
Doc. Math. 29 (2024), 1269–1279
DOI 10.4171/DM/985

© 2024 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Sufficient convexity and best approximation

Josef Berger, Douglas S. Bridges, and Gregor Svindland

Abstract. Working constructively throughout, we introduce the notion of sufficient convexity for
functions and sets and study its implications on the existence of best approximations of points in
sets and of sets mutually.

The framework of this paper is Bishop-style constructive mathematics (BISH), which,
for all practical purposes, can be viewed as mathematics developed using intuitionistic
logic and based on an appropriate foundation such as CZF [3, Chapter 2], Martin-Löf type
theory [7, 8], or constructive Morse set theory [4]. For more on BISH see [3]. Thus all
our proofs embody algorithms that can be extracted for computer implementation (see,
for example, [6, 9, 10]).

We call a mapping f of a metric space X into R sufficiently convex if for each " > 0
there exists ı > 0 such that for all x; x0 2 X with �.x; x0/ > ", there exists z 2 X such
that f .z/C ı < max¹f .x/; f .x0/º. Here � denotes the metric on X .

Proposition 1. The following are equivalent conditions on a mapping f of a metric space
X into R, such that � � inff exists.

(i) f is sufficiently convex.

(ii) for each " > 0 there exists zı > 0 such that if x; x0 2 X , f .x/ < � C zı, and
f .x0/ < �C zı, then �.x; x0/ < ".

Proof. First suppose that f is sufficiently convex. Given " > 0, pick ı > 0 such that if
x; x0 2 X and �.x; x0/ > "=2, then f .z/C ı < max¹f .x/; f .x0/º for some z 2 X . Let
zı WD ı and consider x; x0 2 X such that f .x/ < �C ı, and f .x0/ < �C ı. If �.x; x0/ >
"=2, then there exists z 2 X such that

f .z/C ı < max
®
f .x/; f .x0/

¯
< �C ı

and therefore f .z/ < �, which is absurd. Hence �.x; x0/ � "=2 < ".
Conversely, suppose that f satisfies condition (ii). Given " > 0, choose zı as in that

condition. If x;x0 2X and �.x;x0/ > ", then max¹f .x/;f .x0/º ��Czı. By the definition
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of �, there exists z 2 X such that

f .z/ < �C
zı

2

and hence

f .z/C
zı

2
< �C zı � max

®
f .x/; f .x0/

¯
:

Therefore we may set ı WD zı
2

.

The following result was communicated to us by Peter Aczel many years ago.

Proposition 2. LetX be a complete metric space, and let f be a sequentially continuous,
sufficiently convex mapping ofX into R such that�� inff exists. Then there exists � 2X
such that f .�/ D �. Moreover, if x 2 X and x ¤ �, then f .x/ > �.

Proof. In view of Proposition 1, we can construct a strictly decreasing sequence .ın/n>1

of positive numbers such that for each n, if x;x0 2X , f .x/ <�C ın, and f .x0/ <�C ın,
then �.x;x0/ < 2�n. For each n, pick xn 2X such that f .xn/ < �C ın. Then �.xm;xn/ <
2�n for all m > n, so .xn/n>1 is a Cauchy sequence in X . Since X is complete, � �
limn!1 xn exists in X . By the sequential continuity of f , � � f .�/ � �, so f .�/ D �.
Moreover, if x 2X and �.x; �/ > 0, then, with " WD 1

2
�.x; �/ and ı > 0 as in the definition

of ‘sufficiently convex’, there exists z 2 X such that

� < �C ı � f .z/C ı < max
®
f .�/; f .x/

¯
D max

®
�; f .x/

¯
D f .x/:

A subset K of a metric space X is sufficiently convex given x 2 X if K is inhabited,
and if for each " > 0 there exists ı > 0 such that for all y; y0 2 K with �.y; y0/ > ", there
exists z 2 K such that

�.x; z/C ı < max
®
�.x; y/; �.x; y0/

¯
:

In other words, K is sufficiently convex given x 2 X if f .y/ � �.x; y/ defines a suffi-
ciently convex function on K. We call K sufficiently convex if K is sufficiently convex
given any x 2 X . The following theorem on best approximation of points is an immediate
consequence of Proposition 2.

Theorem 3. Let K be a complete subset of a metric space X that is sufficiently convex
given x 2 X . Further suppose that � D inf¹�.x; y/ j y 2 Kº exists. Then there exists
� 2 K such that �.x; �/ D �. Moreover, if y 2 K and y ¤ � , then �.x; y/ > �.

A normed space X is uniformly convex if for each " > 0 there exists ı with 0 <
ı < 1 such that if x; y are elements of X with kxk D 1 D kyk and kx � yk � ", then
k
1
2
.x C y/k � ı. Hilbert spaces, and Lp spaces with p > 1, are uniformly convex [2,

p. 322, Corollary 3.22].
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Lemma 4. LetX be a uniformly convex normed space. Then for all z"> 0 andM >0 there
exists zı > 0 such that if x; y are elements of X with kxk D kyk � M and kx � yk � z",
then k1

2
.x C y/k C zı � kxk.

Proof. Let z" > 0 and consider any x; y 2 X such that kxk D kyk �M and kx � yk � z".
As z" � kx � yk � 2kxk, we deduce that kxk D kyk � z"=2 > 0. Set " WD z"

M
and compute

ı 2 .0; 1/ as in the definition of uniform convexity. As x=kxk and y=kyk are unit vectors
with 



 x

kxk
�

y

kyk





 D 1

kxk
kx � yk �

z"

M
D ";

we obtain
1

kxk





12.x C y/




 � ı:

Hence, since kxk � z"=2,



12.x C y/




 � ıkxk � kxk � .1 � ı/kxk � kxk � .1 � ı/ z"2 :

It remains to take zı WD .1 � ı/ z"
2

.

Lemma 5. Let X be a uniformly convex normed space, and let K � X be inhabited,
convex, and norm bounded. Then for each x 2 X and each " > 0, there exists ı > 0 such
that 



12.y C y0/ � x





C ı < max
®
ky � xk; ky0 � xk

¯
whenever y; y0 2 K satisfy ky � y0k > ". In particular, K is sufficiently convex.

Proof. Let x 2 X and f .y/ D ky � xk .y 2 X/. In addition, pick M > 0 such that
ky � xk � M for all y 2 K (recall that K is bounded). Let " > 0. For z" WD "=2 and
M compute zı > 0 as in Lemma 4. Choose ı > 0 with ı < min¹"=4; zı=2º, and consider
y;y0 2K with ky � y0k> ". Either jf .y/� f .y0/j> ı or jf .y/� f .y0/j<2ı. In the first
case either f .y/ < f .y0/ � ı or f .y0/ < f .y/ � ı, and hence by the triangle inequality,

f

�
1

2
.y C y0/

�
D





12.y C y0/ � x




 � 1

2

�
ky � xk C ky0 � xk

�
D
1

2

�
f .y/C f .y0/

�
< max

®
f .y/; f .y0/

¯
�
ı

2
:

Now assume the second case. Then by the triangle inequality,

" < ky � y0k � ky � xk C ky0 � xk D f .y/C f .y0/ < 2
�
f .y/C ı

�
;

so f .y/ > "=4. Likewise f .y0/ > "=4; whence min¹f .y/; f .y0/º > "=4 > 0. Letting

z WD
ky � xk

ky0 � xk
.y0 � x/;



J. Berger, D. S. Bridges, and G. Svindland 1272

note that 

z � .y0 � x/

 D ˇ̌ky � xk � ky0 � xkˇ̌ D ˇ̌f .y/ � f .y0/ˇ̌ < 2ı;
kzk D ky � xk D f .y/ �M;

.y � x/ � z

 � ky � y0k � 

.y0 � x/ � z

 > " � 2ı > "

2
D z":

By our choice of zı,

f .y/ D ky � xk �
1

2



.y � x/C z

C zı
D
1

2



.y � x/C .y0 � x/ � .y0 � x/C z

C zı
�





12.y C y0/ � x




 � 12

z � .y0 � x/

C zı

> f

�
1

2
.y C y0/

�
� ı C zı > f

�
1

2
.y C y0/

�
C ı:

As f .y/ � max¹f .y/; f .y0/º and as 1
2
.y C y0/ 2 K, the lemma is proved.

Lemma 6. Let X be a uniformly convex normed space, and let K � X be inhabited and
convex. Then K is sufficiently convex.

Proof. Let x 2 X and f .y/ D ky � xk .y 2 X/. We have to prove that f is sufficiently
convex on K. To this end, let y0 2 K and M > 2.ky0 � xk C 1/ D 2.f .y0/C 1/. Note
that

K 0 D
®
y � x W y 2 K; ky � xk �M

¯
is convex, norm bounded, and inhabited (since y0 � x 2 K 0). Therefore, by Lemma 5,
for " > 0 there exists ı with 0 < ı < 1, such that if y; y0 2 K, ky � y0k > ", and .y �
x/; .y0 � x/ 2 K 0,then

f

�
1

2
.y C y0/

�
C ı D





12.y C y0/ � x




C ı < max

®
ky � xk; ky0 � xk

¯
:

If y; y0 2 K are such that f .y/ D ky � xk > M=2 or f .y0/ D ky0 � xk > M=2, then

f .y0/C ı <
M

2
� 1C 1 < max

®
f .y/; f .y0/

¯
:

Lemma 6 and Theorem 3 lead to the following.

Theorem 7. Let X be a uniformly convex normed space, and let K � X be an inhabited,
complete, and convex set. Moreover, let x 2 X and assume that

� WD inf
®
ky � xk W y 2 K

¯
exists. Then there exists � 2 K such that k� � xk D �. If y0 2 K such that y0 ¤ �, then
ky0 � xk > �.
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An immediate consequence of Theorem 7 is the proof of [2, Problem 11, p. 391] which
corresponds to Corollary 8 below. To this end, we recall that a subset L of a metric space
X is located if L is inhabited and for all x 2 X the distance

�.y;L/ WD inf
®
�.x; y/ j x 2 L

¯
exists.

Corollary 8. Let B be a uniformly convex Banach space, and letK � B be an inhabited,
closed, located, and convex set. Then each x 2 B has a unique closest point � 2 K—that
is, kx � �k D �.x;K/—and if y 2 K is such that y ¤ �, then kx � yk > �.x;K/.

A subsetK of a normed space X is uniformly rotund if it is inhabited, convex, and for
each " > 0 there exists ı > 0 such that if x;x0 2K and kx � x0k � ", then 1

2
.xC x0/C z 2

K for all z 2 X with kzk � ı.

Proposition 9. A normed linear space X is uniformly convex if and only if its closed unit
ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let " > 0. Compute ı > 0 for ", x D 0,
andK D B as in Lemma 5. Then for all y; y0 2 B such that ky � y0k � ", and any z 2 X
with kzk � ı, it follows that



12.y C y0/C z





 � 



12.y C y0/




C ı � max

®
kyk; ky0k

¯
� 1:

Hence, 1
2
.y C y0/C z 2 B , so B is uniformly rotund.

Conversely, suppose that B is uniformly rotund, let " > 0, and choose ı < 1 as in
the definition of uniformly rotund. If x; y are unit vectors of X with kx � yk � ", then
k
1
2
ı.x C y/k � ı, so

.1C ı/


1
2
.x C y/



 D 

1
2
.x C y/C 1

2
ı.x C y/



 � 1
and therefore k1

2
.x C y/k � .1C ı/�1 < 1.

Lemma 10. A uniformly rotund subset of a normed space is sufficiently convex.

Proof. LetK be a uniformly rotund subset of a normed spaceX and let x 2X . In addition
let " > 0 and y; y0 2 K be such that ky � y0k > ". Pick ı > 0 as in the definition of
uniformly rotund and note that we may assume that ı < "=2. Let v WD 1

2
.y C y0/ � x.

Either kvk > 0 or kvk < ı=2. In the first case



ı v

kvk





 � ı
and therefore z WD 1

2
.y C y0/ � ı v

kvk
2 K. We have

kz � xk D kvk � ı �
1

2

�
ky � xk C ky0 � xk

�
� ı

� max
®
ky � xk; ky0 � xk

¯
� ı;
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and thus kz � xk C ı=2 < max¹ky � xk; ky0 � xkº. Next suppose that kvk < ı=2. As
ky � xk C ky0 � xk � ky � y0k > ", we must have max¹ky � xk; ky0 � xkº � "=2.
Hence, in this case, letting z WD 1

2
.y C y0/ 2 K we have

kz � xk C ı=2 D kvk C ı=2 < ı < "=2 � max
®
ky � xk; ky0 � xk

¯
:

Now Lemma 10 and Theorem 3 imply the following.

Theorem 11. Let K be a complete, uniformly rotund subset of a normed space X . More-
over, let x 2 X and assume that

� WD inf
®
ky � xk W y 2 K

¯
exists. Then there exists � 2 K such that k� � xk D �. If y0 2 K such that y0 ¤ �, then
ky0 � xk > �.

So far we have considered the best approximation of a point in a set. Now we move on
to mutual best approximations of sets. Let K and L be subsets of a metric space X such
that L is inhabited. We call K sufficiently convex relative to L if K is inhabited, and for
each " > 0 there exists ı > 0 such that for all y; y0 2 K with �.y; y0/ > ", there exists
z 2 K such that for all x; x0 2 L there is u 2 L with

�.u; z/C ı < max
®
�.x; y/; �.x0; y0/

¯
:

Note that K is sufficiently convex given x 2 X if and only if K is sufficiently convex
relative to ¹xº.

Lemma 12. Let K and L be subsets of a metric space X such that L is located. Then
K is sufficiently convex relative to L if and only if f .y/ � �.y; L/ defines a sufficiently
convex function on K.

Proof. Suppose thatK is sufficiently convex relative to L. For " > 0 let ı > 0 be as in the
definition of sufficiently convex relative to L. Consider y; y0 2 K such that �.y; y0/ > ".
Then there is z 2 K such that for all x; x0 2 L there is u 2 L with

�.u; z/C ı < max
®
�.x; y/; �.x0; y0/

¯
:

Let x; x0 2 L be such that �.y;L/ > �.x; y/ � ı=2 and �.y0; L/ > �.x0; y0/� ı=2. Then
with u 2 L as above, we have

�.z; L/C ı � �.u; z/C ı

< max
®
�.x; y/; �.x0; y0/

¯
< max

®
�.y;L/; �.y0; L/

¯
C ı=2:

Hence,
�.z; L/C ı=2 < max

®
�.y;L/; �.y0; L/

¯
:
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Conversely, if f .y/ � �.y;L/ defines a sufficiently convex function onK, then for every
" > 0 there is ı > 0 such that if y; y0 2 K satisfy �.y; y0/ > " there is z 2 K such that

�.z; L/C ı < max
®
�.y;L/; �.y0; L/

¯
:

Let u 2 L be such that �.z; L/ > �.u; z/ � ı=2. Then for all x; x0 2 L we have

�.u; z/C ı=2 < �.z; L/C ı < max
®
�.y;L/; �.y0; L/

¯
� max

®
�.x; y/; �.x0; y0/

¯
:

Lemma 13. Let L be a located, convex subset of a normed space X . Then for all x; x0 in
X and t 2 Œ0; 1�,

�
�
tx C .1 � t /x0; L

�
� t�.x; L/C .1 � t /�.x0; L/:

Proof. Given x; x0 2 X , t 2 Œ0; 1�, and " > 0, pick y; y0 2 L such that

kx � yk < �.x;L/C " and kx0 � y0k < �.x0; L/C ":

Then

�
�
tx C .1 � t /x0; L

�
�


tx C .1 � t /x0 � ty � .1 � ty0/


� tkx � yk C .1 � t /kx0 � y0k

� t�.x; L/C .1 � t /�.x0; L/C t "C .1 � t /"

� t�.x; L/C .1 � t /�.x0; L/C ":

Since " > 0 is arbitrary, the result follows.

Proposition 14. Let K be an inhabited, uniformly rotund subset of a normed space X ,
and L a located, convex subset of X that is disjoint from K. Then K is sufficiently convex
relative to L.

Proof. By Lemma 12 it will suffice to show that f .x/ � �.x; L/ defines a sufficiently
convex function on K. For " > 0 let ı > 0 be as in the definition of uniform rotundity for
K. Consider x; x0 2 K such that kx � x0k > ". Let u WD 1

2
.x C x0/ and fix v 2 L such

that kv � uk < �.u; L/C ı=2. Note that kv � uk � ı, because by choice of ı, if we had
kv � uk < ı, then v D uC .v � u/ 2 K which is absurd since K and L are disjoint. Let

z WD uC
ı

kv � uk
.v � u/:

Then kz � uk D ı, and therefore z D uC .z � u/ 2 K. Recalling both our choice of v
and Lemma 13, we have

f .z/C ı=2 � kv � zk C ı=2

D

�
1 �

ı

kv � uk

�
kv � uk C ı=2

D kv � uk � ı=2 < f .u/

� max
®
f .x/; f .x0/

¯
:
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To see that in Proposition 14 we cannot replace uniform rotundity by mere convexity
(in a uniformly convex space), take X to be the Euclidean plane R2,

K D
®
.a; b/ 2 R2 W a � 0

¯
;

L D
®
.a; b/ 2 R2 W a � 1

¯
:

We have
inf
x2K

�.x;L/ D 1 D


.0; b/ � .1; b/



for all b 2 R, so, in view of Proposition 2, x 7! �.x;L/ is not sufficiently convex on K.
Recall here Bishop’s lemma [5, Proposition 3.1.1].

Let Y be a complete, located subset of a metric space X . Then for each x 2 X
there exists y 2 Y such that if x ¤ y, then �.x; Y / > 0.

Theorem 15. Let K and L be subsets of a metric space X such that K is complete, L is
located, and K is sufficiently convex relative to L. Suppose also that d � infy2K �.y; L/
exists. Then there exists � 2K such that (i) �.�;L/D d and (ii) �.y;L/ > d for all y 2K
with y ¤ �. If, in addition, L is complete, then there exists x 2 L such that if � ¤ x, then
d > 0.

Proof. Since f .y/ � �.y;L/ defines a sufficiently convex function on K, and since K is
complete and d exists, Proposition 2 produces � 2 K with properties (i) and (ii). If also L
is complete, then we complete the proof by invoking Bishop’s lemma.

Lemma 16. Let Y be an inhabited, convex subset of a Hilbert space H , and a a point of
H such that d D �.a;Y / exists. Then there exists b 2 xY such that ka� bk D d . Moreover,

(i) ka � yk > d whenever y 2 xY and y ¤ b;

(ii) ha � b; b � yi � 0, and therefore ha � b; a � yi � d2, for all y 2 Y .

Proof. This is a well-known result on Hilbert space. For instance [1, Lemma 1] proves the
existence of b 2 xY such that ka � bk D d and (ii) holds. Conclusion (i) follows from (ii)
since for all y 2 Y

ka � yk2 D ka � b C b � yk2

D ka � bk2 C kb � yk2 C 2ha � b; b � yi

� d2 C kb � yk2:

Theorem 17. Let K and L be closed subsets of a Hilbert space H such that L is convex
and located, andK is sufficiently convex relative toL. Suppose also that d�infx2K �.x;L/
exists. Then there exist x1 2 K and y1 2 L such that kx1 � y1k D d . Moreover,

(i) kx � yk > d whenever x 2 K and y 2 L and either x ¤ x1 or y ¤ y1;

(ii) hx1 � y1;y1 � yi � 0, and therefore hx1 � y1;x1 � yi � d2, for all y 2L.
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Proof. By Theorem 15, there exists x1 2K such that d D �.x1;L/. By Lemma 16 there
exists y1 2 L such that kx1 � y1k D �.x1; L/ and properties (i) and (ii) hold.

Note that also in Theorem 17 we cannot replace sufficient convexity by mere convex-
ity. Let H D R2,

K D
®
.a; b/ 2 R2 W b � ea C 1

¯
;

L D
®
.a; b/ 2 R2 W b � �ea � 1

¯
:

Then d D 2, but there are no x 2 K and y 2 L such that kx � yk D 2.
Theorem 17 leads us to a new constructive separation theorem where the separating

linear functional is constructed as the difference of the points of closest distance.

Theorem 18. Let K and L be closed, convex, and located subsets of a Hilbert space H ,
such that K is sufficiently convex relative to L. Suppose that d � infx2K �.x; L/ exists
and is positive, let x1 2 K and y1 2 L be as in Theorem 17, and let p D x1 � y1.
Then

hp; x � yi � d2 .x 2 K; y 2 L/:

Moreover, if u.x/ D hd�1p; xi .x 2 H/, then

(a) u is a normed real linear functional, kuk D 1, and u.x/� u.y/C d for all x 2K
and y 2 L.

(b) u.x1/ � u.x/ for all x 2 K, and u.y1/ � u.y/ for all y 2 L.

(c) If also K is uniformly rotund, then u.x1/ < u.x/ whenever x ¤ x1.

Proof. By Theorem 17, for all y 2 L we have

hp; x1 � yi D hx1 � y1; x1 � yi � d
2:

On the other hand, since K is located, convex, and closed, Lemma 16 provides a unique
b 2K such that �.y1;K/D ky1 � bk. As �.y1;K/D d D ky1 � x1k, it follows that
b D x1 and thus, by Lemma 16, that

hy1 � x1; x1 � xi � 0 (1)

for all x 2 K. Hence, for x 2 K and y 2 L,

hp; x � yi D hp; x1 � yi C hp; x � x1i

� d2 C hx1 � y1; x � x1i

D d2 C hy1 � x1; x1 � xi � d
2:

It is straightforward to prove (a) and, using (1) and noting Theorem 17 (ii), to prove (b). To
prove (c), suppose also thatK is also uniformly rotund, and let x 2K be such that x¤ x1.
Choose ı > 0 such that 1

2
.x1 C x/C z 2 K for all z 2 H with kzk � ı. Let z WD � ı

d
p.
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Then kzk D ı and therefore 1
2
.x1 C x/C z 2 K. It follows that u.1

2
.x1 C x/C z/ �

u.x1/, and thus u.x/C 2u.z/ � u.x1/. As u.z/ D � ı
d2
hp; pi D �ı < 0, we conclude

that u.x/ > u.x1/.

By Theorem 18 we may construct supporting hyperplanes

PK WD
®
x 2 H W u.x/ D u.x1/

¯
of K and PL WD ¹x 2 H W u.x/ D u.y1/º of L, respectively, where PK intersects with
K in the point x1, and PL intersects with L in y1. If K is uniformly rotund, then the
intersection point x1 of PK and K is strongly unique in the sense that any point x 2 K
distinct from x1 is bounded away from PK since u.x/ > u.x1/.

In trying to apply the foregoing theorems, it is natural to think of a uniformly rotund
set K which is compact. In that case, if K is nontrivial, Corollary 20 below shows that H
is finite-dimensional.

Proposition 19. Let X be a normed space, and S be a uniformly rotund subset of X that
contains two distinct points. Then S contains an open ball of positive radius.

Proof. Let a; b be two distinct points of S . There exists ı > 0 such that if x; y 2 S and
kx � yk � ka � bk, then 1

2
.x C y/C z 2 S for all z 2 X with kzk � ı. Consider the

open ball B.1
2
.a C b/; ı/ of radius ı with center 1

2
.a C b/. If z 2 B.1

2
.a C b/; ı/, then

kz � 1
2
.aC b/k < ı, so

z D 1
2
.aC b/C

�
z � 1

2
.aC b/

�
2 S;

and therefore B.1
2
.aC b/; ı/ is the required ball.

Corollary 20. A normed space that has a totally bounded, uniformly rotund subset which
contains two distinct points is finite-dimensional.

Proof. This follows from Proposition 19 and [5, Proposition 4.1.13].
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