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Cowling–Haagerup constant of the product of discrete
quantum groups

Jacek Krajczok

Abstract. We show that (central) Cowling–Haagerup constant of discrete quantum groups is multi-
plicativeƒcb.

L
1 �

L
2/D ƒcb.

L
1/ƒcb.

L
2/, which extends the result of Freslon (2015) to general

(not necessarily unimodular) discrete quantum groups. The crucial feature of our approach is con-
sidering algebras C.y

L
/;L1.y

L
/ as operator modules over L1.y

L
/.

1. Introduction

Weak amenability is an approximation property introduced in the context of locally com-
pact groups by Cowling and Haagerup in [6]. It is weaker then amenability, but still quite
strong as it implies Haagerup–Kraus approximation property (AP). A significant aspect
of weak amenability is that it comes together with a quantifier: for any locally compact
group one defines Cowling–Haagerup constantƒcb.G/2 Œ1;C1�which is finite precisely
when G is weakly amenable. Authors of [6,16] calculated this constant for all connected,
non-compact, simple Lie groups with finite center. For example

ƒcb.Sp.1; n// D 2n � 1 .n � 2/

but if real rank of G is greater than one, then G is not weakly amenable and ƒcb.G/ D

C1. Another important result tells that if � is a lattice in G then ƒcb.�/ D ƒcb.G/,
hence Cowling–Haagerup constant is a useful tool in telling apart discrete groups and
their group C�/von Neumann algebras. Cowling and Haagerup proved also that constant
ƒcb is multiplicative, i.e.

ƒcb.G �H/ D ƒcb.G/ƒcb.H/

holds for any locally compact groups G;H [6, Corollary 1.5].
One can extend the definition of weak amenability and Cowling–Haagerup constant

to discrete or even general locally compact quantum groups ([14, Definition 3.5], [3, Def-
inition 5.12], see also Definition 3.4). This property has received a lot of attention – let us
mention that it is known that strong amenability (i.e. co-amenability of the dual) implies
weak amenability which in turn implies AP, weak amenability with ƒcb D 1 is preserved
under taking free products of discrete quantum groups [13] and quantum groups such as
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bOCF ;bUCF or SUq.1; 1/ext are weakly amenable with Cowling–Haagerup constant equal 1
([11, Theorem 24], [5, Theorem 7.4]). It is however an open question whether amenabil-
ity implies weak amenability (in fact it is not known whether amenability implies AP, see
[8, Corollary 7.4]. These implications are known to be true in discrete case by [24, Theo-
rem 3.8]). Freslon in [15, Proposition 3.2] proved that weak amenability passes to products
of discrete quantum groups, but so far the best information on the value of Cowling–
Haagerup constant were the bounds

max
�
ƒcb.

L
1/;ƒcb.

L
2/
�
� ƒcb.

L
1 �

L
2/ � ƒcb.

L
1/ƒcb.

L
2/:

In Theorem 3.5 we will show that the upper bound � is in fact always an equality. Exam-
ple 4.9 shows why this knowledge can make a qualitative difference.

For discrete quantum groups there is a close connection between properties of a quan-
tum group

L
and its operator algebras C.y

L
/; L1.y

L
/. For example, weak amenability of

L
implies that C.y

L
/ has completely bounded approximation property, L1.y

L
/ has weak�

completely bounded approximation property and there is a bound on respective constants
(see [3, Theorem 6.6] and references therein). The converse holds under unimodularity
assumption [19, Theorem 5.14] and in this case all the involved constants are equal (see
also [8, Proposition 4.7] for a related result). Whether this converse and its variants for
strong amenability and AP hold in general, is a major open problem [3, Remark 6.9].
The main reason why in general it is difficult to deduce a property of

L
from proper-

ties of C.y
L
/; L1.y

L
/ is the lack of averaging which exists in unimodular (dually–Kac

type) case, and allows one to turn a CB map into a multiplier (see [3, Section 7.1] and
[10, Section 7.1]). As Freslon notes in [15, Remark 3.3], in the unimodular case we can
use equality ƒcb.

L
/ D ƒcb.C.y

L
// to deduce that Cowling–Haagerup constant is multi-

plicative using [4, Theorem 12.3.13]. This result states that Cowling–Haagerup constant
of C�-algebras is multiplicative with respect to minimal tensor product. In general how-
ever this approach does not work, as it is not known whether ƒcb.

L
/ � ƒcb.C.y

L
//. One

way of remedying this situation is to look at C.y
L
/; L1.y

L
/ not only as at C�/von Neu-

mann algebras, but consider them together with extra structure. This approach already
turned out to be quite fruitful and led to several results concerning amenability – injectiv-
ity (see [23, Theorem 3] and [7, Theorem 5.1]), AP – weak� OAP [9, Theorem 6.16] or
strong amenability – weak� CPAP [18, Theorem 6.11].

In our work we take a similar point of view, and look at C.y
L
/; L1.y

L
/ as L1.y

L
/-

modules. In Definition 3.4 we introduce respective Cowling–Haagerup-like constants and
in Theorem 3.5 show that they are equal to the analogous constants for

L
. In Section 4

we show that such Cowling–Haagerup constant for operator modules of the form C.y
L
/

is multiplicative (Proposition 4.5). Its proof is a modification of the proof of [4, Theo-
rem 12.3.13]. The main difference is that we take also the module structure into account
(see also Remarks 3.2, 4.6).

Apart from weak amenability of discrete quantum groups, we are also interested in its
central variation (see Definition 3.4). To study this property, we will look at C.y

L
/;L1.y

L
/

as L1.y
L
/-bimodules.
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2. Preliminaries and notation

In this section we will briefly recall the necessary operator space and quantum group back-
ground. We refer to [1–3, 7, 9, 12, 20–22, 27] and references therein for more information.

Completely contractive Banach algebra is an associative algebra A which is at the
same time an operator space and the multiplication map extends to a complete contraction
A y̋A! A, where y̋ is the projective tensor product of operator spaces. We say that an
operator space X is a left operator A-module, if it is a left module over A and the action
extends to a complete contraction A y̋X ! X . Since this is the only type of modules we
consider, we will simply say that X is a left A-module. In a similar way we define right
A-modules and A-B-bimodules. By definition, an A-bimodule is an A-A-bimodule. Note
that every operator space or module can be considered as a bimodule by setting A D C,
B D C or both. Furthermore, if A;B are completely contractive Banach algebras, then so
is A y̋B .

The operator space of completely bounded (CB) maps between two operator spaces
X; Y will be denoted by CB.X; Y /. If X; Y are left A-modules, then the closed subspace
consisting of left A-module maps will be denoted byA CB.X; Y /. Similarly we define the
space of right A-module maps CBA.X; Y / and A-B-bimodule maps A CBB.X; Y /. The
CB norm will be denoted by k'kCB.X;Y / or simply k'kcb.

If A is a completely contractive Banach algebra and X is a left A-module, then
the dual operator space X� becomes canonically a right A-module with action defined
by h!a; xi D h!; axi. Similarly for right modules and bimodules. The canonical pair-
ing between X� and X will be denoted simply by h!; xi or h!; xiX�;X if we want to
indicate which spaces are involved. Pairing gives rise to canonical complete contraction
�WX y̋X� ! C.

LetX;Y be operator spaces,X a rightA-module, and Y a leftA-module. Then we can
form the A-module tensor product X y̋AY , which by definition is given by the quotient
operator space

X y̋AY D .X y̋Y /=span¹xa˝ y � x ˝ ay j x 2 X; a 2 A; y 2 Y º:

By an abuse of notation, the quotient map will be denoted by qWX y̋Y !X y̋AY . A result
which will be very useful, is that in this situation CBA.X; Y �/ ' .X y̋AY /� completely
isometrically, where q.x ˝ y/ corresponds to the functional ' 7! h'.x/; yi [2, Proposi-
tion 3.5.9]. Similarly CB.X; Y �/ ' .X y̋Y /� completely isometrically. In this way both
CBA.X; Y �/ and CB.X; Y �/ are dual operator spaces and have the corresponding weak�

topologies. In particular, one can restrict weak� topology from CB.X;Y �/ to CBA.X;Y �/.
One easily checks that both topologies on CBA.X; Y �/ agree and CBA.X; Y �/ is weak�

closed in CB.X; Y �/.
If A is a completely contractive Banach algebra, then so is Aop (Aop by definition has

the same operator space structure, but opposite multiplication). Then any left A-module
becomes right Aop-module and vice versa. Furthermore, if X is a A-B-bimodule then it is
a right Aop y̋B-module, with module structure x.aop ˝ b/ D axb. One immediately sees
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thatA CBB.X; Y /D CBAop y̋B.X; Y / for any A-B-bimodules X;Y . Let us also recall that
for any finite dimensional operator space E, the canonical map E ! E�� establishes a
completely isometric isomorphism.

In this work we will be interested only in compact or discrete quantum groups. Read-
ers interested in general framework are referred to [20]. A compact quantum group G is
defined by a unital C�-algebra C.G/ and a unital �-homomorphism

�WC.G/! C.G/˝ C.G/

called comultiplication, which satisfies certain conditions. Under separability assumption
Woronowicz [27] (and Van Daele [25] in general) proved that there exists a unique state
h 2 C.G/� (called Haar integral) which is bi-invariant. We will assume that it is faithful,
i.e. we work at the reduced level (see [1]). Performing GNS representation, we obtain a
Hilbert space L2.G/, faithful representation of C.G/ and after taking SOT-closure, von
Neumann algebra L1.G/. Both h and � extend to normal maps on L1.G/. The predual
of L1.G/ will be denoted by L1.G/. The predual mapping of � gives a completely
contractive Banach algebra structure on L1.G/:

L1.G/ y̋ L1.G/ 3 ! ˝ � 7! ! ? � D .! ˝ �/� 2 L1.G/:

It is not difficult to check that both C.G/ and L1.G/ are L1.G/-bimodules with respect
to actions ! ? x D .id˝ !/�.x/, x ? ! D .! ˝ id/�.x/ for ! 2 L1.G/ and x 2 C.G/
or x 2 L1.G/. The representation theory of compact quantum groups resembles the one
of compact groups. In particular, every irreducible representation is finite dimensional.
Let Irr.G/ be the set of their equivalence classes. For each class ˛ 2 Irr.G/ we choose
its representative U ˛ which acts on a Hilbert space H˛ of dimension dim.˛/. In each
H˛ choose an orthonormal basis ¹�˛i º

dim.˛/
iD1 in which operator ¡˛ is diagonal (see [21,

Section 1.4]), with eigenvalues ¡˛;i .1 � i � dim.˛//. Number Tr.¡˛/ is called the quan-
tum dimension of ˛ and is denoted dimq.˛/. The space Pol.G/ spanned by coefficients
U ˛i;j D .id˝ !�˛i ;�˛j /U

˛ .1 � i; j � dim.˛//, together with restricted comultiplication, is
a unital Hopf �-algebra. It is norm dense in C.G/, hence weak� dense in L1.G/.

By definition, any discrete quantum group
L

is a dual of compact quantum group
G:

L
D yG (thus also G D y

L
– we will prefer to look from discrete point of view). It

comes together with C�-algebra c0.
L
/D

L
˛2Irr.y

L
/
B.H˛/ (C0-direct sum), von Neumann

algebra `1.
L
/ D

Q
˛2Irr.y

L
/

B.H˛/ and comultiplication �. Consequently any element
of `1.

L
/ is given by a family .a˛/˛2Irr.y

L
/

of matrices in B.H˛/. We will say that a
net .a�/�2ƒ converges pointwise to some a in `1.

L
/ if and only if a�;˛ ���!

�2ƒ
a˛ in

B.H˛/ for all ˛ 2 Irr.y
L
/. The dense subspace consisting of families .a˛/˛2Irr.y

L
/

such
that a˛ ¤ 0 for only finitely many ˛’s, will be denoted by c00.

L
/. Another important

subspace of `1.
L
/ is A.

L
/, the Fourier algebra of

L
. It consists of elements of the

form y�.!/ with ! 2 L1.y
L
/ (see [3, Section 4.2], [9, Section 3]). It is an subalgebra of

c0.
L
/ and is itself a completely contractive Banach algebra with operator space struc-

ture given by completely isometric isomorphism A.
L
/ 3 y�.!/ 7! ! 2 L1.y

L
/. A (left)

completely bounded multiplier is an element a 2 `1.
L
/ such that ab 2 A.

L
/ for all
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b 2 A.
L
/ and the associated map A.

L
/! A.

L
/ is completely bounded. After composing

with isomorphism A.
L
/' L1.y

L
/ and taking the dual map, any such a gives a normal CB

map ‚l .a/ 2 CB� .L1.y
L
// (superscript � indicates that CB� .L1.y

L
// consists of nor-

mal CB maps). The space of completely bounded multipliers, equipped with the CB norm
kakcb D k‚

l .a/kcb, is denoted by Ml
cb.A.

L
//. For example, any y�.!/ 2 A.

L
/ is a left

completely bounded multiplier with the associated map ‚l .y�.!// D .! ˝ id/y�. Let us
also note c00.

L
/ � A.

L
/. For any a 2 Ml

cb.A.
L
//, we have ‚l .a/ 2 L1.y

L
/
CB� .L1.y

L
//,

i.e. ‚l .a/ is a normal, CB, left L1.y
L
/-module map. By [17, Corollary 4.4] (see also dis-

cussion in [9, Section 3]) all maps on L1.y
L
/ which satisfy these properties are of the

form ‚l .a/ for some a 2 Ml
cb.A.

L
//. It is not difficult to check that ‚l .a/ restricts to

‚l .a/�C.y
L
/
2 L1.y

L
/
CB

�
C.y

L
/
�
:

Using e.g. [9, Proposition 3.5] we again see that every CB, left L1.y
L
/-module map on

C.y
L
/ is of the form ‚l .a/�C.y

L
/

for some a 2 Ml
cb.A.

L
//. Similarly, central multipliers

a 2 ZMl
cb.A.

L
// correspond to CB, L1.y

L
/-bimodule maps on C.y

L
/ and normal, CB,

L1.y
L
/-bimodule maps on L1.y

L
/.

Whenever we have two compact quantum groups y
L
1; y

L
2, we can form their product

y
L
D y

L
1 �
y
L
2. The associated algebras are

C.y
L
/ D C.y

L
1/˝ C.y

L
2/; L1.y

L
/ D L1.y

L
1/ x̋ L1.y

L
2/

(hence L1.y
L
/ D L1.y

L
1/ y̋ L1.y

L
2/), Pol.y

L
/ D Pol.y

L
1/ˇ Pol.y

L
2/ and the Haar integral

is hyL D hyL
1
˝ hyL

2
. We can also identify irreducible representations of y

L
: Irr.y

L
/ is the

set of ˛ � ˇ for ˛ 2 Irr.y
L
1/, ˇ 2 Irr.y

L
2/, where U ˛�ˇ D U ˛13U

ˇ
24 is a representation of

y
L

on H˛ ˝Hˇ . For details see [26]. For finite subsets F1 � Irr.y
L
1/, F2 � Irr.y

L
2/ denote

F1 � F2 D ¹˛ � ˇ j ˛ 2 F1; ˇ 2 F2º. Product of discrete quantum groups
L
1 and

L
2 is

defined to be
L
1 �

L
2 D

L
, where

L
is the dual of y

L
.

We will be using the following useful notation: if y
L

is an arbitrary compact quantum
group and ; ¤ F � Irr.y

L
/ is a finite subset, set

PolF .y
L
/ D span

®
U ˛i;j j ˛ 2 F; 1 � i; j � dim.˛/

¯
and consider it to be an operator space with structure coming from C.y

L
/. Next, for each

˛ 2 Irr.y
L
/, let p˛ be the central projection corresponding to B.H˛/ � `1.

L
/ and pF DP

˛2F p˛ 2 c00.
L
/. Using orthogonality relations one easily sees that

pF D y�.!F /; where !F D
X
˛2F

dim.˛/X
iD1

dimq.˛/¡˛;ih.U
˛�
i;i �/ 2 L1.y

L
/: (2.1)

Furthermore, ‚l .pF / is a projection onto PolF .y
L
/.

Symbolˇwill denote the algebraic tensor product,˝ tensor product of Hilbert spaces
or minimal (spatial) tensor product of C�-algebras, x̋ von Neumann algebraic tensor prod-
uct and y̋ projective tensor product of operator spaces. Operator spaces are assumed to be
complete. All vector spaces are considered over C.
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3. Cowling–Haagerup constant for modules

In this section we introduce a Cowling–Haagerup constant for (bi)modules C.y
L
/, L1.y

L
/,

study its properties and relate it to the (central) Cowling–Haagerup constant of
L

(Theo-
rem 3.5).

Definition 3.1. Let
L

be a discrete quantum group.

(1) Define L1.y
L
/
ƒcb.C.y

L
// to be the infimum of all numbers C � 1 such that there is a

net .'�/�2ƒ of finite rank, left L1.y
L
/-module CB maps on C.y

L
/with k'�kcb � C

and '�.x/ ���!
�2ƒ

x for all x 2 C.y
L
/. If no such number exists, set

L1.y
L
/
ƒcb

�
C.y

L
/
�
D C1:

(2) Similarly define ƒcb;L1.y
L
/
.C.y

L
// and L1.y

L
/
ƒcb;L1.y

L
/
.C.y

L
// by considering right

L1.y
L
/-module maps and L1.y

L
/-bimodule maps, respectively.

(3) Define L1.y
L
/
ƒcb.L1.y

L
// to be the infimum of all numbers C � 1 such that there

is a net . �/�2ƒ of normal, finite rank, left L1.y
L
/-module CB maps on L1.y

L
/

with k �kcb � C and  �.x/ ���!
�2ƒ

x weak� for all x 2 L1.y
L
/. If no such number

exists, set

L1.y
L
/
ƒcb

�
L1.y

L
/
�
D C1:

(4) Similarly define ƒcb;L1.y
L
/
.L1.y

L
// and L1.y

L
/
ƒcb;L1.y

L
/
.L1.y

L
// by considering

right L1.y
L
/-module maps and L1.y

L
/-bimodule maps, respectively.

Numbers L1.y
L
/
ƒcb.C.y

L
//, etc. will be called Cowling–Haagerup constants. A standard

argument (using a new net indexed over ƒ � N) shows that the infimum in the above
definition is actually achievable.

Remark 3.2. In principle we could have introduced similar constants for arbitrary opera-
tor modules over completely contractive Banach algebras. We have decided not to do that,
as general operator modules can fail to have any finite dimensional submodules, and also
we were unable to prove that such constant is in general multiplicative (see Proposition 4.5
and Remark 4.6).

In our first proposition we show that it does not matter if we look at left or right module
structure, and similarly it does not matter if we look at C� or von Neumann level.

Proposition 3.3. Let
L

be a discrete quantum group. Then

L1.y
L
/
ƒcb

�
C.y

L
/
�
D ƒcb;L1.y

L
/

�
C.y

L
/
�
D L1.y

L
/
ƒcb

�
L1.y

L
/
�
D ƒcb;L1.y

L
/

�
L1.y

L
/
�
;

L1.y
L
/
ƒcb;L1.y

L
/

�
C.y

L
/
�
D L1.y

L
/
ƒcb;L1.y

L
/

�
L1.y

L
/
�
:

Proof. If  2 CB� .L1.y
L
// is a normal, left L1.y

L
/-module map, then yR ı  ı yR is a

normal right L1.y
L
/-module map with k yR ı  ı yRkcb D k kcb [9, Lemma 4.8], where yR

is the unitary antipode on L1.y
L
/. We can similarly turn right L1.y

L
/-module maps into left
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one, the property of being finite rank is preserved. Eventually, a net . �/�2ƒ converges
to id in the point-weak� topology if and only if . yR ı  � ı yR/�2ƒ converges to id. This
shows L1.y

L
/
ƒcb.L1.y

L
// D ƒcb;L1.y

L
/
.L1.y

L
//.

The above quoted part of [9, Lemma 4.8] has a C�-algebraic variant (with virtually the
same proof, using usual Wittstock’s theorem [4, Theorem B7]): if ' 2 CB.C.y

L
// is a finite

rank, left L1.y
L
/-module map, then yR ı' ı yR is a finite rank, right L1.y

L
/-module map with

the same CB norm, and vice versa. Similarly, .'�/�2ƒ converges in point-norm topology
to id if and only if . yR ı '� ı yR/�2ƒ does, hence L1.y

L
/
ƒcb.C.y

L
// D ƒcb;L1.y

L
/
.C.y

L
//.

Assume that . �/�2ƒ is a net of finite rank maps in L1.y
L
/

CB� .L1.y
L
// which con-

verges to id in the point-weak� topology and

k �kcb � L1.y
L
/
ƒcb

�
L1.y

L
/
�
< C1:

As discussed in Section 2, for each � 2 ƒ there is a� 2 c00.
L
/ such that  � D ‚l .a�/.

Then ‚l .a�/ restricts to a map '� in L1.y
L
/

CB.C.y
L
// with k'�kcb D k �kcb (by weak�

density of C.y
L
/ � L1.y

L
/) such that

'�.x/ ���!
�2ƒ

x

in norm for every x 2 Pol.y
L
/. Indeed, observe that ¹'�.x/; x j � 2 ƒº live in a finite

dimensional subspace of Pol.y
L
/, and in finite dimensional spaces there is a unique Haus-

dorff vector space topology. Since Pol.y
L
/ is norm dense in C.y

L
/ and the net .'�/�2ƒ is

bounded, a standard approximation argument allows us to conclude that '�.x/ ���!
�2ƒ

x for
all x 2 C.y

L
/ and consequently

L1.y
L
/
ƒcb

�
C.y

L
/
�
� L1.y

L
/
ƒcb

�
L1.y

L
/
�
:

Similar reasoning gives L1.y
L
/
ƒcb;L1.y

L
/
.C.y

L
//� L1.y

L
/
ƒcb;L1.y

L
/
.L1.y

L
//. The only dif-

ference is that if  � is known to be a L1.y
L
/-bimodule map, then so will be '�.

Assume that .'�/�2ƒ is a net of finite rank maps in L1.y
L
/

CB.C.y
L
// with CB norm

bounded by k'�kcb � L1.y
L
/
ƒcb.C.y

L
//, assumed to be finite. As in the previous paragraph,

there are a� 2 c00.
L
/ such that '� D ‚l .a�/�C.y

L
/
. Then ‚l .a�/ are normal, finite rank,

CB maps in L1.y
L
/

CB� .L1.y
L
// with k‚l .a�/kcb D k'�kcb. Take x 2 L1.y

L
/ n ¹0º, ! 2

L1.y
L
/ n ¹0º and " > 0. Since products are linearly dense in L1.y

L
/ [7, Section 3], we can

find !k ; !0k 2 L1.y
L
/ (1 � k � K) such that



! � KX

kD1

!k ? !
0
k





 � "

2kxk
�
1C L1.y

L
/
ƒcb

�
C.y

L
/
�� :

Furthermore, for any k we have !0
k
? x 2 C.y

L
/ [9, Lemma 4.6], hence there is �0 2 ƒ

such that

‚l .a�/.!0k ? x/ � !0k ? x

 � "

2K
�
1C k!kk

� .1 � k � K; � � �0/:



J. Krajczok 1506

For � � �0 we have

ˇ̌˝
‚l .a�/.x/ � x; !

˛ˇ̌
�

"
2
C

KX
kD1

ˇ̌˝
‚l .a�/.x/ � x; !k ? !

0
k

˛ˇ̌
D

"
2
C

KX
kD1

ˇ̌˝
!0k ? ‚

l .a�/.x/ � !
0
k ? x; !k

˛ˇ̌
D

"
2
C

KX
kD1

ˇ̌˝
‚l .a�/.!

0
k ? x/ � !

0
k ? x; !k

˛ˇ̌
�

"
2
C

KX
kD1



‚l .a�/.!0k ? x/ � !0k ? x

k!kk � ":
This proves ‚l .a�/.x/ ���!

�2ƒ
x weak� and consequently

L1.y
L
/
ƒcb

�
L1.y

L
/
�
� L1.y

L
/
ƒcb

�
C.y

L
/
�
:

As above, a minor modification gives L1.y
L
/-bimodule version.

Because of Proposition 3.3, we will focus on L1.y
L
/
ƒcb.C.y

L
// and L1.y

L
/
ƒcb;L1.y

L
/
.C.y

L
//.

Let us now recall the definition of the Cowling–Haagerup constant and its central variant
for discrete quantum groups [3, 10, 14].

Definition 3.4. Let
L

be a discrete quantum group.

(1) The Cowling–Haagerup constant of
L

, ƒcb.
L
/ 2 Œ1;C1�, is the infimum of all

numbers C � 1 such that there is a net .a�/�2ƒ in c00.
L
/ with ka�kcb � C and

a����!
�2ƒ

1pointwise. If no such number exists, setƒcb.
L
/DC1. Ifƒcb.

L
/<C1,

one says that
L

is weakly amenable.

(2) The central Cowling–Haagerup constant Zƒcb.
L
/ 2 Œ1;C1� is the infimum of

all numbers C � 1 such that there is a net .a�/�2ƒ in Zc00.
L
/ with ka�kcb �

C and a� ���!
�2ƒ

1 pointwise. If no such number exists, set Zƒcb.
L
/ D C1. If

Zƒcb.
L
/ < C1, one says that

L
is centrally weakly amenable.

Similarly to Definition 3.1, the infimum is actually attainable. Let us note that in the
definition of ƒcb.

L
/ we could also consider more general nets .a�/�2ƒ assumed only

to be in the Fourier algebra A.
L
/. A standard approximation argument shows that both

definitions are equivalent (see e.g. [3, Section 3.2]). Instead of speaking about pointwise
convergence, one can require that .a�/�2ƒ forms an approximate identity in the Fourier
algebra A.

L
/. In this context, both conditions are equivalent. The following result pro-

vides a link between Cowling–Haagerup constant of a discrete quantum group
L

and the
associated module C.y

L
/. Its proof is quite standard, compare e.g. [3, Theorem 6.6].
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Theorem 3.5. For any discrete quantum group
L

ƒcb.
L
/ D L1.y

L
/
ƒcb

�
C.y

L
/
�

and Zƒcb.
L
/ D L1.y

L
/
ƒcb;L1.y

L
/

�
C.y

L
/
�
:

Proof. Assume ƒcb.
L
/ < C1 and let .a�/�2ƒ be a net in c00.

L
/ such that ka�kcb �

ƒcb.
L
/ and a� ���!

�2ƒ
1 pointwise. Since c00.

L
/ � A.

L
/, we can find normal function-

als !� 2 L1.y
L
/ such that a� D y�.!�/. Then ‚l .a�/ D .!� ˝ id/y�, consider '� D

‚l .a�/�C.y
L
/
. This map is of finite rank, belongs to L1.y

L
/

CB.C.y
L
// and has CB norm

equal to ka�kcb. Furthermore, since sup�2ƒka�kcb < 1, to see that '� ���!
�2ƒ

id in the

point-norm topology of C.y
L
/, it is enough to look at the dense subspace Pol.y

L
/. Since

a� ���!
�2ƒ

1 pointwise, for any ˛ 2 Irr.y
L
/; 1 � i; j � dim.˛/ we have !�.U ˛i;j / ���!

�2ƒ
ıi;j

and consequently

'�.U
˛
i;j / D

dim.˛/X
kD1

!�.U
˛
i;k/U

˛
k;j

converges in norm to U ˛i;j . We conclude that L1.y
L
/
ƒcb.C.y

L
// � ƒcb.

L
/.

Assume now that L1.y
L
/
ƒcb.C.y

L
// < C1 with the corresponding net .'�/�2ƒ in

L1.y
L
/

CB.C.y
L
//. As discussed in Section 2, there is a multiplier a� 2 Ml

cb.A.
L
// such

that '� D ‚l .a�/�C.y
L
/
, in particular ka�kcb D k'�kcb. Since '� is of finite rank, we have

in fact a� 2 c00.
L
/. As the net .'�/�2ƒ converges to id in the point-norm topology, we

have a� ���!
�2ƒ

1 pointwise. This shows ƒcb.
L
/ � L1.y

L
/
ƒcb.C.y

L
//.

The central and bimodule variant is proved in a similar way, with slight modification.
In the first direction, we additionally have a� 2 Zc00.

L
/, then ‚l .a�/�C.y

L
/

is a L1.y
L
/-

bimodule map giving L1.y
L
/
ƒcb;L1.y

L
/
.C.y

L
// � Zƒcb.

L
/. Conversely since '� is a map of

bimodules, a� is central.

Remark 3.6. It is an interesting question whether L1.y
L
/
ƒcb.C.y

L
//DL1.y

L
/
ƒcb;L1.y

L
/
.C.y

L
//

always holds, equivalently (by Theorem 3.5) whether the Cowling–Haagerup constant
of

L
is equal to its central variant ƒcb.

L
/ D Zƒcb.

L
/. To the best of our knowledge,

no counterexample is known. An analogous result for strong amenability is false (see
e.g. [10, Theorem 7.6]).

4. Cowling–Haagerup constant of the product
In this section we prove our main result: (central) Cowling–Haagerup constant of discrete
quantum groups is multiplicative (Theorem 4.7). We will do this by establishing first an
analogous result for modules C.y

L
/ (Proposition 4.5) and then using Theorem 3.5. As

mentioned in the introduction, our proof of Proposition 4.5 is a modification of the proof
of [4, Theorem 12.3.13] (see also Remark 4.6).

It will be convenient to work in the more general language of completely contractive
Banach algebras and operator modules, see Section 2. The next lemma is a bimodule
generalization of [4, Lemma 12.3.16]. Recall that any A-B-bimodule, is also a right
Aop y̋B-module (see Section 2).
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Lemma 4.1. Let A;B be completely contractive Banach algebras, X an A-B-bimodule
and F � E � X finite dimensional submodules. Take C � 1. The following statements
are equivalent:

(1) there is ' 2 A CBB.X;E/ such that '.x/ D x .x 2 F / and k'kCB.X;E/ � C ,

(2) j�.u/j � Ckq.u/k for u 2 F ˇ E�, where �WE ˇ E� ! C is the pairing map
and qWX y̋E� ! X y̋Aop y̋BE

� is the canonical quotient map.

Proof. Assume that we have ' 2 A CBB.X; E/ as in .1/, take u 2 F ˇ E� and write
u D

Pn
kD1 xk ˝ !k for some xk 2 F;!k 2 E�. Then using identifications CB.F;E/ D

CB.F; E��/ ' .F y̋E�/� and A CBB.X; E/ D CBAop y̋B.X; E/ ' .X y̋Aop y̋BE
�/� we

calculate ˇ̌
�.u/

ˇ̌
D

ˇ̌̌̌ nX
kD1

h!k ; xki

ˇ̌̌̌
D

ˇ̌̌̌ nX
kD1

˝
!k ; '.xk/

˛ˇ̌̌̌
D
ˇ̌
h'; uiCB.X;E/;X y̋E�

ˇ̌
D
ˇ̌˝
'; q.u/

˛
CB
Aop y̋B .X;E/;X

y̋
Aop y̋BE

�

ˇ̌
� C



q.u/

;
i.e. .2/ holds.

Conversely, assume that j�.u/j � Ckq.u/k for all u 2 F ˇE�. Then the functional

X y̋Aop y̋BE
�
� q.F ˇE�/ 3 q.u/ 7! �.u/ 2 C (4.1)

is well defined and has norm bounded by C . By Hahn–Banach theorem, we can find
' 2 .X y̋Aop y̋BE

�/� ' A CBB.X; E/ which extends (4.1) and has norm � C . For x 2
F;! 2 E� we have˝

!; '.x/
˛
D
˝
'; q.x ˝ !/

˛
CB
Aop y̋B .X;E/;X

y̋
Aop y̋BE

� D �.x ˝ !/ D h!; xi

hence '.x/ D x.

Next we establish several useful properties of left L1.y
L
/-module C.y

L
/.

Lemma 4.2. Let
L

be a discrete quantum group and C � 1. The following conditions are
equivalent:

(1) L1.y
L
/
ƒcb.C.y

L
// � C ,

(2) for every " > 0 and finite ; ¤ F � Irr.y
L
/ there is a finite rank ' 2 L1.y

L
/
CB.C.y

L
//

such that k'.x/ � xk � "kxk .x 2 PolF .y
L
// and k'kcb � C .

Proof. (1))(2): take " > 0 and finite ; ¤ F � Irr.y
L
/. Since PolF .y

L
/ is a finite dimen-

sional normed space with basis ¹U ˛i;j j ˛ 2 F; 1 � i; j � dim.˛/º we can find D > 0 so
that X

˛2F

dim.˛/X
i;jD1

jx˛i;j j � D





X
˛2F

dim.˛/X
i;jD1

x˛i;jU
˛
i;j
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for all
P
˛2F

Pdim.˛/
i;jD1 x

˛
i;jU

˛
i;j 2 PolF .y

L
/. By .1/, there is ' 2 L1.y

L
/
CB.C.y

L
// such that

k'kcb � C and 

'.U ˛i;j / � U ˛i;j

 � "
D

�
˛ 2 F; 1 � i; j � dim.˛/

�
:

Then for any x D
P
˛2F

Pdim.˛/
i;jD1 x

˛
i;jU

˛
i;j 2 PolF .y

L
/ we have



'.x/ � x

 �X
˛2F

dim.˛/X
i;jD1

jx˛i;j j


'.U ˛i;j / � U ˛i;j

 �X

˛2F

dim.˛/X
i;jD1

jx˛i;j j
"
D
� "kxk:

(2))(1): for " > 0 and finite ; ¤ F � Irr.y
L
/, let '";F 2 L1.y

L
/

CB.C.y
L
// be the map

from (2). As k'";F kcb � C for all "; F and Pol.y
L
/ is norm dense in C.y

L
/, it easily

follows that the net .'";F /.";F / indexed over " 2 �0; 1Œ and finite ; ¤ F � Irr.y
L
/ gives

L1.y
L
/
ƒcb.C.y

L
// � C .

There is also a natural analog of Lemma 4.2 for L1.y
L
/-bimodule C.y

L
/. Recall that for

finite ; ¤ F � Irr.y
L
/, pF 2 c00.

L
/ � A.

L
/ is the central projection pF D

P
˛2F p˛ .

Lemma 4.3. Let
L

be a discrete quantum group and "> 0. For a finite set ;¤F � Irr.y
L
/,

1 � kpF kA.
L
/ �

sX
˛2F

dimq.˛/2:

Proof. Recall that pF D y�.!F / (equation (2.1)). Let kxk2 D h.x�x/1=2 .x 2 L1.y
L
// be

the 2-norm on L1.y
L
/. Using orthogonality relations [21, Theorem 1.4.3] we see

kpF k
2
A.

L
/ D k!F k

2
�





X
˛2F

dim.˛/X
iD1

dimq.˛/¡˛;iU
˛
i;i





2
2

D

X
˛2F

dim.˛/X
iD1

dimq.˛/
2¡˛;i

2
kU ˛i;ik

2
2

D

X
˛2F

dim.˛/X
iD1

dimq.˛/
2¡˛;i

2 1
dimq.˛/¡˛;i

D

X
˛2F

dimq.˛/
2:

For the lower bound, choose ˛ 2 F and let �˛ D
Pdim.˛/
iD1 U ˛i;i be character of ˛. Then

k�˛k � dim.˛/ and

kpF kA.
L
/ D k!F k �

ˇ̌
!F
�
�˛
k�˛k

�ˇ̌
D

1
k�˛k

ˇ̌̌̌ dim.˛/X
iD1

dimq.˛/¡˛;ih.U
˛�
i;i �˛/

ˇ̌̌̌
D

dim.˛/
k�˛k

� 1:

The next lemma shows intuitively that one can correct an almost equality a � 1 over
a finite set F � Irr.y

L
/ to an actual equality, with an error over which we have precise

control.
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Lemma 4.4. Let
L

be a discrete quantum group, " > 0, ; ¤ F � Irr.y
L
/ a finite set and

a 2 Ml
cb.A.

L
//. Assume that k‚l .a/.x/ � xk � "kxk for x 2 PolF .y

L
/. Then there is

Qa 2 Ml
cb.A.

L
// such that ‚l . Qa/.x/ D x for x 2 PolF .y

L
/, Qa � a 2 c00.

L
/ and

k Qa � akA.
L
/ � "

X
˛2F

dimq.˛/
2:

If a 2 ZMl
cb.A.

L
//, then we can take Qa 2 ZMl

cb.A.
L
//.

Proof. Write a D .a˛/˛2Irr.y
L
/
. Define b D

P
˛2F .p˛ � a˛/ 2 c00.

L
/ and Qa D a C b.

Since Qa˛ D p˛ .˛ 2 F /, we have ‚l . Qa/.x/ D x for x 2 PolF .y
L
/. Furthermore

Qa � a D b D
X
˛2F

.p˛ � a˛/ D .1 � a/
X
˛2F

p˛ D .1 � a/pF

D .1 � a/y�.!F / D y�
�
‚l .1 � a/�.!F /

�
:

Consequently, using the facts that ‚l .pF /�.!F / D !F , ‚l .pF /.x/ 2 PolF .y
L
/ for x 2

L1.y
L
/ and pF is central

k Qa � akA.
L
/ D



‚l .1 � a/�.!F /


D sup
x2L1.y

L
/;kxkD1

ˇ̌˝
x;‚l .1 � a/�.!F /

˛ˇ̌
D sup
x2L1.y

L
/;kxkD1

ˇ̌˝
x;‚l .1 � a/�‚

l .pF /�.!F /
˛ˇ̌

D sup
x2L1.y

L
/;kxkD1

ˇ̌˝
‚l .1 � a/‚l .pF /.x/; !F

˛ˇ̌
� sup
x2L1.y

L
/;kxkD1



‚l .pF /.x/ �‚l .a/�‚l .pF /.x/�

k!F k
� sup
x2L1.y

L
/;kxkD1

"


‚l .pF /.x/

k!F k

D "k!F k


‚l .pF /

 � "kpF kA.

L
/kpF kcb � "kpF k

2
A.

L
/;

hence the first claim follows from Lemma 4.3. If a is central, then so is b and conse-
quently Qa.

Let us remark that using [12, Corollary 2.2.4] one can obtain a better bound for
k Qa � akcb – we will however not need this. Our main result, in the language of modules,
is the following.

Proposition 4.5. Let
L
1;

L
2 be discrete quantum groups and

L
D

L
1 �

L
2 their product.

Then

L1.y
L
/
ƒcb

�
C.y

L
/
�
D L1.y

L
1/
ƒcb

�
C.y

L
1/
�

L1.y
L
2/
ƒcb.C

�
y
L
2/
�
; (4.2)

L1.y
L
/
ƒcb;L1.y

L
/

�
C.y

L
/
�
D L1.y

L
1/
ƒcb;L1.y

L
2/

�
C.y

L
1/
�

L1.y
L
2/
ƒcb;L1.y

L
2/

�
C
�
y
L
2/
�
: (4.3)
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Proof. The easier inequality � was already established in [15, Proposition 3.2] (after
conjunction with Theorem 3.5), let us give an essentially equivalent argument for the con-
venience of the reader. Recall that C.y

L
/ D C.y

L
1/˝ C.y

L
2/ as C�-algebras and L1.y

L
/ D

L1.y
L
1/ y̋ L1.y

L
2/ as completely contractive Banach algebras. It is enough to assume that

both L1.y
L
1/
ƒcb.C.y

L
1// and L1.y

L
2/
ƒcb.C.y

L
2// are finite, let .'�/�2ƒ and . �/�2† be the

corresponding maps. Then we can construct new net .'� ˝  �/.�;�/2ƒ�† of finite rank
maps in L1.y

L
1/ y̋ L1.y

L
2/

CB.C.y
L
1/˝ C.y

L
2// [12, Proposition 8.1.5]. For any �;� we have

k'� ˝  �kcb � L1.y
L
1/
ƒcb.C.y

L
1// L1.y

L
2/
ƒcb.C.y

L
2// and clearly '� ˝  � ��������!

.�;�/2ƒ�†
id

on a norm dense set C.y
L
1/ˇ C.y

L
2/ � C.y

L
/. Consequently .'� ˝  �/.�;�/2ƒ�† con-

verges to id in the point-norm topology. This allows us to conclude inequality � in (4.2).
An analogous reasoning gives inequality � in (4.3): the only difference is that if '� and
 � are bimodule maps, then so is '� ˝  �.

Let us now prove the converse inequalities; we will treat both cases at the same time.
Assume by contradiction that (4.2) or (4.3) does not hold, i.e.

L1.y
L
/
ƒcb

�
C.y

L
/
�
< L1.y

L
1/
ƒcb

�
C.y

L
1/
�

L1.y
L
2/
ƒcb

�
C.y

L
2/
�

or

L1.y
L
/
ƒcb;L1.y

L
/

�
C.y

L
/
�
< L1.y

L
1/
ƒcb;L1.y

L
1/

�
C.y

L
1/
�

L1.y
L
2/
ƒcb;L1.y

L
2/

�
C.y

L
2/
�
:

Then we can choose positive constants C1; C2 such that

L1.y
L
/
ƒcb

�
C.y

L
/
�
< C1C2; (4.4)

1 � C1 < L1.y
L
1/
ƒcb

�
C.y

L
1/
�
; 1 � C2 < L1.y

L
2/
ƒcb

�
C.y

L
2/
�

(4.5)

in the left module case and

L1.y
L
/
ƒcb;L1.y

L
/

�
C.y

L
/
�
< C1C2; (4.6)

1 � C1 < L1.y
L
1/
ƒcb;L1.y

L
1/

�
C.y

L
1/
�
; 1 � C2 < L1.y

L
2/
ƒcb;L1.y

L
2/

�
C.y

L
2/
�

(4.7)

in the bimodule case.
In order to easier work with both cases at the same time, it will be convenient to

reformulate the situation slightly. As discussed in Section 2, left L1.y
L
/-module structure

on C.y
L
/ gives us right L1.y

L
/op-module structure. Similarly, L1.y

L
/-bimodule structure can

also be encoded as right L1.y
L
/op y̋ L1.y

L
/-module structure. Thus from now on, let A be

equal to L1.y
L
/op or L1.y

L
/op y̋ L1.y

L
/, and consider C.y

L
/ as a right A-module. Similarly

for quantum groups
L
1;

L
2 consider C.y

L
k/ as a right Ak-module, where Ak D L1.y

L
k/

op

or Ak D L1.y
L
k/

op y̋ L1.y
L
k/.

First we use “negative” (4.5) (or (4.7)). Fix k 2 ¹1; 2º and use Lemma 4.2 (or its
bimodule version) to find "k > 0 and a finite set ; ¤ Fk � Irr.y

L
k/ such that for all

finite rank maps ' 2 CBAk .C.y
L
k// with k'kCB.C.y

L
k//
� Ck there is x 2 PolFk .y

L
k/ with

k'.x/ � xk > "kkxk. In particular

'�PolFk .
y
L
k/
� id




CB.PolFk .

y
L
k/;C.y

L
k//
> "k : (4.8)
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Now we use “positive” (4.4) (or (4.6)). Define F D F1 � F2 � Irr.y
L
/ and choose

small ı > 0 such that

L1.y
L
/
ƒcb

�
C.y

L
/
�
< .1 � ı/C1C2 < C1C2

or

L1.y
L
/
ƒcb;L1.y

L
/

�
C.y

L
/
�
< .1 � ı/C1C2 < C1C2

depending on the version we are considering. Next set

" D
ıC1C2P

˛2F dimq.˛/2
> 0:

For this " andF , by Lemma 4.2 we can find finite rank ' 2CBA.C.y
L
//with k'kCB.C.y

L
//
�

.1� ı/C1C2 and k'.x/� xk � "kxk for x 2 PolF .y
L
/. Since ' is a right A-module map,

it corresponds to a 2 c00.
L
/ (or a 2 Zc00.

L
/) via ' D ‚l .a/�C.y

L
/
. Choose Qa 2 c00.

L
/

(or Qa 2 Zc00.
L
/) using Lemma 4.4, so that ‚l . Qa/ D id on PolF .y

L
/ and since the CB

norm is majorized by Fourier algebra norm

‚l . Qa/�C.y
L
/




CB.C.y

L
//
D kQakcb � kakcb C kQa � akcb � .1 � ı/C1C2 C "

X
˛2F

dimq.˛/
2

D C1C2:

‚l . Qa/�C.y
L
/

is a finite rank right A-module map, hence it has image in PolE .y
L
/ for some

finite E � Irr.y
L
/. By enlarging E if needed, we can assume E D E1 �E2 for finite ; ¤

Ek � Irr.y
L
k/ with Fk � Ek . Existence of‚l . Qa/�C.y

L
/

shows that point .1/ of Lemma 4.1
holds (for modules PolF .y

L
/ � PolE .y

L
/ and constant C1C2), consequently .2/ of this

lemma gives ˇ̌
�.u/

ˇ̌
� C1C2



q.u/

 (4.9)

for u 2 PolF .y
L
/ˇ PolE .y

L
/�. Here q is the quotient map

C.y
L
/ y̋ PolE .y

L
/� ! C.y

L
/ y̋A PolE .y

L
/�:

Next we go back to the reasoning concerning
L
k’s. Consider finite dimensional right

Ak-submodules PolFk .y
L
k/ � PolEk .y

L
k/ of C.y

L
k/ and numbers Ck . We will denote this

action and its dual by x C f; f B ! .x 2 C.y
L
k/; ! 2 PolEk .y

L
k/
�; f 2 Ak/ to avoid

confusion. By the reasoning above (inequality (4.8)), point .1/ in Lemma 4.1 does not
hold, and there is uk 2 PolFk .y

L
k/ˇ PolEk .y

L
k/
� such thatˇ̌

�.uk/
ˇ̌
> Ck



q.uk/

: (4.10)

We claim that q.uk/ ¤ 0. To see this, we need to introduce an auxiliary bounded func-
tional. First, observe that we can understand ‚l .pEk /�C.y

L
k/

as a CB map C.y
L
k/ !

PolEk .y
L
k/. Next consider its dual map and define � to be the composition

�WC.y
L
k/ y̋ PolEk .y

L
k/
�

id˝.‚l .pEk /�C. y
L
k/
/�

��������������! C.y
L
k/ y̋C.y

L
k/
� �
�! C:
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Let us write

uk D

NkX
iD1

xk;i ˝ !k;i for xk;i 2 PolFk .y
L
k/ � C.y

L
k/ and !k;i 2 PolEk .y

L
k/
� (4.11)

and observe

h�; uki D

NkX
iD1

h�; xk;i ˝ !k;i i D

NkX
iD1

˝
!k;i ; ‚

l .pEk /.xk;i /
˛

D

NkX
iD1

h!k;i ; xk;i i D �.uk/: (4.12)

Assume by contradiction that q.uk/ D 0, then

uk 2 span
®
x C f ˝ ! � x ˝ f B ! j x 2 C.y

L
k/; f 2 Ak ; ! 2 PolEk .y

L
k/
�
¯

� C.y
L
k/ y̋ PolEk .y

L
k/
�:

Since

h�; x C f ˝ ! � x ˝ f B !i D
˝
!;‚l .pEk /.x C f /

˛
�
˝
f B !;‚l .pEk /.x/

˛
D
˝
!;‚l .pEk /.x/ C f

˛
�
˝
f B !;‚l .pEk /.x/

˛
D 0

for x 2 C.y
L
k/, f 2 Ak , ! 2 PolEk .y

L
k/
�, we have h�; uki D 0 by continuity of �. This

contradicts (4.10) and (4.12), consequently q.uk/ ¤ 0.
Let us introduce shuffling map (cf. [4, Lemma 12.3.14])�

C.y
L
1/ y̋ PolE1.y

L
1/
�
�
�
�
C.y

L
2/ y̋ PolE2.y

L
2/
�
�
3 .v1;v2/ 7! v1 � v2 2C.y

L
/ y̋ PolE .y

L
/�

given by the bilinear extension of

.x1 ˝ !1/ � .x2 ˝ !2/ D x1 ˝ x2 ˝ !1 ˝ !2

(it is well defined as E D E1 � E2 is finite, hence we can identify completely isometri-
cally PolE .y

L
/ D PolE1.y

L
1/ L̋ PolE2.y

L
2/, where L̋ is the injective operator space tensor

product [12, Section 8]). According to [4, Lemma 12.3.14] we have kv1 � v2k� kv1kkv2k
for any vk 2 C.y

L
k/ y̋ PolEk .y

L
k/
�. Consider

u D u1 � u2 2 PolF .y
L
/ˇ PolE .y

L
/� � C.y

L
/ y̋ PolE .y

L
/�:

We will use this element to obtain a contradiction. Using (4.11) we have

u D

N1X
iD1

N2X
jD1

x1;i ˝ x2;j ˝ !1;i ˝ !2;j
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and consequently

�.u/ D

N1X
iD1

N2X
jD1

h!1;i ˝ !2;j ; x1;i ˝ x2;j i D

N1X
iD1

N2X
jD1

h!1;i ; x1;i i h!2;j ; x2;j i

D �.u1/�.u2/

and ˇ̌
�.u/

ˇ̌
D
ˇ̌
�.u1/

ˇ̌ ˇ̌
�.u2/

ˇ̌
> C1C2



q.u1/

 

q.u2/

: (4.13)

by (4.10). Next we need to get a hold on the norm kq.u/k, which is the norm in the
quotient space C.y

L
/ y̋A PolE .y

L
/� D .C.y

L
/ y̋ PolE .y

L
/�/=ker.q/. Fix an arbitrary "0 > 0.

For k 2 ¹1; 2º we can choose

nk 2 ker
�
qWC.y

L
k/ y̋ PolEk .y

L
k/
�
! C.y

L
k/ y̋Ak PolEk .y

L
k/
�
�

D span
®
n C f ˝ � � n˝ f B � j n 2 C.y

L
k/; f 2 Ak ; � 2 PolEk .y

L
k/
�
¯

such that kuk C nkk � "0 � kq.uk/k � kuk C nkk. We can write

nk D lim
j!1

L
j
kX

lD1

�
n
j

k;l
C f j

k;l
˝ �

j

k;l
� n

j

k;l
˝ f

j

k;l
B �j

k;l

�
for some nj

k;l
2 C.y

L
k/; f

j

k;l
2 Ak ; �

j

k;l
2 PolEk .y

L
k/
�. Then

q.u1 � n2/

D lim
j!1

N1X
iD1

L
j
2X

lD1

q
�
.x1;i ˝ !1;i / � .n

j

2;l
C f j

2;l
˝ �

j

2;l
� n

j

2;l
˝ f

j

2;l
B �j

2;l
/
�

D lim
j!1

N1X
iD1

L
j
2X

lD1

q
�
x1;i˝n

j

2;l
C f j

2;l
˝!1;i˝�

j

2;l
� x1;i˝n

j

2;l
˝!1;i˝f

j

2;l
B �j

2;l

�
D lim
j!1

N1X
iD1

L
j
2X

lD1

q
�
.x1;i ˝ n

j

2;l
/ C .! ˝ f j

2;l
/˝ .!1;i ˝ �

j

2;l
/

� .x1;i ˝ n
j

2;l
/˝ .! ˝ f

j

2;l
/ B .!1;i ˝ �j2;l /

�
;

where !2L1.y
L
1/ (or !2L1.y

L
1/ y̋ L1.y

L
1/) is any normal functional which on PolE1.y

L
1/

acts as the counit – so x1;i C ! D x1;i and ! B !1;i D !1;i . Such functional can be
easily constructed using orthogonality relations [21, Theorem 1.4.3], for example we can
take ! D !E1 (or ! D !E1 ˝ !E1 ). It follows that q.u1 � n2/ D 0. Similarly we check
q.n1 � u2/ D 0 and q.n1 � n2/ D 0. Consequently

q.u/ D q.u1 � u2/ D q.u1 � u2 C n1 � u2 C u1 � n2 C n1 � n2/
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so

q.u/

 � ku1 � u2 C n1 � u2 C u1 � n2 C n1 � n2k D 

.u1 C n1/ � .u2 C n2/


� ku1 C n2k ku2 C n2k �

�

q.u1/

C "0��

q.u2/

C "0�:
Since "0 > 0 was arbitrary, we conclude kq.u/k � kq.u1/kkq.u2/k. Combining this with
inequalities (4.9) and (4.13) we get

C1C2


q.u1/

 

q.u2/

 < C1C2

q.u1/

 

q.u2/

;

and as q.u1/ ¤ 0; q.u2/ ¤ 0 this gives a contradiction.

Remark 4.6. We have formulated and proven Proposition 4.5 only for modules of the
form C.y

L
/ because of two reasons. First, in the case of C.y

L
/ there is a canonical dense

submodule Pol.y
L
/ whose finite dimensional subspaces give a wealth of finite dimensional

submodules. Another reason is that for any finite ; ¤ E � Irr.y
L
/ one can find ! 2 L1.y

L
/

which acts as the identity on PolE .y
L
/. This “local unitality” property was used to obtain

bound kq.u1 � u2/k � kq.u1/k kq.u2/k.

Theorem 4.7. Let
L
1;

L
2 be discrete quantum groups and

L
D

L
1 �

L
2 their product.

Then

ƒcb.
L
/ D ƒcb.

L
1/ƒcb.

L
2/ and Zƒcb.

L
/ D Zƒcb.

L
1/Zƒcb.

L
2/:

Proof. This result is an immediate consequence of Proposition 4.5 and Theorem 3.5.

As a corollary, we extend this result to infinite direct sums. Let .
L
i /i2I be a non-

empty family of discrete quantum groups. Then one can define product
Q
i2I
y
L
i , which

is a compact quantum group ([26], see also [9, Section 7.2]). We will denote its discrete
dual by

L
i2I

L
i and call it the direct sum of family .

L
i /i2I (the name and notation is

inspired by the classical case where
Q
i2I �i is larger than

L
i2I �i whenever jI j D 1

and j�i j � 2).

Corollary 4.8. Let .
L
i /i2I be a non-empty family of discrete quantum groups and let

L
D
L
i2I

L
i be their direct sum. Then

ƒcb.
L
/ D

Y
i2I

ƒcb.
L
i / and Zƒcb.

L
/ D

Y
i2I

Zƒcb.
L
i /: (4.14)

Proof. If I is finite, then the claim follows immediately from Theorem 4.7; assume that
jI j D 1. The discrete quantum group

L
is the direct limit of system .˚i2F

L
i /F indexed

by finite non-empty subsets F � I with the canonical injective maps C.
Q
i2F
y
L
i / 3

x 7! x ˝ .˝i2F 0nF 1i / 2 C.
Q
i2F 0
y
L
i / for F � F 0. Using Theorem 4.7 and [15, Propo-

sition 3.6] we have

ƒcb.
L
/ D sup

F

ƒcb

�M
i2F

L
i

�
D sup

F

Y
i2F

ƒcb.
L
i / D

Y
i2I

ƒcb.
L
i /
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(recall ƒcb.
L
i / � 1). One easily sees that [15, Proposition 3.6] holds also for the central

Cowling–Haagerup constant, which gives the second equality in (4.14).
Alternatively, one can prove both equalities (4.14) as follows. Lower bounds follow

from Theorem 4.7 and decomposition
L
i2I

L
i D .

L
i2F

L
i / � .

L
i2InF

L
i / which

holds for all finite ; ¤ F � I . Upper bounds � in (4.14) can be directly showed as
in the first paragraph of the proof of Proposition 4.5.

We end with an example, which shows that knowing the exact value of Cowling–
Haagerup constant (not just an upper and lower bound), can make a significant difference.

Example 4.9. Let .
L
n/n2N be a sequence of discrete quantum groups, such thatƒcb.

L
n/

< C1 for all n 2 N and lim infn2N ƒcb.
L
n/ > 1. Define

L
D
L1
nD1

L
n. Then, using

Corollary 4.8, we calculate

ƒcb.
L
/ D

1Y
nD1

ƒcb.
L
n/ D1;

hence
L

is not weakly amenable. Note that we would not be able to conclude this knowing
only

ƒcb.
L
n �

L
m/ � max

�
ƒcb.

L
n/;ƒcb.

L
m/
�
:

Since weak amenability implies Haagerup–Kraus approximation property AP [9, Propo-
sition 5.7], all quantum groups

L
n have AP and so does

L
[9, Proposition 7.5].
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