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Epsilon-regularity for almost-minimizers of anisotropic
free interface problem with Hölder dependence on the

position

Luca Esposito, Lorenzo Lamberti, and Giovanni Pisante

Abstract. We establish an "-regularity result for almost-minimizers of a class of variational prob-
lems involving both bulk and interface energies. The bulk energy is of Dirichlet type. The surface
energy exhibits anisotropic behavior and is defined by means of an ellipsoidal density that is Hölder
continuous with respect to the position variable.

1. Introduction and statements

The existence and regularity of solutions to variational problems, encompassing both bulk
and interface energies, have been extensively studied across various disciplines and remain
a focal point of much mathematical research. These problems serve to describe a broad
spectrum of phenomena in applied sciences, including nonlinear elasticity, materials sci-
ence and image segmentation in computer vision (see, for instance, [2,4,12,27–30,32,35]).
A model integral functional initially introduced to study minimal energy configurations of
two conducting materials by R. V. Kohn, G. Strang in [33] and F. Murat, L. Tartar in [41],
and later recovered by L. Ambrosio, G. Buttazzo in [3] and F. H. Lin in [37] is the follow-
ing: Z

�

�E .x/jruj
2 dx C P.EI�/; (1.1)

where �E WD ˛1E C ˇ1�nE , 0 < ˛ < ˇ, with E � � � Rn and u 2 H 1.�/. Here, 1E
stands for the characteristic function of E and P.EI�/ denotes the perimeter of the set E
in�. In [3,37], the authors proved the existence and regularity for minimal configurations
.E;u/ of (1.1). In a broader context, F. H. Lin and R. V. Kohn addressed more generalized
Dirichlet energies as outlined in [38],Z

�

.F.x; u;ru/C 1EG.x; u;ru//dx C

Z
�\@�E

‰.x; �E .x//dHn�1.x/; (1.2)

with the constraints
u D u0 on @� and jEj D d:
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Here, �E is the measure-theoretic outward unit normal to the reduced boundary @�E
of E. The regularity for the minimizing pair .E; u/ is quite intricate to establish, espe-
cially concerning the free boundary @E due to the interaction between the bulk term and
the perimeter term. In order to illustrate the regularity results of the free boundary, we
introduce the following notations. We define the set of regular points of @E as follows:

Reg.E/

WD
®
x 2 @E j @E is a C 1;
 hypersurface in B".x/ � � for some " > 0 and 
 2 .0; 1/

¯
;

and accordingly, we define the set of singular points of @E as

†.E/ WD .@E \�/ n Reg.E/:

The most notable advancements in regularity results regarding the free boundary @E of
minimizers of the functional (1.1) have been accomplished by G. De Philippis, A. Figalli
in [16] and N. Fusco, V. Julin in [29]. They proved that for minimal configurations of the
functional (1.1) it turns out that

dimH .†.E// � n � 1 � � (1.3)

for some � > 0 depending only on ˛;ˇ. In the more general case of integral functionals of
the type (1.2), the theory of regularity is much less developed. The first regularity result
established in the broader context of integral energies of the type (1.2) was accomplished
by F. H. Lin and R. V. Kohn in 1999; indeed, in [38], they proved, for minimal configura-
tions .E; u/ of (1.2), that Hn�1.†.E// D 0. The assumptions made by Lin and Kohn to
achieve such regularity results require C k differentiability for F ,G, and‰ as they appear
in (1.2), where k � 2 and F , G grow quadratically with respect to the gradient variable.
On the other hand, nothing is proved concerning the Hausdorff dimension of†.E/ like in
(1.3).

We also point out that the problem can be set in a non-quadratic framework as well.
This instance is less studied and only few regularity results are available (see [4,9–11,21,
27, 34]).

In some recent papers, such as [23,24], the Hausdorff dimension estimate of†.E/ has
been attained, significantly relaxing the differentiability assumption required on F andG.
Indeed, in [23], only Hölder continuous dependence of F and G with respect to x and u
is necessary. However, it is worth noting that the aforementioned result is demonstrated
under the assumption that ‰.�/ D j�j, representing the conventional perimeter.

In this paper, we will deal with the anisotropic case. Anisotropic surface energies
manifest in various physical phenomena, such as crystal formation (refer to [5, 6]), liquid
droplets (see [12,18,26,36,40,44]), and capillary surfaces (see [17,19]). F. J. Almgren was
a pioneer in investigating the regularity of surfaces that minimize anisotropic variational
problems in his seminal paper [1]. Early studies in this field were primarily conducted
within the framework of varifolds and currents. While these results can be applied to
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surfaces of any codimension, they necessitate relatively stringent regularity assumptions
on the integrands of the anisotropic energies, as outlined in [7, 42]. More recently, the
regularity assumptions on the integrands ‰ of the anisotropic energies have been relaxed,
as highlighted in [20, 25], where it is assumed that ‰.x; �/ is of class C 1 and ‰.�; �/ is
Hölder continuous.

In this context, it is worth mentioning a very recent paper [43], which establishes the
regularity result for quasi-minimizers of anisotropic surface energies within the class of
sets of finite perimeter, under the assumption of Hölder continuous dependence of ‰ on
x. This outcome is derived within the scope of ellipsoidal variational energies, as detailed
in (1.4). Notably, surface energies of this specific form were initially introduced in a
paper [45] by J. Taylor. In more detail, in the case that the elliptic integrand is given by
‰.x; �/ D hA.x/�; �i1=2, where A.x/ D .aij .x//ni;jD1 is an elliptic and bounded matrix,
the surface energy takes the form

ˆA.EIG/ WD

Z
G\@�E

hA.x/�E ; �E i
1=2 dHn�1.x/: (1.4)

We assume thatA is uniformly elliptic; that is, there exist two constants 0 < ��ƒ<C1
such that

�j�j2 � hA.x/�; �i � ƒj�j2 8x 2 �; 8� 2 Rn:

We require that A is Hölder continuous with exponent � 2 .0; 1�, that is,

ŒA�C�.�/ D sup
x¤y
x;y2�

jA.x/ � A.y/j

jx � yj�
< C1:

To avoid excessive technicalities, we assume that the bulk energy follows a Dirichlet-type
distribution, although the outcome could be generalized to functionals of type (1.2). Given
a bounded open set � � Rn, we consider the following functional:

FA.E; uI�/ D

Z
�

�E jruj
2 dx CˆA.EI�/; (1.5)

where �E D ˛1E C ˇ1�nE , 0 < ˛ < ˇ, and E � �. The achieved "-regularity result
is presented within the scope of local almost-minimizers. This makes it applicable in
a variety of concrete applications, as we will demonstrate, for example, in the case of
constrained problems. The following definition naturally arises in several problems from
material sciences (see, for example, [3,22,37–39], compare also with [43, Definition 2.2]).

Definition 1.1 (.�; �/-minimizers). Let U b �. The energy pair .E; u/ is a .�; �/-
minimizer in U of the functional FA, defined in (1.5), if for every Br .x0/ � U

FA.E; uIBr .x0// � FA.F; vIBr .x0//C �jE M F j
n�1
n C

�
n ;

whenever .F; v/ is an admissible test pair, namely, F is a set of finite perimeter with
F M E b Br .x0/ and v � u 2 H 1

0 .Br .x0//.
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The main theorem proved in this paper is the following theorem.

Theorem 1.2. Let .E; u/ be a .�; �/-minimizer of FA. Then, the following statements
hold:

(i) there exists a relatively open set � � @E such that � is a C 1;� -hypersurface for
all 0 < � < �

2
;

(ii) there exists � > 0 depending on n; ˛; ˇ such that

Hn�1��..@E n �/ \�/ D 0:

We outline the strategy adopted to prove this result. In the regularity theory for ƒ-
minimizers of the perimeter, the regular part � of the boundary of E is detected by the
points that have a uniformly small excess in some ball (see Definition 2.3). A decay rela-
tion for the excess plays a crucial role, as it triggers an iteration argument that shows that
the unitary normal vector varies continuously along � , thus ensuring its smoothness.

For our problem, it is not possible to prove a decay relation for the excess without
considering the interaction between the surface and the bulk energy. Indeed, as outlined in
Section 7, if the excess of a point x0 in @E in some ball Br .x0/ is small, we are only able
to prove an improvement relation for the excess, which involves the rescaled Dirichlet
integral of u in Br .x0/ as well.

In this context, � is defined as the collection of the points of the boundary of E that
are centers of balls Br .x0/ where the excess e.E;x0; r/ and the rescaled Dirichlet integral
Du.x0; r/ (see (4.1)) of u are sufficiently small. In order to prove the smoothness of � , a
decay relation for the sum of these quantities is required.

A decay relation for the rescaled Dirichlet integral of u around points of small excess
is proved separately in Proposition 4.7.

A much finer argument is needed to establish an improvement relation for the excess
(see Theorem 7.3). One of the key concepts enabling us to adapt the standard excess-decay
arguments, commonly used in the context of perimeter minimizers, to the anisotropic set-
ting is a specific change of variable Tx0 . This affine transformation, already used in [13,31,
43], maps Wulff shapes of ˆA, which are ellipsoids, into balls Br .x0/ (see Section 2). We
first prove a version of the excess improvement theorem for transformed couples . zE; Qu/D
.Tx0.E/; u ı T

�1
x0
/, which are .���

n
2 ; �/-minimizers of Fx0;Ax0 (see (3.1)). The proof of

the latter is carried out by contradiction and is based on a blow-up argument. In this step,
we can benefit of using the classical perimeter instead of the anisotropic one around x0,
being Ax0.x0/ D I (see Proposition 6.1). The main ideas can be summarized as follows.

(1) Density lower and upper bounds on the perimeter (see Theorems 4.2 and 4.4)
guarantee that around points x0 of @ zE with small excess, the boundary of zE almost
coincides with the graph of a Lipschitz function f (see Theorem 4.9). Therefore,
it is possible to apply the area formula directly along @ zE up to a small error. The
portion of the boundary that does not match is controlled by the excess at that
scale.
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(2) The function f is quasi-harmonic. We need a quantitative estimate of its quasi-
harmonicity by a power of the excess with an exponent greater than 1

2
. In this step,

the minimality of the optimal couple . zE; Qu/ and the first variation formulae play a
crucial role.

(3) The direction of improvement of the excess is detected by the unitary normal vec-
tor to the graph of f . By means of a reverse Poincaré inequality (see Theorem 6.3),
the excess at a smaller scale at x0 is controlled by the flatness of @ zE around x0,
which is in turn estimated by the excess via the good properties of f .

The paper is divided into sections, which reflect the proof strategy. Section 2 collects nota-
tion and preliminary definitions. In Section 3, some invariance properties of the excess and
minimality under the transformation Tx0 and rescaling are proved. In Section 4, we estab-
lish density lower and upper bounds for the perimeter of E and their consequences, which
are the decay of the rescaled Dirichlet energy and the Lipschitz approximation theorem.
Section 5 is devoted to prove a compactness result for sequences of .�; ˛/-minimizers,
which serves as a crucial tool for estimating the size of the singular set of E, as stated in
Theorem 1.2. Section 6 includes the reverse Poincaré inequality, which is the counterpart
of the well-known Caccioppoli’s inequality for weak solutions of elliptic equations. Sec-
tion 7 contains the proof of Theorem 1.2. The main ingredients to achieve such a result
are a first variation formula for the bulk energy of the functional Fx0;Ax0 and two versions
of the excess improvement theorem. Finally, Section 8 deals with the application of the
regularity result to a volume constrained problem via a penalization argument.

2. Notation and preliminaries

In the rest of the paper, we will write h�; �i for the inner product of vectors �; � 2 Rn,
and consequently, j�j WD h�; �i

1
2 will be the corresponding Euclidean norm. As usual, !n

stands for the Lebesgue measure of the unit ball in Rn. We denote by Sn�1 the unit sphere
of Rn.

We will write x D .x0; xn/ for all x 2 Rn, where x0 2 Rn�1 collects the first n � 1
components of x and xn 2 R is its nth component. Accordingly, we denote by r 0 D
.@x1 ; : : : ; @xn�1/ the gradient with respect to the first n � 1 components.

The n-dimensional ball in Rn with center x0 and radius r > 0 is denoted as

Br .x0/ D ¹x 2 Rn W jx � x0j < rº:

If x0 D 0, we simply write Br in place of Br .x0/. The .n � 1/-dimensional ball in Rn�1

with center x00 and radius r > 0 is denoted by

Dr .x00/ D ¹x
0
2 Rn�1 W jx0 � x00j < Rº:

If u is integrable in BR.x0/, we set

ux0;r D
1

!nrn

Z
Br .x0/

udx D �

Z
Br .x0/

udx:
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If E � Rn and t 2 Œ0; 1�, the set of points of E of density t is defined as

E.t/ D
®
x 2 Rn W jE \ Br .x/j D t jBr .x/j C o.r

n/ as r ! 0C
¯
:

Given a Lebesgue measurable set E � Rn, we say that E is of locally finite perimeter if
there exists a Rn-valued Radon measure �E (called the Gauss–Green measure of E) such
that Z

E

r� dx D

Z
Rn

� d�E 8� 2 C 1c .R
n/:

Moreover, we denote the perimeter of E relative to G � Rn by P.EIG/ D j�E j.G/.
The support of �E can be characterized by

spt�E D
®
x 2 Rn W 0 < jE \ Br .x/j < !nr

n; 8r > 0
¯

(see [39, Proposition 12.19]). It holds that spt�E � @E. If E is of locally finite perimeter,
then the reduced boundary @�E of E is the set of those x 2 Rn such that

�E .x/ WD lim
r!0C

�E .Br .x//

j�E j.Br .x//

exists and belongs to Sn�1. In the following, the topological boundary @E must be under-
stood by considering the representative E.1/ of E, for which it holds that @�E D @E.

The properties of the matrix A in the definition of the anisotropic perimeter (1.4)
guarantee that ˆA.EIF / is comparable to the classical perimeter, as observed in [43].

Remark 2.1 (Comparability to perimeter). ˆA.EI �/ is comparable to P.EI �/, since for
Borel sets F � Rn, by the uniform ellipticity of A, it follows that

�1=2P.EIF / � ˆA.EIF / � ƒ
1=2P.EIF /: (2.1)

If A equals the identity matrix I , we have the isotropic case ˆA.EI �/ D P.EI �/.

It will be useful in the sequel to build comparison sets by replacing regions within an
open set. The anisotropic perimeter can be split as in the isotropic case.

Proposition 2.2 (Comparison by replacement). IfE andF are sets of locally finite perime-
ter in Rn and G is an open set of finite perimeter in Rn such that

Hn�1.@�G \ @�E/ D Hn�1.@�G \ @�F / D 0;

then the set defined by
F0 D .F \G/ [ .E nG/

is a set of locally finite perimeter in Rn. Moreover, if G b U and U is an open subset of
Rn, then

ˆA.F0IU/ D ˆA.F IG/CˆA.EIU n xG/CˆA.GIE
.1/ M F .1//:
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Proof. The proof can be easily obtained from [39, Theorem 16.16]. Its details can be
found in [43, Proposition 4.3].

In the following, for R > 0 and � 2 Sn�1, we will denote the cylinder centered in x0
with radius R oriented in the direction � by

CR.x0; �/ WD x0 C
®
y 2 Rn W jhy; �ij < R; jy � hy; �i�j < R

¯
;

and the cylinder of radius R oriented in the direction en with height 2 by

KR.x0/ WD DR.x00/ � .�1; 1/:

In the following, for simplicity of notation, we will write

CR D CR.0; en/ and KR D KR.0/:

In addition, we introduce some usual quantities involved in regularity theory.

Definition 2.3 (Excess). Let E be a set of locally finite perimeter, x 2 @E, r > 0 and
� 2 Sn�1. We give the following definitions.

(1) The cylindrical excess of E at the point x, at the scale r and with respect to the
direction � is defined as

eC .E; x; r; �/ WD
1

rn�1

Z
Cr .x;�/\@�E

j�E � �j
2

2
d Hn�1

D
1

rn�1

Z
Cr .x;�/\@�E

Œ1 � h�E ; �i�dHn�1:

(2) The spherical excess of E at the point x, at the scale r and with respect to the
direction � is defined as

e.E; x; r; �/ WD
1

rn�1

Z
@�E\Br .x/

j�E � �j
2

2
dHn�1:

(3) The spherical excess of E at the point x and at the scale r is defined as

e.E; x; r/ WD min
�2Sn�1

e.E; x; r; �/:

We omit the dependence on the set when it is clear from the context.

3. Scaling and change of variables

Given a symmetric positive matrix A, the diagonal matrix D of his eigenvalues and the
matrix V of orthonormal eigenvectors, we have A D VDV �1. Accordingly, we define
A1=2 D VD1=2V �1. BeingA�1=2A1=2 D I , the anisotropic perimeter ofE coincides with
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the standard perimeter of the image of E under the affine change of variable y D A�1=2x
up to the scaling factor det.A�1=2/. Localizing this argument freezing the matrixA�1=2.x/
in a point x0 2 @E, we define the affine change of variables

Tx0.x/DA
�1=2.x0/.x � x0/C x0; T �1x0 .y/DA

1=2.x0/.y � x0/C x0 8x;y 2Rn;

and the matrix-valued function

Ax0.y/ WD A
� 12 .x0/A.T

�1
x0
.y//A�

1
2 .x0/ 8y 2 Rn;

which satisfiesAx0.x0/D I . It can be easily verified that the set T �1x0 .Br .x0// is the Wulff
shape of ˆA.x0/. Moreover, the following inclusions hold:

B
�
1
2 r
.x0/ � T

�1
x0
.Br .x0// � B

ƒ
1
2 r
.x0/

for any r > 0 and x0 2 Rn. Under the affine change of variable Tx0 , the minimality with
respect to the functional FA will be rephrased through the following functional:

Fx0;D.E; uI�/ D

Z
�

�E jruA
� 12 .x0/j

2 dx CˆD.EI�/ (3.1)

(see Proposition 3.1).
In the sequel, we collect two invariance properties of .�; �/-minimizers under the

transformation Tx0 and rescaling.

Proposition 3.1 (Invariance of almost-minimizers under Tx0 ). Let .E; u/ be a .�; �/-
minimizer of FA in � and x0 2 �. Then, .Tx0.E/; u ı T

�1
x0
/ is a .���

n
2 ; �/-minimizer of

Fx0;Ax0 in the balls Br .z/ such that B
.ƒ=�/

1
2 r
.z/ � Tx0.�/.

Proof. We use the notation E0 WD Tx0.E/ and u0 WD u ı T �1x0 . Let Br .z/ � Tx0.�/ be
such that B

.ƒ=�/
1
2 r
.z/� Tx0.�/ and .F0; v0/ be an admissible test pair, i.e., F0 is a set of

finite perimeter with F0 M E0 b Br .z/ and v0 � u0 2 H 1
0 .Br .z//. First, we notice that,

setting F D T �1x0 .F0/, as in [43, Proposition 4.1], we have

E M F b T �1x0 .Br .z// � Bƒ
1
2 r
.T �1x0 .z// � �;

where the last condition is satisfied because r <ƒ�
1
2 dist.T �1x0 .z/; @�/. Moreover, for vD

v0 ı Tx0 , we have v � u 2 H 1
0 .T

�1
x0
.Br .z/// whose extension to zero in B

ƒ
1
2 r
.T �1x0 .z//,

denoted again by v � u, belongs to H 1
0 .Bƒ

1
2 r
.T �1x0 .z///. It follows, by the hypothesis of

.�; �/-minimality of the pair .E; u/, that

FA
�
E; uIB

ƒ
1
2 r
.T �1x0 .z//

�
� FA

�
F; vIB

ƒ
1
2 r
.T �1x0 .z//

�
C �jE M F j

n�1C�
n :

This simplifies to

FA
�
E; uIT �1x0 .Br .z//

�
� FA

�
F; vIT �1x0 .Br .z//

�
C �jE M F j

n�1C�
n :
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We now calculate, using [43, formula (4.9)] and the change of variables y D Tx0.x/,

Fx0;Ax0 .E0; u0IBr .z//

D

Z
Br .z/

�E0 jru0A
� 12 .x0/j

2 dy CˆAx0 .E0IBr .z//

D det.A�
1
2 .x0//

�Z
T�1x0 .Br .z//

�E jruj
2 dx CˆA

�
EIT �1x0 .Br .z/

��
D det.A�

1
2 .x0//FA

�
E; uIT �1x0 .Br .z///

�
� det.A�

1
2 .x0//

�
FA
�
F; vIT �1x0 .Br .z//

�
C �jE M F j

n�1C�
n
�
;

where with a slight abuse of notation we have denoted �E0 D ˛1E0 C ˇ1Tx0 .�/nE0 . The

result follows by observing that det.A�
1
2 .x0// � �

� n2 and

det.A�
1
2 .x0//FA

�
F; vIT �1x0 .Br .z//

�
D Fx0;Ax0 .F0; v0IBr .z//:

Proposition 3.2 (Scaling of .�; �/-minimizers). For x0 2 � and r > 0, let .E; u/ be a
.�;�/-minimizer of Fx0;Ax0 in� (or a .�;�/-minimizer of FA). Then,

�
‰x0;r .E/; r

� 12u ı

‰�1x0;r
�

is a .�r�; �/-minimizer of Fx0;Ax0ı‰
�1
x0;r

in ‰x0;r .�/, (or respectively, a .�r�; �/-
minimizer of FA in ‰x0;r .�/), where

‰x0;r .x/ WD
x � x0

r
8x 2 Rn:

Proof. LetBs.z/�‰x0;r .�/. Applying the change of variables y D‰x0;r .x/, we deduce
that

Fx0;Ax0ı‰
�1
x0;r

�
‰x0;r .E/; u ı‰

�1
x0;r
IBs.z/

�
D

Z
Bs.z/

�‰x0;r .E/jr.u ı‰
�1
x0;r

/A�
1
2 .x0/j

2 dy CˆAx0ı‰
�1
x0;r
.‰x0;r .E/IBs.z//

D
1

rn�1

�Z
Brs.x0Crz/

�E jruA
� 12 .x0/j

2 dx CˆAx0 .EIBrs.x0 C rz//

�
D

1

rn�1
Fx0;Ax0 .E; uIBrs.x0 C rz//:

Let .F; v/ be such that F is a set of finite perimeter, F M ‰x0;r .E/ b Bs.z/ and v 2 .u ı
‰�1x0;r /CH

1
0 .Bs.z//. It holds that ‰�1x0;r .F / M E b Brs.x0 C rz/ � � and v ı‰x0;r �

u 2 H 1
0 .Brs.x0 C rz//. Using the .�; �/-minimality of .E; u/, we get

Fx0;Ax0ı‰
�1
x0;r

�
‰x0;r .E/; u ı‰

�1
x0;r
IBs.z/

�
D

1

rn�1
Fx0;Ax0 .E; uIBrs.x0 C rz//

�
1

rn�1

�
Fx0;Ax0

�
‰�1x0;r .F /; v ı‰x0;r IBrs.x0Crz/

�
C�j‰x0;r .E/ M ‰x0;r .F /j

n�1C�
n
�

D Fx0;Ax0ı‰
�1
x0;r
.F; vIBs.z//C �r

�
jE M F j

n�1C�
n ;
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which means that
�
‰x0;r .E/; r

� 12u ı ‰�1x0;r
�

is a .�r�; �/-minimizer of Fx0;Ax0ı‰
�1
x0;r

in
‰x0;r .�/.

The following proposition will be useful in the proof of Theorem 7.3, where we need
to compare the excess of the transformed couple and of the original couple.

Proposition 3.3 (Comparability of the excess under change of variable Tx0 and radius).
There exists a positive constant c1 D c1.n; �; ƒ/ such that if E is a set of locally finite
perimeter and x0 2 @E, then, for any r > 0,

c�11 e
�
Tx0.E/; x0; ƒ

� 12 r
�
� e.E; x0; r/ � c1e

�
Tx0.E/; x0; �

� 12 r
�
:

Proof. For r > 0 and � 2 Sn�1, we define the ellipsoidal excess at the point x0, at the
scale r and with respect to the direction � the following quantity:

eW .E; x0; r; �/ WD min
�2Sn�1

1

rn�1

Z
T�1x0 .Br .x0//\@

�E

j�E � �j
2

2
dHn�1:

Leveraging the inclusions

T �1x0

�
B
ƒ
� 12 r

.x0/
�
� Br .x0/ � T

�1
x0

�
B
�
� 12 r

.x0/
�
;

we infer that

c�1eW
�
E; x0; ƒ

� 12 r; �
�
� e.E; x0; r; �/ � c eW

�
E; x0; �

� 12 r; �
�

(3.2)

for some positive constant c D c.n; �;ƒ/. In [43, Proposition 5.1], it is shown that

c�1e
�
Tx0.E/; x0; s;

A
1
2 .x0/�

jA
1
2 .x0/�j

�
� eW .E; x0; s; �/ � c e

�
Tx0.E/; x0; s;

A
1
2 .x0/�

jA
1
2 .x0/�j

�
for any s > 0. Using the previous inequalities from below for s D ƒ�

1
2 r and from above

for s D ��
1
2 r , and inserting them in (3.2), we get

c�1e
�
Tx0.E/; x0; ƒ

� 12 r;
A
1
2 .x0/�

jA
1
2 .x0/�j

�
� e.E; x0; r; �/ � c e

�
Tx0.E/; x0; �

� 12 r;
A
1
2 .x0/�

jA
1
2 .x0/�j

�
:

Minimizing over � 2 Sn�1, we obtain the thesis.

4. Energy density estimates

The main goal of this section is to prove density lower and upper bounds for the perimeter
of a .�; �/-minimizer. As consequences, the decay of the associate rescaled Dirichlet
energy, defined for u 2 H 1.Br .x0// as

Du.x0; r/ WD
1

rn�1

Z
Br .x0/

jruj2 dx; (4.1)
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and the Lipshitz approximation theorem will follow. In view of this aim, we mention a
result stating a decay estimate for elastic minima around points where either the density
of E is close to 0 or 1, or the set E is asymptotically close to a hyperplane. We address
the reader to [29, Proposition 2.4] for the proof.

Lemma 4.1. Let .E;u/ be a .�;�/-minimizer of the functional FA. There exists �0 2 .0;1/
such that the following statement is true: for all � 2 .0; �0/ there exists "0 D "0.�/ > 0
such that if Br .x0/ b � and one of the following conditions holds:

(i) jE \ Br .x0/j < "0jBr .x0/j,

(ii) jBr .x0/ nEj < "0jBr .x0/j,

(iii) there exists a halfspace H such that j.EMH/\Br .x0/j
jBr .x0/j

< "0,

then
Du.x0; � r/ � c2�Du.x0; r/

for some positive constant c2 D .c2n; ˛; ˇ/.

The second result we want to mention, which will be used later, provides an upper
bound for the whole energy FA on balls. The proof is rather standard and we address the
reader to [23, Theorem 3] for the details. Here, we just give a sketch of the proof, under-
lining the only points where the presence of the anisotropy entails different computations.

Theorem 4.2 (Energy upper bound). Let .E; u/ be a .�; �/-minimizer of FA in �. Then,
for every open set U b � there exists a positive constant c3 D c3.n; ˛; ˇ; ƒ; �; �; U;

krukL2.�// such that for every Br .x0/ � U it holds

FA.E; uIBr .x0// � c3r
n�1:

Proof. Let Br .x0/ � U b �. Testing the minimality of .E; u/ with .E [ Br .x0/; u/, we
deduce that

FA.E; uI�/ � FA.E [ Br .x0/; uI�/C �jBr .x0/ nEj
�Cn�1
n : (4.2)

The only difference in our proof, compared to the isotropic case, is the use of the follow-
ing formula concerning anisotropic perimeter and set operations. The latter follows from
Proposition 2.2 applied with F D U , G D Br .x0/, that is, for almost all r > 0,

ˆA.E [ Br .x0/IU/ D ˆA.EIU n Br .x0//CˆA.Br .x0/IU nE/:

Making FA explicit and getting rid of the common terms in (4.2) we obtain the following
energy estimate on Br .x0/ nE:Z
Br .x0/nE

.ˇ � ˛/jruj2 dx CˆA.EIBr .x0// � ˆA.Br .x0/IU nE/C �jBr .x0/ nEj
�Cn�1
n

� ƒ1=2Hn�1.@Br .x0//C c.n; �/r
n�1

� c.n;ƒ; �/rn�1:
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Starting from this estimate the proof follows verbatim the argument used in [23, Theorem
3], because henceforth only variations of the function u are used and the perimeter is not
involved anymore. Indeed, using a blow-up argument, it can be proved that there exist
M D M.n; ˛; ˇ/ > 0 and � 2 .0; 1

2
/, depending on ƒ=�, such that for every ı 2 .0; 1/

there exists h0 2 N such that for any Br .x0/ � U , we haveZ
Br .x0/

jruj2 � h0r
n�1 or

Z
B� r .x0/

jruj2 dx �M�n�ı
Z
Br .x0/

jruj2 dx;

from which the thesis follows.

In the following lemma, we show that the energy FA decays “fast” in the balls where
the perimeter of E is “small”. Lemma 4.1 is utilized in its proof, specifically in instances
(i) and (ii).

Lemma 4.3. Let .E; u/ be a .�; �/-minimizer in � of the functional FA. For every � 2
.0; 1/ there exists "1 D "1.�/ > 0 such that if Br .x0/ � � and P.EIBr .x0// < "1rn�1,
then

FA.E; uIB� r .x0// � c4
�
�nFA.E; uIBr .x0//C .� r/

�Cn�1
�

for some positive constant c4 D c4.n; ˛; ˇ; �;ƒ; �; �; krukL2.�// > 0 independent of �
and r .

Proof. Let � 2 .0; 1/ and Br .x0/ � �. Without loss of generality, we may assume that
� < 1

2
. We rescale .E; u/ in B1 by setting Er D E�x0

r
and ur .y/ D r�

1
2u.x0 C ry/, for

y 2 B1. Applying Proposition 3.2, we have that .Er ; ur / is a .�r�; �/-minimizer of F zA
in B1, where zA D A ı‰�1x0;r . Observing that

rn�1F zA.Er ; ur IB� / D FA.E; uIB� r .x0//;

we have to prove that there exists "1 D "1.�/ such that, if P.EIB1/ < "1, then

F zA.E; uIB� / � c4
�
�nF zA.E; uIB1/C �

�Cn�1r�
�
:

For simplicity of notation, we will still denoteEr byE, ur by u and zA byA. We note that,
since P.EIB1/ < "1, by the relative isoperimetric inequality, either jB1 \Ej or jB1 nEj
is small, and thus, Lemma 4.1 can be applied. We assume that jB1 n Ej � jB1 \ Ej, the
other case being similar. By the coarea formula and the relative isoperimetric inequality,
we get Z 2�

�

Hn�1.@B� nE/ d� � jB1 nEj � c.n/P.EIB1/
n
n�1 :

Therefore, we may choose � 2 .�; 2�/, independent of n, such that it holds Hn�1.@�E \

@B�/ D 0 and

Hn�1.@B� nE/ �
c.n/

�
P.EIB1/

n
n�1 �

c.n/"
1
n�1
1

�
P.EIB1/: (4.3)
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Now, we test the minimality of .E; u/ with .F0; u/, where F0 WD E [ B�. We remark
that, being Hn�1.@�E \ @B�/ D 0, we can apply Proposition 2.2 with U D F D B1 and
G D B�, thus obtaining

ˆA.F0IB1/ D ˆA.E [ B�IB1/ D ˆA.EIB1 n B�/CˆA.B�IB1 nE
.1//: (4.4)

The .�r�; �/-minimality of .E; u/ suppliesZ
B1

�E jruj
2 dxCˆA.EIB1/�

Z
B1

�F0 jruj
2 dxCˆA.F0IB1/C �r

�
jE M F0j

�Cn�1
n :

Using (4.4) to get rid of the common perimeter terms and recalling that E D E.1/, we
deduce thatZ
B1

�E jruj
2 dx CˆA.EIB�/ �

Z
B1

�F0 jruj
2 dx CˆA.B�IB1 nE/C �r

�
jE M F0j

�Cn�1
n :

Taking into account the comparability to the perimeter (2.1) and perimeter estimate (4.3),
recalling that � 2 .�; 2�/ and getting rid of the common Dirichlet terms, we deduce thatZ
B�

�E jruj
2 dx C �1=2P.EIB� / � ˇ

Z
B2�

jruj2 dx

Cƒ1=2Hn�1.@B� nE/C c.n; �/r
���Cn�1

� ˇ

Z
B2�

jruj2 dx

C
c.n/ƒ1=2

�
"

1
n�1
1 P.EIB1/C c.n; �/r

���Cn�1:

Finally, we choose "1 such that

c.n/ƒ1=2"
1
n�1
1 � �nC1 and c.n/"

n
n�1
1 � "0.2�/jB1j;

where "0 is from Lemma 4.1, thus gettingZ
B2�

jruj2 dx � 2nc2�
n

Z
B1

jruj2 dx:

From these estimates, the result easily follows, applying again the comparability to the
perimeter.

Taking advantage of the established results, we are able to deduce a density lower
bound estimate for the perimeter of a .�; �/-minimizer of FA.

Theorem 4.4 (Density lower bound). Let .E; u/ be a .�; �/-minimizer of FA in � and
U b � be an open set. Then, there exists a constant c5 D c5.n; ˛; ˇ; �; ƒ; �; �; U;

krukL2.�// > 0 such that for every x0 2 @E and Br .x0/ � U , it holds that

P.EIBr .x0// � c5r
n�1: (4.5)

Moreover, Hn�1..@E n @�E/ \�/ D 0.
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Proof. The proof matches that of [23, Theorem 4] exactly, given the comparability to
the perimeter. We start by assuming that x0 2 @�E. Without loss of generality, we may
also assume that x0 D 0. Arguing by contradiction on (4.5), by using Theorem 4.2 and
Lemma 4.3, we can easily prove by induction (see [23, Theorem 4] for the details) that

F .E; uIB��hr / � "1.�/�
�h.��hr/n�1;

where � and � are sufficiently small and "1 is from Lemma 4.3. Starting from this, we
deduce that

lim
�!0C

P.EIB�/

�n�1
D lim
h!C1

P.EIB��hr /

.��hr/n�1
� lim
h!C1

2"1.�/�
�h
D 0;

which implies that x0 62 @�E, that is a contradiction. We recall that we chose the repre-
sentative of @E such that @E D @�E. Thus, if x0 2 @E, there exists .xh/h2N � @

�E such
that xh ! x0 as h!C1,

P.EIBr .xh// � Cr
n�1

andBr .xh/�U , for h large enough. Passing to the limit as h!C1, we get the result.

Definition 4.5 (Ahlfors regularity). A Borel measure � on Rn is said to be d -Ahlfors
regular if there exist two positive constants cA and r0 such that

c�1A rd � �.Br .x// � cAr
d

for all x 2 spt� and 0 < r < r0. According to the notation used in [8], we denote

A.cA; r0/ WD
°
E � Rn W E is a set of locally finite perimeter satisfying

@E D spt�E and its perimeter measure j�E j is

.n � 1/-Ahlfors regular with constants r0 and cA
±
:

Remark 4.6. It is evident that Theorems 4.2 and 4.4 ensure the belonging of the .�; �/-
minimizers of FA to the class A.cA; r0/, for some constant cA identified in such theorems.
Naturally, for x0 2 � and r > 0, the .���

n
2 r�; �/-minimizers of Fx0;Ax0ı‰

�1
x0;r

obtained
through the affine transformation Tx0 and the scaling ‰�1x0;r (see Proposition 3.1 and
Proposition 3.2) belong to the class A

�
cA.

ƒ
�
/
n
2 ; r0

rƒ
1
2

�
.

The next result of this section establishes that around the points of the boundary of
the set where the excess is “small”, the Dirichlet integral decays “fast”. In its proof,
Lemma 4.1 plays a crucial role in instance (iii).

Proposition 4.7 (Decay of the rescaled Dirichlet integral). For every � 2 .0;1/ there exists
"2 D "2.�/ > 0 such that if .E; u/ is a .�; �/-minimizer of FA in Br .x0/, with x0 2 @E,
and e.x0; r/ � "2, then

Du.x0; � r/ � c6�Du.x0; r/

for some positive constant c6 D c6.n; ˛; ˇ; krukL2.�//.
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Proof. Applying a usual scaling argument, by Proposition 3.2, we assume by contradic-
tion that for some � 2 .0; 1/ there exist two positive sequences ."h/h2N and .rh/h2N and
a sequence ..Eh; uh//h2N of .�r�

h
; �/-minimizers of FAı‰�1x0;rh

in B1 with equibounded
energies such that 0 2 @Eh,

e.Eh; 0; 1/ D "h ! 0 and Duh.0; �/ >
xC�Duh.0; 1/ (4.6)

for some positive constant xC to be chosen. Thanks to the energy upper bound (Theo-
rem 4.2) and the compactness of .Eh/h2N , we may assume that Eh ! E in L1.B1/ and
0 2 @E. Since, by lower semicontinuity, the excess of E at 0 is null, E is a half-space in
B1, say H . In particular, for h large, it holds that

j.Eh M H/ \ B1j < "0.�/jB1j;

where "0 is from Lemma 4.1, which gives a contradiction with the inequality (4.6), provid-
ed we choose xC > c2, where c2 is also from Lemma 4.1.

The last results also come as consequences of the density lower and upper bounds
proved above. The height bound lemma is a standard step in the proof of regularity because
it is one of the main ingredients to prove the Lipschitz approximation theorem. We remark
that this is stated for .�r�; �/-minimizers of FAx0ı‰x0;r , which are still Ahlfors regular
(see Remark 4.6). The proof of this result can be found in [8, Theorem A.2].

Lemma 4.8 (Height bound). For x0 2 � and r > 0, let .E; u/ be a .�r�; �/-minimizer
of FAx0ı‰

�1
x0;r

in B1. There exist two positive constants "3 and c7, depending on n, ˛, ˇ, �,
ƒ, �, �, krukL2.B1/, such that if 0 2 @E and

e.0; 1; en/ < "3;

then
sup

y2@E\B1=2

jyn � .x0/nj � c7e.0; 1; en/
1

2.n�1/ :

Proceeding as in [39], we state the following Lipschitz approximation lemma, which
is a consequence of the height bound lemma. Its proof follows exactly as in [8, Theorem
A.3]. It is a fundamental step in the long journey to the regularity because it provides a
connection between the regularity theories for parametric and non-parametric variational
problems. Indeed, we are able to prove for .�r�; �/-minimizers that the smallness of
the excess guaranties that @E can be locally almost entirely covered by the graph of a
Lipschitz function.

Theorem 4.9 (Lipschitz approximation). For x0 2� and r > 0, let .E;u/ be a .�r�;�/-
minimizer of FAx0ı‰

�1
x0;r

in B1. There exist two positive constants "4 and c8, depending on
n; ˛; ˇ; �;ƒ; krukL2.B1/, such that if 0 2 @E and

e.0; 1; en/ < "4;
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then there exists a Lipschitz function f W Rn�1 ! R such that

sup
x02Rn�1

jf .x0/j � c8e.0; 1; en/
1

2.n�1/ ; kr 0f kL1 � 1

and
Hn�1..@E M �f / \ B1=2/ � c8e.0; 1; en/;

where �f is the graph of f . Moreover,Z
D 1
2

jr
0f j2 dx0 � c8e.0; 1; en/:

5. Compactness for sequences of minimizers

In this section, we prove a standard compactness result for sequences of .�;�/-minimizers.
Given two positive constants M1 and M2, we set

BM1;M2 WD
®
A 2 C 
 .RnIRn ˝Rn/ W A is symmetric, ŒA�C 
 < M1; kAk1 < M2

¯
:

We define

A D
®
A 2 C 
 .RnIRn ˝Rn/ W �j�j2 � hA.x/�; �i � ƒj�j2; 8x; � 2 Rn

¯
\ BM1;M2 :

(5.1)

Lemma 5.1 (Compactness). Let .Eh; uh/ be a sequence of .�h; �/-minimizers of FAh in
� such that suph FAh.Eh; uhI�/ < C1, Ah ! A1 uniformly on compact sets, where
the matrices A1; Ah are in the class A defined in (5.1), �h ! � 2 RC. There exist a (not
relabeled) subsequence and a .�; �/-minimizer .E; u/ of FA1 in � such that, for every
open set U b �, it holds that

Eh ! E in L1.U /; uh ! u in H 1.U /; ˆAh.EhIU/! ˆA1.EIU/:

In addition,

if xh 2 @Eh \ U and xh ! x 2 U; then x 2 @E \ U; (5.2)

if x 2 @E \ U; there exists xh 2 @Eh \ U such that xh ! x: (5.3)

Finally, if we assume also thatruh*0 weakly inL2
loc
.�IRn/ and �h! 0, as h!C1,

then E is a local minimizer of ˆA1 , that is

ˆA1.EIBr .x0// � ˆA1.F IBr .x0//; (5.4)

for every set F of locally finite perimeter such that F M E b Br .x0/ � �.
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Proof. Using the boundedness condition on suph FAh.Eh; uhI�/, we may assume that
uh weakly converges to u in H 1.U / and strongly in L2.U /, and 1Eh converges to 1E in
L1.U /, as h! C1. By a lower semicontinuity argument, we start proving the .�; �/-
minimality of .E; u/. Let us fix Br .x0/ b U and assume for simplicity of notation that
x0D 0. Let .F;v/ be a test pair such that F is a set of locally finite perimeter, F ME bBr
and supp.u� v/b Br . Possibly passing to a subsequence and using Fubini’s theorem, we
may choose 0 < r0 < � < r such that F ME bB�,E nBr0 DF nBr0 , supp.u� v/bB�,
and in addition,

Hn�1.@B� \ @
�E/ D Hn�1.@B� \ @

�Eh/ D 0

and
lim
h!0

Hn�1.@B� \ .F
.1/ M E

.1/

h
// D 0: (5.5)

Now, we choose a cut-off function  2 C 10 .Br / such that  � 1 in B� and define

vh D  v C .1 �  /uh; Fh WD .F \ B�/ [ .Eh n B�/

to test the minimality of .Eh; uh/. Thanks to the .�h;�/-minimality of .Eh; uh/ and using
also Proposition 2.2, we deduce thatZ
Br

�Eh jruhj
2dx CˆAh.EhIBr /

�

Z
Br

�Fh jrvhj
2dx CˆAh.FhIBr /C �hjFh M Ehj

�Cn�1
n

�

Z
Br

�Eh.1 �  /jruhj
2dx C

Z
Br

�Fh jrvj
2dx C

Z
BrnB�

C jr j2ju � uhj
2dx

CˆAh.F IB�/CˆAh.EhIBr n
xB�/CˆAh.B�IF M Eh/C �hjFh M Ehj

�Cn�1
n :

(5.6)

Using the uniform convergence Ah! A1, the strong convergence uh! u in L2, condi-
tion (5.5), and getting rid of common terms, from the latter estimate we can writeZ

Br

�Eh jruhj
2dx CˆA1.EhIB�/

�

Z
Br

�Fh jrvj
2dx CˆA1.F IB�/C �hjFh M Ehj

�Cn�1
n C "h

for some "h! 0. By the lower semicontinuity of the anisotropic perimeter (see [43, Propo-
sition 3.1]), the equi-integrability of .ruh/h2N and the lower semicontinuity of Dirichlet
integral, we infer thatZ
Br

�E jruj
2dxCˆA1.EIB�/�

Z
Br

�F jrvj
2dx CˆA1.F IB�/C�jF M Ej

�Cn�1
n :



L. Esposito, L. Lamberti, and G. Pisante 18

Letting  # �B� , we getZ
B�

�E jruj
2dx CˆA1.EIB�/ �

Z
B�

�F jrvj
2dx CˆA1.F IB�/C �jF M Ej

�Cn�1
n :

(5.7)
Similarly, choosing E D F and u D v in (5.6), and arguing as before, we get

lim sup
h!C1

�Z
B�

�Eh jruhj
2dx CˆA1.EhIB�/

�
�

Z
B�

�E jruj
2dx CˆAh.EIB�/:

Letting  # �B� , we conclude

lim
h!C1

ˆAh.EhIB�/ D ˆA1.EIB�/; lim
h!C1

Z
B�

�Eh jruhj
2dx D

Z
B�

�E jruj
2dx:

With a usual argument we can deduce uh ! u in W 1;2.U /, ˆAh.EhIU/! ˆA1.EIU/

for every open set U b �. The topological information stated in (5.2) and (5.3) follows
as in [39, Theorem 21.14], indeed they are a consequence of the lower and upper density
estimates given above. Finally, if ruh * 0 weakly in L2

loc
.�IRn/ and �h ! 0, we can

choose v D u in (5.7), deriving (5.4).

6. Reverse Poincaré inequality

In this section, we derive a reverse Poincaré inequality which lets us estimate the excess
around a point of the boundary of the transformed set with its flatness. The first step in the
proof is to establish a weak form of this inequality.

In the following proposition, it is proved that if the anisotropy matrix valued in a point
x0 is the identity, then around x0 the anisotropic perimeter is comparable to the perimeter.

Proposition 6.1. Let x0 2 � and r > 0. There exists a positive constant c9 D c9.n; ˛; ˇ;
�;ƒ; �;�; krukL2.�// such that if .E; u/ is a .�r�; �/-minimizer of Fx0;Ax0ı‰

�1
x0;r

in B1,
with 0 2 @E \ B1, thenZ

B�

�E jruA
� 12 .x0/j

2 dx C P.EIB�/

�

Z
B�

�F jrvA
� 12 .x0/j

2 dx C P.F IB�/C c9
�
� C ŒA�C 


�
r��n�1C�

for every .F; v/ such that F M E b B� � B1 and v 2 uCH 1
0 .B�/.

Proof. Let .F; v/ be such that F M E b B� and v 2 uCH 1
0 .B�/. We can assume thatZ

B�

�E jruA
� 12 .x0/j

2 dx C P.EIB�/ �

Z
B�

�F jrvA
� 12 .x0/j

2 dx C P.F IB�/:
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We remark that Ax0 ı‰
�1
x0;r

is Hölder continuous and

�
Ax0 ı‰

�1
x0;r

�
C�
�
ƒ

�
2

�
ŒA�C�r

�:

Since .Ax0 ı‰
�1
x0;r

/.0/ D I , by the Hölder continuity of Ax0 ı‰
�1
x0;r

, we infer that

j�E j D
˝�
Ax0 ı‰

�1
x0;r

�
.0/�E ; �E

˛ 1
2

�
˝�
Ax0 ı‰

�1
x0;r

�
.x/ �E ; �E

˛ 1
2 C

1

2�

�
Ax0 ı‰

�1
x0;r

�
C�
��

�
˝�
Ax0 ı‰

�1
x0;r

�
.x/ �E ; �E

˛ 1
2 C

ƒ
�
2

2�2
ŒA�C�.r�/

�

for any x 2 B�. Integrating over B� with respect to the measure Hn�1 @�E and adding
to both sides the term

R
B�
�E jruA

� 12 .x0/j
2, we obtainZ

B�

�E jruA
� 12 .x0/j

2 dx C P.EIB�/

�

Z
B�

�E jruA
� 12 .x0/j

2 dx CˆAx0ı‰
�1
x0;r
.EIB�/C

ƒ
�
2

2�2
ŒA�C�.r�/

�P.EIB�/:

Arguing in a similar way, we getZ
B�

�F jrvA
� 12 .x0/j

2 dx CˆAx0ı‰
�1
x0;r
.F IB�/

�

Z
B�

�F jrvA
� 12 .x0/j

2 dx C P.F IB�/C
ƒ

�
2

2�2
ŒA�C�.r�/

�P.F IB�/:

Applying the definition of .�r�; �/-minimality of .E; u/ and using the previous two
inequalities, we writeZ

B�

�E jruA
� 12 .x0/j

2 dx C P.EIB�/

�

Z
B�

�E jruA
� 12 .x0/j

2 dx CˆAx0ı‰
�1
x0;r
.EIB�/C

ƒ
�
2

2�2
ŒA�C�.r�/

�P.EIB�/

�

Z
B�

�F jrvA
� 12 .x0/j

2 dx CˆAx0ı‰
�1
x0;r
.F IB�/

C �r�jE M F j
n�1C�
n C

ƒ
�
2

2�2
ŒA�C�.r�/

�P.EIB�/

�

Z
B�

�F jrvA
� 12 .x0/j

2 dx C P.F IB�/C c.n/�r
��n�1C�

C
ƒ

�
2

2�2
ŒA�C�.r�/

�ŒP.EIB�/C P.F IB�/�
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�

Z
B�

�F jrvA
� 12 .x0/j

2 dx C P.F IB�/C c.n/�r
��n�1C�

C
ƒ

�
2

2�2
ŒA�C�.r�/

�

�
2P.EIB�/C

Z
B�

�E jruj
2 dx

�
�

Z
B�

�F jrvA
� 12 .x0/j

2 dx C P.F IB�/C c.n; �;ƒ; c3/.� C ŒA�C 
 /r
��n�1C�;

where c3 is the constant appearing in Theorem 4.2, which leads to the thesis.

At this point, we are able to establish a weak form of the reverse Poincaré inequal-
ity. The strategy for its proof is the same outlined in [39, Lemma 24.9] (see also [43,
Lemma 7.3] or [23, Lemma 10]).

Lemma 6.2 (Weak reverse Poincaré inequality). Let x0 2 � and r > 0. If .E; u/ is a
.�r�; �/-minimizer of Fx0;Ax0ı‰

�1
x0;r

in C4 such that

jxnj <
1

8
8x 2 C2 \ @E;ˇ̌̌̌²

x 2 C2 nE W xn < �
1

8

³ˇ̌̌̌
D

ˇ̌̌̌²
x 2 C2 \E W xn >

1

8

³ˇ̌̌̌
D 0;

and if z 2 Rn�1 and s > 0 are such that

Ks.z/ � C2; Hn�1.@E \ @Ks.z// D 0; (6.1)

then, for every jcj < 1
4

,

P.EIK s
2
.z// �Hn�1.D s

2
.z//

� c10

²��
P.EIKs.z// �Hn�1.Ds.z//

�
�

Z
Ks.z/\@�E

.xn � c/
2

s2
d Hn�1

� 1
2

C

Z
Ks.z/
jruj2 dx C

�
� C ŒA�C�

�
r�
³

for some positive constant c10 D c10.n; ˛; ˇ; �;ƒ; �; �; krukL2.�//.

Proof. We may assume that z D 0. The set function

m.G/ D P.EIC2 \ p�1.G// �Hn�1.G/ for G � D2;

where p denotes the projection on the plane ¹xn D 0º, defines a Radon measure on Rn�1,
supported in D2. Since E is a set of locally finite perimeter, by [39, Theorem 13.8] there
exist a sequence .Eh/h2N of open subsets of Rn with smooth boundary and a vanishing
sequence ."h/h2N � RC such that

Eh
loc
�! E; Hn�1 @Eh ! Hn�1 @E; @Eh � I"h.@E/;
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as h!C1, where I"h.@E/ is a tubular neighborhood of @E with half-length "h. By the
coarea formula, we get

Hn�1.@K�s \ .E
.1/ M Eh//! 0 for a.e. � 2

�2
3
;
3

4

�
:

Moreover, provided h is large enough, by @Eh � I"h.@E/, we get

jxnj <
1

4
8x 2 C2 \ @Eh;°

x 2 C2 W xn < �
1

4

±
� C2 \Eh �

°
x 2 C2 W xn <

1

4

±
:

Therefore, given � 2 .0; 1
4
/ and jcj < 1

4
, we are in position to apply [39, Lemma 24.8] to

every Eh to deduce that there exists Ih � .23 ;
3
4
/, with jIhj � 1

24
, and for any � 2 Ih, there

exists an open subset Fh of Rn of locally finite perimeter such that

Fh \ @K�s D Eh \ @K�s; (6.2)

K s
2
\ @Fh D D s

2
� ¹cº;

P.FhIK�s/ �Hn�1.D�s/ � c.n/
²
�.P.EhIKs/ �Hn�1.Ds//

C
1

�

Z
Ks\@Eh

jxn � cj
2

s2
dHn�1

³
: (6.3)

Clearly,
T
h2N

S
k�h jIkj �

1
24
>0, and thus, there exist a divergent subsequence .hk/k2N

and � 2 .2
3
; 3
4
/ such that

� 2
\
k2N

Ihk and lim
k!C1

Hn�1.@K�s \ .E
.1/ M Ehk // D 0:

We will write Fk in place of Fhk . We consider the comparison set Gk D .Fk \ K�s/ [

.E nK�s/. By applying [39, formula (16.33)], we infer that

P.Gk IKs/ D P.Fk IK�s/C P.EIKs nK�s/C �k ;

where, thanks to (6.2),

�k D Hn�1.@K�s \ .E
.1/ M Fk// D Hn�1.@K�s \ .E

.1/ M Ehk //! 0;

as k !C1. We apply Proposition 6.1, deducing the following relation:Z
spt.u�v/

�E jruA
� 12 .x0/j

2 dx C P.EIB Q�/ �

Z
spt.u�v/

�G jrvA
� 12 .x0/j

2 dx

C P.GIB Q�/C c.n; ˛; ˇ; �;ƒ; �; �; krukL2.�//.�r
�
C ŒA�C�r

�/ Q�n�1C�

for every .G; v/ such that G M E b B Q� � C4 and v 2 uCH 1
0 .B Q�/.
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Now, we test the previous relation of minimality with .Gk ; u/, as E M Gk b Ks �

B4 � C4, and get rid of the common terms obtaining

P.EIK�s/ � P.Fk IK�s/C �k

C c
�
n; ˛; ˇ; �;ƒ; �; �; krukL2.�/

�� Z
K�s
jruj2 dxC.�r�CŒA�C�r

�/

�
:

(6.4)
Thus, since m is nondecreasing and � 2

�
2
3
; 3
4

�
, by (6.4) and (6.3), we deduce that

P.EIK s
2
/ �Hn�1.D s

2
/

D m.D s
2
/ � m.D�s/ D P.EIK�s/ �Hn�1.D�s/

� P.Fk IK�s/ �Hn�1.D�s/C �k C c
� Z

K�s
jruj2 dx C

�
� C ŒA�C�

�
r�
�

� c.n/

²
�
�
P.Ehk IKs/ �Hn�1.Ds/

�
C
1

�

Z
Ks\@Ehk

jxn � cj
2

s2
dHn�1

³
C c

� Z
Ks
jruj2 dx C .� C ŒA�C�/r

�

�
;

where c D c.n; ˛; ˇ; �;ƒ; �;�; krukL2.�//. Letting k!C1, assumption (6.1) implies
that P.Eh.k/IKs/! P.EIKs/, and therefore,

P.EIK s
2
/�Hn�1.D s

2
/ � c

²
�
�
P.EIKs/�Hn�1.Ds/

�
C
1

�

Z
Ks\@E

jxn � cj
2

s2
dHn�1

C

Z
Krs
jruj2 dx C .� C ŒA�C�/r

�

³
(6.5)

for any � 2 .0; 1
4
/. If � > 1

4
, then

P.EIK s
2
/ �Hn�1.D s

2
/ D m.D s

2
/ � m.D�s/

� 4�P.EIK�s/ �Hn�1.D�s/ � c.n/�
�
P.EIKs/ �Hn�1.Ds/

�
;

and thus (6.5) holds true for � > 0, provided we choose c.n/ � 4. Minimizing over �, we
get the thesis.

Finally, we are able to prove the main result of this section.

Theorem 6.3 (Reverse Poincaré inequality). Let x0 2 � and r > 0. There exist two posi-
tive constants c11 D c11.n;˛;ˇ;�;ƒ;�;�;krukL2.�// and "5 D "5.n/ such that if .E;u/
is a .�r�; �/-minimizer of Fx0;Ax0ı‰

�1
x0;r

in C4� .0; �/, with 0 2 @E, � > 0 and

eC .0; 4�; �/ < "5;
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then

eC .0; �; �/ � c11
�

1

�nC1

Z
@E\C2� .0;�/

jh�; xi � cj2dHn�1

C
1

�n�1

Z
C2� .0;�/

jruj2 dx C .� C ŒA�C�/.� r/
�

�
(6.6)

for every c 2 R.

Proof. The proof of this result follows the same strategy employed in [23, Theorem 6]. We
emphasize only small differences between the two proofs. Up to a rotation and employing
a usual scaling argument, by Proposition 3.2, with a small abuse of notation, we may
assume that .E; u/ is a .�.� r/�; �/-minimizer of Fx0;Ax0ı‰

�1
x0;� r

in C4, with 0 2 @ zE.
Leveraging the compactness of the perimeter and Theorem 4.9, it is possible to show that

jxnj <
1

4
8x 2 C2 \ @E;ˇ̌̌̌²

x 2 C2 nE W xn < �
1

8

³ˇ̌̌̌
D

ˇ̌̌̌²
x 2 C2 \E W xn >

1

8

³ˇ̌̌̌
D 0:

Thus, for any z 2 Rn�1 and s > 0 such that

Ks.z/ � C2; Hn�1.@E \ @Ks.z// D 0;

we apply Lemma 6.2, deducing that, for every jcj < 1
4

,

P.EIKs.z// �Hn�1.Ds.z//

� c

²��
P.EIK2s.z// �Hn�1.D2s.z//

�
inf
jcj< 1

4

Z
C2\@E

jxn � cj
2 dHn�1

� 1
2

C

Z
Ks
jruj2 dx C �� r� C ŒA�C�.� r/

�

³
(6.7)

for some positive constant c D c.n; ˛;ˇ; �;ƒ; �;�;krukL2.�//. Hence, proceeding as in
[23, Theorem 6], by a covering argument, it is possible to show that (6.7) implies (6.6).

7. Proof of the main theorem

The strategy adopted to establish the main result involves two key steps: first proving a
first variation formula for the bulk energy of Fx0;Ax0ı‰

�1
x0;r

, then establishing an excess
improvement theorem for transformed couples, which in turn implies an analogous theo-
rem for the original ones.
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Proposition 7.1 (First variation formula for the bulk term). x0 2 �, u 2 H 1.B1/ and
X 2 C 1c .B1IR

n/. We define ˆt .x/ D x C tX.x/ for any x 2 Rn and t > 0. Accordingly,
we define

Et WD ˆt .E/; ut WD u ıˆ
�1
t :

There exist two constants c12 D c12.ˇ; �;rX/ > 0 and t0 > 0 such that it holds thatZ
B1

�Et jrutA
� 12 .x0/j

2 dx �

Z
B1

�E jruA
� 12 .x0/j

2 dx � c12.t C o.t//

Z
B1

jruj2 dx

for any 0 < t < t0.

Proof. Taking into account that

rˆ�1t .ˆt .x// D I � trX.x/C o.t/; Jˆt .x/ D 1C tdivX.x/C o.t/

for any x 2 Rn and t > 0, by the change of variable y D ˆt .x/, we obtainZ
B1

�Et jrutA
� 12 .x0/j

2 dy �

Z
B1

�E jruA
� 12 .x0/j

2 dx

D

Z
B1

�E
ˇ̌
Œru � trurX Cru o.t/�A�

1
2 .x0/

ˇ̌2
.1C tdivX C o.t// dx

�

Z
B1

�E jruA
� 12 .x0/j

2 dx

D

Z
B1

�E
�
jruA�

1
2 .x0/j

2
C jruA�

1
2 .x0/j

2.tdivX C o.t//
�
dx CH.t;ru;rX/

�

Z
B1

�E jruA
� 12 .x0/j

2 dx

D

Z
B1

�E jruA
� 12 .x0/j

2.tdivX C o.t//dx CH.t;ru;rX/; (7.1)

where

H.t;ru;rX/

D

Z
B1

�E
ˇ̌
Œ�trurX Cru o.t/�A�

1
2 .x0/

ˇ̌2
.1C tdivX C o.t//dx

C

Z
B1

2
˝
ruA�

1
2 .x0/; .�trurX Cru o.t//A

� 12 .x0/
˛
.1C tdivX C o.t//dx:

We estimateZ
B1

�E jruA
� 12 .x0/j

2.tdivX C o.t//dx � c.ˇ;�;rX/.t C o.t//
Z
B1

jruj2 dx (7.2)
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and

H.t;ru;rX/ � c.ˇ; �;rX/

Z
B1

.t C o.t//2jruj2.1C tdivX C o.t// dx

C c.ˇ; �;rX/

Z
B1

.t C o.t//jruj2.1C tdivX C o.t// dx

� c.ˇ; �;rX/.t C o.t//

Z
B1

jruj2 dx: (7.3)

Inserting (7.3) and (7.2) in (7.1), we get the desired inequality.

Here, we present the proof of the excess improvement theorem for transformed couples.

Theorem 7.2 (Excess improvement for the transformed couple). For any ! 2 .0; 1/, Q� 2
.0; 1/, zM > 0, Q� 2 .0; 1

16
/ there exists a constant Q" D Q". Q�; zM; Q�/ > 0 such that if . zE; Qu/

is a . Q�; �/-minimizer of Fx0;Ax0 in BQr .x0/, with x0 2 @ zE such that

e. zE; x0; Qr/ � Q"; D Qu.x0; Qr/C Qr
.1�!/�

� zM e. zE; x0; Q� Qr/;

then there exists a constant c13 D c13.n; ˛; ˇ; �;ƒ; �; �; krukL2.�// > 0 such that

e. zE; x0; Q� Qr/ � c13
�
Q�2e. zE; x0; Qr/CD Qu.x0; 4 Q� Qr/C . Q� Qr/

�
�
:

Proof. Let us assume by contradiction that there exist a vanishing sequence . Qrh/h2N �

RC and a sequence .. zEh; Quh//h2N of . Q�; �/-minimizers of Fx0;A in BQrh.x0/, with x0 2
@ zEh, such that

e. zEh; x0; Qrh/ DW "h ! 0; D Quh.x0; Qrh/C Qr
.1�!/�

h
� zM e. zEh; x0; Q�zrh/

and
e. zEh; x0; Q� Qrh/ > xC

�
Q�2e. zEh; x0; Qrh/CD Quh.x0; 4 Q� Qrh/C . Q� Qrh/

�
�

for some constant xC > 0 to be chosen. Employing the usual scaling argument and applying
Proposition 3.2, with a small abuse of notation, we may assume that .. zEh; Quh//h2N is a
sequence of . Q� Qr�

h
; �/-minimizers of Fx0;Ax0ı‰

�1
x0;Qrh

in B1, with 0 2 @ zEh such that

e. zEh; 0; 1/ D "h ! 0; D Quh.0; 1/C Qr
.1�!/�

h
� zM e. zEh; 0; Q�/ (7.4)

and
e. zEh; 0; Q�/ > xC

�
Q�2e. zEh; 0; 1/CD Quh.0; 4 Q�/C . Q� Qrh/

�
�
:

Up to rotating each zEh, we may also assume that, for all h 2 N,

e. zEh; 0; 1/ D
1

2

Z
@ zEh\B1

j�Eh � enj
2 dHn�1:
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Step 1. Thanks to the Lipschitz approximation theorem, for h sufficiently large, there
exists a 1-Lipschitz function fhWRn�1 ! R such that

sup
Rn�1

jfhj � c8"
1

2.n�1/

h
; Hn�1..@ zEh M �fh/ \ B 1

2
/ � c8"h;

Z
D 1
2

jr
0fhj

2 dx0 � c8"h:

(7.5)
We define

gh.x
0/ WD

fh.x
0/ � ah
p
"h

; where ah D �
Z

D 1
2

fh dx
0;

and we assume, up to a subsequence, that ¹ghºh2N converges weakly in H 1.D 1
2
/ and

strongly in L2.D 1
2
/ to a function g. We prove that g is harmonic in D 1

2
. It is enough to

show that

lim
h!C1

1
p
"h

Z
D 1
2

hr 0fh;r
0�ip

1C jr 0fhj2
dx0 D 0

for all � 2 C 10 .D 1
2
/. We fix ı > 0 so that supp � � Œ�2ı; 2ı� � B 1

2
and choose a cut-off

function  WR! Œ0; 1� with supp � .�2ı; 2ı/,  D 1 in .�ı; ı/. Let us define

ˆh.x/ WD x C Qr
!�

h
X.x/; where X.x/ D �.x0/ .xn/en

for x 2 Rn. We apply Proposition 6.1 to deduce that

P. zEhIB 1
2
/ � P.ˆh. zEh/IB 1

2
/

�

Z
B 1
2

�ˆh. zEh/
jr. Quh ıˆ

�1
h /A

� 12 .x0/j
2 dx �

Z
B 1
2

� zEh
jr QuhA

� 12 .x0/j
2 dx

C c
�
n; ˛; ˇ; �;ƒ; �; �; krukL2.�/

��
Q� Qr
�

h
C ŒA�C� Qr

�

h

� 1

2n�1C�
: (7.6)

Using the first variation formula for the perimeter and Proposition 7.1, for h sufficiently
large, we get

P. zEhIB 1
2
/�P.ˆh. zEh/IB 1

2
/D. Qr

!�

h
CO. Qr

2!�

h
//

Z
@ zEh\B 1

2

˝
� zEh

; en
˛˝
r
0�; �0

zEh

˛
dHn�1

(7.7)

and Z
B 1
2

�ˆh. zEh/
jr. Quh ıˆ

�1
h /A

� 12 .x0/j
2 dx �

Z
B 1
2

� zEh
jr QuhA

� 12 .x0/j
2 dx

� c
�
Qr
!�

h
C o

�
Qr
!�

h

�� Z
B 1
2

jr Quhj
2 dx (7.8)



Epsilon-regularity for almost-minimizers of anisotropic free interface problem 27

for some c D c.ˇ;�;r�;r / > 0. Inserting inequalities (7.8) and (7.7) in (7.6), dividing
by
p
"h. Qr

!�

h
CO. Qr

2!�

h
// and taking (7.4) into account, we get

1
p
"h

Z
@ zEh\B 1

2

˝
� zEh

; en
˛˝
r
0�; �0

zEh

˛
dHn�1

�
c

p
"h
�
Qr
!�

h
CO

�
Qr
!�

h

���� Qr!�
h
C o

�
Qr
!�

h

�� Z
B 1
2

jr Quhj
2 dx C Qr

�

h

�
�

c
p
"h

�
D Quh.0; 1/C Qr

.1�!/�

h

�
�

c
p
"h

e. zEh; 0; Q�/ � c
p
"h

for some c D c.n; ˛; ˇ; �;ƒ; Q�;�; ŒA�C� ; Q�; zM;r�;r / > 0. Replacing � with ��, we
infer that

lim
h!C1

1
p
"h

ˇ̌̌̌ Z
@ zEh\B 1

2

h� zEh
; enihr

0�; �0
zEh
i dHn�1

ˇ̌̌̌
D 0: (7.9)

Decomposing @ zEh \ B 1
2
D
�
Œ�fh [ .@

zEh n �fh/� n .�fh n @
zEh/
�
\ B 1

2
, we deduce

�

Z
@ zEh\B 1

2

h� zEh
; enihr

0�; �0
zEh
i dHn�1

D �

Z
�fh
\B 1

2

h� zEh
; enihr

0�; �0
zEh
i dHn�1

�

Z
.@ zEhn�fh

/\B 1
2

h� zEh
; enihr

0�; �0
zEh
i dHn�1

C

Z
.�fh
n@ zEh/\B 1

2

h� zEh
; enihr

0�; �0
zEh
i dHn�1:

Since by the second inequality in (7.5), we haveˇ̌̌̌
1
p
"h

Z
.@ zEhn�fh

/\B 1
2

h� zEh
; enihr

0�; �0
zEh
i dHn�1

ˇ̌̌̌
� c8
p
"h sup

Rn�1

jr
0�j;

ˇ̌̌̌
1
p
"h

Z
.�fh
n@ zEh/\B 1

2

h� zEh
; enihr

0�; �0
zEh
i dHn�1

ˇ̌̌̌
� c8
p
"h sup

Rn�1

jr
0�j;

then, by (7.9) and the area formula, we infer that

0D lim
h!C1

�1
p
"h

Z
�fh
\B 1

2

h� zEh
; enihr

0�; �0
zEh
idHn�1

D lim
h!C1

1
p
"h

Z
D 1
2

hr 0fh;r
0�ip

1C jr 0fhj
2
dx0:

This proves that g is harmonic in D 1
2
.
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Step 2. The proof of this step now follows exactly as in [29] using the height bound
lemma and the reverse Poincaré inequality. We give here the proof for the sake of com-
pleteness. Setting

bh WD
.fh/4Q�p

1C j.r 0fh/4Q� j2
;

�h WD
.�.r 0fh/4Q� ; 1/p
1C j.r 0fh/4Q� j2

:

We want to estimate from above the flatness of @ zEh towards the hyperplane ¹y 2 Rn W˝
y; �h

˛
D bhº in B4Q� with the excess. More precisely, we show that

lim sup
h!C1

1

"h Q�nC1

Z
@ zEh\B4Q�

jh�h; xi � bhj
2 dHn�1

� c.n; c8/ Q�
2: (7.10)

On one hand, by the mean value property of harmonic functions (see [39, Lemma 25.1]),
Jensen’s inequality, semicontinuity, and the third inequality in (7.5), we deduce that

lim sup
h!C1

1

"h Q�
nC1

Z
@ zEh\�fh

\B4Q�

jh�h; xi � bhj
2 dHn�1

D lim sup
h!C1

1

"h Q�
nC1

Z
@ zEh\�fh

\B4Q�

jh�.r 0fh/4Q� ; x
0i C fh.x

0/ � .fh/4Q� j

1C j.r 0fh/4Q� j
2

2q
1C jr 0fh.x

0/j2dx0

� lim sup
h!C1

1

"h Q�
nC1

Z
D4Q�
jfh.x

0/ � .fh/4Q� � h.r
0fh/4Q� ; x

0
ij
2 dx0

D
1

Q�nC1

Z
D4Q�
jg.x0/ � .g/4Q� � h.r

0g/4Q� ; x
0
ij
2 dx0

D
1

Q�nC1

Z
D4Q�
jg.x0/ � g.0/ � hr 0g.0/; x0ij2 dx0

� c.n/ Q�2 sup
x02D4Q�

jg.x0/ � g.0/ � hr 0g.0/; x0ij2

� c.n/ Q�2
Z

D 1
2

jr
0gj2 dx0 � c.n/ Q�2 lim inf

h!C1

Z
D 1
2

jr
0ghj

2 dx0 � c.n; c8/ Q�
2; (7.11)

where we used that D4Q� � D 1
4
, since Q� < 1

16
. On the other hand, from the height bound

lemma (see Lemma 4.8) and (7.5), we immediately get that

lim
h!C1

1

"h

Z
.@ zEhn�fh

/\B2Q�

jh�h; xi � bhj
2 dHn�1

D 0: (7.12)

Hence, combining inequalities (7.11) and (7.12), we conclude that inequality (7.10) is
satisfied. In order to apply the reverse Poincaré inequality, we show that the sequence
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¹eh. zEh; 4 Q�; �h/ºh2N is infinitesimal; indeed, by the definition of excess, Jensen’s inequal-
ity and the third inequality in (7.5), we have

2.4 Q�/n�1 lim sup
h!C1

eh. zEh; 0; 4 Q�; �h/

D lim sup
h!C1

Z
@ zEh\B4Q�

j� zEh
� �hj

2 dHn�1

� lim sup
h!C1

�
2

Z
@ zEh\B4Q�

j� zEh
� enj

2 dHn�1
C 2jen � �hj

2Hn�1.@ zEh \ B4Q� /

�
� lim sup

h!C1

�
4"h C 2H

n�1.@ zEh \ B4Q� /
j..r 0fh/4Q� ;

p
1C j.r 0fh/4Q� j2 � 1/j

2

1C j.r 0fh/4Q� j2

�
� lim sup

h!C1

�
4"h C 4H

n�1.@Eh \ B4Q� /j.r
0fh/4Q� j

2
�

� lim sup
h!C1

�
4"h C 4

Z
D 1
2

jr
0fhj

2 dx0
�
� lim
h!C1

Œ4"h C 4c8"h� D 0:

Therefore, applying the reverse Poincaré inequality, (7.10) and observing that C2Q� � B4Q� ,
we have for h large that

e. zEh; 0; �/ � e. zEh; 0; �; �h/

� c11

�
1

.2 Q�/nC1

Z
@ zEh\C2Q� .0;Q�/

jh�h; xi � bhj
2 dHn�1

CD Quh.0; 4 Q�/C
�
Q� C ŒA�C�

�
.2 Q� Qrh/

�

�
� QC

�
n; ˛; ˇ; �;ƒ; �; �; krukL2.�/

��
Q�2e. zEh; 0; 1/CD Quh.0; 4 Q�/C . Q� Qrh/

�
�
;

which is a contradiction if we choose xC > QC .

We use the previous theorem in the proof of the next result.

Theorem 7.3 (Excess improvement). For any ! 2 .0; 1/, � 2
�
0; �

1
2

ƒ
1
2

�
, M > 0, � 2�

0; �
1
2

16ƒ
1
2

�
there exists a constant "6 D "6.�; M; �/ > 0 such that if .E; u/ is a .�; �/-

minimizer of FA in Br .x0/, with x0 2 @E such that

e.E; x0; r/ � "6; Du.x0; r/C r
.1�!/�

�M e.E; x0; �r/;

then there exists a constant c14 D c14.n; ˛; ˇ; �;ƒ; �; �; krukL2.�// > 0 such that

e.E; x0; � r/ � c14��
�
e.E; x0; r/CDu.x0; r/C r

�
�
:

Proof. Let � 2
�
0; �

1
2

ƒ
1
2

�
, M > 0, � 2

�
0; �

1
2

16ƒ
1
2

�
, and let .E; u/ be a .�; �/-minimizer of

FA in Br .x0/, with x0 2 @E such that

e.E; x0; r/ � "6; Du.x0; r/C r
.1�!/�

�M e.E; x0; �r/:
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Setting
. zE; Qu/ WD

�
Tx0.E/; u ı T

�1
x0

�
; Q� WD ��

n
2 �; Qr WD � r;

where � 2 .0;min¹ƒ�
1
2 ; 1º/, by Proposition 3.1 we have that . zE; Qu/ is a . Q�;�/-minimizer

of Fx0;Ax0 in BQr .x0/. By Proposition 3.3, it holds that

e. zE; x0; Qr/ � xC1e.E; x0; r/

for some positive constant xC1 D xC1.n; �;ƒ/. Furthermore, estimating

D Qu.x0; Qr/ D
1

.� r/n�1

Z
BQr .x0/

jr Quj2 dy D
det.A�

1
2 .x0//

.� r/n�1

Z
T�1x0 .Br .x0//

jruA
1
2 .x0/j

2 dy

�
��

n
2ƒ

.�r/n�1

Z
Br .x0/

jruj2 dy D
��

n
2ƒ

�n�1
Du.x0; r/

and applying again Proposition 3.3, we get

D Qu.x0; Qr/C Qr
.1�!/�

� c.n; �;ƒ/
�
Du.x0; r/C r

.1�!/�
�
� c.n; �;ƒ/M e.E; x0; �r/

� c.n; �;ƒ/M e
�
zE; x0; ��

� 12 r
�
� xC2M e. zE; x0; Q� Qr/

for some positive constant xC2 D xC2.n; �; ƒ/, where Q� WD �
� 12

�
� < 1, since � < ��

1
2 .

Choosing "6 > 0 such that xC1"6 < Q" and setting zM WD xC2M , we apply Theorem 7.2 to
obtain

e. zE; x0; Q� Qr/ � C
�
Q�2e. zE; x0; Qr/CD Qu.x0; 4 Q� Qr/C . Q� Qr/

�
�

for some positive constant C D C.n;˛;ˇ;�;ƒ; �;�;krukL2.�//, where Q� WD �

�
1
2 �
< 1
16

,

since � < �
1
2 �
16

. Leveraging Proposition 3.3, we get

e.E; x0; � r/ D e
�
E; x0; Q��

1
2 Qr
�
� c.n; �;ƒ/e. zE; x0; Q� Qr/

� C
�
Q�2e. zE; x0; Qr/CD Qu.x0; 4 Q� Qr/C . Q� Qr/

�
�
: (7.13)

On one hand, by Proposition 3.3, we observe that

e. zE; x0; Qr/ � c.n; �;ƒ/e
�
E; x0; ƒ

1
2 Qr
�
� c.n; �;ƒ/e.E; x0; r/; (7.14)

being ƒ
1
2 Qr � r . One the other hand, choosing "6 < "2, by Proposition 4.7 it follows that

D Qu.x0; 4 Q� Qr/ � c.n; �;ƒ/Du

�
x0; 4 Q�ƒ

1
2 Qr
�
� c.n; �;ƒ/ Q�Du.x0; r/; (7.15)

since 4 Q�ƒ
1
2 Qr � r , being � < �

1
2

4ƒ
1
2

. Inserting (7.14) and (7.15) in (7.13), we obtain

e.E; x0; � r/ � C
�
Q�2e.E; x0; r/C Q�Du.x0; r/C Q�

�r�
�

� C Q��
�
e.E; x0; r/CDu.x0; r/C r

�
�

� C��
�
e.E; x0; r/CDu.x0; r/C r

�
�
;

which is the thesis.
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Leveraging the results proved in the previous sections, we are able to prove Theo-
rem 1.2.

Proof of Theorem 1.2. Let U b � be an open set. We prove that for every ! 2 .0; 1/ and
� 2 .0; 1/ there exist two positive constants x" D x".�; U / and xC such that if x0 2 @E,
Br .x0/ � U and e.x0; r/CD.x0; r/C r

.1�!/� < x", then

e.x0; � r/CD.x0; � r/C .� r/
.1�!/�

� xC� .1�!/�
�
e.x0; r/CD.x0; r/C r

.1�!/�
�
:

(7.16)
We fix � 2 .0; 1/. Setting

x� WD
�
1
2

16ƒ
1
2

; x� WD
�
1
2

ƒ
1
2

;

we may assume without loss of generality that

� < min
²
x�;
x�

2

³
D x�:

Furthermore, we fix � WD 2� < x� . We distinguish two cases.

Case 1. Du.x0; r/C r
.1�!/� � ��1e.x0; �r/. Choosing x" < "6.�; �; �/ it follows from

Theorem 7.3 that

e.x0; � r/ � c14��
�
e.x0; r/CDu.x0; r/C r

�
�
:

Furthermore, choosing x" < "2.�/, applying Proposition 4.7, we get (7.16).

Case 2. e.x0; �r/ � �.Du.x0; r/C r
.1�!/�/. By the property of the excess at different

scales, we infer that

e.x0; � r/ � 2n�1e.x0; �r/ � 2n�1�
�
Du.x0; r/C r

.1�!/�
�
;

obtaining (7.16).
Thus, choosing x" D min¹"2.�/; "6.2�; �; �/º, we conclude that the inequality (7.16) is

verified.
We fix � 2 .0; .1�!/�

2
/ and choose �0 2 .0;1/ such that xC� .1�!/�0 � �2�0 and we define

� \ U WD
°
x 2 @E \ U W e.x; r/CD.x; r/C r .1�!/� < x".�0; U /

for some r > 0 such that Br .x0/ � U
±
:

We note that � \ U is relatively open in @E. We show � \ U is a C 1;� -hypersurface.
Indeed, inequality (7.16) implies via standard iteration argument that if x0 2 � \ U there
exist r0 > 0 and a neighborhood V of x0 such that for every x 2 @E \ V it holds

e.x; �k0 r0/CD.x; �k0 r0/C .�
k
0 r0/

.1�!/�
� �2�k0 for k 2 N0:
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In particular, e.x; �k0 r0/ � �
2�k
0 and, arguing as in [29], we obtain that for every x 2

@E \ V and 0 < s < t < r0 it holds

j.�E /s.x/ � .�E /t .x/j � ct
�

for some constant c D c.n; �0; r0/, where

.�E /t .x/ D �

Z
@E\Bt .x/

�E dHn�1:

The previous estimate first implies that � \ U is C 1. By a standard argument, we then
deduce again from the same estimate that � \ U is a C 1;� -hypersurface. Since ! is
arbitrary, we gain that � is a C 1;� -hypersurface, for any � 2 .0; �

2
/. We define � WDS

i .� \ Ui /, where .Ui /i is an increasing sequence of open sets such that Ui b � and
� D

S
i Ui . We are left to prove that there exists � > 0 such that

Hn�1��.@E n �/ D 0:

Setting
† D

®
x 2 @E n � W lim

r!0
D.x; r/ D 0

¯
;

by [29, Lemma 2.1], we have that ru 2 L2.1C�/
loc

.�/ for some � D �.n; ˛; ˇ/ > 1 and we
have that

dimH

�®
x 2 � W lim sup

r!0

D.x; r/ > 0
¯�
� n � 1 � �:

The conclusion follows in a standard way as in [29] (see also [14] and [15]) showing
that † D ; if n � 7 and dimH .†/ � n � 8 if n � 8. In both cases, Lemma 5.1 will be
employed.

8. An application to a constrained problem

In this section, we show an application of Theorem 1.2 to the following constrained prob-
lem:

min
E2A.�/

v2u0CH
1
0 .�/

®
FA.E; vI�/ W jEj D d

¯
; (Pc)

where u0 2H 1.�/, 0 < d < j�j are given and A.�/ is the class of all subsets of� with
finite perimeter. We assume that � is connected.

In this perspective, we need to distinguish the Hölder exponent of the matrix A, which
we denote here by 
 , from the exponent � appearing in the Definition 1.1. In Theorem 8.2,
we show that, for sufficiently large values of � > 0, minimizing couples of (Pc) are solu-
tions of the following penalized problem:

min
E2A.�/

v2u0CH
1
0 .�/

F�.E; vI�/; (P )
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where the functional F� is defined by

F�.E; vI�/ WD FA.E; vI�/C �
ˇ̌
jEj � d

ˇ̌

:

Now, we prove the penalization theorem. For simplicity of notation, we denote

a.x; �/ D
˝
A.x/�; �

˛ 1
2 8x; � 2 Rn:

It will be advantageous to have some estimates about the dependence of the integrand a
on x and �.

Remark 8.1 (Continuity of a with respect to x and �). It is straightforward to check that
the following inequalities hold:

ja.x; �/ � a.y; �/j �
1

2
p
�
ŒA�C� jx � yj

�
8x; y 2 Rn; j�j D 1; (8.1)

ja.x; �/ � a.x; �/j �
ƒ
p
�
j� � �j 8x 2 Rn; 8 �; � 2 Rn: (8.2)

As explained before, the proof of the equivalence between the solution of the con-
strained problem (Pc) and the penalized problem (P ) follows. We adapt a result proved
in [22] to our setting.

Theorem 8.2. There exists �0 > 0 such that if .E; u/ is a minimizer of the functional

F�.F;w/ D

Z
�

�F jrwj
2 dx CˆA.F I�/C �

ˇ̌
jF j � d

ˇ̌
 (8.3)

for some � � �0 > 0, among all configurations .F; w/ such that w D u0 on @�, then
jEj D d and .E; u/ is a minimizer of problem (Pc). Conversely, if .E; u/ is a minimizer
of problem (Pc), then it is a minimizer of (8.3), for all � � �0.

Proof. The argument is very similar to the one in [22, Theorem 1] (see also [24] and [23]).
For the reader’s convenience, we give here the sketch of the proof, emphasizing main ideas
and some differences with respect to the case treated in [22].

The first part of the theorem can be proved by contradiction. We assume that there
exist a positive sequence .�h/h2N such that �h ! C1, as h! C1, and a sequence of
configurations .Eh; uh/ minimizing F�h such that uh D u0 on @� and jEhj ¤ d , for all
h 2N. We choose an arbitrary fixed E0 �� with finite perimeter such that jE0j D d . We
point out that

F�h.Eh; uh/ � F .E0; u0/ WD ‚: (8.4)

Without loss of generality, we can assume that jEhj < d , the case jEhj > d being similar.
Our aim is to show that for h sufficiently large, there exists a configuration . zEh; Quh/ such
that F�h.

zEh; Quh/ < F�h.Eh; uh/, thus proving the result by contradiction.
By condition (8.4), it follows that the sequence .uh/h2N is bounded in H 1.�/, the

perimeters of the sets Eh in � are uniformly bounded and jEhj ! d . Therefore, possibly
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extracting a not relabeled subsequence, we may assume that there exists a configuration
.E; u/ such that uh ! u weakly in H 1.�/, 1Eh ! 1E a.e. in �, where the set E is
of finite perimeter in � and jEj D d . The couple .E; u/ will be used as a reference
configuration for the definition of . zEh; Quh/.

Step 1. Construction of . zEh; Quh/. Proceeding exactly as in [22], since� is connected, we
can take a point x 2 @�E \ �. We observe that, given " > 0 sufficiently small, we can
find around x a point x0 and r > 0 such that

jE \ Br=2.x
0/j < "rn; jE \ Br .x

0/j >
!nr

n

2nC2
:

We assume without loss of generality that x0 D 0, and from now on, we denote by Br
the balls centered at the origin. From the convergence of Eh to E we have that, for h
sufficiently large,

jEh \ Br=2j < "r
n; jEh \ Br j >

!nr
n

2nC2
: (8.5)

Now, we define the following bi-Lipschitz map used in [22] which maps Br into itself:

f .x/ WD

8̂̂̂<̂
ˆ̂:
.1 � �h.2

n � 1//x if jxj <
r

2
;

x C �h

�
1 �

rn

jxjn

�
x if

r

2
� jxj < r;

x if jxj � r;

(8.6)

for some 0 < �h < 1=2n such that, setting

zEh D f .Eh/; Quh D uh ı f
�1;

we have j zEhj < d . It holds that

F�h.uh; Eh/ � F�h. Quh;
zEh/ D

�Z
Br

�Eh jruhj
2 dx �

Z
Br

� zEh
jr Quhj

2 dx

�
C
�
ˆA.Eh; xBr / �ˆA. zEh; xBr /

�
(8.7)

C �h
�
.d � jEhj/



� .d � j zEhj/



�

D I1;h C I2;h C I3;h:

For simplicity of notation, we will denote in the following:

g.y/ D f �1.y/ 8y 2 Rn:

We will use in the sequel some estimates for the map f that can be easily obtained by
direct computations (see [22] for the explicit calculations). These estimates are trivial for
jxj<r=2, whereas they can be deduced by the explicit expression ofrf for r=2< jxj<r ,
that is,

@fi

@xj
.x/ D ıij C �h

��
1 �

rn

jxjn

�
ıij C nr

n xixj

jxjnC2

�
8 i; j 2 ¹1; : : : ; nº:
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There exists a constant C D C.n/ depending only on n such that

rg.y/ � I

 � C.n/�h 8y 2 Br ; (8.8)

1C C.n/�h � Jf .x/ � 1C 2
nn�h 8x 2 Br : (8.9)

Step 2. Estimate of I1;h. Performing the change of variables y D f .x/, and observing
that 1 zEh ı f D 1Eh , we get

I1;h D

Z
Br

�Eh.x/
�
jruh.x/j

2
�
ˇ̌
ruh.x/ ı rf

�1.f .x//
ˇ̌2
Jf .x/

�
dx:

By means of the same computation as in [22], using (8.8) and (8.9), we deduce that

I1;h � � xC1‚�h (8.10)

for some positive constant xC1 D xC1.n/.

Step 3. Estimate of I2;h. . In order to estimate I2;h we can use a generalized area formula
for maps between rectifiable sets involving anistropies. We recall that (see [39, Proposition
17.1]), if E is a set of locally finite perimeter in Rn, then f .E/ is a set of locally finite
perimeter in Rn and

@�f .E/ D f .@�E/; �f .E/.y/ D
Œrg.y/�t .�E .y//

jŒrg.y/�t .�E .y//j
8y 2 @�f .E/:

Using [39, formula (17.6)], we can easily deduce thatZ
@�f .E/

�.f �1.y// dHn�1
y D

Z
@�E

�.x/Jf .x/j.rg ı f /t�E .x/j dHn�1
x (8.11)

for any Borel function � defined on @�E. If we choose �.x/ D a.f .x/; �f .E/.f .x/// in
(8.11), we deduce that

ˆA.f .E// D

Z
@�E

a
�
f .x/; Œrg.f .x//�t�E .x/

�
Jf .x/ dHn�1

x :

For the proof of the aforementioned formula in a more general framework, the reader is
addressed to [43, Proposition A.1]. Now, we are ready to estimate the following quantity:

I2;h D
�
ˆA.Eh; xBr / �ˆA. zEh; xBr /

�
D

Z
@�Eh\ xBr

�
a
�
f .x/; Œrg.f .x//�t�Eh.x/

�
� a

�
f .x/; �Eh.x/

��
Jf .x/ dHn�1

x

C

Z
@�Eh\ xBr

�
a
�
f .x/; �Eh.x/

�
� a

�
x; �Eh.x/

��
Jf .x/ dHn�1

x

C

Z
@�Eh\ xBr

ŒJf .x/ � 1�a.x; �Eh.x//dHn�1
x D J1;h C J2;h C J3;h:
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Using (8.8) and (8.2), we deduce that

jJ1;hj �
ƒ
p
�

Z
@�Eh\ xBr

Jf .x/
ˇ̌�
.rg/t � I

�
�Eh.x/

ˇ̌
dHn�1

x � C.n/‚
ƒ
p
�
�h:

Applying (8.1), we obtain

jJ2;hj �
ŒA�C 


2
p
�

Z
@�Eh\ xBr

Jf .x/jf .x/ � xj
 dHn�1
x �

ŒA�C 


2
p
�
C.n/‚�




h
:

Finally, from (8.9), we have

jJ3;hj �

Z
@�Eh\ xBr

n2na.x; �Eh.x//�h dHn�1
x � n2n‚

p
ƒ�h:

Summarizing, we conclude that

I2;h � � xC2‚�



h
(8.12)

for some positive constant xC2 D xC2.n; �;ƒ; ŒA�C 
 /.

Step 4. Estimate of I3;h. The following estimate is contained in [23, Theorem 2] and we
detail it for reader’s convenience.

First, we recall (8.5), (8.6), and (8.9), thus getting

j zEhj � jEhj D

Z
Eh\BrnBr=2

.Jf .x/ � 1/dx C

Z
Eh\Br=2

.Jf .x/ � 1/dx

�

� !n

2nC2
� "

�
�hr

n
�
�
1 �

�
1 � .2n � 1/�h

�n�
"rn

� �hr
n
h !n
2nC2

� " � .2n � 1/n"
i
:

Therefore, if we choose 0 < " < x".n/ for some x" sufficiently small, we have that

�h.j zEhj � jEhj/ � �hC.n/�hr
n: (8.13)

Moreover, if denoting ıh WD d � jEhj, we choose �h in such a way that j zEhj � jEhj � ıh=2
thus respecting the condition j zEhj< d . Taking this into account, proceeding as before and
using (8.9), we have

j zEhj � jEhj D

Z
Eh\Br

.Jf .x/ � 1/dx � n2n�hr
n:

Then, we choose �h such that

ıh � �h �
ıh

n2nC1rn
:
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We remark that in the last condition we imposed also that �h is comparable with ıh, which
is crucial in the following estimate. Resuming (8.13) we can conclude

I3;h D �h
�
.d � jEhj/



� .d � j zEhj/



�
� �h




.d � jEhj/1�

.j zEhj � jEhj/

D �h
.d � jEhj/

 j
zEhj � jEhj

d � jEhj
� �h
ı




h

c2.n/�hr
n

ıh

� �h xC3�



h
rn

for some positive constant xC3 D xC3.n; 
/.
From the previous inequality, recalling (8.7), (8.10), and (8.12), we obtain

F�h.uh; Eh/ � F�h. Quh;
zEh/ � �




h

�
�h xC3r

n
�‚. xC1 C xC2/

�
> 0;

if �h is sufficiently large. This contradicts the minimality of .Eh; uh/, thus concluding the
proof.

Remark 8.3. Theorem 8.2 allows us to prove the regularity of solutions of the free bound-
ary problem under the constraint jEj D d . Under the assumption


 2
�n � 1

n
; 1
�
;

the parameter � WD 
n � nC 1 is positive and, by Theorem 8.2, any minimizing couple
.E; u/ of (Pc) is a .�;�/-minimizer of F� , for � � �0, where �0 is the constant appearing
in Theorem 8.2. Thus, we are in position to implement the regularity theory of the previous
sections to .E; u/ by applying Theorem 1.2.
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