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Duality for condensed cohomology of the Weil group
of a p-adic field

Marco Artusa

Abstract. We use the theory of Condensed Mathematics to build a condensed cohomology theory
for the Weil group of a p-adic field. The cohomology groups are proved to be locally compact
abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality
to a more general category of non-necessarily discrete coefficients, where it takes the form of a
Pontryagin duality between locally compact abelian groups.
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1. Introduction

Let F be a finite extension of Qp and let xF be an algebraic closure. LetGF be the absolute
Galois group of F . In [31], Tate proves that for all finite continuous GF -module A and
for all q, one has a perfect cup product pairing

Hq.GF ; A/˝ H2�q
�
GF ;Hom.A; xF �/

�
! H2.GF ; xF �/ D Q=Z: (1.1)

However, if A is finitely generated, the result only holds up to profinite completion, which
loses important information. There are two promising approaches to overcome this short-
coming of the local Tate duality.

Firstly, Lichtenbaum’s influential paper [19] suggests that one should replace the
Galois group GF with the Weil groupWF . In [18], Karpuk studies the cohomology of the
latter with discrete coefficients. Secondly, as pointed out by Geisser and Morin in [14],
one should put a topology on both coefficients and cohomology groups. We try to follow
both intuitions simultaneously.
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In this paper we construct topological cohomology groups Hq.B yWF
;�/ which coin-

cide with Galois cohomology groups Hq.GF ; �/ for finite coefficients and with Weil
cohomology groups Hq.WF ;�/ for discrete coefficients. Moreover, we extend the local
Tate duality to more general non-discrete coefficients, making it a Pontryagin duality
between locally compact abelian groups. In order to do this, we use the theory of Con-
densed Mathematics [9], which makes it possible to do algebra with topological abelian
groups. A more precise way of saying this is that Condensed Mathematics provides a
topos1 C of condensed sets which contains compactly generated topological spaces as a
full subcategory stable by all limits.

In particular, we consider the prodiscrete topological group WF as a pro-condensed
group, say yWF . We define its classifying topos and we call it B yWF . The abelian category
Ab.B yWF / contains nice enough topological abelian groups with a continuous action of
the prodiscrete topological group WF . For all M 2 Ab.B yWF /, or more generally for all
objects of the bounded derived1-category Db.B yWF /, and for all q, we define a condensed
abelian group Hq.B yWF

; M/. Since the category of condensed abelian groups contains
the quasi-abelian category LCA of locally compact abelian groups as a full subcategory,
the objects Hq.B yWF

; M/ may naturally carry a locally compact topology. We define a
dualising complex R=Z.1/ 2 Db.B yWF /. For all M 2 Db.B yWF /, we define a dual module
MD WD RHom.M;R=Z.1// 2 Db.B yWF /. Our main result can be stated as follows.

Theorem 4.27. LetMbe a locally compact abelian group of finite ranks with a continuous
action of a finite quotientGofGF . Suppose that HomLCA.R=Z;M/ and ExtLCA.R=Z;M/

are finitely generated discrete abelian groups. Then we have a perfect cup-product pairing

Hq.B yWF
;M/˝H2�q.B yWF

;MD/! H2
�
B yWF

;R=Z.1/
�
D R=Z (1.2)

of locally compact abelian groups of finite ranks.

We will state and prove this result more generally, for all the objects of a full stable
1-subcategory of Db.FLCA/, which we denote by Dperf

R;Z. If M is finite, then we have
MD D Hom.M; xF �/ (see Lemma 3.25) and (1.2) coincides with the Tate pairing (1.1).
Indeed, the local Tate duality is a key ingredient to prove our result.

1.1. Outline of this article

In Section 2 we study the cohomology of condensed groups and, whenever the condensed
group is represented by a topological group, its relations with other cohomology theor-
ies (continuous cohomology, discrete group cohomology). Part of this section is inspired
by [12], where Flach uses Grothendieck’s “gros topos” instead of condensed sets. The
cohomology of condensed groups is also treated in [8]. For every condensed group G,
we define its classifying topos BG and the condensed cohomology of G, i.e., functors
Hq.BG ;�/ W Ab.BG/! Ab.C/ for all q 2 N. We apply this to topological groups acting

1We are ignoring set-theoretic issues here. In order to be more precise, we fix � an uncountable strong
limit cardinal. Then the topos C is the topos of �-condensed sets defined in [9].
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continuously on topological abelian groups, and we obtain a Hochschild–Serre spectral
sequence.

Proposition 2.24. Suppose that

1! H
i
�! G

p
�! Q! 1

is an exact sequence of topological groups, i.e., Q is homeomorphic via p to the coset
space G=H , and H is homeomorphic to the kernel of p with its subspace topology.
Suppose that G ! Q is an epimorphism in C. Let A be a topological G-module. Then
the condensed abelian group Hq.BH ; A/ carries a Q-action for all q, and there is an
Hochschild–Serre spectral sequence

E
p;q
2 D Hp

�
BQ;H

q.BH ; A/
�
H) HpCq.BG ; A/:

We develop a more general theory for pro-condensed groups, for which Proposi-
tion 2.24 generalises to a Hochschild–Serre spectral sequence for condensed cohomology
of pro-groups (see Proposition 2.49). We also recover a continuity result for the cohomo-
logy of strict pro-condensed groups, which generalises the analogous property satisfied by
continuous cohomology of profinite groups with discrete coefficients.

Proposition 2.50. Let yG be a strict pro-condensed group. Suppose that Gi is compact
Hausdorff for all i . Let .Ai ; j̨ i /i;j2I be a compatible system of abelian group objects of
.BGi ; fij /i;j2I (see Construction 2.12). We set

A1 WD lim
��!
i2I

��i Ai 2 B yG :

Then the canonical morphism

lim
��!
i2I

Hq.BGi ; Ai /! Hq.B yG ; A1/

is an isomorphism for any integer q.

In Section 3, we apply the constructions of Section 2 to the Weil group of a p-adic
field. Let F be a p-adic field with residue field k. Let WF , I and Wk be the Weil group
of F , the inertia subgroup and the Weil group of k respectively. We have an exact sequence
of topological groups 1! I ! WF ! Wk ! 1 which relates Hq.BI ;�/;Hq.BWF ;�/

and Hq.BWk ;�/ according to Proposition 2.24. Let L be the completion of the maximal
unramified extension of F , and let xL be an algebraic closure of L containing an algebraic
closure xF of F . Putting the canonical topology on xL, we can see xL� as an abelian object
of BI . Since L is a C1 field [30, Section 3.3 (c)], one would expect Hq.BI ; xL

�/ to vanish
for all q � 1. However, we prove the following result.

Proposition 3.4. The abelian group H1.BI ; xL
�/.�/ is not torsion.

In order to overcome this problem, we consider the profinite group I and the prodis-
crete group WF as pro-condensed groups. We obtain classifying topoi ByI and B yWF . In
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this way, the groups Hq.ByI ;
xL�/ and Hq.B yWF

; xL�/ behave as in the discrete case (see
Propositions 3.10 and 3.12). We define a dualising complex R=Z.1/ 2 Db.B yWF / as the
fiber of the valuation morphism xL� ! R, and we compute Hq.B yWF

;R=Z.1//.

Proposition 3.15. The cohomology of yWF with coefficients in R=Z.1/ is given by

Hq
�
B yWF

;R=Z.1/
�
D

8̂̂<̂
:̂

O�F q D 0;

R=Z q D 1; 2;

0 q � 3;

where O�F denotes the units of the ring of integers of F , which is a topological abelian
group.

For all M 2 Db.B yWF /, we define a dual complex

MD
WD RHom

�
M;R=Z.1/

�
2 Db.B yWF /:

We also determine the condensed structure on Hq.B yWF
;M/ and Hq.B yWF

;MD/ in some
special cases. In particular, we study the case where M is a finitely generated abelian
group with a continuous action of a finite quotient of GF (see Theorems 3.30 and 3.31),
or a finite-dimensional real vector space with a continuous action of WF =U , where U is
an open normal subgroup of I (see Proposition 3.21).

Finally, in Section 4, we suppose that M is a locally compact abelian group of
finite ranks with a continuous action of a finite quotient G of GF . We suppose that
HomLCA.R=Z;M/ and ExtLCA.R=Z;M/ are finitely generated abelian groups. Note that
this is the case, for example, if M is a finitely generated abelian group with the discrete
topology or a finite-dimensional real vector space with its Euclidean topology. In this con-
text we enlarge local Tate duality by proving Theorem 4.27. We observe that in the case
where M is a finite-dimensional real vector space, we are more flexible on the hypothesis
on the action of the Weil group. Indeed, we have the following.

Theorem 4.23. LetM be a finite-dimensional real vector space with a continuous action
of WF =U , with U � I an open normal subgroup. Then we have a perfect cup-product
pairing

Hq.B yWF
;M/˝H2�q.B yWF

;MD/! H2
�
B yWF

;R=Z.1/
�
D R=Z

of locally compact abelian group of finite ranks.

1.2. Relation to previous work

As we already remarked, in [31] Tate proves that for any finite continuousGF -moduleM ,
the cup-product pairing (1.1) is perfect. This means that the induced maps

 q.M/ W Hq
�
GF ;Hom.M; xF �/

�
! H2�q.GF ;M/�
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and
 q.MD/ W Hq.GF ;M/! H2�q

�
GF ;Hom.M; xF �/

��
are isomorphisms for all q, where .�/� denotes the Pontryagin dual. In the attempt of
generalising this result to finitely generated continuous GF -modules, Milne proves the
following (see [23, Theorem 2.1]).

Theorem A. Let M be a finitely generated GF -module, and consider the map

 q.M/ W Hq
�
GF ;Hom.M; xF �/

�
! H2�q.GF ;M/�:

Then  q.M/ is an isomorphism for all q � 1, and  0.M/ defines an isomorphism (of
profinite groups)

H0
�
GF ;Hom.M; xF �/

�
˝
L yZ! H2.GF ;M/�;

where .�/˝L yZ denotes the profinite completion.

Hence 0.M/ is an isomorphism only up to profinite completion. However, the profin-
ite completion loses a lot of information on the abelian groups. For example, let M D Z
with the trivial action of GF . Then we have

H0
�
GF ;Hom.M; xF �/

�
D F �; H2.GF ;M/� D Gab

F ;

and  0.M/ induces an isomorphism of abelian groups

.F �/˝L yZ
�
�! Gab

F ; (1.3)

which is the reciprocity isomorphism of Local Class Field Theory. We have F � Š O�F ˚

ZŠ Znp ˚H ˚Z, for some finite abelian groupH and some n 2N. Taking the profinite
completion, we get

.F �/˝L yZ Š ZnC1p ˚H ˚
Y
l¤p

Zl :

Hence the information coming from O�F and Z is mixed. In order to resolve this prob-
lem, we should replace the Galois group GF with the Weil group WF , as suggested by
Lichtenbaum (see [19]).

In [18], Karpuk follows this intuition and studies the cohomology ofWF with discrete
coefficients. The role of xF � is taken by xL�. The cohomology of WF with coefficients in
xL� is given by

Hq.WF ; xL�/ D

8̂̂<̂
:̂
F � q D 0;

Z q D 1;

0 q � 2:

If M is a finitely generated continuous WF -module, we define MD WD Hom.M; xL�/ and
we obtain a cup-product pairing in D.Ab/

R�.WF ;M/˝L R�.WF ;M
D/! ��1R�.WF ; xL

�/ D ZŒ�1�: (1.4)

Karpuk proves the following (see [18, Theorem 3.3.1]).
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Theorem B. Suppose that M is a finitely generated continuous WF -module. Then the
map

 .M/ W R�.WF ;M
D/! RHom

�
R�.WF ;M/;ZŒ�1�

�
induced by (1.4) is a equivalence in D.Ab/. In particular, there are, for all q, short exact
sequences

0!Ext
�
H2�q.WF ;M/;Z

�
!Hq.WF ;MD/!Hom

�
H1�q.WF ;MD/;Z

�
! 0: (1.5)

Hence we now have a duality for finitely generated modules which holds in all degrees,
without needing the profinite completion. However, since Ext.H2�q.WF ;M/;Z/ does not
vanish in general, (1.5) cannot express this duality as a duality between the cohomology
groups.

Another aspect to consider is that topology is not taken into account neither by Milne
nor by Karpuk. This is the reason why both in Theorem A and in Theorem B we do not
have perfect pairings, but we only have results about the map  .M/. We solve this prob-
lem by putting a topology both on coefficients and on cohomology groups, as suggested by
Geisser and Morin in [14]. The role played by the discrete GF -module xF � for Milne and
by the discrete WF -module xL� for Karpuk is now played by the complex of condensed
yWF -modules

R=Z.1/ WD ŒxL�
val
�! R�:

If M is a locally compact abelian groups of finite ranks with a structure of a yWF -module,
we defineMD WD RHom.M;R=Z.1//. In Theorem 4.27 we show that ifM has an action
of a finite quotient G of GF and if RHomLCA.R=Z; M/ 2 Dperf.Z/, the cup product-
pairing

Hq.B yWF
;M/˝H2�q.B yWF

;MD/! H2
�
B yWF

;R=Z.1/
�
D R=Z

is a perfect pairing of locally compact abelian groups of finite ranks.
This theorem enlarges the result of Tate to more general non-necessarily discrete coef-

ficients. The “enlarged” local Tate duality takes the form of a Pontryagin duality between
locally compact abelian groups, and in this sense it is richer than Theorems A and B. The
proof relies on the topological structure of the cohomology groups. In order to determine
it, we must suppose that the action of the Weil group is induced by the action of a finite
quotient G of GF . Hence, even if Theorem B only considers discrete finitely generated
coefficients, the hypothesis on the action of WF is less restrictive in that case. However,
if we consider finitely generated abelian groups with a continuous action of GF , as in
Theorem A, this “finitary” property on the action is always satisfied.

Finally, as a particular case of Theorem 4.27, if M D R=Z and q D 1, the perfect
cup-product pairing yields the isomorphism of topological abelian groups

F �
�
�! W ab

F ;

which is the reciprocity morphism of Local Class Field Theory “à la Weil” (compare it
with (1.3)), and does not need profinite completion.
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1.3. Set-theoretical conventions and notation

We say that a category C is small if both Ob.C / and Mor.C / are sets. We say that a
category is essentially small if it is equivalent to a small category. Let � be an uncountable
strong limit cardinal such that � > @1. For example, let �0 WD @1 and for all n 2 N�1, let
�n WD 2

�n�1 . We set � WD supn�n. We say that a set S is �-small if jS j < �.
We denote by Top the category of topological spaces, and by Topc (resp. Toped)

the full subcategory of Top of �-small compact Hausdorff topological spaces (resp. �-
small extremally disconnected topological spaces). We observe that Topc and Toped are
essentially small categories. We denote by Topcg the category of �-compactly generated
topological spaces, i.e., the smallest full subcategory of Top containing Topc and closed
under small colimits. We denote by C the category Cond�.Set/ of �-condensed sets, as
defined in [9]. Unless stated otherwise, compact Hausdorff (resp. extremally disconnec-
ted, resp. compactly generated, resp. condensed) means �-small compact Hausdorff (resp.
�-small extremally disconnected, resp. �-compactly generated, resp. �-condensed).

We denote by LCA the quasi-abelian category of locally compact abelian groups, and
by LCA� the quasi-abelian full subcategory of �-small objects. We denote by FLCA
the quasi-abelian full subcategory of LCA of locally compact abelian groups of finite
ranks (see [17]). We observe that we have FLCA� LCA� � LCA. The categories FLCA
and LCA� are essentially small. For a locally compact abelian group A, we denote by
A_ its Pontryagin dual, i.e., the locally compact abelian group HomLCA.A;R=Z/ with
the compact-open topology. The Pontryagin duality induces an equivalence of categories
LCAop

Š LCA, resp. LCAop
� Š LCA� , resp. FLCAop

Š FLCA.
Another way of dealing with set-theoretical issues is to follow the conventions of

Barwick and Haine (see [4]). In particular, one can assume the existence of universes.
We let �0 be the smallest strong inaccessible cardinal which is uncountable, and �1 the
smallest strong inaccessible cardinal with �0 < �1. Then we define the universe U.�0/
(resp. U.�1/) as the set of all sets with rank strictly less than �0 (resp. �1). The set U.�0/
has rank and cardinality �0, and hence we have U.�0/ 2 U.�1/. A mathematical object is
�0-small (resp. �1-small) if it is equivalent to an object which is in U.�0/ (resp. U.�1/).
If the readers find this approach more convenient, they can replace �-small by �0-small
and small by �1-small in the previous discussion. In this case, the categories which in the
previous discussion are essentially small, actually become �1-small.

In this article, we use the theory of 1-categories, developed in [20–22]. If A is an
abelian category, we denote by D.A/ (resp. Db.A/, resp. DC.A/) its derived1-category
(resp. bounded derived 1-category, resp. bounded-below derived 1-category), whose
homotopy category is the derived category D.A/ (resp. the bounded derived category
Db.A/, resp. the bounded-below derived categoryDC.A/). Finally, we make use of topos
theory, which main reference is [2,3]. In particular, if T is a topos andX is an object of T ,
we denote by T=X the induced topos [2, Exposé IV, Section 5.1]. We call the canonical
morphism of topoi jX W T=X ! T [2, Exposé IV, Section 5.2] localisation morphism.

Any other unconventional notation will be made clear when it occurs.
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2. Cohomology of condensed groups

2.1. Topoi over condensed sets

In the following we adapt Morin’s definition [24, Section 8.1] of strongly compact topoi to
topoi over condensed sets. The cohomology of a topos is replaced by an enriched cohomo-
logy over condensed sets.

Remark 2.1. We recall some properties of extremally disconnected topological spaces,
and their role among condensed sets.

(1) [9, Proposition 2.7] A condensed set is a functor X W .Toped/op ! Set such that
X.;/ D � and X.S1 t S2/ D X.S1/ �X.S2/.

(2) For all extremally disconnected S , the functor

�.S;�/ W Ab.C/! Ab; A 7! A.S/

commutes with all limits and colimits. This is shown in [9, Proof of Theorem 2.2].

(3) A morphism of condensed sets X ! Y is an isomorphism if and only if X.S/!
Y.S/ is an isomorphism for all S extremally disconnected. This follows from (1)
and (2).

Definition 2.2. Let fT W T ! C be a topos over C. We define Hq.T
fT
��! C;�/ as the qth

derived functor RqfT� W Ab.T /! Ab.C/.

Notation 2.3. Whenever it does not create confusion, we denote Hq.T
fT
��! C;�/ just by

Hq.T;�/.

If we consider the unique morphism of topoi C ! Set, whose direct image is the
underlying set functor �.�/ W C! Set, the composition

�.�/ ı fT� W T ! Set

is the global section functor. Since �.�/ W Ab.C/! Ab is exact (see Remark 2.1 (2)) the
associated Leray spectral sequence degenerates, giving us

Hq.T;�/.�/ D Hq.T;�/:

Remark 2.4. Let A 2 Ab.T /, and let S be an extremally disconnected topological space.
Then we have

Hq.T; A/.S/ D Hq.T=f �T S;Ajf �T S /:

This follows from Remark 2.1 (1), since we have

Hq
�
T=f �T .S1 t S2/; Ajf �T .S1tS2/

�
Š Hq

�
T=f �T S1; Ajf �T S1

�
� Hq

�
T=f �T S2; Ajf �T S2

�
:

Notation 2.5. LetX2C. Let fX W C=X!C morphism of topoi. For allM 2Ab.C/, we set

Hq.CIX;M/ WD Hq
�
C=X;MjX

�
; Hq.CIX;M/ WD Hq

�
C=X;MjX

�
:
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Let S be an extremally disconnected topological space. By Remark 2.4 we have

Hq.CIX;M/.S/ D Hq.CIX � S;M/:

Definition 2.6. Strongly compactness is defined as follows.

(i) A morphism of topoi f W T1 ! T2 is strongly compact if for all q 2 N the
functor Rqf� commutes with filtered colimits of abelian sheaves.

(ii) [24, Definition 8.1] A topos T is strongly compact if the unique morphism of
topoi T ! Set is strongly compact.

(iii) Let fT W T ! C be a topos over C. We say that T is strongly compact over C if
fT is strongly compact.

Remark 2.7. Let T be a topos, U! eT a covering of the terminal object and A! B a
morphism in Ab.T /. IfAjU!BjU is an isomorphism, then so isA!B . More generally,
let F ! G be a morphism in D.T /. If FjU ! GjU is an equivalence, then so is F ! G .

Remark 2.8. For every morphism of topoi f W T1! T2 and for every objectX of T2, the
commutative diagram

T1=f
�X T2=X

T1 T2

f=X

jf �X jX

f

is a pullback. Here jX and jf �X are localisation morphisms [2, Exposé IV, Section 5.2].
Moreover, one has

j �X ıR
qf� D R

q.f=X;�/ ı j
�
f �X

for all q.

Lemma 2.9. Let f W T1! T2 be a morphism of topoi. Let X be an object of T2 such that
X ! eT2 is a covering of the terminal object. If f=X is strongly compact, then so is f .

Proof. Combine Remarks 2.7 and 2.8.

Lemma 2.10. Strongly compact morphisms of topoi are stable by composition.

Proof. Let f W T1 ! T2 and g W T2 ! T3 be strongly compact morphisms of topoi. Let
h WD g ı f W T1 ! T3. For all A 2 Ab.T1/, we have a spectral sequence

E
p;q
2 D Rpg�.R

qf�A/ H) RpCqh�A:

Since Rnf� and Rng� commute with filtered colimits for all n, then so does Rnh�.

Remark 2.11. The topos C of condensed sets is strongly compact. Indeed, the functor
�.�/ W Ab.C/! Ab is exact and commutes with filtered colimits (see Remark 2.1 (2)).
Consequently, if a topos is strongly compact over C, then it is strongly compact.
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A cofiltered limit of strongly compact topoi along strongly compact transition maps
is strongly compact [3, Exposé VI, Corollary 8.7.7]. In fact the same can be proved for
strongly compact topoi over C.

Construction 2.12. Let .Ti ; fj i /i;j2I be a filtered projective system of topoi over C,
where the maps fj i W Tj ! Ti are the transition maps. Then we set

T1 WD lim
 ��
i

Ti ;

where the cofiltered limit of topoi is computed in the 2-category of topoi. For all i , we
have a morphism �i W T1 ! Ti . The topos T1 is automatically a topos over C, and �i is
a morphism of topoi over C for all i .

Let Ai 2 Ab.Ti / for all i 2 I . Let .˛ij W f �j iAi ! Aj /i;j2I be a family of morphisms
such that

˛ik D j̨k ı f
�
kj .˛ij / W f

�
kiAi D f

�
kjf

�
j iAi ! f �kjAj ! Ak :

The morphisms �
��j .˛ij / W �

�
j f
�
j iAi D �

�
i Ai ! ��j Aj

�
i;j2I

yield a filtered inductive system of abelian objects .��i Ai /i2I in T1. Then we set

A1 WD lim
��!
i2I

��i Ai :

Lemma 2.13. Let .Ti ; fj i /i;j2I and T1 be defined as in Construction 2.12. Suppose that
Ti is strongly compact over C for all i , and that the transition maps fj i W Tj ! Ti are
strongly compact. Then T1 is strongly compact over C.

Proof. By [3, Exposé VI, Corollary 8.7.6], the morphism �i W T1 ! Ti is strongly com-
pact for all i . Since the morphism T1 ! C is the composition of two strongly compact
morphisms �i W T1 ! Ti and fTi W Ti ! C, the result follows from Lemma 2.10.

Lemma 2.14. Let .Ti ; fij /i;j2I , .Ai ; ˛ij /i;j2I , T1 and A1 be defined as in Construc-
tion 2.12. Suppose that Ti is strongly compact over C for all i , and that the transition
maps fj i W Tj ! Ti are strongly compact. Then the canonical morphism

lim
��!
i2I

Hq.Ti ; Ai /! Hq.T1; A1/

is an isomorphism for any integer q.

Proof. By Lemma 2.13 and [3, Exposé VI, Corollary 8.7.5] one has

Hn.T1; A1/ Š lim
��!
i

Hq.T1; �
�
i Ai / Š lim

��!
i

�
lim
��!
j!i

Hq.Tj ; f
�
j iAi /

�
:

We conclude as in the proof of [24, Lemma 8.2].
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2.2. The classifying topos of a condensed group

Definition 2.15. Let G be a condensed group. We define its classifying topos BG as the
category of objects X of C with a G-action G � X ! X . Morphisms in BG are those
morphisms in C which are G-equivariant.

Remark 2.16. The fact that BG is a topos follows from [2, Exposé IV, Section 2.4].

Proposition 2.17. Let G be a condensed group. Then its classifying topos BG is replete.

Proof. One has a localization morphism jEG W BG=EG ! BG . By [12, Lemma 7 (i)],
we have BG=EG D C, which is replete by [5, Proposition 3.2.3]. Since j �EG reflects
epimorphisms and commutes with projective limits, the result follows.

The construction of the classifying topos is functorial. For every morphism of con-
densed groups g W G1 ! G2 we get a morphism of topoi

Bg W BG1 ! BG2 :

The pullback functor Bg� W BG2 ! BG1 sends X 2 BG2 to itself with the action of G1
induced by g. Moreover, if g W G1! G2 and g0 W G2! G3, then B.g0 ı g/ D Bg0 ıBg.

Notation 2.18. We denote Bg simply by g.

LetG be a condensed group. The unique mapG!¹�º induces fG WBG!B¹�º D C.
We obtain functors

Hq.BG ;�/ WD R
qfG�.�/ W Ab.BG/! Ab.C/;

as in Section 2.1.

Lemma 2.19. Let S be an extremally disconnected topological space and letA2Ab.BG/.
There is a Cartan–Leray spectral sequence

E
p;q
2 D Hp

�
Hq.CIG� � S;A/

�
H) HpCq.BG ; A/.S/;

which is functorial in S .

Proof. The morphism G � S ! S is an epimorphism in C. Consequently, EG � f �GS !
f �GS is an epimorphism in BG.C/. We get a simplicial object

� � � S2 S1 S0

where S0 D EG � f �GS with projection on the second component towards f �GS , and

Sn D S0 �f �GS � � � � �f
�
GS
S0;

the fiber product of nC1 copies of S0, which is isomorphic overf �GS toEG�f �G.G
n�S/.

We have the Cartan–Leray spectral sequence

E
p;q
2 D Hp

�
Hq
�
BG IEG � f

�
G .G

�
� S/; A

��
H) HpCq.BG If �GS;A/:
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By [12, Lemma 7 (i)], with X D Gn � S , we have

Hq
�
BG IEG � f

�
G .G

n
� S/; A

�
D Hq

�
BG=EG � f

�
G .G

n
� S/; AjEG�f �G .Gn�S/

�
Š Hq.C=Gn � S;AjGn�S / D Hq.CIGn � S;A/:

The result follows from Remark 2.4.

Corollary 2.20. Let G be a condensed group and let A 2 Ab.BG/. There is a Cartan–
Leray spectral sequence

E
p;q
2 D Hp

�
Hq.CIG�; A/

�
H) HpCq.BG ; A/;

where Hq.CIG�; A/ is defined in Notation 2.5.

Proof. By Remark 2.1 (2) and (3), it is enough to check that for all S we have a spectral
sequence

E
p;q
2 D Hp

�
Hq.CIG�; A/

�
.S/ H) HpCq.BG ; A/.S/

which is functorial in S . This is Lemma 2.19.

Definition 2.21. Let G be a topological group, and let A be a topological abelian group
with a continuous action of G. We define the condensed cohomology of G with coeffi-
cients in A as Hq.BG ; A/.

Notation 2.22. If X is a compact Hausdorff topological space/group/abelian group, we
denote the condensed set/group/abelian group X just by X .

Proposition 2.23. IfG is a compact Hausdorff topological group,BG is strongly compact
over C.

Proof. By Corollary 2.20 we have a spectral sequence

E
p;q
2 D Hp

�
Hq.CIG�;�/

�
H) HpCq.BG ;�/:

Since filtered colimits are exact in Ab.C/ [9, Theorem 2.2], it is enough to show that the
topos C=Gn is strongly compact over C for all n. SinceGn is compact Hausdorff for all n,
this follows from [9, Proposition 4.12].

Proposition 2.24 (Hochschild–Serre spectral sequence for topological groups). Suppose
that

1! H
i
�! G

p
�! Q! 1

is an exact sequence of topological groups, i.e., Q is homeomorphic via p to the coset
space G=H , and H is homeomorphic to the kernel of p with its subspace topology. Sup-
pose that G ! Q is an epimorphism in C. Let A be a topological G-module. Then the
condensed abelian group Hq.BH ; i

�A/ carries a Q-action for all q, and there is an
Hochschild–Serre spectral sequence

E
p;q
2 D Hp

�
BQ;H

q.BH ; i
�A/

�
H) HpCq.BG ; A/:

Proof. This is a special case of Proposition 2.49.



Duality for condensed cohomology of the Weil group of a p-adic field 1393

2.2.1. Comparison with continuous cochain cohomology. We can recover “continuous
cochains” in Corollary 2.20.

Proposition 2.25. Let G and A be as in Definition 2.21. Suppose that Gn is compactly
generated for all n. Then for all n 2 N the condensed abelian group H0.CIGn; A/ is
represented by Cont.Gn; A/ with the compact-open topology.

Proof. For all S extremally disconnected we have

H0.CIGn; A/.S/ D HomC.G
n
� S;A/ Š Cont.Gn � S;A/

Š Cont
�
S;Cont.Gn; A/

�
Š Cont.Gn; A/.S/;

where Cont.Gn; A/ is given the compact-open topology. The second isomorphism is [9,
Proposition 1.7]. The result follows from Remark 2.1 (3).

Corollary 2.26. Let G and A be as in Definition 2.21. Suppose that Gn is compactly
generated for all n. Then the following holds.

(1) The condensed abelian group H0.BG ;A/ is represented byAG , with the subspace
topology induced by A.

(2) Suppose that A has the trivial action. Then H1.BG ;A/ is represented by the topo-
logical abelian group Homcont.G;A/, endowed with the subspace topology of the
compact-open topology on Cont.G;A/.

(3) Suppose that Hq.CIGn; A/ D 0 for all q > 0 and for all n. Then Hq.BG ; A/ is
computed by the complex

A! Cont.G;A/! Cont.G2; A/! � � � ;

where the mapping spaces are given the compact-open topology. In particular, the
underlying abelian group Hq.BG ;A/DHq.BG ;A/.�/ coincides with continuous
group cohomology.

Proof. Let d0 W A! Cont.G;A/ and d1 W Cont.G;A/! Cont.G2; A/ be the continuous
morphisms of topological abelian groups defined by

d0.a/ WD .g 7! ga � a/; d1.f / WD
�
.g1; g2/ 7! g1f .g2/C f .g1/ � f .g1g2/

�
:

By Corollary 2.20 and Proposition 2.25 we have

H0.BG ; A/ D H0
�
A

d0

�! H0.CIG;A/! � � �
�
D ker.d0/:

This proves (1).
By Corollary 2.20 we have an exact sequence of condensed abelian groups

0! H1
�
H0.CIG�/

�
! H1.BG ; A/! H0

�
H1.CIG�; A/

�
:
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Since H1.CI �; A/ D 0, we have H0.H1.CIG�; A// D 0. By Proposition 2.25, we get

H1.BG ; A/ D H1
�
A

d0

�! Cont.G;A/
d1

�! Cont.G2; A/
�
:

Since the action on A is trivial, d0 is the zero morphism and ker.d1/ D Homcont.G; A/.
This proves (2).

For (3), we just combine Corollary 2.20 with Proposition 2.25.

Example 2.27. If G is a finite group, the condition in (3) is satisfied for any condensed
abelian group A. In particular, the following holds:

(i) if A is represented by a discrete abelian group, then so is Hq.BG ; A/. Indeed,
the functor Ab! Ab.C/ is exact, hence the quotient of a discrete condensed
abelian group by a discrete subgroup is discrete as well.

(ii) if A is represented by a compact Hausdorff topological abelian group, then so is
Hq.BG ;A/. Indeed, all the terms of the complex are compact Hausdorff, and the
morphisms are closed. In addition to this, the functor Top! C sends surjections
between compact Hausdorff topological spaces to epimorphisms.

Example 2.28. If G is a profinite group, the condition in Corollary 2.26 (3) is satisfied
for any discrete abelian group A, and more generally if A is a topological abelian group
such that A is solid [9, Theorem 5.4, Corollary 6.1].

Example 2.29. If G is compact Hausdorff, the condition in Corollary 2.26 (3) is satisfied
for any Banach real vector space [9, Theorem 3.3].

Proposition 2.30. Let V be a Banach real vector space with a continuous action of a
compact Hausdorff topological group G. Then we have

Hq.BG ; V / D 0 8q > 0:

Proof. We just combine Example 2.29 and [6, Chapter IX, Proposition 1.12]. The exact
sequence of Banach spaces is also exact as sequence of condensed abelian groups by the
following lemma.

Lemma 2.31. A complex of Frechet (resp. Banach) spaces is exact as a complex of con-
densed R-modules if and only if it is exact on the underlying vector spaces.

Proof. This is a consequence of the Baire category theorem, see [10, Lemma 11.2].

2.2.2. Discrete coefficients.

Remark 2.32. The functor .�/ W Top! C respects coproducts. Indeed, let ¹Xiºi2I be a
family of topological spaces. For all i , the inclusion Xi ,! ti2IXi is a closed and open
immersion. Hence, if S a profinite set and g is a continuous map S!ti2IXi , there exists
a partition S D S1 t � � � t Sn, with Si profinite, such that gjSj factors through some Xij .

We call f the unique morphism of topoi C! Set. In particular, we have f� D �.�/.



Duality for condensed cohomology of the Weil group of a p-adic field 1395

Remark 2.33. Let X be a set, and let Xı be the topological space defined by X with the
discrete topology. By Remark 2.32, f �X is naturally isomorphic to Xı in C.

Definition 2.34. A condensed set T is discrete if the natural map T .�/ı ! T , or equival-
ently f �f�T ! T , is an isomorphism.

Lemma 2.35. A condensed set T is discrete if and only if for every extremally disconnec-
ted S D lim

 ��i
Si

lim
��!
i

T .Si / Š T .S/:

Proof. By Remark 2.1 (3), T is discrete if and only if the morphism T .�/ı.S/! T .S/

is an isomorphism for all S extremally disconnected. For all S D lim
 ��i

Si extremally dis-
connected we have

lim
��!
i

T .Si / D lim
��!
i

Y
s2Si

T .�/ D lim
��!
i

Maps
�
Si ; T .�/

�
D lim
��!
i

Cont
�
Si ; T .�/

ı
�
D Cont

�
S; T .�/ı

�
D T .�/ı.S/;

where the second-to-last equality is a computation of 0th cohomology with discrete coef-
ficients [11, Chapter X, Theorem 3.1]. The result follows.

Proposition 2.36. Let t W T 0 ! T be a morphism of condensed sets.

(i) Suppose that t is a monomorphism. If T is discrete, then so is T 0.

(ii) Suppose that t is an epimorphism. If T 0 is discrete, then so is T .

Proof. We first prove (i). Let S D limj Sj be an extremally disconnected topological
space. We have the commutative diagram

lim
��!j

T 0.Sj / lim
��!j

T .Sj /

T 0.S/ T .S/;

(2.1)

where the map on the right is an isomorphism, and all maps are injective. If the map
on the left is surjective, we conclude by Lemma 2.35. Take a 2 T 0.S/. By the diagram
above a 2 T .Si / for some i . We need to show that a 2 T 0.Si /. This follows from the sheaf
condition on T 0, namely T 0.Si / is the equaliser of T 0.p1/;T 0.p2/ W T 0.S/! T 0.S �Si S/.

We prove (ii). Let S D limj Sj be an extremally disconnected topological space. The
diagram (2.1) is such the map on the left is an isomorphism, and all maps are surjective.
Moreover, the map

lim
��!
j

T .Sj /! T .S/

is injective, being a filtered colimit of injective maps. We conclude by Lemma 2.35.
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Proposition 2.37. Let 0!A0!A!A00! 0 be an exact sequence of condensed abelian
groups. Then A0 and A00 are both discrete if and only if A is discrete.

Proof. If A is discrete, then so are A0 and A00 by Proposition 2.36. Conversely, let S D
limj Sj be an extremally disconnected topological space. Using Lemma 2.35, the result
follows from the Snake Lemma applied to

0 lim
��!j

A0.Sj / lim
��!j

A.Sj / lim
��!j

A00.Sj / 0

0 A0.S/ A.S/ A00.S/ 0:

Corollary 2.38. Let Ep;q2 ) EpCq be a spectral sequence in Ab.C/, with Ep;q2 D 0 for
p < 0 or q < 0. Suppose that Ep;q2 is discrete for all p; q. Then En is discrete for all n.

Proof. By Proposition 2.37, the subcategory Ab � Cond.Ab/ is stable by extensions.
Hence it is enough to show that for every complex of condensed abelian groups

C�1
d�1

��! C 0
d0

��! C 1

such that all the terms are discrete, the cohomology group ker.d0/= im.d�1/ is discrete
as well. This follows from Proposition 2.37.

Proposition 2.39. Let G be a compact Hausdorff topological group acting continuously
on a discrete topological abelian group A. Then Hq.BG ; A/ is discrete for all q.

Proof. By Corollaries 2.20 and 2.38, it is enough to show that Hp.Hq.G�; A// is discrete
for all p; q. Let S D limi Si be an extremally disconnected topological space. By [11,
Chapter X, Theorem 3.1] and [9, Theorem 3.2], we have

Hq.CIGn � S;A/ Š lim
��!
i

Hq.CIGn � Si ; A/;

functorially in n. Thus we have

Hp
�
Hq.CIG� � S;A/

�
Š Hp

�
lim
��!
i

Hq.CIG� � Si ; A/
�
:

Since filtered colimits are exact in Ab, we have

lim
��!
i

Hp
�
Hq.CIG� � Si ; A/

�
Š Hp

�
lim
��!
i

Hq.CIG� � Si ; A/
�

Š Hp
�
Hq.CIG� � S;A/

�
:

The result follows from Lemma 2.35.

Remark 2.40. For profinite groups, the same result is shown in [1, Lemma 2.5].
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2.2.3. Cohomology of discrete groups.

Proposition 2.41. Let G be a discrete group and let A be a condensed G-module. Then,
for all q and for all S extremally disconnected, we have

Hq.BG ; A/.S/ Š Hq
�
BG.Set/; A.S/

�
;

where the right-hand side is the classical group cohomology ofGwith coefficients inA.S/.

Proof. By Remark 2.8, the commutative diagram of topoi

C=S Set

BG=S BG.Set/

p

f

is a pull-back square andp is a localisation morphism. Indeed, we have SetDBG.Set/=EG
and C=S D .BG=S/=f

�EG. Thus we get

p�Rf�.AjS / Š R�
�
C=S;AjS

�
Š RHomAb.C/

�
ZŒS�; A

�
Š HomAb.C/

�
ZŒS�; A

�
Š A.S/;

where we use the fact that HomAb.C/.ZŒS�;�/ is exact if S extremally disconnected (see
Remark 2.1 (2)). Hence Rf�.AjS / is concentrated in degree 0 and we have

Hq.BG ; A/.S/ D R
q�
�
BG=S;AjS

�
Š Rq�

�
BG.Set/; f�.AjS /

�
Š Hq

�
BG.Set/; A.S/

�
:

Example 2.42 (Cohomology of Z). Let G D Z D hˆi with the discrete topology. Then

ZŒZ�
�.1�ˆ/
����! ZŒZ�

ev
��! Z

is a projective resolution of Z. Let A 2 Ab.BZ/. For all extremally disconnected S , let
'S W A.S/! A.S/ be the automorphism of A.S/ induced by the action ofˆ. By Propos-
ition 2.41, we have

Hq.BZ; A/.S/ D

8̂̂<̂
:̂

ker.1 � 'S / q D 0;

coker.1 � 'S / q D 1;

0 q � 2:

Let ' W A! A be the automorphism of A defined by '.S/ WD 'S . Then we have

Hq.BZ; A/ D

8̂̂<̂
:̂

ker.1 � '/ DW AZ q D 0;

coker.1 � '/ DW AZ q D 1;

0 q � 2:
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If A is a topological abelian group with a continuous action of Z, the morphism ' is
represented by the automorphism of topological abelian groups A ! A, mapping a to
ˆ � a. Consequently, AZ is represented by the topological abelian group AZ (in agreement
with Corollary 2.26 (1)). Moreover, if A is discrete, AZ is represented by the discrete
abelian group A=.1 � '/A. If A is compact Hausdorff, the condensed abelian group AZ

is represented by the compact Hausdorff abelian group A=.1 � '/A with the quotient
topology. Indeed, the morphism 1 � ' is closed.

2.3. The classifying topos of a pro-condensed group

We would like to generalise a well known fact from the cohomology of profinite groups
with discrete coefficients. Let .Gi /i2I be a projective system of topological groups and
.Ai 2 Ab.BGi //i2I a compatible system. Let �i W G ! Gi be the projections. We set
G WD lim

 ��i
Gi and A1 WD lim

��!i
��i Ai . We would like the isomorphism

Hq.BG ; A1/ Š lim
��!
i

Hq.BGi ; Ai /

to hold. Unfortunately, this is not always the case even if Gi is finite for all i , see Propos-
itions 3.4 and 3.10. In order to recover this property, we introduce pro-condensed groups
and their cohomology.

We are adapting [25, Section 2.6] to the condensed setting. A pro-object of a category
C is a functor yX W I ! C , where I is a cofiltered category.

Definition 2.43. A pro-condensed group yG is a pro-object in the category Grp.C/ of
condensed groups. A pro-condensed group yG is strict if all transition maps Gi ! Gj are
epimorphisms of condensed groups.

Let yG W I ! Grp.C/ be a pro-condensed group. For every i 2 I we have a condensed
group Gi and a classifying topos BGi , which is a topos over C. We get .BGi ; fj i /i;j2I , a
projective system of topoi over C.

Definition 2.44. The classifying topos of a pro-condensed group yG W I ! Grp.C/ is
defined as

B yG WD lim
 ��
i2I

BGi ;

where the limit is taken in the 2-category of topoi.

For all i 2 I , we call �i W B yG ! BGi the projection morphism, and f yG W B yG ! C the
structure morphism.

Definition 2.45. The qth group cohomology of the pro-condensed group yG W I !Grp.C/
is

Hq.B yG ;�/ WD R
qf yG;� W Ab.B yG/! Ab.C/:

Remark 2.46. Let yG be a constant pro-condensed group with value G 2 Grp.C/. Then
B yG is equivalent to BG via any projection �i , and Hq.B yG ;�/ coincides with Hq.BG ;�/
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for all q. Hence the condensed cohomology of pro-condensed groups generalises the
cohomology of condensed groups.

We now prove the existence of a Hochschild–Serre spectral sequence.

Construction 2.47. Let yH; yG W J !Grp.C/ be two pro-condensed groups, and yQ W J !
Grp.C/ a constant pro-condensed group with value Q 2 Grp.C/. Let

1! Hj
ij
�! Gj

pj
�! Q! 1

be an exact sequence of condensed groups for all j , inducing morphisms of pro-condensed
groups yH ! yG and yG!Q. By [2, Exposé IV, Section 5.8], we obtain an equivalence of
topoiBHj

�
�!BGj =p

�
j EQ for all j . Moreover, we have morphisms of topoi Oi WB yH !B yG

and Op W B yG ! BQ.

Lemma 2.48. Let yH; yG; yQ be as in Construction 2.47. There exists an equivalence of
topoi B yH

�
�! B yG= Op

�EQ induced by BHj
�
�! BGj =p

�
j EQ.

Proof. By Remark 2.8, we have

B yG= Op
�EQ Š B yG �BQ BQ=EQ:

In the 2-category of topoi, cofiltered limits commute with fiber products. Thus we have

B yG �BQ BQ=EQ D lim
 ��
j

.BGj �BQ BQ=EQ/ Š lim
 ��
j

BGj =p
�
j EQ Š lim

 ��
j

BHj Š B yH :

Proposition 2.49 (Hochschild–Serre spectral sequence). Let yH; yG; yQ be as in Construc-
tion 2.47. For all A 2 Ab.B yG/, the condensed abelian group Hq.B yH ;

Oi�A/ carries a
Q-action for all q. There is a Hochschild–Serre spectral sequence

Hp
�
BQ;H

q.B yH ;
Oi�A/

�
H) HpCq.B yG ; A/:

Proof. By Lemma 2.48 and [12, Lemma 7], we have the commutative diagram of topoi

B yH C

B yG= Op
�EQ BQ=EQ

B yG BQ;

f yH

� �

Op=EQ

j Op�EQ jEQ

Op

where the outer square is a pullback. The composition of the two vertical maps on the left
is Oi . On the right, the composition gives the morphism e W C! BQ. The morphism e is
induced by the morphism of groups ¹�º ! Q, which sends � to the identity of Q. Hence
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we have f yH;� ı Oi
� D e� ı Op�. Moreover, since the vertical morphisms are localisation

morphisms, we have
Rf yH;� ı

Oi� D e� ıR Op�:

The spectral sequence computing the derived functor of f yG;� D fQ;� ı Op� concludes the
proof.

Finally, we recover the well-known continuity property of cohomology of pro-finite
groups, extending it to strict pro-compact Hausdorff groups.

Proposition 2.50 (Continuity result). Let yG be a strict pro-condensed group. Suppose that
Gi is compact Hausdorff for all i . Let .Ai ; j̨ i /i;j2I be a compatible system of abelian
group objects of .BGi ; fij /i;j2I (see Construction 2.12). We set

A1 WD lim
��!
i2I

��i Ai 2 B yG :

Then the canonical morphism

lim
��!
i2I

Hq.BGi ; Ai /! Hq.B yG ; A1/

is an isomorphism for any integer q.

Proof. By Proposition 2.23, the topos BGi is strongly compact for all i . Let fij W BGi !
BGj be a transition map. Let K be the kernel of Gi � Gj , which is compact Hausdorff.
The localisation of fij at EGj is BK ! C. This morphism is strongly compact by Pro-
position 2.23. Hence, by Lemma 2.9, so is fij . We conclude by Lemma 2.14.

2.4. The category DC.B yG /

Let yG W I ! Grp.C/, i 7! Gi be a strict pro-group. Suppose that all Gi are compact
Hausdorff. In this section, we give a description of objects in DC.B yG/ in terms of objects
of DC.BGi / for all i (see Proposition 2.54). Moreover, we obtain a formula which relates
the internal Hom in D.B yG/ with internal Hom’s in D.BGi / for all i (see Corollary 2.58).
To do this, we start by studying the defining site of the category B yG .

Let G D limi Gi be the topological group associated to yG. We denote by G � Topc

the category of compact Hausdorff topological spaces with a continuous action ofG, with
G-equivariant continuous maps as morphisms.

Proposition 2.51. Let yG � Topc be the full subcategory of G � Topc of those compact
Hausdorff topological spaces with a continuous action of G which factors through Gi for
some i . Let jcond be the topology on yG � Topc with finitely jointly surjective families of
maps as covers. Then there is a natural morphism

B yG ! Sh. yG � Topc ; jc/

which is an equivalence of topoi.
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Proof. For all i , let Gi � Topc be the category of topological spaces with a continuous
action of Gi , with Gi -equivariant continuous morphisms. Let ji be the coarsest topology
such that the forgetful functor .Gi � Topc ; ji /! .Topc ; jcond/ is continuous. We have
a defining site .Gi � Topc ; ji / for BGi . By [3, Exposé VI, Section 8.2.3], a site for B yG
is given by .lim

��!I
.Gi � Topc/; j /. Here j is the coarsest topology such that the functor

.Gi � Topc ; ji /.lim
��!I

.Gi � Topc/; j / is continuous for all i .
We can make the category lim

��!I
.Gi � Topc/ explicit as follows. An object of this

category is a compact Hausdorff topological group with a continuous action of Gi for
some i . Let X1; X2 be two objects of this category with an action of G1, G2 respectively.
Then there exists k 2 I such that Gk surjects on both G1 and G2. Then a morphism
X1 ! X2 is a Gk-equivariant continuous map X1 ! X2. Hence we have an equivalence
of categories

lim
��!
I

.Gi � Topc/ Š yG � Topc :

Under this identification, jcond is the coarsest topology on yG � Topc such that the functor

.Gi � Topc ; ji /! . yG � Topc ; jcond/

is continuous for all i . The result follows.

Lemma 2.52. Let ˛ W F ! G be a morphism in DC.B yG/. Suppose that for all i 2 I the
induced morphism R�.B yG=EGi ;FjEGi /! R�.B yG=EGi ; GjEGi / is an equivalence in
D.C/. Then ˛ is an equivalence.

Proof. Let X be a compact Hausdorff topological space with an action of Gi , for some
i . We show that the morphism R�.B yG=X;FjX /! R�.B yG=X;GjX / is an equivalence in
DC.Z/. We observe that

EGi �X
tr
! X; .g; x/ 7! g � x;

is a covering in yG � Topc , where X tr is X with the trivial action of G. Thus we have

R�
�
B yG=X;FjX

�
D colimR�

�
B yG=.EGi �X

tr/�;Fj.EGi�X tr/�
�
;

and similarly for G . For all n, we have an isomorphism .EGi �X
tr/nŠEGi � .G

tr
i /
n�1 �

X tr over X . Thus it is enough to check that the morphism

R�
�
B yG=EGi � .G

tr
i /
n �X tr;FjEGi�.Gtr

i /
n�X tr

�
R�

�
B yG=EGi � .G

tr
i /
n �X tr;GjEGi�.Gtr

i /
n�X tr

�
is an equivalence for all n and all i . This follows from the hypothesis. Indeed we have

R�
�
B yG=EGi � .G

tr
i /
n
�X tr;FjEGi�.Gtr

i /
n�X tr

�
D R�

�
Gni �X;R�

�
B yG=EGi ;FjEGi

��
;
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and similarly for G . Thus for all X compact Hausdorff with an action of Gi for some i ,
the morphism

R�.B yG=X;FjX /! R�.B yG=X;GjX /

is an equivalence in DC.Z/. The result follows from [22, Corollary 2.1.2.3] and Proposi-
tion 2.51.

Notation 2.53. For all i 2 I , let �i W yG ! Gi be the projection. For all j ! i , let �i;j be
the morphism Gj � Gi . We set yUi WD ker.�i /, and Ki;j WD ker.�i;j /. Thus we have

B yG=EGi Š B yUi
D lim
 ��
j!i

BKi;j :

We call � ij the projections B yUi ! BKi;j .

Proposition 2.54. For all F 2 DC.B yG/, the natural morphism lim
��!j

��j R�j;�F ! F is
an equivalence.

Proof. By Lemma 2.52, it is enough to prove that the morphism

R�
�
B yG=EGi ; .lim��!

j

��j R�j;�F /jEGi
�
! R�.B yG=EGi ;FjEGi / (2.2)

is an equivalence for all i . This can be written firstly as

R�
�
B yUi

; lim
��!
j�i

�
i;�
j .R�j;�F /jEGi

�
! R�.B yUi

;FjEGi /;

and then, by Proposition 2.50, as

lim
��!
j�i

R�
�
BKi;j ; .R�j;�F /jEGi

�
! R�

�
B yUi

;FjEGi
�
:

For all j , we have

R�
�
BKi;j ; .R�j;�F /jEGi

�
D .R�i;j;�R�j;�F /jEGi D .R�i;�F /jEGi :

Hence the colimit is constant and (2.2) becomes

.R�i;�F /jEGi ! R�.B yUi
;FjEGi /:

This is an equivalence by Remark 2.8.

Corollary 2.55. Let F 2 DC.B yG/ such that R�i;�F D 0 for all i . Then F D 0.

When working with B yG instead of BG we lose an important property. Indeed, the
morphism of topoi C! B yG is not a localisation morphism. Thus, we cannot check van-
ishing in C apriori. However, thanks to Proposition 2.54 we can reduce to prove vanishing
in BGi , where we have localisation morphisms C! BGi .



Duality for condensed cohomology of the Weil group of a p-adic field 1403

Remark 2.56. Let f W T1 ! T2 be a morphism of topoi. We denote by RHomTi
.�;�/

the derived internal Hom in D.Ti / for i D 1; 2. For all F ;G 2 D.T2/ we have a canonical
morphism

f �RHomT2
.A;B/! RHomT1

.f �A; f �B/; (2.3)

which is functorial in A and B . Moreover, if f is a localisation morphism, then (2.3) is an
isomorphism.

Lemma 2.57. Let F 2 DC.BGi / and let G 2 DC.B yG/. Then the natural morphism

RHomBGi .F ; R�i;�G /! R�i;�RHomB yG .�
�
i F ;G /

is an isomorphism.

Proof. Let us consider the pull-back diagram of topoi given by the localisation at EGi

B yUi
C

B yG BGi :

u

�i e

�i

By Remarks 2.7 and 2.56, it is enough to show that the morphism

RHomC.e
�F ; Ru�G /! Ru�RHomB yUi

.u�e�F ;G /

is an equivalence in D.C/. This can be checked on extremally disconnected topological
spaces. Take S extremally disconnected. Then, by Remark 2.56, the morphism

R�
�
C=S;RHomC.e

�F ; Ru�G /jS
�
! R�

�
C=S;Ru�RHomB yUi

.u�e�F ;G /jS
�

is
RHomC=S

�
e�=SFjS ; Ru=S;�.GjS /

�
! RHomB yUi =S

�
u�=Se

�
=SFjS ;GjS

�
:

This is an equivalence by adjunction. The result follows.

Corollary 2.58. Let F ;G 2DC.B yG/. We have the following expression ofRHom yG.F ;G /.

(i) If F D ��i F 0, with F 0 2 DC.BGi /, then we have

RHomB yG .F ;G / Š lim
��!
j!i

��j RHomBGj .�
�
i;jF 0; R�j;�G /:

(ii) In general, we have

RHomB yG .F ;G / Š R lim
 ��
i

lim
��!
j!i

��j RHomBGj .�
�
i;jR�i;�F ; R�j;�G /:

Proof. For (i), we apply Proposition 2.54 to RHomB yG .F ;G /. We conclude by applying
Lemma 2.57 to R�j;�RHomB yG .F ;G /.

For (ii), we apply Proposition 2.54 firstly on F and then on RHomB yG .�
�
i R�i;�F ;G /

for all i . We conclude by applying Lemma 2.57 to R�j;�RHomB yG .�
�
i R�i;�F ; G / for

all j .
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3. Cohomology of yWF

Definition 3.1. Let k be a finite field. The Weil groupWk �Gk is defined by the pullback
square of topological groups

Wk Gk

Z yZ:

� �

The cohomology of the condensed group Wk Š Z is explicited in Example 2.42. Let
F=Qp be a finite field extension, and k WD OF =mF the finite residue field. Let F ur be its
maximal unramified extension, and let L be the completion of F ur. Let xF be an algebraic
closure of F and let xL be an algebraic closure of L containing xF . Let GF WD Gal. xF=F /
and Gk WD Gal.F ur=F /D Gal. Nk=k/. Let I WD Gal. xF=F ur/ be the inertia group. We have
an exact sequence of topological groups 1! I ! GF ! Gk ! 1.

Definition 3.2. The Weil group of the local field F is the pullback ofWk underGF �Gk

WF WD GF �Gk Wk :

The pullback is taken in the category of topological groups.

The subgroup I �WF is clopen, and we have an exact sequence of topological groups

1! I ! WF ! Wk ! 1:

The topological groups I and WF are a profinite group and a prodiscrete group respect-
ively. Indeed, if � denotes the set of open normal subgroups of I , we have

I D lim
 ��
U2�

I=U; WF D lim
 ��
U2�

WF =U; (3.1)

where I=U is finite and WF =U is discrete for all U .
It follows from Krasner’s Lemma applied to the extension F ur�L that I DGal.xL=L/.

Hence we have a continuous action of the topological group I on the discrete abelian
group xL�. By Hilbert 90 we have

H1
�
BI .Set/; xL�

�
D 0: (3.2)

We would like a similar computation for the topological abelian group xL�, where the topo-
logy is induced by the natural topology on xL. We try to recover this in BI , the classifying
topos of the condensed group I .

Definition 3.3. Let K=L be a finite Galois extension of group G. Let us endow K� with
the topology induced by the inclusion K� � K. Let K� be the associated condensed
G-module. We set

xL� WD lim
��!
K

K� 2 Ab.BI /;
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where K� is seen as an object of Ab.BI / by pullback along BI ! BG , and the colimit is
computed in BI .

Proposition 3.4. The abelian group H1.BI ; xL
�/.�/ is not torsion.

Proof. Let us consider the exact sequence in Ab.BI /

0! L� ! xL� ! xL�=L� ! 0:

We get an exact sequence in cohomology

� � � ! H0.BI ; xL
�=L�/.�/

˛
�! H1.BI ; L

�/.�/
ˇ
�! H1.BI ; xL

�/.�/! � � � :

Since L�, xL� and xL�=L� are solid, the spectral sequence given by Lemma 2.19 degen-
erates. Hence

Hq.BI ; L
�/.�/ D H q

�
L�.�/! L�.I /! � � �

�
;

and similarly for xL� and xL�=L�. We have the following morphisms of complexes

0 0

L�.�/ Cont.I; L�/ � � �

xL�.�/ Cont.I; xL�/ � � �

xL�=L�.�/ xL�=L�.I / � � � :

0 0

Since for all n the topological group I n is profinite, we have

Ext1Ab.C/
�
ZŒI n�; L�

�
D Ext1Solid

�
ZŒI n��; L�

�
D 0:

Hence vertical sequences are exact. By diagram chasing, the morphism ˛ is explicited as
follows

˛ W H0.BI ; xL
�=L�/.�/! H1.BI ; L

�/.�/; Nx 7! .i 7! x�1i � x/;

where x is a representative of Nx in xL�.�/ D
S
K K

�.�/. In particular, since x 2 K� for
some K, its orbit under the action of I is finite. Hence, the image of ˛ lands in those
continuous homomorphisms I ! L� whose image is finite. Local Class Field theory
provides an isomorphism of topological groups [16, Corollary 9.16]

J Š O�F ;
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where J D I=Gal. xF=F ab/. Then we get a continuous group homomorphism ' W I � J Š

O�F ,!L�. For all n, the image of 'n is .O�F /
n, an infinite subgroup. Hence 'n … im.˛/D

ker.ˇ/ for all n. Thus ˇ.'/ is an element of H1.BI ; xL
�/.�/ which is not torsion.

Consequently, the condensed version of Hilbert 90 does not hold if we consider I
as a condensed group. Hence we consider the profinite topological group I (resp. the
prodiscrete topological group WF ) as a pro-condensed group, say yI (resp. yWF ). We get
an exact sequence of pro-condensed groups

1! yI ! yWF ! Z! 1:

Following Section 2.3, we have classifying topoi ByI and B yWF . Let M 2 Ab.B yWF /. By
Proposition 2.49 and Example 2.42, we get an exact sequence

0! H1
�
BWk ;H

q�1.ByI ;M/
�
! Hq.B yWF

;M/! H0
�
BWk ;H

q.ByI ;M/
�
! 0 (3.3)

for all q.
In the next section we see how to recover a topological version of (3.2) in this setting.

3.1. The complex R�.B yI ; xL�/

Replacing I with yI in Definition 3.3, we obtain an object

xL� WD lim
��!
K

K� 2 Ab.ByI /:

The goal of this section is to compute the complex R�.ByI ;
xL�/. In particular, we show

that it is concentrated in cohomological degree 0.
IfK=L is a finite Galois extension, the ring OK is a discrete valuation ring with residue

field Nk. The group of invertible elements of OK is O�K WD ¹x 2 OK j vK.x/ D 0º. For
all i � 1, we set Ui

K
WD 1Cmi

K . Let us consider the filtration of the topological abelian
group K�

� � � � UiC1
K � Ui

K � � � � � U0
K WD O�K � U�1K WD K

�: (3.4)

This is a filtration by clopen subgroups of K�. Since K� is complete with the topology
induced by the valuation, we have

K� Š lim
 ��
i�0

K�=Ui
K

as topological abelian groups. Moreover, by [29, Chapter IV, Section 2, Proposition 6], we
have the following associated graded topological abelian groups

gr�1 D U�1K =U0
K Š Z; gr0 D U0

K=U
�1
K Š

Nk�; gr i D Ui
K=U

i�1
K Š Nk 8i � 1;

where the last isomorphism is non-canonical.
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Lemma 3.5. The filtration (3.4) is a filtration by clopen subgroups, and we have

K� Š R lim
 ��
i�0

K�=Ui
K 2 D.BG/;

where the right-hand side is a pro-discrete condensed abelian group with its obvious
G-action.

Proof. We already observed that the subgroup Ui
K � K

� is clopen for all i . Since the
functor .�/ W Top! C commutes with limits, the morphism

K� ! lim
 ��
i�0

K�=Ui
K (3.5)

is an isomorphism in Ab.C/. Moreover, for all i the transition morphism K�=UiC1
K �

K�=Ui
K is G-equivariant. Hence (3.5) is an isomorphism in Ab.BG/ as well. For all i ,

the topological G-module K�=Ui
K is discrete by the first part of the lemma. Moreover,

all the transition morphisms are G-equivariant continuous surjections. Thus, for all i the
morphism K�=UiC1

K � K�=Ui
K is an epimorphism in C, and consequently in BG . The

result follows from [5, Proposition 3.1.10] and Proposition 2.17.

Lemma 3.6. The abelian group Hq.BG ; K
�/.S/ is torsion for all S extremally discon-

nected and all q � 1. Hence Hq.ByI ;
xL�/.S/ is torsion.

Proof. By Proposition 2.50 we have

R�.ByI ;
xL�/ Š lim

��!
K

R�.BG ; K�/:

Hence it is enough to check that�
��1R�.BG ; K

�/
�
.S/ Š ��1

�
R�.BG ; K

�/.S/
�

has torsion cohomology groups for any K and any S extremally disconnected. By Pro-
position 2.41 we have

R�.BG ; K
�/.S/ Š R�

�
BG.Set/;K�.S/

�
:

The result follows since higher cohomology groups of the finite group G are killed by the
order of G.

Lemma 3.7. For any finite Galois K=L of group G, the canonical map

K�;ı ˝L Z=mZ
�
�! K� ˝L Z=mZ

is an equivalence in D.BG/, where we consider K�;ı as a discrete abelian group with a
continuous G-action.
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Proof. Let e be ramification index ofK, i.e., the valuation of p 2K�. We set e1 WD e=(p-1)
and we consider the finite filtration

� � � D UnC1
K D Un

K � Un�1
K � � � � � U0

K WD O�K � U�1K D K
�

of K� for some n > e1. Similarly, we have a finite filtration

� � � D U
nC1;ı
K D U

n;ı
K � U

n�1;ı
K � � � � � U

0;ı
K
WD O

�;ı
K � U

�1;ı
K D K�;ı

of K�;ı . For any �1 � i � n the map U
i;ı
K =U

iC1;ı
K ! Ui

K=U
iC1
K is an isomorphism of

discrete abelian groups, hence the map�
U
i;ı
K =U

iC1;ı
K

�
˝
L Z=mZ!

�
Ui
K=U

iC1
K

�
˝
L Z=mZ

is an equivalence. Therefore, it is enough to check that

U
n;ı
K ˝

L Z=mZ! Un
K ˝

L Z=mZ (3.6)

is an equivalence. If m is coprime to p,

Un
K

.�/m

���! Un
K

is an isomorphism of topological groups (see Lemma 3.9) so that both sides of (3.6) van-
ish. Hence we may suppose m D p� . Then the map

Un
K

.�/p
�

����! Un
K

induces an isomorphism of topological abelian groups

Un
K

.�/p
�

����! UnC�e
K

onto the open subgroup UnC�e
K � Un

K , see [28, Corollaire 1]. We obtain an isomorphism

Un
K ˝

L Z=p�Z Š Un
K=U

nC�e
K ;

where Un
K=U

nC�e
K is discrete. Hence the map

U
n;ı
K ˝

L Z=p�Z Š U
n;ı
K =U

nC�e;ı
K

�
�! Un

K=U
nC�e
K Š Un

K ˝
L Z=p�Z

is an equivalence. The result follows.

Corollary 3.8. For any positive integer m, one has an exact sequence

0! �m.xL/! xL
�
.�/m

���! xL� ! 0 (3.7)

in Ab.ByI /.
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Lemma 3.9. Let n 2 N. For m coprime to p, the continuous homomorphism

.�/m W Un
K ! Un

K

is an isomorphism of topological groups.

Proof. The topological abelian group Un
K is complete for the topology induced by the

valuation, hence we have
Un
K D lim

 ��
i�n

Un
K=U

i
K :

For all i � 1, Ui
K=U

iC1
K Š Nk and .�/m is the multiplication �m W Nk ! Nk. This is an

isomorphism sincem is coprime with p. The result follows from [29, Chapter V, Section 1,
Lemma 2].

Proposition 3.10. For any finite Galois extension K=L of group G we have

R�.BG ; K
�/ Š L�Œ0�

and consequently R�.ByI ;
xL�/ Š L�Œ0�.

Proof. By Corollary 2.26 (1), H0.BG ;K
�;ı/ D L�;ı and H0.BG ;K

�/ D L�. Hence we
have a morphism of fiber sequences

L�;ı R�.BG ; K
�;ı/ ��1R�.BG ; K

�;ı/

L� R�.BG ; K
�/ ��1R�.BG ; K

�/:

Applying .�/˝L Z=mZ, we obtain

L�;ı ˝L Z=mZ R�.BG ; K
�;ı/˝L Z=mZ ��1R�.BG ; K

�;ı/˝L Z=mZ

L� ˝L Z=mZ R�.BG ; K
�/˝L Z=mZ ��1R�.BG ; K

�/˝L Z=mZ;

where the left and the middle vertical maps are equivalences by Lemma 3.7. Hence the
right vertical map is an equivalence as well. By Corollary 2.26 (3) and [30, Propositions 5
and 8, Section 3.3 (c)] we have ��1R�.BG ;K

�;ı/ D ��1R�.BG.Set/;K�;ı/ D 0. Con-
sequently, one gets �

��1R�.BG ; K
�/
�
˝
L Z=mZ D 0:

Therefore, for all extremally disconnected S , we have�
��1

�
R�.BG ; K

�/.S/
��
˝
L Z=mZ Š

��
��1R�.BG ; K

�/
�
˝
L Z=mZ

�
.S/ D 0:

Hence we get�
��1

�
R�.BG ; K

�/.S/
��
˝
L Q=Z Š lim

��!
m

�
��1

�
R�.BG ; K

�/.S/
��
˝
L Z=mZ D 0:
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Moreover, we have �
��1

�
R�.BG ; K

�/.S/
��
˝
L Q D 0

by Lemma 3.6. Thus the fiber sequence

��1
�
R�.BG ; K

�/.S/
�
! ��1

�
R�.BG ; K

�/.S/
�
˝
L Q

! ��1
�
R�.BG ; K

�/.S/
�
˝
L Q=Z

yields �
��1R�.BG ; K

�/
�
.S/ Š ��1

�
R�.BG ; K

�/.S/
�
D 0

for all extremally disconnected S . We get ��1R�.BG ; K
�/ D 0, hence we have

R�.BG ; K
�/ Š H0.BG ; K

�/Œ0� Š L�Œ0�:

3.2. The complex R�.B yWF
; R=Z.1//

In this section we define a “dualising object” in the category Db.B yWF /, which we denote
by R=Z.1/. We study the complex R�.B yWF

;R=Z.1//, showing that it is concentrated in
cohomological degrees 0; 1; 2.

Lemma 3.11. We have R�.BWk ;O
�
L/ D O�F Œ0�.

Proof. Let us consider the filtrations

� � � � Ui
L � � � � � U2

L � U1
L � U0

L WD O�L ;

� � � � Ui
F � � � � � U2

F � U1
F � U0

F WD O�F :

As in Lemma 3.5, we have

O�F Š R lim
 ��
i�1

O�F =U
i
F 2 D.C/; O�L Š R lim

 ��
i�1

O�L=U
i
L 2 D.BWk /:

By Example 2.42, we have

R�
�
BWk ; gr

0.O�L/
�
D k�Œ0� D gr0.O�F /Œ0�

and
R�

�
BWk ; gr

i .O�L/
�
D kŒ0� D gr i .O�F /Œ0�:

Consequently, we have

R�
�
BWk ;O

�
L=U

i
L

�
Š O�F =U

i
F Œ0�

and thus

R�
�
BWk ;O

�
L

�
Š R�

�
BWk ; R lim

 ��
i�1

O�L=U
i
L

�
Š R lim

 ��
i�1

R�
�
BWk ;O

�
L=U

i
L

�
D R lim

 ��
i�1

O�F =U
i
F Œ0� D O�F Œ0�:
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Proposition 3.12. The cohomology of yWF with coefficients in xL� is given by

Hq.B yWF
; xL�/ D

8̂̂<̂
:̂
F � q D 0;

Z q D 1;

0 q � 2;

where F � has its natural topology as a subspace of F and Z has the discrete topology.

Proof. By Proposition 3.10 and by the exact sequence (3.3), we have

Hq.B yWF
; xL�/ Š Hq.BWk ; L

�/:

Let us consider the short exact sequence of condensed Wk-modules

0! O�L ! L� ! Z! 0:

The result follows from the long exact cohomology sequence and from Lemma 3.11.

Corollary 3.13. Let n 2 N. The cohomology of yWF with coefficients in �n.xL�/ is given
by

Hq.B yWF
; �n/ D

8̂̂̂̂
<̂
ˆ̂̂:
�n.F / q D 0;

F �=.F �/n q D 1;

Z=nZ q D 2;

0 q � 3:

In particular, the cohomology groups are finite. We set � WD lim
��!�n

. Then we have

H2.B yWF
; �/ D lim

��!
n

H2.B yWF
; �n/ D Q=Z:

Proof. Consider the long exact cohomology sequence associated to (3.7). The result fol-
lows from Proposition 3.12.

Definition 3.14. We set Z.1/ WD xL�Œ�1� and R.1/ WD RŒ�1� in D.B yWF /. Let us consider
the shifted valuation morphism Z.1/! R.1/. We define

R=Z.1/ WD cofib
�
Z.1/! R.1/

�
D fib.xL� ! R/:

We have an exact triangle in D.B yWF /

Z.1/! R.1/! R=Z.1/: (3.8)

Proposition 3.15. The cohomology of yWF with coefficients in R=Z.1/ is given by

Hq
�
B yWF

;R=Z.1/
�
D

8̂̂<̂
:̂

O�F q D 0;

R=Z q D 1; 2;

0 q � 3:
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Proof. By Proposition 2.30, we have Hq.ByI ;R/ D 0 for all q > 0. Therefore, we get

Hq
�
B yWF

;R.1/
�
D Hq�1.BWk ;R/ D

´
R q D 1; 2;

0 q ¤ 1; 2:

The long exact cohomology sequence associated to (3.8) and Proposition 3.12 imply the
result.

Consequently, there is a trace map

R�
�
B yWF

;R=Z.1/
�
! R=ZŒ�2�: (3.9)

If M 2 Db.B yWF /, we set

MD
WD RHom

�
M;R=Z.1/

�
2 D.B yWF /:

We have a cup-product pairing

R�.B yWF
;M/˝L R�.B yWF

;MD/! R=ZŒ�2�:

This cup-product pairing could allow us to express the local Tate duality as a Pontry-
agin duality between locally compact abelian groups. In the next section, we study the
condensed abelian groups Hq.B yWF

;M/ and Hq.B yWF
;MD/ for several yWF -modules.

3.3. Condensed structures on the cohomology groups

We begin this section by studying some abelian groups of interest.

Definition 3.16. Let A be an abelian group. We say that A is

(1) of finite Z-type if A Š Zr ˚ F for some r 2 N and some F finite abelian group;
equivalently, if A is an extension of a finite power of Z by a finite abelian group;

(2) of finite Qp=Zp-type if A Š .Qp=Zp/r ˚ F for some r 2 N and some F finite
abelian group; equivalently, if A is an extension of a finite power of Qp=Zp by a
finite abelian group.

The equivalence in (1) comes from the fact that Zr is a projective abelian group, while
the equivalence in (2) is a consequence of the following.

Lemma 3.17. Let E be an extension of a divisible group D by a finite group F . Then
E Š D ˚ F 0 for F 0 a quotient of F .

Proof. This is [14, Lemma 5.5].

Lemma 3.18. The following facts hold.

(a) An extension of an abelian group of finite Z-type (resp. of finite Qp=Zp-type) by
a finite abelian group is of finite Z-type (resp. of finite Qp=Zp-type).
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(b) Finite Z-type and finite Qp=Zp-type abelian groups are stable by taking sub-
groups.

(c) Finite Z-type and finite Qp=Zp-type abelian groups are stable by taking quo-
tients.

Proof. (a) is clear. We only prove (b) and (c) for finite Qp=Zp-type abelian groups. For
(b), let A be a subgroup of .Qp=Zp/r ˚ F , where n 2 N and F finite. By (a) we can
reduce to the case where A is a subgroup of .Qp=Zp/r . Hence A is a torsion p-group
with a finite p-torsion. By [13, Chapter III, Theorem 19.2 and Exercise 19] we are done.

For (c), let Q be a quotient .Qp=Zp/r ˚ F=A, for A a subgroup of .Qp=Zp/r ˚ F .
By (a) we can reduce to the case Q D .Qp=Zp/r=A. Hence Q is a torsion p-group with
a finite p-torsion. By [13, Chapter III, Theorem 19.2 and Exercise 19] we are done.

We determine the structure of R�.B yWF
; M/ and R�.B yWF

; MD/ in some cases of
interest. In particular, we consider M either a finite-dimensional real vector spaces with
its Euclidean topology or a finite Z-type discrete abelian group.

Let V be a finite-dimensional real vector space with a continuous action of WF =U ,
where U is an open normal subgroup of I . By [7, Chapter VII, Section 2.1, Proposition 1],
the action is R-linear. We set V � WD HomR.V;R/.

Lemma 3.19. We have RHom.R; xL�/ D 0 in D.B yWF /.

Proof. By Remarks 2.7 and 2.56, it is enough to check that RHomByI .R;
xL�/ D 0. By

Corollary 2.58 (i), it is sufficient to show that for every finite extension K=L of group G,
we have

RHomBG .R; R�K;�
xL�/ D 0:

We have

.R�K;� xL
�/jEG D R�

�
ByI=EG;

xL�
jEG

�
D lim
��!
K0=K

R�
�
BGK0=K ; .K

0/�
�
D K�;

where the last equality follows from Proposition 3.10. Since K� is solid and RL� D 0

[9, Corollary 6.1 (iii)], we have

RHomBG .R; R�K;�
xL�/jEG D RHomC.R; K

�/ D RHomSolid.R
L�; K�/ D 0:

We conclude by observing that C! BG is a localisation morphism.

Remark 3.20. There is an equivalence V � Š RHom.V ;R/ in D.B yWF /. Consequently,
by Lemma 3.19, the induced morphism V �Œ�1�! V D is an equivalence in D.B yWF /. We
denote V and V � simply by V and V � from now on.

Proposition 3.21. Let V be a finite-dimensional real vector space with a continuous
action ofWF =U , withU � I an open subgroup. Then Hq.B yWF

;V / is a finite-dimensional
vector space for q D 0; 1, and vanishes for all q � 2. Moreover, Hq.B yWF

; V D/ is a finite-
dimensional real vector space for q D 1; 2, and vanishes for all q ¤ 1; 2.
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Proof. By Propositions 2.30 and 2.50, we have

R�.B yWF
; V / D R�

�
BWk ; R�.ByI ; V /

�
D R�

�
BWk ; lim

��!
U 0�U

R�.BI=U 0 ; V /
�

D R�.BWk ; V
I=U /:

By Example 2.42, this complex is concentrated in cohomological degrees 0; 1. Moreover,
its cohomology groups are finite dimensional real vector spaces. The same holds if we
replace V with V �. We conclude by Remark 3.20.

Let M be a discrete abelian group with a continuous action of WF (resp. I ). Let
us consider M as an object of Ab.B yWF / (resp. Ab.ByI /) by pullback along B yWF !
B yWF

.Set/ D BWF .Set/ (resp. ByI ! ByI .Set/ D BI .Set/).

Remark 3.22. Let N be a discrete abelian group with a continuous action of I . By Pro-
position 2.50 we have

R�.ByI ; N / D lim
��!
U

R�.BI=U ; N
U /:

By Propositions 2.39 and 2.41, this is a complex of discrete abelian groups and it is equi-
valent toR�.BI .Set/; N / in D.Ab.C//. The same holds for yWF andWF instead of yI and
I respectively.

Proposition 3.23. Let M be a discrete abelian group with a continuous action of WF .
Then Hq.B yWF

;M/ is discrete for all q and vanishes for all q � 4. If M is torsion, then
we have H3.B yWF

;M/ D 0.

Proof. By Remark 3.22, the condensed abelian group Hq.B yWF
;M/ is discrete for all q.

By [30, Chapter II, Section 3.3 (c)], Hqcont .I;M/D 0 for all q � 3, and even for all q � 2
if M is torsion. We conclude again by Remark 3.22 and by (3.3).

Suppose that M is finite. Then there exists an open normal subgroup U of I acting
trivially on M . We set H WD WF =U .

Lemma 3.24. Let M be a finite abelian group with a continuous action of WF . Then we
have RHom.M;R/ D 0 in D.B yWF /.

Proof. By Remarks 2.7 and 2.56 it is enough to prove thatRHomB yU .M jjEH ;RjEH /D 0
in D.B yU /. Since MjEH Š Z=n1Z˚ � � � ˚ Z=nkZ, we can reduce to M D Z=nZ. We
have the exact triangle in D.B yU /

RHom.Z=nZ;R/! RHom.Z;R/
�n
�! RHom.Z;R/:

Since �n W R! R is an isomorphism, the result follows.

Lemma 3.25. LetM be a finite abelian group with a continuous action ofWF . ThenMD

is represented by the finite abelian group M 0 WD Hom.M;�/ D RHom.M;�/.
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Proof. By Lemma 3.24, it is enough to check that we have an equivalence

RHom.M;�/! RHom.M; xL�/

in D.B yWF /. The inclusion � � xL�;ı yields a morphism Hom.M;�/! RHom.M; xL�;ı/
in D.BWF .Set//. By Remark 2.56, the morphism of topoi D.B yWF / ! D.BWF .Set//
yields a morphism

RHomD.BWF .Set//.M; xL
�;ı/! RHomD.B yWF

/.M;
xL�;ı/! RHomD.B yWF

/.M;
xL�/:

We get a morphism RHom.M; �/! RHom.M; xL�/ in D.B yWF /. By Remark 2.7, it is
enough to check that the morphism

RHom.MjEH ; �jEH /! RHom
�
MjEH ; xL

�
jEH

�
is an equivalence in D.B yU /. We can suppose MjEH D Z=nZ. The result follows since
RHom.Z=nZ; xL�/ D �n is discrete.

Proposition 3.26. Let M be a finite abelian group with a continuous action of WF . Then
Hq.B yWF

;M/ and Hq.B yWF
;MD/ are finite for all q, and vanish for q � 3.

Proof. If M D �n, this is just a consequence of Corollary 3.13. Then we adapt the proof
of the finiteness statement in [23, Theorem 2.1], plus Proposition 3.23. By Lemma 3.25,
the result for MD follows as well.

Lemma 3.27. Let M be a free abelian group of finite Z-type with a continuous action of
WF . Then R�.B yWF

;M/ is concentrated in degrees 0; 1; 2.

Proof. By Proposition 3.23, it is enough to show that

H3.B yWF
;M/ D H3.BWF .Set/;M/ D 0:

This is [18, Theorem 3.2.1].

Lemma 3.28. Let F be a finite extension of Qp . Then we have

Hq.B yWF
;Z/ D

8̂̂<̂
:̂

Z q D 0; 1;

J_ q D 2;

0 q � 3;

where J is the kernel of Gab
K � Gk .

Proof. By Remark 3.22 and Lemma 3.27, we have Hq.B yWF
;Z/ D Hq.BWF .Set/;Z/

for all q and Hq.B yWF
;Z/ D 0 for all q � 3. In particular, H0.B OWF

;Z/ D Z. In order
to determine H1.BWF .Set/;Z/, we observe that H1.BI .Set/;Z/ D Homcont.I;Z/ D 0.
Thus we have

H1
�
BWF .Set/;Z

�
Š H1

�
BWk .Set/;Z

�
Š Z:
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It remains to determine H2.BWF .Set/;Z/. Let us consider the long exact cohomology
sequence associated to

0! Z! Q! Q=Z! 0:

Since Hq.BI .Set/;Q/ D 0 for all q � 1, we have

H1
�
BWF .Set/;Q

�
Š H1

�
BWk .Set/;Q

�
Š Q:

By the Snake Lemma, we have

H2
�
BWF .Set/;Z

�
Š coker

�
H1
�
BWF .Set/;Q

�
=H1

�
BWF .Set/;Z

�
! H1

�
BWF .Set/;Q=Z

��
Š coker

�
H1
�
BWk .Set/;Q

�
=H1

�
BWk .Set/;Z

�
! H1

�
BWF .Set/;Q=Z

��
Š coker

�
H1
�
BWk .Set/;Q=Z

�
! H1

�
BWF .Set/;Q=Z

��
;

where the last isomorphism follows from the fact that H2.BWk .Set/;Z/ D 0. Since Q=Z
is torsion, by [18, Proposition 4.1.1] we have

H2
�
BWF .Set/;Z

�
D coker

�
H1
�
BGk .Set/;Q=Z

�
! H1

�
GF .Set/;Q=Z

��
D coker

�
.Gk/

_
! .Gab

F /
_
�
D J_:

Remark 3.29. By Local Class Field Theory, we have an isomorphism

O�F
�
�! J:

Hence R�.B yWF
;Z/ and RHom.R�.B yWF

;R=Z.1//;R=ZŒ�2�/ have the same cohomo-
logy.

Let F 0 be a finite extension of F , and let G WD Gal.F 0=F /.

Theorem 3.30. Let M be a free abelian group of finite Z-type with a continuous action
ofG. Then Hq.B yWF

;M/ is discrete of finite Z-type for q D 0; 1, discrete of finite Qp=Zp-
type for q D 2, and vanishes for all q � 3.

Proof. By Remark 3.22, we have Hq.B yWF
;M/D Hq.BWF .Set/;M/. Firstly, the abelian

group
H0
�
BWF .Set/;M

�
DMG

is of finite Z-type. Moreover, the exact sequence

0! H1
�
BWk .Set/;M I

�
! H1

�
BWF .Set/;M

�
! H0

�
BWk .Set/;H1

�
BI .Set/;M

��
! 0

presents H1.BWF .Set/; M/ as an extension of a finite group by a finite Z-type abelian
group. Hence H1.BWF .Set/;M/ is of finite Z-type. It remains to determine the structure
of H2.BWF .Set/;M/. Let us consider the Hochschild–Serre spectral sequence

E
i;j
2 D Hi

�
BG.Set/;Hj

�
BWF 0 .Set/;M

��
H) HiCj

�
BWF .Set/;M

�
:
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By Lemma 3.28,Ei;02 andEi;12 are finite for all i � 1. Moreover, by Lemmas 3.18 and 3.28,
E
0;2
2 is of finite Qp=Zp-type. Thus we have a finite filtration

0�F 2�F 1�F 0DH2
�
BWF .Set/;M

�
; F 0=F 1DE0;21 ;F 1=F 2DE1;11 ;F 2DE2;01 ;

whereE1;11 andE2;01 are finite andE0;21 is of finite Qp=Zp-type. Hence H2.BWF .Set/;M/

is of finite Qp=Zp-type by Lemma 3.18 (a).

Theorem 3.31. Let M be a free abelian group of finite Z-type with a continuous action
of G. Then the Pontryagin dual of Hq.B yWF

;MD/ is discrete of finite Z-type for q D 1; 2,
discrete of finite Qp=Zp-type for q D 0, and vanishes for all q � 3.

Proof. Let us consider the Hochschild–Serre spectral sequence

E
i;j
2 D Hi

�
BG ;H

j .B yWF 0
;MD/

�
H) HiCj .B yWF

;MD/: (3.10)

We determine the structure of Ei;j2 and E
i;j
1 for all i; j . By Proposition 3.15 and

Lemma 3.18,E0;02 is the Pontryagin dual of a finite Qp=Zp-type abelian group. Moreover,
E
0;j
2 is the Pontryagin dual of a finite Z-type abelian group for j D 1; 2. Finally, E0;j2

vanishes for j � 3. Consequently, E0;j1 is the Pontryagin dual of a finite Z-type abelian
group for j D 1; 2 and vanishes for all j .

Let i � 1. By Proposition 3.15, there existN 2N and a finite abelian groupK such that
E
i;0
2 D Hi .BG ;ZNp ˚K/. Hence Ei;02 is represented by a compact Hausdorff topological

abelian group (see Example 2.27 (ii)). Up to replacing K with its p1-torsion, the abelian
group

Hi .BG ;Z
N
p ˚K/.�/ D Hi

�
BG.Set/;ZN;ıp ˚K

�
is a torsion Zp-module. Moreover, by Propositions 2.30 and 3.15 there exist n1; n2 2 N
such that Ei;j2 D HiC1.BG ;Znj /, for j D 1; 2. Hence Ei;j2 is finite for all i � 1 and for
all j . Consequently, Ei;j1 is finite for all i � 1 and for j D 0; 1; 2, and vanishes for all
j � 3.

We now determine the structure of Hq.B yWF
;MD/. For all q � 2, (3.10) gives a three-

terms filtration

0 � F 2 � F 1 � F 0 D Hq.B yWF
;MD/; gr i WD F i=F iC1 D Eq�i;i1 : (3.11)

Let q � 3. Then all the graded groups in (3.11) are finite. Hence Hq.B yWF
;MD/ is finite

for all q � 3. In particular, we have Hq.B yWF
;MD/ D limm Hq.B yWF

;MD/=m. By the
inclusion,

lim
m

Hq.B yWF
;MD/=m ,! lim

m
Hq.B yWF

; .M=m/D/

and by Proposition 3.26, we have limm Hq.B yWF
; MD/=m D 0 for all q � 3. Hence

Hq.B yWF
;MD/ vanishes for all q � 3.

Let q D 2. Then gr i is finite for i D 0; 1, and gr0 is the Pontryagin dual of a finite
Z-type abelian group. Hence H2.B yWF

;MD/_ is of finite Z-type.
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Let q D 1. Then (3.10) gives an exact sequence

0! E1;01 ! H1.B yWF
;MD/! E0;11 ! 0:

The left term is finite and the right term is the Pontryagin dual of a finite Z-type abelian
group. Hence H1.B yWF

;MD/_ is of finite Z-type.

Let q D 0. By (3.10), we have H0.B yWF
;MD/_ D .E

0;0
2 /_, which is of finite Qp=Zp-

type by Proposition 3.15 and Lemma 3.18 (c).

Proposition 3.21 and Theorem 3.30 imply the following.

Proposition 3.32. Let M be a finite power of R=Z with a continuous action of G. Then
there exist n0; n1; m1 2 N and finite abelian groups H0;H1 such that

Hq.B yWF
;M/ Š

8̂̂<̂
:̂
.R=Z/n0 ˚H0 q D 0;

.R=Z/n1 ˚ .Qp=Zp/m1 ˚H1 q D 1;

0 q � 2:

Proof. By Corollary 2.26 (1), the condensed abelian group H0.B yWF
; M/ is represented

by a closed subgroup of .R=Z/n, hence it is of the desired form. Let us consider the exact
sequence in Ab.B yWF /

0! L! R!M ! 0; (3.12)

where R WD Hom.R;M/ and L WD Hom.R=Z;M/. Applying Proposition 3.21 and The-
orem 3.30 to R and L respectively, we get Hq.B yWF

;M/ D 0 for all q � 2.
We only need to determine H1.B yWF

; M/. If the action is trivial, by the long exact
cohomology sequence associated to (3.12), we get

H1.B yWF
;M/ Š .R=Z/n ˚

�
.O�F /

_
�n
:

In the general case, we have an exact sequence

0! H1
�
BG ;H

0.B yWF 0
;M/

�
! H1.B yWF

;M/! K ! 0;

where K is represented by a closed subgroup of H1.B yWF 0
;M/ Š .R=Z/n ˚ ..OF 0/_/n.

Hence K is a direct sum of a finite power of R=Z and a discrete abelian group of finite
Qp=Zp-type, while H1.BG ;H0.B yWF 0

;M// Š H2.BG ;Zn/ is a finite abelian group. We
conclude by Lemma 3.17.

4. Duality

By Proposition 3.15 we have a trace map

R�
�
B yWF

;R=Z.1/
�
! R=ZŒ�2�:
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Let M 2 Db.B yWF /. We have a cup-product pairing in D.Cond.Ab//

R�.WF ;M/˝L R�.WF ;M
D/! R=ZŒ�2� (4.1)

inducing maps

 .MD/ W R�.WF ;M/! RHom
�
R�.WF ;M

D/;R=ZŒ�2�
�
;

 .M/ W R�.WF ;M
D/! RHom

�
R�.WF ;M/;R=ZŒ�2�

�
: (4.2)

In this section we first define a full stable 1-subcategory Dperf
Z;R of Db.Cond.Ab// (see

Section 4.1). Then we prove that for all M 2 Dperf
Z;R with an action of a finite quotient of

GF , (4.1) is perfect, i.e., both  .M/ and  .MD/ are equivalences (see Section 4.4). In
order to do this, we need two tools: these are presented in Sections 4.2 and 4.3.

4.1. Locally compact abelian groups of finite ranks

In the following, we recall the definitions of the derived 1-categories Db.FLCA/ and
Db.Ab.C// (see [15, Section 2.1]). We show that FLCA is stable by extensions in Ab.C/.
Moreover, we define a convenient full stable1-subcategory of D.Ab.C//.

Let A be a quasi-abelian category in the sense of [27]. Let N � C b.A/ be the full sub-
category of strictly acyclic complexes, and let S be the set of strict quasi-isomorphisms.
We define the bounded derived1-category of A

Db.A/ WD Ndg
�
C b.A/

�
=Ndg.N / WD Ndg

�
C b.A/

�
ŒS�1�;

whereNdg.�/ denotes the differential graded nerve [21, Construction 1.3.1.6]. The homo-
topy category

Db.A/ WD h
�
Db.A/

�
Š h

�
Ndg

�
C b.A/

��
=h
�
Ndg.N /

�
is equivalent to the classical Verdier quotient. Hence it is the bounded derived category of
the quasi-abelian category A in the sense of [27].

The category Ab.C/ is an abelian category [9, Theorem 2.2]. We define Db.Ab.C//
as above, where N � C b.Ab.C// is the full subcategory of acyclic complexes. This is
the bounded derived1-category of condensed abelian groups, and its homotopy category
Db.Ab.C// appears in [9].

We denote by FLCA the category of locally compact abelian groups of finite ranks
in the sense of [17, Definition 2.6], which is a quasi-abelian category (see [17, Corol-
lary 2.11]). Let Db.FLCA/ be its bounded derived 1-category. Following [15], we ob-
serve that Db.FLCA/ is a stable1-category in the sense of [21]. Its homotopy category
is the bounded derived category Db.FLCA/ defined in [17]. In [15] the authors define an
internal Hom

RHom.�;�/ W Db.FLCA/op
� Db.FLCA/! Db.FLCA/:
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The Pontryagin dual X_ is given by

RHom.�;R=Z/ W Db.FLCA/op
! Db.FLCA/; X 7! X_:

The functor .�/ W FLCA! Ab.C/ sending A to the associated condensed abelian group
A is fully faithful (see [9, Proposition 1.7]) and sends strict quasi-isomorphisms to usual
quasi-isomorphisms. Thus it induces a functor

Db.FLCA/! Db
�
Ab.C/

�
:

Remark 4.1. Considering Hom instead of Hom in the proof of [9, Corollary 4.9], it fol-
lows that for all A;B 2 Db.FLCA/, we have an equivalence

RHomFLCA.A;B/ Š RHomAb.C/.A;B/

which is functorial in A and B .

Lemma 4.2. The functor Db.FLCA/! Db.Ab.C// is an exact and fully faithful functor
of stable1-categories.

Proof. We observe that

Ndg
�
C b.FLCA/

�
! Ndg

�
C b
�
Ab.C/

��
! Db

�
Ab.C/

�
is exact, and sends strictly acyclic complexes of C b.FLCA/ to 0. By Theorem I.3.3 (i)
of [26], it induces an exact functor2 Db.FLCA/! Db.Ab.C//. Moreover, the induced
functor on homotopy categories

Db.FLCA/! Db
�
Ab.C/

�
is fully faithful by [15, Lemma 2.1] and [9, Corollary 4.9]. Hence the functor

Db.FLCA/! Db
�
Ab.C/

�
is an exact functor of stable1-categories which induces a fully faithful functor between
the corresponding homotopy categories. The result follows.

The stable1-categoryDb.FLCA/ is endowed with a t -structure by [27, Section 1.2.2],
since a t -structure on a stable1-category is defined as a t -structure on its homotopy cat-
egory [21, Definition 1.2.1.4]. We denote their heart by LH .FLCA/.

Lemma 4.3. The fully faithful functor Db.FLCA/! Db.Ab.C// is t -exact. Therefore,
the induced functor

LH .FLCA/ ,! Ab.C/

is exact and fully faithful.

2If � is an uncountable strong limit cardinal such that cof.�/ > @0, then the cardinality of any
A 2 FLCA is less than �. Hence the category FLCA is essentially small, and so is the 1-category
Ndg .C

b.FLCA//. Consequently, [26, Theorem I.3.3 (i)] applies.
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Proof. Let X� 2 Db.FLCA/�0. By [27, Proposition 1.2.19], in Db.FLCA/ the complex
X� is isomorphic to

0! Coim.d�1X /! X0 ! X1 ! � � � ;

with Coim.d�1X / in degree -1. The functor .�/ W LCA ! Ab.C/ respects cokernels of
closed immersions and all kernels, hence it respect coimages. By [17, Corollary 2.11], the
same holds for the functor .�/ W FLCA! Ab.C/. Hence in Db.Ab.C// the complex X�

is isomorphic to
0! Coim.d�1X /! X0 ! X1 ! � � � ;

with Coim.d�1X / in degree -1. This complex is acyclic in strictly negative degree. Con-

sequently, we have X� 2 Db.Ab.C//�0.
Now, let X� 2 Db.LCA/�0. By [27, Proposition 1.2.19], it is isomorphic to

� � � ! X�2 ! X�1 ! Ker.d0X /! 0;

with Ker.d0X / in degree 0. Then the complex X� is given by

� � � ! X�2 ! X�1 ! Ker.d0X /! 0;

with Ker.d0X / in degree 0, which is acyclic in strictly positive degree. Consequently, we

have X� 2 Db.Ab.C//�0.
Hence the functor Db.FLCA/! Db.Ab.C// induces a functor on left hearts. Since

Hom-sets are computed as in the derived category, the functor LH .FLCA/! Ab.C/ is
fully faithful by Lemma 4.2.

Corollary 4.4. Let A 2 Ab.C/. If A lies in the essential image of Db.FLCA/, then it lies
in the essential image of LH .FLCA/. In other words, we have

Ab.C/ \ Db.FLCA/ D LH .FLCA/:

Proof. We write A D X�, with X� 2 Db.FLCA/. The condition X� 2 Db.FLCA/�0 is
equivalent to the condition

HomDb.FLCA/.X
�; Y �/ D 0 8Y � 2 Db.FLCA/�1:

Since the functor .�/ W Db.FLCA/! Db.Ab.C// is fully faithful and t -exact, one gets

HomDb.FLCA/.X
�; Y �/ D HomDb.Ab.C//.A; Y

�/ D 0:

ThusX� 2Db.FLCA/�0. Similarly, one getsX� 2Db.FLCA/�0. The result follows.

Proposition 4.5. Up to identification with its essential image via .�/ W FLCA! Ab.C/,
the category FLCA is a full subcategory of Ab.C/ which is stable by extensions.
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Proof. Let us consider the exact sequence in Ab.C/

0! A0 ! E ! A00 ! 0;

where A0; A00 2 FLCA. Then we have

E D fib
�
A00 ! A0Œ1�

�
D fib

�
A00 ! A0Œ1�

�
;

where the last equality is a consequence of the exactness of Db.FLCA/! Db.Ab.C//
(see Lemma 4.2). In particular, we have E 2 Ab.C/ \ Db.FLCA/. By Corollary 4.4,
we have E 2 LH .FLCA/. Since FLCA � LH .FLCA/ is stable by extensions [27,
Proposition 1.2.29 (c)], the result follows.

Remark 4.6. Replacing FLCA with LCA� , we build the derived1-category Db.LCA�/.
All the previous results hold for Db.LCA�/ instead of Db.FLCA/.

Let us define a convenient full stable1-subcategory of Db.Ab.C//.

Definition 4.7. We define Dperf
Z;R as the full1-subcategory of Db.FLCA/ whose objects

are those X 2 Db.FLCA/ such that RHom.R=Z; X/ 2 Dperf.Z/.

Let X 2 D.Ab.C//. We have a distinguished triangle in D.Ab.C//

RHom.R=Z; X/! RHom.R; X/! X: (4.3)

If X 2 Dperf
Z;R, then the term on the left is in Dperf.Z/ and the middle term is in Dperf.R/.

Remark 4.8. We highlight some properties of Dperf
Z;R.

• Dperf
Z;R is a stable1-subcategory of D.Ab.C//.

• Dperf.Z/ is stable under retracts, hence so is Dperf
Z;R.

• X 2 Dperf
Z;R if and only if its Pontryagin dual is in Dperf

Z;R. Indeed we have

RHom.R=Z; X_/ D RHom.X;R=Z_/ D RHom
�
RHom.R=Z; X/;Z

�
Œ1�;

where the last equality comes from (4.3).

• R and Z are in Dperf
Z;R.

• If A is a stable1-subcategory of D.Ab.C// containing Z and R, then Dperf
Z;R is con-

tained in A. This follows from stability of A and (4.3).

Proposition 4.9. Let A 2 Dperf
Z;R \ FLCA with a continuous action of a finite quotient G

of GF . Then we have a G-equivariant filtration in Ab.C/

0 � F 0A � F 1A � F 2A D A;

where

• F 0A DW AS1 is a power of R=Z;
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• F 1A=F 0A DW AR is a finite-dimensional real vector space;

• A=F 1A DW AZ is a finite Z-type abelian group.

Proof. By the distinguished triangle (4.3), we get an exact sequence in Ab.C/

0! Zn1 ! Rn2 ! A! Zn3 ˚H ! 0;

for some n1; n2; n3 2N and some finite abelian groupH . The image of Zn1 is of the form
Zv1˚ � � � ˚Zvk , for ¹v1; : : : ; vkº linearly independent vectors of Rm. Hence Rn2=Zn1 Š
.R=Z/k ˚Rn2�k . We have a short exact sequence in Ab.C/

0! .R=Z/k ˚Rn2�k ! A! Zn3 ˚H ! 0:

Since we have A 2 FLCA, the morphism .R=Z/k ˚ Rn2�k ! A is represented by a
continuous homomorphism of topological abelian groups. The image of this morphism is
the connected component of 0, which is a G-equivariant subgroup. We call it F 1A, and
we observe that AZ WD A=F

1A is a finite Z-type abelian group.
Moreover, we have an exact sequence in Ab.C/

0! .R=Z/k ! F 1A! Rn2�k ! 0:

The image of .R=Z/k is the maximal compact subgroup of F 1A, which is aG-equivariant
subgroup. We call it F 0A or AS1 . Then AR WD F 1A=F 0A is a finite-dimensional real
vector space.

Proposition 4.10. Let A 2 Dperf
Z;R \ FLCA with a continuous action of a finite quotient G

of GF . Then Hq.B yWF
; A/ is locally compact of finite ranks for q D 0; 1; 2 and vanishes

for all q � 3. Moreover, H2.B yWF
; A/ is discrete of finite Qp=Zp-type.

Proof. Let us consider the filtration of A given by Proposition 4.9. By Propositions 3.21
and 3.32, we have

Hq.B yWF
; A/ Š Hq.B yWF

; AZ/ for all q � 2:

By Theorem 3.30, this condensed abelian group is discrete of finite Qp=Zp-type for qD 2,
and vanishes for all q � 3.

Let us consider the morphism of long exact sequences in Ab.C/

0 .AS1/
G .F 1A/G .AR/

G H1.BG ; AS1/

0 H0.B yWF
; AS1/ H0.B yWF

; F 1A/ H0.B yWF
; AR/ H1.B yWF

; AS1/:
ı0

The group G is finite and Hom.R=Z; AS1/ is of finite Z-type. Moreover we have

H1.BG ; AS1/ D H2
�
BG ;Hom.R=Z; AS1/

�
:
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Hence H1.BG ;AS1/ is finite and ı0 is the zero morphism. The vanishing of the Ext-group
Ext1Ab.C/.H

1.B yWF
; AR/;H1.B yWF

; AS1// gives

H1.B yWF
; F 1A/ Š H1.B yWF

; AS1/˚H1.B yWF
; AR/;

which identifies H1.B yWF
; F 1A/ to a locally compact of finite ranks by Propositions 3.21

and 3.32. By the same argument, the morphism H0.B yWF
; AZ/! H1.B yWF

; F 1A/ has
finite image, we call it K. Hence we have an exact sequence in Ab.C/

0! H1.B yWF
; F 1A/=K ! H1.B yWF

; A/! H1.B yWF
; AZ/! 0;

where both the left and the right term are locally compact abelian groups of finite ranks.
By Proposition 4.5, H1.B yWF

; A/ is a locally compact abelian group of finite ranks.
We conclude by observing that by Corollary 2.26 (1), H0.B yWF

; A/ D H0.BG ; A/ is
represented by AG with subspace topology. This is a closed subgroup of A, hence it is
locally compact of finite ranks.

Lemma 4.11. LetM 2 Dperf
Z;R such that Hq.M/ is a locally compact abelian group for all

q. Then Hq.M/ 2 Dperf
Z;R \ FLCA for all q.

Proof. Since Hq.M/ is locally compact, the complex RHom.R=Z;Hq.M// is concen-
trated in degrees 0; 1. For all i , we have an exact sequence in Ab.C/

0! Ext1
�
R=Z;Hi�1.M/

�
! Exti .R=Z;M/! Hom

�
R=Z;Hi .M/

�
! 0:

By hypothesis, Exti .R=Z;M/ is a finite Z-type abelian group for all i . The exact sequence
with i D q implies that Hom.R=Z;Hq.M// is of finite Z-type. The exact sequence with
i D q C 1 implies that Ext1.R=Z;Hq.M// is of finite Z-type. Thus

RHom.R=Z;Hq.M// 2 Dperf.Z/:

4.2. Duality for the cohomology of Wk

Let R be a condensed commutative ring with 1 and M a condensed RŒWk �-module. Fol-
lowing example 2.42, we have

Hq.BWk ;M/ D

8̂̂<̂
:̂

ker.1 � '/ DWMWk q D 0;

coker.1 � '/ DWMWk q D 1;

0 q � 2:

Construction 4.12. Let D be a condensed RŒWk �-module with the trivial action of Wk .
Then H0.BWk ; D/ D H1.BWk ; D/ D D and Hq.BWk ; D/ D 0 for all q � 2. Hence we
have a trace map R�.BWk ;D/! DŒ�1�. Let M;N be condensed RŒWk �-modules. Sup-
pose that there exists a Wk-equivariant perfect pairing of R-modules M � N ! D. For
all q, one gets an induced cup product pairing

Hq.BWk ;M/˝R H1�q.BWk ; N /! D: (4.4)
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Theorem 4.13. Let M;N;D as in Construction 4.12. Suppose that Ext1R.MWk ; D/ D 0

and Ext1R.NWk ; D/ D 0. Then the cup-product pairing (4.4) yields a perfect pairing for
all q.

Proof. We consider the exact sequence of condensed R-modules

0!MWk !M
1�'
��!M !MWk ! 0:

Since Ext1R.MWk ;D/D 0, theWk-invariant isomorphism WN !HomR.M;D/ induces
a morphism of exact sequences

0 HomR.MWk ;D/ HomR.M;D/ HomR.M;D/ HomR.M
Wk ;D/ 0

0 NWk N N NWk 0:

1�'

 1  

1�'

  0

One remarks that 1 WH0.BWk ;N /!HomR.H
1.BWk ;M/;D/ and 0 WH1.BWk ;N /!

HomR.H
0.BWk ; M/; D/ are induced by (4.4). Since  is an isomorphism,  0 and  1

are isomorphisms as well. Replacing M with N , we conclude.

Example 4.14. LetRDZ,M be aWk-module which is either discrete or compact Haus-
dorff as a condensed abelian group. Let N D M_ and D D R=Z with the trivial action.
The perfect pairingM �M_! R=Z satisfies the hypotheses of Theorem 4.13. Then for
all q we have a perfect pairing

Hq.BWk ;M/˝H1�q.BWk ;M
_/! R=Z:

Example 4.15. LetRDR and V a finite-dimensional real vector space with a continuous
R-linear action ofWk . The perfect pairing V �HomR.V;R/!R satisfies the hypotheses
of Theorem 4.13. For all q, we get a perfect pairing of condensed R-modules

Hq.BWk ; V /˝R H1�q.BWk ; V
�/! R:

Example 4.16. Let R D R and V a finite-dimensional real vector space. Let G be an
extension of Wk by a finite group H . Suppose that V has a continuous R-linear action
of G. The perfect pairing V � HomR.V;R/! R induces a R-linear and Wk-invariant
pairing V H � .V �/H ! R. SinceH is finite, this pairing is perfect. Moreover, it satisfies
the hypotheses of Theorem 4.13. Hence for all q we get a perfect cup-product pairing of
condensed R-modules

Hq.BWk ; V
H /˝R H1�q

�
BWk ; .V

�/H
�
! R:

4.3. Conservativity of completion

Definition 4.17. LetC be a complex of condensed abelian groups, and letm be an integer.
We define C ˝L Z=m as the cofiber of the morphism �m W C ! C in D.Ab.C//.
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Notation 4.18. Let A be a condensed abelian group and let m 2 N. We set mA WD
ker.A

�m
�! A/ and A=m WD coker.A

�m
�! A/, where the kernel and the cokernel are com-

puted in Ab.C/. Moreover, we set

TA WD lim
 ��
m

mA; A^ WD lim
 ��
m

A=m

the Tate module of A and the naive completion of A respectively. Here the limits are
computed in Ab.C/.

Definition 4.19 (Completion of a complex of condensed abelian groups). Let C be a
complex of condensed abelian groups. We define its completion C ˝L yZ as

C ˝L yZ WD R lim
 ��
m

.C ˝L Z=m/;

where the derived limit is computed in D.Ab.C//.

We have an exact functor

.�/˝L yZ W D
�
Ab.C/

�
! D

�
Ab.C/

�
;

and two functors

T W Ab.C/! Ab.C/; .�/^ W Ab.C/! Ab.C/:

In the topos of condensed sets the functor of Nop-indexed limits has cohomological dimen-
sion 1 [5, Propositions 3.1.11, 3.2.3]. Hence for all q we get a diagram with exact row and
column

0

Hq.C /^

0
1

lim
 ��
m

mHq.C / Hq.C ˝L yZ/ lim
 ��
m

Hq.C ˝L Z=m/ 0:

TH qC1.C /

0

(4.5)

Proposition 4.20. Let a WA1!A2 be a morphism of condensed abelian groups. Suppose
that we have

lim
 ��
m

1
mA1 D lim

 ��
m

1
mA2 D lim

 ��
m

1
mker.a/ D lim

 ��
m

1
mcoker.a/ D 0:

Then the following properties hold:

(i) ker.Ta/ D T ker.a/;
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(ii) coker.a^/ D coker.a/^;

(iii) there exists a condensed abelian group which is both extension of ker.a^/ by
coker.Ta/ and extension of T coker.a/ by ker.a/^.

Proof. We set a WD ŒA1
a
�! A2�, with A1 in degree �1. By exactness of .�/ ˝L yZ, we

have fiber sequences in D.Ab.C//

A1Œ0�˝
L yZ! A2Œ0�˝

L yZ! a˝L yZ; (4.6)

ker.a/Œ1�˝L yZ! a˝L yZ! coker.a/Œ0�˝L yZ: (4.7)

By the hypothesis and by (4.5), the complex representing A1Œ0�˝L yZ is concentrated in
cohomological degrees �1; 0. Moreover, we have

H�1
�
A1Œ0�˝

L yZ
�
D TA;

H0
�
A1Œ0�˝

L yZ
�
D A^1 :

The same holds for A2;ker.a/; coker.a/. The long exact sequences coming from (4.6) and
(4.7) conclude the proof.

Proposition 4.21 (Conservativity of completion). Let C;D be complexes of condensed
abelian groups cohomologically concentrated in degrees 0; 1; 2. Let f W C !D be a map
in D.Ab.C// such that f ˝L yZ W C ˝L yZ! D ˝L yZ is an equivalence. Suppose one of
the two (dual) conditions are satisfied

(i) H0.C /;H1.C /;H0.D/;H1.D/ are of finite Z-type, and H2.C / and H2.D/ are
of finite Qp=Zp-type.

(ii) H1.C /_, H2.C /_, H1.D/_, H2.D/_ are of finite Z-type, and H0.C /_;H0.D/_

are of finite Qp=Zp-type.

Then f is an equivalence.

Remark 4.22. If A is a condensed abelian group, and either A or A_ is of one of the two
types present in the hypotheses (i) and (ii), then mA is finite for all m. Hence the systems
¹mAº are Mittag-Leffler and we have

lim
 ��
m

1
mA D 0:

Proof. The map f W C ! D in D.Ab.C// induces f q W Hq.C /! Hq.D/ in Ab.C/. We
need to prove that ker.f q/ D coker.f q/ D 0 for all q. We suppose that hypothesis .i/
holds. By Lemma 3.18 (b) and (c), if Hq.C / and Hq.D/ are both of finite Z-type (resp.
of finite Qp=Zp-type), then so are ker.f q/ and coker.f q/. Thus there exist integers
r0; r1; s0; s1; �; � and finite groups F0; F1; G0; G1;H;K such that we have

ker.f q/ D Zrq ˚ Fq; coker.f q/ D Zsq ˚Gq; q D 0; 1;

ker.f 2/ D .Qp=Zp/
�
˚H; coker.f 2/ D .Qp=Zp/

�
˚K:
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Applying Remark 4.22 to the diagram (4.5), we get morphisms of exact sequences for
all q

0 Hq.C /^ Hq.C ˝L yZ/ THqC1.C / 0

0 Hq.D/^ Hq.D ˝L yZ/ THqC1.D/ 0:

.f q/^ .f˝L yZ/q Tf qC1

By hypothesis, .f ˝L yZ/q is an isomorphism. The Snake Lemma and Proposition 4.20
give us

(A) ker.f q/^ D 0 for all q;

(B) T coker.f q/ D 0 for all q;

(C) T ker.f qC1/ D coker.f q/^ for all q.

(A) implies that r0 D r1 D 0 and F0 D F1 D H D 0, and (B) implies that � D 0. Con-
sequently, we have

ker.f q/ D 0; coker.f q/ D Zsq ˚Gq; q D 0; 1;

ker.f 2/ D .Qp=Zp/
�; coker.f 2/ D K:

We now apply (C), hence we have

T ker.f 1/ D coker.f 0/^ H) 0 D yZs0 ˚G0 H) s0 D 0; G0 D 0;

T ker.f 2/ D coker.f 1/^ H) Z�p D yZ
s1 ˚G1 H) s1 D � D 0; G1 D 0;

T ker.f 3/ D coker.f 2/^ H) 0 D K:

Thus f is an equivalence.
The proof with hypothesis (ii) can be done in the same way.

4.4. The main result

In this section, we enlarge local Tate duality. We start by proving duality results for the
cohomology of yWF with coefficients in finite-dimensional real vector spaces and finitely
generated discrete abelian groups (Theorem 4.23 and Proposition 4.26). In the first case we
have more flexibility on the hypothesis on the action of the Weil group. We combine these
two results in Theorem 4.27, and we conclude by deriving the reciprocity isomorphism of
Local Class Field Theory “à la Weil” in Example 4.30 .

Theorem 4.23. Let M 2 Dperf.R/ with a continuous action of WF =U , with U � I open
normal subgroup. Then one hasR�.B yWF

;M/;R�.B yWF
;MD/ 2Db.FLCA/. Moreover,

the trace map
R�

�
B yWF

;R=Z.1/
�
! R=ZŒ�2�

induces a perfect cup-product pairing

R�.B yWF
;M/˝L R�.B yWF

;MD/! R=ZŒ�2�

in Db.Ab.C//.
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Remark 4.24. A fortiori, the result holds if M 2 Dperf.R/ has a continuous action of a
finite quotient G of GF .

Proof. By induction on the length of the complex, we suppose that M D V is a finite-
dimensional real vector space with a continuous action of WF =U . By Proposition 3.21,
we have R�.B yWF

; V /; R�.B yWF
; V D/ 2 Db.FLCA/.

The morphism R.1/! R=Z.1/ induces a morphism of cup-product pairings

R�.B yWF
; V /˝L R�.B yWF

; V �/Œ�1� R�.B yWF
; V /˝L R�.B yWF

; V D/

RŒ�2� R=ZŒ�2�:

By Remark 3.20, V �Œ�1�!V D is an equivalence. SinceR�.B yWF
;V / andR�.B yWF

;V �/

are complexes of Dperf.R/ (see Proposition 3.21), we have

RHom
�
R�.B yWF

; V /;R
�
D RHom

�
R�.B yWF

; V /;R=Z
�

and the same for V �. Moreover, we have

RHom
�
R�.B yWF

; V /;RŒ�1�
�
D RHomR

�
R�.B yWF

; V /;RŒ�1�
�

and the same for V �. Consequently, it is enough to prove that the cup-product pairing of
condensed R-modules

R�.B yWF
; V /˝LR R�.B yWF

; V �/! RŒ�1�

is perfect. This coincides with the cup-product pairing

R�.BWk ; V
I=U /˝LR R�

�
BWk ; .V

�/I=U
�
! RŒ�1�:

We conclude as in Example 4.16.

Proposition 4.25 (Condensed Weil–Tate Local Duality). Let M be a finite abelian group
with a continuous action of WF . Then the trace map

R�
�
B yWF

;R=Z.1/
�
! R=ZŒ�2�

induces a perfect cup-product pairing

R�.B yWF
;M/˝L R�.B yWF

;MD/! R=Z:

Proof. Let � � xL� denote the discrete continuous WF -module of roots of unity. We set
M 0 WD Hom.M;�/. By Lemma 3.25 and Remark 3.22, the cup-product pairing becomes

R�
�
BWF .Set/;M

�
˝
L R�

�
BWF .Set/;M 0

�
! R=Z:
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By Proposition 3.26, we have

RHom
�
R�

�
BWF .Set/;M

�
;R=Z

�
D RHom

�
R�

�
BWF .Set/;M

�
;Q=Z

�
and the same for M 0. Hence it is enough to prove that the cup-product pairing in Dperf.Z/

R�
�
BWF .Set/;M

�
˝
L R�

�
BWF .Set/;M 0

�
! Q=Z

is perfect. This follows from [18, Proposition 4.1.1] and [23, Theorem 2.1].

Proposition 4.26. LetM 2Dperf.Z/with a continuous action of a finite quotientG ofGF .
Then one has R�.B yWF

;M/;R�.B yWF
;MD/ 2 Db.FLCA/. Moreover, the trace map

R�
�
B yWF

;R=Z.1/
�
! R=ZŒ�2�

induces a perfect cup-product pairing

R�.B yWF
;M/˝L R�.B yWF

;MD/! R=ZŒ�2�

in Db.Ab.C//.

Proof. By induction on the length of the complex and by Proposition 4.25, we can suppose
that M is a free abelian group of finite Z-type. By Theorems 3.30 and 3.31, we have
R�.B yWF

;M/;R�.B yWF
;MD/ 2 Db.FLCA/.

Let  .MD/ and  .M/ be defined as in (4.2). Let us consider

 .MD/˝L yZ D R lim
m
 
�
.M ˝L Z=m/D

�
;

 .M/˝L yZ D R lim
m
 .M ˝L Z=m/:

Localising at EG, we have M ˝L Z=m Š M=m in Db.B yWF /. Hence M ˝L Z=m is
a finite abelian group with a continuous action of G. By Proposition 4.25,  ..M=m/D/
and  .M=m/ are equivalences. Hence so are  .MD/˝L yZ and  .M/˝L yZ. By The-
orem 3.30 (resp. Theorem 3.31),  .MD/ (resp.  .M/) satisfies the hypotheses of Pro-
position 4.21. Thus .MD/ (resp. .M/) is an equivalence. This concludes the proof.

Theorem 4.27. Let M 2 Dperf
Z;R with a continuous action of a finite quotient G of GF .

Then one has R�.B yWF
;M/;R�.B yWF

;MD/ 2 Db.FLCA/. Moreover, the trace map

R�
�
B yWF

;R=Z.1/
�
! R=ZŒ�2�

induces a perfect cup-product pairing

R�.B yWF
;M/˝L R�.B yWF

;MD/! R=ZŒ�2�

in Db.Ab.C//.
If Hq.M/ is a locally compact abelian group for all q, the induced cup-product pairing

Hq.B yWF
;M/˝H2�q.B yWF

;MD/! H2
�
B yWF

;R=Z.1/
�
D R=Z

is a perfect pairing of locally compact abelian groups of finite ranks.
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Proof. We have a distinguished triangle in D.B yWF /

RHom.R=Z;M/! RHom.R;M/!M:

Since M 2 Dperf
Z;R, we have RHom.R=Z; M/ 2 Dperf.Z/ and RHom.R; M/ 2 Dperf.R/.

By Proposition 4.26 and Theorem 4.23, the fist two statements of the theorem hold for
RHom.R=Z;M/ and RHom.R;M/ instead of M . Hence the same holds for M .

Let us suppose that Hq.M/ is locally compact for all q. We have the spectral sequence

E
i;j
2 D Hi

�
B yWF

;Hj .M/
�
H) HiCj .B yWF

;M/:

By Lemma 4.11, we have

Hj .M/ 2 Dperf
R;Z \ FLCA for all j:

By Proposition 4.10, Ei;j2 is locally compact of finite ranks for all i; j , and vanishes for
all i � 3. Moreover, E2;j2 is discrete for all j . Thus the morphism E

0;jC1
2 ! E

2;j
2 is

strict for all j . These are the only morphisms of the second page. Moreover, for all n � 3
and for all i; j , we have d i;jn D 0. Consequently, the condensed abelian group Ei;j1 is
a locally compact abelian group of finite ranks for all i; j . By Proposition 4.5, we have
Hq.B yWF

;M/ 2 FLCA for all q. Consequently, we have Exti .Hq.B yWF
;M/;R=Z/ D 0

for all i � 1 and for all q. Hence the equivalence

R�.B yWF
;MD/ Š RHom

�
R�.B yWF

;M/;R=ZŒ�2�
�

yields

Hq.B yWF
;MD/ Š Hq

�
RHom

�
R�.B yWF

;M/;R=ZŒ�2�
��
Š H2�q.B yWF

;M/_;

which is locally compact of finite ranks. The result follows.

Remark 4.28. By Remark 4.1, the corresponding cup-product pairing in Db.FLCA/ is
perfect too.

Corollary 4.29. Let M be a discrete countable abelian group. Then for all q the con-
densed abelian group Hq.B yWF

;M/ is represented by a �-small discrete abelian group
and Hq.B yWF

;MD/ is represented by a �-small compact Hausdorff topological abelian
group. Moreover, the trace map

R�
�
B yWF

;R=Z.1/
�
! R=ZŒ�2�

induces a perfect cup-product pairing

Hq.B yWF
;M/˝H2�q.B yWF

;MD/! H2
�
B yWF

;R=Z.1/
�
D R=Z

of �-small locally compact abelian groups.

Proof. Firstly, we observe that we can write

M D lim
��!
n

Mn;
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where Mn is a G-equivariant finitely generated abelian group. In order to show this, we
observe that since M is countable, we can write M D ¹xiºi2N . Hence, for all n 2 N,
we consider Mn as the subgroup of M generated by ¹g � xiºg2G;0�i�n. Then Mn is G-
equivariant and finitely generated for all n, and if n1 < n2, we have Mn1 �Mn2 .

Consequently, we have

Hq.B yWF
;M/ D lim

��!
n

Hq.B yWF
;Mn/;

which is �-small and discrete for all q. Moreover, since we haveMD DR lim
 ��n

MD
n , there

is an exact sequence in Ab.C/

0! lim
 ��
n

1 Hq�1.B yWF
;MD

n /! Hq.B yWF
;MD/! lim

 ��
n

Hq.B yWF
;MD

n /! 0

for all q. By Theorem 3.31, both Hq�1.B yWF
; MD

n / and Hq.B yWF
; MD

n / are compact
Hausdorff of finite ranks for all n. Hence Hq.B yWF

; M/ is �-small compact Hausdorff
for all q by [1, Proposition 3.2]. In particular, since Db.LCA�/! Db.Ab.C// is a stable
1-subcategory, we have

R�.B yWF
;M/;R�.B yWF

;MD/ 2 Db.LCA�/:

Moreover, the cup-product pairing

R�.B yWF
;M/˝L R�.B yWF

;MD/! R=ZŒ�2�

induces the morphisms

 .MD/ W R�.B yWF
;M/! RHom

�
R�.B yWF

;MD/;R=ZŒ�2�
�
;

 .M/ W R�.B yWF
;MD/! RHom

�
R�.B yWF

;M/;R=ZŒ�2�
�
:

It is easy to see that we have  .M/ D R lim
 ��n

 .Mn/. Moreover, since

RHom
�
�;R=ZŒ�2�

�
W Db.LCA�/op

! Db.LCA�/

is an equivalence, we also have  .MD/ D lim
��!n

 .MD
n /. Consequently, both  .M/ and

 .MD/ are equivalences by Theorem 4.27. Moreover, since Exti .Hq.B yWF
;M/;R=Z/D

0 for all i � 1 and for all q, taking qth cohomology on  .M/ yields

Hq.B yWF
;MD/ Š H2�q.B yWF

;M/_

and similarly for  .MD/. The result follows.

Example 4.30. Let us consider M D R=Z. Then we have

H1.B yWF
;R=Z/ D lim

��!
U�I

open normal
subgr.

H1.BWF =U ;R=Z/ D lim
��!
U�I

open normal
subgr.

�
.WF =U /

ab�_
D .W ab

F /
_:

Moreover, one gets

H1.B yWF
;MD/ D H1

�
B yWF

;Z.1/
�
D F �:
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Hence the perfect cup product pairing of Theorem 4.27 yields the isomorphism of topolo-
gical abelian groups

F �
�
�! W ab

F ;

which comes from Local Class Field Theory “à la Weil”.

Acknowledgements. I would like to deeply thank Baptiste Morin for introducing me to
the world of Condensed Mathematics and to its possible applications to the cohomology
of the Weil group. I am thankful to Adrien Morin for the different discussions we had
about this subject and to Emma Brink for the useful exchanges about condensed group
cohomology. Finally, I want to thank Matthias Flach for general discussions about the
Weil group and topological group cohomology and for his feedback on a preliminary
version of this work.

References

[1] J. Anschütz and A.-C. Le Bras, Solid group cohomology. 2020, https://janschuetz.perso.math.
cnrs.fr/skripte/homology_profinite.pdf visited on 4 October 2024

[2] M. Artin, A. Grothendieck, and J. L. Verdier (eds.), Théorie des topos et cohomologie étale
des schémas. Tome 1. Lecture Notes in Math. 269, Springer, Berlin, 1972 Zbl 0234.00007
MR 354652

[3] M. Artin, A. Grothendieck, and J. L. Verdier (eds.), Théorie des topos et cohomologie étale
des schémas. Tome 2. Lecture Notes in Math. 270, Springer, Berlin, 1972 Zbl 0237.00012
MR 354653

[4] C. Barwick and P. Haine, Pyknotic objects, I. Basic notions. 2019, arXiv:1904.09966v2
[5] B. Bhatt and P. Scholze, The pro-étale topology for schemes. Astérisque 369 (2015), 99–201

Zbl 1351.19001 MR 3379634
[6] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations

of reductive groups. 2nd edn., Math. Surveys Monogr. 67, American Mathematical Society,
Providence, RI, 2000 Zbl 0980.22015 MR 1721403

[7] N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 5 à 10. Hermann,
Paris, 1974 Zbl 0337.54001 MR 3822133

[8] E. Brink, Condensed group cohomology. Master’s thesis, Fakultät für Mathematik, Informatik
und Statistik, Ludwig-Maximilians-Universität München, 2023

[9] D. Clausen and P. Scholze, Lectures on condensed mathematics. 2019, http://www.math.uni-
bonn.de/people/scholze/Condensed.pdf visited on 29 September 2024

[10] D. Clausen and P. Scholze, Condensed mathematics and complex geometry. 2022, https://
people.mpim-bonn.mpg.de/scholze/Complex.pdf visited on 29 September 2024

[11] S. Eilenberg and N. Steenrod, Foundations of algebraic topology. Princeton University Press,
Princeton, NJ, 1952 Zbl 0047.41402 MR 0050886

[12] M. Flach, Cohomology of topological groups with applications to the Weil group. Compos.
Math. 144 (2008), no. 3, 633–656 Zbl 1145.18006 MR 2422342

[13] L. Fuchs, Abelian groups. Springer Monogr. Math., Springer, Cham, 2015 Zbl 1416.20001
MR 3467030

[14] T. H. Geisser and B. Morin, On the kernel of the Brauer-Manin pairing. J. Number Theory 238
(2022), 444–463 Zbl 1505.14048 MR 4430106

https://janschuetz.perso.math.cnrs.fr/skripte/homology_profinite.pdf
https://janschuetz.perso.math.cnrs.fr/skripte/homology_profinite.pdf
https://doi.org/10.1007/BFb0081551
https://doi.org/10.1007/BFb0081551
https://zbmath.org/?q=an:0234.00007
https://mathscinet.ams.org/mathscinet-getitem?mr=354652
https://doi.org/10.1007/BFb0061319
https://doi.org/10.1007/BFb0061319
https://zbmath.org/?q=an:0237.00012
https://mathscinet.ams.org/mathscinet-getitem?mr=354653
https://arxiv.org/abs/1904.09966v2
https://zbmath.org/?q=an:1351.19001
https://mathscinet.ams.org/mathscinet-getitem?mr=3379634
https://doi.org/10.1090/surv/067
https://doi.org/10.1090/surv/067
https://zbmath.org/?q=an:0980.22015
https://mathscinet.ams.org/mathscinet-getitem?mr=1721403
https://zbmath.org/?q=an:0337.54001
https://mathscinet.ams.org/mathscinet-getitem?mr=3822133
http://www.math.uni-bonn.de/people/scholze/Condensed.pdf
http://www.math.uni-bonn.de/people/scholze/Condensed.pdf
https://people.mpim-bonn.mpg.de/scholze/Complex.pdf
https://people.mpim-bonn.mpg.de/scholze/Complex.pdf
https://zbmath.org/?q=an:0047.41402
https://mathscinet.ams.org/mathscinet-getitem?mr=0050886
https://doi.org/10.1112/S0010437X07003338
https://zbmath.org/?q=an:1145.18006
https://mathscinet.ams.org/mathscinet-getitem?mr=2422342
https://doi.org/10.1007/978-3-319-19422-6
https://zbmath.org/?q=an:1416.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=3467030
https://doi.org/10.1016/j.jnt.2021.09.003
https://zbmath.org/?q=an:1505.14048
https://mathscinet.ams.org/mathscinet-getitem?mr=4430106


M. Artusa 1434

[15] T. H. Geisser and B. Morin, Pontryagin duality for varieties over p-adic fields. J. Inst. Math.
Jussieu 23 (2024), no. 1, 425–462 Zbl 07801291 MR 4699875

[16] D. Harari, Galois cohomology and class field theory. Translated from the 2017 French original
by Andrei Yafaev. Universitext, Springer, Cham, 2020 Zbl 1466.11086 MR 4174395

[17] N. Hoffmann and M. Spitzweck, Homological algebra with locally compact abelian groups.
Adv. Math. 212 (2007), no. 2, 504–524 Zbl 1123.22002 MR 2329311

[18] D. A. Karpuk, Cohomology of the Weil group of a p-adic field. J. Number Theory 133 (2013),
no. 4, 1270–1288 Zbl 1304.11133 MR 3003999

[19] S. Lichtenbaum, The Weil-étale topology for number rings. Ann. of Math. (2) 170 (2009),
no. 2, 657–683 Zbl 1278.14029 MR 2552104

[20] J. Lurie, Higher topos theory. Ann. of Math. Stud. 170, Princeton University Press, Princeton,
NJ, 2009 Zbl 1175.18001 MR 2522659

[21] J. Lurie, Higher algebra. 2017, https://www.math.ias.edu/�lurie/papers/HA.pdf visited on 29
September 2024

[22] J. Lurie, Spectral algebraic geometry. 2018, https://www.math.ias.edu/�lurie/papers/SAG-
rootfile.pdf visited on 29 September 2024

[23] J. S. Milne, Arithmetic duality theorems. Perspect. Math. 1, Academic Press, Boston, MA,
1986 Zbl 0613.14019 MR 0881804

[24] B. Morin, On the Weil-étale cohomology of number fields. Trans. Amer. Math. Soc. 363
(2011), no. 9, 4877–4927 Zbl 1233.14016 MR 2806695

[25] B. Morin, The Weil-étale fundamental group of a number field II. Selecta Math. (N.S.) 17
(2011), no. 1, 67–137 Zbl 1247.14015 MR 2765000

[26] T. Nikolaus and P. Scholze, On topological cyclic homology. Acta Math. 221 (2018), no. 2,
203–409 Zbl 1457.19007 MR 3904731

[27] J.-P. Schneiders, Quasi-abelian categories and sheaves. Mém. Soc. Math. Fr. (N.S.) 76 (1999),
vi+134 Zbl 0926.18004 MR 1779315

[28] J.-P. Serre, Sur les corps locaux à corps résiduel algébriquement clos. Bull. Soc. Math. France
89 (1961), 105–154 Zbl 0166.31103 MR 0142534

[29] J.-P. Serre, Local fields. Translated from the French by Marvin Jay Greenberg. Grad. Texts in
Math. 67, Springer, New York, 1979 Zbl 0423.12016 MR 0554237

[30] J.-P. Serre, Galois cohomology. Translated from the French by Patrick Ion and revised by the
author. Springer Monogr. Math., Springer, Berlin, 2002 Zbl 1004.12003 MR 1867431

[31] J. Tate, Duality theorems in Galois cohomology over number fields. In Proc. Internat. Congr.
Mathematicians (Stockholm, 1962), pp. 288–295, Inst. Mittag-Leffler, Djursholm, 1963
Zbl 0126.07002 MR 0175892

Communicated by Thomas H. Geisser

Received 6 March 2024; revised 13 June 2024.

Marco Artusa
Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la Libération,
33400 Talence, France; marco.artusa@math.u-bordeaux.fr, marcoartusa.97@gmail.com

https://doi.org/10.1017/s1474748022000469
https://zbmath.org/?q=an:07801291
https://mathscinet.ams.org/mathscinet-getitem?mr=4699875
https://doi.org/10.1007/978-3-030-43901-9
https://doi.org/10.1007/978-3-030-43901-9
https://zbmath.org/?q=an:1466.11086
https://mathscinet.ams.org/mathscinet-getitem?mr=4174395
https://doi.org/10.1016/j.aim.2006.09.019
https://zbmath.org/?q=an:1123.22002
https://mathscinet.ams.org/mathscinet-getitem?mr=2329311
https://doi.org/10.1016/j.jnt.2012.08.028
https://zbmath.org/?q=an:1304.11133
https://mathscinet.ams.org/mathscinet-getitem?mr=3003999
https://doi.org/10.4007/annals.2009.170.657
https://zbmath.org/?q=an:1278.14029
https://mathscinet.ams.org/mathscinet-getitem?mr=2552104
https://doi.org/10.1515/9781400830558
https://zbmath.org/?q=an:1175.18001
https://mathscinet.ams.org/mathscinet-getitem?mr=2522659
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://zbmath.org/?q=an:0613.14019
https://mathscinet.ams.org/mathscinet-getitem?mr=0881804
https://doi.org/10.1090/S0002-9947-2011-05124-X
https://zbmath.org/?q=an:1233.14016
https://mathscinet.ams.org/mathscinet-getitem?mr=2806695
https://doi.org/10.1007/s00029-010-0041-z
https://zbmath.org/?q=an:1247.14015
https://mathscinet.ams.org/mathscinet-getitem?mr=2765000
https://doi.org/10.4310/ACTA.2018.v221.n2.a1
https://zbmath.org/?q=an:1457.19007
https://mathscinet.ams.org/mathscinet-getitem?mr=3904731
https://doi.org/10.24033/msmf.389
https://zbmath.org/?q=an:0926.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=1779315
https://doi.org/10.24033/bsmf.1562
https://zbmath.org/?q=an:0166.31103
https://mathscinet.ams.org/mathscinet-getitem?mr=0142534
https://zbmath.org/?q=an:0423.12016
https://mathscinet.ams.org/mathscinet-getitem?mr=0554237
https://zbmath.org/?q=an:1004.12003
https://mathscinet.ams.org/mathscinet-getitem?mr=1867431
https://zbmath.org/?q=an:0126.07002
https://mathscinet.ams.org/mathscinet-getitem?mr=0175892
mailto:marco.artusa@math.u-bordeaux.fr
mailto:marcoartusa.97@gmail.com

	Contents
	1. Introduction
	1.1. Outline of this article
	1.2. Relation to previous work
	1.3. Set-theoretical conventions and notation

	2. Cohomology of condensed groups
	2.1. Topoi over condensed sets
	2.2. The classifying topos of a condensed group
	2.2.1 Comparison with continuous cochain cohomology
	2.2.2 Discrete coefficients
	2.2.3 Cohomology of discrete groups

	2.3. The classifying topos of a pro-condensed group
	2.4. The category \mathbf{D}^+(B_\hat{G})

	3. Cohomology of \hat{W}_F
	3.1. The complex R{\boldsymbolΓ}(B_\whatI,\wbarL^\times)
	3.2. The complex R{\boldsymbolΓ}(B_\whatW_F,\mathbb{R}/\mathbb{Z}(1))
	3.3. Condensed structures on the cohomology groups

	4. Duality
	4.1. Locally compact abelian groups of finite ranks
	4.2. Duality for the cohomology of W_k
	4.3. Conservativity of completion
	4.4. The main result

	References

