal and an external differential.
The complex B.M; A; N / serves as a specific model for the derived tensor product, the
differential graded K-vector space M ˝L

A N .
The bar complex comes with a descending filtration W defined by

W pB.M;A;N / D Span
®
m
�
a1j � � � jak

�
n j k 6 �p

¯
; (2.8)

so that W �1B.M;A;N / D B.M;A;N / and W 1B.M;A;N / D 0. This filtration of the
bar complex leads to a spectral sequence with

Ep;q0 D GrpW B.M;A;N /pCq D .M ˝ xA˝�p ˝N/q; (2.9)

as follows from (2.7). The abutment is HpCq.B.M; A; N //. The d0 differential is the
internal one, up to sign, so that

Ep;q1 D
�
H�.M/˝ xH�.A/˝�p ˝ H�.N /

�q (2.10)

by the Künneth theorem. Together with the d1 differential, which is induced from the
external one, the E1 page is a complex that can be used to compute the graded Tor over
the cohomology algebra H�.A/, and we get

Ep;q2 D TorH�.A/
�p

�
H�.M/;H�.N /

�q
H) HpCq

�
B.M;A;N /

�
: (2.11)

We will refer to this spectral sequence as the bar spectral sequence. It is also referred to as
the algebraic Eilenberg–Moore spectral sequence [6, 9, 10] and sometimes as the Moore
spectral sequence [3, 15].
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Let X D P �Z Y be a homotopy pullback of spaces (with Z nilpotent). If we again
write C.X/ for the cochains on X , and similarly for P , Z, and Y , then there is an equi-
valence

C.X/ ' B
�
C.P /;C.Z/;C.Y /

�
(2.12)

of cochain complexes [6] (see also [21]). The right-hand side is the bar complex (2.6). The
equivalence becomes particularly evident when X itself is described as the totalisation of
a geometric bar construction [16].

We shall later need a relative version of the Eilenberg–Moore equivalence (2.12).

Proposition 2.5. Assume that P , X , Y , and Z are as above. If B � Y is a subspace, and
A � X the restriction to X , then the bar complex B.C.P /;C.Z/;C.Y; B//, with its total
differential, is equivalent to C.X;A/.

Proof. We have a short exact sequence

0! C.Y; B/! C.Y /! C.B/! 0 (2.13)

of cochain complexes, and all terms are canonically C.Y /-modules and therefore C.Z/-
modules by restriction along C.Z/!C.Y / induced by Y !Z. Application of the functor
‹ 7! B.C.P /;C.Z/; ‹/ leads to another short exact sequence

0! B
�
C.P /;C.Z/;C.Y;B/

�
! B

�
C.P /;C.Z/;C.Y /

�
! B

�
C.P /;C.Z/;C.B/

�
! 0:

We compare this short exact sequence with the short exact sequence

0! C.X;A/! C.X/! C.A/! 0;

which is analogous to (2.13). Two out of three comparison maps are equivalences by the
absolute Eilenberg–Moore theorem and the relative one follows.

The equivalence (2.12) implies that we have a spectral sequence

Ep;q2 D TorH�.Z/
�p

�
H�.P /;H�.Y /

�q
H) HpCq

�
B
�
C.P /;C.Z/;C.Y /

��
Š HpCq.X/:

This is the Eilenberg–Moore spectral sequence.
The following special cases will be relevant for us.

Example 2.6. If P D ? is a point, the space X is the homotopy fibre of the map Y ! Z.
We have H�.P / D K, the ground field, and we get a spectral sequence

Ep;q2 D TorH�.Z/
�p

�
K;H�.Y /

�q
H) HpCq.X/: (2.14)

This is the usual description of the Eilenberg–Moore spectral sequence for our standard
situation (2.4). A version of this Eilenberg–Moore spectral sequence, for homology with
integral coefficients, has been implemented recently using functional programming [17].
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Example 2.7. If, in addition to P D ?, the space Y D ? is also a point, then X ' �Z is
the loop space of Z and we get a spectral sequence

Ep;q2 D TorH�.Z/
�p .K;K/q H) HpCq.�Z/: (2.15)

Remark 2.8. There are many interesting situations in which an Eilenberg–Moore spectral
sequence does not degenerate from its E2 page on (see Example 4.2 below and [11,18,19]).

2.5. Unbarred spaces

We need to single out a class of spaces that is well-adapted to the situations we are inter-
ested in.

Definition 2.9. Given a field K, we say that a nilpotent space Z is K-unbarred with
respect to the field K if the Eilenberg–Moore spectral sequence (2.15) for the loop space
�Z degenerates from its E2 page on.

We will see later, in Theorem 3.10, that the condition in Definition 2.9 implies also the
degeneration of all other Eilenberg–Moore spectral sequences for all other fibrations with
base Z.

Examples 2.10. The circle S1 ' BZ, and more generally the spheres Sr and tori .S1/r

are K-unbarred for any field K. The real projective space RP1 ' BZ=2 is F2-unbarred,
but the analog for odd primes is wrong (see Example 4.2): the classifying space BZ=` is
barred for the field F` if ` is an odd prime.

Proposition 2.11. Spaces with polynomial K-cohomology are K-unbarred.

Proof. If the cohomology H�.Z/ of a space Z is a polynomial algebra over the ground
field K, the Koszul complex shows that TorH�.Z/

�;� .K;K/ is an exterior algebra. This is the
E2 page of the Eilenberg–Moore spectral sequence. The exterior algebra generators sit in
the column p D �1. Therefore, all differentials dr for r > 2 vanish on the generators, and
the spectral sequence degenerates.

Proposition 2.12. Suspensions are K-unbarred for any field K.

Proof. For a suspension Z D †Z0 of a space Z0, we have to show that the Eilenberg–
Moore spectral sequence for the loop space fibration �†Z0 ! ?! †Z0 degenerates.
The cohomology algebra H�.†Z0/ has trivial multiplication and is Koszul. The Koszul
dual

H�.†Z0/Š D TorH�.†Z0/
�;� .K;K/

is the tensor algebra of the reduced cohomology xH�.†Z0/, and it is concentrated on the
diagonal of the E2 page. This agrees with the Bott–Samelson theorem: the cohomology
of H�.�†Z0/ is (additively) the tensor algebra on the reduced cohomology, and this is
the E1 page. Therefore, there can be no differentials in the Eilenberg–Moore spectral
sequence from E2 on.
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Remark 2.13. A different proof could be based on arguments in Smith’s survey [22,
Sec. 2, Ex. 4]. Those were later generalised by Baker [1, Thm. 2.4] from suspensions to
certain Thom spaces.

3. Comparison

In this section, we first explain a general procedure to compare two spectral sequences we
have when given two filtrations on the same cochain complex B , following Deligne [4]
(see Section 3.1). We then return to the situation of a principal fibration (2.4) and apply
this procedure to the cochain complexB D B.K;C.Z/;C.Y // ' C.X/ from the bar con-
struction which supports two filtrations F and W that lead to a Leray–Serre spectral
sequence (Section 3.2) and an Eilenberg–Moore spectral sequence (Section 3.3), respect-
ively, both with abutment H�.X/. As a result, we obtain two more spectral sequences,
both supported on the tri-graded vector space

Es;t;u1 D H�.Y s; Y s�1/˝
�
xH�.Z/˝�t

�u
D Cells

�
Y I
�
xH�.Z/˝�t

�u�
;

and which abut to the E1 page of an Eilenberg–Moore spectral sequence (as we show
in Section 3.4) and the E1 page of a Leray–Serre spectral sequence (as we show in Sec-
tion 3.5), respectively, both for H�.X/. We then prove that these spectral sequences very
often degenerate early, and we spell out the consequences, with Theorems 3.5 and 3.10
being the main results.

3.1. Zassenhaus squares

Let B be a cochain complex with two filtrations F and W . From the two filtrations, we
get two spectral sequences with abutment Hn.B/:

Es;n�s1 .B; F / Š Hn.GrsF B/ H) Hn.B/ (3.1)

and
Et;n�t1 .B;W / Š Hn.GrtW B/ H) Hn.B/: (3.2)

The Zassenhaus lemma gives us canonical isomorphisms

GrsF GrtW B Š GrtW GrsF B (3.3)

for all s; t 2 Z, and these allow us, following Deligne’s thesis [4, (1.4.9)], to relate the
two spectral sequences (3.1) and (3.2). The chain complexes (3.3) come equipped with a
differential which is induced from B , and their cohomology is the tri-graded vector space

Es;t;u1 Š Hn.GrsF GrtW B/;

with
n D s C t C u:
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These vector spaces support two d1 differentials, say dF1 and dW1 , as parts of spectral
sequences with abutments Hn.GrtW B/ and Hn.GrsF B/. These abutments are the vector
spaces on the E1 pages of the spectral sequences (3.1) and (3.2), respectively. It is worth
spelling out the indices in detail: the differential dF1 WE

s;t;u
1 ! EsC1;t;u1 is part of a spectral

sequence

Es;t;u1 Š HsCtCu.GrsF GrtW B/ H) Et;sCu1 .B;W / Š HsCtCu.GrtW B/; (3.4)

whereas the differential dW1 WE
s;t;u
1 ! Es;tC1;u1 is part of a spectral sequence

Es;t;u1 Š HsCtCu.GrsF GrtW B/ H) Es;tCu1 .B; F / Š HsCtCu.GrsF B/: (3.5)

We summarise the present situation concisely in the following Zassenhaus square (com-
pare with [4, (1.4.9.2)] and [14, (4.1)]).

Es;t;u1

(3.4)

{�

(3.5)

�#
Et;sCu1 .B;W /

(3.2)
�#

Es;tCu1 .B; F /

(3.1)
{�

HsCtCu.B/

Notation 3.1. Sometimes, the spectral sequences call for indices with n D p C q. We
shall use

s D p C n; t D p; u D �2p

on those occasions.

The following general result is the blueprint to show that the index transformation is
exactly as expected.

Proposition 3.2. If the spectral sequences (3.4) and (3.5) both degenerate, so that we
have isomorphisms

Et;n�t1 .W / Š
M

sCuDn�t

Es;t;u1 (3.6)

and
Es;n�s1 .F / Š

M
tCuDn�s

Es;t;u1 ; (3.7)

then the spectral sequences (3.1) and (3.2) are related by

Ep;n�p1 .W / Š EpCn;�p1 .F / (3.8)

under the index transformation in Notation 3.1.



F. Neumann and M. Szymik 1328

Proof. Setting t D p from Notation 3.1 into (3.6), we get

Ep;n�p1 .W / Š
M

sCuDn�p

Es;p;u1 :

With s D p C n, this givesM
sCuDn�p

Es;p;u1 Š

M
pCnCuDn�p

EpCn;p;u1 Š

M
pCuD�p

EpCn;p;u1 ;

cancelling the n in the summation index. With t D p and s D p C n in (3.7), we come
back to M

tCuD�p

EpCn;t;u1 Š EpCn;�p1 .F /;

and this finishes the proof.

In the rest of this section, we develop the four spectral sequences (3.1), (3.2), (3.4),
and (3.5) for the bifiltered cochain complex B D B.K;C.Z/;C.Y // ' C.X/, where the
two filtrations come from a chosen cellular filtration F on Y and the bar filtration W .

3.2. Identifying the Leray–Serre spectral sequence

We consider the spectral sequence (3.1) for the cochain complex

B D B
�
K;C.Z/;C.Y /

�
' C.X/:

The filtration F is induced from a chosen cellular filtration on Y as in (2.2).

Proposition 3.3. For the F -filtered cochain complex B D B.K;C.Z/;C.Y //, the spec-
tral sequence (3.1) agrees from its E1 page on with the Leray–Serre spectral sequence for
the principal fibration sequence �Z ! X ! Y .

Proof. This follows by noting that the Eilenberg–Moore equivalence (2.12) is natural and,
therefore, preserves the F -filtrations on both sides. The induced map between the associ-
ated graded cochain complexes is an equivalence

B
�
K;C.Z/;C.Y s; Y s�1/

�
' C.X s; X s�1/

of cochain complexes by the relative Eilenberg–Moore theorem (Proposition 2.5 above),
and it induces an isomorphism from the next pages, their E1 pages, on.

3.3. Identifying the Eilenberg–Moore spectral sequence

We now consider the spectral sequence (3.2) for the cochain complex

B D B
�
K;C.Z/;C.Y /

�
' C.X/

with the W -filtration (2.8) on it.
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Proposition 3.4. For the cochain complex B D B.K;C.Z/;C.Y // of a space X with
its W -filtration, the spectral sequence (3.2) agrees with the Eilenberg–Moore spectral
sequence for the fibration sequence X ! Y ! Z.

Proof. In contrast to Proposition 3.3, which required some identifications, this is basically
the standard construction of the Eilenberg–Moore spectral sequence. The E0 page is given
by GrtW B , and by (2.9) this is isomorphic to

Et;n�t0 .B;W / D GrtW Bn D
�
xC.Z/˝�t ˝ C.Y /

�n�t
: (3.9)

The d0 differential on this is induced from B , but on the associated graded for the W -
filtration, we only see the internal differential from the cochain complexes C.‹/. Therefore,
by passing to cohomology, we get

Et;n�t1 .B;W / D Hn.GrtW B/ D
�
xH�.Z/˝�t ˝ H�.Y /

�n�t (3.10)

from (2.10). The d1 differential comes from the bar resolution, which can be used to
compute Tor. By (2.11), this gives

Et;n�t2 .B;W / D TorH�.Z/
�t

�
K;H�.Y /

�n�t
;

and
Hn.B/ D Hn

�
B
�
K;C.Z/;C.Y /

��
D Hn

�
C.X/

�
D Hn.X/

is the abutment.

3.4. Prelude to the Eilenberg–Moore spectral sequence

We now consider the spectral sequence (3.4) for the particular situation (2.4), where we
have a principal fibration sequence �Z ! X ! Y ! Z and the cochain complex

B D B
�
K;C.Z/;C.Y /

�
' C.X/

from the bar construction. The F -filtration is given by a chosen cellular structure on Y ,
and the W -filtration is given by the bar filtration (2.8). The spectral sequence (3.4) comes
from the filtration on the associated graded cochain complex GrtW B that is induced by the
F -filtration. The main result here is the following.

Theorem 3.5. For the complex B with the two filtrations F andW as above, the spectral
sequence (3.4) always degenerates from its E2 page on. It degenerates from its E1 page on
if and only if the space Y is K-minimal (see Definition 2.2).

We start by describing the spectral sequence (3.4) in our situation.

Proposition 3.6. For the cochain complex B with the two filtrations F and W as above,
the spectral sequence (3.4) has

Es;t;u1 D
�
xH�.Z/˝�t ˝ H�.Y s; Y s�1/

�q
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and
Es;t;u2 D

�
xH�.Z/˝�t ˝ Hs.Y /

�q
;

with q D s C u D n � t as in Notation 3.1.

Proof. We start by noting that we look at the spectral sequence for the filtered complex

GrtW B D xC.Z/˝�t ˝ C.Y /Œ�t �; (3.11)

with GrtW B tCu D .xC.Z/˝�t ˝ C.Y //u and the shift as in (3.9). The filtration is induced
by the F -filtration, the cellular filtration on Y . Therefore, we have

Es;t;u0 D GrsF GrtW BsCtCu D
�
xC.Z/˝�t ˝ C.Y s; Y s�1/

�sCu
; (3.12)

with t fixed throughout the spectral sequence. In other words, we can think of this as a
family of spectral sequences, indexed by t . The differential on the E0 page is induced
from B . Since we have passed to the associated graded for theW -filtration, we do not see
the external component of the bar differential, but only the internal one, which the cochain
complexes C.‹/ bring with them. Passing to cohomology, we then get

Es;t;u1 D Hn.GrsF GrtW B/ D
�
xH�.Z/˝�t ˝ H�.Y s; Y s�1/

�sCu
: (3.13)

The d1 differential here is induced from the F -filtration, in other words, it comes from the
cells of Y . The vector spaces H�.Y s; Y s�1/, for varying s, form the cellular cochain com-
plex for the space Y with coefficients in the fieldK. Because the functor ‹ 7! xH�.Z/˝�t˝‹
is exact, we get an isomorphism Es;t;u2 Š .xH�.Z/˝�t ˝ Hs.Y //sCu, as claimed.

Using s C u D n � t , the abutment of the spectral sequence (3.4) is

Hn.GrtW B/ D Hn
�
xC.Z/˝�t ˝ C.Y /Œ�t �

�
D
�
xH�.Z/˝�t ˝ H�.Y /

�n�t
by definition and the Künneth theorem. We have seen in (3.10) that this abutment agrees
with the E1 page Et;sCu1 .B;W /DEt;n�t1 .B;W / of the Eilenberg–Moore spectral sequence,
and also with M

sCuDn�t

Es;t;u2 D

M
sCuDn�t

�
xH�.Z/˝�t

�u
˝ Hs.Y /:

As we shall see, the spectral sequence degenerates from its E2 page on.

Proposition 3.7. For the complex B with the two filtrations F andW as above, the spec-
tral sequence (3.4) is isomorphic, from its E1 page on, to the spectral sequence obtained
by applying the exact functor ‹ 7! xH�.Z/˝�t ˝ ‹ to the spectral sequence constructed
from the chosen cellular filtration F on the cochain complex C.Y /.

Proof. There is essentially only one reasonable way to prove this: we show that the two
spectral sequences are induced by two equivalent cochain complexes with two equivalent
filtrations. The spectral sequence (3.4) originates in the filtered complex (3.11) with the
F -filtration from the chosen cellular structure on the space Y . Since we are working over
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a field, we can choose an equivalence

H�.Y /
�
�! C.Y / (3.14)

of cochain complexes, where the left-hand side has zero differential. This induces an equi-
valence

xH�.Z/˝�t ˝ C.Y /
�
�! xC.Z/˝�t ˝ C.Y / (3.15)

of cochain complexes. The multiplicative structures which we have on both sides of (3.14)
play no role because the tensor products are over the ground fieldK.The equivalence (3.15)
respects the F -filtration, and, therefore, induces an isomorphism of spectral sequences
from their E1 pages on. The right-hand side of (3.15) gives the spectral sequence (3.4). The
left-hand side of (3.15) is obtained from the filtered cochain complex C.Y /, together with
its cellular filtration F , by applying the exact functor ‹ 7! xH�.Z/˝�t ˝ ‹. The spectral
sequence of the left-hand side is, therefore, obtained from that of the cochain complex
C.Y / with respect to the F -filtration by applying the same functor, as claimed.

Proof of Theorem 3.5. The spectral sequence for the cochain complex C.Y / with respect
to any cellular filtration F degenerates from its E2 page on because the E1 page is concen-
trated in its zeroth row. Applying any exact functor to it yields another spectral sequence
that also degenerates from its E2 page on. As we have seen in Proposition 3.7, when we
apply the exact functor ‹ 7! xH�.Z/˝�t ˝ ‹, we get the spectral sequence (3.4). Therefore,
this spectral sequence has to degenerate from its E2 page on, too.

If the space Y in question is K-minimal, then we have a cellular structure on it such
that the spectral sequence for the cochain complex C.Y / with respect to that cellular
filtration F degenerates already from its E1 page on, and the same argument as in the
first part of the proof implies that the spectral sequence (3.4) does so, too.

Remark 3.8. We can think of (3.4) as a cochain complex that computes the E1 page of
an Eilenberg–Moore spectral sequence. Note the difference to the E0 term of the latter:
there, we take the bar construction on the cochain complexes, whereas (3.4) involves only
the cohomology of those.

Let us spell out the consequence when the stronger hypothesis in Theorem 3.5 is sat-
isfied.

Corollary 3.9. Whenever the space Y is K-minimal, the Zassenhaus square factors the
Eilenberg–Moore spectral sequence as a Leray–Serre spectral sequence after the spectral
sequence (3.5).

One consequence of Corollary 3.9 is that, for a K-minimal space Y , the Leray–Serre
spectral sequence has at most as many non-trivial differentials as the Eilenberg–Moore
spectral sequence: some terms might already have been killed by the bar differentials in
(3.5). The following Section 3.5 contains our discussion of these preliminary bar differen-
tials.
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3.5. Prelude to the Leray–Serre spectral sequence

We now consider the spectral sequence (3.5) for the particular situation (2.4), where we
have a principal fibration sequence �Z ! X ! Y ! Z and the cochain complex

B D B
�
K;C.Z/;C.Y /

�
' C.X/

from the bar construction. The F -filtration is given by a chosen cellular structure on Y ,
and the W -filtration is given by the bar filtration (2.8). The spectral sequence (3.5) comes
from the filtration on GrsF B that is induced by the W -filtration. The main result here is
the following.

Theorem 3.10. For the complexB with the two filtrations F andW as above, the spectral
sequence (3.5) degenerates from its E2 page on for all Y if and only if this holds for
Y ' ?, that is if the Eilenberg–Moore spectral sequence (2.15) for the loop space �Z of
Z degenerates from its E2 page on.

Recall from Definition 2.9 that we have called those spaces Z that lead to degeneracy
in Theorem 3.10 K-unbarred. Therefore, we can refer to Example 2.10 for examples of
spaces Z where Theorem 3.10 applies (see also Corollary 3.14 below for the resulting
formula).

Recall our conventions for the cellular cochains on the space Y from Section 2.2: for
all coefficients V we have set

Cells.Y IV / D Hom
�
H�.Y s; Y s�1/; V

�
D H�.Y s; Y s�1/˝ V;

and this is exact as a functor in V because we are working over a field K. We can use this
to describe the spectral sequence (3.5) in our situation.

Proposition 3.11. For the cochain complex B with the two filtrations F andW as above,
the spectral sequence (3.5) has

Es;t;u1 D Cells
�
Y I
�
xH�.Z/˝�t

�u�
;

Es;t;u2 D Cells
�
Y ITorH�.Z/

�t .K;K/u
�
:

Its abutment is Hn.X s; X s�1/.

Note that, in this description, we recognize that the abutment of (3.5) is indeed the
E1 page (2.3) of the Leray–Serre spectral sequence for H�.X/ with respect to the chosen
cellular structure on the space Y .

Proof. We are looking at the spectral sequence

Es;t;u1 D Hn.GrsF GrtW B/ H) Es;tCu1 .B; F / D Hn.GrsF B/:

As in (3.12), this spectral sequence starts with

Es;t;u0 D GrsF GrtW BsCtCu D
�
xC.Z/˝�t ˝ C.Y s; Y s�1/

�sCu
:
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The s is always fixed. The d0 differential is induced from B , the totalisation of the bar
construction, and since we have passed to GrtW , we do not see the external differential, but
only the internal differential. Therefore, as in (3.13), passing to cohomology, we get

Es;t;u1 D Hn.GrsF GrtW B/ D
�
xH�.Z/˝�t ˝ H�.Y s; Y s�1/

�sCu (3.16)

from the Künneth theorem. We note that H�.Y s; Y s�1/, as an H�.Z/-module, is trivial
and concentrated in degree s, so that we can pull it out, and we find

Es;t;u1 D
�
xH�.Z/˝�t

�u
˝ H�.Y s; Y s�1/ D Cells

�
Y I
�
xH�.Z/˝�t

�u�
: (3.17)

These identifications are compatible with the differential d1, which is induced by the
differential on the associated graded. This differential is the external part of the bar differ-
ential. This leads to

Es;t;u2 D Cells
�
Y ITorH�.Z/

�t .K;K/u
�

in the same way, as claimed.
As for the abutment, we have GrsF B D B.K;C.Z/;C.Y s; Y s�1// ' C.X s; X s�1/,

where the equivalence is given by the relative version of the Eilenberg–Moore equival-
ence (see our Proposition 2.5 above). Therefore, passing to cohomology, we find that the
abutment is indeed Hn.GrsF B/ D Hn.X s; X s�1/.

Proposition 3.12. For the cochain complex B with the two filtrations F andW as above,
the spectral sequence (3.5) is isomorphic, from E1 on, to the result of applying the exact
functor ‹ 7! Cells.Y I ‹/ to the Eilenberg–Moore spectral sequence

Et;u1 D
�
xH�.Z/˝�t

�u
H) HtCu.�Z/

for the loop space �Z.

Proof. Again, there is essentially only one reasonable way to prove this: we show that
the two spectral sequences are induced by two equivalent cochain complexes with two
equivalent filtrations. And we already know from Proposition 3.11 that the E1 pages are
isomorphic: the spectral sequence (3.5) originates in the filtered complex

GrsF B D GrsF B
�
K;C.Z/;C.Y /

�
Š B

�
K;C.Z/;C.Y s; Y s�1/

�
;

with the W -filtration from the bar construction.
We can choose an equivalence

H�.Y s; Y s�1/
�
�! C.Y s; Y s�1/ (3.18)

from the zero-differential complex H�.Y s; Y s�1/, concentrated in degree s, to the cochain
complex C.Y s; Y s�1/. This is clear when working over the field K, but we note that this
does not just give an equivalence of K-cochain complexes, but of C.Y /-cochain com-
plexes, as C.Y / acts trivially on the relative cochain complex C.Y s; Y s�1/, i.e., via the
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ground field K: if a 2 Cdeg.a/.Y / and b 2 Cdeg.b/.Y s; Y s�1/ are two cochains, then their
cup product in Cdeg.a/Cdeg.b/.Y s; Y s�1/ is defined by

.a [ b/.y/ D ˙a.ydeg.a// � b.ydeg.b//;

where ydeg.a/ is the deg.a/-front and ydeg.b/ is the deg.b/-back of the given simplex y. If
deg.a/C deg.b/D s, we see that deg.a/ > 0 implies deg.b/ < s, and then b.ydeg.b//D 0

for b 2 Cdeg.b/.Y s; Y s�1/.
The equivalence (3.18) of C.Y /-complexes induces an equivalence

B
�
K;C.Z/;H�.Y s; Y s�1/

�
' B

�
K;C.Z/;C.Y s; Y s�1/

�
;

which, by construction, respects the bar filtrations that we have on both sides. The right-
hand side leads to the spectral sequence (3.5). The left-hand side is isomorphic, again
respecting the bar filtrations, to Cells.Y IB.K;H�.Z/; K//. Since the latter is the result
of applying the functor ‹ 7! Cells.Y I ‹/ to the filtered cochain complex B.K;H�.Z/;K/,
the result follows.

Remark 3.13. The preceding result implies an agreement

Hn.X s; X s�1/ Š Cells
�
Y IHtCu.�Z/

�
of the abutments of the two spectral sequences, too. Such a statement is a standard part of
the identification of the E1 page of the Leray–Serre spectral sequence, at least in the case
when the fundamental group of the base acts trivially on the cohomology of the fibre. In
our situation, the fundamental group of the space Y need not be trivial, but the action on
H�.�Z/ is, because it factors through the morphism

�1.Y / D �0.�Y /! �0.�Z/ D �1.Z/;

and this is trivial if the space Z is simply-connected.

Proof of Theorem 3.10. One direction is clear: if the spectral sequences degenerate for all
spaces Y , then, in particular, the ones for contractible spaces do so.

For the other direction, assume that the Eilenberg–Moore spectral sequence for the
loop space degenerates from its E2 page on. Applying any exact functor to it yields another
spectral sequence that also degenerates from its E2 page on. As we have seen in Proposi-
tion 3.12, when we apply the exact functor ‹ 7! Cells.Y I ‹/, we get the spectral sequence
(3.5). Therefore, this has to degenerate from its E2 page on, too.

Corollary 3.14. If Theorem 3.10 applies, and the spectral sequence (3.5) does indeed
degenerate from E2 on, we get

Hn.X s; X s�1/ Š
M

tCuDn�s

TorH�.Z/
�t .K;K/u ˝ H�.Y s; Y s�1/

for the E1 page of the Leray–Serre spectral sequence. This holds whenever the space Z is
K-unbarred.
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Proof. This follows immediately from what has been said before and the description of
the E2 term in Proposition 3.11.

We can summarise our findings by saying that, if we want to compute the cohomology
H�.X/ of X by first running the spectral sequence (3.5) and then the Leray–Serre spectral
sequence, then the cellular structure of Y does not interfere with the first spectral sequence
(3.5) at all, only afterwards does it become relevant, in the Leray–Serre spectral sequence.

The following formulation applies our results to K-minimal spaces.

Theorem 3.15. In our situation (2.4), if the space Y isK-minimal, then there is a spectral
sequence

Es;t;u2 D Hs
�
Y ITorH�.Z/

�t .K;K/u
�
H) Hs

�
Y IHtCu.�Z/

�
that computes the E2 page of the Leray–Serre spectral sequence for the cohomology of X .
It degenerates from its E2 page on if, in addition, the space Z is K-unbarred.

Proof. When Y is K-minimal, we have

Cells.Y I ‹/ Š Hs.Y I ‹/:

Then, the spectral sequences in question are those from Proposition 3.11, and the abutment
is identified in Remark 3.13. Theorem 3.10 gives the statement about the degeneration.

4. Examples

In this section, we briefly discuss the most critical test cases of the situation (2.4) for
our purposes. In particular, we discuss the spectral sequences when X ' ?, or Y ' ?,
or Z ' ?, respectively, and the three principal fibrations that feature the Hopf fibration
�WS3 ! S2. These examples are chosen to be easy to work out; their purpose here is to
supply evidence for the applicability of our theory.

4.1. Examples involving contractible spaces

Example 4.1. First, we consider the fibration sequences �Z ! X ! Y ! Z where we
have Y ' X �Z and the map Y ! Z is equivalent to the projection. The Eilenberg–
Moore spectral sequence

Ep;q2 D TorH�.Z/
�p

�
K;H�.X �Z/

�q
H) HpCq.X/

always degenerates from E2 on, because H�.X �Z/Š H�.X/˝H�.Z/ is a free H�.Z/-
module, so that the E2 page is just H�.X/ concentrated in the p D 0 column. In con-
trast, the Leray–Serre spectral sequence can have arbitrarily long differentials, even in the
simplest case of the situation, when the fibreX ' ? is contractible so that the map Y !Z

is an equivalence. For a specific example, take Y D Sr a sphere of dimension r > 2. Then,
the Leray–Serre spectral sequence

Es;t2 D Hs
�
Sr IHt .�Sr /

�
H) HsCt .?/
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has a nontrivial dr . In contrast, the Eilenberg–Moore spectral sequence is concentrated in
E0;0, independent of the spaces Y ' Z. The situation is even worse for spaces like BU.

Example 4.2. We consider the fibration sequences �Z ! X ! Y ! Z for spaces Y
such that the spectral sequence

Es;t1 D HsCt .Y s; Y s�1/ H) HsCt .Y /;

which is concentrated in the t D 0 row and which always degenerates from E2 on, already
degenerates from E1 on. These are the spaces that we called K-minimal for the field K in
Definition 2.2. The results from Section 3.4, especially Theorem 3.5 and its Corollary 3.9,
apply. A fundamental example of the situation here is the case when the total space Y ' ?
is contractible, so that the map �Z ! X is an equivalence. In this case, the Leray–Serre
spectral sequence

Es;t2 D Hs
�
?IHt .�Z/

�
H) HsCt .�Z/

always degenerates from the beginning because it is concentrated in the s D 0 column.
This even includes the E1 page, because we can assume the cellular filtration to be trivial.
In contrast, the Eilenberg–Moore spectral sequence

Ep;q2 D TorH�.Z/
�p .K;K/q H) HpCq.�Z/

can have arbitrarily long differentials. Specifically, take Z D BZ=` for an odd prime `.
Then, the Eilenberg–Moore spectral sequence

Ep;q2 D TorH�.BZ=`/
�p .F`;F`/

q
H) HpCq.Z=`/

has a nonzero differential d`�1 (see Baker–Richter [2, Sec. 6] and compare Smith [20,
Sec. 3]). Eventually, the `-dimensional E1 page is spread out into 1-dimensional pieces
for the Eilenberg–Moore spectral sequence, whereas it is concentrated in the E0;01 spot for
the Leray–Serre spectral sequence.

Remark 4.3. The preceding example contradicts the statement of [13, Ex. 8.12]: the
Eilenberg–Moore spectral sequence does not have to degenerate at E2, even if the Leray–
Serre spectral sequence has all differentials coming from transgressions. Besides, we
learned from Schochet (private communication) that the attribution of that exercise to
him is inaccurate.

Example 4.4. We consider the fibration sequences �Z ! X ! Y ! Z for spaces Z
such that the Eilenberg–Moore spectral sequence

Ep;q2 D TorH�.Z/
�p .K;K/q H) HpCq.�Z/

degenerates from its E2 page on. These are the spaces that we calledK-unbarred in Defin-
ition 2.9. The results from Section 3.5, especially Theorem 3.10 and its Corollary 3.14,
apply. A special case of this situation is when the base space Z ' ? is contractible so that
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the map X ! Y is an equivalence. This is another example of product fibrations as in
Example 4.1. In this case, the Eilenberg–Moore spectral sequence has an E2 page that is
concentrated on the p D 0 column; it degenerates already from E1 on. The Leray–Serre
spectral sequence has an E2 page that is concentrated on the t D 0 line; it degenerates
from E2 on, but on the E1 page one might still see differentials from the cellular structure
on Y . As we have already mentioned in Example 2.10, more interesting instances of the
situation here are given in the case when the base space Z is a torus .S1/d or a sphere Sd

where K is any field, but also RP1 ' BZ=2 when the characteristic of the field K is 2.

4.2. Principal fibrations involving the Hopf map

Example 4.5. Consider the fibration sequence

S3
�
�! S2 ! CP1 ! HP1:

The projective spaces are K-minimal and K-unbarred, so we are in the best possible
situation. Since the cohomology ring H�.CP1/ is free as a module over the algebra
H�.HP1/, on two generators in degree 0 and 2, the Eilenberg–Moore spectral sequence
degenerates at its E2 page to compute H�.S2/. On the other hand, the Leray–Serre spectral
sequence needs infinitely many d4’s to achieve the same goal. Thus, there is no way that
a reindexing of the pages using Deligne’s décalage [4, (1.3.3) and (1.3.4)] could explain
the relationship between the two spectral sequences as a décalage effect.

Example 4.6. Consider the fibration sequence

S1 ! S3
�
�! S2 ! CP1:

The spheres and the projective space are all K-minimal and K-unbarred so that we are
in the best possible situation. When computing H�.S3/, the Eilenberg–Moore spectral
sequence degenerates from its E2 page on, but the Leray–Serre spectral sequence needs a
nontrivial d2 differential before it degenerates from its E3 page on.

Example 4.7. Consider the fibration sequence

�S2 ! S1 ! S3
�
�! S2:

The spheres are all K-minimal and K-unbarred, so that we are in the best possible
situation. We look at the two spectral sequences that compute H�.S1/. We see that the
Eilenberg–Moore spectral sequence has non-trivial d2 differentials, and the Leray–Serre
spectral sequence has non-trivial d3 differentials. The theory in Section 3 applies. Both
preludes degenerate and show that the Eilenberg–Moore spectral sequence and the Leray–
Serre spectral sequence are bigraded incarnations of the same tri-graded spectral sequence.
In fact, we have

Es;t;u1 D Cells
�
S3I

�
xH�.S2/˝�t

�u�
D

´
K s 2 ¹0; 3º and t > 0 and u D 2t

0 otherwise
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from (3.17). Under the projections (3.6) and (3.7), these give rise to the usual E2 pages,
and the index transformation (3.8) shifts the Eilenberg–Moore d2 differential to a Leray–
Serre d3.

Acknowledgements. We thank the referee for their suggestions to improve the exposi-
tion.
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