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Supercaloric functions for the porous medium equation
in the fast diffusion case

Kristian Moring and Christoph Scheven

Abstract. We study a generalized class of supersolutions, so-called supercaloric
functions, to the porous medium equation in the fast diffusion case. Supercaloric
functions are defined as lower semicontinuous functions obeying a parabolic com-
parison principle. We prove that bounded supercaloric functions are weak supersolu-
tions. In the supercritical range, we show that unbounded supercaloric functions can
be divided into two mutually exclusive classes dictated by the Barenblatt solution and
the infinite point-source solution, and give several characterizations for these classes.
Furthermore, we study the pointwise behavior of supercaloric functions and obtain
connections between supercaloric functions and weak supersolutions.

1. Introduction

In this paper, we study supersolutions to the porous medium equation (PME for short),
which can be written as

(1.1) @tu ��.u
m/ D 0;

for 0 < m <1 and nonnegative u. We are concerned with the case 0 < m < 1, the fast
diffusion range, and in particular, with some of the main results in the supercritical fast
diffusion range .n � 2/=n < m < 1. Furthermore, we suppose that the spatial dimension
satisfies n � 2. For the standard theory of the porous medium equation, we refer to the
monographs [10, 30, 31].

Our main objective is to investigate a general class of supersolutions, so-called super-
caloric functions, for the porous medium equation. They are defined as lower semicon-
tinuous functions, which are finite in a dense set, and satisfy a parabolic comparison
principle, see Definition 3.1. Supercaloric functions for (1.1) can be regarded as a coun-
terpart of superharmonic functions in the classical theory, and they arise naturally for
example in obstacle problems, Perron’s method, and in questions related to boundary reg-
ularity, see, e.g., [4, 5, 19]. In contrast to weak supersolutions, supercaloric functions are
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not required to satisfy the equation or any Sobolev space property a priori. In the range
.n� 2/=n < m < 1, functions such as the Barenblatt solution (6.1) and the infinite point-
source solution (equation (7.2), see [8]) are examples of supercaloric functions which
are not weak supersolutions, since the Sobolev space requirement fails to hold (when
0 < m < 1, see also (7.1)). Furthermore, in the supercritical fast diffusion case, these
functions will be the main examples from two disjoint classes of supercaloric functions,
which we will study in this paper.

The theory of supercaloric functions for the parabolic p-Laplace equation in the super-
critical case is well developed. In the slow diffusion case, Sobolev space properties of
locally bounded supercaloric functions were proven in [17], and the classification theory
of unbounded supercaloric functions is summarized in [21]. In [20], the study of bounded
supercaloric functions was extended to the supercritical fast diffusion range, and for the
classification theory in this case for unbounded supercaloric functions, we refer to [14].

For the porous medium equation, the analogous theory in the slow diffusion case is
also well established. Sobolev space properties of supercaloric functions were studied
in [18], and for the classification theory in the unbounded case we refer to [16]. The
theory in the fast diffusion range, which we address in this paper, is currently open. To
our knowledge, many questions in the critical and subcritical cases are still open for both
equations, and are left to subjects of future research.

The structure of the porous medium equation poses some well-known challenges. For
example, solutions are not closed under addition or multiplication by constants. In our
case, the former poses a serious difficulty in obtaining an appropriate Caccioppoli inequal-
ity and comparison principles, for example. A critical feature that occurs is that one cannot
approximate nonnegative solutions with strictly positive ones by adding constants, and in
this way avoid the set ¹uD 0º where the equation becomes singular. In order to overcome
this difficulty, we are able to show that in each connected component of the domain, every
supercaloric function is either strictly positive or vanishes identically on any given time-
slice, see Lemma 4.2. The proof of this property relies on an expansion of positivity result
for weak solutions (see [11]), which holds in the whole fast diffusion range 0 < m < 1.
Furthermore, this allows us to express the set where a supercaloric function is strictly pos-
itive as a countable union of time intervals in every connected component of the domain.
The described phenomenon is strongly tied to the nature of fast diffusion, and it does not
occur as such in the slow diffusion case.

In Section 5, we show that the class of locally bounded supercaloric functions is
included in the class of weak supersolutions; a result which was shown for the parabolic
p-Laplace equation in [14, 17, 20], and for the porous medium equation in the slow diffu-
sion case, in [18]. The proof is roughly divided into two parts. First, the result is shown
for strictly positive supercaloric functions in Lemma 5.2, whose proof relies on a suitable
obstacle problem stated in Theorem 5.1, which is based on the results in [7, 9, 25, 26, 29].
In the second step, this result is generalized to hold for nonnegative supercaloric functions
(Theorem 5.3). The geometry of positivity sets of supercaloric functions established in
Section 4 plays an important role in the second part of the proof.

In the supercritical case, we show that supercaloric functions can be divided into two
mutually exclusive classes, which we call the Barenblatt class and the complementary
class. The former is modeled by the Barenblatt solution (6.1), while the latter is modeled
by the infinite point-source solution (7.2), see [8]. Functions in the Barenblatt class have
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some regularity properties, e.g., in terms of integrability (Theorem 6.8), while functions
in the complementary class are not guaranteed to have any (Theorem 7.3). As was noticed
already in the case of the parabolic p-Laplace equation ([14,21]), prominent singularities
of functions in the complementary class are qualitatively different in the fast diffusion
case than in the slow diffusion case ([16]). Roughly speaking, variables in space and time
change their roles in this respect. For Sobolev space properties in the Barenblatt class, we
use a Moser type iteration, which is based on the combination of the Sobolev inequality
and a suitable Caccioppoli inequality. On the other hand, proofs in the complementary
class are based on Harnack type inequalities stated in Section 4.

In the final section, we study the pointwise behavior of supercaloric functions. It is well
known that every weak supersolution is lower semicontinuous after possible redefinition
in a set of measure zero, see [3, 23]. More precisely, pointwise values can be recovered
almost everywhere by the ess lim inf of the function, where only instances of time in the
past are relevant. For the parabolic p-Laplace equation, it was shown in [17], and for
the porous medium equation in the slow diffusion case in [18] that supercaloric functions
enjoy the same property at every point in their domain (for the elliptic case, see also [15]).
In Section 8, we show that the same property holds for supercaloric functions for the
porous medium equation in the fast diffusion case. We conclude the paper by summarizing
the connections between supercaloric functions and weak supersolutions in Corollary 8.5.

2. Weak supersolutions

Let � � Rn be an open set. For T > 0, we denote by �T WD � � .0; T / a space-time
cylinder in RnC1. The parabolic boundary of �T is defined as @p�T WD .� � ¹0º/ [

.@� � Œ0; T //. We call �T a C k;˛-cylinder if � � Rn is a bounded C k;˛-domain for
k 2N and ˛ 2 .0; 1�.

2.1. Notion of weak solutions

We begin by defining the concept of weak (super- and sub)solutions.

Definition 2.1. A measurable function uW�T ! Œ0;1� satisfying

um 2 L2loc.0; T IH
1
loc.�// \ L

1=m
loc .�T /

is called a weak solution to the PME (1.1) if and only if u satisfies the integral equality“
�T

.�u@t' Cru
m
� r'/ dxdt D 0(2.1)

for every ' 2 C10 .�T /. Further, we say that u is a weak supersolution if the integral
above is nonnegative for all nonnegative test functions ' 2 C10 .�T /. If the integral is
nonpositive for such test functions, we call u a weak subsolution.

Finally, we say that uW�T ! Œ0;1� is a global weak solution to the PME (1.1) if it is
a weak solution with the property

um 2 L2.0; T IH 1.�// \ L1=m.�T /:
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Now we recall a comparison principle for weak super(sub)solutions, see [5, 10, 31].

Lemma 2.2. Let 0 < m < 1 and let�T be a C 2;˛-cylinder with ˛2 .0; 1�. Suppose that u
is a nonnegative weak supersolution and v is a nonnegative weak subsolution to (1.1)
in �T , such that um; vm 2L2.0; T IH 1.�// \ L2=m.�T /. If, in addition,

.vm � um/C. � ; t / 2 H
1
0 .�/; for a.e. t 2 .0; T /;

and

lim
h!0

1

h

Z h

0

Z
�

.v � u/C dxdt D 0

holds true, then 0 � v � u a.e. in �T .

The following maximum principle also holds, see Lemma 2.8 in [26].

Lemma 2.3. Let m > 0. Let u be a nonnegative weak subsolution with the property that
um 2 L2.0; T IH 1.�// \ L1=m.�T / and k 2R�0. If .um � km/C. �; t / 2H 1

0 .�/ for
a.e. t 2 .0; T / and

lim
h!0

1

h

Z h

0

Z
�

.u � k/C dxdt D 0;

then
u � k a.e. in �T :

Even though we cannot add constants to solutions, we can show the following result
for weak solutions with perturbed boundary values. For the proof in the case m > 1, see
Lemma 3.2 in [19].

Lemma 2.4. Suppose that 0 < m < 1 and � b Rn. Let g be a nonnegative function
satisfying gm 2 L2.0; T IH 1.�//, g 2 C.Œ0; T �I LmC1.�// \ L1.�T /. Denote g" D
.gm C "m/1=m, for " 2 .0; 1�. Let u and u" be global weak solutions in �T (in class
C.Œ0; T �ILmC1.�//), taking boundary values g and g", respectively, in the Sobolev sense
on the lateral boundary, and u.x; 0/ D g.x; 0/ and u".x; 0/ D g".x; 0/ for a.e. x 2�.
Then, there exists c D c.m; kgk1; j�j; T / > 0 such that“

�T

.u" � u/.u
m
" � u

m/ dxdt � cı."/;

in which ı."/ WD max¹"m;
R
�
.g".x; 0/ � g.x; 0// dxº ! 0 as "! 0.

Proof. We use the Oleinik type test function

�.x; t/ WD

´R T
t
.um" � u

m � "m/ ds; for 0 < t < T;
0; for t � T;

in the weak formulation. Observe that this function vanishes on the lateral boundary in
Sobolev sense, and

@t� D �.u
m
" � u

m/C "m; r� D

Z T

t

r.um" � u
m/ ds on �T .
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By subtracting the weak formulations with the given test function, we obtain“
�T

.u" � u/.u
m
" � u

m
� "m/Cr.um" � u

m/ �

Z T

t

r.um" � u
m/ ds dxdt

D

Z
�

.g".x; 0/ � g.x; 0//

Z T

0

.um" � u
m
� "m/ ds dx

D

Z
�

.g".x; 0/ � g.x; 0//

Z T

0

.um" � u
m/ ds dx � "mT

Z
�

.g".x; 0/ � g.x; 0// dx:

The divergence part on the left-hand side equals

1

2

Z
�

� Z T

0

.rum" � ru
m/ dt

�2
dx � 0;

so we can estimate it away and obtain the equality above as inequality�without that term.
Similarly, since g" � g, the very last term is negative and we can omit that as well. Now
by denoting

M WD kgk1;

in total we have“
�T

.u" � u/.u
m
" � u

m/ dxdt

� "m
“
�T

.u" � u/ dxdt C
Z
�

.g".x; 0/ � g.x; 0//

Z T

0

.um" � u
m/ ds dx

� "mC.m;M/ j�T j C C.m;M/T

Z
�

.g".x; 0/ � g.x; 0// dx;

since the maximum principle, Lemma 2.3, implies u � M and u" � .Mm C 1/1=m a.e.
in �T . Now we have that

g".x; 0/ � g.x; 0/ D .g
m.x; 0/C "m/1=m � g.x; 0/

"!0
���! 0

pointwise a.e. in �. Also,

0 � g".x; 0/ � g.x; 0/ � .2
.1�m/=m

� 1/g.x; 0/C 2.1�m/=m 2 L1.�/;

so the dominated convergence theorem implies

lim
"!0

Z
�

.g".x; 0/ � g.x; 0// dx D 0:

By choosing

ı."/ D max
°
"m;

Z
�

.g".x; 0/ � g.x; 0// dx
±
;

the claim follows.
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2.2. Continuous weak solutions

As an auxiliary tool, we will also use a local notion of continuous very weak solution,
see [1, 2].

Definition 2.5. We say that a nonnegative function u2C.�T / is a continuous very weak
solution with boundary values g 2C.@p�T / if u D g on @p�T and, for every 0 < t1 <
t2 � T and smooth Q b �,“

Qt1; t2

� .u@t�C u
m��/ dxdt C

Z t2

t1

Z
@Q

um @�� d� dt

D

Z
Q

u.x; t1/ �.x; t1/ dx �
Z
Q

u.x; t2/ �.x; t2/ dx

holds true for all � 2 C 2;1.Qt1; t2/ vanishing on @Q � .t1; t2�, where � is the outward-
directed normal vector to Q at points on @Q.

We recall existence, comparison and stability results for the notion defined above
from [1, 2].

Theorem 2.6. Let 0 < m < 1 and let�T be a C 1;˛-cylinder with ˛2 .0; 1�. Then, for any
nonnegative function g 2C.@p�T /, there exists a unique locally Hölder continuous very
weak solution u 2 C.�T / in the sense of Definition 2.5 such that

u D g on @p�T .

Furthermore, if u1 and u2 are very weak solutions with nonnegative boundary values g1
and g2, respectively, satisfying g1; g2 2C.@p�T / and g1 � g2, then u1 � u2.

Theorem 2.7 (Corollary 2.3 in [2]). Let 0 < m < 1 and let �T be a C 1;˛-cylinder, with
˛2 .0; 1�. Also, let hj 2C.@p�T / be nonnegative, and let uj 2C.�T / be the correspond-
ing very weak solution given by Theorem 2.6, for j 2 N0. If we have

sup
@p�T

jhj � h0j ! 0 as j !1,

then
lim
j!1

uj D u0 in �T ,

and the convergence is locally uniform in � � .0; T � as j !1.

The advantage here is that the comparison principle and the stability results hold
for solutions according to Definition 2.5, even though such solutions are not required
to belong to the (global) parabolic Sobolev space, in contrast to Lemma 2.2. This will
be the case, e.g., for weak solutions appearing in the definition of supercaloric functions
(Definition 3.1(iii)/(iii’)), which will only belong to the local parabolic Sobolev space in
their domain of definition.

Then we are at the stage of stating a useful result concerning existence and comparison
of continuous weak solutions.
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Theorem 2.8. Let 0 < m < 1, and let �T be a C 1;˛-cylinder with ˛ 2 .0; 1�. Sup-
pose that the nonnegative function g 2 C.�T / satisfies gm 2 L2.0; T IH 1.�// and
@tg

m 2L.mC1/=m.�T /. Then, there exists a unique global weak solution u to (1.1) such
that u2C.�T /, u is locally Hölder continuous and u D g on @p�T . Moreover, if g0 sat-
isfies conditions above, g � g0 on @p�T and h0 2C.�T / is a global weak solution with
boundary values g0 on @p�T , then h � h0 in �T .

Proof. By Theorem 1.2 in [28], there exists a global weak solution u to (1.1) such that
u2L1.0; T ILmC1.�// and um 2L2.0; T IH 1.�//, and u attains the lateral boundary
values in the sense um � gm 2L2.0; T IH 1

0 .�//, and the initial values go D g.x; 0/ in
LmC1-sense. Observe that since g 2L1.�T /, also u2L1.�T / by the maximum prin-
ciple, Lemma 2.3. Now Theorem 18.1 in Chapter 6 of [11] implies that u is locally Hölder
continuous and [26] that u2C.�T /. Furthermore, the solution is unique by Theorem 5.3
in [31]. It is a straightforward consequence that u is a very weak solution according to
Definition 2.5 with boundary values g.

By Theorem 2.6, there exists a unique locally Hölder continuous very weak solution
Qu2C.�T / according to Definition 2.5 such that QuD g on @p�T . By uniqueness, u and Qu
coincide. The comparison principle holds by Theorem 2.6.

2.3. Some properties of weak supersolutions

Next we state a Caccioppoli inequality for bounded weak supersolutions, see Lemma 2.15
in [18].

Lemma 2.9. Let m > 0. Suppose that 0 � u �M is a weak supersolution in �T . Then,
there exists a numerical constant C > 0 such thatZ t2

t1

Z
�

�2 jrumj2 dxdt � CM 2mT

Z
�

jr�j2 dx C CMmC1

Z
�

�2 dx

for every � D �.x/2C10 .�/ with � � 0, and any t1; t2 satisfying 0 < t1 < t2 < T .

In the following, for v 2L1loc.�T /, h > 0 and �1 > 0, we use the mollification in time
defined as

(2.2) ŒŒu��h.x; t/ D
1

h

Z t

�1

e.s�t/=h u.x; s/ ds; for any t 2 .�1; T /.

For the standard properties of this mollification, see, e.g., Lemma 2.2 in [17].
The proof of the next lemma follows the lines of the proof of Lemma A.1 in [6], see

also Lemma 2.7 in [24].

Lemma 2.10. Letm> 0. If u is a nonnegative weak supersolution in�T , then min¹u;kº
is a weak supersolution in �T for every k � 0.

Proof. Let us start with a mollified weak formulation,“
�T

@t ŒŒu��h' C ŒŒru
m��h � r' dxdt � 0;
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for ' 2 C10 .�T ;R�0/, and use a test function

' D �
.um � km/�

.um � km/� C �
; with � > 0 and �2C10 .�T ;R�0/.

For the divergence part, we have

lim
h!0

“
�T

ŒŒrum��h � r' dxdt

D

“
�T

rum �
�
r�

.um � km/�

.um � km/� C �
C ��

r.um � km/�

Œ.um � km/� C ��2

�
dxdt

�

“
�T

rum � r�
.um � km/�

.um � km/� C �
dxdt �!

“
�T

r.min¹u; kºm/ � r� dxdt

as � ! 0, by the dominated convergence theorem. For the parabolic part, we obtain“
�T

@t ŒŒu��h' dxdt D
“
�T

�@t ŒŒu��h
.ŒŒu��m

h
� km/�

.ŒŒu��m
h
� km/� C �

dxdt

C

“
�T

�@t ŒŒu��h

� .um � km/�

.um � km/�C�
�

.ŒŒu��m
h
� km/�

.ŒŒu��m
h
� km/� C �

�
dxdt

�

“
�T

�@t ŒŒu��h
.ŒŒu��m

h
� km/�

.ŒŒu��m
h
� km/� C �

dxdt;

since the map

s 7!
.sm � km/�

.sm � km/� C �

is decreasing and

@t ŒŒu��h D
1

h
.u � ŒŒu��h/:

Now we can estimate further“
�T

�@t ŒŒu��h
.ŒŒu��m

h
� km/�

.ŒŒu��m
h
� km/� C �

dxdt

D

“
�T

�@t

h
k �

Z k

ŒŒu��h

.sm � km/�

.sm � km/� C �
ds
i

dxdt

D �

“
�T

@t�
h
k �

Z k

ŒŒu��h

.sm � km/�

.sm � km/� C �
ds
i

dxdt

h!0
���! �

“
�T

@t�
h
k �

Z k

u

.sm � km/�

.sm � km/� C �
ds
i

dxdt

�!0
���! �

“
�T

@t�Œk � .u � k/�� dxdt:
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Since k � .u � k/� D min¹u; kº, in total we have“
�T

�min¹u; kº@t�Cr.min¹u; kºm/ � r� dxdt � 0;

which completes the proof.

A result in [23] states that every weak supersolution has a lower semicontinuous rep-
resentative.

Theorem 2.11. Let m > 0 and let u be a nonnegative weak supersolution in �T . Then,
there exists a lower semicontinuous function u� such that u�.x; t/ D u.x; t/ for a.e.
.x; t/2�T . Moreover,

u�.x; t/ D ess lim inf
.y;s/!.x;t/

s<t

u.y; s/;

for every .x; t/2�T .

3. Notion of supercaloric functions

Up next, we define (quasi-)super- and subcaloric functions.

Definition 3.1. Let U � RnC1 be an open set. A function uW U ! Œ0;1� is called a
supercaloric function if

(i) u is lower semicontinuous,
(ii) u is finite in a dense subset,
(iii) u satisfies the comparison principle in every subcylinderQt1; t2 DQ� .t1; t2/bU :

if h 2 C.Qt1; t2/ is a weak solution inQt1; t2 and if h� u on the parabolic boundary
of Qt1; t2 , then h � u in Qt1; t2 .

We call u a quasi-supercaloric function if (i) and (ii) hold, and (iii) is replaced by
(iii’) u satisfies the comparison principle in everyC 2;˛-subcylinderQt1; t2DQ� .t1; t2/

b U : if h 2 C.Qt1; t2/ is a weak solution in Qt1; t2 and if h � u on the parabolic
boundary of Qt1; t2 , then h � u in Qt1; t2 .

A function uW�T ! Œ0;1/ is called subcaloric function if the conditions (i), (ii)
and (iii) above hold with (i) replaced by upper semicontinuity, and the inequalities in (iii),
by �. The function u is called quasi-subcaloric if (iii’) holds instead of (iii) with �.

The notion of quasi-supercaloric functions is only used as an auxiliary construct for the
following proofs. In fact, it turns out that the classes of supercaloric and quasi-supercaloric
functions coincide, see Proposition 3.5. However, the proof requires a more detailed ana-
lysis of quasi-supercaloric functions and is therefore postponed to the end of this section.

Our next goal is to prove that every lower semicontinuous weak supersolution is a
supercaloric function. Observe that a weak supersolution is lower semicontinuous after
a possible redefinition in a set of measure zero by Theorem 2.11. However, since the
comparison principle from Lemma 2.2 is limited to C 2;˛-cylinders, as a first step we only
obtain the following preliminary result.
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Lemma 3.2. Let 0 < m < 1. If u is a nonnegative weak supersolution in �T , then u� is
a quasi-supercaloric function in �T .

Remark 3.3. At the end of this section, we will improve this result and show that lower
semicontinuous weak supersolutions are supercaloric functions, see Lemma 3.6.

Proof. We only need to show the comparison principle (iii’) from the definition of quasi-
supercaloric functions. Let Qt1; t2 b �T be a C 2;˛-cylinder, and let h 2 C.Qt1; t2/ be
a weak solution, which implies hm 2L2loc.t1; t2IH

1
loc.Q//. We are not able to use the

comparison principle between weak subsolutions and supersolutions, Lemma 2.2, directly,
since we would need hm 2L2.t1; t2IH 1.Q//. Thus we proceed as follows.

Denote
Qu D min

°
u�; max

Qt1; t2

h
±
;

which is a lower semicontinuous weak supersolution by Lemma 2.10.
We let Nhj WQt1; t2 ! R�0 be Lipschitz functions for j D 1; 2; : : :, such that for hj WD

Nhj
ˇ̌
@pQt1; t2

we have 0 � hj � hm on @pQt1; t2 and

(3.1) sup
@pQt1; t2

jh
1=m
j � hj

j!1
����! 0:

By Theorem 2.8, there exists a unique weak solution Ohj 2C.Qt1; t2/ in Qt1; t2 taking the
boundary values h1=mj continuously, and Ohmj � Nhj 2L

2.t1; t2IH
1
0 .Q//. By Lemma 2.2,

we have that Ohj .x; t/ � Qu.x; t/ � u�.x; t/ for a.e. .x; t/2Qt1; t2 . Since u D u� a.e. by
Theorem 2.11, it follows that .u�/� D u� everywhere. Together with continuity of Ohj it
follows that Ohj .x; t/ � u�.x; t/ for every .x; t/ 2 Qt1; t2 .

Furthermore, since the condition (3.1) holds, Theorem 2.7 implies that also in the
limit j ! 1, h.x; t/ � u�.x; t/ holds for every .x; t/ 2Qt1; t2 . Thus u� is a quasi-
supercaloric function.

In the next lemma, we show that the comparison principle for super(sub)caloric func-
tions holds in general space-time cylinders. The proof follows the lines of Theorem 3.6
in [5] (see also Theorem 3.3 in [19]), in which the result was proved in case m � 1.
Observe that the result is proved for quasi-super(sub)caloric functions, which implies that
the result also holds for super(sub)caloric functions.

Lemma 3.4. Suppose that 0 < m < 1. Let Qt1; t2 b RnC1 be a cylinder. Suppose that u
is a nonnegative (quasi-)supercaloric and v is a nonnegative (quasi-)subcaloric function
in Qt1; t2 . If

1¤ lim sup
Qt1; t23.y;s/!.x;t/

v.y; s/ � lim inf
Qt1; t23.y;s/!.x;t/

u.y; s/

for every .x; t/2 @pQt1; t2 , then v � u in Qt1; t2 .

Proof. Fix ı > 0 and denote �2 WD t2 � ı, Q�2 WD t2 � ı=2 and O�2 WD t2 � ı=4. If u is
unbounded, we may consider Qu D min¹u; supQt1; O�2

vº instead of u in the proof, which
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is a bounded quasi-supercaloric function in Qt1;Q�2 as a truncation of a quasi-supercaloric
function. Then in the end, by proving v � Qu in Qt1;�2 this implies v � u in Qt1;�2 since
Qu � u in Qt1;�2 . Therefore, from now on we assume that u is bounded. Furthermore,
observe that v is locally bounded in Qt1; t2 by definition, and the assumption implies
that v is bounded in Qt1; O�2 .

We extend u up to the parabolic boundary by setting

u.x; t/ WD lim inf
Qt1; t23.y;s/!.x;t/

u.y; s/ for every .x; t/2 @pQt1;Q�2 :

The function v is extended analogously via lim sup. By standard arguments it follows that
u (v) is lower(upper) semicontinuous in Qt1;Q�2 .

For "j D 1=j , take nested C 2;˛-cylinders Qj

sj ;Q�2
b Q � .t1; Q�2� with

1[
jD1

Qj
D Q; sj

j!1
����! t1

and
vm � um C

1

2
"mj in Qt1;Q�2 n

�
Qj
� .sj ; Q�2�

�
:

We can find a nondecreasing sequence of functions Nhj 2C 0;1.Qt1;�2 ;R�0/ such that

Nhj
j!1
����! um pointwise in Qt1;�2 ,

satisfying
vm � Nhj C "

m
j � u

m
C "mj in Qt1;�2 n

�
Qj
� .sj ; �2�

�
:

Observe that by construction,

k Nhj kL1.Qt1;�2 /
� kumkL1.Qt1;�2 /

<1 for every j 2N.

In view of Theorem 2.8, we can find continuous global weak solutions hj and Ohj
in Qj

sj ;�2 that take the boundary values Nh1=mj and . Nhj C "mj /
1=m continuously and in

the Sobolev/trace sense on @pQ
j
sj ;�2 . Since v is quasi-sub- and u quasi-supercaloric, and

Q
j
sj ;�2 b Qt1; t2 are C 2;˛-cylinders, we have that

u � hj and v � Ohj in Qj
sj ;�2

:

By extending hj by Nh1=mj and Ohj by . Nhj C "mj /
1=m to Qt1;�2 n Q

j
sj ;�2 , the inequalities

above hold also in this set. Furthermore, we clearly have

hj � Ohj in Qt1;�2 nQ
j
sj ;�2

;

and
hj � Ohj in Qj

sj ;�2
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by the comparison principle for weak solutions, see Lemma 2.2. Furthermore, sequences
of functions hj and Ohj are uniformly bounded in Qt1;�2 since Nhj is by the maximum
principle from Lemma 2.3.

By the estimate for the local Hölder continuity (see Theorem 18.1 in Chapter 6 of [11]),
we have that the families hj and Ohj are locally equicontinuous, which by Arzelà–Ascoli
and a diagonal argument shows that there exist subsequences hj and Ohj that converge
locally uniformly in Qt1;�2 to continuous functions h and Oh, which satisfy h � Oh, and by
earlier inequalities, also

(3.2) u � h and v � Oh in Qt1;�2 :

Let us restrict to a subsequence for which the aforementioned convergences hold. By using
Corollary 3.11 in [7] and Lemma 2.4, we have“

Qt1;�2

j Ohmj � h
m
j j
.mC1/=m dxdt

�

“
Q
j
sj ;�2

. Ohj � hj /. Oh
m
j � h

m
j / dxdt C

“
Qt1;�2nQ

j
sj ;�2

j Ohmj � h
m
j j
.mC1/=m dxdt

� c.m; k Nhj k1; jQj; t2 � t1/max
°
"mj ;

Z
Qj
. Nhj .x; sj /C "

m
j /

1=m
� Nhj .x; sj /

1=m dx
±

C "mC1j jQt1;�2 nQ
j
sj ;�2
j

� c.m; kuk1; jQj; t2 � t1/max
®
"mj ; .kuk

m
1 C "

m
j /

1=m
� kuk1

¯ j!1
����! 0;

where we used the facts that k Nhj k1 � kukm1 < 1 and s 7! .s C "mj /
1=m � s1=m is a

nondecreasing mapping.
Since the functions hj and Ohj are uniformly bounded in Qt1;�2 , hj ! h and Ohj ! Oh

pointwise inQt1;�2 , the estimate above together with the dominated convergence theorem
implies “

Qt1;�2

j Ohm � hmj.mC1/=m dxdt � 0:

Thus Oh D h a.e. in Q � .t1; �2/. By continuity of Oh and h this holds at every point, which
together with (3.2) concludes the result in Q � .t1; �2/ D Q � .t1; t2 � ı/. Since ı > 0

was arbitrary, the result holds in Q � .t1; t2/.

For the proof of the following two lemmas in the case m � 1, see Proposition 3.8 and
Theorem 3.5 in [5].

Proposition 3.5. Let 0 < m < 1. If u is a nonnegative quasi-supercaloric function, then
u is a supercaloric function.

Proof. LetQt1; t2 b�T and let h2C.Qt1; t2/ be a weak solution inQt1; t2 such that h� u
on @pQt1; t2 . Since h is continuous inQt1; t2 , it is also bounded inQt1; t2 . By an analogous
proof as in Lemma 3.2, h is a quasi-subcaloric function. Since u is a quasi-supercaloric
function, we may use Lemma 3.4 to conclude that h � u in Qt1; t2 , which implies the
claim.
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Combining the preceding proposition with Lemma 3.2, we obtain the desired improve-
ment of Lemma 3.2.

Lemma 3.6. Let 0 < m < 1 and let u be a nonnegative weak supersolution in �T .
Then, u� is a supercaloric function in �T .

In the next lemma, we show that supercaloric functions can be extended by zero in the
past.

Lemma 3.7. Let 0 < m < 1 and let vW�T ! Œ0;1� be a supercaloric function in �T .
Then

u D

´
v in � � .0; T /;
0 in � � .�1; 0�;

is a supercaloric function in � � .�1; T /.

Proof. Clearly u satisfies items (i) and (ii) in Definition 3.1 since v does, and v � 0. By
showing (iii’), the claim holds by Proposition 3.5.

Fix a C 2;˛-cylinder Qt1; t2 b � � .�1; T /, and let h2C.Qt1; t2/ be a weak solution
inQt1; t2 such that h � u on @pQt1; t2 . Furthermore, suppose thatQt1; t2 \ .�� ¹0º/¤ ¿
since otherwise the comparison (in (iii’) of Definition 3.1) clearly holds.

By definition of u, we have that

h � v D 0 on @pŒQ � .t1; 0/�,

i.e., hD 0 on @pŒQ� .t1; 0/�. This implies that hD 0 inQ� .t1; 0/. Since h is continuous,
this implies that h D 0 in Q � .t1; 0�. Now by using also continuity of h we have that

lim sup
Q0;t23.y;s/!.x;t/

h.y; s/ D h.x; t/ � lim inf
Q0;t23.y;s/!.x;t/

v.y; s/

for all .x; t/2 @pQ0;t2 . Since v is supercaloric and h is subcaloric in Q0;t2 , it follows that
h � v in Q0;t2 by Lemma 3.4 completing the proof.

Then we recall a parabolic comparison principle for super(sub)caloric functions in
noncylindrical bounded sets from Theorem 5.1 in [5].

Lemma 3.8. Let m > 0 and let U � RnC1 be a bounded open set. Suppose that u is a
nonnegative supercaloric and v is a nonnegative subcaloric function in U . Let T 2R and
assume that

lim sup
U3.y;s/!.x;t/

v.y; s/ < lim inf
U3.y;s/!.x;t/

u.y; s/

for all .x; t/2 ¹.x; t/2 @U W t < T º. Then

v � u in ¹.x; t/ 2 U W t < T º.

The following result shows that the class of supercaloric functions is closed under
increasing limits, provided that the limit function is finite in a dense set, see Proposition 4.6
in [5].

Lemma 3.9. Let m > 0 and let uk be a nondecreasing sequence of nonnegative super-
caloric functions in �T . If u WD limk!1 uk is finite in a dense subset of �T , then u is a
supercaloric function in �T .
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4. Positivity sets of supercaloric functions

First we recall the following result on expansion of positivity for weak solutions.

Theorem 4.1 (Proposition 7.2 in Chapter 4 of [11]). Let 0 < m < 1. Assume that u is
a locally bounded, nonnegative weak solution to (1.1) in the class Cloc.0; T IL

mC1
loc .�//.

Suppose that for some .xo; to/ 2 �T and r > 0,

j¹u. �; to/ �M º \ B.xo; r/j � ˛jB.xo; r/j

holds true for some M > 0 and ˛ 2 .0; 1/. Then there exist constants "; ı; � 2 .0; 1/,
depending only on n, m and ˛, such that

u. �; t / � �M in B.xo; 2r/; for all t 2 Œto C .1 � "/ıM 1�mr2; to C ıM
1�mr2�;

provided that B.xo; 16r/ � .to; to C ıM 1�mr2/ b �T .

We use the expansion of positivity for the following characterization of the positivity
set of supercaloric functions in the fast diffusion case.

Lemma 4.2. Let 0 < m < 1 and assume that u is a nonnegative supercaloric function
in �T , where � � Rn is open and connected. Then, for any time t 2 .0; T /, either u is
positive on the whole time slice � � ¹tº, or u vanishes on the whole time slice.

Proof. As a first step, we prove the claim for a continuous, nonnegative, bounded weak
solution to (1.1). Let us fix a time t 2 .0; T /. We claim that uo WD u.xo; t / > 0 for some
xo 2 � implies

(4.1) u. �; t / > 0 in B.xo; r/;

for any r > 0 with B.xo; 16r/ b �. First, we note that the continuity of u implies

(4.2) u �
1

2
uo in B.xo; %/ � Œt � %2; t � � �T

for some % > 0. If r � %, this already implies claim (4.1). Otherwise, we apply The-
orem 4.1 with the parameter ˛ WD .%=r/n 2 .0; 1/. Let ı D ı.n; m; ˛/ 2 .0; 1/ be the
number determined by this theorem. We choose M 2 .0; 1

2
uo� so small that

ıM 1�mr2 � %2;

and let to WD t � ıM 1�mr2 2 Œt � %2; t �. Because of (4.2) and M � 1
2
uo, we have

j¹u. �; to/ �M º \ B.xo; r/j � jB.xo; %/j D ˛jB.xo; r/j:

Therefore, Theorem 4.1 implies

u. �; t / � �M in B.xo; 2r/

for some �> 0, which implies claim (4.1). Next, we observe that this yields the implication

(4.3) u.xo; t / > 0 in some point xo 2 � H) u.x1; t / > 0 in any point x1 2 �.
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For the derivation of this claim, we recall that� is connected and consider a curve � ��
that connects xo and x1. Then we cover � by finitely many balls B.xi ; r/, i D 1; : : : ; L,
with xiC1 2 B.xi ; r/ for any i D 0; : : : ; L � 1. Since � is compactly contained in �, we
can choose the radius r > 0 small enough to ensure B.xi ; 16r/b� for each i D 1; : : : ;L.
Repeated applications of the positivity result (4.1) imply that u is positive on each of the
balls B.xi ; r/ � ¹tº, and in particular, u.x1; t / > 0.

This proves claim (4.3). The contraposition of this implication ensures that u.x1; t /D0
for some x1 2 � implies u.xo; t / D 0 in any point xo 2 �. We conclude that either u is
positive or zero on the whole time slice � � ¹tº. This proves the claim for a continuous,
bounded weak solution.

Now, we consider a supercaloric function uW�T ! Œ0;1�. Let us assume for con-
tradiction that there is a time t 2 .0; T / for which �C WD ¹x 2 �W u.x; t/ > 0º satisfies
¿¤�C ¨�. By lower semicontinuity of u, the set�C is open. Because� is connected,
its subset �C cannot be relatively closed. Therefore, there exists a point xo 2 @�C \�,
in which we have u.xo; t / D 0. We choose a neighborhood B.xo; r/ � �. Because of
xo 2 @�C, there exists a point xC 2 B.xo; r/ with u.xC; t / > 0. If u.xC; t / < 1, let
a WD u.xC; t /. If u.xC; t / D1, let a2R>0. By lower semicontinuity of u, there exists a
ı > 0 such that

u >
1

2
a on B.xC; 2ı/ � Œt � ı; t C ı� b �T .

We choose a function � 2 C10 .B.xC; 2ı/; Œ0; 1�/ with � � 1 in B.xC; ı/, and abbreviate
% WD jxo � xCj. Then we consider the weak solution to the Cauchy–Dirichlet problem²

@tv ��v
m D 0 in B.xo; %/ � .t � ı; t C ı/;

v D 1
2
a�1=m on @pŒB.xo; %/ � .t � ı; t C ı/�:

Theorem 2.8 implies that v is nonnegative, bounded and continuous up to the boundary.
Therefore, the first part of the proof implies that for every time s 2 .t � ı; t C ı/, the
function v is either positive on the whole time slice B.xo; %/ � ¹sº, or it vanishes on
the whole time slice. However, since .xC; s/ 2 @pŒB.xo; %/ � .t � ı; t C ı/� for every
s 2 .t � ı; t C ı/, and in this point we have v.xC; s/ D 1

2
a > 0, we can exclude the

second alternative. This proves v > 0 on the whole domain B.xo; %/ � .t � ı; t C ı/.
Moreover, by construction we have u � v on @pŒB.xo; %/� .t � ı; t C ı/�. Therefore,

by definition of the supercaloric function u, we have u � v on B.xo; %/ � .t � ı; t C ı/,
and in particular,

u.xo; t / � v.xo; t / > 0:

Since u.xo; t / D 0 by construction, this yields the desired contradiction. Therefore, we
have established the claim also in the case of a supercaloric function.

Corollary 4.3. Let 0 < m < 1 and assume that u is a nonnegative supercaloric function
in �T , where � � Rn is open and connected. Then, the set

(4.4) ƒC WD ¹t 2 .0; T /Wu is positive on � � ¹tºº

can be written as a countable union ƒC D
S
i ƒi , where ƒi is an open subinterval of

.0; T / for every i .
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Proof. In view of Lemma 4.2 and since u is lower semicontinuous, the set

ƒC WD ¹t 2 .0; T /Wu is positive on � � ¹tºº

is an open subset of .0;T /. We decomposeƒC in its connected componentsƒiD.ti;1; ti;2/,
i 2 I , i.e., ƒC D

S
i2I ƒi , with disjoint open intervals ƒi . Since ƒC is an open subset

of the real line, there can be at most countably many connected components, i.e., we can
choose the index set either as I D N or of the form I D ¹1; : : : ; Lº.

We state Harnack type estimates for weak solutions that will be used later on. In the
following, we denote � WD n.m � 1/C 2.

Lemma 4.4 (Theorem 17.1 in Chapter 6 of [11]). Let .n � 2/=n < m < 1. Suppose
that u is a nonnegative weak solution in the class Cloc.0; T IL

mC1
loc .�//. Then there exists

 D .n;m/ such that

sup
B.y;r/�Œs;t�

u �


.t � s/n=�

�
inf

2s�t<�<t

Z
B.y;2r/

u.x; �/ dx
�2=�
C 

� t � s
r2

�1=.1�m/
for all cylinders B.y; 2r/ � Œs � .t � s/; s C .t � s/� b �T .

Lemma 4.5 (Proposition B.1.1 in [11]). Let 0 < m < 1. Suppose that u is a continuous
nonnegative weak solution in �T . Then there exists  D .n;m/ � 1 such that

sup
s<�<t

Z
B.y;r/

u.x; �/ dx �  inf
s<�<t

Z
B.y;2r/

u.x; �/ dx C 
� t � s
r�

�1=.1�m/
for all cylinders B.y; 2r/ � Œs; t � b �T .

Up next, we prove a weak Harnack inequality for supercaloric functions. The proof
follows the approach in Proposition 3.1 of [13].

Lemma 4.6. Let .n� 2/=n <m< 1 and u be a nonnegative supercaloric function in�T .
Then, there exist constants c1; c2; ˛ 2 .0; 1/, depending only on n and m, such that the
following holds. Assume that for some s 2 .0; T /, we have

� WD c2

� «
B.xo;2r/

u.x; s/ dx
�1�m

> 0;

and B.xo; 64r/ � .s; s C � r2/ b �T . Then the estimate

inf
B.xo;2r/

u. �; t / � c1

«
B.xo;2r/

u.x; s/ dx

holds for any t 2 Œs C ˛� r2; s C � r2�.

Proof. Let us assume .x0; s/ D .0; 0/ and QS WD B64r � .0; S/ b �T , for some S < T .
Let u be a supercaloric function in �T , and let uk WD min¹u; kº be its truncation of level
k D 1; 2; : : : We want to solve a Dirichlet problem in QS with uk.x; 0/�B.0;2r/ on the
initial boundary and zero on the lateral boundary. However, in order to guarantee existence
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of a (unique and continuous) solution, we solve a regularized problem instead. To this end,
we rely on the lower semicontinuity of um

k
.x; 0/�B.0;2r/ to approximate it pointwise from

below by Lipschitz functions  m
k;i

, such that 0 �  k;i �  k;iC1 � uk.x; 0/�B.0;2r/ in
� � ¹0º with  k;i .x/! uk.x; 0/�B.0;2r/ pointwise in� as i !1. That is, we consider
the problem 8̂<̂

:
@thk;i ��.h

m
k;i
/ D 0 in QS ;

hk;i .x; t/ D 0 on @B64r � .0; S/;
hk;i .x; 0/ D  k;i .x/ on B.0; 64r/ � ¹0º:

By Theorem 2.8, a unique global weak solution hk;i 2C.QS / exists such that hk;i D 0
on the lateral boundary and hk;i D  k;i on the initial boundary. Since 0 �  k;i � uk � u
on the parabolic boundary, from the comparison principle in the definition of supercaloric
functions, it follows that 0 � hk;i � uk � u inQS . From Theorem 2.8, it also follows that
0 � hk;i � hk;iC1 in QS for every i , so that hk;i forms a nondecreasing sequence with
respect to i 2 N. We set

Q� D
� «

B8r

hk;i .x; 0/ dx
�1�m

D 4�n.1�m/
� «

B2r

 k;i .x/ dx
�1�m

and
Qı D

�
jB1j



�1�m
Q� r2;

where  is the constant from Lemma 4.5. By Lemma 4.4, we have

sup
B4r�.Qı=2;Qı/

hk;i � 1

«
B2r

 k;i .x/ dx;

for 1 D 1.n;m/ > 0. From Lemma 4.5, it follows that

inf
0<�<Qı

Z
B4r

hk;i .x; �/ dx �
1

2

Z
B2r

hk;i .x; 0/ dx:

By using the previous two estimates, we obtain

1

2nC1

«
B2r

hk;i .x; 0/ dx �
«
B4r

hk;i .x; �/ dx

D
1

jB4r j

Z
¹hk;i . �;�/>coº\B4r

hk;i .x; �/ dx C
1

jB4r j

Z
¹hk;i . �;�/�coº\B4r

hk;i .x; �/ dx

�
j¹hk;i . �; �/ > coº \ B4r j

jB4r j
1

«
B2r

 k;i .x/ dx C co;

for any � 2 . Qı=2; Qı/ and an arbitrary constant co > 0. By choosing

co D
1

2nC2 

«
B2r

 k;i .x/ dx;
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the estimate above gives

j¹hk;i . �; �/ > coº \ B4r j �
1

2nC21
jB4r j

for any � 2 . Qı=2; Qı/. At this point we can apply the expansion of positivity, Theorem 4.1.
This gives that there exist constants "; �; �2 .0; 1/, depending only on n and m, such that

hk;i . �; t / �
�

2nC2

«
B2r

 k;i .x/ dx in B8r

for all t 2 Œ� C .1� "/�c1�mo r2; � C �c1�mo r2�. Observe that this holds for any � 2. Qı=2; Qı/.
Now if we choose the constant c > 0 such that

c WD
�
jB1j

4n

�1�m
C �

� 1

2nC2

�1�m
and

�k;i WD c
� «

B2r

 k;i .x/ dx
�1�m

; ık;i WD �k;i r
2;

we have that

(4.5) inf
B8r�.˛ık;i ; ık;i /

hk;i �
�

2nC2

«
B2r

 k;i .x/ dx;

where ˛ 2 .0; 1/ depends only on n and m. Moreover, if we first let i ! 1 and then
k !1, by monotone convergence we have

ık;i ! ı; where ı WD c
� «

B2r

u.x; 0/ dx
�1�m

r2:

The left-hand side of (4.5) can be estimated from above by using comparison as

inf
B8r�.˛ık;i ; ık;i /

hk;i � inf
B8r�.˛ık;i ;ık;i /

uk � inf
B8r�.˛ık;i ; ık;i /

u:

By passing to the limit in (4.5), first in i !1 and then in k !1, we obtain

inf
B8r�.˛ı;ı/

u �
�

2nC2

«
B2r

u.x; 0/ dx

by using the monotone convergence theorem on the right-hand side. The claim follows.

If � is connected, as a consequence of Lemma 4.2, the positivity set of a supercaloric
function in �T has the form � �ƒC, where the set ƒC � .0; T / is a countable union of
open time intervals. The next lemma guarantees that the supercaloric function vanishes at
the endpoint to of each of these time intervals, provided to < T .

Lemma 4.7. Let 0 < m < 1, and suppose that uW�T ! Œ0;1� is a supercaloric function
in �T such that for some to 2 .0; T /, we have u.x; to/ D 0 for all x 2�. Then,

lim
t"to

Z
K

u.x; t/ dx D 0 for every K b�.



Supercaloric functions for the porous medium equation in the fast diffusion case 19

Proof. Since an arbitrary compact set K b �T can be covered by finitely many balls Br
with B4r b �, it suffices to prove the claim for the case K D Br with B4r b �.

LetB.y;4r/� Œs; to�b�T . Consider the regularized Dirichlet problem as in the proof
of Lemma 4.6 in Q D B.y; 4r/ � .s; to C ı/ b �T . By using Lemma 4.5 together with
the comparison principle hk;i � uk � u in Q, it follows thatZ

B.y;r/

 k;i .x/ dx �  inf
s<�<to

Z
B.y;2r/

hk;i .x; �/ dx C 
� to � s
r�

�1=.1�m/
D 

� to � s
r�

�1=.1�m/
;

since u. �; to/ � 0. By using the monotone convergence theorem, we can pass to the limit
i !1 and k !1 to obtainZ

B.y;r/

u.x; s/ dx � 
� to � s
r�

�1=.1�m/
:

Since s < to was arbitrary, provided that B.y; 4r/ � Œs; to� b �T holds, we may pass to
the limit s ! to in the estimate above, from which the claim follows.

We prove a variant of Lemma 2.9 when the supersolution vanishes at the final instant
of time. The result will be important in the following section.

Lemma 4.8. Let 0 < m < 1. Let uW�T ! Œ0;1� be a supercaloric function in �T such
that u is a weak supersolution in � � .t1; t2/ for some interval .t1; t2/ b .0; T /. Further-
more, suppose that u.x; t2/ D 0 for every x 2�. Then,Z t2

t1

Z
�

�2 jrumj2 dxdt � 4M 2m .t2 � t1/

Z
�

jr�j2 dx

for any nonnegative �2C10 .�/ andM D kukL1.spt.�/�.t1;t2//. If u does not vanish at t2,
then we haveZ t2

t1

Z
�

�2 jrumj2 dxdt � 4M 2m .t2 � t1/

Z
�

jr�j2 dx C 2MmC1

Z
�

�2 dx:

Proof. We start with a mollified weak formulation for u, which can be written asZ �2

�1

Z
�

@t ŒŒu��h' C ŒŒru
m��h � r' dxdt �

1

h

Z
�

u.x; �1/

Z �2

�1

e.�1�s/=h '.x; s/ dsdx � 0

for a.e. �2 2 .t1; t2/ and a.e. �1 2 .t1; �2/. The time mollification ŒŒ � ��h is defined as in (2.2).
Up next, we use a test function

' D .Mm
� um/ ˛"�

2;

where �2C10 .�;R�0/ and ˛" is a piecewise affine approximation of ��1;�2.t/.
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For the parabolic part, we haveZ �2

�1

Z
�

@t ŒŒu��h ' dxdt D
Z �2

�1

Z
�

˛"�
2Mm @t ŒŒu��h dxdt �

Z �2

�1

Z
�

˛"�
2um @t ŒŒu��h dxdt

�

Z �2

�1

Z
�

˛"�
2Mm @t ŒŒu��h dxdt �

Z �2

�1

Z
�

˛"�
2 ŒŒu��mh @t ŒŒu��h dxdt

D �

Z �2

�1

Z
�

˛0"�
2Mm ŒŒu��h dxdt C

1

mC 1

Z �2

�1

Z
�

˛0"�
2 ŒŒu��mC1

h
dxdt

h!0
���! �

Z �2

�1

Z
�

˛0"�
2Mmu dxdt C

1

mC 1

Z �2

�1

Z
�

˛0"�
2umC1 dxdt

"!0
���! �

Z
�

�2Mmu.�1/ dx C
1

mC 1

Z
�

�2umC1.�1/ dx

C

Z
�

�2Mmu.�2/ dx �
1

mC 1

Z
�

�2umC1.�2/ dx

for a.e. �2 2 .t1; t2/ and a.e. �1 2 .t1; �2/. Since 1
mC1

umC1 � Mmu, the sum of the first
two terms on the right-hand side is nonpositive, and we can discard it. After passing to the
limit h! 0, for the integrand of the divergence part we have

rum � r' D �˛"�
2
jrumj2 C 2˛"�.M

m
� um/r� � rum:

For the latter term, we use Young’s inequality and obtain

2˛"�.M
m
� um/r� � rum � 2˛"�M

m
jr�j jrumj �

1

2
˛"�

2
jrumj2C 2˛"M

2m
jr�j2:

By passing to the limit "! 0 and combining the estimates, we have

1

2

Z �2

�1

Z
�

�2 jrumj2 dxdt � 2M 2m.�2 � �1/

Z
�

jr�j2 dx

C

Z
�

�2Mmu.�2/ dx �
1

mC 1

Z
�

�2umC1.�2/ dx:

By multiplying this inequality by 2 and letting �2! t2 and �1! t1, the first claim follows
by using Lemma 4.7, while the second one follows by using 0 � u.�2/ �M .

5. Bounded supercaloric functions

First we state a result concerning the obstacle problem that will have significant import-
ance in further results of this paper. The existence and regularity results stated in the
following theorem can be extracted from [7, 9, 26, 29] (see also [25]). The proof of prop-
erties (i) and (iv) can be found in [27].

Theorem 5.1. Let 0 < m < 1 and let � � Rn be a bounded Lipschitz domain. Let  
satisfy  m 2C 1.�T ;R�0/. Then, there exists a function u 2C.�T / with the following
properties:

(i) u is a weak supersolution in �T ,

(ii) u �  everywhere in �T ,
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(iii) u D  on @p�T ,

(iv) u is a weak solution in the set ¹u >  º.

We start by proving that supercaloric functions are weak supersolutions on their pos-
itivity set.

Lemma 5.2. Let 0 < m < 1. Let u > 0 be a locally bounded supercaloric function in�T ,
where � � Rn is an open set. Then u is a weak supersolution in �T .

Proof. Consider a compactly contained cylinder QDQt1; t2 WD B.xo; r/� .t1; t2/b�T

and choose a larger cylinder zQ with Q b zQ b �T . Observe that by lower semicontinuity
of u and u > 0 in �T , we have that u � ı > 0 in zQ, for some ı > 0. Furthermore, there
exists a sequence . k/ with the properties  k 2C1.�T / for each k D 1; 2; : : :,

0 <  1 <  2 < � � � < u and lim
k!1

 k D u in zQ:

Next we consider the obstacle problem in Theorem 5.1, with obstacle  k . By The-
orem 5.1, there exists a solution vk 2C.Qt1; t2/ to the obstacle problem, with vk D  k on
@pQt1; t2 . In the set

Uk WD ¹.x; t/ 2 Qt1; t2 W vk.x; t/ >  k.x; t/º;

vk is a weak solution. Since vk D  k on @pQt1; t2 , it follows that vk D  k on @Uk , except
possibly when t D t2. That is,

vk D  k < u on @Uk \ ¹t < t2º:

We want to use now Lemma 3.8 to conclude that

vk � u in Uk \ ¹t < t2º:(5.1)

Since vk is continuous in Qt1; t2 , it follows that vk is continuous in Uk \ ¹t < t2º. From
here it follows that

lim sup
Uk3.y;s/!.x;t/

vk.y; s/ D  k.x; t/ < u.x; t/ � lim inf
Uk3.y;s/!.x;t/

u.y; s/

for each .x; t/2 ¹.x; t/2 @Uk W t < t2º by using also lower semicontinuity of u. Now we
can use Lemma 3.8 to conclude (5.1).

Consequently, we have that

 k � vk � u in Qt1; t2 ;

which implies that vk ! u as k !1 pointwise in Qt1; t2 . By Lemma 2.9, jrvm
k
j is uni-

formly bounded in L2.V � .t1; t2// for every subdomain V b B.xo; r/. This together
with pointwise convergence implies that rvm

k
converges weakly to rum in L2.V �

.t1; t2/;Rn/. This implies that u is a weak supersolution in any Qt1; t2 b �T . Since being
a weak supersolution is a local property, it follows that u is a weak supersolution in �T .
That is, “

�T

.�u@t' Cru
m
� r'/ dxdt � 0

for any nonnegative ' 2C10 .�T /.
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Next, we generalize the preceding result to nonnegative supercaloric functions.

Theorem 5.3. Suppose 0 < m < 1. Let u � 0 be a locally bounded supercaloric function
in �T . Then u is a weak supersolution in �T .

Proof. Write � as a union of its connected components, i.e., � D
S
j 2N �

j , in which
each �j is open and connected. By Corollary 4.3, we may decompose the positivity set

ƒ
j
C WD ¹t 2 .0; T /Wu is positive on �j � ¹tºº

into at most countably many disjoint open intervalsƒjCD
S
i2Ij

ƒ
j
i , whereƒji D.t

j
i;1; t

j
i;2/.

On each of the sets �j � ƒji , Lemma 5.2 implies that u is a weak supersolution
to (1.1), i.e., um 2L2loc.ƒ

j
i IH

1
loc.�

j // and

(5.2)
Z
ƒ
j
i

Z
�j
.�u@t' Cru

m
� r'/ dxdt � 0

for all nonnegative test functions ' 2 C10 .�
j �ƒ

j
i /.

First we show that um 2L2loc.0; T IH
1
loc.�//. To this end, let K � � be compact and

.s1; s2/ b .0; T /. Choose an open set K 0 such that K � K 0 b � and a cutoff function
�2C10 .K

0/ such that �� 1 inK and jr�j � c dist.K; @K 0/�1 with a numerical constant
c > 0. Denote Kj WD K \�j , which is compact since Kj D K n .

S
i¤j �

i / is closed.

For each ƒji b .0; T /, Lemma 4.8 implies that um 2L2.ƒji IH
1
loc.�

j //. Denote

I 0j WD ¹i 2 Ij W ƒ
j
i \ .s1; s2/ ¤ ¿º:

Observe that for every t 2 .0; T / nƒjC we have u. �; t / � 0 and rum. �; t / � 0 on �j . By
applying Lemma 4.8 on the sets �j � .ƒji \ .s1; s2//, we obtainZ s2

s1

Z
Kj
jrumj2 dxdt �

Z s2

s1

Z
�j
�2 jrumj2 dxdt D

X
i2I 0j

Z
ƒ
j
i \.s1;s2/

Z
�j
�2 jrumj2 dxdt

� 4M 2m

Z
�j
jr�j2 dx

X
i 2 I 0j

.t
j
i;2 � t

j
i;1/C 2M

mC1

Z
�j
�2 dx

� 4T M 2m

Z
�j
jr�j2 dx C 2MmC1

Z
�j
�2 dx <1

for M D kukL1.K0�.s1;s2//, where the last integral can be omitted in the case s2 62 ƒ
j
C.

Since �j and Kj are disjoint, and � D
S
j2N �

j and K D
S
j2N K

j , we can sum over
j 2N and obtainZ s2

s1

Z
K

jrumj2 dxdt � 4TM 2m

Z
�

jr�j2 dx C 2MmC1

Z
�

�2 dx <1:

Since K, s1 and s2 were arbitrary, this finally implies that um 2L2loc.0; T IH
1
loc.�//.
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Then we show that the integral inequality (5.2) holds in �T for all test functions
'2C10 .�T ;R�0/. Observe that this implies '2C10 .�

j � .0;T /;R�0/ for every j 2N.
Fix i 2 Ij . For such a test function a standard cut-off argument yieldsZ �2

�1

Z
�j
.�u@t' Cru

m
� r'/ dxdt � �

Z
�j�¹�2º

u' dx

for every �12ƒ
j
i and a.e. �22ƒ

j
i with �2 > �1. In the case tji;2 < T , the last term vanishes

in the limit �2 " t
j
i;2 due to Lemma 4.7. If ti;2 D T , we only consider test functions that

vanish in a neighborhood of �j � ¹T º, so that we can omit the last integral also in this
case. Since ' vanishes also in a neighborhood of �j � ¹0º, we may pass to the limit
�1 ! t

j
i;1 as well. Thus we getZ t

j
i;2

t
j
i;1

Z
�j
.�u@t' Cru

m
� r'/ dxdt � 0:

By recalling that u. �; t / � 0 and rum. �; t / � 0 for every t 2 .0; T / nƒjC, we obtain“
�j�.0;T /

.�u@t' Cru
m
� r'/ dxdt D

X
i2Ij

Z
ƒ
j
i

Z
�j
.�u@t' Cru

m
� r'/ dxdt � 0:

By summing up over j 2N and using the fact that the �j are disjoint, we conclude the
proof.

We show that a supercaloric function is a weak supersolution also if it belongs to the
appropriate energy space.

Lemma 5.4. Let 0 < m < 1. Let uW�T ! Œ0;1� be a supercaloric function in �T such
that um 2L2loc.0; T IH

1
loc.�// \ L

1=m
loc .�T /. Then u is a weak supersolution.

Proof. By Theorem 5.3, the truncation uk D min¹u; kº is a weak supersolution for every
k 2 N, uk.x; t/ � ukC1.x; t/ and limk!1 uk.x; t/ D u.x; t/ for every .x; t/2�T . This
implies that

lim
k!1

�

“
�T

@t' uk dxdt D �
“
�T

@t' u dxdt

for every ' 2 C10 .�T ;R�0/, by the dominated convergence theorem and the fact that
u2L1loc.�T /.

There also holds

lim
k!1

rumk .x; t/ D ru
m.x; t/ for a.e. .x; t/2�T ,

jrumk j � jru
m
j for every k D 1; 2; : : :; and jrumj 2 L2loc.�T /:

Again, by dominated convergence theorem, we can conclude that

lim
k!1

“
�T

rumk � r' dxdt D
“
�T

rum � r' dxdt

for every ' 2C10 .�T ;R�0/, which concludes the proof.
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6. Barenblatt solutions

In the case .n � 2/=n < m < 1, the Barenblatt solution can be written as

B.x; t/ D .C t/1=.1�m/ .At2=� C jxj2/�1=.1�m/ for .x; t/ 2 Rn � .0;1/;

in which � D n.m � 1/C 2, C D 2m�=.1 � m/ and A > 0. The Barenblatt solution is
a continuous weak solution in Rn � .0;1/. However, we may define a function u in the
whole space as

(6.1) u.x; t/ D

²
B.x; t/; t > 0;

0; t � 0;

which is not even a weak supersolution in Rn � R. That is because the integrability
assumption for the gradient fails in any neighborhood of the origin, i.e., because jrumj …
L2loc.R

n � R/. However, u is a supercaloric function in the whole space Rn � R. This is
due to Lemma 3.7, since B is a supercaloric function as a continuous weak solution in the
upper half-space by Lemma 3.6.

The Barenblatt solution is the leading example of a supercaloric function in Barenblatt
class that, on the other hand, is not a weak supersolution. The Barenblatt solution defined
in (6.1) satisfies

@tu ��u
m
DMı in Rn �R

in the weak sense, where ı is Dirac’s delta at the origin and M > 0 represents the mass at
the origin (A is a decreasing function of M ). Furthermore,Z t2

t1

Z
B.0;r/

umC2=n dxdt D1 and
Z t2

t1

Z
B.0;r/

jrumj1C1=.1Cmn/ dxdt D1;

for every t1 � 0, t2 > 0 and r > 0. Later on, this will show that the integrability exponents
obtained in Lemmas 6.5 and 6.6 are sharp. We interpret

(6.2) rum D lim
k!1

r min¹u; kºm

for a supercaloric function u. The weak gradient of the truncation is well defined for
each k 2N, since min¹u; kºm 2 L2loc.0; T IH

1
loc.�// by Theorem 5.3. If the gradient

defined in (6.2) is a locally integrable function (together with um), then it is the weak
gradient of um in the standard sense. Observe that rum D 0 a.e. in ¹u D 1º, since
rmin¹u; kºm D 0 a.e. in ¹u D1º for every k 2 N.

We will make use of the following Caccioppoli inequality. For the case m > 1, see
also Lemma 2.4 in [22].

Lemma 6.1. Let 0 < m < 1. Suppose that u � 0 is a supercaloric function in �T and let
' 2C10 .�T ;R�0/. Then there exist numerical constants c1; c2 > 0 such that“

�T

u�m�" jrumj2'2 dxdt C ess sup
t2.0;T /

Z
�

u1�"'2 dx

�
c1

"2

“
�T

um�" jr'j2 dxdt C
c2

".1 � "/

“
�T

u1�" j@t .'
2/j dxdt

holds for every "2 .0;m/.
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Remark 6.2. In points with u D 0, we interpret the first integrand on the left-hand side
as zero. This is reasonable since formally for " 2 .0;m/, we have

u�m�" jrumj2 D
4m2

.m � "/2
jru.m�"/=2j2 and

m � "

2
> 0:

Remark 6.3. The result in Lemma 6.1 holds also if u is a weak supersolution by The-
orem 2.11 and Lemma 3.6.

Proof of Lemma 6.1. We again notice that � D
S
j2N �

j , where each �j is open and
connected. First, we consider an arbitrary connected component �j , but denote it by �
for simplicity. By Corollary 4.3, we may decompose the positivity set

ƒC WD ¹t 2 .0; T /Wu is positive on � � ¹tºº

into at most countably many disjoint open intervals ƒC D
S
i 2 I ƒi .

Let �1; �2 2ƒi DW .ti;1; ti;2/ for some i 2 I . We consider truncations uk D min¹u; kº,
k D 1; 2; : : :, which are supercaloric functions with the same positivity set as u. For sim-
plicity we denote uk by u. By Lemma 5.2, u satisfies the mollified weak formulationZ �2

�1

Z
�

' @t Œu�h C Œru
m�h � r' dxdt � 0

for any nonnegative ' 2C10 .� � .�1; �2//. By a standard approximation argument, the
same holds more generally for test functions ' 2 C10 .�T /. Here Œ � �h denotes the standard
mollification in time, and we consider h< 1

2
dist.@ƒi ; .�1; �2//. Observe that in .�� .�1 �

h; �2 C h// \ spt.'/, we have 0 < ı � u � k <1 for some ı > 0. We test the mollified
formulation with Œu��"

h
'2 2 L2.�1; �2IH

1
0 .�//. From the parabolic part, we obtainZ �2

�1

Z
�

'2 Œu��"h @t Œu�h dxdt

D �
1

1 � "

Z �2

�1

Z
�

Œu�1�"h @t .'
2/ dxdt C

1

1 � "

Z
�

.Œu�1�"h '2/. �; �2/ dx

�
1

1 � "

Z
�

.Œu�1�"h '2/. �; �1/ dx

! �
1

1 � "

Z �2

�1

Z
�

u1�" @t .'
2/ dxdt C

1

1 � "

Z
�

.u1�"'2/. �; �2/ dx

�
1

1 � "

Z
�

.u1�"'2/. �; �1/ dx

as h! 0, for a.e. �1 < �2 in ƒi . Observe also that the second term on the right-hand side
converges to 0 when �2 ! ti;2.

For the gradient, we have

r.Œu��"h '2/ D 2' Œu��"h r' �
"

m
'2Œu��"�1h Œu1�mrum�h:
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Observe that since 0 < ı � u � k, we also have ı � Œu�h � k. Now each mollified term
above converges pointwise a.e. when h! 0. In particular, the last term is majorized by

'2 Œu��"�1h jŒu1�mrum�hj jŒru
m�hj � ı

�"�1k1�m�spt.'/ k'k
2
1

�
jrumj

�2
h
;

and for the integral of the majorant, we have the convergence

lim
h!0

Z �2

�1

Z
�

ı�"�1k1�m�spt.'/ k'k
2
1

�
jrumj

�2
h

dxdt

D

Z �2

�1

Z
�

ı�"�1k1�m�spt.'/ k'k
2
1 jru

m
j
2 dxdt <1;

since Œrum�h ! rum in L2loc.�T / when h! 0. Thus, we can use a variant of the dom-
inated convergence theorem (see Theorem 4 in Chapter 1.3 of [12]) to conclude

lim
h!0

Z �2

�1

Z
�

'2 Œu��"�1h Œrum�h � Œu
1�m
rum�h dxdt D

Z �2

�1

Z
�

'2u�m�" jrumj2 dxdt:

We can argue similarly with the other term in the divergence part, which impliesZ �2

�1

Z
�

Œrum�h � r.Œu�
�"
h '2/ dxdt

! 2

Z �2

�1

Z
�

'u�"rum � r' dxdt �
"

m

Z �2

�1

Z
�

'2u�m�" jrumj2 dxdt

when h! 0. By Young’s inequality, we have

2'u�"rum � r' �
"

2m
'2u�m�" jrumj2 C

2m

"
um�" jr'j2:

By combining the results, we obtain

"

2m

Z �2

�1

Z
�

'2u�m�" jrumj2 dxdt C
1

1 � "

Z
�

.u1�"'2/. �; �1/ dx

�
2m

"

Z �2

�1

Z
�

um�" jr'j2 dxdt C
1

1 � "

Z �2

�1

Z
�

u1�" j@t .'
2/j dxdt

C
1

1 � "

Z
�

.u1�"'2/. �; �2/ dx:

Now we can pass to the limit �2 ! ti;2 so that the last term vanishes due to Lemma 4.7
if ti;2 < T and also in the case t D T , since ' vanishes in a neighborhood of � � ¹T º.
On the right-hand side, we may integrate over � � ƒi . At this point, we also pass to
the limit k !1 in the truncations. Using Fatou’s lemma for the first term on the left-
hand side and the monotone convergence theorem for the remaining terms, we obtain the
inequality above for the original function u. Observe that if the right-hand side tends to
infinity, the estimate clearly holds. Thus we may assume that the right-hand side is finite.
By considering separately the terms on the left-hand side, in the first term we can pass to
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the limit �1 ! ti;1. In the second term on the left-hand side, we take the supremum over
�1 2ƒi . In this way, we arrive at the bound“

��ƒi

'2u�m�" jrumj2 dxdt C ess sup
t2ƒi

Z
�

.u1�"'2/. �; t / dx

�
4m2 C 2m".1 � "/

"2

“
��ƒi

um�" jr'j2 dxdt

C
2mC " � "2

".1 � "/

“
��ƒi

u1�" j@t .'
2/j dxdt:

Observe that in �T n .
S
i 2 I � �ƒi /, both sides are zero since in this set u � 0 and

rum � 0, see also Remark 6.2. By summing up over i 2 I , we have“
�T

u�m�" jrumj2'2 dxdt C ess sup
t 2 .0;T /

Z
�

u.x; t/1�"'.x; t/2 dx

�
c1

"2

“
�T

um�" jr'j2 dxdt C
c2

".1 � "/

“
�T

u1�" j@t .'
2/j dxdt;

for numerical constants c1; c2 > 0. In the end, we may sum up over all connected com-
ponents of �, which concludes the proof.

We recall Sobolev’s inequality, see [11, 21].

Lemma 6.4. Assume that w 2 Lploc.0; T IW
1;p

loc .�// and ' 2 C10 .�T /, and r > 0. There
exists a constant c D c.n; p; r/ such that the inequality

(6.3)
“
�T

j'wjq dxdt � cq
“
�T

jr.'w/jp dxdt
�

ess sup
0<t<T

Z
�

j'wjr dx
�p=n

;

is valid for q D p C pr=n.

Up next, we prove a local integrability result for supercaloric functions by exploiting
a Moser type iteration.

Lemma 6.5. Let .n � 2/=n < m < 1 and let � be an open set in Rn. Suppose that u is
a nonnegative supercaloric function in �T . If u2Lsloc.�T / for some s > n

2
.1�m/, then

u2L
q
loc.�T / whenever q < mC 2=n.

Proof. By Theorem 5.3, the truncations uk WD min¹u; kº are weak supersolutions for
any k > 0 and satisfy the Caccioppoli estimate in Lemma 6.1. Up next, we combine the
Sobolev inequality, Lemma 6.4 and Caccioppoli inequality, Lemma 6.1.

Let '2C10 .�T /, 0� ' � 1 and 'D 1 in a compact subset of�. Sincem> .n� 2/=n,
it follows that n

2
.1�m/ < 1. Therefore, there exists "2 .0;m/with s D 1� " > n

2
.1�m/.

We choose

w D u
.s�.1�m//=2

k
D u

.m�"/=2

k
; p D 2 and r D

2s

s � .1 �m/
> 2
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in Sobolev’s inequality, and start to estimate the right-hand side. For the first term, we have“
�T

ˇ̌
r
�
'u

.m�1Cs/=2

k

�ˇ̌2 dxdt

� 2

“
�T

um�1Cs
k

jr'j2 dxdt C c
“
�T

u�m�1Cs
k

jr.umk /j
2'2 dxdt

� c

“
�T

um�1Cs
k

jr'j2 dxdt C c
“
�T

uskj@t .'
2/j dxdt;

in which c D c.m; "/ > 0. In the last step we applied the Caccioppoli inequality from
Lemma 6.1 with " D 1 � s. With the aforementioned lemma we can also estimate the
second term from the Sobolev inequality (6.3). Since r > 2, the function 'r=2 2C 10 .�T /
is an admissible test function in the Caccioppoli inequality, which gives

ess sup
t2.0;T /

Z
�

usk.'
r=2/2 dx

� c

“
�T

um�1Cs
k

'r�2jr'j2 dxdt C c
“
�T

usk'
r�2
j@t .'

2/j dxdt

� c

“
�T

um�1Cs
k

jr'j2 dxdt C c
“
�T

uskj@t .'
2/j dxdt;

where c D c.m; "/ > 0. By using the Sobolev inequality, Lemma 6.4, and the two inequal-
ities above, we obtain“

�T

'qu
s.1C 2

n /�.1�m/

k
dxdt

�

�
c

“
�T

um�1Cs
k

jr'j2 dxdt C c
“
�T

uskj@t .'
2/j dxdt

�1C2=n
;

with a constant c D c.n;m; "/ > 0. We can estimate“
�T

um�1Cs
k

jr'j2 dxdt

D

“
�T

�¹uk>1ºu
m�1Cs
k

jr'j2 dxdt C
“
�T

�¹uk�1ºu
m�1Cs
k

jr'j2 dxdt

�

“
�T

uskjr'j
2 dxdt C

“
�T

jr'j2 dxdt;

and further“
�T

'qu
s.1C 2

n /�.1�m/

k
dxdt

� c.n;m; "/
�“

�T

usk
�
jr'j2 C j@t .'

2/j
�

dxdt C
“
�T

jr'j2 dxdt
�1C2=n

� c.n;m; "/
�“

�T

us
�
jr'j2 C j@t .'

2/j
�

dxdt C
“
�T

jr'j2 dxdt
�1C2=n

:
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Now we can pass to the limit k !1 and use monotone convergence theorem on the
left-hand side, which implies

u 2 L
s.1C 2

n /�.1�m/

loc .�T /:

We can repeat this procedure as long as " > 0, i.e., the integrability exponent is strictly
less than 1. By iteration we obtain a sequence of integrability exponents

si D si�1

�
1C

2

n

�
� .1 �m/;

provided si�1 < 1. The exponents can be written in terms of the integrability exponent
s0 D 1 � " >

n
2
.1 �m/ as

si D
�
1C

2

n

�i�
s0 �

n

2
.1 �m/

�
C
n

2
.1 �m/:

In a finite number of iteration steps we obtain the integrability u 2 L1loc.�T /. Then, we
let � 2 .0; m/ and s D 1 � �

1C2=n
. Combining the Sobolev and Caccioppoli inequalities

once more we obtain
u 2 L

mC2=n��
loc .�T /:

Since � 2 .0;m/ is arbitrary, the claim follows.

Next we prove a local integrability result for the gradient rum.

Lemma 6.6. Let .n � 2/=n < m < 1 and let � � Rn be an open set. Suppose that u is
a nonnegative supercaloric function with u2Lsloc.�T / for some s > n

2
.1�m/. Then, the

weak gradient rum exists and jrumj 2Lqloc.�T / for any q < 1C 1=.1Cmn/.

Proof. By Lemma 6.5, it already follows that u2Lrloc.�T / whenever r < mC 2=n. In
particular, u2L1loc.�T /. First we start with truncations uk D min¹u; kº. Let�0 b�, 0 <
t1 < t2 < T and "2 .0;m/. By Theorem 5.3, the truncation uk is a weak supersolution for
every k 2N. Now, for q < 1C 1=.1Cmn/ and ' 2C10 .�T / with ' D 1 in�0 � .t1; t2/
and ' � 0, we haveZ t2

t1

Z
�0
jrumk j

q dxdt D
Z
ƒC\.t1;t2/

Z
�0
jrumk j

q dxdt

D

Z
ƒC\.t1;t2/

Z
�0

�
u
�.mC"/=2

k
jrumk j

�q
u
q .mC"/=2

k
dxdt

�

� Z t2

t1

Z
�0
u�m�"k jrumk j

2 dxdt
�q=2� Z t2

t1

Z
�0
u

q
2�q .mC"/

k
dxdt

�1�q=2
�

�
c

“
�T

�
um�"k jr'j2 C u1�"k j@t .'

2/j
�

dxdt
�q=2� Z t2

t1

Z
�0
u

q
2�q .mC"/

k
dxdt

�1�q=2
�

�
c

“
�T

�
um�" jr'j2 C u1�" j@t .'

2/j
�

dxdt
�q=2� Z t2

t1

Z
�0
u

q
2�q .mC"/ dxdt

�1�q=2
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for c D c."/ > 0 by using Hölder’s inequality and the Caccioppoli inequality, Lemma 6.1.
The first integral on the right-hand side is clearly bounded since u 2 L1loc.�T /, and the
second is as well whenever q

2�q
.m C "/ < m C 2=n by Lemma 6.5. Since " > 0 can

be chosen arbitrarily small, the second integral is finite whenever q < 1C 1=.1C mn/,
which completes the proof.

Remark 6.7. Observe that in the case 0 < m � .n � 2/=n (and in particular, when m D
.n� 2/=n), the proof of the preceding lemma also implies that if u2L1loc.�T / is a super-
caloric function in �T , then jrumj 2 Lqloc.�T / for every q < 2=.mC 1/. Indeed, in that
case, 2=.mC 1/ > 1 and rum is a weak gradient of um.

Finally, we state characterizations for Barenblatt type supercaloric functions.

Theorem 6.8. Let .n � 2/=n < m < 1 and let � be an open set in Rn. Suppose that u is
a nonnegative supercaloric function in�T . Then the following statements are equivalent:

(i) u 2 L
q
loc.�T / for some q > n

2
.1 �m/.

(ii) u2L
n
2 .1�m/

loc .�T /.

(iii’) There exists ˛ 2 .n
2
.1 �m/; 1/ such that

sup
ı<t<T�ı

Z
�0
u.x; t/˛ dx <1;

whenever �0 b � and ı 2 .0; T=2/,

(iii) There holds

sup
ı<t<T�ı

Z
�0
u.x; t/ dx <1;

whenever �0 b � and ı 2 .0; T=2/.

Proof. (i)) (ii): Hölder’s inequality.
(iii’)) (i): Elementary.
(i)) (iii’): This is a direct consequence of the Caccioppoli inequality, Lemma 6.1.
(iii)) (iii’): Hölder’s inequality.
(ii)) (i): Follows from proving contraposition :(i)) :(ii) in Theorem 7.3.
(i)) (iii): Follows from proving contraposition :(iii)) :(i) in Theorem 7.3.

Observe that every supercaloric function u in the Barenblatt class satisfies

0 � lim
k!1

“
�T

�uk@t' Cru
m
k � r' dxdt D

“
�T

�u@t' Cru
m
� r' dxdt;

for every nonnegative ' 2C10 .�T / by Theorem 5.3 and Lemmas 6.5, 6.6. Together with
Riesz’ representation theorem, this implies that for every supercaloric function u in the
Barenblatt class, there exists a nonnegative Radon measure � in �T such that“

�T

�u@t' Cru
m
� r' dxdt D

Z
�T

' d� for every ' 2C10 .�T /.
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7. Infinite point-source solutions

In this section, we consider supercaloric functions that do not fall into the class described
by Theorem 6.8. As a starting point, we recall that a function

(7.1) u.x; t/ D jxj�.n�2/=m; for n � 3; 0 < m < 1;

based on the fundamental solution to the elliptic (Laplace) equation is a supercaloric func-
tion to the porous medium equation in the whole space RnC1. In the supercritical case,
the singularity of the function in (7.1) is mild enough to guarantee that it belongs to the
Barenblatt class. However, jrumj …L2loc.R

nC1/, which implies that u is not a weak super-
solution.

For the rest of this section, we focus only on the supercritical range .n�2/=n<m<1.
In the complementary class, the leading example is the infinite point-source solution,
which possesses a slightly similar behavior as (7.1). The infinite point-source solution
(see [8]) can be written as

(7.2) U.x; t/ D
� Ct
jxj2

�1=.1�m/
; where C D

2m

1 �m
.2 � n.1 �m// > 0;

for .x; t/ 2 Rn � .0;1/.
This function is a continuous weak solution to (1.1) in .Rn n ¹0º/ �.0;1/. However,

u … L
n
2 .1�m/

loc .Rn � .0;1//, which implies that u is not even an integrable function in
Rn � .0;1/. However, U is a supercaloric function in Rn � .0;1/, which we show in
the next lemma.

Lemma 7.1. The infinite point-source solution U defined in (7.2) is a supercaloric func-
tion in Rn � .0;1/.

Proof. Denote Uk D min¹U; kº. Now Uk is clearly continuous in Rn � .0;1/, and
it is a supercaloric function in .Rn n ¹0º/ � .0;1/ as a truncation of a continuous weak
solution. LetQt1; t2 DQ� .t1; t2/b Rn � .0;1/ be a C 2;˛-cylinder such that 0 2Q, and
let h2C.Qt1; t2/ be a weak solution inQt1; t2 , with h�Uk on @pQt1; t2 . This immediately
implies that h � k in Qt1; t2 and, in particular, that h � Uk D k on ¹0º � Œt1; t2/. Then,
since h is subcaloric, we can use Lemma 3.4 to conclude that we also have h � Uk in
.Q n ¹0º/ � .t1; t2/.

If 0 2 @Q, we can use the fact that Uk D k in Br .0/ � .t1; t2/ with r D . Ct1
k1�m

/1=2.
Since h � k in Qt1; t2 , it follows that h � Uk in .Br .0/ \Q/ � .t1; t2/ with the previ-
ously defined r . In the set .Q n Br .0// � .t1; t2/, we can use Lemma 3.4 to conclude that
h � Uk in .Q n Br .0// � .t1; t2/, and therefore in the whole cylinder Qt1; t2 . Thus Uk is
supercaloric in Rn � .0;1/.

By Lemma 3.9, also the pointwise limit limk!1Uk DU turns out to be supercaloric
in Rn � .0;1/.

Again, zero extension of U to nonpositive times t � 0, say u, is supercaloric in Rn �R

by Lemma 3.7. However, u … L
n
2 .1�m/

loc .Rn �R/.
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We can modify the example above to obtain supercaloric functions with as bad singu-
larity as we please. We can define

U.x; t/ D
� Ct
jxjq

�1=.1�m/
;

in which q � 2 can be as large as we wish and

C D qm
�
2C

qm

1 �m
� n

�
:

This is still a supercaloric function inB.0;1/� .0;1/. However, for given " > 0, U…L"loc
if q � n

"
.1 �m/.

Before stating characterizations in the complementary class, we state and prove an
auxiliary result, which is analogous to Lemma 4.5 in [14].

Lemma 7.2. Let .n� 2/=n <m< 1. Let u be a nonnegative supercaloric function in�T .
Suppose that there exist a point xo 2� and a sequence .tj / in .0; T / with tj ! to 2 .0; T /

as j !1, such that

lim
j!1

Z
B.xo;r/

u.x; tj / dx D1

whenever r > 0 and B.xo; r/ b �. Then,

lim inf
.x;s/!.xo;t/

u.x; s/ jx � xoj
2=.1�m/ > 0

for every t > to.

Proof. Fix r > 0 with B.xo; 64r/ b � and let t 2 .to; T /. Then, for large enough j we
have that «

B.xo;r/

u.x; tj / dx � 4c
� t � tj
r2

�1=.1�m/
;

where c D c.n; m/ is the constant from Lemma 4.5 with integral averages. There exist
truncations ukj WD min¹u; kj º such that«

B.xo;r/

ukj .x; tj / dx D 2c
� t � tj
r2

�1=.1�m/
:(7.3)

By lower semicontinuity of ukj , there exists a sequence of Lipschitz functions . kj ;i /i2N ,
such that

0 �  kj ;i �  kj ;iC1 � u
m
kj

and  kj ;i ! umkj pointwise in �T as i !1.

By Theorem 2.8, there exists a unique continuous solution hkj ;i 2C.B.xo; 2r/ � .tj ; T //,

such that hkj ;i D  
1=m

kj ;i
on the parabolic boundary of B.xo; 2r/ � .tj ; T /. By the compar-

ison principle from the definition of supercaloric functions, it then follows that hkj ;i � ukj
for every i 2 N.
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By taking s D tj and t < T in Lemma 4.5, we have that

sup
tj<�<t

«
B.xo;r/

hkj ;i .x; �/ dx � c inf
tj<�<t

«
B.xo;2r/

hkj ;i .x; �/ dx C c
� t � tj
r2

�1=.1�m/
� c inf

tj<�<t

«
B.xo;2r/

ukj .x; �/ dx C c
� t � tj
r2

�1=.1�m/
;

where comparison was used in the second inequality. We can further bound the left-hand
side from below as

sup
tj<�<t

«
B.xo;r/

hkj ;i .x; �/ dx �
«
B.xo;r/

hkj ;i .x; tj / dx D
«
B.xo;r/

 
1=m

kj ;i
.x; tj / dx:

By combining the inequalities above and passing to the limit i !1 and using (7.3), we
obtain

2c
� t � tj
r2

�1=.1�m/
D

«
B.xo;r/

ukj .x; tj / dx D lim
i!1

«
B.xo;r/

 
1=m

kj ;i
.x; tj / dx

� c

«
B.xo;2r/

u.x; �/ dx C c
� t � tj
r2

�1=.1�m/
for any � 2 .tj ; t / and large enough j . From here, it follows that� t � tj

r2

�1=.1�m/
�

«
B.xo;2r/

u.x; �/ dx:

By passing to the limit j !1, this implies

r2
� «

B.xo;2r/

u.x; �/ dx
�1�m

� t � to;

for any � 2 .to; t /. Observe that r > 0 was arbitrary. By taking any sequence .rj / with
0 < rj ! 0 as j !1, we have

lim inf
j!1

r2j

� «
B.xo;2rj /

u.x; �/ dx
�1�m

� t � to > 0

for any � 2 .to; t /.
For the constant c2D c2.n;m/ from Lemma 4.6, we fix "2 .0;min¹c2.t � to/;T � tº/,

� 2 .to; t / and choose truncation levels kj such that

c2 r
2
j

� «
B.xo;2rj /

ukj .x; �/ dx
�1�m

D "

holds for all large enough j . Now we can apply Lemma 4.6 and obtain

inf
B.xo;2rj /

u. �; s/ � inf
B.xo;2rj /

ukj . �; s/ � c.n;m/

«
B.xo;2rj /

ukj .x; �/ dx

D c.n;m/"1=.1�m/r
�2=.1�m/
j

for any s 2 Œ� C ˛"; � C "�, where ˛ D ˛.n;m/2 .0; 1/ is the constant from Lemma 4.6.
Since the sequence .rj / and numbers � 2 .to; t / and "2 .0;min¹c2.t � to/; T � tº/ could
be chosen freely, the claim follows.
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Next we state characterizations for the complementary class.

Theorem 7.3. Let .n� 2/=n < m < 1 and let� be an open set in Rn. Assume that u is a
nonnegative supercaloric function in �T . Then the following statements are equivalent:

(i) u … L
q
loc.�T / for any q > n

2
.1 �m/.

(ii) u … L
n
2 .1�m/

loc .�T /.

(iii’) For every ˛ 2 .n
2
.1 �m/; 1/ there exist �0 b � and ı 2 .0; T=2/ such that

sup
ı<t<T�ı

Z
�0
u.x; t/˛ dx D1:

(iii) There exist �0 b � and ı 2 .0; T=2/ such that

sup
ı<t<T�ı

Z
�0
u.x; t/ dx D1:

(iv) There exists .xo; to/2�T such that

lim inf
.x;s/!.xo;t/

u.x; s/jx � xoj
2=.1�m/ > 0 for every t > to.

Proof. (ii)) (i): Hölder’s inequality.
(iii’)) (iii): Hölder’s inequality.
(i)) (iii’): Elementary.
(iv)) (iii’): Fix t > to. Then, for some r > 0 there exists " > 0 such that

u.x; s/ jx � xoj
2=.1�m/

� "

whenever .x; s/2 .B.xo; r/ n ¹xoº/ � ..t � r; t C r/ n ¹toº/. This implies thatZ
B.xo;r/

u.x; t/˛ dx D1

for every ˛ � n
2
.1 �m/ and t 2 ..t � r; t C r/ n ¹toº/. This implies (iii’).

(iv)) (ii): Same argument as above.
(iii)) (iv): By (iii), there exist an instant of time to 2 .0; T / and a sequence .tj / in

.0; T / with tj ! to, such that

lim
j!1

Z
�0
u.x; tj / dx D1

for some �0 b �.
Let us fix a small ro > 0. We claim that there exists a point xo 2�0 such that

lim
j!1

Z
B.xo;r/

u.x; tj / dx D1

for every r 2 .0; ro/. This can be shown by contradiction. Assume that for any y 2�0 there
exists a radius ry 2 .0; ro/ such that

lim sup
j!1

Z
B.y;ry/

u.x; tj / dx <1:
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Take an open cover ¹B.y; ry/ W y 2�0º of �0. By compactness of �0, this has a finite
subcover, say ¹B.yk ; rk/ W k D 1; 2; : : : ;M º, which impliesZ

�0
u.x; tj / dx �

MX
kD1

Z
B.yk ;rk/

u.x; tj / dx;

for any j 2 N. When j !1, the left-hand side tends to infinity, while the right-hand
side stays bounded, implying the desired contradiction. Thus we have established that
there exists a point xo 2� such that

lim
j!1

Z
B.xo;r/

u.x; tj / dx D1

for arbitrarily small r > 0. Now we can use Lemma 7.2 to conclude the proof.

8. Pointwise behavior of supercaloric functions

In this section, we show that every supercaloric function coincides with its ess lim inf-
regularization, cf. Theorem 2.11 for the case of weak supersolutions. Proofs are partly
based on [17, 18].

Theorem 8.1. Let 0 <m< 1,��Rn be an open set, and uW�T ! Œ0;1� a supercaloric
function in �T . Then,

u.x; t/ D ess lim inf
.y;s/!.x;t/

s<t

u.y; s/ for every .x; t/2�T :

First, we prove existence and some properties of a Poisson modification we will use
in the proof.

Proposition 8.2. Let 0 < m < 1. Let .hk/ be a nondecreasing sequence of nonnegative
continuous weak solutions in �T , i.e., hm

k
2 L2loc.0; T IH

1
loc.�// for each k 2 N, and

suppose that the pointwise limit limk!1 hk D h is bounded in �T . Then, h is a locally
Hölder continuous weak solution in �T with hm 2L2.0; T IH 1

loc.�//, and rhm
k
* rhm

weakly in L2loc.�T /.

Proof. First observe that the sequence .hk/ is bounded, since hk � h for every k 2 N.
By Theorem 18.1 in Chapter 6 of [11], it follows that the family .hk/ is locally equicon-
tinuous. Then the Arzelá–Ascoli theorem implies that there exists a subsequence hki that
converges uniformly to some function g, which is locally continuous in �T by the uni-
form limit theorem. Furthermore, since limk!1 hk D h pointwise, it follows that g D h.
Lemma 2.9 implies that rhm

k
* rhm weakly in L2loc.�T /, which further implies that h

is a weak solution in �T and that hm 2L2.0; T IH 1
loc.�//. As a bounded weak solution,

the function h is locally Hölder continuous by Theorem 18.1 in Chapter 6 of [11].
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Proposition 8.3. Let 0 < m < 1 and let Qt1; t2 b �T be a C 2;˛-cylinder. Let .vk/ be a
nondecreasing sequence of nonnegative continuous weak supersolutions in �T such that
limk!1 vk D v, in which v is a bounded supercaloric function in �T . Then, there exists
a Poisson modification defined as

ukP D

²
hk in Q � .t1; t2�;
vk otherwise;

where hk 2C.Qt1; t2/ is a weak solution in Qt1; t2 with hm
k
2L2.t1; t2IH

1.Q// such that
hk D vk on @pQt1; t2 and hm

k
� vm

k
2L2.t1; t2IH

1
0 .�//.

Furthermore, ukP is nondecreasing, and the limit uP D limk!1 u
k
P can be written as

uP D

²
h in Q � .t1; t2�;
v otherwise;

in which h2C.Qt1; t2/ is a weak solution in Qt1; t2 with hm2L2.t1; t2IH 1.Q//.
Moreover, uP is a bounded supercaloric function in�T and r.ukP /

m* rumP weakly
in L2loc.�T /. In particular,

rhmk * rh
m weakly in L2.Qt1; t2/:

Proof. Since vk is continuous, there exist functions  i
k
2C 0;1.�T / such that

0 �  ik �  
iC1
k
� vmk everywhere in �T for every i 2N,

lim
i!1

 ik D v
m
k everywhere in �T ; and

sup
@pQt1; t2

j. ik/
1=m
� vkj

i!1
���! 0:

Let hi
k

be a weak solution inQt1; t2 taking the boundary values . i
k
/1=m on @pQt1; t2 both

continuously and in Sobolev sense (Theorem 2.8). Denote

u
k;i
P D

²
hi
k

in Q � .t1; t2�;
vk otherwise:

The sequence hi
k

is increasing with respect to i in Qt1; t2 by the aforementioned theorem,
and hi

k
2C.Qt1; t2/ for each i 2 N. By Theorem 2.7, limi!1 h

i
k
D hk pointwise every-

where inQt1; t2 , where hk 2C.Qt1; t2/ is a (unique) very weak solution inQt1; t2 such that
hk D vk on @pQt1; t2 . Since the sequence .hi

k
/ with respect to i satisfies the assumptions

in Proposition 8.2 in Qt1; t2 , we have that hk is a locally Hölder continuous weak solution
with hm

k
2L2.t1; t2IH

1
loc.Q//. Then Theorem 2.7 implies ukP 2C.�T n .Q � ¹t2º//, u

k;i
P

is increasing with respect to i , and limi!1 u
k;i
P D u

k
P pointwise in�T . Since vk is super-

caloric in �T by Theorem 3.6, we have uk;iP � vk � v everywhere in �T . This implies
that also ukP � vk � v.
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Next we show that ukP is a (bounded) supercaloric function. Since ukP is lower semi-
continuous and bounded, properties (i) and (ii) in Definition 3.1 are clear. For (iii’), let
Vs1;s2 b�T be aC 2;˛-cylinder and g2C.Vs1;s2/ be a weak solution in Vs1;s2 with g � ukP
on @pVs1;s2 . Suppose that Vs1;s2 intersects both Qt1; t2 and its complement, since other-
wise the claim is clear. Now since vk is supercaloric, we immediately have g � vk in�T ,
which implies g � ukP in Vs1;s2 n .Q � .t1; t2�/. Since hk is supercaloric and g is subcal-
oric inQt1; t2 , we can use Theorem 3.4 to conclude that g � hk in Vs1;s2 \Qt1; t2 . Finally,
we have g � hk on the slice .V \Q/ � ¹t2º by continuity of g and hk . This implies that
g � ukP in Vs1;s2 , which shows that ukP is supercaloric.

Now, since ukP is a bounded supercaloric function, Theorem 5.3 implies that we have
ukP 2L

2
loc.0; T IH

1
loc.�//. Furthermore, hm

k
2L2.t1; t2IH

1.Q//, since ukP D hk inQt1; t2 .
Lemma 2.2 implies that hk�hkC1� sup@pQt1; t2

v for every k2N, since the sequence .vk/
is increasing. As the sequence .hk/ satisfies the assumptions in Proposition 8.2 in Qt1; t2 ,
we have that h D limk!1 hk is a locally Hölder continuous weak solution in Qt1; t2 with
hm 2 L2.t1; t2IH

1
loc.Q//.

As .ukP / is an increasing and uniformly bounded sequence, Lemma 3.9 implies that
the limit uP is a bounded supercaloric function. Furthermore, Theorem 5.3 implies that
umP 2L

2
loc.0; T IH

1
loc.�//. This further implies hm 2L2.t1; t2IH 1.Q//, since uP D h

in Qt1; t2 .
Since .ukP / is an increasing, uniformly bounded sequence of weak supersolutions

in �T converging to uP , Lemma 2.9 implies that r.ukP /
m * rumP weakly in L2loc.�T /.

Finally, this implies that rhm
k
* rhm weakly in L2.Qt1; t2/, since ukP D hk and uP D h

in Qt1; t2 .

Before a proof of Theorem 8.1, we state and prove another auxiliary result.

Lemma 8.4. Let 0 < m < 1 and let � � Rn be a connected open set. Suppose that
vW�T ! Œ0;1� is a supercaloric function in�T and letQt1; t2 b�T be such that Œt1; t2�
is contained in the positivity set ƒC defined in (4.4). Assume that

v D  a.e. in Qt1; t2

for some  2 .0;1/. Then,

v.x; t/ D  for every .x; t/2Q � .t1; t2�:

Proof. By lower semicontinuity of v, it follows that v �  everywhere in Qt1; t2 . Thus,
without loss of generality, we may assume that v is bounded in �T . Since Qt1; t2 b
� � ƒC, it follows that there exists ı > 0 such that v > 0 everywhere in Qt1; t2Cı . Let
 k 2C

1.Qt1; t2Cı/ be such that

 1 <  2 < � � � < v and lim
k!1

 k D v everywhere in Qt1; t2Cı :

Now by applying Theorem 5.1 in a similar fashion as in Lemma 5.2, we can find a
sequence of continuous weak supersolutions vk in Qt1; t2Cı such that v1 � v2 � � � � � v
with  k � vk � v everywhere in Qt1; t2Cı , which implies vk.x; t/! v.x; t/ for every
.x; t/2Qt1; t2Cı . Observe that we further have rvm

k
* rvm weakly in L2loc.Qt1; t2Cı/ by

Lemma 2.9.
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Fix t 0 2 .t1; t2/ such that v.x; t 0/ D  for a.e. x 2Q. Observe that this holds for
a.e. t 0 2 .t1; t2/. Furthermore, fix a C 2;˛-cylinder Q0 b Q and define Poisson modific-
ations of vk and v in Q0

t 0;t2Cı
as in Proposition 8.3.

Since hk is a weak solution in Q0
t 0;t2Cı

, it follows that“
Q0
t 0;t2

�hk@t' Crh
m
k � r' dxdt D

Z
Q0
vk.x; t

0/ '.x; t 0/ dx

for all ' 2C1.Q0t 0;t2/ vanishing on the boundary of Q0t 0;t2 except possibly on Q0 � ¹t 0º.
By Proposition 8.3, we have thatrhm

k
*rhm weakly inL2.Q0

t 0;t2Cı
/when k!1. Also

vk.x; t
0/! v.x; t 0/ as k !1 for every x 2Q0. Thus, by passing to the limit k !1,

we obtain

(8.1)
“
Q0
t 0;t2

�h@t' Crh
m
� r' dxdt D

Z
Q0
 '.x; t 0/ dx

since v.x; t 0/ D  for a.e. x 2Q0. Since  > 0 is a weak solution as a constant, we also
have

(8.2)
“
Q0
t 0;t2

� @t' Cr
m
� r' dxdt D

Z
Q0
 '.x; t 0/ dx:

By approximation, we may use test functions satisfying '2L2.t 0; t2IH 1
0 .Q

0//, with @t' 2
L2.Q0t 0;t2/ and '.t2/ D 0. Observe that the Oleinik type test function

'.x; t/ WD

´R t2
t
.vm
k
.x; s/ � hm

k
.x; s// ds; for t 0 < t < t2;

0; for t � t2;

is admissible. By using this test function and subtracting (8.1) from (8.2), we obtain

Ik WD
“
Q0
t 0;t2

. � h/.vmk � h
m
k / dxdt

D �

“
Q0
t 0;t2

r.m � hm.x; t// �

Z t2

t

r.vmk .x; s/ � h
m
k .x; s// ds dxdt DW IIk :

Observe that since rvm
k
* rvm and rhm

k
* rhm weakly in L2.Q0t 0;t2/ when k !1,

and v D  a.e. in Q0t 0;t2 , we obtain

IIk
k!1
����! �

1

2

Z
Q0

ˇ̌̌ Z t2

t 0
r.m � hm.x; t// dt

ˇ̌̌2
dx � 0:

Thus, by Corollary 3.11 in [7] and using the facts above, we conclude“
Q0
t 0;t2

jm � hmj.mC1/=m dxdt �
“
Q0
t 0;t2

. � h/.m � hm/ dxdt

D lim
k!1

Ik D lim
k!1

IIk � 0;
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which implies that h D  a.e. in Q0t 0;t2 . Since h 2 C.Q0
t 0;t2Cı

/, it follows that h D 

everywhere in Q0 � .t 0; t2�.
Since h � v everywhere in Q0

t 0;t2Cı
and v �  everywhere in Qt1; t2 , it follows that

 D h � v �  everywhere in Q0 � .t 0; t2�, i.e., v D  everywhere in Q0 � .t 0; t2�. Since
this holds for arbitrary Q0 b Q and a.e. t 0 2 .t1; t2/, the claim follows.

Proof of Theorem 8.1. Fix .xo; to/2�T and denote

� D ess lim inf
.y;s/!.xo;to/

s<to

u.y; s/:

Without loss of generality, we may assume that � is connected. By lower semicontinuity
of u we have that � � u.xo; to/. Thus, if � D 0 there is nothing to prove. Let us suppose
that � > 0.

Suppose that also u.xo; to/ > 0. Then, it follows that to 2ƒi for some i 2 I , which
further implies that there exists ro > 0 such thatBr .xo/� .to � r2; to/b��ƒi for every
r < ro. This implies that � > 0. Furthermore, for any  2 .0; �/, there exists r < ro such
that u �  a.e. in Br .xo/ � .to � r2; to/. Now v D min¹u; º is a supercaloric function
satisfying v D  a.e. in Br .xo/ � .to � r2; to/. By Lemma 8.4, it follows that v D 

everywhere in Br .xo/ � .to � r2; to�, i.e., u �  everywhere in Br .xo/ � .to � r2; to�. In
particular, u.xo; to/ �  . Since  � u.xo; to/ � � and  2 .0; �/ was arbitrary, we have
� D u.xo; to/.

Then suppose that u.xo; to/ D 0 and � > 0. From the latter, it follows that there exist
" > 0 and r > 0 such that

ess inf
Br .xo/�.to�r2;to/

u � ":

Thus,
ess inf
Br .xo/

u. �; t / � "

for a.e. t 2 .to � r2; to/. Let .ti / be a sequence in .to � r2; to/ for which above holds for
every i 2N, and ti ! to as i !1. Since u.xo; to/ D 0 implies that u.x; to/ D 0 for all
x 2�, we may use Lemma 4.7 to conclude

0 < " � ess inf
Br .xo/

u. �; ti / �

«
Br .xo/

u.x; ti / dx
i!1
���! 0;

which is a contradiction. Thus � D 0, which completes the proof.

In order to summarize our results on the connections between nonnegative supercaloric
functions and weak supersolutions, we consider the classes

W D ¹u� W u is a weak supersolution in �T º;
� D ¹u W u is a supercaloric function in �T º;

�E D
®
u W u2 � ; um 2L2loc.0; T IH

1
loc.�// \ L

1=m
loc .�T /

¯
;

Wb D ¹u� W u2W ; u is locally essentially bounded in �T º;
�b D ¹u W u2 � ; u is locally bounded in �T º;

where .�/� denotes the ess lim inf-regularization defined in Theorem 2.11.
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As a direct consequence of Lemmas 3.6, 5.4 (or Theorem 5.3) and Theorem 8.1,
together with the examples presented in Sections 6 and 7, we can conclude the follow-
ing connections of nonnegative supercaloric functions and weak supersolutions.

Corollary 8.5. Let 0 < m < 1. Then W ¨ � , W D �E and Wb D �b .

Funding. K. Moring has been supported by the Magnus Ehrnrooth Foundation.
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