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Connecting real and hyperarithmetical analysis

Sam Sanders

Abstract. Going back to Kreisel in the sixties, hyperarithmetical analysis is a cluster of logical
systems just beyond arithmetical comprehension. Only recently natural examples of theorems from
the mathematical mainstream were identified that fit this category. In this paper, we provide many
examples of theorems of real analysis that sit within the range of hyperarithmetical analysis, namely
between the higher-order version of †11-AC0 and weak-†11-AC0, working in Kohlenbach’s higher-
order framework. Our example theorems are based on the Jordan decomposition theorem, unordered
sums, metric spaces, and semi-continuous functions. Along the way, we identify a couple of new
systems of hyperarithmetical analysis.

1. Introduction

1.1. Motivation and overview
The aim of this paper is to exhibit many natural examples of theorems from real analysis
that exist in the range of hyperarithmetical analysis. The exact meaning of ‘hyperarith-
metical analysis’ and the previous italicised text is discussed in Section 1.3, but intuitively
speaking the latter amounts to being sandwiched between known systems of hyperarith-
metical analysis or their higher-order extensions. We shall work in Kohlenbach’s frame-
work from [36], with which we assume basic familiarity.

We introduce some necessary definitions and axioms in Section 1.2. We shall establish
that the following inhabit the range of hyperarithmetical analysis.

• Basic properties of (Lipschitz) continuous functions on compact metric spaces without
second-order representation/separability conditions, including the generalised inter-
mediate value theorem (Section 2).

• Properties of functions of bounded variation, including the Jordan decomposition the-
orem, where the total variation is given (Section 3).

• Properties of semi-continuous functions and closed sets (Section 4.1).

• Convergence properties of unordered sums (Section 4.2).

These results still go through if we restrict to arithmetically defined objects by The-
orem 2.8. To pinpoint the exact location of the aforementioned principles, we introduce
a new ‘finite choice’ principle based on finite-†11-AC0 from [26] (see Section 1.2), using
Borel’s notion of height function [9, 10].
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Finally, as to conceptual motivation, the historical examples of systems of hyperarith-
metical analysis are rather logical in nature and natural examples from the mathematical
mainstream are a relatively recent discovery, as discussed in Section 1.3. Our motivation
is to show that third-order arithmetic exhibits many robust examples of theorems in the
range of hyperarithmetical analysis, similar perhaps to how so-called splittings and dis-
junctions are much more plentiful in third-order arithmetic, as explored in [62]. In this
paper, we merely develop certain examples and indicate the many possible variations.

1.2. Preliminaries

We introduce some basic definitions and axioms necessary for this paper. We note that
subsets of R are given by their characteristic functions as in Definition 1.2, well-known
from measure and probability theory. We shall generally work over ACA!0 – defined right
below – as some definitions make little sense over the base theory RCA!0 . We refer to [36]
for the latter.

First of all, full second-order arithmetic Z2 is the ‘upper limit’ of second-order RM.
The systems Z!2 and Z�2 are conservative extensions of Z2 by [30, Cor. 2.6]. The system Z�2
is RCA!0 plus Kleene’s quantifier .93/ (see e.g. [52] or [30]), while Z!2 is RCA!0 plus .S2

k
/ for

every k � 1; the latter axiom states the existence of a functional S2
k

deciding…1
k

-formulas
in Kleene normal form. The system …1

1-CA!0 � RCA!0 C .S
2
1/ is a …1

3-conservative exten-
sion of…1

1-CA0 [60], where S21 is also called the Suslin functional. We also write ACA!0 for
RCA!0 C .9

2/ where the latter is as follows

.9E W NN
! ¹0; 1º/.8f 2 NN/

�
.9n 2 N/.f .n/ D 0/$ E.f / D 0

�
: (92)

The system ACA!0 is a conservative extension of ACA0 by [30, Thm. 2.5]. Over RCA!0 ,
.92/ is equivalent to .�2/, where the latter expresses the existence of Feferman’s � (see
[36, Prop. 3.9]), defined as follows for all f 2 NN :

�.f / WD

´
n if n is the least natural number such that f .n/ D 0;

0 if f .n/ > 0 for all n 2 N:

The following schema is essential to our enterprise, as discussed in Section 1.3.

Principle 1.1 (QF-AC0;1). For any Y W NN ! N, if .8n 2 N/.9f 2 NN/.Y.f; n/ D 0/,
then there exists a sequence .fn/n2N in NN with .8n 2 N/.Y.fn; n/ D 0/.

The local equivalence between sequential and ‘epsilon-delta’ continuity cannot be
proved in ZF, but can be established in RCA!0 C QF-AC0;1 (see [36]). Thus, it should not be
a surprise that the latter system is often used as a base theory too.

Secondly, we make use the following standard definitions concerning sets.

Definition 1.2 (Sets). Sets are defined via characteristic functions as follows.

• A subset A � R is given by its characteristic function FA W R! ¹0; 1º, i.e., we write
x 2 A for FA.x/ D 1, for any x 2 R.
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• A set A � R is enumerable if there is a sequence of reals that includes all elements
of A.

• A set A � R is countable if there is Y W R! N that is injective on A, i.e.,

.8x; y 2 A/
�
Y.x/ D0 Y.y/! x DR y

�
:

• A set A�R is strongly countable if there is Y WR!N that is injective and surjective
on A; the latter means that .8n 2 N/.9x 2 A/.Y.x/ D n/.

• A setA�R is finite in case there isN2N such that for any finite sequence .x0; : : : ;xN/,
there is i � N with xi 62 A. We sometimes write ‘jAj � N ’.

Thirdly, we list the following second-order system needed below.

Principle 1.3 (finite-†11-AC0, [26]). The system RCA0 plus for any arithmetical ':

.8n 2 N/.9 nonzero finitely many X � N/'.n;X/! .9.Xn/n2N/.8n 2 N/'.n;Xn/;

where ‘.9 nonzero finitely manyX�N/'.n;X/’ means that there is a non-empty sequence
.X0; : : : ; Xk/ such that for any X � N, '.n;X/$ .9i � k/.Xi D X/.

We let height-†11-AC0 be finite-†11-AC0 where we additionally assume g 2 NN to
be given such that for all n, g.n/ � k C 1 where k C 1 is the length of the sequence
.X0; : : : ; Xk/ in the formula ‘.9 nonzero finitely many X � N/'.n; X/’. We have the
following straightforward connections:

†11-AC0 ! finite-†11-AC0 ! height-†11-AC0 ! weak-†11-AC0;

i.e., height-†11-AC0 is also a system of hyperarithmetical analysis by Section 1.3. In the
grand scheme of things, g is a height function, a notion that goes back to Borel [8,10] and
is studied in RM in [61, 67].

1.3. On hyperarithmetical analysis

Going back to Kreisel [37], the notion of hyperarithmetical set (see e.g. [71, VIII.3])
gives rise to the second-order definition of theory/theorem of hyperarithmetical analysis
(THA for brevity, see e.g. [4]). In this section, we recall known results regarding THAs,
including the exact (rather technical) definition, for completeness.

First of all, well-known THAs are †11-CA0 and weak-†11-CA0 (see [71, VII.6.1 and
VIII.4.12]), where the latter is the former with the antecedent restricted to unique exist-
ence. Any system between two THAs is also a THA, which is a convenient way of
establishing that a given system is a THA.

Secondly, at the higher-order level, ACA!0 C QF-AC0;1 from Section 1.2 is a conservat-
ive extension of †11-CA0 by [30, Cor. 2.7]. This is established by extending any model
M of †11-AC0 to a model N of ACA!0 C QF-AC0;1, where the second-order part of N is
isomorphic to M. In this paper, we study (higher-order) systems that imply weak-†11-CA0
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and are implied by ACA!0 C QF-AC0;1. In light of the aforementioned conservation result,
it is reasonable to refer to such intermediate third-order systems as existing in the range
of hyperarithmetical analysis.

Thirdly, finding a natural THA, i.e., hailing from the mathematical mainstream, is
surprisingly hard. Montalbán’s INDEC from [46], a special case of Jullien’s [34, IV.3.3], is
generally considered to be the first such statement. The latter theorem by Jullien can be
found in [25, 6.3.4 (3)] and [59, Lem. 10.3]. The monographs [25, 34, 59] are all ‘rather
logical’ in nature and INDEC is the restriction of a higher-order statement to countable
linear orders in the sense of RM [71, V.1.1], i.e., such orders are given by sequences. In
[53, Rem. 2.8] and [63, Rem. 7 and §3.4], a number of third-order statements are iden-
tified, including the Bolzano–Weierstrass theorem and König’s infinity lemma, that are
in the range of hyperarithmetical analysis. Shore and others have studied a considerable
number of THAs from graph theory [5, 26, 70]. A related concept is that of almost the-
orem/theory of hyperarithmetical analysis (ATHA for brevity, [4]), which is weaker than
ACA0 but becomes a THA when combined with the latter.

Finally, we consider the official definition of THA from [46] based on !-models.

Definition 1.4. A system T of axioms of second-order arithmetic is a theory/theorem of
hyperarithmetical analysis in case

• T holds in HYP.Y / for every Y � !, where HYP.Y / is the !-model consisting of all
sets hyperarithmetic in Y ,

• all !-models of T are hyperarithmetically closed.

Here, an !-model is hyperarithmetically closed if it is closed under disjoint union
and for every set X; Y � !, if X is hyperarithmetically reducible to Y and Y is in the
model, then X is in the model too. In turn, this notion of reducibility means that n 2 X
can be expressed by a �11-formula with Y as a parameter; we refer to [46, Thm. 1.14] for
equivalent formulations.

2. Metric spaces

We introduce the well-known definition of metric space .M; d/ to be used in this paper
(Section 2.1), where we always assume M to be a subset of R, up to coding of finite
sequences. We show that basic properties of (Lipschitz) continuous functions on such
metric spaces exist in the range of hyperarithmetical analysis (Section 2.2), even if we
restrict to arithmetically defined objects (Theorem 2.8). We have previously studied metric
spaces in [66]; to our own surprise, some of these results have nice generalisations relevant
to the study of hyperarithmetical analysis.

2.1. Basic definitions

We shall study metric spaces .M;d/ as in Definition 2.1. We assume thatM comes with its
own equivalence relation ‘DM ’ and that the metric d satisfies the axiom of extensionality
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relative to ‘DM ’ as follows:

.8x; y; v; w 2M/
�
Œx DM y ^ v DM w�! d.x; v/ DR d.y;w/

�
:

Similarly to functions on the reals, ‘F WM ! R’ denotes a function from M to the reals
that satisfies the following instance of the axiom of function extensionality:

.8x; y 2M/
�
x DM y ! F.x/ DR F.y/

�
: (EM )

We recall that the study of metric space in second-order RM is at its core based on equi-
valence relations, as discussed explicitly in e.g. [71, I.4] or [24, §10.1].

Definition 2.1. A functional d W M 2 ! R is a metric on M if it satisfies the following
properties for x; y; z 2M :

(a) d.x; y/ DR 0$ x DM y,

(b) 0 �R d.x; y/ DR d.y; x/,

(c) d.x; y/ �R d.x; z/C d.z; y/.

We shall only study metric spaces .M;d/ withM � NN orM � R. To be absolutely
clear, quantifying over M amounts to quantifying over NN or R, perhaps modulo coding
of finite sequences, i.e., the previous definition can be made in third-order arithmetic for
the intents and purposes of this paper. Since we shall study compact metric spaces, this
restriction is minimal in light of [17, Thm. 3.13].

Sub-sets of M are defined via characteristic functions, like for the reals in Defini-
tion 1.2, keeping in mind (EM ). In particular, we use standard notation like BM

d
.x; r/ to

denote the open ball ¹y 2M W d.x; y/ <R rº.
Secondly, the following definitions are now standard, where we note that a different

nomenclature is sometimes used in second-order RM. A sequence .wn/n2N in .M; d/ is
Cauchy if .8k 2 N/.9N 2 N/.8m; n � N/.d.wn; wm/ <

1

2k
/.

Definition 2.2 (Compactness and around). For a metric space .M; d/, we say that

• .M; d/ is weakly countably-compact if for any .an/n2N in M and sequence of ration-
als .rn/n2N such that we have M � [n2NB

M
d
.an; rn/, there is m 2 N such that

M � [n�mB
M
d
.an; rn/,

• .M;d/ is countably-compact if for any sequence .On/n2N of open sets inM such that
M � [n2NOn, there is m 2 N such that M � [n�mOn,

• .M; d/ is compact in case for any ‰ WM ! RC, there are x0; : : : ; xk 2M such that
[i�kB

M
d
.xi ; ‰.xi // covers M ,

• .M; d/ is sequentially compact if any sequence has a convergent sub-sequence,

• .M; d/ is limit point compact if any infinite set in M has a limit point,

• .M; d/ is complete in case every Cauchy sequence converges,

• .M; d/ is totally bounded if for all k 2 N, there are w0; : : : ; wm 2 M such that
[i�mB

M
d
.wi ;

1

2k
/ covers M .
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• a function f W M ! R is topologically continuous if for any open V � R, the set
f �1.V / D ¹x 2M W f .x/ 2 V º is also open.

• a function f WM ! R is closed if for any closed C �M , we have that f .C / is also
closed [35, 41, 49, 69].

Regarding the final item, the set f .C / does not necessarily exist in ACA!0 , but ‘f .C /
is closed’ makes sense1 as shorthand for the associated well-known definition. We could
study other notions, e.g., the Lindelöf property or compactness based on nets, but have
opted to stick to basic constructs already studied in second-order RM.

Finally, fragments of the induction axiom are sometimes used, even in an essen-
tial way, in second-order RM (see e.g. [4, 50]). The equivalence between induction and
bounded comprehension is also well-known in second-order RM [71, X.4.4]. We shall
need a little bit of the induction axiom as follows.

Principle 2.3 (IND2). Let Y 2 satisfy .8n 2 N/.9f 2 2N/ŒY.n; f / D 0�. Then

.8n 2 N/.9w1
�

/
�
jwj D n ^ .8i < n/

�
Y.i; w.i/

�
D 0

��
:

We let IND0 and IND1 be IND2 with ‘.9f 2 2N/’ restricted to respectively ‘(9 at most
one f 2 2N)’ and ‘.9Šf 2 2N/’. We have previously used INDi for i D 0; 1; 2 in the RM
of the Jordan decomposition theorem [53]. By the proof of [53, Thm. 2.16], Z!2 C IND2
cannot prove the uncountability of the reals formulated as: the unit interval is not strongly
countable.

2.2. Metric spaces and hyperarithmetical analysis

2.2.1. Introduction. In this section, we identify a number of the basic properties of met-
ric spaces in the range of hyperarithmetical analysis, as listed on the next page. The Axiom
of Choice for finite sets as in Principle 2.4 naturally comes to the fore. Clearly, the prin-
ciple Finite Choice implies finite-†11-AC0 over ACA!0 .

Principle 2.4 (Finite Choice). Let .Xn/n2N be a sequence of non-empty finite sets in Œ0; 1�.
Then there is .xn/n2N such that xn 2 Xn for all n 2 N.

In more detail, we will establish that the following theorems are intermediate between
ACA!0 C QF-AC0;1 and ACA!0 C Finite Choice.

• Basic properties of continuous functions on sequentially compact metric spaces (Sec-
tion 2.2.2).

• Basic properties of sequentially continuous functions on (countably) compact metric
spaces (Section 2.2.3).

• Restrictions of the previous results to arithmetically defined or Lipschitz continuous
functions (Section 2.2.4).

1In particular, ‘y 2 f .C /’ means ‘.9x 2 C/.f .x/ D y/’ and ‘f .C / is closed’ means ‘.8y 62 f .C //
.9N 2 N/.8z 2 B.z; 1

2N
//.z 62 f .C //’, as expected.
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• Basic properties of connected metric spaces, including the generalisation of the inter-
mediate value theorem (Section 2.2.5).

We sometimes obtain elegant equivalences, like for the intermediate value theorem (The-
orem 2.13). We believe there is no ‘universal’ approach to the previous results: each
section is based on a very particular kind of metric space.

2.2.2. Sequentially compact spaces. In this section, we establish that basic properties of
sequentially compact spaces inhabit the range of hyperarithmetical analysis. The follow-
ing theorem is our first result, to be refined below.

Theorem 2.5 (ACA!0 C IND2). The principle Finite Choice follows from any of the items
(a)–(j) where .M; d/ is any metric space with M � R; the principle QF-AC0;1 implies
items (a)–(i).

(a) For sequentially compact .M; d/, any continuous f WM ! R is bounded.

(b) The previous item with ‘is bounded’ replaced by ‘is uniformly continuous’.

(c) For sequentially compact .M;d/ and continuous f WM!R with infx2M f .x/D
y 2 R given, there is x 2M with f .x/ D y.

(d) (Dini) Let .M;d/ be sequentially compact and let fn W .M �N/!R be a mono-
tone sequence of continuous functions converging to continuous f W M ! R.
Then the convergence is uniform.

(e) For a sequentially compact metric space .M; d/, equicontinuity implies uniform
equicontinuity [43, Prop. 4.25].

(f) For a sequentially compact metric space .M; d/ with M � Œ0; 1� infinite, there is
a discontinuous function f WM ! R.

(g) (Closed map lemma, [39, 41, 44, 49]) For a sequentially compact metric space
.M; d/ any continuous function f WM ! R is closed.

(h) For sequentially compact .M; d/ and disjoint closed C;D �M , d.C;D/ > 0.

(i) (Weak Cantor intersection theorem) For a sequentially compact metric space
.M; d/ and a sequence of closed sets with M � Cn � CnC1 ¤ ;, such that
limn!1 diam.Cn/ D 0, there is a unique w 2

T
n2N Cn.

(j) (Ascoli–Arzelà) For sequentially compact .M; d/, a uniformly bounded equi-
continuous sequence of functions onM has a uniformly convergent sub-sequence.

The theorem still goes through if we require a modulus of continuity in item (a) or if we
replace ‘continuity’ by ‘topological continuity’ in items (a)–(f).

Proof. We first derive Finite Choice from item (a) via a proof-by-contradiction. To this end,
fix a sequence of non-empty finite sets of reals .Xn/n2N . Suppose there is no sequence
.xn/n2N of reals such that xn 2 Xn for all n 2 N. We now define

M0 WD
®
w1
�

W
�
8i < jwj

��
w.i/ 2 Xi

�¯
; (2.1)
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where w1
�

is a finite sequence of reals of length jwj, readily coded using .92/. We define
the equivalence relation ‘DM0 ’ as follows: the relation w DM0 v holds if jwj D0 jvj,
where w; v 2M0. The metric d0 WM 2

0 ! R is defined as d0.w; v/ D j 12jvj �
1

2jwj
j for any

w;v 2M0. We then have d0.v;w/DR 0$ jvj D0 jwj $ v DM0 w as required. We also
have 0 � d0.v; w/ DR d0.w; v/ for any v;w 2M0, while for any z 2M0 we observe:

d0.v; w/ D
ˇ̌
1

2jvj
�

1

2jwj

ˇ̌
D
ˇ̌
1

2jvj
�

1

2jzj
C

1

2jzj
�

1

2jwj

ˇ̌
�
ˇ̌
1

2jvj
�

1

2jzj

ˇ̌
C
ˇ̌
1

2jzj
�

1

2jwj

ˇ̌
D d0.v; z/C d0.z; w/

by the triangle equality of the absolute value on the reals. Hence, .M0; d0/ is a metric
space as in Definition 2.1.

To show that .M0; d0/ is sequentially compact, let .wn/n2N be a sequence in M0

and consider the following case distinction. In case .8n 2 N/.jwnj < m0/ for some
fixed m0 2 N, then .wn/n2N contains at most .m0 C 1/Š different elements. The pigeon
hole principle now implies that at least one wn0 occurs infinitely often in .wn/n2N , i.e.,
.wn0/n2N is a convergent sub-sequence. In case .8m 2 N/.9n 2 N/.jwnj � m/, the
sequence .wn/n2N yields a sequence .xn/n2N such that xn 2 Xn for all n 2 N, which
is impossible by assumption. Hence, .M0; d0/ is a sequentially compact metric space.

Next, define f WM0!R as f .w/ WD jwj, which is clearly not bounded onM0, which
one shows using IND2. To show that f is continuous at w0 2 M0, consider the formula
j
1

2jw0 j
�

1

2jvj
j D d0.v; w0/ <

1
2N

; the latter is false for N � jw0j C 2 and any v ¤M0 w0.
Hence, the following formula is vacuously true:

.8k 2 N/.9N 2 N/
�
8v 2 B

M0

d0

�
w0;

1
2N

���ˇ̌
f .w0/ � f .v/

ˇ̌
<R

1

2k

�
; (2.2)

i.e., f is continuous at w0 2 M0, with a modulus of continuity given by h.w; k/ WD
1

2jwjCkC2
. To see that f is also topologically continuous, fix an open set V � R and fix

w0 2 f
�1.V /. Then for N0 WD jw0j C 2, one verifies that BM0

d
.w0;

1

2N0
/ � f �1.V /,

i.e., f �1.V / is open. Thus, f W M0 ! R is a continuous but unbounded function on a
sequentially compact metric space .M0; d0/, contradicting item (a). Item (b) also implies
Finite Choice as f is not uniformly continuous. For item (c), g W M0 ! R defined as
g.w/ WD 1

2jwj
is continuous in the same way as for f . However, using IND2, the infimum

of g on M0 is 0, but there is no w 2 M0 with g.w/ DR 0, by definition. Hence, item (c)
also implies Finite Choice.

Now assume item (d) and suppose Finite Choice is again false; letting .Xn/n2N and
.M0; d0/ be as in the previous paragraph, we define fn W .N �M0/! R as:

fn.w/ WD

´
jwj if jwj � n;

0 otherwise:
(2.3)

Clearly, limn!1 fn.w/ D f .w/ and fn.w/ � fnC1.w/ for w 2M0; fn is continuous in
the same way as for f . Item (d) implies that the convergence is uniform, i.e.,

.8k 2 N/.9N 2 N/.8w 2M0/.8n � N/
�ˇ̌
fn.w/ � f .w/

ˇ̌
< 1

2k

�
; (2.4)
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which yields a contradiction by lettingN1 2N be as in (2.4) for k D 1 and choosing w1 2
M of length N1C1 using IND2. One derives Finite Choice from item (e) in the same way.

Next, regarding item (g), suppose Finite Choice is false and consider again .M0; d0/.
Define the continuous function f W M0 ! R by f .w/ D qjwj where .qn/n2N is an enu-
meration of the rationals without repetitions. Using IND2, we have f .M0/ D Q and the
latter is not closed while M0 is, contradicting item (g), and Finite Choice must hold. To
obtain the latter from item (f), note that .M0; d0/ is infinite (using IND2) while all func-
tions f WM0! R are continuous as (2.2) is vacuously true. Regarding item (j), assuming
again that Finite Choice is false, the sequence .fn/n2N as in (2.3) is equi-continuous:

.8k 2 N; w 2M0/.9N 2 N/
�
8v 2 B

M0

d0

�
w; 1

2N

��
.8n 2 N/

�ˇ̌
fn.w/ � fn.v/

ˇ̌
<R

1

2k

�
;

which (vacuously) holds in the same way as for (2.2). However, as for item (d), uni-
form convergence (of a sub-sequence) is false, i.e., item (j) also implies Finite Choice.
For item (i), suppose Finite Choice is false, define Cn WD ¹w 2 M0 W jwj > n C 1º, and
verify that this closed and non-empty set has diameter at most 1

2n
, using IND2. SinceT

n2N Cn D ;, we obtain Finite Choice from item (i). For item (h), suppose Finite Choice
is false, and define C D ¹w 2 M0 W jwj is oddº and D D ¹w 2 M0 W jwj is evenº. One
readily verifies that C \D D ;, C;D are closed, and d.C;D/ D 0.

To establish the items in the theorem in ACA!0 CQF-AC0;1, the usual proof-by-contradic-
tion goes through. A proof sketch of item (a) as follows: let .M; d/ be as in the latter and
suppose f WM ! R is continuous and unbounded, i.e.,

.8n 2 N/.9x 2M/
�ˇ̌
f .x/

ˇ̌
> n

�
:

Since M � R and real numbers are represented by elements of Baire space, we may
apply QF-AC0;1 to obtain .xn/n2N in M such that jf .xn/j > n for all n 2 N. Since M
is sequentially compact, .xn/n2N has a convergent sub-sequence, say with limit y 2 M .
Clearly, f is not continuous at y 2 M , a contradiction. To obtain (f), apply QF-AC0;1 to
the statement that M � Œ0; 1� is infinite, yielding a sequence .wn/n2N in M . Now define
f WM !R as f .xn/D n and f .y/D 0 for y ¤ xm for allm 2N. Since f is unbounded
on M , it is discontinuous by item (a). Most other items are established using QF-AC0;1 in
the same way.

We also sketch how QF-AC0;1 implies item (g). To this end, let f;M be as in the closed
map lemma and suppose f .C / is not closed for closed C �M . Hence, there is y0 62 f .C /
such that .8k 2 N/.9y 2 B.y0;

1

2k
//.y 2 f .C //. By definition, the latter formula means

.8k 2 N/.9x 2 C/
�ˇ̌
f .x/ � y0

ˇ̌
< 1

2k

�
:

Apply QF-AC0;1 to obtain a sequence .xn/n2N in C with .8k 2 N/.jf .xk/ � y0j <
1

2k
/.

By sequential compactness, there is a convergent sub-sequence .zn/n2N , say with limit z.
Since C is closed, we have z 2 C and since f is continuous (and hence sequentially con-
tinuous) also f .z/D y0. This contradicts y0 62 f .C / and the closed map lemma therefore
follows from QF-AC0;1.
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The final part of the proof also goes through if f is only usco (see Def. 4.1). As to
other generalisations of Theorem 2.5, the latter still goes through for ‘continuity’ replaced
by ‘absolute differentiability’ from [18] formulated2 appropriately.

Finally, we observe that .M0; d0/ from (2.1) is not (countably) compact, i.e., we need
a slightly different approach for the latter, to be found in the next section.

2.2.3. Compact spaces. In this section, we establish that basic properties of (countably)
compact spaces inhabit the range of hyperarithmetical analysis.

First of all, the following theorem is a version of Theorem 2.5 for (countably) com-
pact spaces and sequential continuity. We seem to (only) need sequential compactness to
guarantee that everything remains provable in ACA!0 C QF-AC0;1.

Theorem 2.6 (ACA!0 C IND2). The principle Finite Choice follows from any of the items
(a)–(d) where .M; d/ is any metric space with M � R; the principle QF-AC0;1 implies all
these items.

(a) For (weakly) countably-compact and sequentially compact .M; d/, any sequen-
tially continuous f WM ! R is bounded.

(b) The previous item with ‘is bounded’ replaced by ‘is (uniformly) continuous’.

(c) For a (weakly) countably-compact .M; d/ that is infinite, there is f W M ! R
that is not sequentially continuous.

(d) The first item with ‘(weakly) countably-compact’ replaced by ‘compact’ or ‘com-
plete and totally bounded’.

Proof. We first derive Finite Choice from item (a) via a proof-by-contradiction. To this end,
fix a sequence of non-empty finite sets of reals .Xn/n2N . Suppose there is no sequence
.xn/n2N of reals such that xn 2 Xn for all n 2 N and recall M0 from (2.1). Now define
M1 DM0 [ ¹0M1º where 0M1 is a new symbol such thatw ¤M1 0 forw 2M0 and ‘DM1 ’
is ‘DM0 ’ otherwise. Define d1 WM 2

1 !R as d0 onM0, as d1.w;0M1/ WD d.0M1 ;w/D
1

2jwj

forw 2M0, and d1.0M1 ; 0M1/D 0. Then .M1; d1/ is a metric, which is shown in the same
way as for .M0; d0/.

To show that .M1; d1/ is countably-compact, let .On/n2N be an open cover of M1

and suppose n1 2 N is such that 0M1 2 On1 . By definition, there is N1 2 N such that
B
M1

d1
.0M1 ;

1

2N1
/ � On0 , i.e., d.0M1 ; w/ D

1

2jwj
< 1

2N1
implies w 2 On1 for w 2M0. Now

use IND2 to enumerate the finitely many v 2M0 such that jvj � N1. This finite sequence
is covered by some [n�n2On, i.e., we have obtained a finite sub-covering of M1, namely
[n�max.n1;n2/On. Moreover, .M1; d1/ is sequentially compact, which can be proved via
the same case distinction as for .M0; d0/ in the proof of Theorem 2.5.

2The correct formulation based on [18] is that ‘f WM !R is (absolutely) differentiable on the metric
space .M; d/’ in case we have

.8k 2N; p 2M/.9N 2N/.8x;y 2M/
�
0< d.x;p/;d.y;p/< 1

2N
!
ˇ̌
jf .x/�f .p/j
d.x;p/

�
jf .y/�f .p/j
d.y;p/

ˇ̌
< 1

2k

�
;

which is the ‘epsilon-delta’ definition formulated to avoid the existence of the derivative.
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Next, define g W M1 ! R as g.w/ WD jwj for w 2 M0 and g.0M1/ DR 0, which is
clearly not bounded onM1; this follows again via IND2. Then g is continuous at w0 2M0

in the same way as f from the proof of Theorem 2.5, namely since (2.2) is vacuously true.
To show that g is sequentially continuous at 0M1 , let .wn/n2N be a sequence converging
to 0M1 . In case this sequence is eventually constant 0M1 , clearly g.0M /D limn!1 g.wn/

as required. In case .wn/n2N is not eventually constant 0M1 , the convergence to 0M1 in the
d1-metric implies that for any n 2N, there ism� nwith jwmj> n. Thus, .wn/n2N yields
a sequence .xn/n2N such that xn 2 Xn for all n 2 N, which contradicts our assumptions,
i.e., this case cannot occur. As a result, g W M1 ! R is sequentially continuous. Since,
it is also unbounded (thanks to IND2), we obtain a contradiction with item (a). Thus, (a)
implies Finite Choice, and the same for item (b). To obtain Finite Choice from item (c), note
that .M1; d1/ is infinite (using IND2) while all functions f W M1 ! R are sequentially
continuous by the previous.

To show that .M1; d1/ satisfies the properties in item (d), note that for ‰ WM1! RC,
the ball BM1

d1
.0M1 ; ‰.0M1// covers all but finitely many points of M1 (in the same way

as On0 from the second paragraph of the proof). Hence, .M1; d1/ is compact, and totally
boundedness follows in exactly the same way. For completeness, let .wn/n2N be a Cauchy
sequence in M1, i.e., we have

.8k 2 N/.9N 2 N/.8n;m � N/
�
d1.wn; wm/ <

1

2k

�
:

As above, .wn/n2N is either eventually constant or provides a sequence .xn/n2N such that
xn 2 Xn for all n 2 N. The latter case is impossible by assumption and the former case is
trivial.

To establish the items in the theorem in ACA!0 CQF-AC0;1, the usual proof-by-contradic-
tion goes through as in the proof of Theorem 2.5.

We believe that we cannot use epsilon-delta or topological continuity in the previous
theorem. Nonetheless, we have the following corollary that makes use of the sequential3

definition of uniform continuity.

Corollary 2.7. Over ACA!0 C IND2, items (a)–(f) in Theorem 2.5 and items (a)–(d) in The-
orem 2.6 are intermediate between QF-AC0;1 and Finite Choice if we replace ‘continuity’
by ‘sequential uniform continuity’.

Proof. The usual proof-by-contradiction using QF-AC0;1 (and .92/) shows that sequential
uniform continuity implies uniform continuity. For the remaining implications, consider
g W M1 ! R from the proof of Theorem 2.6. This function is sequentially continuous at
0M1 since any sequence converging to 0M1 must be eventually constant 0M1 . Similarly, for
sequences .wn/n2N , .vn/n2N in M1 limn!1 d1.wn; vn/ D 0 implies that the sequences
are eventually equal. Hence, g is also sequentially uniformly continuous. A similar proof
goes through for .M0; d0/ and f from Theorem 2.5.

3A function f W M ! R is called sequentially uniformly continuous if for any sequences .wn/n2N ,
.vn/m2N in M such that limn!1 d.wn; vn/ D 0, we have limn!1 jf .wn/ � f .vn/j D 0.
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We have identified a number of basic properties of continuous functions on compact
metric spaces that exist in the range of hyperarithmetical analysis. A number of restrictions
and variations are possible, which is the topic of the next section.

2.2.4. Restrictions. We show that some the above principles still inhabit the range of
hyperarithmetical analysis if we restrict to arithmetically defined objects or Lipschitz con-
tinuity.

First of all, the following theorem establishes that Theorem 2.5 holds if we restrict to
arithmetically defined objects.

Theorem 2.8. Item (a) from Theorem 2.5 still implies weak-†11-AC0 over ACA!0 C IND1 if
all objects in the former item have an arithmetical definition.

Proof. In a nutshell, we can modify the above proofs to obtain (only) weak-†11-AC0 while
all relevant objects can be defined using .92/. To this end, let ' be arithmetical and such
that .8n 2 N/.9ŠX � N/'.n; X/, but there is no sequence .Xn/n2N with .8n 2 N/
'.n;Xn/. Use 92 to define � W Œ0; 1�! .2N � 2N/ such that �.x/D .f; g/ outputs the bin-
ary expansions of x, taking f D g if there is only one. Define the following set using 92:

A WD
®
x 2 Œ0; 1� W .9m 2 N/

�
'
�
m; �.x/.1/

�
_ '

�
m; �.x/.2/

��¯
and Y.x/ WD .�m/Œ'.m; �.x/.1/ _ '.m; �.x/.2///�. Then Y is injective and surjective
on A. In particular Am WD ¹x 2 Œ0; 1� W '.m; �.x/.1// _ '.m; �.x/.2//º contains exactly
one element by definition. Using Xn D An, the metric space .M0; d0/ as in (2.1) in the
proof of Theorem 2.5 now has an arithmetical definition. The same holds for the func-
tion F W M0 ! R where F.w/ WD jwj. The rest of the proof of item (a) of Theorem 2.5
now goes through, using IND1 instead of IND2 where relevant, yielding in particular a
contradiction. Hence, there must be a sequence .Xn/n2N with .8n 2 N/'.n; Xn/, i.e.,
weak-†11-AC0 follows as required.

Secondly, we show that we may replace ‘continuity’ by ‘Lipschitz continuity’ in some
of the above principles.

Definition 2.9. A function f WM !R is ˛-Hölder-continuous in case there existM;˛ >
0 such that for any v;w 2M :ˇ̌

f .v/ � f .w/
ˇ̌
�Md.v;w/˛;

A function is Lipschitz (continuous) if it is 1-Hölder-continuous.

Theorem 2.10 (ACA!0 C IND2). The principle Finite Choice follows from any of the items
(a)–(e) where .M; d/ is any metric space with M � R; the principle QF-AC0;1 implies
items (a)–(e).

(a) For a metric space .M; d/, any sequentially compact C � M is bounded, i.e.,
there are w 2M , m 2 N with .8v 2 C/.d.v; w/ � m/ (see [6, p. 333]).



Connecting real and hyperarithmetical analysis 1481

(b) For sequentially compact .M; d/, any uniformly continuous f WM ! R is
bounded.

(c) The previous item with ‘uniformly’ replaced by ‘˛-Hölder’ or ‘Lipschitz’.

(d) For sequentially compact .M; d/ that is infinite, there exists f W M ! R that is
bounded but not Lipschitz continuous.

(e) For sequentially compact and bounded .M; d/ and Lipschitz f W M ! R with
infx2M f .x/ D y 2 R given, there is x 2M with f .x/ D y.

Proof. First of all, to derive item (a) from QF-AC0;1, fix a metric space .M; d/ and let
C �M be sequentially compact. Suppose C is not bounded, i.e., for some fixed w0 2M ,
we have .8m2N/.9v 2C/.d.w0;v/ >m/. Apply QF-AC0;1 to obtain a sequence .vn/n2N

such that d.w0; vn/ > n for all n 2 N. Clearly, this sequence cannot have a convergent
sub-sequence, a contradiction, and C must be bounded. To derive item (d) from QF-AC0;1,
apply QF-AC0;1 to the statement that M is infinite. The resulting sequence .wn/n2N has a
convergent sub-sequence, say .vn/n2N with limit v. Define f .w/ D 1 (resp. f .w/ D �1)
if vn D w and n is even (resp. odd), and f .w/ D 0 otherwise. Clearly, f W M ! R is
bounded but not (Lipschitz) continuous. By, Theorem 2.5, the other items follow from
QF-AC0;1.

Secondly, to derive Finite Choice from item (a), suppose .Xn/n2N is a sequence of
finite sets such that there is no sequence .xn/n2N with xn 2 Xn for all n 2 N. Recall the
setM0 from (2.1) and define d2 WM 2

0 ! R as d2.v;w/D jjvj � jwjj for v;w 2M0. That
d2 is a metric is readily verified: the first and third item of Definition 2.1 hold by defini-
tion and the triangle equality of the absolute value; the second item in this definition holds
since d2.v;w/ D 0$ juj D jwj $ u DM0 w. Now, the set C D ¹w 2M0 W jwj is evenº
is sequentially compact, as every sequence in C either has at most finitely many differ-
ent members, or yields a sequence .xn/n2N such that xn 2 Xn for all n 2 N. We have
excluded the latter by assumption, while the former trivially yields a convergent sub-
sequence. Using IND2, C is however not bounded in .M0; d2/, a contradiction, and item
(a) implies Finite Choice.

Thirdly, to derive Finite Choice from the remaining items, let .M0; d2/ be as above and
note that the latter is sequentially compact as in the previous paragraph. Now define f W
M0! R as f .u/ WD juj

2
and observe that jf .u/� f .v/j D 1

2
jjuj � jvjj � 1

2
d2.u; v/, i.e.,

f is Lifschitz (and uniformly) continuous. However, IND2 shows that f is not bounded,
a contradiction, and items (b)–(c) imply Finite Choice. Similarly, item (d) implies Finite
Choice as .M0; d2/ is such that every bounded function f W M0 ! R is automatically
Lipschitz. Indeed, if jf .w/j � M0 for all w 2 M0, then the Lipschitz constant for f can
be taken to be 2M0.

Finally, to derive Finite Choice from item (e), suppose the former is false and consider
again .M0; d0/, which is trivially bounded due to the definition of d0. Now define g W
M0 ! R as g.u/ WD 1

2jujC1
. This function is Lipschitz on .M0; d0/ asˇ̌

g.u/ � g.v/
ˇ̌
D
ˇ̌

1

2jujC1
�

1

2jvjC1

ˇ̌
D

1
2

ˇ̌
1

2juj
�

1

2jvj

ˇ̌
D

1
2
d.u; v/:
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However, g has infimum equal to zero (using IND2) but is strictly positive on M0, contra-
dicting item (e), which establishes the theorem.

In conclusion, many implications between the notions in Definition 2.2 exist in the
range of hyperarithmetical analysis, as well as the associated Lebesgue number lemma
for countable coverings of open sets. These are left to the reader.

2.2.5. Connectedness. We show that basic properties of connected metric spaces exist
in the range of hyperarithmetical analysis, including the intermediate value theorem. We
also obtain some elegant equivalences in Theorem 2.13.

First of all, Cantor and Jordan were the first to study connectedness [75], namely as in
the first item in Definition 2.11. The connectedness notions from the latter are equivalent
for compact metric spaces in light of [44, §4.39] or [56, p. 123].

Definition 2.11 (Connectedness). We define connectedness for metric spaces as follows.

• A metric space .M; d/ is chain connected in case for any w; v 2 M and " > 0, there
is a sequence w D x0; x1; : : : ; xn�1; xn D v 2 M such that for all i < n we have
d.xi ; xiC1/ < ".

• A metric space .M; d/ is connected in case M is not the disjoint union of two non-
empty open sets.

We shall study the following generalisation of the intermediate value theorem.

Principle 2.12 (Intermediate value theorem). Let .M; d/ be a sequentially compact and
chain connected metric space and let f WM ! R be continuous. If f .w/ < c < f .v/ for
some v;w 2M and c 2 R, then there is u 2M with f .u/ D c.

The approximate intermediate value theorem is the previous principle with the con-
clusion weakened to ‘then for any " > 0 there is u 2 M with jf .u/ � cj < "’. The latter
theorem is well-known from constructive mathematics (see e.g. [7, p. 40]).

Theorem 2.13 (ACA!0 C IND2). The principle Finite Choice follows from any of the items
(a)–(g) where .M; d/ is any metric space with M � R; the principle QF-AC0;1 implies
items (a)–(g).

(a) The intermediate value theorem as in Principle 2.12.

(b) Principle 2.12 for Lipschitz continuous functions.

(c) The approximate intermediate value theorem.

(d) Let .M; d/ be a sequentially compact and chain connected metric space and let
f WM ! ¹0; 1º be continuous. Then f is constant on M .

(e) Let .M; d/ be a sequentially compact and chain connected metric space and let
f WM ! R be locally constant. Then f is constant on M .

(f) Let .M; d/ be sequentially compact and chain connected and let f WM ! R be
locally constant and continuous. Then f is constant on M .
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(g) For a sequentially compact metric space .M; d/, chain connectedness implies
connectedness.

(h) Let .M; d/ be a sequentially compact and chain connected metric space and let
f WM ! R be (Lipschitz) continuous. Then f is bounded on M .

(i) Item (h) with ‘f is bounded’ replaced by ‘f .M/ is not dense in R’.

(j) Item (h) with ‘f is bounded’ replaced by ‘f .M/ is closed’.

Moreover, items (a), (c), and (d)–(g) are equivalent.

Proof. First of all, we show that item (a) implies Finite Choice. To this end, suppose the
latter is false and consider M0 as in (2.1). Let .qn/n2N be an enumeration of the rationals
(without repetitions) and define d3 W M 2

0 ! R as follows: d3.w; v/ WD jqjwj � qjvjj for
w; v 2 M0. Then .M0; d3/ is a sequentially compact metric space, which is proved in
the same way as for the previous metrics d0; d1; d2, namely that any sequence in M0 can
have at most finitely many different elements. That .M0; d3/ is chain connected is proved
using IND2. Indeed, fix u;w 2M0; " > 0 and consider d3.w; v/D jqjwj � qjvjj. Let qjwj D
r0; r1; : : : ; rk�1; rk D qjvj 2 Q be a finite sequence such that jri � riC1j < " for i < k.
Using IND2, there are wi 2M0 such that qjwi j D ri for i < k, and chain connectedness of
M0 follows.

Now define f W M0 ! R by f .w/ D 1
2
qjwj, which is (Lipschitz) continuous, essen-

tially by the definition of d3, as we have:ˇ̌
f .w/ � f .v/

ˇ̌
D
ˇ̌
1
2
qjwj �

1
2
qjvj

ˇ̌
D

1
2
jqjwj � qjvjj �

1
2
d3.w; v/:

However, the range of f consists of rationals, i.e., it does not have the intermediate value
property. This contradiction yields Finite Choice. The same proof goes through for items
(h)–(j).

Secondly, assume QF-AC0;1 and let .M; d/, f W M ! R, w; v 2 M , and c 2 R be as
in Principle 2.12. Since M is chain connected, we have

.8k2N/.9z1
�

/
�
z.0/Dw^z

�
jwj�1

�
Dv ^

�
8i < jzj�1

�
d
�
z.i/; z.iC1/

�
< 1

2k

�
: (2.5)

Apply QF-AC0;1 to obtain a sequence .zk/k2N of finite sequences. Define a sequence
.tk/k2N in M where tk is the first element t in zk such that f .t/ � c. By sequential
completeness, there is a convergent sub-sequence .sk/k2N with limit s 2 M . Since f is
continuous, we have limk!1 f .sk/ D f .s/ and hence f .s/ D c.

Thirdly, to show that item (g) implies Finite Choice, again suppose the latter is false and
consider .M0; d3/. By the above, the latter is sequentially compact and chain connected.
To show that it is not connected, define

O1 WD ¹w 2M0 W qjwj > �º and O2 WD ¹w 2M0 W qjwj < �º;

verify that they are open and disjoint, and observe that M0 D O1 [ O2, i.e., item (g) is
false. Note also that f W M0 ! R defined as f .w/ D 1 if w 2 O1 and 0 otherwise, is
continuous but not constant, i.e., item (d) also implies Finite Choice.
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To derive item (g) from QF-AC0;1, let .M; d/ be as in the former, i.e., sequentially
compact and chain connected. Suppose M is not connected, i.e., M D O1 [ O2 where
the latter are open, disjoint, and non-empty. Now fix v 2 O1 and w 2 O2 and consider
(2.5). Apply QF-AC0;1 to obtain a sequence .zk/k2N of finite sequences. Define sequences
.sk/k2N and .tk/k2N in M where tk is the first element t in zk such that t 2 O2 and
sk is the predecessor of t in zk . By sequential completeness, .sk/k2N and .tk/k2N have
convergent sub-sequences, with the same limit by construction. However, if this limit is
in O1, then so is .tk/k2N eventually, a contradiction. Similarly, if this limit is in O2, then
so is .sk/k2N eventually, a contradiction. In each case we obtain a contradiction, i.e., M
must be connected, and item (g) follows. The same proof goes through for item (d).

Next, item (g) implies item (e) as in case the latter fails for f W M ! R, say with
f .w/ <R f .v/, then O1 D ¹z 2M W f .z/ � f .w/º and O2 D ¹z 2M W f .z/ > f .w/º
are open, disjoint, and non-empty sets such that M D O1 [ O2, i.e., item (g) fails too.
To show that item (e) implies Finite Choice, suppose the latter is false and let .M0; d3/ be
as above. Define g W M0 ! R as g.w/ D n in case jqjwjj 2 Œn�; .nC 1/��. Clearly, f
is locally constant but not constant, i.e., item (e) is false. To derive item (g) from item (e)
(and item (f)), suppose the former is false, i.e., .M; d/ is a sequentially compact and
chain connected metric space that is not connected. Let M D O1 [O2 be the associated
decomposition and note that f WM !R defined by f .w/D 1 ifw 2O1 and 0 otherwise,
is locally constant (and continuous) but not constant, i.e., item (e) (and (f)) also fails. The
equivalence for item (d) follows in the same way.

To show that item (g) implies item (a), suppose the latter is false for f W M ! R
and c 2 R, i.e., f .w/ ¤ c for all w 2 M . By assumption, O1 WD ¹w 2 M W f .w/ < cº
and O2 WD ¹w 2 M W f .w/ > cº are open, disjoint, and non-empty, i.e., item (g) also
fails. To show that item (a) (and item (c)) implies item (g), suppose the latter fails for
M DO1 [O2, i.e., the latter are open, non-empty, and disjoint. Then f WM !R defined
by f .w/D 1 ifw 2O1 and 0 otherwise, is continuous but does not have the (approximate)
intermediate value property.

Regarding item (i), we could not find a way of replacing ‘f .M/ is not dense in R’ by
‘f .M/ has finite measure’. We could study local connectedness and obtain similar results,
but feel this section is long enough as is.

In conclusion, we have identified many basic properties of metric spaces that exist in
the range of hyperarithmetical analysis. We believe there to be many more such principles
in e.g. topology.

3. Functions of bounded variation and around

We introduce functions of bounded variation (Section 3.1) and show that their basic
properties exist in the range of hyperarithmetical analysis (Section 3.2). Similar to The-
orem 2.8, we could restrict to arithmetically defined functions.
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3.1. Bounded variation and variations

The notion of bounded variation (often abbreviated BV) was first explicitly4 introduced
by Jordan around 1881 [32] yielding a generalisation of Dirichlet’s convergence theorems
for Fourier series. Indeed, Dirichlet’s convergence results are restricted to functions that
are continuous except at a finite number of points, while BV-functions can have infinitely
many points of discontinuity, as already studied by Jordan, namely in [32, p. 230]. In this
context, the total variation V ba .f / of f W Œa; b�! R is defined as:

sup
a�x0<���<xn�b

nX
iD0

ˇ̌
f .xi / � f .xiC1/

ˇ̌
: (3.1)

The following definition provides two ways of defining ‘BV-function’. We have mostly
studied the first one [53, 61, 67] but will use the second one in this paper.

Definition 3.1. Functions of bounded variation are defined as follows.

(a) The function f W Œa; b�! R has bounded variation on Œa; b� if there is k0 2 N
such that k0 �

Pn
iD0 jf .xi / � f .xiC1/j for any partition x0 D a < x1 < � � � <

xn�1 < xn D b.

(b) The function f W Œa; b�! R has total variation z 2 R on Œa; b� if V ba .f / D z.

We recall the ‘virtual’ or ‘comparative’ meaning of suprema in RM from e.g. [71, X.1].
In particular, a formula ‘supA � b’ is merely shorthand for (essentially) the well-known
definition of the supremum.

Secondly, the fundamental theorem about BV-functions is formulated as follows.

Theorem 3.2 (Jordan decomposition theorem, [32, p. 229]). A BV-function f W Œ0;1�!R
is the difference of two non-decreasing functions g; h W Œ0; 1�! R.

Theorem 3.2 has been studied via second-order representations in [27,38,51,76]. The
same holds for constructive analysis by [12, 13, 29, 57], involving different (but related)
constructive enrichments. We have obtained many equivalences for the Jordan decom-
position theorem, formulated using item (a) from Definition 3.1 in [53, 67], involving the
following principle.

Principle 3.3 (cocode0). A countable set A � Œ0; 1� can be enumerated.

This principle is ‘explosive’ in that ACA!0 C cocode0 proves ATR0 while …1
1-CA!0 C

cocode0 proves …1
2-CA0 (see [54, §4]).

Thirdly, f WR!R is regulated if for every x0 in the domain, the ‘left’ and ‘right’ limit
f .x0�/ D limx!x0� f .x/ and f .x0C/ D limx!x0C f .x/ exist. Feferman’s � readily
provides the limit of .f .xC 1

2n
//n2N if it exists, i.e., the notation �x:f .xC/ for regulated

f makes sense in ACA!0 . On a historical note, Scheeffer and Darboux study discontinuous

4Lakatos in [40, p. 148] claims that Jordan did not invent or introduce the notion of bounded variation
in [32], but rather discovered it in Dirichlet’s 1829 paper [42].
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regulated functions in [21,68] without using the term ‘regulated’, while Bourbaki develops
Riemann integration based on regulated functions in [11]. Finally, BV-functions are reg-
ulated while Weierstrass’ ‘monster’ function is a natural example of a regulated function
not in BV.

3.2. Bounded variation and hyperarithmetical analysis

We identify a number of statements about BV-functions that exist within the range of
hyperarithmetical analysis, assuming ACA!0 . We even obtain some elegant equivalences
and discus the (plentiful) variations of these results in Section 4.3.

First of all, the following principle appears to be important, which is just cocode0 from
the previous section restricted to strongly countable sets.

Principle 3.4 (cocode1). A strongly countable set A � Œ0; 1� can be enumerated.

Some RM-results for cocode1 may be found in [53, §2.2.1]; many variations are pos-
sible and these systems all exist in the range of hyperarithmetical analysis. The cited
results are not that satisfying as they mostly deal with properties of strongly countable
sets, in contrast to the below.

Secondly, we have the following theorem, establishing that items (ii)–(v) exist in the
range of hyperarithmetical analysis.

Theorem 3.5 (ACA!0 C IND1). The higher items imply the lower ones.

(i) The principle QF-AC0;1.

(ii) (Jordan) For f 2BV with V 10 .f /D 1, there are non-decreasing g;h W Œ0;1�!R
such that f D g � h.

(iii) For f 2 BV with V 10 .f / D 1, there is a sequence that includes all points of
discontinuity of f .

(iv) For f 2 BV with V 10 .f / D 1, the supremum5 supx2Œp;q� f .x/ exists for p; q 2
Œ0; 1� \Q.

(v) cocode1.

(vi) weak-†11-AC0.

Items (ii)–(iii) are equivalent; we only use IND1 to derive cocode1 from item (iv).

Proof. Assume QF-AC0;1 and let f 2 BV be such that V 10 .f / D 1. By [52, Thm. 2.16],
ACA!0 suffices to enumerate all jump discontinuities of a regulated function, while f is
regulated by [53, Thm. 3.33]. Then V 10 .f / D 1 implies that

.8k 2N/.9x0; : : : ;xm 2 I /
�
.8i <m/.xi <xiC1/^ 1�

1

2k
<
Pm
jD0

ˇ̌
f .xj /� f .xjC1/

ˇ̌�
:

5To be absolutely clear, we assume, for the existence of a functional ˆ WQ2 ! R such that .8p; q 2
Q \ Œ0; 1�/.ˆ.p; q/ D supx2Œp;q� f .x//.
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The formula in square brackets is arithmetical, i.e., since .92/ is available we may apply
QF-AC0;1 to obtain a sequence of finite sequences .wn/n2N witnessing the previous centred
formula. This sequence includes all removable discontinuities of f . Indeed, suppose y0 2
Œ0; 1� is such that f .y0�/ D f .y0C/ ¤ f .y0/ is not among the reals in .wn/n2N . Let
k0 2 N be such that jf .y0C/ � f .y0/j > 1

2k0
and note that

1 � 1

2k0C1
<
Pmk0C1
jD0

ˇ̌
f .xj / � f .xjC1/

ˇ̌
for wk0C1 D .x0; : : : ; xmk0C1/ by assumption. Extending wk0C1 with y0 and points z0 <
y0 < u0 close enough to y0, we obtain a partition of Œ0; 1� that witnesses that V 10 .f / > 1,
contradicting our assumptions. Since f is regulated, it only has removable and jump dis-
continuities, i.e., item (iii) follows from QF-AC0;1 as required.

By [53, Thm. 3.33], ACA!0 suffices to enumerate the points of discontinuity of any
monotone g W Œ0; 1�! R, i.e., item (ii) implies item (iii). To obtain item (ii) from item
(iii), note that the supremum over R in (3.1) can be replaced by a supremum over Q
and any sequence that includes all points of discontinuity of f . Hence, we may use .92/
to define the weakly increasing function g.x/ WD �x:V x0 .f /. One readily verifies that
h.x/ WD g.x/� f .x/ is also weakly increasing, i.e., f D g � h as in item (ii) follows. To
obtain item (iv) from item (iii), note that – similar to the previous – the supremum over R
in supx2Œp;q� f .x/ can be replaced by a supremum over Q and any sequence that includes
all points of discontinuity of f .

To derive cocode1 from item (iv), letA� Œ0;1� and Y W Œ0;1�!R such that the latter is
injective and surjective on the former. Now define f W Œ0; 1�!R as follows: f .x/ WD 1

2Y.x/

if x 2A, and 0 otherwise. Using IND1, f is in BV and V 10 .f /D 1. Now use .92/ to decide
whether supx2Œ0; 12 � f .x/ < 1; if the latter holds, ‘1’ is the first bit of the binary expansion
of x0 2 Œ0; 1� such that Y.x0/ D 0. Using the supremum functional and .92/, the usual
interval-halving technique then allows us to enumerate A, as required for cocode1. For
the final part, let ' be arithmetical and such that .8n 2 N/.9ŠX � N/'.n;X/. Use 92 to
define � W Œ0; 1�! .2N � 2N/ such that �.x/ D .f; g/ outputs the binary expansions of x,
taking f D g if there is only one. Then En D ¹x 2 Œ0; 1� W '.n; �.x/.1//_ '.n; �.x/.2//º
is a singleton and Y.x/ WD .�n/.x 2 En/ is injective and surjective on AD[n2NEn. The
enumeration of A provided by cocode1 yields the consequent of weak-†11-AC0.

As to the role of the Axiom of Choice in Theorem 3.5, we note that the items (ii)–(v)
can also be proved without QF-AC0;1. Indeed, �x:V x0 .f / as in (3.1) involves a supremum
over R, which can be defined in Z�2 using the well-known interval-halving technique, i.e.,
the usual textbook proof (see e.g. [1]) goes through in Z�2 .

Thirdly, we have the following corollary using slightly more induction.

Corollary 3.6. Over ACA!0 C IND2, item (iii) from Theorem 3.5 is equivalent to:

For f 2BV with V 10 .f /D1 and with Fourier coefficients given, there is a sequence
.xn/n2N outside of which the Fourier series converges to f .x/.
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Proof. We note that IND2 suffices to guarantee that BV-functions are regulated by [53,
Thm. 3.33]. Now, the Fourier series of a BV-function always converges to f .xC/Cf .x�/

2

and this fact is provable in ACA!0 if the Fourier coefficients are given, as discussed in (a lot
of detail in) [61, §3.4.4]. Hence, item (iii) of Theorem 3.5 immediately implies the centred
statement in item (a), while for the reversal, the centred statement provides a sequence that
includes all removable discontinuities, i.e., where f .x/ ¤ f .xC/ but f .xC/ D f .x�/.
By [52, Thm. 2.16], ACA!0 suffices to enumerate all jump discontinuities of a regulated
function. Since there are no other discontinuities for f , the corollary follows.

We could obtain similar results for e.g. Bernstein or Hermite-Fejér polynomials as
analogous results hold for BV-functions (see [67]). Other variations are discussed in
Remark 4.3 below.

Fifth, as noted in Section 3.1, enumerating the points of discontinuity of a regulated
function implies cocode0; the latter yields ATR0 when combined with ACA!0 . By contrast,
item (ii) in the following theorem is much weaker.

Theorem 3.7 (ACA!0 C IND0). The higher items imply the lower ones.

(i) The principle QF-AC0;1.

(ii) For regulated f W Œ0; 1�! R with infinite Df , there is a sequence of distinct
points of discontinuity of f .

(iii) The principle Finite Choice.

(iv) The principle finite-†11-AC0.

Proof. The first downward implication is immediate by applying QF-AC0;1 – modulo .92/
– to ‘Df is not finite’. The final implication is straightforward. For the second downward
implication, let .Xn/n2N be a sequence of non-empty finite sets and let � W Œ0; 1�! R be
such that �.x/ is the binary expansion of x, choosing a tail of zeros if necessary. Define
h W Œ0; 1�! R as:

h.x/ WD

8̂<̂
:

1
2n

if �.x/ D 11 : : : 11„ ƒ‚ …
kC 1-times

�h0i � g0 ˚ � � � ˚ gk and .8i � k/.gi 2 Xi /;

0 otherwise:

Using IND2, one readily shows that h is regulated (with left and right limits equal to zero)
and thatDh is infinite if [n2NXn is. Any sequence inDh then yields a sequence as in the
consequent of Finite Choice.

An interesting variation is provided by the following corollary. We conjecture that
Finite Choice cannot be obtained from the second item.

Corollary 3.8 (ACA!0 ). The higher items imply the lower ones.

(i) The principle QF-AC0;1.

(ii) For f W Œ0; 1�! R in BV with infinite Df , there is a sequence of distinct points
of discontinuity of f .
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(iii) (Finite Choice0) Let .Xn/n2N be a sequence of non-empty finite sets in Œ0; 1� and
let g 2 NN be such that jXnj � g.n/. Then there is a sequence .xn/n2N such
that xn 2 Xn for all n 2 N.

(iv) The principle height-†11-AC0.

Proof. The final implication is straightforward while the first one follows as in the proof
of the theorem. For the second downward implication, let .Xn/n2N be a sequence of non-
empty finite sets with jXnj � g.n/. Define h W Œ0; 1�!R as in the proof of the theorem but
replacing ‘ 1

2n
’ in the first case by 1

2n
1

g.n/C1
. By construction, h is in BV with V 10 .f / � 1

and the set Dh is infinite if [n2NXn is. Any sequence in Dh then yields the sequence as
in the consequent of Finite Choice0.

Finally, we discuss numerous possible variations of the above results in Section 4.3,
including Riemann integration and rectifiability.

4. Other topics in hyperarithmetical analysis

4.1. Semi-continuity and closed sets

We show that basic properties of semi-continuous functions, like the extreme value the-
orem, exist in the range of hyperarithmetical analysis. Since upper semi-continuous func-
tions are closely related to closed sets, the latter also feature prominently.

First of all, we need Baire’s notion of semi-continuity first introduced in [3].

Definition 4.1. We have the following definitions.

• The function f W Œ0; 1�! R is upper semi-continuous at x0 2 Œ0; 1� if for any k 2 N,
there is N 2 N such that .8y 2 B.x0; 12N //.f .y/ < f .x0/C

1

2k
/.

• The function f W Œ0; 1�! R is lower semi-continuous at x0 2 Œ0; 1� if for any k 2 N,
there is N 2 N such that .8y 2 B.x0; 12N //.f .y/ > f .x0/ �

1

2k
/.

We use the common abbreviations ‘usco’ and ‘lsco’ for the previous notions. We say
that ‘f W Œ0; 1�! R is usco’ if f is usco at every x 2 Œ0; 1�. Following [45], the extreme
value theorem does not really generalise beyond semi-continuous functions.

Secondly, we have the following theorem, a weaker version of which is in [55]. We
repeat that since the characteristic function of a closed set is usco, the connection between
items (ii) and ClC is not that surprising.

Theorem 4.2 (ACA!0 C IND2). The higher items imply the lower ones.

(i) The principle QF-AC0;1.

(ii) (Extreme value theorem) For usco f W R! R with y D supx2Œn;nC1� f .x/ for
all n 2 N, there is .xn/n2N such that .8n 2 N/.xn 2 Œn; nC 1� ^ f .xn/ D y/.

(iii) (ClC, [55]) Let .Cn/n2N be a sequence of non-empty closed sets in Œ0; 1�. Then
there is .xn/n2N such that xn 2 Cn for all n 2 N.
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(iv) For usco and regulated f W R! R with y D supx2Œn;nC1� f .x/ for all n 2 N,
there is .xn/n2N such that .8n 2 N/.xn 2 Œn; nC 1� ^ f .xn/ D y/.

(v) (Finite Choice) Let .Xn/n2N be a sequence of non-empty finite sets in Œ0; 1�. Then
there is .xn/n2N such that xn 2 Xn for all n 2 N.

(vi) The principle finite-†11-AC0.

Proof. For the first downward implication, if the supremum y is given, we have

.8n; k 2 N/
�
9x 2 Œn; nC 1�

��
f .x/ > y � 1

2k

�
;

and applying QF-AC0;1 yields a sequence .xn;k/n;k2N . Since .92/! ACA0, the latter has
a convergent sub-sequence (for fixed n 2 N), with limit say yn 2 Œn; nC 1� by sequential
completeness. One readily verifies that f .yn/ D y for any n 2 N as f is usco. For the
second implication, fix a sequence .Cn/n2N of closed sets and define h W Œ0; 1�! R as
follows using Feferman’s �:

h.x/ WD

´
1 x � n 2 Cn ^ n > 0;

0 otherwise:
(4.1)

Since h is essentially the characteristic function of closed sets, h is usco on Œn; n C 1�
by definition, for each n 2 N. The sequence provided by item (ii) then clearly satisfies
xn 2 Cn. To show that ClC implies item (ii), let f W Œ0; 1�!R and y 2R be as in the latter
and define Cn;k D ¹x 2 Œn; n C 1� W f .x/ � y � 1

2k
º which is non-empty by definition

and closed as f is usco. The sequence provided by ClC yields xn 2 Œn; nC 1� such that
f .xn/ D y. The function h from (4.1) is also regulated in case each Cn is finite, i.e., the
fourth implication also follows.

We note that item (ii) is equivalent to e.g. the sequential version of the Cantor inter-
section theorem [55].

Thirdly, ClC from Theorem 4.2 is provable in WKL0 if we assume that the closed sets are
given by a sequence of RM-codes (see [71, IV.1.8]). We next study ClC for an alternative
representation of closed sets from [14–16] as follows.

Definition 4.3. A (code for a) separably closed set is a sequence S D .xn/n2N of reals.
We write ‘x 2 xS ’ in case .8k 2 N/.9n 2 N/.jx � xnj <

1

2k
/. A (code for a) separably

open set is a code for the (separably closed) complement.

Next, item (i) in Theorem 4.4 is a weakening of [71, V.4.10], which in turn is a second-
order version of the countable union theorem. In each case, the antecedent only expresses
that for every n, there exists an enumeration of An; abusing notation6 slightly, we still

6In particular, the formula ‘X 2 An’ in Theorem 4.4 is short-hand for

.9.Ym/m2N/
�
.8Y �N/.Y 2 An! .9m 2N/.Ym D Y //^ .8k 2N/.9l 2N/. xXk D Ylk ^ Yl 2 An/

�
;

which is slightly more unwieldy.
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write ‘X 2An’ as in Definition 4.3, leaving the enumeration ofAn implicit. We sometimes
identify subsets X � N and elements f 2 2N .

Theorem 4.4 (ACA0). The following items are intermediate between †11-AC0 and weak-
†11-AC0.

(i) Let .An/n2N be a sequence of analytic codes such that each An is enumerable
and non-empty. There is a sequence .Xn/n2N with .8n 2 N/.Xn 2 An/.

(ii) Let .An/n2N be a sequence of analytic codes such that An is enumerable and
An has positive measure. There exists .Xn/n2N with .8n 2 N/.Xn 2 An/.

(iii) Let .An/n2N be a sequence of analytic codes such that An is enumerable and
An is not enumerable. There exists .Xn/n2N with .8n 2 N/.Xn 2 An/.

(iv) Let .An/n2N be a sequence of analytic codes such that for all n 2 N, An is
RM-open. There exists .Xn/n2N with .8n 2 N/.Xn 2 An/.

Proof. To prove the items in †11-AC0, apply the latter to .8n 2 N/.9X � N/ŒX 2 An�,
noting that the formula in square brackets is †11 if An is an analytic code. To derive
weak-†11-AC0 from item (i), let ' be arithmetical and such that .8n2N/.9ŠX�N/'.X;n/
and define ‘X 2 An’ as '.X; n/ using [71, V.1.70]. Clearly, X 2 An then implies '.X; n/
as An codes a singleton, i.e., item (i) implies weak-†11-AC0. To obtain weak-†11-AC0 from
item (iv), let ' be as in the antecedent of the former and consider ‰.X; n; k/ defined as

.9Y � N/
�
'.Y; n/ ^ xY k D xXk

�
; (4.2)

which yields a sequence of †11-formulas, yielding in turn a sequence of analytic codes
.An;k/n;k2N by [71, V.1.70]. In light of (4.2), An;k is a basic open ball in 2N . In case
Xn;k 2 An;k for all n; k 2N, define Yn WD �k:Xn;kk and note that '.Yn; n/ for all n 2N.
To obtain weak-†11-AC0 from item (ii), let ' be as in the antecedent of the former and
define ‰.X; n; k/ as

.9Y � N/
�
'. xXk � Y; n/ ^ .9� 2 2<N/.X D � � 00 : : :/

�
;

which yields a sequence of †11-formulas, yielding in turn a sequence of analytic codes
.An;k/n;k2N by [71, V.1.70]. For fixed n0 2 N, there is a unique X0 � N such that
'.X0; n0/, immediately yielding an enumeration of An0;k for any k 2 N. Essentially by
definition, An;k has measure 1=2k . In case Xn;k 2 An;k for all n; k 2 N, define Yn WD
�k:Xn;kk and note that '.Yn; n/ for all n 2 N. Item (iii) also follows as enumerable sets
have measure zero.

We would like to formulate item (i) using Borel codes from [71, V.3], but the lat-
ter seem to need ATR0 to express basic aspects. The items from the theorem also imply
finite-†11-AC0, which is left as an exercise.

Finally, we formulate a higher-order result for comparison; we continue the abuse of
notation involving Sn as in Theorem 4.2.
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Theorem 4.5 (ACA!0 ). The higher items imply the lower ones.

(i) The principle QF-AC0;1.

(ii) Let .Sn/n2N be a sequence of sets in Œ0; 1� such that for all n 2 N, Sn is enu-
merable and non-empty. There is .xn/n2N with .8n 2 N/.xn 2 Sn/.

(iii) Let .Sn/n2N be a sequence of sets in Œ0; 1� such that for all n 2N, Sn is enumer-
able and Sn has positive measure. There is .xn/n2N with .8n 2 N/.xn 2 Sn/.

(iv) cocode1.

Proof. The first downward implication follows by applying QF-AC0;1 to ‘Sn is non-empty
for all n 2 N’. For the third downward implication, let Y W Œ0; 1�! R and A � Œ0; 1� be
such that .8n 2 N/.9Šx 2 A/.Y.x/ D n/. Define the set

En;k WD
®
x 2 Œn; nC 1� W .9q 2 Q/

�
Y.x � nC q/ D n ^ x � nC q 2 A ^ jqj � 1

2kC1

�¯
and note that this sequence has a straightforward enumeration while the associated separ-
ably closed set has measure 1

2k
. Let .xn;k/n;k2N be the sequence provided by item (iii).

Using sequential compactness, yn D limk!1 xn;k is a real in Œn; nC 1� satisfying Y.yn/
D n, for any n 2 N as required.

Variations of the previous theorem are possible, e.g., replacing ‘enumerable’ by
‘(strongly) countable’. Nonetheless, we are not able to derive e.g. cocode1 from ClC restric-
ted to closed sets of positive measure, i.e., the previous two theorems may well be due to
the coding of closed sets as in Definition 4.3.

4.2. Unordered sums

The notion of unordered sum is a device for bestowing meaning upon sums involving
uncountable index sets. We introduce the relevant definitions and then prove that basic
properties of unordered sums exist in the range of hyperarithmetical analysis.

First of all, unordered sums are essentially ‘uncountable sums’
P
x2I f .x/ for any

index set I and f W I ! R. A central result is that if
P
x2I f .x/ somehow exists, it must

be a ‘normal’ series of the form
P
i2N f .yi /, i.e., f .x/ D 0 for all but countably many

x 2 Œ0; 1�; Tao mentions this theorem in [73, p. xii].
By way of motivation, there is considerable historical and conceptual interest in this

topic: Kelley notes in [35, p. 64] that E. H. Moore’s study of unordered sums in [47] led
to the concept of net with his student H. L. Smith [48]. Unordered sums can be found in
(self-proclaimed) basic or applied textbooks [31, 72] and can be used to develop measure
theory [35, p. 79]. Moreover, Tukey shows in [74] that topology can be developed using
phalanxes, which are nets with the same index sets as unordered sums.

Secondly, as to notations, unordered sums are just a special kind of net and a W Œ0; 1�!
R is therefore written .ax/x2Œ0;1� in this context to suggest the connection to nets. The
associated notation

P
x2Œ0;1� ax is purely symbolic. We only need the following notions

in the below. Let fin.R/ be the set of all finite sequences of reals without repetitions.
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Definition 4.6. Let a W Œ0; 1�! R be any mapping, also denoted .ax/x2Œ0;1�.

• We say that .ax/x2Œ0;1� is convergent to a 2R if for all k 2N, there is I 2 fin.R/ such
that for J 2 fin.R/ with I � J , we have ja �

P
x2J axj <

1

2k
.

• A modulus of convergence is any sequence ˆ0!1
�

such that ˆ.k/ D I for all k 2 N
in the previous item.

For simplicity, we focus on positive unordered sums, i.e., .ax/x2Œ0;1� such that ax � 0
for x 2 Œ0; 1�.

Thirdly, we establish that basic properties of unordered sums exist in the range of
hyperarithmetical analysis.

Theorem 4.7 (ACA!0 C IND1). The higher items imply the lower ones.

(i) QF-AC0;1.

(ii) For a positive and convergent unordered sum
P
x2Œ0;1� ax , there is a sequence

.yn/n2N of reals such that ay D 0 for all y not in this sequence.

(iii) For a positive and convergent unordered sum
P
x2Œ0;1� ax , there is a modulus of

convergence.

(iv) cocode1.

Proof. Assume QF-AC0;1 and note that the convergence of an unordered sum to some
a 2 R implies

.8k 2 N/
�
9I 2 fin.R/

��ˇ̌
a �

P
x2I ax

ˇ̌
< 1

2k

�
: (4.3)

Apply QF-AC0;1 to (4.3) to obtain a sequence .In/n2N of finite sequences of reals. This
sequence must contain all y 2R such that ay ¤ 0. Indeed, suppose y0 2R satisfies ay0 >R
1

2k0
for fixed k0 2 N and y0 is not included in .In/n2N . By definition, Ik0C2 satisfiesˇ̌

a �
P
x2Ik0C2

ax
ˇ̌
< 1

2k0C2
:

However, for J D Ik0C2 [ ¹y0º, we have aJ >a, a contradiction. Hence, QF-AC0;1 implies
item (ii). The second and third items are readily seen to be equivalent.

For the final downward application, let A � Œ0; 1� and Y W Œ0; 1� ! R be such that
the latter is injective and surjective on the former. Define ax WD 1

2Y.x/C1
if x 2 A, and

0 otherwise. One readily proves that
P
x2Œ0;1� ax is convergent to 1, for which IND1 is

needed. The sequence from the second item now yields the enumeration of the set A
required by cocode1.

We note that height-†11-AC0 can be obtained from item (ii) in Theorem 4.7; we conjec-
ture that finite-†11-AC0 cannot be obtained. Since unordered sums are just nets, one could
study statements like

a convergent net has a convergent sub-sequence,

which for index sets defined over Baire space is equivalent to QF-AC0;1 [64].
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4.3. Variations and generalisations

We discuss variations and generalisations of the above results.
First of all, many variations of the results in Section 3.2 exist for rectifiable functions.

Now, Jordan proves in [33, §105] that BV-functions are exactly those for which the notion
of ‘length of the graph of the function’ makes sense. In particular, f 2 BV if and only if
the ‘length of the graph of f ’, defined as follows:

L
�
f; Œ0; 1�

�
WD sup

0Dt0<t1<���<tmD1

m�1X
iD0

q
.ti � tiC1/2 C

�
f .ti / � f .tiC1/

�2 (4.4)

exists and is finite by [1, Thm. 3.28 (c)]. In case the supremum in (4.4) exists (and is
finite), f is also called rectifiable. Rectifiable curves predate BV-functions: in [68, §1–2],
it is claimed that (4.4) is essentially equivalent to Duhamel’s 1866 approach from [23,
Ch. VI]. Around 1833, Dirksen, the PhD supervisor of Jacobi and Heine, already provides
a definition of arc length that is (very) similar to (4.4) (see [22, §2, p. 128]), but with some
conceptual problems as discussed in [20, §3].

Secondly, regulated functions are not necessarily BV but have bounded Waterman
variation W 1

0 .f / (see [1]), which is a generalisation of BV where the sum in (3.1) is
weighted by a Waterman sequence, which is a sequence of positive reals that converges to
zero and with a divergent series. Some of the above results generalise to regulated function
for which the Waterman variation is known, say W 1

0 .f / D 1.
Thirdly, one can replace the consequent of item (iii) in Theorem 3.5 by a number of

similar conditions, like the existence of a Baire 1 representation (which can be defined in
ACA!0 for monotone functions), the fundamental theorem of calculus at all reals but a given
sequence, or the condition that if the Riemann integral of f W Œ0; 1�! Œ0; 1� in BV is zero,
f .x/ D 0 for all x 2 Œ0; 1� but a given sequence. Many similar conditions may be found
in [61, 65, 67].

Fourth, Theorem 3.7 is readily generalised to (almost) arbitrary functions on the reals.
To make sure the resulting theorem is provable in ACA!0 C QF-AC0;1, it seems we need
oscillation functions7. Riemann, Ascoli, and Hankel already considered the notion of
oscillation in the study of Riemann integration [2, 28, 58], i.e., there is ample historical
precedent. In the same way as for Theorem 3.7, one proves that the higher items imply the
lower ones over ACA!0 .

• The principle QF-AC0;1.

• Any infinite set X � Œ0; 1� has a limit point.

• For any f W Œ0; 1�! R with oscillation function oscf W Œ0; 1�! R, the set

Df D
®
x 2 Œ0; 1� W oscf .x/ > 0

¯
is either finite or has a limit point.

7For any f W R ! R, the associated oscillation functions are defined as follows: oscf .Œa; b�/ WD
supx2Œa;b� f .x/ � infx2Œa;b� f .x/ and oscf .x/ WD limk!1 oscf .B.x; 12k //.
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• For a non-piecewise continuousf W Œ0;1�!R with oscillation function oscf W Œ0;1�!R,
the set Df D ¹x 2 Œ0; 1� W oscf .x/ > 0º has a limit point.

• The arithmetical Bolzano–Weierstrass theorem ABW0 [19].

We note that oscf W Œ0; 1�!R is necessary to make ‘x 2Df ’ into an arithmetical formula
while ‘x is a limit point ofDf ’ is a meaningful (non-arithmetical) formula even ifDf does
not exist as a set.
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