
Doc. Math. 29 (2024), 1281–1317
DOI 10.4171/DM/987

© 2024 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On quantum Cayley graphs

Mateusz Wasilewski

Abstract. We clarify the correspondence between two approaches to quantum graphs: via quantum
adjacency matrices and via quantum relations. We show how the choice of a (possibly non-tracial)
weight manifests itself on the quantum relation side and suggest an extension of the theory of
quantum graphs to the infinite dimensional case. Then we use this framework to introduce quantum
graphs associated to discrete quantum groups, leading to a new definition of a quantum Cayley
graph.

1. Introduction

Inspired by the Lovász bound for the zero-error capacity of a channel, the authors of [11]
introduced the notion of a quantum graph on a matrix algebraMn, as an object associated
to a quantum channelˆ WMn!Mn – its quantum confusability graph. Independently, the
author of [34] developed a theory of quantum relations, inspired by his previous joint work
with Kuperberg [19] on quantum metrics. Specialised to symmetric, reflexive relations
on Mn, both approaches give the same answer – operator subsystems V �Mn.

Another approach has been suggested in [24], where the authors introduced the notion
of a quantum adjacency matrix. They were inspired by [22], where quantum graph homo-
morphisms have been introduced, viewed as perfect quantum strategies of winning the
graph homomorphism game. The authors of [24] developed a categorical framework in
which one can talk about general (finite) quantum sets and quantum functions. A quantum
graph is then a quantum set with the extra structure of a quantum adjacency matrix,
and a quantum graph homomorphism is a quantum function that preserves this extra
structure. This approach to quantum graphs is equivalent to the one using operator sys-
tems (see [8] for an explicit correspondence). This definition has been extended in [7] to
include quantum graphs equipped with non-tracial states and new links have been found
between quantum isomorphisms between quantum graphs and monoidal equivalence of
the respective quantum automorphism groups. In [10] a correspondence between the oper-
ator systems and quantum adjacency matrices has been established in the non-tracial case.
In [14, 23] small examples, namely quantum graphs on M2, have been classified.

In this work we clarify the relation between various definitions in the non-tracial case
for general quantum graphs, without any symmetry assumptions. The main point here is
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a consistent use of the KMS inner product, as opposed to the more common GNS inner
product. Using the Hilbert space techniques from [10], but with the KMS inner product
replacing the GNS one, we re-establish the one-to-one correspondence between quantum
adjacency matrices on a finite dimensional C �-algebra B and projections in B˝ Bop.
Because we do not assume GNS symmetry, no invariance under the modular group is
required.

Theorem A. There is a one-to-one correspondence between quantum adjacency matrices
A W B! B and projections in B˝Bop. Moreover, the tensor flip of the projection corres-
ponds to taking the KMS adjoint of A.

Another thing that has been missing is that even to define the notion of a quantum
adjacency matrix we need to have a state (or a more general positive functional, depending
on the normalisation convention) on our algebra, but Weaver’s theory of quantum relations
works for arbitrary von Neumann algebras without any reference state: a quantum relation
on M � B.H/ is a weak� closed M0-bimodule and there is a way of making this notion
representation independent. It turns out that, using an old result of Haagerup from [15],
a weight  on M gives an operator valued weight  �1 from B.H/ to M0. In our case, i.e.
if M is a finite dimensional C �-algebra with a positive functional  such that mm� D Id
then  �1 is a faithful normal conditional expectation, which endows B.H/ with a Hilbert
M0-module structure. Working with an analogue of the KMS inner product in this case we
obtain a correspondence between projections in B˝Bop and weak� closed B0-bimodules
that interacts nicely with symmetry conditions.

Theorem B. For a finite dimensional C �-algebra B � B.H/ equipped with a positive
functional  such that mm� D Id there is a one-to-one correspondence between projec-
tions P 2 B˝Bop and weak� closed B0-bimodules V � B.H/. Moreover, the bimodule V �

corresponds to the tensor flip of P .

We also extended the notion of a quantum graph to an infinite direct sum of matrix
algebras. In this case the B0-valued inner product on a weak� closed bimodule is not
necessarily complete, so in general we have to work with pre-Hilbert modules, but the
genuine Hilbert modules form a natural class from the standpoint of quantum graph theory.

Theorem C. Let B WD
L1
˛D1Mn˛ and let A W c00 �

L1
˛D1Mn˛ ! B be a quantum adja-

cency matrix. Then A is of bounded degree, i.e. extends to a normal completely positive
map zA W B! B if and only if for any faithful representation B � B.H/ the corresponding
B0-bimodule V is a (complete, self-dual) Hilbert B0-module.

Next we investigate the quantum adjacency matrices on the algebras associated to
discrete quantum groups, as they are infinite direct sums of matrix algebras possessing a
natural weight, namely either of the Haar weights, and they happen to satisfy the condition
mm� D Id, hence fit perfectly into the theory. To respect the group structure, we study
quantum adjacency matrices that are covariant with respect to the right action, i.e. left
convolutions.
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Theorem D. Let � be a discrete quantum group and let A W `1.�/! `1.�/ be given by
Ax WD P � x for some P 2 c00.�/, where `1.�/ ' `1 �

L
˛2Irr.G/Mn˛ is the algebra

of bounded functions on � and c00.�/ WD c00 �
L
˛2Irr.G/Mn˛ is the algebra of finitely

supported functions on �. Then A is a quantum adjacency matrix if and only if P is a
projection. Moreover, A is GNS symmetric if P is invariant under the antipode of � and
it is KMS symmetric if P is invariant under the unitary antipode.

A projection P 2 c00.�/ can be viewed as a finite subset of � and to define a quantum
Cayley graph we need a symmetric generating subset. Symmetry should just be the KMS
symmetry of the corresponding quantum adjacency matrix and the property of being gen-
erating is also not difficult to generalise to the non-commutative setting. Classically the
Cayley graph is a geometric object used to study the group and its geometry depends very
little on the particular generating set. Using the notion of a quantum metric from [19] we
arrive at the following result.

Theorem E. Let � be a discrete quantum group and letP1;P2 2 c00.�/ be two generating
projections. Then the corresponding quantum Cayley graphs are bi-Lipschitz equivalent.

We finish the introduction by quickly describing the contents of the paper. In Sec-
tion 2 we gather some information about the KMS inner product, Hilbert modules and
quantum groups. In Section 3 we discuss the correspondence between the three approaches
to quantum graphs, and also extend it to the infinite dimensional case. Next, in Section 4,
we finally turn to quantum groups. We describe the covariant quantum adjacency matrices
and characterise the GNS/KMS symmetric ones. In the last Section 5 the quantum Cay-
ley graphs are introduced. We prove that changing the generating projection results in a
bi-Lipschitz equivalent quantum graph. We also give an easy application: if the balls in
the Cayley graph grow subexponentially then the discrete quantum group is amenable. We
finish this section with some examples.

2. Preliminaries

We will work with pairs .B;  /, where B is a finite dimensional C �-algebra equipped
with a positive functional  . If B is just a matrix algebra Mn then it means that  is of
the form  .x/ WD Tr.�x/, where � is a positive semidefinite matrix. In this case you can
define an inner product on Mn by hx; yi WD  .x�y/, which we will refer to as the GNS
inner product, and if � is invertible, then it provides a Hilbert space structure on B, which
we will assume from now on. There is also another way to define an inner product, for
which we need the notion of the modular group of a functional. For each t 2 R we define
�t .x/ WD �

itx��it , i.e. a conjugation by the unitary matrix �it . We have �t ı �s D �tCs and
the whole collection .�t /t2R is called the modular group of  . In the finite dimensional
setting we can also define the modular group at complex argument, namely for any z 2 C
we put �z.x/ WD �izx��iz , in particular ��i .x/D �x��1; an important and easy to check
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property of the modular group is that  ı �z D  . Even though the functional  is not
tracial in general, i.e.  .xy/ ¤  .yx/ for some x; y 2 B, the modular group allows us to
recover this property to an extent. To be more precise, it enjoys the KMS property, i.e.

 .xy/ D  
�
y��i .x/

�
;

which follows from

 .xy/ D Tr.�xy/ D Tr
�
�x��1.�y/

�
D Tr.�y�x��1/ D Tr

�
�y��i .x/

�
D  

�
y��i .x/

�
:

General finite dimensional C �-algebras are direct sums of matrix algebras, so it is easy to
extend all these notions.

The Hilbert space structure will be of paramount importance to us, and it is there-
fore crucial to specify it, especially since we will not use the typical GNS inner product
induced by a positive functional. Namely, we will work with the KMS inner product, i.e.
hx; yiKMS WD  .x

��
� i2
.y//. One can relate it to the more common GNS inner product,

yielding a more symmetric formula

 
�
x��

� i2
.y/
�
D  

��
�
� i4
.x/
��
�
� i4
.y/
�
: (2.1)

The reason for using the KMS inner product is that it interacts nicely with positivity,
namely if  .x/ D Tr.�x/, then hx; yiKMS D Tr..�

1
4 x�

1
4 /��

1
4 y�

1
4 /, i.e. we use the posit-

ivity preserving embedding x 7! �
1
4 x�

1
4 . The KMS inner product also interacts nicely with

the adjoint, namely hx; yiKMS D hy
�; x�iKMS, exactly like in the tracial case. Moreover,

we will want to talk about undirected graphs, which amounts to a symmetry condition on
the adjacency matrix, and GNS symmetry is too restrictive of a condition, as the following
well-known statement shows.

Lemma 2.1. Suppose thatA WB!B, where B is a finite dimensionalC �-algebra, is GNS
symmetric with respect to a faithful positive functional  , i.e.  ..Ax/y/ D  .x.Ay//.
Then A ı �t D �t ı A.

Proof. We have

 
�
A
�
�i .x/

�
y
�
D  

�
�i .x/.Ay/

�
D  

�
.Ay/x

�
D  

�
y.Ax/

�
D  

�
�i .Ax/y

�
;

hence A ı �i D �i ı A and this is enough to conclude that A is covariant with respect to
the modular group, as we will now show.

The map A induces a map zA.x�/ WD A.x/� on the level of the GNS Hilbert space
L2.B;  /. Since by definition ��i .x/� D �.x�/, where � W L2.B;  /! L2.B;  / is
the modular operator, therefore zA commutes with �, as A commutes with ��i . It follows
that zA�it D �it zA for any t 2 R, hence A ı �t D �t ı A.

It is in many cases much easier to perform computations with respect to the GNS
inner product, and in some instances, we can resort to that, e.g. if we want to compute the
adjoint of a map that intertwines the respective modular groups.
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Lemma 2.2. Suppose thatA W .B; /! .C;'/ satisfiesA ı � t D �
'
t ıA. Then the adjoint

of A with respect to the KMS inner products is the same as the adjoint with respect to the
GNS inner products.

Proof. Follows easily from formula (2.1).

This lemma applies for example to the multiplication map m W B˝B! B, because
the equality m ı .�t ˝ �t / D �t ım just means that �t is a homomorphism; we will now
write down the formula for the adjoint.

Proposition 2.3. Suppose thatMn is equipped with a faithful positive functional  .x/ WD
˛ Tr.�x/, where ˛ > 0 and � 2Mn is a positive definite matrix. Then we have

m�.eij�
�1/ D

1

˛

X
k

eik�
�1
˝ ekj�

�1

and mm� D Tr.��1/
˛

. Moreover m� is a bimodular map.

Proof. Let us compute hepq ˝ ers;m�.eij��1/i, using the formula for m� from the state-
ment of the proposition:

˛
X
k

Tr.�eqpeik��1/Tr.�esrekj��1/ D ˛
X
k

ıpiıqkırkısj D ˛ıpiıqrısj :

On the other hand, this expression should be equal to hepqers; eij��1i, which is the same
as ıqrheps; eij��1i D ˛ıqrıpiısj , and this ends the proof.

To check thatmm� D Tr.��1/
˛

, simply note thatmm�.eij��1/ D 1
˛

P
k eik�

�1ekj�
�1

and
P
k eik�

�1ekj D Tr.��1/eij . We will now address the bimodularity of m�. The case
of the left action is straightforward and for the right action we will use the KMS property.
Indeed˝

a˝ b;m�.xy/
˛
D hab; xyi D  .b�a�xy/

D  
�
�i .y/b

�a�x
�
D  

��
ab��i .y

�/
��
x
�

D
˝
ab��i .y

�/; x
˛
D
˝
a˝ b��i .y

�/;m�.x/
˛
D
˝
a˝ b;m�.x/y

˛
;

where for the last equality we need to write m�.x/ as a finite sum
P
i si ˝ ti and perform

the same argument as in the second line, but in reverse.

Remark 2.4. In the theory of quantum groups a concept of a ı-form, i.e., a state ' for
which mm� D ı2 Id; this ı2 can be viewed as a sort of dimension in the non-tracial case.

Since we want to work with graphs, the natural measure to choose is the counting
measure, which is not a probability measure, i.e. not a state, but it satisfies the condition
mm�D Id, which we will adopt also in the noncommutative case. If a positive functional '
satisfies the condition mm� D Id then we will interpret the value '.1/ as the dimension
of our quantum space. This choice of normalisation will also make the definition of a
quantum adjacency matrix cleaner.
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As a consequence of the previous proposition, the positive functionals satisfyingmm�

D Id are of the form Tr.��1/ Tr.�x/; the extension to direct sums of matrix algebras is
immediate. For further use, we record here the following simple lemma.

Lemma 2.5. Let  be a positive functional on Mn such that mm� D Id and let P 2Mn

be a non-zero projection. Then  .P / > 1.

Proof. We have  .x/ D Tr.��1/Tr.�x/. By the Cauchy–Schwarz inequality we have

1 6
�

Tr.P /
�2
D
�

Tr.��
1
2 �

1
2P /

�2 6 Tr.��1/Tr.�P 2/ D  .P /:

We will occasionally have to work with the opposite algebra Bop, which is the same
vector space equipped with the opposite multiplication, i.e. xopyopD .yx/op, where by xop

we mean an element x 2 B viewed as an element of Bop. We will denote the identity map
B 3 x 7! xop 2 Bop by �. For a positive functional  on B we can define  op W Bop

! C
by  op.xop/ WD  .x/. We can relate the modular group of this functional to the original
one, namely

�
op
t .x

op/ D
�
��t .x/

�op
:

Using the KMS property of  and  op we obtain

 
�
x��i .y/

�
D  .yx/ D  op�.yx/op�

D  op.xopyop/ D  op��op
i .y

op/.xop/
�
;

from which it follows that �op
i .y

op/ D .��i .y//
op and that is enough to conclude. Most

often we will work with the algebra B˝ Bop, whose natural action on B˝ B will be
denoted by #, i.e. .a˝ bop/#.c ˝ d/ WD ac ˝ db.

In Section 3.2 we will use the language of Hilbert C �-modules. We refer the reader
to the book [5] for all the necessary information. We just recall here quickly the main
definition.

Definition 2.6. Let A be a C �-algebra and let X be a right A-module. We call X a pre-
Hilbert module if it is equipped with a sesquilinear map (linear in the second variable)
h�; �i W X �X ! A such that:

(i) hx; yai D hx; yia for all x; y 2 X and a 2 A;

(ii) hx; yi� D hy; xi;

(iii) hx; xi > 0 and hx; xi D 0 if and only if x D 0.

We callX a Hilbert module if it is complete with respect to the norm kxk WD
p
khx; xikA.

A Hilbert module X is self-dual if any bounded right A-linear map � W X ! A is of the
form �.x/ D hy; xi for some y 2 X .

In Sections 4 and 5 we will work with compact and discrete quantum groups. For
information about compact quantum groups we refer to the excellent book [25]. For
information about discrete quantum groups we refer to [31], although sometimes it is
more convenient to treat them as general locally compact quantum groups and use the
results from [20]. Here we recall just the basic definitions.
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Definition 2.7. A compact quantum group G is described by a pair .A;�/, where A is a
unital C �-algebra and � W A! A˝min A is a �-homomorphism satisfying:

(i) .Id˝�/ ı� D .�˝ Id/ ı� (coassociativity);

(ii) the spaces .A˝ 1/�.A/ WD span¹.a ˝ 1/�.b/; a; b 2 Aº and .1˝ A/�.A/
are dense in A˝min A.

Typically the algebra A will be denoted by C.G/ as it is meant to generalise the algebra
of continuous functions on a compact group.

One can prove that the Haar measure exists for compact quantum groups, and rep-
resentation theory can be developed, in particular an analogue of the Peter–Weyl theorem
holds; Irr.G/will denote the set of equivalence classes of irreducible representations of G.

Definition 2.8. Let `1.�/ WD `1 �
L
˛2Irr.G/Mn˛ . There is a unique �-homomorphism

�� W `
1.�/! `1.�/ x̋ `1.�/ such that .��˝ Id/.W /DW23W13, where the mulitplicat-

ive unitaryW 2 `1.�/ x̋L1.G/ is the unitary describing the right regular representation
of G. One can also show existence of left and right Haar measures, thus .`1.�/; ��/

becomes a locally compact quantum group, which is the discrete dual of G. All discrete
quantum groups are of this form; one can also define them from scratch by saying that the
von Neumann algebra of functions is a direct sum of matrix algebras and there exists an
appropriate comultiplication on this algebra. The examples that we are most interested in
arise as duals of compact quantum groups, so this is the perspective that we adopted.

3. Quantum graphs

Throughout this section B will be a finite dimensional C �-algebra equipped with a faithful
positive functional  such that mm� D Id. Thus a quantum graph structure will really be
an extra structure on the pair .B;  /, i.e. a quantum space, not only on the algebra B.
However, in most situations  will be clear from the context and will be suppressed in the
notation.

3.1. Quantum adjacency matrices versus projections

We will discuss a correspondence between quantum adjacency matrices A W B! B and
projections in B˝Bop. This correspondence has already been established (see [6, Propos-
ition 2.3] and [10, Theorem 5.17]), so we will be brief but we would like to stress how the
consistent use of the KMS inner product clarifies the situation.

Definition 3.1. A quantum adjacency matrix on a quantum space .B;  / is a completely
positive map A W B! B such that m.A˝ A/m� D A.

Remark 3.2. Some authors prefer to assume that A is real (see [23]), i.e. �-preserving,
but it is equivalent to complete positivity under the condition m.A˝ A/m� D A. Indeed,
by Proposition 3.7 the Choi matrix of such an A is an idempotent and self-adjointness of
an idempotent is equivalent to its positivity.
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In the classical case no extra condition is required because there all adjacency matrices
are automatically completely positive or, equivalently, all idempotents are self-adjoint.
From the point of view of quantum relations, our choice is like choosing the orthogonal
projection among all projections onto a given subspace, and this choice ensures that all
the correspondences between different definitions of quantum graphs are one-to-one.

If one mimics the tracial situation, the natural object to consider seems to be zP WD
.A˝ Id/m�.1/ 2 B˝Bop, which is an idempotent. In the terminology of [10], zP corres-
ponds toA via the map‰00;0, which maps the rank one operator jaihbj to a˝ b� 2B˝Bop.
However, the inner product in that work is the GNS inner product and we will see now
how the situation changes if we choose to work with the KMS inner product instead.

Lemma 3.3. Suppose that B '
L
˛Mn˛ is equipped with a positive functional

 WD
M
˛

Tr.��1˛ /Tr.�˛ �/:

Let ‰KMS W End.B; h�; �iKMS/! B˝Bop be defined via jaihbj 7! a ˝ .b�/op. Then for
each A 2 End.B; h�; �iKMS/ we have

‰KMS.A/ D
X
˛

1

Tr.��1˛ /

X
i;j

A
�
�
� 14
˛ e˛ij�

� 14
˛

�
˝
�
�
� 14
˛ e˛ji�

� 14
˛

�op
: (3.1)

Proof. It suffices to check the formula (3.1) for the rank one operators jaihbj. In this case
we have (b˛ will denote the component of b living in the summand Mn˛ )

‰KMS�
jaihbj

�
D

X
˛

X
i;j

a Tr
�
b�˛�

1
4
˛ e

˛
ij�

1
4
˛

�
˝
�
�
� 14
˛ e˛ji�

� 14
˛

�op
:

The trace Tr.b�˛�
1
4
˛ e

˛
ij�

1
4
˛ / just computes the .j; i/ entry of �

1
4
˛ b
�
˛�

1
4
˛ , hence we obtain

‰KMS�
jaihbj

�
D

X
˛

X
i;j

a
�
�
1
4
˛ b
�
˛�

1
4
˛

�
j i
˝
�
�
� 14
˛ e˛ji�

� 14
˛

�op

D a˝
X
˛

X
i;j

�
�
� 14
˛

�
�
1
4
˛ b
�
˛�

1
4
˛

�
j i
e˛ji�

� 14
˛

�op
:

For any matrix X the sum
P
i;j Xij eij is clearly equal to X , so the second leg reduces toP

˛ b
�
˛ D b

�.

Remark 3.4. The elements 1p
Tr.��1˛ /

�
� 14
˛ e˛ij�

� 14
˛ form an orthonormal basis of B with

respect to the KMS inner product, so ‰KMS.A/ can be thought of as the matrix of A with
respect to this orthonormal basis.

We will now relate P WD ‰KMS.A/ with zP D .A˝ �/m�.1/. Before that we need a
lemma (which we only write down in the case of a single matrix block, but the general-
isation to finite dimensional C �-algebras is obvious).
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Lemma 3.5. Suppose B WD Mn is equipped with a functional  .x/ WD Tr.��1/ Tr.�x/,
where � 2Mn is positive definite. Let " WD m�.1/ D 1

Tr.��1/

P
i;j eij�

�1 ˝ ej i . Then for
each z; w 2 C we have

" D
1

Tr.��1/

X
i;j

�zeij�
w�1
˝ ��weij�

�z :

Proof. Treat " as an element of B˝B. Note first that .�z/� D ��Nz because

hx; �zyi D  
�
x��z.y/

�
D  

�
��z.x

�/y
�
D  

��
��Nz.x/

��
y
�
D
˝
��Nz.x/; y

˛
:

By taking the adjoint of the equation m ı .�z ˝ �z/ D �z ı m (for all z 2 C), we get
that m� commutes with the modular group, i.e. .�z ˝ �z/ ım� D m� ı �z for all z 2 C.
From this we get " D .��ix ˝ ��ix/" for all x 2 C. Moreover, m� is a bimodular map,
therefore m�.1/ D m�.�y1��y/ D �y"��y for all y 2 C. Combining the two, we obtain

" D
1

Tr.��1/

X
i;j

�xCyeij�
�1�x

˝ �xej i�
�y�x :

Now put z D x C y and w D �x.

Lemma 3.6. Let A W B! B. We have ‰KMS.A/D .A˝ .� ı �
� i2
//m�.1/, where � W B!

Bop is the identity map �.x/ WD xop.
Since � ı �

� i2
D �

op
i
2

ı �, we get P D .Id˝�op
i
2

/. zP /.

Proof. From the previous lemma we get that

m�.1/ D
X
˛

1

Tr.��1˛ /

X
i;j

�
� 14
˛ e˛ij�

� 14
˛ ˝ �

� 34
˛ e˛ji�

1
4
˛ :

Note that
�
� 34
˛ e˛ji�

1
4
˛ D �

� 12
˛

�
�
� 14
˛ e˛ji�

� 14
˛

�
�
1
2
˛ D � i

2

�
�
� 14
˛ e˛ji�

� 14
˛

�
;

which ends the proof.

We are now ready to summarise the properties of ‰KMS.

Proposition 3.7. The map ‰KMS W End.B; h�; �iKMS/! B˝Bop establishes a one-to-one
correspondence between linear maps on B and elements of B˝Bop. We have:

(i) ‰KMS.A/ is an idempotent if and only if A satisfies m.A˝ A/m� D A;

(ii) ‰KMS.A/ is self-adjoint if and only if A is �-preserving;

(iii) ‰KMS.A/ is positive if and only if A is completely positive;

(iv) ‰KMS.A/ is invariant under the flip map † W B˝Bop
! B˝Bop if and only if

the KMS adjoint A�KMS is equal to the map xA.x/ WD .A.x�//�.

In particular, if A W B ! B is a quantum adjacency matrix then it is self-adjoint with
respect to the KMS inner product if and only if †.‰KMS.A// D ‰KMS.A/.
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Proof. The first bullet point follows from [6, Proposition 2.3 (2)], which states that
.A˝ �/m�.1/ is an idempotent iff m.A˝ A/m� D A and Lemma 3.6, from which we
infer that ‰KMS.A/ and .A˝ �/m�.1/ are related by a multiplicative map (the modular
group). The only new statement is the last one. Note that ‰KMS.jaihbj/ D a ˝ .b�/op,
hence the flip is equal to b� ˝ aop, which is equal to ‰KMS.jb�iha�j/. Let us compute
jaihbj.c/ D .ahb; c�iKMS/

� D a�hc�; biKMS D a
�hb�; ciKMS, using the properties of the

KMS inner product. Using the fact that .jaihbj/�D jbihaj, we conclude that†.‰KMS.A//

is equal to ‰KMS. xA�KMS/, where xA�KMS should be viewed as the transpose of A.

We will end this subsection with some comments about recovering A from its Choi
matrix P WD ‰KMS.A/. By [6, Proposition 2.3 (1)] we have Ax D .Id˝ /.P1.1˝ x//,
where P1 WD .A˝ Id/m�.1/ is treated is an element of B˝B such that zP D .Id˝�/P1,
thus we can rewrite this formula as Ax D .Id˝'/..1˝ x/# zP /. Recall from Lemma 3.6
that

zP D
�

Id˝�op
� i2

�
.P /:

This is to be expected, because if we have a positive element x 2 C, where C is a von
Neumann algebra equipped with a normal faithful positive functional ', and we want to
use it as a density of a positive functional, then we have to choose '.��'

� i2

.x//, not '.�x/.
There is an analogous formula involving the left multiplication.

3.2. Projections versus bimodules

Given a representation of B on a Hilbert space H (possibly infinite dimensional), we will
now establish a one-to-one correspondence between weak� closed B0-bimodules inside
B.H/ and projections in B˝ Bop. Before that we need a quick discussion of operator
valued weights. We will not go into the details, let us just say that operator valued weights
are to conditional expectations what weights are to states, i.e. they satisfy a positivity
and bimodularity conditions but are in general unbounded. In this work we will only
see weights and bona fide conditional expectations, that is why we decided to avoid the
unnecessary technical details.

In [15, Theorem 6.13] Haagerup established for a pair of von Neumann algebras N �
M � B.H/ a bijection between normal, faithful, semifinite (abbreviated henceforth nfs)
operator valued weights from M to N and nfs operator valued weights from N0 to M0. In
particular, any weight  on a von Neumann algebra M gives rise to an operator valued
weight  �1 from B.H/ to M0. In [9, Corollary 16] Connes obtained a formula for this
operator valued weight as  �1.j�ih�j/ D R .�/R .�/�, where R .�/ W H ! H is the
map from the GNS space of  given by ƒ.a/ 7! a� , assuming that it is bounded, that is
to say that � is a  -bounded vector (such vectors are always dense in H).

We will now check that if B is a finite dimensionalC �-algebra equipped with a positive
functional  such that mm� D Id then  �1 is a faithful conditional expectation. First,
note that it is sufficient to check for a single matrix algebra. Indeed, if z 2 B is a central
projection (namely z 2 B\B0) then (using bimodularity of  �1 over B0)

 �1.zx/ D z �1.x/ D z �1.x/z D  �1.zxz/:
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It follows that if z˛’s are minimal central projections in B and  ˛ is the restriction of
the functional  to z˛ B � B.z˛H/ then  �1 can be built as a direct sum of the operator
valued weights  �1˛ .

We assume now that B D Mn � B.H/ (H can be infinite dimensional) is equipped
with a positive functional  .x/ WD Tr.��1/ Tr.�x/, where � 2 Mn is positive definite.
It is well-known that H ' Cn ˝ K, where Mn acts as A.v ˝ �/ WD Av ˝ �. Any tensor
v ˝ � is  -bounded and one can check that R .v ˝ �/� W Cn ˝ K! H is given by
R .v ˝ �/

�.w ˝ �/ D 1
Tr.��1/ jwih�

�1vjh�; �i. It follows that

R .v ˝ �/R .v ˝ �/
�.w ˝ �/ D

1

Tr.��1/
h��1v; vih�; �iw ˝ �:

In other words, if we view B.Cn˝ K/ asMn x̋ B.K/ and jv˝ �ihv˝ �j as jvihvj ˝ j�ih�j
then

 �1.A˝ T / D
1

Tr.��1/
Tr.��1A/˝ T;

which amounts to slicing the first leg with the state 1
Tr.��1/ Tr.��1�/ (see also [17, Re-

mark 3.3 (iii)]). This is clearly a conditional expectation. Let us summarise this discussion.

Proposition 3.8. Let B � B.H/ be a finite dimensional C �-algebra equipped with a pos-
itive functional  such that mm� D Id. Then  �1 W B.H/ ! B0 is a normal faithful
conditional expectation.

Remark 3.9. Note that the statement also holds for an infinite direct sum of matrix algeb-
ras, which will be useful in the sequel (the proof remains the same). We cannot, however,
hope for a much greater generality, as existence of a normal conditional expectation from
B.H/ onto B0 implies that B0 is atomic [29, Exercise IX.4.1 (e)].

Using this conditional expectation we can equip B.H/ with a structure of a pre-Hilbert
C �-module over B0, taking the inner product as hS;T i WD  �1.S�T /. Following [34] we
will define quantum graphs on B as quantum relations (dropping for now the symmetry
and reflexivity conditions).

Definition 3.10. Let B � B.H/ be a finite dimensional C �-algebra equipped with a pos-
itive functional  such that mm� D Id. A quantum graph on .B;  / is a weak� closed
B0-bimodule V � B.H/. Using  �1 to define a B0-valued inner product, we can make V
into a pre-Hilbert B0-module.

Proposition 3.11. Let V � B.H/ be a quantum graph on .B;  /. Then V is a self-dual
Hilbert module, i.e. it is complete for the Hilbert module norm, and any right B0-linear
map T W V ! B0 is of the form T v D hw; vi for some w 2 V .

Proof. We will start by checking that B.H/ is a Hilbert module. Indeed, the inclusion
B0 � B.H/ is of finite index in the sense of [17, Definition 3.4], because the index is
equal to . �1/�1.1/ D  .1/ <1, but also in the sense of [1, Proposition 3.3], as from
the explicit formula for  �1 and the fact that we only have finitely many summands it
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immediately follows that for someK > 0we have x 6K �1.x/ for all positive x 2B.H/.
As a consequence, the operator norm is equivalent to the pre-Hilbert norm induced by �1

(because the other inequality k �1.x/k 6 kxk is clear), hence the latter is complete.
Clearly each closed submodule, such as V , is then also a Hilbert B0-module.

To prove self-duality, note that V is a dual Banach space, being a weak� closed sub-
space of B.H/; moreover, the B0-valued inner product is separately weak� continuous. It
follows from [5, Lemma 8.5.4] that V is self-dual. It implies that it admits an orthonor-
mal basis, all bounded right B0-modular maps on V are automatically adjointable and the
algebra of adjointable operators is a von Neumann algebra [26, Theorem 3.12, Proposi-
tions 3.4 and 3.10].

Remark 3.12. In all other examples appearing in this paper the existence of a predual
making the inner product separately weak� continuous will always be easy, so checking
self-duality will amount to proving completeness of the pre-Hilbert norm.

We have all the necessary ingredients to associate a projection in B˝ Bop to a B0-
bimodule V ; indeed, we can take an orthonormal basis of V and use it to construct a
B0-bimodular orthogonal projection onto V , which in turn we can represent using B˝Bop.
There is, however, a slight problem, since our B0-valued inner product is rather an analogue
of the GNS inner product, not the KMS inner product, so it would not interact nicely with
an additional symmetry condition; we need therefore a modular group of the operator
valued weight  �1. Haagerup proved that for any normal, faithful, semifinite weight  0

on B0 the restriction of the modular group of � WD  0 ı  �1 to B does not depend on  0

and moreover ��t D �
 
�t (see [15, Proposition 6.1 and Theorem 6.13]). Once we get to

the explicit correspondence between various definitions of quantum graphs, we will write
everything in terms of the modular group of  . However, for now we will denote the
modular group of the conditional expectation  �1 by � 

�1

t .
To an extent, one can define this modular group just by using the Hilbert module

structure of B.H/; the right multiplication operator by an element b 2 B is adjointable,
and as it is a left B.H/-modular map, it is also a right multiplication by some element Qb,
which has to be equal to ��i .b�/ by the KMS property.

This uniqueness also implies that we have a well defined action on bimodules. Indeed,
if we have two weights �1 WD  01 ı  

�1 and �2 WD  02 ı  
�1 on B.H/ then their respect-

ive modular groups are given using density matrices: ��1t .x/ D �
it
1 x�

�it
1 and ��2t .x/ D

�it2 x�
�it
2 . Since they agree onB , we have �it1 �

�it
2 2B0, hence �it1 D ut�

it
2 for some unitary

in B0. As V is a B0-bimodule, we have utV u�t D V , therefore ��1t .V / D �
�2
t .V /.

Suppose now that we have a finite orthonormal set X WD .x1; : : : ; xd / in a von Neu-
mann algebra M (equipped with a state ') with respect to the KMS inner product, which
consists of analytic elements. We would like to find a relation between orthogonal projec-
tions with respect to KMS and GNS inner products. The orthogonal projection onto V , the
span ofX , is given byP KMS

V .x/ WD
Pd
iD1 xi hxi ;xiKMSD

Pd
iD1 xi'..�� i4

.xi //
��
� i4
.x//.

This is equal to
Pd
iD1 xi h�� i4

.xi /; �� i4
.x/i. Thus �

� i4
.X/ is an orthonormal set with
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respect to the GNS inner product and we checked that

P KMS
V D � i

4
ı P GNS

�
� i4
.V / ı �� i4

:

Therefore, if in our setting of bimodules we can define the bimodule � 
�1

� i4

.V / and repres-

ent the orthogonal projection onto it as an element of B˝Bop then we can also apply the
conjugation by � 

�1

i
4

on the level of B˝Bop, where the modular group is well defined,

and in this way we will obtain a representation of the orthogonal projection onto V with
respect to the KMS inner product.

To check that one can define � 
�1

� i4

.V /, i.e. we can analytically extend the action

of � 
�1

t , recall the discussion preceding Proposition 3.8. We have B D
L
˛ Mn˛ and

any representation is essentially a direct sum of inflations of the standard representa-
tions of matrix algebras, i.e. H '

L
˛ Cn˛ ˝ K˛ . The commutant B0 is then equal toL

˛ 1˛ ˝ B.K˛/. Since the action of the modular group � 
�1

t .V / does not depend on
the choice of the weight on B0, we might as well assume that the weight on B.H/ is given
by the density

L
˛ �
�1
˛ ˝ IdK˛ , i.e. we take the trace on each B.K˛/. Then something

nontrivial happens only on the finite dimensional subspace B.Cn˛ ;Cnˇ /, thus we may
define �z.V / for arbitrary z 2 C.

Lemma 3.13. For any weak� closed B0-bimodule V � B.H/ and z 2 C we can define
another weak� closed B0-bimodule � 

�1

z .V /.

By [5, Corollary 8.5.8] any bounded module map between self-dual Hilbert modules
over von Neumann algebras is automatically weak� continuous, hence the orthogonal pro-
jection

P GNS

�
 �1

� i4

.V /
W B.H/! �

 �1

� i4

.V / � B.H/

is a normal B0-bimodular map, therefore of the form

P GNS

�
 �1

� i4

.V /
x D

X
k

bkxck

for some bk ; ck 2 B (see [28, Theorem 3.1] for a slightly more general result; there the von
Neumann algebraic result we need is attributed to Haagerup). In this case the orthogonal
projection onto V with respect to the KMS inner product would be given by

P KMS
V .x/ D

X
k

�
 �1

i
4

.bk/x�
 �1

i
4

.ck/:

Note that the map x 7!
P
k bkxck is represented by

P
k bk ˝ .�

 �1

i
2

.ck//
op, because the

right action needs to be twisted by the modular group so that it becomes a �-representation.
To wit, an element b ˝ cop 2 B˝Bop acts as x 7! bx�

 �1

� i2

.c/, when we use the GNS

inner product. However, if we use the KMS inner product, then b ˝ cop needs to acts as
x 7! �

 �1

i
4

.b/x�
 �1

� i4

.c/. Therefore
P
k bk ˝ .�

 �1

i
2

.ck//
op acting on B.H/ with respect
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the KMS inner product acts as

x 7!
X
k

�
 �1

i
4

.bk/x�
 �1

i
4

.ck/;

i.e. it is equal to P KMS
V . It means that P KMS

V and P GNS

�
 �1

� i4

.V /
are represented by the same

element of B˝Bop.

Proposition 3.14. The assignment ˆ W B˝ Bop
! B0 BB0.H/, where B0 BB0.H/ denotes

the algebra of bounded B0-bimodular maps, given by the extension of b ˝ cop 7! .x 7!

bx�
� i2
.c//, is an isomorphism of von Neumann algebras.

Proof. ˆ is a �-homomorphism, which is also surjective by the aforementioned repres-
entation of B0-bimodular maps. Let us check that it is injective. Suppose that (remember
that Id˝� 

�1

i
2

W B˝Bop
! B˝Bop is a bijection)

ˆ
�X

k

bk ˝ � i
2
.ck/

op
�
D 0;

i.e.
P
k bkxck D 0 for each x 2 B.H/. This holds in particular for any Hilbert–Schmidt

operator, identified with a vector � 2 H ˝ xH. The natural representation of B˝ Bop on
H˝ xH is clearly faithful, so injectivity follows.

Theorem 3.15. Let B�B.H/ be a finite dimensionalC �-algebra equipped with a positive
functional  such thatmm� D Id and let  �1 W B.H/! B0 be the corresponding normal,
faithful conditional expectation. There is a one-to-one correspondence between weak�

closed B0-bimodules V � B.H/ and projections P 2 B˝Bop obtained in the following
way. For V � B.H/ let P

�
 �1

� i4

.V /
be the B0-bimodular projection onto � 

�1

� i4

.V / and let

P 2 B˝Bop

be its representing projection. On the other hand for a projection P 2 B˝Bop let zP be
the corresponding B0-bimodular projection; then V D � 

�1

i
4

.Im. zP //.

Proof. The correspondence between projections in B˝Bop and B0-bimodular projections
on B.H/ was established in Proposition 3.14. The fact that for any weak� closed bimodule
we can define �z.V / for any z 2 C was covered in Lemma 3.13. The last ingredient is
the correspondence between bimodules and bimodular projections, which follows from
self-duality (see Proposition 3.11).

Remark 3.16. In Section 3.4 we will present a much less abstract version of this corres-
pondence.

3.3. Infinite quantum graphs

In order to work with infinite discrete quantum groups, we need to deal with quantum
graphs defined on an infinite direct sum of matrix algebras. The theory of quantum rela-
tions developed by Weaver works equally well for general von Neumann algebras and if
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M � B.H/ then a quantum relation over M is a weak� closed M0-bimodule inside B.H/. We
will assume that our algebra is of the form B D `1 �

L
˛ Mn˛ and it is equipped with a

weight  .x/ WD
L
˛ Tr.��1˛ /Tr.�˛x˛/; such a weight satisfiesmm� D Id, e.g. if we view

it as a map on L2.B/, but it should be noted that m� is not a well-defined map from B
to B x̋ B. In this case Weaver’s quantum relations correspond to projections in B x̋ Bop,
which in turn will be in bijection with suitably defined quantum adjacency matrices. Later
in this section we will describe a certain subclass of quantum graphs that is more suitable
for describing quantum Cayley graphs.

Definition 3.17. Let I be a countable index set and let B WD `1 �
L
˛2I Mn˛ , where

n˛ 2 N. Let c00.B/ be the algebraic direct sum c00 �
L
˛ Mn˛ , which can be more

abstractly defined as the subalgebra generated by  -finite projections, i.e. projections p
such that  .p/ < 1. A completely positive map A W c00.B/ ! B is called a quantum
adjacency matrix if for each ˛ 2 I it satisfies

1

Tr.��1˛ /

X
l

A.e˛il�
�1
˛ /A.e˛lj / D A.e

˛
ij /:

The corresponding projection in B x̋ Bop is given by

P WD
X
˛

1

Tr.��1˛ /

X
i;j

A
�
�
� 14
˛ e˛ij�

� 14
˛

�
˝ �
� 14
˛ e˛ji�

� 14
˛ :

Remark 3.18. Note that in the definition of P only the sum over ˛ is infinite but the sum-
mands are projections lying in disjoint blocks, so it clearly converges in the weak/strong
topology.

Proposition 3.19. Let P 2 B x̋ Bop. Then we can define a quantum adjacency matrix
A W c00.B/! B via

A.e˛ij / WD .Id˝ /
�
P #
�
1˝ �

� 12
˛ e˛ij�

1
2
˛

��
:

Proof. Note that P #.1˝ �
� 12
˛ e˛ij�

1
2
˛ / 2 B˝Mn˛ , so slicing with  is certainly possible.

Because there are no analytical difficulties, one can check that A is a quantum adjacency
matrix exactly the same as in the finite dimensional case.

The next result has been proved by Weaver in the finite dimensional case [34, Propos-
ition 2.23].

Proposition 3.20. There is a one-to-one correspondence between projectionsP 2B x̋ Bop

and weak� closed B0-bimodules V � B.H/.

Proof. Let .1˛/˛ be the minimal central projections of B. Then Vˇ˛ WD 1ˇV 1˛ is a
B0-bimodule, but the only nontrivial action comes from Mnˇ ˝M

op
n˛ , hence finding the

projection onto Vˇ˛ is done exactly the same as in the finite dimensional case. Moreover V
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consists precisely of those bounded operators T 2 B.H/ such that 1ˇT 1˛ 2 Vˇ˛ , which
is a consequence of the condition that V is weak� closed. Indeed, if 1ˇT 1˛ 2 Vˇ˛ then
Tn WD .

Pn
˛D1 1˛/T .

Pn
˛D1 1˛/ 2 V and Tn converges to T in the weak� topology. To

summarise, any weak� closed B0-bimodule can be equivalently described by the collec-
tion .Vˇ˛/ˇ;˛ . Each Vˇ˛ corresponds to a projection Pˇ˛ 2 Mnˇ ˝M

op
n˛ , and such a

collection .Pˇ˛/ˇ;˛ is exactly a projection P 2 B x̋ Bop.

The established correspondence is very satisfactory because it includes all quantum
relations on B but the quantum adjacency matrix has poor analytic and algebraic proper-
ties, e.g. it cannot be iterated because the codomain does not match the domain. There is a
natural subclass of quantum graphs that is better behaved and should include all quantum
Cayley graphs. Classically, one constructs Cayley graphs from finite generating sets, hence
the resulting graphs have bounded degree; this is the class that we would like to generalise.

Lemma 3.21. Let AD .Aij /i;j2N be a ¹0; 1º matrix. It defines a normal completely posit-
ive mapA W `1!`1 if and only if it is of bounded degree, i.e. supi j¹j 2N W aij D1ºj<1.

Proof. If A defines a map from `1 to itself then we look at A1. It is clear that

.A1/i D
X
j

aij D
ˇ̌
¹j W aij D 1º

ˇ̌
;

hence supi j¹j W aij D 1ºj <1.
Suppose now that A is of bounded degree. Then the transpose AT satisfies

sup
j

ˇ̌
¹i 2 N W aij D 1º

ˇ̌
<1:

It means that supi kA
T eik1 <1. Since the unit vectors ei are extreme points of the unit

ball of `1 it follows that AT extends to a bounded linear map on `1. By dualizing we get
that A defines a weak� continuous (i.e. normal) map on `1 and (complete) positivity is
clear.

Definition 3.22. A normal, completely positive map A W B! B is called a quantum adja-
cency matrix of bounded degree if for each ˛ 2 I it satisfies

1

Tr.��1˛ /

X
l

A.e˛il�
�1
˛ /A.e˛lj / D A.e

˛
ij /:

Proposition 3.23. Quantum adjacency matrices of bounded degreeA WB!B correspond
precisely to projectionsP 2B x̋ Bop that are integrable with respect to the second variable,
i.e. satisfy .Id˝ op/P 2 B.

Proof. If we start from A, we can use the formula

P WD
X
˛

1

Tr.��1˛ /

X
i;j

A
�
�
� 14
˛ e˛ij�

� 14
˛

�
˝ .�

� 14
˛ e˛ji�

� 14
˛ /op

to conclude that .Id˝ op/P D
P
˛ A.1˛/ D A1, because A was assumed to be normal.
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Assume now thatD WD .Id˝ op/.P / 2 B. Recall that in the finite dimensional caseA
can be recovered from P via the formula Ax WD .Id˝ /.P #.1˝ � i

2
.x/// and we just

have to check that this formula still makes sense. It suffices to show that

.' ˝  /
�
P #
�
1˝ � i

2
.x/
��
<1

for any normal state ' and a positive operator x 2 B. To this end, we will denote by xm
the projection of x onto the finite direct sum

Lm
˛D1Mn˛ and show that

sup
m
.' ˝  /

�
P #
�
1˝ � i

2
.xm/

��
is finite; zm will be the central projection corresponding to

Lm
˛D1Mn˛ . Because the right

leg of our tensor product is now finite dimensional, we can write Pm WD P.1˝ zm/ 6 P

as a finite sum Pm WD
P
i Pi ˝Q

op
i and our formula becomes

P
i '.Pi / .� i

2
.xm/Qi /.

But Pm is an orthogonal projection, so we actually get
P
i;j '.P

�
i Pj / .� i2

.xm/QjQ
�
i /.

By the KMS property of  we get

 
�
� i
2
.xm/QjQ

�
i

�
D  

��
�
� i2
.Qi /

��
xm�� i2

.Qj /
�
:

It means that we apply '˝ to the positive operatorR�.1˝ xm/R, whereRD
P
i Pi ˝

�
� i2
.Qi /; it is bounded above by kxmk.'˝ /.R�R/. Note that (using the KMS property

once again)

.Id˝ /.R�R/ D
X
i;j

P �i Pj 
�
� i
2
.Q�i /�� i2

.Qj /
�

D

X
i;j

P �i Pj .QjQ
�
i / D .Id˝ 

op/.Pm/;

and this is bounded by D. It follows that '.A.xm// 6 kxmk'.D/, thus we can define A
for any positive x; A is a well-defined normal, completely positive map on B.

There is another interesting class of infinite graphs that we can easily generalise to
the quantum setting, namely the locally finite graphs. Classically, these are graphs whose
adjacency matrix A has finitely supported rows. The rows of the adjacency matrix are
images of the standard basis vectors under the transpose AT , i.e. locally finite graphs are
exactly the ones, for which the transpose of the adjacency matrix preserves the subspaces
of finitely supported functions. Recall from Proposition 3.7 that the transpose in the con-
text of quantum adjacency matrices is exactly the KMS adjoint.

Definition 3.24. We say that the quantum graph defined by a quantum adjacency matrix
A W c00.B/! B is locally finite if A�KMS.c00.B// � c00.B/ or, equivalently, the corres-
ponding projection satisfies x � P 2 c00.B/˝ c00.Bop/ for any x 2 c00.B/.

We will now check that quantum graphs of bounded degree are locally finite.

Proposition 3.25. If A W B! B is of bounded degree then it is locally finite.
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Proof. Let P 2 B x̋ Bop be the corresponding projection. Recall that P D .Pˇ˛/ˇ;˛ ,
where Pˇ˛ is a projection in Mnˇ ˝ M

op
n˛ . Define Pˇ WD

P
˛ Pˇ˛ . Because A is of

bounded degree, we clearly have . ˝  op/.Pˇ / <1. It is easy to check that the weight
 ˝  op on B˝Bop satisfies mm� D Id. Therefore we get

. ˝  op/.Pˇ / >
ˇ̌
¹˛ W Pˇ˛ ¤ 0º

ˇ̌
by Lemma 2.5. It follows that for each ˇ there is only a finite number of ˛’s such that
Pˇ˛ ¤ 0, which means that A is locally finite.

Before we describe the bimodules that give rise to quantum graphs of bounded degree,
note that from the formula (3.4) (the formula is stated in the infinite dimensional case) it
follows that the degree matrix D D

P
i ViV

�
i , where Vi is an orthonormal basis of the

B0-module � 
�1

i
4

.V / with respect to the inner product induced by  �1. It is standard to

check that the expression
P
i ViV

�
i does not depend on the choice of the basis. We are

now ready to state the first result.

Proposition 3.26. If the B0-bimodule V � B.H/ defines a quantum graph of bounded
degree then � 

�1

i
4

.V / is a self-dual Hilbert module over B0.

Proof. We work in a more general setup where E W M! N is a normal conditional expect-
ation and V �M is a weak� closed right N-module, so B.H/ is replaced by M, B0 by N, �1

by E, and � 
�1

i
4

by V . We will follow the proof of [1, Théorème 3.5]. We want to show

that if there is an orthonormal family .Vj /j � V such that .Vj /j is an orthonormal basis
inside the self-dual completion VE of V such that

P
j VjV

�
j converges weak� in M then V

is self-dual. It is sufficient to check that V is complete with respect to the norm induced
by the N-valued inner product, because self-duality will follow, as V admits a predual that
makes the inner product separately weak� continuous. This is equivalent to the existence
of a constant K > 0 such that KkE.v�v/k > kvk2 for all v 2 V . Let VE ˝N M denote
the self-dual M-module, obtained as the completion of the relative tensor product. Then
� WD

P
j Vj ˝ V

�
j is a well defined element of VE ˝N M by [1, Conséquences 1.8 (vi)].

We now define a completely positive map F from BN.VE / to M via F.T / WD h�; T � �i.
For any v;w 2 V we have

F
�
jvihwj

�
D

X
j;k

˝
V �j ; hVj ; viNhw; VkiNV

�
k

˛
M D

X
j;k

Vj hVj ; viNhw; VkiNV
�
k ;

which is equal to vw� as .Vj /j was chosen to be an orthonormal basis. Since kF k6 k�k2,
it follows that

kvk2 D
F.jvihvj/ 6 k�k2khv; vik D k�k2

E.v�v/
:

If we want to specify a class of B0-bimodules that describe quantum graphs of bounded
degree, then we need a property that does not depend on the choice of the embedding
B � B.H/. This way we arrive at the following equivalence.
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Proposition 3.27. A quantum graph is of bounded degree if and only if for any faith-
ful representation B � B.H/ the corresponding bimodule � 

�1

i
4

.V / is a self-dual Hilbert
module over B0.

Proof. We proved one implication in the previous proposition. Once again we work in a
greater generality. Namely we assume that we have a faithful normal conditional expecta-
tion E W M! N and V � M is a weak� closed self-dual N-module. Taking advantage of the
independence of the representation, we assume moreover that V x̋ B.`2/ (weak� closure
inside M x̋ B.`2/) is a self-dual module over N x̋ B.`2/. In the original formulation the
module V x̋ B.`2/ will correspond to the inflation of the representation of B, i.e. taking
B � B.H ˝ `2/ instead of B � B.H/, hence will be self-dual by the assumption of the
proposition.

Note that V has two natural operator space structures, one inherited from M, and the
other one coming from the structure of an N-module. The assumption that V is self-dual,
hence in particular complete, implies that the two Banach space structures are isomorphic,
as the operator norm clearly dominates the Hilbert module norm, hence one can invoke
the open mapping theorem. Our assumption that V x̋ B.`2/ is also self-dual implies that
even the operator space structures are isomorphic.

Let .v1; : : : ; vn/ be an n-tuple in V and view it as the first row of a matrix in Mn.V /.
The square of the norm of this matrix, when we use the Hilbert module operator space
structure, is equal to the norm of the matrix .E.v�i vj // inMn.N/, which is clearly the same
as the norm in Mn.M/. This can be computed using the following formula (for positive
matrices):.mij /Mn.M/

D sup
°X a�i mijaj


M W ai 2 M;

X a�i ai

M 6 1

±
:

This formula is proved using the fact that the C �-norm onMn.M/ is the same as the oper-
ator norm, whereMn.M/ acts on the Hilbert M-module Mn. It follows from the equivalence
of the operator space structures that for some K > 0 we have the inequalityX

i;j

a�i v
�
i vjaj

 6 K
X
i;j

a�i E.v�i vj /aj
:

Once again we will follow the proof of [1, Théorème 3.5]. The estimate above shows that
we can define a bounded map � W V ˝N M! M given by

P
i vi ˝mi 7!

P
i vimi . Since

it is right M-linear and V ˝N M is self-dual, � is given by an inner product with a vector
� 2 V ˝N M. Using �, we can define a normal, completely positive map F W BN.V /! M
via F.T / WD h�; T � �i. Let now .Xk/k be an orthonormal basis of V and define Vn to
be the self-dual submodule of V generated by X1; : : : ; Xn. The corresponding map �n is
clearly represented by the vector �n WD

Pn
kD1Xk ˝ X

�
k

. Therefore one can compute the
value of Fn on a rank one operator jvihwj 2 BN.Vn/ as

Fn
�
jvihwj

�
D

nX
j;kD1

Xj hXj ; wihw;XkiX
�
k D vw

�:
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As IdVnD
Pn
kD1 jXkihXkj, we getFn.Id/D

Pn
kD1XkX

�
k

, therefore k
Pn
kD1XkX

�
k
k6K.

It follows that the partial sums
Pn
kD1 XkX

�
k

form an increasing and bounded sequence,
hence the series

P1
kD1XkX

�
k

converges strongly to an operator D with norm at most K,
which is precisely the bounded degree condition.

Remark 3.28. It is not clear whether one can simply assume that one of the bimod-
ules defining the quantum graph is self-dual, i.e. whether the equivalence of the operator
space structures follows automatically from the Banach space equivalence. For the index
of a conditional expectation this is exactly the gap between [1, Proposition 3.3] and [1,
Théorème 3.5]. However, this problem has been resolved in [13], where the authors proved
that if for a conditional expectation E W A! B there exists a constant K > 0 such that
the map KE � Id is positive then there also exists a constant L > 0 such that LE � Id is
completely positive. Unfortunately the proof relies heavily on the C �-algebraic structure
and it is unclear whether an analogous result holds in our situation.

3.4. Explicit correspondence between the three approaches

From now on we assume that B ' `1 �
L
˛Mn˛ is represented on H WD

L
˛ Cn˛ . In

this case the commutant of B is equal to the center of B. Therefore each weak� closed
B0-bimodule is exactly a collection of subspaces V˛ˇ � B.Cn˛ ;Cnˇ /. The conditional
expectation  �1 W B.H/! B0 is given by

 �1.x/ D
X
˛

Tr.��1˛ 1˛x1˛/

Tr.��1˛ /
1˛;

where 1˛ 2 B0 is the minimal central projection corresponding to the summand Mn˛ . For
each pair .˛; ˇ/ let .X˛ˇi /

n˛ˇ
iD1 be an orthonormal basis of V˛ˇ with respect to the KMS

inner product on B.H/ (where we use the density
L
˛

1

Tr.��1˛ /
��1˛ to define a weight on

B.H/), i.e.
1q

Tr.��1˛ /Tr.��1
ˇ
/

Tr
�
.X

˛ˇ
i /��

� 12
ˇ
X
˛ˇ
j �

� 12
˛

�
D ıij :

Orthogonal projection from B.Cn˛ ;Cnˇ / onto V˛ˇ will be given by

PV˛ˇ .x/ D
1q

Tr.��1˛ /Tr.��1
ˇ
/

X
i

X
˛ˇ
i Tr

�
.X

˛ˇ
i /��

� 12
ˇ
x�
� 12
˛

�
: (3.2)

We will use the notation e˛ˇ
kl

to denote the rank one operator je˛
k
ihe

ˇ

l
j to rewrite it further

as
1q

Tr.��1˛ /Tr.��1
ˇ
/

X
i;k;l

X
˛ˇ
i e

˛ˇ

kl
�
� 12
ˇ
x�
� 12
˛ .X

˛ˇ
i /�e

ˇ˛

lk
:

Recall from Proposition 3.14 (and the discussion preceding it) that to find the representing
element in Mnˇ ˝M

op
n˛ we need to twist by the modular group.
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Proposition 3.29. Let .X˛ˇi /
n˛ˇ
iD1 be an orthonormal basis of V˛ˇ � B.Cn˛ ;Cnˇ / with

respect to the KMS inner product induced by  �1. Then the corresponding projection
Pˇ˛ 2Mnˇ ˝M

op
n˛ is given by

1q
Tr.��1˛ /Tr.��1

ˇ
/

X
i;k;l

�
� 14
ˇ
X
˛ˇ
i e

˛ˇ

kl
�
� 14
ˇ
˝
�
�
� 14
˛ .X

˛ˇ
i /�e

ˇ˛

lk
�
� 14
˛

�op
: (3.3)

In particular the flip �.Pˇ˛/ 2 Mn˛ ˝M
op
nˇ gives the orthogonal projection onto V �

˛ˇ
�

B.Cnˇ ;Cn˛ /.

Proof. The orthonormal set ..X˛ˇi /�/
n˛ˇ
iD1 corresponds to the flip �.Pˇ˛/. It is an orthonor-

mal basis of V �
˛ˇ

, because of the property hX; Y iKMS D hY
�; X�iKMS of the KMS inner

product.

To find the explicit formula for the associated adjacency matrix, we will rewrite the
formula (3.2) in a different manner

PV˛ˇ .x/ D
1q

Tr.��1˛ /Tr.��1
ˇ
/

X
i;k;l

X
˛ˇ
i e˛kl .X

˛ˇ
i /��

� 12
ˇ
x�
� 12
˛ e˛lk :

Therefore the corresponding projection in B x̋ Bop will be given by

Pˇ˛ D
1q

Tr.��1˛ /Tr.��1
ˇ
/

X
i;k;l

�
� 14
ˇ
X
˛ˇ
i e˛kl .X

˛ˇ
i /��

� 14
ˇ
˝
�
�
� 14
˛ e˛lk�

� 14
˛

�op
:

If we compare it with (3.1), we immediately obtain the following statement.

Proposition 3.30. Let .X˛ˇi /
n˛ˇ
iD1 be an orthonormal basis of V˛ˇ � B.Cn˛ ;Cnˇ / with

respect to the KMS inner product induced by  �1. Then the corresponding quantum adja-
cency matrix A W c00.B/! B is given by

A.e˛kl / D
X
ˇ

s
Tr.��1˛ /

Tr.��1
ˇ
/

X
i

�
� 14
ˇ
X
˛ˇ
i �

1
4
˛ e

˛
kl�

1
4
˛ .X

˛ˇ
i /��

� 14
ˇ
: (3.4)

Remark 3.31. We could in principle get rid of the scalars Tr.��1˛ / just by normalising
our densities so that these numbers are equal to 1. However, in the context of quantum
groups it is more common to choose the normalisation Tr.��1˛ / D Tr.�˛/, so we decided
to include a more general discussion.

4. Covariant quantum adjacency matrices

Let G be a compact quantum group and let � be its discrete dual. We want to find quantum
adjacency matrices on `1.�/ ' `1 �

L
˛2Irr G Mn˛ that are covariant with respect to

the right action of � on itself. Such an operator T commutes with all right convolution
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operators, so T .x/ D T .ı" � x/ D T .ı"/ � x, where ı" is the unit with respect to the
convolution, namely the unit of the block corresponding to the trivial representation of G.
It follows that it is given by a left convolution1 and we just need to figure out, which ones
give rise to quantum adjacency matrices. Before that we need to gather some information
about convolutions on quantum groups.

4.1. Fourier transform on compact/discrete quantum groups

Here we collect some conventions about the Fourier transform on compact and discrete
quantum groups. We will always denote by G a compact quantum group and by � its
discrete dual.

First, let ' be a bounded functional on L1.G/. We will define its Fourier transform
to be an element y' 2 `1.�/ ' `1 �

L
˛2Irr.G/ Mn˛ such that

y'.˛/ WD .Id˝'/
�
.u˛/�

�
:

We define the convolution of two functionals as

'1 � '2 WD .'1 ˝ '2/ ı�:

With this convention it is easy to check that .'1 � '2/O.�/ D b'2.�/b'1.�/.
Recall (see [25, Sections 1.3 and 1.4]) that for any ˛ 2 Irr.G/ there is a unique positive

matrix �˛ 2 Mn˛ such that Tr.�˛/ D Tr.��1˛ / DW dimq.˛/ and it implements an equival-
ence between the representation ˛ and its double contragredient. These matrices can be
used to describe the left and right Haar measures on the discrete dual �:chR.x/ DX

˛

Tr.�˛/Tr.�˛x˛/;

chL.x/ DX
˛

Tr.�˛/Tr.��1˛ x˛/:

Both chR and chL satisfy mm� D Id by Proposition 2.3.
To define the Fourier transform and convolution of elements ofL1.G/we will always

associate to such an element x 2 L1.G/ a linear functional h.�x/, where h is the Haar
state on G. For further use, we will compute now the Fourier transform of an element
x WD

Pn˛
i;jD1 xiju

˛
ij belonging to the span of matrix elements of a fixed irreducible rep-

resentation ˛.

Lemma 4.1. Let x WD
Pn˛
i;jD1 xiju

˛
ij . We have

Ox.�/ D ı˛�
1

dimq.˛/
XT��1˛ ;

where .X/ij D xij .

1This sweeps under the rug some potential analytical difficulties but it only serves as a motivation here,
so we feel that there is no need to delve deeper into this issue.
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Proof. We have Ox.�/ D
P
i;j;k;l xijh..u

�
lk
/�u˛ij /ekl . Recall the orthogonality relations

h
�
.u�lk/

�u˛ij
�
D ı˛�

1

dimq.˛/
ıjk.�

�1
˛ /il ;

from which it follows that

Ox.�/ D
ı˛�

dimq.˛/

X
i;j;l

xij .�
�1
˛ /ilejl D

ı˛�

dimq.˛/
XT��1˛ :

For a single matrix element we get the formula

.u˛ij / O.�/ D
ı�˛

dimq.˛/
e˛ji�

�1
˛ :

Given Proposition 2.3, it suggests that we will be working with the Haar measure chR on �.

Lemma 4.2. The Fourier transform extends to a unitary between L2.G/ and `2.�/,
where `2.�/ is defined using the right Haar measure on �.

Proof. Using orthogonality relations and the previous lemma one checks that

hu˛ij ; u
�
kli D h

cu˛ij ;bu�kli:
Therefore the Fourier transform is isometric on Pol.G/, thus it extends to an isometry on
L2.G/, which is also surjective, as the image is clearly dense.

We will also need the fact that the inverse Fourier transform maps convolution into
the regular product. We will redefine the Fourier transform using the right multiplicative
unitary W , defined via W.a ˝ b/ D �.a/.1 ˝ b/ on L1.G/ ˝ L1.G/ and extended
to L2.G/˝ L2.G/ by continuity; it corresponds to the right regular representation of G
and implements the multiplication via W.x ˝ 1/W � D �.x/. It can be shown that W 2
`1.�/ x̋L1.G/. It also satisfies the pentagonal equationW23W12 DW12W13W23, which
amounts to coassociativity of the comultiplication. We can write it more explicitly asW DP
˛2Irr.G/

Pn˛
i;j e

˛
ij ˝ u

˛
ij , where e˛ij acts on L2.G/ via right convolution by its inverse

Fourier transform. Because of this formula, we can also compute the Fourier transform
as y' D .Id˝'/.W �/. We will now use the multiplicative unitary to define the Fourier
transform on �.

Definition 4.3. Let  be a bounded functional on `1.�/ then its Fourier transform will
be defined by y WD . ˝ Id/.W / 2 L1.G/; the fact that we use the same notation for
Fourier transforms going both ways should not cause any confusion. For any x 2 c00.�/
we can define a functional on `1.�/ by chR.�x/ and define the Fourier transform of x
using this embedding.

Lemma 4.4. We have 1e˛ji��1˛ D dimq.˛/u
˛
ij and if  1;  2 2 .`1.�//� then 2 1 �  2 Dc 2c 1.
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Proof. We have
1e˛ji��1˛ D

X
�;k;l

chR.e�kle˛ji��1˛ /u˛kl ;

so � D ˛ and l D j . We can further rewrite our formula asX
k

Tr.�˛/Tr.�˛e˛ki�
�1
˛ /u˛kj D Tr.�˛/u˛ij D dimq.˛/u

˛
ij :

In particular, the Fourier transform on � is inverse to the Fourier transform on G (e.g. on
the level of L2-spaces).

Let us check that the convolution is mapped into the usual product, using thepentagonal
equation. To this end, let  1 and  2 be two functionals on `1.�/. We have 2 1 �  2 D
. 1 �  2 ˝ Id/.W /. By definition of the convolution, it can be rewritten as

. 1 ˝  2 ˝ Id/.�� ˝ Id/.W /:

The comultiplication in � is defined in such a way that .�� ˝ Id/.W /DW23W13. There-
fore we have to compute . 1˝ 2˝ Id/.W23W13/. It is clear that  2 acts on the partW23
and  1 acts on W13, hence we get c 2c 1 as the result.

We will now investigate the behaviour of the Fourier transform under the antipode.
Recall that on any locally compact quantum group the antipode S admits a polar decom-
position S D �

� i2
ı R, where .�t /t2R is the so-called scaling group (hence �

� i2
is only

defined on analytic elements) and R is the unitary antipode, which is an involutive �-
antiautomorphism; we also have chR ıR DchL.

Lemma 4.5 ([20, Propositions 6.8 and 7.9]). Let � be a locally compact quantum group.
Let .�t /t2R and .�

0

t /t2R be the modular groups of the right and left Haar measures , and
let .�t /t2R be the scaling group. Then the following commutation relations hold:

(i) � ı �t D .�t ˝ ��t / ı�;

(ii) � ı �
0

t D .�t ˝ �
0

t / ı�;

(iii) � ı �t D .�t ˝ �t / ı�;

(iv) � ı �t D .�
0

t ˝ ��t / ı�.

If � is discrete then �
0

t D ��t , .�t ˝ �t / ı� D � ı �t , and �t D ��t .

Proof. We will only explain how to get the additional statements about discrete quantum
groups. The fact that � 0t D ��t follows immediately from the explicit formulas for the
Haar measures. The modular element of a quantum group is relating the left and right
Haar measures and in the discrete case it is equal to ı WD

L
˛2Irr.G/ �

2
˛ . It always satisfies

�.ı/ D ı ı ı, which implies that � ı �t D .�t ˝ �t / ı�. Now �t D ��t follows easily
from the equalities � ı �t D .��t ˝ ��t / ı � and .��t ˝ ��t / ı � D � ı ��t , as they
imply � ı �t D � ı ��t and � is injective.
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Lemma 4.6 ([16, Lemma 3.3]). Let  2 `1.�/� be such that  #.x/ WD  �.S�1.x// D

 .S.x�// is also bounded. Then . y /� D c #.

Proof. See the proof of [16, Lemma 3.3], but note that our convention for Fourier trans-
form uses the adjoint of the multiplicative unitary, that is why we need to work with S�1

rather than S . We also used the formula .S�1.x//� D S.x�/.

We will now see, what happens when the functional comes from an element of c00.�/.

Lemma 4.7. Let x 2 c00.�/ and  WD chR.�x/. Then  # D chR.�S.x�/��2/.
Proof. We have to compute

 #.y/ D chR�S.y�/�x� D chR�x�S.y�/�� D chR�x�S�1.y/�:
Since S D �

� i2
R and �

� i2
D � i

2
, we get

chR�R��� i2 .y/R.x�/��:
Since chR ıR DchL and chL.y/ D chR.��2y/, we obtainchR���2�� i2 .y/R.x�/�:
Using the invariance under the modular group, and the fact that ��2 is in the centraliser,
we arrive at chR�y� i

2

�
R.x�/��2

��
:

As � i
2
R.x�/ D S.x�/, we get our answer:

 #.y/ D chR�yS.x�/��2�:
4.2. Quantum adjacency matrices as convolution operators

We work with the von Neumann algebra `1.�/ equipped with the weight chR. We will
now assume that our adjacency matrix is given by a convolution against an element P ,
where we view it as a functional chR.�P /. To avoid technical issues, we will only convolve
against elements belonging to the algebraic direct sum of matrix algebras. This is also
justified by the fact that P � 1DfhR.P /1 and if this number is finite and P is a projection
(see Proposition 4.9), then P 2 c00.�/ by Lemma 2.5. Suppose then that our quantum
adjacency matrix is given by the following formula:

Ax WD P � x:

We will prove a general formula for a Schur product of two convolution operators.

Proposition 4.8. Let P1; P2 2 c00.�/ and define A1.x/ WD P1 � x, A2.x/ WD P2 � x.
Then A WD m.A1 ˝ A2/m� is given by Ax WD P1P2 � x.
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Proof. In this proof we will use the notation F for the Fourier transform on G.
The formula for A is (for each ˛ 2 Irr G):

1

dimq.˛/

X
k

A1.e
˛
ik�
�1
˛ /A2.e

˛
kj�
�1
˛ / D A.e˛ij�

�1
˛ /:

By Lemma 4.1 we can write e˛ij�
�1
˛ D dimq.˛/F .u

˛
ji /, so we wantX

k

A1
�
F .u˛ki /

�
A2
�
F .u˛jk/

�
D A

�
F .u˛ji /

�
:

As the Fourier transform switches convolution to multiplication (and reverses the order),
we have Ak ıF D F ıcAk , where cAky WD ycPk , with cPk being the inverse Fourier trans-
form of Pk . We can therefore rewrite our condition further asX

k

F .u˛ki
cP1/F .u˛jkcP2/ D F .u˛ji

yP /;

and using once again the properties of the Fourier transform we finally arrive atX
k

u˛jk
cP2 � u˛kicP1 D u˛ji yP :

As the span of uij ’s is dense, we can rewrite this equation as (using Sweedler’s notation)

x.1/cP2 � x.2/cP1 D x yP :
For x D 1 we get cP2 �cP1 D yP , i.e. P D P1P2. This condition turns out to be sufficient
as well. Indeed, we can compute x.1/cP2 � x.2/cP1 acting on an element b as

.x.1/cP2 � x.2/cP1/.b/ D �h.�x.1/cP2/˝ h.�x.2/cP1/��.b/
D .h˝ h/

�
�.b/.x.1/ ˝ x.2//.cP2 ˝cP1/�

D .h˝ h/
�
�.b/�.x/.cP2 ˝cP1/�

D .h˝ h/
�
�.bx/.cP2 ˝cP1/�

D .cP2 �cP1/.bx/ D yP .bx/;
where the last expression is clearly equal to x yP acting on b.

Proposition 4.9. The map A W `1.�/! `1.�/ given by Ax WD P � x with P 2 c00.�/
is a quantum Schur idempotent iff P 2 D P is an idempotent. Moreover, it is completely
positive iff P is a projection.

Proof. We have already showed the first part. For the second part, we will check that
.P � x/� D P � � x�. Indeed, let P � x D T , which means that for any y 2 `1.�/ we
have chR.y.1/P /chR.y.2/x/ D chR.yT /. We then have

chR.yT �/ D chR.Ty�/ D chR��i .y�/T �:
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We can now use the defining property of T and the fact that on a discrete quantum group
the comultiplication is a �-homomorphism that intertwines the modular group and arrive
at chR��i .y�/T � D chR��i .y�.1//P �chR��i .y�.2//x�:
After applying the complex conjugation we obtain

chR��i .y�/T � D chR�P ���i .y.1//�chR�x���i .y.2//�;
which is equal to chR.y.1/P �/chR.y.2/x�/ D .P � � x�/.y/;
thus .P � x/� D P � � x�, hence A is �-preserving iff P D P �, and, as we already men-
tioned in Remark 3.2, complete positivity is equivalent to being �-preserving for quantum
Schur idempotents.

We will now characterise which covariant adjacency matrices are GNS-symmetric and
which are KMS-symmetric.

Theorem 4.10. Let P D P � 2 c00.�/. Ax WD P � x is GNS-symmetric iff P D S.P /

and A is KMS-symmetric iff P D R.P /.

Proof. We will view the convolution operator as a multiplication operator on the dual
compact quantum group, using the Fourier transform. After taking the Fourier transform
A will become a right multiplication operator by yP . The adjoint of a right multiplica-
tion operator by x is the right multiplication by �G

�i .x
�/, as can be checked using the

KMS property. Therefore the GNS-symmetry amounts to . yP /� D �i . yP /. We know from
Lemma 4.7 that . yP /� is the Fourier transform of S.P �/��2. Let us now check that �z. yP /
is the Fourier transform of �izP�iz . Indeed, it is sufficient to check the formula when
yP Du˛

kl
, and we can moreover assume that we have chosen a basis such that �˛ is diagonal

with diagonal entries �˛;k . Then �z.u˛kl / D �
iz
˛;k
�iz
˛;l
u˛
kl

, which is the Fourier transform
of 1

Tr.��1˛ /
�iz
˛;l
e˛
lk
�iz
˛;k
��1˛ , proving the formula. We therefore arrive at the equality

S.P �/��2 D ��1P��1;

i.e. S.P �/D �i .P /. Recall that S2 D ��i D �i , hence S.P �/D S2.P /, i.e. S.P /D P �.
Since by assumption P D P �, we obtain S.P / D P .

For KMS-symmetry, note that it is equivalent to the GNS-symmetry of the map

zA.x/ WD �
� i4
A
�
� i
4
.x/
�
:

It is not difficult to check that this map is given by zAx D �
� i4
.P / � x, using the fact

that the comultiplication intertwines the modular group in our case. We therefore get
S.�
� i4
.P //D .�

� i4
.P //� D � i

4
.P �/. This leads to S�

� i2
.P /D P �, but S�

� i2
D S� i

2
D

R, so R.P / D P �. By assumption P D P �, thus R.P / D P .
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5. Quantum Cayley graphs
Classically the Cayley graph is defined using a generating set of our group. In the quantum
case we will replace a finite subset of a group with a projection P 2 c00.�/. Typically
Cayley graphs are undirected, so we will also assume that P is invariant under the unitary
antipode R. Moreover, a generating set should not contain the unit, which will easily
translate to the fact that the counit " applied to P should be equal to zero; less abstractly,
the component of P corresponding to the trivial representation of G should be equal to 0.
The only nontrivial condition is what it means for such a projection to be generating. We
will denote by ŒT � the range projection of an operator T .

Definition 5.1. Let � be a discrete quantum group and let P 2 c00.�/ be a projection such
that R.P / D P and ".P / D 0. We say that P is generating if

W
nŒP

�n� D 1 2 `1.�/.
Then we define the quantum Cayley graph of � via the adjacency matrix

Ax WD P � x:

These quantum graphs are always regular with D WD A1 D chR.P /1.

Remark 5.2. The condition ".P / D 0 is equivalent to the fact that the resulting quantum
graph has no loops, i.e.m.A˝ Id/m� D 0. Indeed Id is a convolution operator against ı",
so m.A˝ Id/m� is a convolution operator against Pı" D ".P /ı" by Proposition 4.8.

There is a natural special case, where we choose a central generating projection, which
leads to a more familiar notion.

Proposition 5.3. Let z 2 c00.�/ be a central projection, i.e. it is a sum of minimal central
projections corresponding to certain irreducible representations of G: z D

Ln
kD1 1˛k .

Let S D ¹˛1; : : : ; ˛nº. Then z D R.z/ iff S D xS , i.e. it is closed under taking conjugate
representations. The condition ".z/ D 0 is equivalent to the fact that S does not contain
the trivial representation. Moreover, z is generating iff the set S is a generating set of
irreducible representations of G.

Proof. Only the statement about the criterion for being a generating set requires proof.
Let 1n˛ be a minimal central projection. By Lemma 4.1 we have that 21n˛��1˛ DTr.��1˛ /�˛ .
Because of the formula �G

w .
yT / D �iwT�iw established in the proof of Theorem 4.10, we

get
b1n˛ D Tr.��1˛ /�G

� i2
.�˛/:

Using the Fourier transform, we can view the convolution operator by z as a multiplication
operator by the character (acted on by the modular group) of the representation � WD
˛1 ˚ � � � ˚ ˛n. If S is a generating set of representations, then eventually all characters
will appear in the decomposition of the powers of the character �� . By taking an inverse
Fourier transform, we will obtain that z�m is a linear combination of central projections
and eventually all minimal central projections will appear in its decomposition, which
shows that z is generating. If we assume that z is generating we can reverse this argument
to show that S is a generating set of representations.
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Remark 5.4. The condition that G admits a finite generating set of representations is used
in [12] as a definition of � being finitely generated. This is equivalent to existence of a
generating projection belonging to c00.�/. Indeed, a generating set of representations dir-
ectly gives a (central) projection in c00.�/ and if we start from any generating projection
then its central cover remains generating and an element of c00.�/.

Example 5.5. We already mentioned that if P 2 c00.�/ is a generating projection, then
so is its central cover z.P /. The converse, however is not true, as the following simple
example shows. Let G D SU.2/ and let � be its dual. We will take as P the rank one
projection e11 inside theM2 summand corresponding to the fundamental representation �
of SU.2/. Its central cover corresponds to a generating representation, hence is generating
itself; we will show that P is not generating. Convolution powers of e11 are not difficult
to compute using the Fourier transform. Indeed, the Fourier transform of e11 is a multiple
of the matrix element u11, the matrix element of the fundamental representation � at the
vector e1. The power un11 is the matrix element of �˝n at the vector e˝n1 . This vector
happens to be a symmetric tensor, so un11 is a matrix element of the symmetric tensor
power Symn.�/. It is well-known that this representation is irreducible, hence the inverse
Fourier transform of un11 is a multiple of a rank one projection inside the summandMnC1.
It is clear that P is not generating, because it misses a lot, e.g. the trivial representation.

5.1. Independence of the choice of the generating set
For a group � the Cayley graph does depend on the choice of the generating set but
they are all bi-Lipschitz equivalent, so more or less indistinguishable in the sense of met-
ric/coarse geometry. Fortunately there is a metric structure available in the quantum case
that will allow us to define the notion of bi-Lipschitz equivalence.

Definition 5.6 (Kuperberg–Weaver, [19]). Let M � B.H/ be a von Neumann algebra. A
quantum metric on M is an increasing family of weak� closed operator systems .Vt /t>0
such that

(i) V0 D M0,
(ii) VsVt � VsCt ,
(iii) Vt D

T
s>t Vs .

ForMD `1.X/we can interpret these operator systems Vt as operators of propagation
at most t .

Remark 5.7. This notion of a quantum metric is related to the more familiar one due to
Rieffel (see [27]). Namely, a quantum metric in the sense of Kuperberg and Weaver yields
a Lipschitz seminorm in the sense of Rieffel (see [19, Definition 4.19]).

For undirected quantum graphs the quantum metric can be built in the following way.
First of all, we can associate a weak� closed M0-bimodule V � B.H/ to a quantum adja-
cency matrix, using a representation M � B.H/; just like in Section 3.4 we will work
with the representation M' `1 �

L
˛Mn˛ � B.

L
˛ Cn˛ /. Then we simply define Vt WD

span¹
PŒt�

kD0
V kº, where we interpret V 0 as M0.
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Definition 5.8. Let .Vt /t>0 and .Wt /t>0 be two quantum metrics on M. We say that they
are bi-Lipschitz equivalent if there exists a constant M > 0 such that Vt � WMt and
Wt � VMt for all t > 0.

Therefore to understand the metric structure of a quantum graph, we need a better
understanding of the powers V k . We will relate them in some way to the powers of the
adjacency matrix, so we need to be able to compose the adjacency matrix with itself,
which is possible for quantum graphs of bounded degree2.

Lemma 5.9. Let A W B! B be a quantum adjacency matrix of bounded degree, let P 2
B x̋ Bop be its associated projection, and let V be the corresponding B0 bimodule. Let
Ak 2 B x̋ Bop be the generalised Choi matrix of Ak . Then the range projection ŒAk �
corresponds to the B0-bimodule V k .

Proof. Since B x̋ Bop
' `1 �

L
˛;ˇ Mnˇ ˝M

op
n˛ , it suffices to check that the range pro-

jection ŒAk �ˇ˛ corresponds to V k
˛ˇ
� B.Cn˛ ;Cnˇ /.

We will first work in the tracial setting, and then discuss how to modify the proof in
the general case. We are in the following situation: we have a completely positive map
ˆ.x/ WD

Pn
kD1 VkxV

�
k

and we would like to check that the support projection of the
Choi matrix of ˆ gives rise to the orthogonal projection onto the span of Vk’s inside
B.Cn˛ ; Cnˇ /; indeed, the Kraus operators of Ak

˛ˇ
are the products belonging to V k

˛ˇ

(see (3.4) and note that the sums appearing will be finite by Proposition 3.25).
Let T be the Choi matrix of ˆ. As a positive semidefinite matrix it can be diagonal-

ised and written in the form T D 1
n˛

Pd
lD1 �lTle

˛
ijT
�
l
˝ .e˛ji /

op, where Tl W Cn˛ ! Cnˇ

satisfy 1
n˛

Tr.T �
k
Tl / D ıkl , d is the rank of T , and �l ’s are the non-zero eigenvalues. The

support projection of T is equal to ŒT � D 1
n˛

Pd
lD1 Tle

˛
ijT
�
l
˝ .e˛ji /

op, i.e. by setting all
the non-zero eigenvalues to be equal to 1. The corresponding subspace V˛ˇ is the span of
the Tl ’s. Luckily it is a well-known fact that the span of Kraus operators is independent of
any choices hence span¹Tl W l 2 Œd �º D span¹Vk W k 2 Œn�º. This finishes the proof of the
lemma.

Let us comment now, what changes in the non-tracial setting. Combining Lemma 3.3
with Lemma 3.5 we see that the generalised Choi matrix of ˆ is equal to

1

Tr.��1˛ /

X
i;j

Vk�
� 12
˛ e˛ij�

� 12
˛ V �k ˝ e

˛
ji :

Once again we diagonalise it to obtain .T1; : : : ; Td / with 1
n˛

Tr.T �
k
Tl / D ıkl . DefineeTl WD pTr.��1˛ /

p
n˛

Tl�
1
2
˛ . Then the generalised Choi matrix is equal to

1

Tr.��1˛ /

X
l;i;j

�leTl�� 12˛ e˛ij�
� 12
˛
eTl� ˝ e˛ji ;

2It is also possible for locally finite quantum graphs, but then the Choi matrix associated with the power
of the adjacency matrix is only affiliated with B x̋ Bop and we decided to avoid these technicalities.
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where 1

Tr.��1˛ /
Tr.��1˛ fTk�eTl / D ıkl , from which it follows that the support projection is

once again obtained by setting all �l ’s to 1.

Theorem 5.10. Let � be a discrete quantum group and let .�; P1/ and .�; P2/ be its two
quantum Cayley graphs. Then the corresponding quantum metric spaces are bi-Lipschitz
equivalent.

Proof. Let A1x WD P1 � x and A2x WD P2 � x. Note that the powers Ak1 and Ak2 can be
computed using the convolution powers P �k1 and P �k2 . From Proposition 4.8 it follows
that the support projection of the Choi matrix of Aki is the Choi matrix of the convolution
operator by ŒP �ki �. Since both projections are generating, there exists M 2 N such that
P1 6

WM
iD1ŒP

�i
2 � and P2 6

WM
iD1ŒP

�i
1 �. The bi-Lipschitz equivalence follows easily.

5.2. Quantum Cayley graphs as quantum relations

In this subsection we will describe the B0-bimodule corresponding to a covariant quantum
adjacency matrix coming from a central projection, so A W B! B will be given by Ax WD
1 � x; for simplicity we will assume that  is irreducible.

In order to find V˛ˇ we need to compute the part of the convolution 1 � e˛ij belonging
to Mnˇ . We will assume that the � matrices are diagonal.

Lemma 5.11. We have .1 � e˛ij /ˇ D
dimq.˛/ dimq./

dimq.ˇ/

Pn
kD1

Pm.ˇ;˛˝/

lD1
Vkle

˛
ijV
�
kl

, where
m.ˇ; ˛ ˝ / is the multiplicity of ˇ inside ˛ ˝  , Vl W Hˇ ! H˛ ˝ H are morphisms,
which are isometries with orthogonal ranges, and Vkl .v/ WD V �l .v ˝ ek/.

Proof. By Lemma 4.1 we have

b1 D dimq./

nX
kD1

�ku


kk
; ce˛ij D dimq.˛/� j̨u

˛
ji :

What we need now is a formula for a product of two matrix coefficients and this is
exactly [18, Lemma 4.1]:

.u˛jiu


kk
/ˇ D

m.ˇ;˛˝/X
lD1

X
p;q

hej ˝ ek ; Vepiu
ˇ
pqhVeq; ei ˝ eki:

Inverting the Fourier transform, we obtain that .1 � e˛ij /ˇ is equal to

dimq.˛/ dimq./

dimq.ˇ/

nX
kD1

�k� j̨

m.ˇ;˛˝/X
lD1

X
p;q

hej ˝ ek ; Vlepie
ˇ
qp�
�1
ˇphVleq; ei ˝ eki:

Recall that eˇqp D jeqihepj, so using the equalities Idˇ D
P
p jepihepj, we arrive at

.1 � e˛ij /ˇ D
dimq.˛/ dimq./

dimq.ˇ/

nX
kD1

�k� j̨

m.ˇ;˛˝/X
lD1

ˇ̌
V �l .ei ˝ ek/

˛˝
V �.ej ˝ ek/

ˇ̌
��1ˇ :
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We can further rewrite it as

.1 � e˛ij /ˇ D
dimq.˛/ dimq./

dimq.ˇ/

nX
kD1

�k

m.ˇ;˛˝/X
lD1

Vkle
˛
ij�˛V

�
kl�
�1
ˇ :

The last thing to check is that Vkl�k�˛ D �ˇVkl . Recall Vkl is a composition of two
maps, an inclusion �k.v/ WD v ˝ ek and a morphism V �

l
W H˛ ˝ H ! Hˇ . It is clear that

�k�˛�k D .�˛ ˝ � /�k . It is not difficult to check that for two representations X and
Y and an intertwiner V 2 Mor.X; Y / we have V�X D �Y V because by Schur’s lemma
it is sufficient to check it when X and Y are multiples of the same irreducible repres-
entation ˛ and for them the � operator is merely a direct sum of copies of �˛ . By [25,
Theorem 1.4.9] �˛˝ D �˛ ˝ � , so we obtain V �

l
.�˛ ˝ � / D �ˇV

�
l

. It follows that
V �
l
�k�k�˛ D �ˇV

�
l
�k .

Proposition 5.12. Let � be a discrete quantum group and let S be a generating set of
representations of G. Then the bimodule describing the quantum Cayley graph is given by

V˛ˇ D span
®
V �s
�
�s.v/

�
W s 2 S; Vs 2 Mor.ˇ; ˛ ˝ s/; v 2 Hs

¯
;

where �s.v/ W H˛ ! H˛ ˝ Hs is given by �s.v/.w/ WD w ˝ v.

Proof. From the previous lemma it follows that the span of the Kraus operators of the
convolution operator against 1 , or rather the block mapping from Mn˛ to Mnˇ is equal to

span
®
V �
�
�.v/

�
W V 2 Mor.ˇ; ˛ ˝ s/; v 2 H

¯
:

From the formula (3.4) it is clear that this span is equal to .� 
�1

� i4

.V //˛ˇ , rather than V˛ˇ .

However, since we convolve against a central projection, the adjacency matrix commutes
with the modular group, hence the corresponding bimodule will be invariant under the
modular group, so � 

�1

� i4

.V / D V .

In general we convolve against a central projection corresponding to a direct sum of
irreducible representations and we obtain the result by linearity.

5.3. A sample application: discrete quantum groups of subexponential growth are
amenable

Many algebraic properties of groups are encoded in the geometry of their Cayley graphs.
Here we would like to present an indication that the same should hold for discrete quantum
groups. We will use the result from [21] to show that subexponential growth of the Cayley
graph implies amenability of the discrete quantum group (actually the result even shows
that the dual compact quantum group is coamenable, which is formally a stronger property,
but actually equivalent by [30]).

Definition 5.13. Let � be a discrete quantum group. We say that � is of subexponen-
tial growth if there exists a generating projection P 2 c00.�/ with ".P / D 1 such that
limn!1.chR.ŒP �n�// 1n D 1.
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Remark 5.14. We assume that the counit applied to P is equal to 1 because we want to
measure the volume of the ball, so we want ŒP �n� to correspond to the set of words of
length at most n, not exactly n.

Proposition 5.15. Suppose that � is a discrete quantum group of subexponential growth.
Then � is amenable.

Proof. First we explain why the notion of subexponential growth is independent of the
choice of a generating projection. Take two generating projection P and Q and assume
we have subexponential growth with respect to P . Call Vn the quantum relations corres-
ponding to ŒP �n� and Wn the ones corresponding to ŒQ�n�. By Theorem 5.10 there exists
M 2 N such that Vn � WMn and Wn � VMn. Since chR.ŒP �n�/1 is the degree matrix of
Vn, we obtain chR�ŒP �n�� 6 chR�ŒQ�Mn�

�
;chR�ŒQ�n�� 6 chR�ŒP �Mn�
�
:

It follows that if limn!1.chR.ŒP �n�// 1n D 1 then limn!1.chR.ŒQ�n�// 1n D 1.
If P 2 c00.�/ is generating then its central cover z.P / 2 c00.�/ is generating as well,

hence we can assume that we are working with a generating set S of representations,
including the trivial one (see Proposition 5.3).

According to [21, Theorems 3.3 and 4.5] coamenability of G is equivalent to the fol-
lowing Følner condition: for every finitely supported, symmetric probability measure �
on Irr.G/ whose support contains the trivial representation and every " > 0 there exists a
finite subset F � Irr.G/ such thatX

˛2supp.��1F /

n2˛ 6 .1C "/
X
˛2F

n2˛;

where n˛ is the dimension of the representation ˛.
Note the inequality n2˛ 6 Tr.�˛/ Tr.��1˛ /, from which it follows that for any central

projection z 2 c00.�/ corresponding to a family T of irreducible representations we haveP
˛2T n

2
˛ 6 chR.z/.

Let Sk denote the set of irreducible representations of G that appear in k-fold tensor
products of elements of S . It follows that the sequence ak WD

P
˛2Sk n

2
˛ satisfies

lim
k!1

.ak/
1
k D 1:

Fix � as above and " > 0. For a large enough k we will have supp.�/ � Sk . Clearly
supp.� � 1Sn/ � SkCn, so it suffices to find n large enough so that akCn 6 .1C "/an. As
limk!1.ak/

1
k D 1 we have limn!1

akCn
an
D 1, so we are done.

In the non-unimodular case (e.g. for SUq.2/) it often happens that the classical di-
mensions exhibit subexponential growth, while the quantum ones grow exponentially, so
Kyed’s can still be applied. It is however not clear at this point how to encode such a
growth condition in a natural way using the quantum Cayley graphs.
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5.4. Examples

Our first example will be constructed using the duals of the free unitary quantum groups
introduced in [32]. Recall that if F 2 Mn is an invertible matrix then C.UCF / is the uni-
versal C �-algebra generated by the entries of a unitary matrix U WD .uij /i;j2Œn� such
that F xUF �1 is also unitary, where xU WD .u�ij /i;j2Œn�; the comultiplication is given by
the familiar formula �.uij / WD

Pn
kD1 uik ˝ ukj . In [3, Théorème 1] the representation

theory has been computed and we will need the following two facts about it: all irredu-
cibles are generated by the fundamental representation u and its conjugate Nu and the tensor
powers u˝n are irreducible.

Example 5.16. Let UCF be a free unitary quantum group. Let P WD 1uC 1 Nu be the central
projection in `1.bUCF / corresponding to the representation u˚ Nu. P is generating and we
call the associated quantum graph the quantum Cayley graph of bUCF .

Here we would like to give some indication that this quantum Cayley graph should be
in fact a quantum tree. For now we do not have a notion of a tree for quantum graphs, but
we would like to nonetheless argue why the Cayley graph of bUCF should be called a tree.
We can split the quantum adjacency matrix A into a sum of two convolution operators
A1.x/ WD 1u � x and A2.x/ WD 1 Nu � x. Because u˝n are Nu˝n are irreducible for each
n 2N, hence the convolution powers are easy to compute using the Fourier transform; we
have that An1.x/ D 1u˝n � x and analogously for A2. Classically this would mean that the
directed graphs defined by A1 and A2 have the following property: for any pair of vertices
there is at most one directed path connecting them. This property is weaker than being
a tree, but provides some evidence that this example might be a tree. Moreover, we have
m.A1 ˝ A2/m

� D 0, which means that A1 and A2 have disjoint sets of edges, and A2
is the KMS adjoint of A1. Combining all this information, we see that A.x/ WD P � x is
built as a sum of superposing two opposite orientations, so perhaps could be an example
of an unoriented quantum tree.

The next example concerns the famous compact quantum group SUq.2/ introduced
by Woronowicz. The representation theory is the same as for SU.2/, so we get a two-
dimensional, self-conjugate, generating representation � .

Example 5.17. Let � be the fundamental representation of SUq.2/ and let P be the
corresponding central projection in `1.2SUq.2//. The associated quantum graph is the
quantum Cayley graph of 2SUq.2/.

The quantum adjacency matrix is related in this case to the Markov operator of the
random walk on the dual of SU.2/ considered by Biane in [4]. After all, the quantum
Cayley graphs are regular, henceA just needs to be rescaled by a constant to give a random
walk operator.

It is interesting to note that these quantum Cayley graphs are non-isomorphic for all
q 2 .0; 1�. Indeed, any isomorphism would be a �-isomorphism of algebras preserving
the appropriate weights and intertwining the adjacency matrices. In particular it would
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preserve the quantum dimensions of representations but these are different for different
parameters.

As our last example we choose (the dual of) the free orthogonal quantum group OCF
(see [32]), where F 2 Mn is an invertible matrix such that F xF D c1 for some c 2 R.
C.OCF / is the universal C �-algebra generated by the entries of a unitary matrix U WD
.uij /i;j2Œn� such that U D F xUF �1. In [2] it was proved that the representation theory
is the same as for SU.2/: the fundamental representation is irreducible, all irreducible
representations are indexed by the natural numbers and

n˝m '

nCmM
kDjn�mj

k:

In this case we will take as the generating projection the central projection correspond-
ing to the fundamental representation.

In [33] an alternative approach to Cayley graphs of discrete quantum groups has been
developed, based on Hilbert spaces; there a notion of a tree is defined based on the classical
graph built on the set of irreducible representations of the dual compact quantum group.
The author proved (see [33, Proposition 4.5]) that one gets a tree iff this compact quantum
group is a finite free product of free unitary and orthogonal quantum groups and a specific
central projection is chosen – the one corresponding to the sum of respective fundamental
representations.

In our framework we do not yet have tools to prove that the quantum Cayley graph
of bOCF is a tree thus it seems necessary to understand the precise relationship between
our approach and that of Vergnioux. In particular it would be interesting to check whether
there exists a reasonable notion of being a tree in our framework that can be detected using
only classical graphs.

5.5. Concluding remarks

This paper should be viewed as a first step towards understanding the quantum graphs
associated to discrete quantum groups. The motivation for this work has been twofold: to
motivate the need for studying both infinite and non-tracial quantum graphs, but also to
introduce a new geometric tool to aid in working with quantum groups. So far we have
mostly developed a general framework and now more effort should be put into investig-
ating the combinatorial/geometric properties of specific examples. It might suggest what
to do for general quantum graphs, e.g. what are paths in a quantum graph. Paths are an
indispensable tool in classical theory and would likely be equally important in our case.

Another project would be to understand the link between property (T) of a discrete
quantum group and the spectral gap of the random walk on its quantum Cayley graph.
Maybe one can even mimic the famous construction of Margulis to obtain a nice sequence
of quantum expanding graphs.
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