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Global Lipschitz geometry of conic singular
sub-manifolds with applications to algebraic sets

André Costa, Vincent Grandjean, and Maria Michalska

Abstract. We prove that a connected globally conic singular sub-manifold of a Riemannian man-
ifold, compact when the ambient manifold is non-Euclidean, is Lipschitz Normally Embedded: its
outer and inner metric space structures are equivalent. Moreover, we show that generic K-analytic
germs as well as generic affine algebraic sets in Kn, where K D C or R, are globally conic singu-
lar sub-manifolds. Consequently, a generic K-analytic germ or a generic algebraic subset of Kn is
Lipschitz Normally Embedded.

1. Introduction

A subset S of a smooth Riemannian manifoldM is called quasi-convex, Whitney 1-regular
or Lipschitz normally embedded (abbreviated to LNE) if there exists a constantL such that

dSin � L � d
S

where .S; dS / is the outer metric structure, i.e., the distance in S is taken in the ambi-
ent space M , and .S; dSin / is the inner metric structure, i.e., the distance between two
points of S is taken as the infimum of the length of the rectifiable curves in S connecting
them. This notion was well-established first by Whitney in [40, 41], thereafter studied in
[24, 37] for sub-analytic sets; and re-introduced under the name of quasi-convex sets in the
investigation of length spaces, see [19]. The least ambivalent name of Lipschitz normally
embedded sets, therefore the one we will use, was introduced by [1] in the semi-algebraic
context.

The present paper continues the application of Riemannian geometric methods to
global Lipschitz geometry of algebraic sets, which was initiated in the PhD thesis of the
first author [6] and our articles [9, 11]. In this paper we deal with the classical type of
singularities in the Riemannian setting: the conically singular ones.

The interest in a metrically conical point in Riemannian geometry dates back at least
to the seminal works [2–5]. Although the notion of conic singular point of a subset in
this paper is differential, whenever the subset inherits the inner metric from the ambient
Riemannian manifold, it turns into a metrically conical point, compare with [17, 27] for
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notable variation. In this article we study the global Lipschitz geometry of conic singular
sub-manifolds. Interestingly, though investigation of Lipschitz properties in an unbounded
metric space would usually involve studying the behaviour along geodesic rays [18, 19],
methods of our paper [11] allow us to reduce equivalently the global LNE property of a
conic singular sub-manifold of Rn to its one-point compactification in Sn, see Corollar-
ies 3.17 and 3.25. We obtain the following result.

Theorem 3.6. A connected compact conic singular sub-manifold of a Riemannian mani-
fold is Lipschitz normally embedded.

Since even smooth sub-manifolds may fail to be LNE, if non-compact, we present the
natural notion of conic at infinity and obtain the following result.

Theorem 3.20. A connected globally conic singular sub-manifold of Rn is LNE.

On the other hand, there is a growing body of work on LNE algebraic and analytic
subset germs and one might consult [13, 29, 35] for an overview of the state of the art.
The immediate natural question presents itself: is the LNE property common among alge-
braic sets or analytic set germs? The literature up to date fails to tackle this problem. The
local LNE problem at infinity for complex affine algebraic sets was explicitly initiated
in [15]. Besides the obvious examples of global LNE sets that are the compact connected
sub-manifolds and K-cones over these, prior to [6,9] completely characterizing LNE com-
plex algebraic curves of Cn, only the two concurrent papers [22,23] presented non-trivial
examples of globally LNE algebraic sets of Kn.

We prove that indeed LNE sets are prevalent among analytic germs and affine alge-
braic sets, since we show in Theorems 4.1 and 4.5 that a generic germ of an analytic
singularity in .Cn; 0/ of multiplicity m is conic at the origin and a generic algebraic sub-
set of Kn, where K D C or R, is a globally conic singular sub-manifold. This implies the
following.

Corollary 4.2. A Generic germ of an analytic singularity in .Cn; 0/ of multiplicity m
is LNE.

Corollary 4.6. Every connected component of a generic affine algebraic subset of Kn

is LNE.

We build up the proofs basically from scratch, as our methods are quite direct. The
only previously known results on LNE sets used in this paper are Proposition 2.8 from
[1] and properties of cones which we first encountered in [23]. Nevertheless, thanks to
the literature on germs, one can combine Corollary 3.19 on affine trace of projective conic
sub-manifolds with known results such as [31,33] to get various new examples of singular
LNE affine algebraic sets, compare with Corollary 4.17 or Example 4.18. Additionally, we
attempted to make the paper self-contained, due to it sitting at the intersection of Global
Analysis and Algebraic Geometry.
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2. Preliminaries

We will first establish some notation and thereafter present the notions of p-sub-manifold,
spherical blow-up and Lipschitz normally embedded sets. Throughout the paper smooth
means C1.

2.1. Notation

The Euclidean distance in Rn is denoted j � j. The open ball of radius r and centre a
is Bn.a; r/, its closure is Bn.a; r/ and Sn�1.a; r/ is its boundary. When a is the origin
we only write Bnr , Bnr and Sn�1r and among them the unit ball is Bn and the unit sphere
is Sn�1.

Denote R�0 WD Œ0;1/ and R>0 WD .0;1/. The half-line in the oriented direction of
the vector u 2 Rn n 0 is

R�0u WD ¹tu W t 2 R�0º:

The non-negative cone over the subset X of Rn with vertex a is defined as

yXC WD aC
[

x2Xna

R�0.x � a/:

Let X be a subset of Rn containing a. Let G be any element of ¹<;�; >;�º. We denote

X.a/r WD X \ Sn�1.a; r/; X.a/G r WD X \
®
jx � aj G r

¯
;

Xr WD X.0/r ; XG r WD X.0/G r :
(2.1)

By closM .X/ denote the closure of a subset X in the topological space M .
Let K be either R or C. We identify R2n D .R2/n with Cn via the mapping

x D .xj ; yj /jD1;:::;n ! xC
WD .xj C iyj /jD1;:::;n

with inverse z D .zj /jD1;:::;n ! zR WD .Re.zj /; Im.zj //jD1;:::;n.
We embed the affine space Kn into the projective space KPn as x 7! Œx W 1�. Let

H1 D KPn nKn be the hyperplane at infinity of KPn, that is

H1 D
®
Œx W 0� W x 2 Kn

n 0
¯
:

Given a subset X of KPn, we call the set X nH1 its affine part.

2.2. p-sub-manifolds and spherical blowing-up

We present here notions from [26] adapted to our elementary embedded context.
Let .M; @M/ be a smooth manifold with boundary @M (possibly empty). Throughout

the paper we consider embedded smooth sub-manifolds: a subset N of .M; @M/ is a sub-
manifold with boundary @N (possibly empty) if (i) it is a smooth manifold with boundary
.N; @N /; (ii) its manifold topology coincides with the induced topology from M ; (iii) the
inclusion mapping N ,!M is a smooth injective immersion.
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Definition 2.1. Let .M; @M/ be a smooth manifold with boundary. A subset N of M is
a p-sub-manifold if: (i) it is a smooth sub-manifold with boundary @N of M ; (ii) @N is
contained in @M ; (iii) N is transverse to @M :

x 2 @N H) TxN C Tx@M D TxM:

The spherical blowing-up of Rn with centre the point a of Rn is the mapping

bla W ŒRn; a� D R�0 � Sn�1 ! Rn; .r;u/! ruC a:

Its domain ŒRn; a� is a smooth manifold with smooth compact boundary @ŒRn; a� D 0 �
Sn�1 equipped with the metric tensor

h WD eucljR�0 ˝ eucljSn�1 : (2.2)

Restriction of blowing-up to the cylinder .0;1/ � Sn�1 is a diffeomorphism onto Rn n a.

Definition 2.2. Let X be a subset of Rn. The strict transform of X by bla is the subset of
ŒRn; a� defined as

ŒX; a� WD closŒRn;a�
�
bl�1a .X n a/

�
:

The front face of the strict transform of X is

ff
�
ŒX; a�

�
WD ŒX; a� \ @

�
ŒRn; a�

�
D 0 � SaX;

where

SaX WD

²
u 2 Sn�1 W 9.xk/k � X n a with xk ! a and

xk � a
jxk � aj

! u
³
:

The non-negative cone bSaX
C over SaX is the tangent cone of X at a.

If X is a sub-manifold of Rn, then the strict transform ŒX; a� is a p-sub-manifold of
ŒRn; a�. Moreover, if X is a sub-manifold without boundary containing the point a, its
strict transform ŒX;a� is a smooth sub-manifold with smooth compact boundary @ŒX;a�D
ff.ŒX; a�/. In particular, the front face of ŒRn; a� is @ŒRn; a�.

The following result is well-known, so we omit its straightforward proof.

Proposition 2.3. Let � W N ! N 0 be a smooth diffeomorphism between the smooth sub-
manifolds N of Rn and N 0 of Rn

0

. If a is a point of N , then the smooth diffeomorphism

bl�1�.a/ ı � ı bla W ŒN; a� n ff
�
ŒN; a�

�
!
�
N 0; �.a/

�
n ff

��
N 0; �.a/

��
extends to a smooth diffeomorphism ŒN;a�!ŒN 0;�.a/� between two smooth sub-manifolds
with smooth compact non-empty boundaries.

Let us finish this section with spherical blowing-up in manifolds adapted to the embed-
ded context, as in some consecutive sections we will rely on Nash embeddings.

Let N be a sub-manifold of Rn, and let a be a point of N . The blowing-up of a in N
is the mapping

blNa WD blajŒN;a� W ŒN; a�! N:
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Definition 2.4. If X is a subset of N , its strict transform by blNa is

ŒX; a�N WD closŒN;a�
�
.blNa /

�1.X n a/
�

and front face of the strict transform of X is defined as

ffN
�
ŒX; a�N

�
WD ŒX; a�N \ ff

�
ŒN; a�

�
:

The following identities hold true

ŒX; a�N D ŒX; a� and ffN
�
ŒX; a�N

�
D ff

�
ŒX; a�

�
:

In particular it follows naturally that if .X; a/ is a germ of a sub-manifold of Rn at the
point a, then the strict transform ŒX<r ; a� of a representative X<r of this germ is a p-sub-
manifold of ŒRn; a�.

2.3. Lipschitz normally embedded sets

As remarked in the introduction alternative names for the notion of Lipschitz normally
embedded (LNE) sets are quasi-convex and Whitney 1-regular, see [19, 37, 40].

Let .M;gM / be a smooth Riemannian manifold (with boundary or without). The met-
ric tensor gM induces the natural distance dM on M which is the infimum of the lengths
of rectifiable curves connecting any given pair of points. Any subset X of M admits two
natural metric space structures inherited from .M; gM /.

Definition 2.5.
(i) The outer metric space structure .X; dX /, where the outer distance function

dX is the restriction of dM to X �X .

(ii) The inner metric space structure .X; dXin /, where the inner distance function
dXin is defined as follows: given x; x0 2 X , the number dXin .x; x

0/ is the infimum
of the lengths of rectifiable paths lying in X joining x and x0.

Observe that dX � dXin and dM D dMin . When X is a sub-manifold of M , then dXin is
equal to the natural distance function induced by the tensor gM restricted to X .

Definition 2.6.
(i) A subset X of .M; gM / is Lipschitz normally embedded (shortened to LNE) in

M if there exists a positive constant L such that

x; x0 2 X H) dXin .x; x
0/ � L � dX .x; x0/:

(ii) The subset X of .M; gM / is locally LNE at x if there exists a neighbourhood U
of x in M such that X \ U is LNE in M .

(iii) The subset X of .M; gM / is locally LNE if it is locally LNE at each point of its
closure in M .



A. Costa, V. Grandjean, and M. Michalska 1346

We will simply say a set is LNE, but it is always understood that it is with respect to
the metric space structure of the given ambient space.

Remark 2.7. If the manifold M is compact, the property of being LNE depends only on
the C 1 structure of M , compare [9, Remark 2.4].

Note that any embedded sub-manifold is locally LNE. Thus the next result describes
global Lipschitz geometry of compact sub-manifolds (see [1, Proposition 2.1] without
proof, [23, Proposition 2.4] and [9, Lemma 2.6]).

Proposition 2.8. Aconnected compact subset of the smooth Riemannian manifold .M;gM/
is LNE if and only if it is locally LNE. In particular, any connected compact C 1 embedded
sub-manifold, possibly with boundary, is LNE.

The claim of Proposition 2.8 above fails to be true when the subset is just closed, even
in a complete Riemannian manifold, see Example 3.12.

A useful trait is that the LNE property is hereditary in the sense of Proposition 2.9
below. In fact, equivalence of induced metrics on an LNE subset in the proof below shows
that LNE subsets preserve ambient Lipschitz properties, for example Hölder exponents.

Proposition 2.9. Let X be a subset of a smooth Riemannian manifold .M; gM / which is
locally LNE at a point x. A subset Y of X is locally LNE at x in .X; dXin / if and only if it
is locally LNE at x in .M; dM /.

Proof. The length of any curve in Y gives the same value regardless if it is considered in
M or in X . Thus the inner metric on Y induced by the metric dXin of X is the same as the
inner metric on Y induced by the metric structure of M , therefore there is a unique dYin .
Moreover, the outer metric structure of Y inherited from X is dY .X/ WD dXinjY�Y , while
the outer metric structure inherited from M is dY .M/ WD .dM /jY�Y . Since the distance
dX D .dM /jX�X is equivalent near the point x to dXin by assumption, we get the claim.

A special case of interest is the following result (see [23, Proposition 2.8] or [8,
Lemma 2.5] for a detailed proof).

Proposition 2.10. A non-negative cone over an LNE subset of the unit sphere Sn�1 is
LNE in Rn.

From Proposition 2.10 and the law of cosines, under notation (2.1), we conclude what
follows.

Corollary 2.11. A non-negative cone X is LNE if and only if every connected component
of its link X \ Sn�1 is LNE.

Corollary 2.12. Let X be a non-negative cone over a connected set and G an element of
¹<;�; >;�;Dº. The following conditions are equivalent: (i) X is LNE, (ii) XGr is LNE
for every r > 0, (iii) XGr is LNE for a radius r > 0.
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3. Conic singular sub-manifolds are Lipschitz normally embedded

In this section we prove the main theorems. First, Theorem 3.6 states that every compact
connected conic singular sub-manifold is Lipschitz normally embedded. Then we indicate
that the result is no longer true without assumption of compactness. Thus we present the
conic condition at infinity and prove in Theorem 3.20 that every connected globally conic
singular sub-manifold of the Euclidean space is Lipschitz normally embedded.

3.1. Conic singular points

The notion of conic singular point is classical and we follow the seminal works [2–5].
Yet our embedded context dictates presentation of definitions using charts, while Proposi-
tion 2.3 guarantees that the notion is still intrinsic and independent of any C2 Riemannian
structure. Note that although a conic singular point is a differential notion, whenever a
subset inherits the inner metric from the ambient Riemannian manifold, its conic singular
point turns into a metrically conical point.

Definition 3.1. A singular point a of a subset X of a smooth manifold is a point at which
the subset germ .X; a/ is not that of a smooth sub-manifold. Otherwise we say that the
point a is a smooth point of X . The singular locus Xsing of the set X is the set of its
singular points.

Definition 3.2.
(i) Let X be a subset of Rn and a be a point of X . The point a is a conic point

of X , if there exists a positive radius r such that the strict transform ŒX.a/<r ; a�
is a closed subset and a p-sub-manifold of ŒRn.a/<r ; a�.

(ii) Let X be a subset of a smooth manifold M and a be a point of X . The point a
is a conic point of X , if there exists a smooth chart  W U! Bn of M centred
at a such that  .X \U/ is conic at  .a/.

The second part of Definition 3.2 is well-posed: let  i W Ui ! Bn, i D 1; 2, be two
smooth charts centred at a. Denote ai WD  i .a/ and Xi WD  i .X \Ui /. Proposition 2.3
implies thatX1 is conic at a1 if and only ifX2 is conic at a2, and similarlyX1 is singularly
conic at a1 if and only if X2 is singularly conic at a2.

When X is a subset of a sub-manifold M of Rn, then the two parts of definition of
conic points agree, see Proposition 3.3 below. In this elementary context it is a variation
of the commutativity of the blowing-up with the base change, compare [26, Chapter V].

Proposition 3.3. The subset X of the sub-manifold N of Rn is conic in N at a, if and
only if the subset X of Rn is conic at a.

Proof. We have a 2 X � N � Rn, each set being locally closed at a, and thus ŒX; a�N D
ŒX; a� and ffN ŒX; a� D ffŒX; a� � ffŒN; a�.

The following Collar Neighbourhood Lemma is a key ingredient of this paper.
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Proposition 3.4 (Collar Neighbourhood Lemma). Let X be a subset of Rn. If a is a conic
point of X , there exists a radius r0 and a smooth diffeomorphism

�a W Œ0; r0� � SaX ! ŒX; a� \
�
Œ0; r0� � Sn�1

�
which is: (i) link-preserving, i.e., it is of the form .r; u/ 7! .r; �.r; u// for all 0 � r � r0,
(ii) its restriction to ffŒX; a� is the identity mapping.

Since the Collar Neighbourhood Lemma is a classical result (for instance in [27, The-
orem 1.2] one can find a much more general context and precise statement), let us provide
simply an outline of the proof.

Sketch of proof. Recall that ŒRn;a�DR�0 � Sn�1 is equipped with the Riemannian prod-
uct metric hD dr2˝ du2 as in (2.2), where du2 is the restriction eucljSn�1 of the Euclidean
metric tensor to Sn�1. Without loss of generality, we can assume that X WD ŒX; a� is a
closed p-sub-manifold with boundary ff.ŒX; a�/ D 0 � SaX . Define the smooth function

rX W X ! R; .r;u/ 7! r:

By hypotheses, the gradient rgrX , for g D hjX , does not vanish on X \ Œ0; r0� � Sn�1

for some r0 > 0. The flow ‰ of the renormalized gradient rgrX
jrgrX j2

, satisfying the Cauchy
problem ‰.0; x/ D x, will give the link-preserving diffeomorphism.

Note that every smooth point is a conic point. If a is a conic point of the subset X of a
manifoldM , then Sa .X/ is a smooth compact sub-manifold of Sn�1 for a chart  ofM .
Moreover, the germ .X n a; a/ is that of a smooth sub-manifold. Thus any conic singular
point of X is an isolated singular point of X .

Definition 3.5. A subset X of a smooth manifold M is a conic singular sub-manifold if
(i) it is a closed subset of M , (ii) the singular locus Xsing of X is finite or empty, and (iii)
every singular point is conic singular.

In particular, a non-negative cone yXC over a closed smooth sub-manifold X of Sn�1

is a conic singular sub-manifold of Rn as it has a conic point at 0 which is singular conic
whenever it is not a linear sub-space of Rn. Note that ifX is a conic singular sub-manifold,
the connected components of X nXsing may have different dimensions.

3.2. Compact conic singular sub-manifolds are LNE

Theorem 3.6. Any connected component of a compact conic singular sub-manifold of a
smooth Riemannian manifold is Lipschitz normally embedded.

Proof. Let .M; g/ be a smooth Riemannian manifold. Nash Embedding Theorem [32]
states that any smooth Riemannian manifold .M; g/ embeds isometrically in Rn as a sub-
manifold equipped with the inner metric, i.e., there exists a smooth embedding

u W .M; g/!
�
u.M/; euclju.M/

�
� Rn such that u�.euclju.M// D g:



Conic singular sub-manifolds applied to algebraic sets 1349

In particular, u.M/ equipped with its inner distance du.M/
in D .u�1/�dM is locally

LNE in Rn. Since u is an isometry, by Propositions 2.8 and 2.9 we get the lemma below.

Lemma 3.7. Any compact connected subset ofM is LNE inM if and only if its image by
u is LNE in Rn.

Moreover, by Propositions 3.3 and 2.3 the following is immediate.

Lemma 3.8. A subsetX ofM is conic at a (respectively singularly conic at a) if and only
if u.X/ is conic in u.M/ at u.a/ (respectively singularly conic at u.a/).

By Nash Embedding Theorem and Lemmas 3.7 and 3.8, in order to prove Theorem 3.6
it suffices to consider a compact connected conic singular sub-manifold X of Rn.

Take any point of a connected compact conic singular sub-manifold X of Rn and
without loss of generality assume it is the origin 0. The proof below works for any point
of X , but since X is locally LNE at each of its smooth points, it is the singular points that
are of interest.

Given a positive radius r , recall notation (2.1) below

Xr WD X \ Sn�1r and X�r WD X \ Bnr :

Denote the tangent cone of X at 0 as

C WD bS0X
C:

Lemma 3.9. The smooth diffeomorphism bl0 ı �0 ı bl�10 W C�r0 n 0! X�r0 n 0, where
r0 > 0 and �0 are as in the Collar Neighbourhood Lemma (Lemma 3.4), extends to a
radius-preserving homeomorphism

�0 W C�r0 ! X�r0 :

The mapping �0 is outer bi-Lipschitz, i.e. bi-Lipschitz when the source and target spaces
are equipped with their respective outer metric space structures.

Proof. Consider M WD ŒRn; 0� with the Riemannian metric h WD eucljR�0 ˝ eucljSn�1 .
Recall that the diffeomorphism �0 DW � of Proposition 3.4 is of the form

�.r;u/ D
�
r; �.r;u/

�
2M;

where � W bl�10 .C�r0/ D Œ0; r0� � S0X ! Sn�1 is a smooth submersion. Therefore D�
takes values in T Sn�1 and its norm is uniformly bounded over the compact cylinder
bl�10 .C�r0/. Let L be a positive constant such that

kDy�kh � L for all y 2 bl�10 .C�r0/:

Let r > 0. At every point y D .r;u/ 2M the tangent space is

TyM D R � TuSn�1:
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Let x WD ru D bl0.y/, then TxRn decomposes as the orthogonal sum

TxRn D R@r ˚ TruSn�1r ; where @r .x/ WD u: (3.1)

As vector sub-spaces of Rn, note that TuSn�1 D TtuSn�1t . Thus

Dybl0 D 1R ˚ r � IdTuSn�1 and Dxbl�10 D
�

1�1R ;
1

jxj
� IdT@r .x/Sn�1

�
;

where 1R W R 3 t 7! t � @r 2 Rx.
For any

� D .t; �S/ 2 Ty
�
bl�10 .C�r0/

�
D R � Tu.S0X/;

with �S 2 TuSn�1, we have

Dy� � � D .t; �S/ 2 R � T�.r;u/Sn�1;

where �S WD Dy� � � . Note that

j�Sj
2
� L2 �

�
t2 C j�2S j

�
:

If Ev WD t@r ˚ � 2 TxC D R � Tu.S0X/ with � 2 Tu.S0X/ we find

Dx�0 � Ev D t@r ˚Dy� �
�
jxjt; �

�
:

Therefore the norm of D�0 is uniformly bounded over C�r0 n 0 by 1C r0L. Since the
inverse of � is a link-preserving diffeomorphism .r;u/! .r; z�.r;u//, analogous reasoning
shows that the norm of D.�0/

�1 is also uniformly bounded over X�r0 n 0. Thus �0 is bi-
Lipschitz over the closure of each connected component of C�r0 n 0. By properties of
blow-up and Proposition 3.4 it also preserves radius.

Let S1; : : : ; Sk be connected components of the link S0X . Since the Si are pairwise
disjoint compact sets, we have

2ı WD min
®

dist.Si ; Sj / W 1 � i < j � k
¯
> 0:

where dist is taken in Rn. Consider the truncated non-negative cones

Ci WD . ySi
C
/�r0 :

Of course, C�r0 D
Sk
iD1 Ci . Let si 2 Si and 0 � ri � r0. For i < j the law of cosines

yields
ı.ri C rj / � jri si � rj sj j � ri C rj :

Thereforeˇ̌
�0.ri si / � �0.rj sj /

ˇ̌
�
ˇ̌
�0.ri si /

ˇ̌
C
ˇ̌
�0.rj sj /

ˇ̌
D ri C rj �

1

ı
jri si � rj sj j

and �0 is Lipschitz.
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To show that the inverse of �0 is Lipschitz, let

Xi WD �0.Ci /:

Since �0 is a homeomorphism at 0 and S0Xi D Si , we can assume that r0 is small enough
so that

min
²

dist
�

xi
jxi j

;
xj
jxj j

�
; xi 2 Xi ; xj 2 Xj ; 1 � i < j � k

³
�
ı

2
:

Similarly to the proof that �0 is Lipschitz, this estimate implies that the inverse mapping
.�0/

�1 is also Lipschitz.

By Lemma 3.9 the mapping �0 is outer bi-Lipschitz, thus it is also bi-Lipschitz with
respect to the inner metrics on source and target. Note that C is a non-negative cone
over a smooth set, hence by Corollary 2.12 the set C<r0 is LNE in Rn. Thus the set
X<r0 D �0.C<r0/ is LNE.

To end the proof apply Proposition 2.8 to the compact and locally LNE set X .

An alternative proof of Theorem 3.6 follows by showing that �0 is a Lipschitz trivi-
alization of � and similarly to [7, Lemma 3.9] one gets that � does not have any critical
points on Œ0; r0/ � SaX , thus its derivative is bounded away from zero.

From Lemma 3.9 one immediately obtains the following two properties.

Corollary 3.10. Let X be a subset of Rn which is conic at the point a. There exists a
small positive radius ra such that each representative X.a/�r , X.a/<r ; X.a/r is LNE
for all r � ra. Moreover, the link X.a/r D X \ Sn�1.a; r/ is Lipschitz homotopic in X
to a point, i.e., there exists a Lipschitz continuous map H W X.a/r � Œ0; 1� ! X with
HjX.a/r�¹0º D idX.a/r and HX.a/r�¹1º D id¹aº.

Corollary 3.11. Let X be a compact conic singular sub-manifold of a smooth manifold
M . Assume X has local dimension at least 2 and let † be a finite subset. If X n † is
connected, then it is LNE.

3.3. Conic singularities at infinity

We will show that a connected unbounded conic singular sub-manifold in Rn is LNE
once it is also conic at infinity. A condition at infinity is necessary, since even an arbitrary
smooth sub-manifold of Rn may fail to be LNE.

Example 3.12. The plane parabola yDx2 (real and complex) is not LNE (see for instance
[6, 9, 15]).

Thus in Definition 3.13 we introduce the conical condition at infinity for unbounded
sets. It is a natural counterpart to conical property at a point: the precise relationship will
be established in Propositions 3.15 and 3.16.
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Let ŒRn;1� WD R�0 � Sn�1 with the boundary @ŒRn;1� D 0 � Sn�1. The spherical
blowing-up at infinity is the smooth rational diffeomorphism

bl1 W ŒRn;1� n @ŒRn;1� D R>0 � Sn�1 ! Rn n 0; .r;u/ 7!
u
r
:

It introduces a natural compactification of Rn as the smooth manifold with boundary�
Rn;Sn�11

�
WD
�
ŒRn;1� t 0; 0 � Sn�1

�
using the spherical blowing-up mapping at infinity to identify Rn n 0 with ŒRn;1� n
.0 � Sn�1/. The sphere at infinity Sn�11 is the boundary 0 � Sn�1 of Rn.

For any subset X of Rn denote by X1 its set of accumulation points at infinity

0 �X1 WD closRn

�
bl�11 .X/

�
\ .0 � Sn�11 /:

Analogously to Definition 2.2 we can equivalently write

X1 WD

²
u 2 Sn�1 W 9.xk/k � X n 0 with xk !1 and

xk
jxkj
! u

³
:

The strict transform of X by bl1 in Rn is defined as

xX WD bl�11 .X/ [ .0 �X
1/:

In particular, we have Rn>r D bl�11 .Rn>r / [ Sn�11 D Œ0; 1
r
/ � Sn�1.

Definition 3.13. A subset X of Rn is conic at 1, if either it is bounded or there exists
a radius r such that .X>r ; 0 � X1/ is a closed subset and a smooth p-sub-manifold of
.Rn>r ; Sn�11 /.

Definition 3.14. A subset of Rn is a globally conic singular sub-manifold if it is a conic
singular sub-manifold of Rn which is conic at1.

3.4. Localization of conic singularities at infinity

In this section we show how a conical singularity at infinity can be viewed simply as a
conical singularity at a point.

The inversion of Rn is the following rational isomorphism

� W Rn n 0! Rn n 0; x 7!
x
jxj2

:

We have
� D bl1 ı bl�10 D bl0 ı bl�11 D �

�1 (3.2)

since by definition the mappings bl1 and bl0 admit an inverse only over Rn n 0. Moreover,
by Definition 2.2 of S0X , the definition ofX1 and equation (3.2), the following holds true�

�.X n 0/
�1
D S0X and S0

�
�.X n 0/

�
D X1 (3.3)



Conic singular sub-manifolds applied to algebraic sets 1353

for subsets X of Rn. Thus the accumulation set at infinity can be viewed as the tangent
link at infinity. In particular for a non-negative cone X with vertex 0 we have

�.X n 0/ D X n 0:

For a subset X of Rn define zX to be the Euclidean closure of �.X n 0/, thus if X is an
unbounded closed set, we get

zX D �.X n 0/ [ 0:

Proposition 3.15. An unbounded subset X of Rn is conic at1 if and only if its image by
the inversion zX in Rn is conic at 0.

Proof. The closure of the image by inversion of a closed unbounded set X>r in Rn>r is
the closed set zX< 1

r
in Rn

< 1
r

containing 0. Recall that

ŒRn>r ;1� D

�
0;
1

r

�
� Sn�1 D

�
Rn
< 1
r

; 0
�
:

Hence by identity (3.2) the set X>r is equal to the strict transform by bl0 of zX< 1
r

with
the same boundary 0 � X1. Therefore, the claim follows directly from Definitions 3.2
and 3.13 of conic property at a point and at1.

Let ! be the north-pole .0; : : : ; 0; 1/ of the sphere Sn. The stereographic projection
centred at ! is a smooth semi-algebraic diffeomorphism with the inverse

� W Rn ! Sn n !; x!
�

2x
jxj2 C 1

;
jxj2 � 1
jxj2 C 1

�
:

Consider the smooth semi-algebraic diffeomorphism

'r W Bnr ! Sn; x!
�

2x
1C jxj2

;
1 � jxj2

1C jxj2

�
which is a bi-Lipschitz mapping onto its image between manifolds with boundary. Its
inverse is a restriction of the stereographic projection from the south pole, in particular it
is a chart on Sn sending the north pole ! to 0. For x 2 Rn�r we get�

'�11
r

ı �
�
.x/ D �.x/: (3.4)

Proposition 3.16. An unbounded subset X of Rn is conic at1 if and only if �.X/ [ !
is conic at the north pole ! of Sn.

Proof. By Proposition 3.15 the set X is conic at1 if and only if zX is conic at 0. Now,
use the chart 'r restricted to the open ball and apply the second part of Definition 3.2 of
conical points on manifolds: the point ! is a conical point of �.X/ [ ! if and only if zX
is conic at 0. Thus by identity (3.4) we get the claim.
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Since the inversion � is a smooth diffeomorphism, the image of a conic singular sub-
manifold of Rn n 0 is a conic singular sub-manifold in Rn n 0 and vice versa by Propo-
sition 2.3 applied at every singular point. Similarly, stereographic projection of a conic
singular sub-manifold of Sn n ! is a conic singular sub-manifold of Rn. Hence from
Propositions 3.15 and 3.16 we get immediately the following.

Corollary 3.17. For a subset of Rn the following conditions are equivalent: (i) it is a
globally conic singular sub-manifold, (ii) the closure of its image under inversion is a
globally conic singular sub-manifold, (iii) it is a stereographic projection of a conic sin-
gular sub-manifold of Sn.

Last but not least, let us consider the compactification of the Euclidean space as the
affine part of a (real or complex) projective space. Projectivization is especially of interest
from the point of view of algebraic geometry, even though it generally does not preserve
Lipschitz geometry, see Example 4.20.

Let nK be equal to n if K D R and 2n if K D C. Define

�K
n W R

nK ! KPn:

When K D R, put

�R
n .x/ WD

´
Œ0 W 1� if x D 0;
Œu W r� if x D .r;u/ 2 ŒRn;1�

and when K D C, put

�C
n .x/ WD

´
Œ0 W 1� if x D 0;
ŒuC W r� if xR D .r;u/ 2 ŒR2n;1�:

The mapping �K
n is a smooth semi-algebraic submersion which maps Kn onto Kn D

KPn nH1 as the standard embedding x! Œx W 1�.

Proposition 3.18. Let X be a subset of KPn such that .X;H1/ is a germ of a smooth
sub-manifold along the hyperplane at infinity. If X is transverse to H1, then the affine
part X nH1 is conic at1 as a sub-manifold of RnK .

Proof. In the real case at any boundary point of ŒRn;1�, the mapping �R
n is a local

diffeomorphism, thus by Proposition 2.3 we get the claim.
In the complex case, let x D .0; u/ 2 S2n�11 be a boundary point of R2n and Cu be

complex line CuC � Cn. The link Cu \ S2n�1 is a one-dimensional manifold with the
tangent space Lu at the point u. Let Nu be the orthogonal complement of Lu in the real
plane Cu. Using notation (3.1), the linear mapping Dx�

C
n maps isomorphically R@r ˚

TuS2n�1 onto TŒuC W0�KPn D Cu˚ TuC H1 and maps isomorphically TuS2n�1 ontoNu �

TuC H1. Since X is transverse to H1, the surjectivity of Dx�
C
n at any boundary point

x 2 S2n�11 yields that xX is a germ of a p-sub-manifold along the sphere at infinity.



Conic singular sub-manifolds applied to algebraic sets 1355

Corollary 3.19. Affine part of a conic singular sub-manifold of KPn that meets the hyper-
plane at infinity transversally is a globally conic singular sub-manifold of Kn.

3.5. Globally conic singular sub-manifolds are LNE

Theorem 3.20. Every connected component of a globally conic singular sub-manifold
of Rn is Lipschitz normally embedded.

Proof. Without loss of generality, assume the globally conic singular sub-manifold X is
connected and unbounded. From Proposition 3.15 follows immediately that similarly to
the local case, if X is conic at 1, then its link at infinity X1 by identity (3.3) is equal
to �.S0 zX/ and is a smooth compact sub-manifold of Rn. There exists a positive radius r0
such that for every r > r0 the finite singular set Xsing is contained in the open ball Bnr and

X�r D X n B
n
r

is a smooth p-sub-manifold of Rn�r . Moreover, possibly taking r0 larger, for any r > r0
the set

X�r D X \ Br

is connected with a smooth compact boundary @X�r D X \ Sn�1r D @X�r .

Lemma 3.21. For all r > r0 the set X�r is LNE.

Proof. The set X�r is a germ of a sub-manifold (possibly with smooth boundary) at its
every non-singular point. A germ of a sub-manifold with boundary is locally LNE by
[9, Corollary 2.7] and a subset is locally LNE at each of its conic points by Theorem 3.6
and Proposition 2.8. Thus by Proposition 2.8 we get the claim.

The set zX� 1r is conic at 0 by Proposition 3.15, thus by Lemma 3.9 it is outer bi-

Lipschitz to the truncated cone b
S0 zX

C

� 1r
, which by identity (3.3) is equal to bX1C

� 1r
. Hence

there is an outer bi-Lipschitz homeomorphism

�0 W zX� 1r
! bX1C

� 1r

which satisfies j�0.x/j D jxj.

Lemma 3.22. The homeomorphism

�1 W X�r ! bX1C�r ; �1 WD � ı �0 ı �

is outer bi-Lipschitz.

Proof. Use the main result of [16].

If two sets are outer bi-Lipschitz equivalent, then they are inner bi-Lipschitz equiva-
lent, which follows easily from expressing the length of an arc as an appropriate limit of
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sums of outer distances, compare for instance [13]. Thus every connected component of
the set X�r is LNE as an image by an outer bi-Lipschitz mapping of an LNE set, since
every connected component of bX1C�r is LNE in Rn by Corollary 2.12.

Lemma 3.23. If X is a connected closed set which is locally LNE and it is conic at1,
then X is LNE.

Proof. Suppose X is not LNE, i.e. there exist sequences .xk/k and .yk/k in X such that

dk WD
dXin .xk ; yk/
jxk � ykj

! 1 as k !1:

Since X�r is LNE by Proposition 2.8 and X�r is an outer bi-Lipschitz image of an LNE
cone without its origin, thus we may suppose that .xk/k � X�r and .yk/k lies in a given
connected component Y of X�r , and furthermore that both the sequences converge (pos-
sibly to infinity).

SinceX�r and Y are LNE, there exists a constant L such that for any z in the compact
boundary Y \ Sn�1r � X \ Sn�1r we have

dXin .xk ; yk/ � Ljxk � zj C Ljyk � zj:

This estimate and the assumption that dk ! 1 imply that both .xk/k and .yk/k con-
verge to the same point z0 2 X \ Sn�1r . But this means that both sequences lie in X�R
with R > max jykj, which is a LNE set by Lemma 3.21. Thus dk is finite, which gives a
contradiction.

Lemma 3.23 concludes the proof of Theorem 3.20, since X as a conic sub-manifold is
locally LNE by Theorem 3.6 and Proposition 2.8.

One can prove Theorem 3.20 by an alternative argument. Namely, since ŒRn;1� D
ŒRn; 0� and X is conic at1, Proposition 3.4 holds true at infinity: there exists a smooth
link-preserving diffeomorphism �1 W xX \ Œ0; r0� � Sn�1 onto Œ0; r0� �X1. Thus one can
obtain a version at infinity of Lemma 3.9, proved exactly in the same way, that bl1 ı �1 ı
bl�11 W X n BnR ! bX1C n BnR is bi-Lipschitz and preserves radii.

Remark 3.24. Theorems 3.6 and 3.20 still hold true if we were to work with C 2 conic
singular sub-manifolds instead of C1 smooth ones.

As a direct consequence of Theorems 3.6 and 3.20, using gluing as in Lemma 3.23,
one obtains.

Corollary 3.25. Let X be a closed connected subset of Rn which is conic at infinity. It is
LNE in Rn if and only if �.X/ [ ! is LNE in Sn.

Interestingly, the claim of Corollary 3.25 holds under an alternative assumption thatX
is definable in an o-minimal structure, see the result of [11]. The methods of proof vastly
differ though. It is an open question on what is the common underlying structure of the
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set that would allow for a uniform statement and proof, both for singular manifolds and
definable sets.

Remark 3.26. Provided a compact Riemannian manifold with boundary .M; g/ is en-
dowed with a scattering metric near its boundary, as for instance in [20, 28, 36], one can
define which subsets are conic at infinity and the following should hold: Every connected
and globally conic singular sub-manifold of the manifold .M; g/ is Lipschitz normally
embedded in M . Since preparing this paper we have confirmed this to be true in the
upcoming preprint [10].

4. Conic structure and Lipschitz geometry of generic algebraic sets

In this section we investigate the conic nature and global Lipschitz geometry of generic
algebraic sets. To avoid ambiguity, we will be explicit in what we mean by generic in each
context. Notation and notions, though standard, can be found in Appendix A. Throughout
this section we assume that the number of equations k is smaller than the dimension
of the space n, since by Bezout’s theorem a general intersection of n or more algebraic
hypersurfaces is at most finite thus satisfies our claims trivially.

We will show that generic algebraic sets in the real or complex affine space are globally
conic singular sub-manifolds. We do not undertake here the interesting open question of
which algebraic sets are conic sub-manifolds. Note that there exist singular algebraic sets
which are analytic manifolds, see for instance [30], thus even the two most elementary
categories: of non-singular algebraic subsets of the affine space conic at infinity and that
of algebraic sets which are smooth globally conic singular sub-manifolds of the Euclidean
space, are not the same.

4.1. Complex analytic set germs

Most work on the LNE nature of analytic sets up to date concerns the local case of analytic
singularity germs. Minimal surface singularities [33], general determinantal singulari-
ties [23], explicit super-isolated singularities [31] are LNE (for an overview see [13]).
Yet we found no result addressing the basic question – are LNE singularities common? –
to which we give a positive answer in Corollary 4.2.

Theorem 4.1. A generic analytic singularity germ of .Cn; 0/ of multiplicity m is conic
at the origin: for every m 2 Nk with m D …k

jD1mj , there exists a Zariski open dense
subset U.m/ of Khom

m;k Œx� such that the analytic set germ .Z.f/; 0/ is conic singular at the
origin for any analytic map germ f 2 On;k with in0.f/ 2 U.m/.

Proof. Consider the non-empty Zariski open set S.m/DU.m/\P.m/ of Propositions A.1
and A.3. Take f 2 On;k with in0.f/ 2 S.m/. Denote X WD Z.f/. The projective variety
Z.in0.f// of CPn�1 is non-singular by assumption, hence crit.f/\X is contained in ¹0º.
The Collar Neighbourhood Lemma (Lemma 3.4) implies that the germ�

ŒX; 0�; ff
�
ŒR2n; 0�

��
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is that of a p-sub-manifold of .ŒR2n; 0�; ff.ŒR2n; 0�//. Thus the origin is a conic singu-
lar point of X . Moreover, due to Proposition A.3 the set X is irreducible such that its
multiplicity is the same as the multiplicity of its tangent cone at 0 which is

…k
jD1 deg in0.fj / D m:

We say that a germ of a set in .Kn; 0/ is LNE if it has an LNE representative of
arbitrarily small diameter.

Corollary 4.2. A generic analytic singularity germ in .Cn;0/ of given multiplicity is LNE.

Proof. From Theorem 4.1 and Theorem 3.6 follows that the set Z.f/ is locally LNE at 0.
Since the germ Z.f/ is definable as a sub-analytic set, by [34] or [11] there exists a positive
radius rf such that for all positive r � rf the subset Z.f/�r is LNE. This ends the proof.

Recall that an analytic singularity germ of .Cn; 0/ is an isolated complete intersection
singularity (ICIS) if the singular point is isolated and the number of generators of its van-
ishing ideal is equal to its codimension, see for instance [25, p. 329]. Thus by Corollary 4.2
and Propositions A.1 and A.3 we obtain the following.

Corollary 4.3. A generic ICIS germ is LNE.

Example 4.4. We illustrate the results of this section as follows.

(1) A generic hypersurface singularity of multiplicity m in .Cn; 0/ is LNE.

(2) A generic curve germ of multiplicity m in .Cn; 0/ is LNE. One can infer it
also using the classical result of [39] which states that a curve germ is outer
bi-Lipschitz homeomorphic to its generic planar projection, a hypersurface sin-
gularity.

Note that there are many interesting open questions on genericity of LNE singularity
germs in families: for instance when a versal unfolding of a LNE singularity germ admits
LNE fibers (for global behaviour compare with Example 2).

Using the same methods, one can obtain similar results for real analytic germs, though
one needs to take into consideration the real phenomena, such as positive polynomials.

4.2. Affine algebraic sets

This section presents global results. We show that almost all algebraic sets (real and com-
plex) are globally conic sub-manifolds. We always take the algebraic set as zero locus of
a polynomial ideal in KŒx�, thus it is a-priori naturally embedded in Kn. There were only
a few examples of non-trivial LNE algebraic sets [7, 12, 23], until our recent works on
curves [6, 9].

Theorem 4.5. A generic affine algebraic subset of Kn is a globally conic singular sub-
manifold: for every d 2 Nk there exists a Zariski open dense subset V.d/ of Kd;k Œx� such
that the algebraic set Z.f/ is a globally conic singular sub-manifold of Kn.
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Proof. Apply Corollary 3.19 to Theorem 4.13, since a generic algebraic set meets the
hyperplane at infinity transversely, see Proposition A.2.

Corollary 4.6. Every connected component of a generic affine algebraic subset of Kn

is LNE.

Example 4.7. In particular, the following algebraic sets satisfy the results of this section.

(1) A generic complex affine hypersurface is LNE.

(2) A generic complex affine curve is LNE. In fact by [9] a complex affine curve is
LNE if and only if it has ordinary singularities and meets the hyperplane at infinity
transversely, compare Section 4.3.

4.3. Curves

A special case worth mentioning are curves: we show in this section that connected and
globally conic is equivalent to the LNE property. A paper of note on the subject of global
Lipschitz geometry of complex curves is [38], which presents a complete bi-Lipschitz
invariant of the outer metric space structure of complex affine plane curves, yet does not
describe which ones are LNE.

Rephrasing [9, Proposition 4.6] in the terms of Theorem 3.6 yields.

Corollary 4.8. A closed K-analytic curve of a compact K-analytic manifold is LNE if
and only if it is a connected conic singular sub-manifold.

Whereas, the result [9, Theorem 8.1] combined with Corollary 4.8 implies.

Corollary 4.9. An algebraic curve is LNE in Kn if and only if it is a connected globally
conic singular sub-manifold.

The curve case explicitly shows how the LNE property is dependent on the embedding.
In case of algebraic curves in Kn the main characteristic is the degree of the embedding,
for instance: the embeddings of the line t ! .t; t/ and t ! .t; t2/ into K2 induce very
different Lipschitz properties of its image, see Example 3.12.

4.4. Fibers of polynomial mappings

Similarly to Section 4.2, one can prove conical structure and thus LNE property of typical
fiber of generic polynomial mappings. The LNE property of fibers already appeared in
[7] for levels of polynomial mappings over Lipschitz trivial values, even though such
mappings are sparse, see also [14]. Therefore, our results imply prevalence of polynomial
mappings with LNE general fiber and without Lipschitz trivial values. Example 2 shows
that LNE property may appear non-generically in a family of fibers.

Recall that a fiber of a mapping f W Kn ! Kk over the value c is typical if f is a
locally smooth trivial fibration over some open neighbourhood of c. By a Bertini–Sard
Theorem, non-typical values of polynomial mappings are contained in a nowhere dense
Zariski closed subset of Kk , see for instance [21].
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Theorem 4.10. Every typical fiber of a generic polynomial mapping is a globally conic
singular sub-manifold: for every d 2 Nk there exists a Zariski open dense subset W.d/ of
Kd;k Œx� such that the fiber Z.f � c/ is a globally conic singular sub-manifold of Kn for
f 2 W.d/ and a typical value c of f.

Proof. If the typical level of a generic polynomial map meets the hyperplane at infinity
transversely, then all typical levels either meet the hyperplane transversely or are compact
(the latter only in the real case). The zero level is a typical level of generic polynomial
mapping: for any d 2 Nk there exists a Zariski open dense set U of Kd;k Œx� such that 0 is
a typical level of f 2 U . Now, since meeting transversely the hyperplane at infinity is also
generic, see Proposition A.2, we get the claim.

Corollary 4.11. Every connected component of a typical level of a generic polynomial
mapping

f W Kn
! Kk

is LNE.

Example 4.12. We can for instance single out the following cases.

(1) All typical levels of a complex polynomial f are LNE, provided the zero level of
its highest degree form fd is reduced and intersects the hyperplane H1 trans-
versely. If the polynomial f is real, the same holds true for every connected
component of its typical fibers.

(2) Let f W C2 ! C, .x; y/ ! x2y. No fiber of f is LNE, except for the critical
reducible zero level fiber (by LNE curve characterization of [9]).

(3) All fibers of the polynomial map .x; y; z/! .x; xy C z/ are affine lines, but the
mapping is not a Lipschitz trivial fibration over any value, see [7, Example 5.6].

4.5. General affine trace of projective algebraic sets

In this section, we show that a generic algebraic subset of the projective space and its
general affine part are LNE, even though the change from the Fubini–Study (or any Rie-
mannian) metric of the projective space to the Euclidean metric is quite drastic, thus the
relation seems non-intuitive. This behaviour was already observed for complex algebraic
curves in [9] and we feel that it is of similar flavor as the result of [12]. We end this sec-
tion by examples showing that unfortunately complex projective closure is not the right
compactification to study LNE properties of affine subsets.

Although Theorem 4.13 below restates a well-known property, we give it for reference
here.

Theorem 4.13. A generic algebraic subset of KPn is a conic singular sub-manifold: for
every d 2 Nk there exists a Zariski open dense subset U.d/ of Khom

d;k Œx� such that the
algebraic set Z.f/ is a globally conic singular sub-manifold of KPn for f 2 U.d/.

Proof. A generic projective algebraic subset is non-singular, see Proposition A.1, and
non-singular varieties are smooth.
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Corollary 4.14. Every connected component of a generic projective algebraic set in KPn

is LNE.

Given a hyperplane H of KPn consider the affine space

Kn
H WD KPn nH

naturally equipped with its Euclidean structure euclH . APGLnC1.K/ automorphism geo-
metrically maps the hyperplane at infinity to another hyperplane H , thus it induces a
unitary K-linear mapping between .Kn; eucl/ and .Kn

H ; euclH /. If X is a subset of KPn,
then the set

X nH � Kn
H

is called the affine trace ofX with respect to the hyperplaneH and we treat it with respect
to the Euclidean metric of the affine space. A general affine trace of a projective algebraic
set is its affine trace with respect to a generic hyperplane H .

Theorem 4.15. A general affine trace of a generic algebraic set in the projective space
KPn is a globally conic singular sub-manifold in Knwith respect to the standard Euclidean
metric: if X is a non-singular algebraic subset of KPn, there exists a Zariski open dense
subset H.X/ of the dual projective space of hyperplanes LKPn such that for every H 2
H.X/ the affine traceX nH is a globally conic singular sub-manifold of KnDKPn nH .

Proof. Apply Corollary 3.19 to Theorem 4.13, since a generic hyperplane meets the alge-
braic set transversely, see Proposition A.2.

Quite non-intuitively Corollary 4.16 below indicates a relation between Lipschitz prop-
erties in the projective space and the affine space, even though the metrics vastly differ.

Corollary 4.16. Every connected component of a general affine trace of a generic pro-
jective algebraic set is LNE in Kn.

Corollary 4.17. A general affine trace of a projective algebraic subset of KPn with iso-
lated singularities is LNE in Kn if and only if it is connected and all singularities are
LNE.

Proof. Immediate by Proposition 2.8, Corollary 3.19 and genericity of transversality at
infinity, see Proposition A.2.

Example 4.18. The following situations, although simple, are worth mentioning.

(1) All conic curves are LNE in C2 with the exception of parabola: indeed, they are
general affine traces of a LNE projective curve, compare with [9].

(2) A General affine trace in Kn of a complex curve or normal surface with LNE
singularities is LNE (for instance the singularities can be taken as in [23, 31, 33]
or Section 4.1).
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Remark 4.19. The Zariski open conditions of Propositions A.1 and A.2 yield non-empty
Zariski open subsets in the moduli space (under the projective linear action) of projective
varieties in KPn of given degree, transverse to a given hyperplane. Thus the notion of
genericity we work with is essentially the same as that we would obtain working with
such moduli spaces instead. So one can interpret the results of this section as: almost every
element of the orbit under unitary action of an algebraic set with isolated singularities has
LNE affine trace with respect to the hyperplane H1 if and only if all singularities of the
set are LNE.

Example 4.20 below shows that even though projective closure behaves well under
genericity conditions, in general it breaks Lipschitz properties, contrary to one-point com-
pactification or localization via inversion, see Section 3.4.

Example 4.20.
(1) The parabola x D y2 is not LNE in K2 (Example 3.12), but it is an affine trace of

a projective non-singular conic curve which is LNE in KP2.

(2) The real cubic x D y3 is LNE in R2, because it is smooth and its image under
inversion is LNE at 0 (see [11]). But its projective closure has a cuspidal singular-
ity at .1 W 0 W 0/, thus it is not LNE in RP2.

A. On genericity

First we recall some standard notations, then we will present genericity Bertini-like the-
orems that are used in the proofs of Section 4. Throughout the Appendix we consider
polynomials in at least two variables. Although the results are part of folklore, demonstra-
tions are available in [8, Appendix].

Denote KD C or R. Let KŒx� WD KŒx1; : : : ; xn� be the K-algebra of polynomial func-
tions over Kn. Let Khom

d
Œx� be the set of all homogeneous polynomials of degree d in n

variables and Kd Œx� be the set of polynomials of degree at most d . For dD .d1; : : : ; dk/ 2
Nk denote by

Khom
d;k Œx� WD Khom

d1
Œx� � � � � �Khom

dk
Œx�

the set of polynomial mappings Kn!Kk with homogeneous coordinates of degree vector
d and by

Kd;k Œx� WD Kd1 Œx� � � � � �Kdk Œx�

the set of polynomial mappings Kn ! Kk with coordinates of degree at most d.
Let On be the local C-algebra of C-analytic function germs and mn be its maximal

ideal. Denote by On;k the On-module of analytic map germs .Cn; 0/! Ck . The multi-
plicitymf of f 2 On is the non-negative integer d such that f 2md

n nmdC1
n . The initial

form of f at the origin is
in0.f / WD fmf ;
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where fmf 2 Khom
mf
Œx� is such that mf �fmf > mf . For an analytic map germ

f D .f1; : : : ; fk/ 2 On;k

denote in0.f/ WD .in0.f1/; : : : ; in0.fk//. The multiplicity of a pure dimensional analytic
set germ .X; 0/ in .Cn; 0/ is its intersection multiplicity with a generic .n � dimX/-
dimensional linear space.

Proposition A.1. Generic algebraic set in the projective space KPn is non-singular: for
any given d 2 Nk there exists a Zariski open dense subset U.d/ of Khom

d;k Œx� such that the
projective set Z.f/ is non-singular for every f 2 U.d/.

There is a K-linear isomorphism

f D f0 C f1 C � � � C fd ! f hom
WD xdnC1f0 C x

d�1
nC1f1 C � � � C fd

between polynomials Kd Œx� and homogeneous polynomials Khom
d
Œx; xnC1�. In particular,

it maps Zariski open sets onto Zariski open sets.
This correspondence yields the hyperplane at infinity H1 as the vanishing locus of

xnC1 as well as the natural embedding of Kn into KPn as x! Œx W 1�. Therefore, Propo-
sition A.1 is equivalent to an analogous statement for affine algebraic sets. In view of
Theorem 4.1, it is worth recalling that the zero set of f hom is a K-cone over the zero set
of f .

Proposition A.2. Intersection of a non-singular algebraic set and a hyperplane is generi-
cally transverse: Given a non-singular algebraic subset X of KPn, there exists a Zariski
open dense subset H.X/ of the projective space of hyperplanes LKPn such that every
H 2 H.X/ intersects X transversely. Conversely, if H is a hyperplane in KPn and
d 2 Nk , then there exists a Zariski open dense set V.H; d/ of Khom

d;k Œx� such that Z.f/
intersects H transversely for every f 2 V.H;d/.

Proposition A.3. A generic ideal of complex polynomials is prime: for any given d 2Nk

with k � n� 2 there exists a Zariski open dense subset P.d/ of Chom
d;k Œx� such that the ideal

generated by coordinates of f is prime for every f 2 P.d/.

Proof of the latter can be found in [42]. Note that in particular, the degree of Z.f/ for
f 2 P.d/ is equal to …jD1;:::;k deg fj , where the degree of a pure dimensional algebraic
subset X of CPn is its intersection number with the general linear space of dimension
n � dimX .
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