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Clopen type semigroups of actions on 0-dimensional
compact spaces

Julien Melleray

Abstract. We investigate properties of the clopen type semigroup of an action of a countable group
on a compact, 0-dimensional, Hausdorff space X . We discuss some characterizations of dynamical
comparison (most of which were already known in the metrizable case) in this setting and prove
that for a Cantor minimal action ˛ of an amenable group the topological full group of ˛ admits
a dense, locally finite subgroup iff the corresponding clopen type semigroup is unperforated. We
also discuss some properties of clopen type semigroups of the Stone–Čech compactifications and
universal minimal flows of countable groups, and derive some consequences on generic properties
in the space of minimal actions of a given countable group on the Cantor space.

1. Introduction

Given an action ˛W� ÕX of a countable group � on a compact, Hausdorff, 0-dimensional
space X , and two clopen subsets A; B of X , an interesting question is whether one can
equidecompose A into B , that is, whether there exist a clopen partition A D

Fn
iD1Ai and


1; : : : ; 
n 2 � such that
Fn
iD1 
iAi � B .

An important and well-studied particular case of this section occurs when X is the
Stone–Čech compactification ˇ� of �: The action � Õ ˇ� really is the action of � on
the powerset of � in disguise. Equidecomposability problems in this setting have been
studied since the beginning of the twentieth century, in particular, in connection with the
Banach–Tarski paradox and paradoxical decompositions.

At the other extreme, the case where X is the Cantor space and � D Z acts min-
imally on X is also well studied, and connected to classification of such actions up to
flip-conjugacy and orbit equivalence, as well as operator algebraic properties (see [14] or
the book [37]). A key fact is that such actions have the dynamical comparison property
introduced in [7, 23]: If ˛WZ Õ X is a minimal action on the Cantor space, and A;B are
clopen such that �.A/ < �.B/ for every ˛-invariant Radon probability measure, then a
result of Glasner and Weiss [16] asserts that one can equidecomposeA intoB . The dynam-
ical comparison property has been intensively studied in recent years following work of
Kerr that established its relevance to problems related to operator algebras. Among notable
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recent results, we mention that Downarowicz and Zhang [10] proved that every action of
a locally subexponential group on a compact 0-dimensional metrizable Hausdorff space
has dynamical comparison; Naryshkin [34] proved the same result for actions of groups
of polynomial growth on arbitrary compact metrizable spaces (though the definition of
dynamical comparison we give here only applies to 0-dimensional spaces, one can extend
it to arbitrary compact metrizable spaces, see [23]). Kerr and Naryshkin [24] showed that
every free action of an elementary amenable group on a compact metrizable space has
dynamical comparison.

Recall that the topological full group J˛K of ˛W� Õ X is the group of all homeomor-
phisms g such that there exist a clopen partition X D

Fn
iD1 Ai and 
1; : : : ; 
n 2 � with

g.x/ D ˛.
i /.x/ for all x 2 Ai . In the case of a minimal Z-action ˛ on the Cantor space,
J˛K admits a natural dense, locally finite subgroup, made up of all the elements of J˛K
which preserve the positive semi-orbit of some fixed element x0; these dense locally finite
subgroups play an important part in the Giordano–Putnam–Skau classification of minimal
Cantor Z-actions up to orbit equivalence (see [14, 15] for the original approach or [33]
and its references for another point of view). Whether such a classification is valid for all
countable amenable groups is an open problem: It is not known if every minimal Cantor
action of a countable amenable group is orbit equivalent to a Z-action. A weaker prop-
erty is also not known to hold in general: Given a minimal Cantor action ˛ of a countable
amenable group, does there exist a Z-action which has the same invariant Borel probability
measures as ˛? If ˛ has dynamical comparison, then it follows from a result of Ibarlucía
and the author (see [21, 32]) that the answer to this question is positive (see Section 5,
where we reformulate this property as a weaker version of dynamical comparison).

It was noted by Kerr in [23] that dynamical comparison for an action ˛W � Õ X is
related to a property of its clopen type semigroup; loosely speaking, this is the free monoid
generated by nonempty clopen subsets of X , quotiented by the relation

Pn
iD1 Ai �Pn

jD1 Bj if one can equidecompose
F
Ai � ¹iº and

F
Bj � ¹j º using the action of

� � Sn on X � ¹1; : : : ; nº (see the next section for more details). One then obtains a
refinement monoid which we denote T .˛/; for a; b 2 T .˛/, we write a � b when there
exists c 2 T .˛/ such that b D a C c. This monoid is closely related to the 0-homology
group H.˛/ of the action; indeed, we observe in Section 2.2 that if T .˛/ is cancellative
(i.e., such that aC b D aC c) b D c) then T .˛/ is precisely the positive cone ofH.˛/.

Type semigroups were introduced by Tarski to study equidecomposition problems,
and the clopen version was first considered in an article of Rørdam and Sierakowski [38];
the reader will find in [40] a nice, modern reference on type semigroups and [41] con-
tains a wealth of information on refinement monoids. Kerr [23] observed that a free
minimal action ˛ of a countable group � on a Cantor space X has dynamical com-
parison as soon as T .˛/ is almost unperforated, that is, one has for all n 2 N and all
a; b 2 T .˛/ that .nC 1/a � nb) a � b. Later, Ma [28] proved that, for minimal actions
on compact metrizable spaces (even, not 0-dimensional, using a more general definition
of the type semigroup), almost unperforation and dynamical comparison are equivalent;
even for non-minimal actions, Ma [28] proved that, when the acting group is amenable,
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dynamical comparison is equivalent to a condition slightly weaker than almost unperfo-
ration. Recently, Ara, Bönicke, Bosa and Li established in [1] a similar result, valid for
second-countable ample groupoids.

In this article, we note that this analysis can also be carried out when the ambient
compact space is not metrizable (but is 0-dimensional), and give an elementary proof of a
characterization of dynamical comparison for such actions as a property of the clopen type
semigroup. This leads, in particular, to the following result (due to Ma in the metrizable
case, see [27, 28]).

Theorem (See Lemmas 2.13 and 2.17 and Proposition 2.18). Assume that � Õ X is an
action of a countable group � on a compact, 0-dimensional, Hausdorff space X .

• If there are no ˛-invariant Radon probability measures on X , then ˛ has dynamical
comparison iff ˛ is minimal and a � b for every nonzero a; b 2 T .˛/.

• If � is amenable, then ˛ has dynamical comparison iff for every order unit b 2 T .˛/
and every a such that .nC 1/a � nb for some n 2 N, one has a � b.

• If ˛ is minimal then ˛ has dynamical comparison iff T .˛/ is almost unperforated.

(One says that b is an order unit in T .˛/ iff for every a 2 T .˛/ there is some k 2 N
such that a � kb.)

There is a significant literature on refinement monoids (see [41] and references
therein), and some of it has interesting applications to our setting. In particular, this
can be used to give another equivalent formulation of dynamical comparison when ˛ is
minimal, as well as conclude that if ˛ is minimal, preserves some invariant Radon proba-
bility measure and has dynamical comparison, then T .˛/ is cancellative, that is, whenever
a C b D a C c in T .˛/ one has b D c. Interestingly, I do not know any direct argument
to prove this, nor do I know whether clopen type semigroups of minimal Cantor actions
of countable amenable groups are always cancellative.

It is fairly easy to see that if J˛K admits a dense locally finite subgroup then T .˛/
is cancellative and unperforated, that is, na � nb ) a � b for every n 2 N� and every
a; b 2 T .˛/. Exploiting a connection between T .˛/ and the 0-homology group of ˛ (see
Section 2.2 for details), it then follows from a result of Matui [29] that there exists a free,
minimal action ˛ of Z2 on the Cantor space such that J˛K does not have a dense locally
finite subgroup. This stands in stark contrast to the case of minimal Z-actions. It turns
out that the existence of a dense locally finite subgroup of J˛K is captured by algebraic
properties of T .˛/.

Theorem (See Theorem 2.26). Assume that ˛ is an action of a countable group �

on a compact, metrizable, 0-dimensional space. Then J˛K admits a dense locally finite
subgroup iff T .˛/ is unperforated and cancellative.

When � is amenable and ˛ is minimal, it follows that J˛K has a dense locally finite
subgroup iff T .˛/ is unperforated.
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The fact that our arguments work also in the non-metrizable setting makes it easy to
deduce the following facts from classical results.

Theorem (See Theorem 3.2). Let � be a countable amenable group. Then the action
� Õ ˇ� has dynamical comparison.

This implies that for any two subsets A; B of � , if �.A/ < �.B/ for every finitely
additive, �-invariant probability measure � on � , then there exist A1; : : : ; An � � and

1; : : : ; 
n 2 � such that

Fn
iD1Ai D A,

Fn
iD1 
iAi � B .

Using a standard trick of topological dynamics (the existence of a �-equivariant retrac-
tion from ˇ� onto the universal minimal flow �� of �), we also obtain the following
fact.

Theorem (See Theorem 3.3). Let � be a countable group. Then the action � Õ �� has
dynamical comparison.

We then use this to glean some insight into the generic properties of minimal actions
of countable amenable groups on the Cantor space. For this to make sense, note first
that the space of actions A.�/ on the Cantor space X can be seen as a closed subspace
of Homeo.X/� , hence a Polish space. The space of minimal actions Min.�/ � A.�/
is a Gı subset, so it is also Polish with the induced topology, and the conjugation
action Homeo.X/ Õ Min.�/ is readily seen to be transitive. It follows that every Baire-
measurable subset of Min.�/ is either meager or comeager. This applies, in particular,
to conjugacy classes, and one is led to wonder when there exists a comeager conjugacy
class in Min.�/. This is known to hold for � D Z by a result of Hochman ([20]; the
generic element is the universal odometer) and seems to be an open problem for every
other countable group � . As a consequence of our work, we establish the following fact.

Theorem (See Proposition 4.7). Let � be an infinite countable group. A generic element ˛
of Min.�/ is such that:

• ˛ is free.

• T .˛/ is unperforated (hence ˛ has dynamical comparison).

• The algebraic order on T .˛/ is a partial ordering.

This can be used to give an alternative argument for the fact, due to Conley, Kerr,
Jackson, Marks, Seward and Tucker-Drob that a generic element of Min.�/ is almost
finite [8].

The organization of the article is fairly straightforward: We begin by introducing the
clopen type semigroup of an action, discuss how it is related to the 0-homology group and
see how certain properties of an action (such as dynamical comparison) are visible in its
clopen type semigroup. Then we discuss what this implies for the Stone–Čech compact-
ification and universal minimal flow of a given countable group � , before deriving some
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consequences for generic properties in the space of minimal actions. After that we briefly
discuss two weakenings of dynamical comparison and collect a few open problems.

There are two appendices to the paper. The first one is devoted to the proof of a varia-
tion on a result of Krieger which is used in our characterization of the existence of a dense
locally finite subgroup of J˛K by algebraic properties of T .˛/ (that proof is essentially
the same as Krieger’s original argument as exposed in [33]). The second one is simply a
glossary of monoid-theoretic terms used in the paper, so if the reader is uncertain what
the precise definition of such a notion is, and unsure where it came up first, then they can
simply refer to Appendix B.

As we already mentioned above, the results in Section 2 concerning dynamical com-
parison were already known (and due to Ma [27, 28]) for metric spaces; we still give
complete arguments since one of the aims of this paper is to gather some of the ideas used
when studying refinement monoids and make them accessible to an audience not used to
this topic (which includes the author before embarking on this project), as well as to point
out some of the relevant literature. Our hope is that this article can serve as a starting point
for a deeper study of these connections.

2. Properties of the clopen type semigroup

2.1. Some vocabulary

Throughout this section we fix a 0-dimensional compact Hausdorff space X , a countable
discrete group � and an action ˛W� Õ X . Since ˛ is fixed for now, we suppress it from
our notation and simply write 
x for ˛.
/.x/.

We consider the space Y D X � N, endowed with the product topology, and say that
A 2 Clopen.Y / is bounded if A \ .X � ¹nº/ D ; for any large enough n. We denote
z� D � �S, where S is the permutation group of N, and let � act diagonally on Y .

Definition 2.1. Let A;B be two bounded clopen subsets of Y .
We say that A and B are equidecomposable if there exist Ai 2 Clopen.Y /, z
i 2 z�

such that A D
Fn
iD1Ai , B D

Fn
iD1 z
iAi .

We denote by ŒA� the set of all bounded clopen subsets of Y which are equidecompos-
able with A, and set T .˛/ D ¹ŒA� W A bounded and clopen in Y º.

Definition 2.2. Given two bounded clopen sets A;B � Y , we let ŒA�C ŒB� D Œ zA [ zB�,
where zA and zB are any two bounded clopen subsets of Y such that Œ zA� D ŒA�, Œ zB� D B
and zA \ zB D ;.

It is straightforward to check that this definition indeed makes sense (Œ zAt zB� does not
depend on the choice of zA 2 ŒA�, zB 2 ŒB� as long as they are disjoint) and that .T .˛/;C/
is a commutative monoid with neutral element 0 D Œ;�.

We endow T .˛/ with the algebraic pre-ordering, that is, set a � b whenever there
exists c 2 T .˛/ such that a C c D b. The structure .T .˛/;C; �/ is the clopen type
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semigroup with which we will be working throughout this paper. This construction is anal-
ogous to Tarski’s well-known approach to paradoxicality questions (see [40]); the clopen
version discussed here first came up in [38].

Definition 2.3. A commutative monoid T is

• conical if for any u; v 2 T one has uC v D 0) u D v D 0.

• simple if for any y, any x ¤ 0 there exists n such that y � nx (every element is an
order unit).

• a refinement monoid if whenever
Pn
iD1 ai D

Pm
jD1 bj , there exists .ci;j / such that for

all i one has
Pm
jD1 ci;j D ai , and for all j one has

Pn
iD1 ci;j D bj .

Clearly, T .˛/ is a conical refinement monoid, and T .˛/ is simple iff ˛ is minimal, that
is, if there is no nontrivial closed ˛-invariant set (equivalently, every orbit of ˛ is dense
in X ).

2.2. Connection with 0-homology and cancellativity

We now take some time to discuss the strong connection between the clopen type
semigroup and the 0-homology group of the action.

To that end, we use an alternative construction of T .˛/mentioned by Kerr [23]: Given
f 2 C.X;N/ and 
 2 � , let 
 � f be the function mapping x 2 X to f .
�1x/ (in this
paper N D ¹n 2 Z W n � 0º). Then, for any f; g 2 C.X;N/ say that f � g if there exist
hi 2 C.X;N/ and 
i 2 � such that

Pn
iD1 hi D f and

Pn
iD1 
i � hi D g. This is an equiv-

alence relation and we denote by Œf � the equivalence class of f 2 C.X;N/. The addition
on C.X;N/ induces a well-defined, associative, commutative operation on C.X;N/=�,
and the monoid we just described is isomorphic to .T .˛/;C/ via the (quotient of) the map
f 2 C.X;N/ 7!

Sn
iD1¹x W f .x/ > iº � ¹iº.

Given a group action ˛ Õ X , X a compact, 0-dimensional space, the associated
0-homology group, called the group of coinvariants in [29], is the group

H.˛/ D C.X;Z/=hf � f ı ˛.
/ W 
 2 �i:

We denote by .f / the equivalence class of f for this quotient map. Since ˛ is fixed,
we again suppress if from our notation below and simply write 
 � f for the map
x 7! f .˛.
/�1x/.

If Œf � D Œg�, then there exist h1; : : : ; hn 2 C.X;N/ and 
1; : : : ; 
n 2 � such that

f D g C

nX
iD1

.hi � 
i � hi /;

so that Œf �D Œg�) .f /D .g/. So we have a natural surjection � WT .˛/!H.˛/C, where
H.˛/C is the positive cone ofH.˛/, that is, the image of C.X;N/ under the quotient map;
by definition, � is a semigroup homomorphism from .T .˛/;C/ to .H.˛/;C/, and we are
then led to wonder when � is injective.
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Definition 2.4. A commutative semigroup S is cancellative if for any a; b; c 2 S we have
.aC b D aC c/) b D c.

Since H.˛/ is a group, it is of course cancellative, so if � is injective then T .˛/ must
itself be cancellative.

Proposition 2.5. The natural semigroup homomorphism � WT .˛/! H.˛/ is injective iff
T .˛/ is cancellative.

Proof. One implication is obvious and has already been pointed out.
To see the converse, assume that T .˛/ is cancellative and f;g 2 C.X;N/ are such that

.f / D .g/. Unraveling the definition, we obtain some hi 2 C.X;Z/ and 
i 2 � such that
f D g C

Pn
iD1.hi � 
i � hi /.

Since hi is continuous it is bounded, so for each i there exists some integer ni such
that zhi D hi C ni1 2 C.X;N/ (where 1 is the constant function equal to 1), and since

i � 1 D 1 we have that zhi � 
i � zhi D hi � 
i � hi .

We thus have f C
Pn
iD1 
i �

zhi D gC
Pn
iD1
zhi , and by definition Œ
i � zhi �D Œzhi �, we

obtain Œf �C
Pn
iD1Œ
zhi � D Œg�C

Pn
iD1Œ
zhi �. Since we assumed that T .˛/ is cancellative,

we conclude that Œf � D Œg�; in other words, � is injective.

Using a similar argument one can show that H.˛/ is always isomorphic to the
Grothendieck group of T .˛/. It then becomes very interesting to understand when T .˛/
is cancellative, especially so because as soon as T .˛/ is cancellative it is the positive cone
of a group satisfying the Riesz decomposition and interpolation properties (which in this
situation are equivalent to refinement, see [17, Proposition 2.1]), and groups satisfying
these conditions are well studied.

Unfortunately, I know little about this question, though below (Proposition 2.20) a
connection with dynamical comparison will appear.

In Section 3, we will see that the clopen type semigroup of the universal minimal flow
of any countable amenable group is cancellative. In the other direction, let us discuss a
simple example of a uniquely ergodic, free Cantor Z-action such that T .˛/ is not can-
cellative. Note that this action has the dynamical comparison property since the acting
group is Z.

Let Y D Z [ ¹1º be the one-point compactification of Z, with Z acting on itself by
translation and fixing1. Form the productX D Y � 2! , with Z acting on the second coor-
dinate via (say) the dyadic odometer. Then X is a Cantor space, on which Z acts freely;
further, there is a unique Z-invariant Borel probability measure, supported on ¹1º � 2! .
Let A D .Y n ¹0º/ � 2! ; the map,

� W .n; x/ 7!

´
.nC 1; x/ if n � 0;

.n; x/ if n < 0;

witnesses that ŒY � � ŒA�, so T .˛/ is not cancellative (in the language introduced in the
next section, it is not even stably finite).
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There is another reason why cancellativity would be useful: We would like to rule
out the existence of a minimal amenable Cantor action ˛ and two clopen sets A; B
such that ŒA� D ŒB� in T .˛/, yet there does not exist any 
 2 J˛K such that 
A D B .
If ŒA nB� D ŒB nA� (which follows from cancellativity and the equality ŒA� D ŒB�), then
there is an involution � 2 J˛K such that �.A n B/ D B n A and � fixes all the other ele-
ments, so that �A D B , but without some form of cancellativity it is not clear whether
ŒA� D ŒB� implies ŒA n B� D ŒB n A� in T .˛/.

2.3. Existence of invariant measures

Definition 2.6. A state on .T .˛/;C/ is a morphism from .T .˛/;C/ to Œ0;C1�, where,
as usual, x C1 D C1 for every x 2 Œ0;C1�. A normalized state is a state � such that
�.ŒX�/ D 1 (note that then � only takes finite values).

We denote by M1.˛/ the set of states on T .˛/, and by M.˛/ the set of normalized
states.

Note that normalized states correspond to �-invariant finitely additive probability
measures (f.a.p.m.) on Clopen.X/: Given a state �, one obtains a �-invariant f.a.p.m. �
by setting �.A/ D �.ŒA�/; conversely, any �-invariant f.a.p.m. � induces a state by set-
ting �.ŒA�/D �.A/ and extending to T .˛/ (this is straightforward to prove, see, e.g., [40]
for the classical case and [38] for the clopen case we consider here). In turn, since X is
0-dimensional, any �-invariant f.a.p.m. on Clopen.X/ uniquely determines a positive lin-
ear functional on C.X/ mapping 1 to 1, that is, a �-invariant Radon probability measure
on X (when X is metrizable every Borel probability measure is Radon, so we are simply
dealing with Borel probability measures in that case), and a �-invariant Radon probabil-
ity measure restricts to a �-invariant f.a.p.m. We will use the same notation for all these
objects, making the obvious identifications whenever convenient. One should however
beware that elements in M1.˛/ do not necessarily come from a Radon measure (a trivial
example being the state mapping every nonzero element to C1; in the non-metrizable
case, there are other complications, such as the fact that Clopen.X/ does not in general
generate the Borel � -algebra).

Lemma 2.7. Assume that � is amenable. Then b 2 T .˛/ is an order unit iff �.b/ > 0 for
every � 2M.˛/.

Proof. Assume first that b is an order unit. Then there exists n such that ŒX�� nb, whence
n�.b/ � �.X/ D 1 for every � 2M.˛/.

Conversely, assume that b is not an order unit; let B D
F
Bi � ¹iº be a representative

of b and let A D
S
Bi . Then A is clopen and �A ¨ X since otherwise a finite union

of translates of the Bi would cover X , which would imply that ŒX� � nb for some n.
Thus X n �A is a nonempty closed subset of X , and since � is amenable there exists
a �-invariant Radon probability measure � on X which is supported on X n A, hence
�.Bi / D 0 for all i . Viewing � as an element of M.˛/, we have �.b/ D 0.
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Definition 2.8. We say that an element b 2 T .˛/ is directly finite if for all a one has
a C b D b ) a D 0. The semigroup T .˛/ is said to be stably finite if every element of
T .˛/ is directly finite.

Clearly, cancellativity implies stable finiteness; we will shortly see that, in the minimal
case, stable finiteness is equivalent to the existence of a normalized state on T .˛/.

The next result follows immediately from Tarski’s famous theorem [39]. See [40] for
a detailed discussion of this and related results.

Theorem 2.9 (Tarski, see [40, Theorem 11.1]). Let b 2 T .˛/. There exists � 2M1.˛/

such that �.b/ D 1 iff for any n one does not have .nC 1/b � nb.

Proposition 2.10. Assume that ˛ is minimal. Then M.˛/ is nonempty iff T .˛/ is stably
finite.

Proof. If there exists � 2 M.˛/, then for every nonzero element a 2 T .˛/ we have
�.a/ > 0 (because for some n one has ŒX�� na since a is an order unit). From aC b D b

we obtain �.a/C �.b/ D �.b/, whence �.a/ D 0 since �.b/ is finite, and we noted that
this is only possible if a D 0.

Conversely, Tarski’s theorem asserts that the nonexistence of a state on T .˛/ such that
�.X/ D 1 implies that there exists n such that .nC 1/ŒX� � nŒX�, that is, there exists u
such that nŒX�C ŒX�C u D nŒX�, whence nŒX� is not directly finite.

In Section 2.2, we saw an example of a uniquely ergodic Z-action ˛ on the Cantor
space X such that .T .˛/;C/ is not stably finite. Note that if T .˛/ is stably finite (in par-
ticular, if ˛ is a minimal action of an amenable group), then� is a partial order on T .˛/; in
general,�may only be a pre-order, that is, it could happen that u� v and v � u but u¤ v.
For instance, it follows from the homology computation in the last section of [31] that for
the natural action of a nonabelian free group on its boundary, one has a� b for all nonzero
a; b 2 T .˛/, yet there exist nonempty clopen sets which are not equidecomposable.

We now note the following fact, which (in our context) is the same as [35, Propo-
sition 2.1]. This proposition is also used by Ara–Bönicke–Bosa–Li [1], Kerr [23]
and Ma [28], among others. The proof given in [35] appeals to results of Goodearl–
Handelman [18] which are stated for partially ordered abelian groups, and it was not
immediately clear to the author how to fill out all the details. M. Rørdam was kind enough
to point to [6, Proposition 2.8] for an alternative argument to plug in to the proof; for the
reader’s convenience, here is a detailed argument.

Proposition 2.11. For any a; b 2 T .˛/, the following are equivalent:

(1) There exists n 2 N such that .nC 1/a � nb.

(2) There exists n such that a � nb, and for every � 2M1.˛/ such that �.b/ D 1
one has �.a/ < �.b/.
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Proof. One implication is immediate. For the converse, fix a; b 2 T .˛/ such that a � nb
for some n and �.a/ < �.b/ for every � 2M1.˛/ satisfying �.b/ D 1.

We let Ub denote the subsemigroup of T .˛/ made up of all x such that x � nb for
some n. Every state on T .˛/ restricts to a state on Ub , and every state on Ub extends to a
state on T .˛/ by assigning the value1 for every element not in Ub .

Since T .˛/ may fail to be stably finite, we then form the maximal quasi-ordered quo-
tient Vb of Ub , declaring that u � v iff u � v � u. To each state on Ub corresponds a
unique state on Vb , and states on Vb extends to states on Ub .

Next, consider the Grothendieck group G.Vb/ of Vb , that is, the group obtained from
Vb by adding a formal inverse �u for every u 2 Vb; the natural map 'WVb ! G.Vb/ may
not be injective, since one has '.u/D'.v/ iff there existsw 2Vb such that uCwD vCw
and we do not assume T .˛/ to be cancellative.

The group G.Vb/ becomes a partially ordered abelian group when declaring its posi-
tive cone to be equal to ¹u � v W u; v 2 Vb; v � uº. To avoid confusion, we denote by �
the corresponding ordering, and note that for any u; v 2 Vb we have '.u/ � '.v/ if, and
only if, there exists w such that uC w � v C w.

Every normalized state on G.Vb/ (i.e., such that �.b/ D 1) restricts to a normalized
state on Vb , and every normalized state on Vb uniquely extends to a normalized state
on G.Vb/. So our assumption on a; b amounts to the statement that �.'.a// < �.'.b//
for every normalized state on G.Vb/. Applying [17, Theorem 4.12], it follows that
'.b/ � '.a/ is an order unit in G.Vb/; in particular, there exists some integer m such
that '.a/ � m.'.b/ � '.a//.

Thus, there exist u 2 Ub and an integer m such that .m C 1/a C u � mb C u.
Using commutativity and associativity of C, we obtain r.mC 1/a C u � rmb C u for
any integer r ; since u 2 Ub we have some integer p such that u � pb, leading to the
inequality r.mC 1/a � .rmC p/b. Choose an integer r > p and set n D rmC p. Then
.nC 1/a � r.mC 1/a � .rmC p/b D nb.

2.4. Almost unperforation and dynamical comparison

Definition 2.12. Say that T .˛/ is almost unperforated if for any a; b 2 T .˛/ one has

..nC 1/a � nb/) .a � b/:

Lemma 2.13. The semigroup T .˛/ is almost unperforated iff for any a; b 2 T .˛/ one has

.9k a � kb and .8� 2M1.˛/�.b/ D 1) �.a/ < 1//) .a � b/:

Proof. Assume T .˛/ is almost unperforated and a; b 2 T .˛/ are such that a � kb
for some k, and �.a/ < 1 for every � 2 M1.˛/ satisfying �.b/ D 1. Then by
Proposition 2.11, there exists n such that .n C 1/a � nb, whence a � b by almost
unperforation.

The converse is immediate.
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If ˛ is minimal, the first condition on a; b in Lemma 2.13 is redundant, since it is
satisfied for every order unit b and every nonzero element is an order unit, and (still for
minimal ˛) the second condition amounts to the fact that�.a/<�.b/ for every�2M.˛/.

The property above is called the stable dynamical comparison property in [1], and gen-
eralized dynamical comparison in [28]; we reserve “dynamical comparison” for another
condition which we introduce now, since it seems to be commonly accepted terminology.

Definition 2.14 (Buck [7], Kerr [23]). We say that ˛ has the dynamical comparison
property if for any two nonempty clopen sets A; B � X such that �.A/ < �.B/ for all
� 2M.˛/ one has ŒA� � ŒB�.

We ask that B be nonempty above to rule out trivial counterexamples; for instance,
without that requirement no action ˛ with M.˛/ D ; could have dynamical comparison,
although this case leads to interesting questions. We will see shortly that, when M.˛/D;,
dynamical comparison is only possible if ˛ is minimal.

We note the following fact, which shows that dynamical comparison is a property of
T .˛/. The proof of Proposition 2.10 in [1] directly gives this; that argument is actually
in large part the same as the one used to show [10, Lemma 3.2]. We briefly describe the
proof for the reader’s convenience.

Proposition 2.15. The action ˛ has dynamical comparison if, and only if, for any nonzero
a; b 2 T .˛/ such that �.a/ < �.b/ for all � 2M.˛/ one has a � b.

Proof. The implication from right to left is immediate.
For the converse, fix an action ˛ with dynamical comparison; let a; b be such that

�.a/ < �.b/ for all � 2 M.˛/ then find some p such that a; b � pŒX�, and choose
representatives A;B of a; b contained in X � ¹1; : : : ; pº D zX .

The group z� D � � Sp acts on zX via the action z̨W .
; �/ � .x; i/ D .
x; �.i//. We
may, and do, identify T .z̨/ and T .˛/.

For every � 2M.z̨/ DM.˛/, we have �.A/ < �.B/, so by compactness of M.˛/

there exists " 2 �0; 1Œ such that �.A/C " < �.B/ for every � 2M.˛/.
Enumerate z� D ¹z
i W i 2 Nº then define A0 D A \ z
�10 .B/, B0 D z
0.B/ and, for

n � 1, An D
�
A n

Sn�1
iD0 Ai

�
\ z
�1n

�
B n

Sn�1
iD0 z
iAi

�
.

The key step of the proof is the fact that, for large enough n, �
�
A n

Sn
iD0Ai

�
< "

p
for

all � 2M.˛/. Grant this for the moment. Using the fact that ˛ has dynamical comparison
and �

�
A n

Sn
iD0 Ai

�
< 1 for all � 2M.˛/, we see that there exists a clopen subset A1

of X such that ŒA1� D
�
A n

Sn
iD0Ai

�
.

Next, let C D B n
Fn
iD0 z
iAi . By definition of ", �.C/ � " for all � 2M.˛/; also,

there exists D 2 Clopen. zX/ such that ŒD� D ŒC �, D D
Sp
iD1Di � ¹iº 2 Clopen. zX/ and

DiC1 � Di for all i � p � 1. In particular, �.D1/ �
�.C/
p

> �.A1/ for all � 2M.˛/,
so by dynamical comparison ŒA1� � ŒD1�. We conclude by noting that

a D

nX
iD1

ŒAi �C ŒA1� �

nX
iD1

Œz
iAi �C ŒD1� �

nX
iD1

Œz
iAi �C ŒC � � b:
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To finish the proof, we go back to our claim that �
�
A n

Sn
iD0 Ai

�
< "

p
for all

� 2 M.˛/ as soon as n is large enough. To see this, begin by fixing an ergodic mea-
sure � 2 M.˛/. If �

�
A n

S1
iD0 Ai

�
¤ 0, then by ergodicity there exists j such that�

A n
S1
iD0Ai

�
\ z
�1j

�
B n

SC1
iD0 z
iAi

�
¤ ;, a contradiction.

Thus �
�
A n

S1
iD0Ai

�
D 0 for all � 2M.˛/. Hence, the maps � 7! �

�
A n

Sn
iD0Ai

�
form a decreasing sequence of continuous maps from the compact space M.˛/ to Œ0; 1�
which converges pointwise to 0. Applying Dini’s theorem, we obtain that the convergence
is uniform, which gives the desired result.

The following fact is also worth noting; for metrizable X , an equivalent statement
appears as [28, Corollary 3.12]. Actually Ma’s statement is proved for a more general
definition of the type semigroup and applies also when X is not 0-dimensional (but
metrizable).

Lemma 2.16. Assume � is amenable. Then the following are equivalent:

• The action ˛ has dynamical comparison.

• For every order unit b 2 T .˛/, and every a and n such that .nC 1/a � nb, one has
a � b.

Proof. Assume that ˛ has dynamical comparison, and a; b 2 T .˛/ are such that b is an
order unit and .nC 1/a � nb for some n. Then �.b/ > 0 for all � 2M.˛/ since b is an
order unit, whence �.a/ < �.b/ for all � 2 M.˛/. So dynamical comparison gives, as
desired, that a � b.

Conversely, assume that the second condition holds, and that a; b 2 T .˛/ are such
that �.a/ < �.b/ for all � 2M.˛/. Then Lemma 2.7 implies that b is an order unit, so
a � nb for some n and �.a/ < �.b/ for every � 2M1.˛/ such that �.b/ D 1. Proposi-
tion 2.11 then implies that .nC 1/a � nb for some n, whence a � b and ˛ has dynamical
comparison.

Lemma 2.17. Assume that M.˛/D;. Then ˛ has dynamical comparison iff ˛ is minimal
and a � b for every nonzero a; b 2 T .˛/.

Proof. The implication from right to left is immediate.
For the converse implication, assume that M.˛/D; and ˛ has dynamical comparison,

then Proposition 2.15 implies that a � b for all a; b 2 T .˛/. Fix a nonempty clopen U ;
we must have ŒX� � ŒU �, whence X is covered by translates of U . This proves that ˛ is
minimal.

In the case where M.˛/ D ;, or � is amenable and ˛ is free, and X is the Cantor
space, the following result appears in [27]; in the second-countable case, this is in [1] (for
ample groupoids). This statement also has a precursor in [23, Lemma 13.1].

Proposition 2.18. Assume that ˛ is minimal. Then ˛ has dynamical comparison if, and
only if, T .˛/ is almost unperforated.
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Proof. Assume first that M.˛/ ¤ ;. By minimality, if � 2M1.˛/ is such that �.b/ D 1
for some b then also �.X/ <1, so Lemma 2.13 combined with Proposition 2.15 gives
the desired result.

Now, assume that M.˛/ D ;. If ˛ has dynamical comparison then a � b for any
nonzero a; b 2 T .˛/ by Lemma 2.17, hence T .˛/ is almost unperforated. To prove the
converse, assume that T .˛/ is almost unperforated. Since ˛ is minimal and M.˛/ D ;,
by Tarski’s theorem for every nonzero a there exists n such that .nC 1/a � na. Using
associativity, we obtain .nC 1/2a D 2.nC 1/a � na. Almost unperforation then gives
2a � a, whence na � a for any n 2 N�. Since ˛ is minimal, a is an order unit in T .˛/,
so b � a for any b 2 T .˛/. This proves that the action has dynamical comparison.

In the minimal case, one can provide yet another characterization of dynamical
comparison.

Definition 2.19. Assume that ˛ is minimal; we say that T .˛/ has the weak comparability
property if

8a ¤ 0 9k 2 N� 8b kb � ŒX�) b � a:

Note that our formulation above only applies to the case where T .˛/ is simple (i.e., ˛
is minimal). One can formulate weak comparability in non-simple semigroups, but the
definition is more involved; here, we only use it for minimal ˛, so we give the simpler
reformulation above. One could add the condition that a D ŒA� for some A 2 Clopen.X/
and obtain an equivalent definition (for a more general formulation of weak comparability,
a detailed discussion and references, see [41, Section 1.6]).

Proposition 2.20. Assume that ˛ is minimal. Then:

(1) T .˛/ satisfies weak comparability if, and only if, it is almost unperforated.

(2) If T .˛/ is stably finite (equivalently, if M.˛/ ¤ ;), then these conditions imply
that T .˛/ is cancellative.

This follows from [41, Proposition 1.6.8], which contains a wealth of information on
refinement monoids (the first statement follows from [3, Theorem 4.1]; the second one is
a particular case of [4, Theorem 1.7]).

Recall that Downarowicz and Zhang [10] proved recently that every Cantor action
of a group of subexponential growth has the dynamical comparison property; Kerr and
Naryshkin [24] even more recently showed the same result for free actions of elementary
amenable groups. It follows that free minimal Cantor actions of such amenable groups
are all such that T .˛/ is cancellative. Interestingly, I do not know of a direct argument to
prove cancellativity for these actions, and it seems to be an open problem whether clopen
type semigroups of minimal Cantor actions of amenable groups are always cancellative.



J. Melleray 14

2.5. Tameness and dense locally finite groups

In this section, we assume that X is metrizable. We recall that the group Homeo.X/
is endowed with a natural Polish group topology, which comes from viewing home-
omorphisms of X as automorphisms of the Boolean algebra Clopen.X/. A basis of
neighborhoods of 1 for this topology is given by subgroups of the form

¹g 2 Homeo.X/ W 8A 2 A gA D Aº;

where A ranges over all clopen partitions of X .
What we really care about in this section is the case of minimal Cantor actions of

countable amenable groups. We recall some terminology.

Definition 2.21 (Krieger [26]). Given an algebra A of clopen subsets of X and G a sub-
group of Homeo.X/, we let ŒG;A� be the smallest subgroup of Homeo.X/ containing G
and such that for any partition A1; : : : ; An of X with Ai 2 A, and g1; : : : ; gn 2 G, if the
mapping hW x 2 Ai 7! gi .x/ is a homeomorphism, then h 2 ŒG;A�.

We say that G is a full group if G D ŒG;Clopen.X/�.
A subgroup G of Homeo.X/ is an ample group if it is a countable, locally finite full

group and ¹x W g.x/ D xº is clopen for every g 2 G.

Definition 2.22. The topological full group J˛K of an action ˛W� Õ X is the smallest full
group which contains ˛.
/ for every 
 2 � .

Whenever ˛ is a minimal Z-action on a Cantor spaceX , there exists an ample groupƒ
which is dense in J˛K (equivalently, ƒ and ˛ have the same orbits on clopen sets). Any
two such ample groups are conjugated, and they play an important role in the Giordano–
Putnam–Skau classification of minimal Z-actions up to orbit equivalence (see [14] or [33]
and the references given therein).

Our aim in this section is to prove that existence of a dense locally finite subgroup of
J˛K can be equivalently formulated as a property of T .˛/.

Definition 2.23. Say that T .˛/ is unperforated if for every a; b 2 T .˛/ and every n 2 N�

one has na � nb) a � b.

Lemma 2.24. Assume that ˛ is an action on a compact, 0-dimensional metrizable
space X such that J˛K has a dense, locally finite subgroup. Then T .˛/ is unperforated
and cancellative.

Proof. Let a; b 2 T .˛/ and n 2 N be such that na � nb.
Write a D

Pn
iD1ŒAi �, b D

Pm
jD1ŒBj � where Ai ; Bj are clopen subsets of X . The

assumption on J˛K implies that there exist a finite subgroup ƒ of J˛K and a finite ƒ-
invariant clopen partition A such that the relation na � nb is witnessed using elements
ofƒ and A. LettingZ denote the finite set of atoms of A, the type semigroup of the action
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ƒ Õ Z is unperforated (by a simple matching argument, see, e.g., [40, Theorem 10.20])
and from this we see that a � b is witnessed by elements of ƒ and A.

The proof of cancellativity is similar, since the type semigroup of an action of a finite
group ƒ on a finite set Z is cancellative by a simple counting argument: using the same
notations as above a D b means that, for each orbit O of the action ƒ Õ Z, there are
as many elements of (a representative of) a equivalent to some element of O as there are
such elements in b.

Remarkably, the converse property also holds.

Proposition 2.25. Let ˛ be an action on a compact 0-dimensional metrizable space X .
Assume that T .˛/ is unperforated and cancellative. Then J˛K has a dense ample subgroup.

Note that since T .˛/ is cancellative we have for any U;V 2 Clopen.X/ that ŒU �D ŒV �
iff there exists g 2 J˛K such that gU D V .

Proof. Given a finite Boolean subalgebra A of Clopen.X/, we denote byGA the subgroup
of Aut.A/ made up of all automorphisms such that Œg.U /� D ŒU � for all U 2 A.

We claim that one can build inductively a sequence of finite Boolean subalgebras An

of Clopen.X/ such that:

• For all nAn is a subalgebra of AnC1, and every element ofGAn
extends to an element

of GAnC1
.

• For every U;V 2 Clopen.X/ such that ŒU � D ŒV �, there exists n such that U;V 2 An

and g 2 GAn
such that gU D V .

To see why this construction can be carried out, fix a finite Boolean algebra A. Fix
also U;V 2 Clopen.X/ such that ŒU � D ŒV �. We need to build a finite Boolean algebra B

refining A, such that elements of GA extend to elements of GB and there exists g 2 GB

such that gU D V .
Find a finite algebra A0 refining A, U and V , then let M be the finite subset of T .˛/

consisting of the types of atoms of A0. Let A;B be two atoms of A0 such that ŒA� D ŒB�;
denoting by A1; : : : ; An the atoms of A0 contained in A, and B1; : : : ; Bm the atoms con-
tained in B , we obtain the relation

Pn
iD1ŒAi � D

Pm
jD1ŒBj � in T .˛/. Note that there are

finitely many relations in T .˛/ that occur in such a way.
As pointed out in [2, Theorem 3.14], the assumptions on T .˛/ imply (for instance, via

the Effros–Handelman–Shen theorem) that it is the limit of an inductive sequence of free
monoids Nni . If we go far enough in this sequence, all equalities of types occurring as in
the previous paragraph are witnessed; this means that there exists some integer p, as well
as a map 'WM ! Np and a morphism  WNp ! T .˛/ such that:

•  ı ' is the inclusion map from M to T .˛/.

• WheneverAD
Fn
iD1Ai andB D

Fm
jD1Bj are two elements of A0 such that ŒA�D ŒB�

(with Ai , Bj atoms of A0), we have
Pn
iD1 '.ŒAi �/ D

Pm
jD1 '.ŒBj �/.
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Let e1; : : : ; ep denote the standard generators of Np . For each atom A of A0, we have a
unique way to write '.A/ D

P
i2IA

niei . We can thus build a partition of A made up of
ni disjoint copies of  .ei / for all i 2 IA, that is, write

A D
G
i2IA

niG
jD1

Ei;j .A/

with ŒEi;j .A/� D  .ei / for all i 2 IA.
We thus obtain a clopen partition B of X , generated by (multiple) copies of

 .e1/; : : : ;  .en/.
Assume that A;B 2 A0 are such that ŒA� D ŒB�. Then for each i A contains as many

disjoint copies of  .ei / as B; by permuting these copies accordingly, we obtain that there
exists an element g ofGB such that gADB . This proves both that elements ofGA extend
to elements of GB , and that there exists g 2 GB such that gU D V .

This confirms that one can inductively perform the construction described at the begin-
ning of the proof. By construction, we have

S
An D Clopen.X/. Further, the inductive

limit of the groups GAn
induces an ample subgroup ƒ of Homeo.X/ such that for every

A;B 2 Clopen.X/,

.9� 2 ƒ �A D B/, .9g 2 J˛K gA D B/:

We have not yet ensured that ƒ � J˛K; however, a variation on a construction of
Krieger [26] (we postpone the proof to Appendix A, since it is a mostly routine modifica-
tion of Krieger’s proof) implies that there exists g 2 Homeo.X/ such that gJ˛Kg�1 D J˛K
and gƒg�1 � J˛K. Then gƒg�1 is the desired dense ample subgroup of J˛K.

The next theorem sums up the previous two results.

Theorem 2.26. Assume that ˛ is an action of a countable group � on a compact, metriz-
able, 0-dimensional space. Then J˛K admits a dense locally finite subgroup (even, a dense
ample subgroup) iff T .˛/ is unperforated and cancellative.

If � is amenable and ˛ is minimal, we already mentioned that by a result of Ara
and Pardo T .˛/ is cancellative as soon as it is stably finite and almost unperforated
(since it then has the weak comparability property), so the assumption of cancellativity
is redundant in that case.

Matui [29] gave examples of free minimal Cantor Z2-actions for which the torsion
part of the 0-homology group H.˛/ is nontrivial (this contradicts a result of Forrest–
Hunton [12] whose proof had a gap). For these actions we have T .˛/ D H.˛/C since
T .˛/ is cancellative (see, e.g., Proposition 2.20), so torsion in H.˛/ means that T .˛/ is
not unperforated. We thus obtain the following result.

Theorem 2.27. There exists a free minimal Cantor action ˛ of Z2 on the Cantor space
such that J˛K does not have any dense, locally finite subgroup.
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3. Dynamical comparison in the Stone–Čech compactification
and in the universal minimal flow

We again let � be a countable discrete group, and denote by ˇ� its Stone–Čech compact-
ification; it is a compact, Hausdorff, 0-dimensional space (and very much non-metrizable
unless � is finite).

The clopen subsets of ˇ� correspond to subsets of � (identifying ˇ� with the set of
all ultrafilters on � , clopen subsets of ˇ� are of the form ¹U W A 2Uº for A � �). Thus,
the action of � on ˇ� corresponds to the well-studied action of � on its subsets via trans-
lation 
 �AD ¹
x W x 2 Aº, and equidecomposability of clopen subsets in ˇ� is the same
as classical equidecomposability of subsets in � .

One should note here that, for instance, T .Z Õ ˇZ/ is not stably finite, since
Œ¹0º� C ŒˇZ� D ŒˇZ� (as witnessed by extending to ˇZ the map sending each n � 0 to
nC 1, and each n < 0 to n). Actually, an inequality of the form 2a � a, with a nonzero, is
possible in T .� Õ ˇ�/ even for a countable amenable � . Indeed, there exists such an a
iff � is not supramenable, and there exist some countable, solvable, not supramenable
groups. This kind of example is not restricted to non-metrizable spaces: using arguments
similar to those in the proof of Proposition 3.4, it follows that there exist free topologically
transitive Cantor actions of some solvable groups with a nonempty clopen set A such that
2ŒA� � ŒA�.

Still, classical results show that type semigroups of Stone–Čech compactifications are
rather well behaved.

Theorem 3.1 ([40, Theorems 3.6 and 10.20]). The semigroup T .� Õ ˇ�/ is unperfo-
rated and � is a partial order on T .� Õ ˇ�/.

Note that when � is not amenable, there is no invariant Radon probability measure on
ˇ� , and Lemma 2.17 then implies that this action does not have dynamical comparison.

Since clopen sets in ˇ� correspond to subsets of � , states on T .� Õ ˇ�/ corre-
spond to finitely additive �-invariant probability measures on � . The following result is
an immediate consequence of this, along with our earlier observations.

Theorem 3.2. Let � be a countable amenable group. Then � Õ ˇ� has dynamical
comparison.

This implies the following fact: let A;B be two subsets of � such that �.A/ < �.B/
for any �-invariant f.a.p.m. on � . Then there exist A1; : : : ; An � � and 
1; : : : ; 
n 2 �
such that A D

Fn
iD1Ai ,

Fn
iD1 
iAi � B .

Proof. We know that T .� Õ ˇ�/ is unperforated, whence it has dynamical comparison
since � is amenable (see Lemma 2.16).

The second part of the statement is just a reformulation of dynamical comparison with-
out the semigroup terminology, since �-invariant f.a.p.m. on � correspond to �-invariant
Radon measures on ˇ� .
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It is also possible to obtain the previous result as a consequence of the finitileability
theorem of Downarowicz, Huczek and Zhang [9] via a standard compactness argument.
The proof presented here is much more elementary.

It seems worth noting that, as explained to the author by B. Weiss, there exists
A � Z such that �.A/ D 1

2
for every � 2 M.Z Õ ˇZ/, yet A and Z n A are not

equidecomposable. To see this, write Z as a disjoint union of arithmetic sequences, for
example,

Z D ¹2n W n 2 Zº t ¹4nC 1 W n 2 Zº t ¹8nC 3 W n 2 Zº : : :

Then let A consist of every other element from each of these sequences, that is,

A D ¹4n W n 2 Zº t ¹8nC 1 W n 2 Zº t ¹16nC 3 W n 2 Zº : : :

Clearly for every � 2M.Z Õ ˇZ/, we have �.A/ � 1
4
C

1
8
C

1
16
C � � � D

1
2

; the same
holds for B D N n A, and it follows that �.B/ D �.A/ D 1

2
for every invariant �. Yet

one can check that infinitely many shifts are needed to map A into B , so A and B are not
equidecomposable.

Next, we consider the universal minimal flow of � , which we denote � Õ �� . We
recall that �� is a compact, Hausdorff, 0-dimensional space and that � Õ �� is free. Fur-
ther, any minimal subset for the action � Õ ˇ� is isomorphic to ��; we identify �� with
some fixed minimal subset of ˇ� , and choose a �-equivariant retraction r Wˇ�! �� . We
refer the reader to [36] and its bibliography for more details on this area of topological
dynamics.

The retraction r induces a homomorphism

'W .T .� Õ ��/;C/! .T .� Õ ˇ�/;C/

by setting '.ŒA�/ D Œr�1.A/� for A 2 Clopen.��/, and then extending to T .� Õ ��/.
In the other direction, one can define  W T .� Õ ˇ�/ ! T .� Õ ��/ by setting

 .ŒA�/ D ŒA \ ��� for A 2 Clopen.ˇ�/, and extending to T .� Õ ˇ�/.
Since r is a retraction we have  .'.a// D a for all a 2 T .� Õ ��/. Hence,

T .� Õ ��/ is isomorphic to a subsemigroup of T .� Õ ˇ�/.
The following result is an immediate consequence of this and Theorem 3.2.

Theorem 3.3. Let � be a countable group. The semigroup T .� Õ ��/ is unperforated,
and � is a partial order on it.

In particular, the action � Õ �� has dynamical comparison.

(Recall that by Proposition 2.18 if ˛ is minimal and T .˛/ is almost unperforated,
then ˛ has the dynamical comparison property.)

If � is not amenable, this (along with � being a partial order) implies that a D b for
every nonzero a; b 2 T .��/. In particular, any two nonempty clopen subsets of �� are
equidecomposable.
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In the amenable case, dynamical comparison implies that T .� Õ ��/ is cancellative.
Amusingly, we seem to have found a new condition to add to the long list of characteriza-
tions of amenability for countable groups: � is amenable iff T .� Õ ��/ is stably finite
iff T .� Õ ��/ is cancellative.

The following proposition is a routine consequence of the aforementioned properties
of �� .

Proposition 3.4. Any minimal Cantor action of � is a factor of a free, minimal Cantor
action whose clopen type semigroup is unperforated and partially ordered (in particular,
this action has the dynamical comparison property and if � is amenable its clopen type
semigroup is cancellative).

Proof. Given a minimal Cantor action ˛W� Õ X , find a factor map � W�� ! X .
Let A D ��1.Clopen.X//, which is a countable, �-invariant Boolean subalgebra of

Clopen.��/.
Given a �-invariant Boolean subalgebra B of Clopen.��/, we denote by TB.� Õ

��/ the semigroup of types obtained by considering only decompositions with pieces in
B (still with � as the acting group), and �B the corresponding partial ordering. We also
denote equality of types for this relation byDB .

We build a sequence of countable atomless subalgebras .An/n of Clopen.X/ as fol-
lows. First, we let A0 be any countable, �-invariant, atomless Boolean subalgebra of
Clopen.��/ containing A and such that for any 
 2 � n ¹1º, there exists a clopen parti-
tion .Ui /i2I of �� whose elements belong to A0 and are such that 
Ui \ Ui D ; for all
i 2 I (if necessary, see the proof of Proposition 4.2 for an explanation of why such clopen
partitions exist).

Next, assume that An has been built; for any u;v 2TAn
.� Õ��/ and any k 2N� such

that ku �An
kv, find clopen sets forming decompositions of u; v witnessing that u D v

in T .� Õ ��/, and similarly if u �An
v ^ v �An

u find clopen decompositions wit-
nessing that u D v. Take any �-invariant, countable, atomless Boolean subalgebra AnC1

that contains An and all these new clopen sets and denote by �n the natural map from
TAn

.� Õ ��/ to TAnC1
.� Õ ��/ (if two clopen sets are equidecomposable with pieces

in An then they are also equidecomposable with pieces in AnC1). We have:

• 8u; v 2 TAn
.� Õ ��/ 8k 2 N� ku �An

kv) �n.u/ �AnC1
�n.v/.

• 8u; v 2 TAn
.� Õ ��/ .u �An

v ^ v �An
u/) �n.u/ DAnC1

�n.v/.

Then B D
S
n An is countable, atomless, �-invariant, contains A and satisfies the

following conditions:

• For any u; v 2 TB.� Õ ��/, and any n 2 N�, nu �B nv) u �B v.

• For any u; v 2 TB.� Õ ��/, .u �B v ^ v �B u/) u DB v.

• For any 
 2 � n ¹1º, there exists a clopen partition .Ui /i2I of �� whose elements
belong to B and are such that 
Ui \ Ui D ; for all i 2 I .
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Denote by Y the compactification of � associated with B, that is, the compactification
whose algebra of continuous functions is the closed subalgebra of C.��/ whose ¹0; 1º-
valued functions are the indicator functions of elements of B. Then Y is a Cantor space,
and we have a free action � Õ Y whose clopen type semigroup is unperforated and
partially ordered. Since Clopen.��/ � B � A, � factors through a �-equivariant map
 WY ! X , and we are done.

4. Spaces of actions

We fix a Cantor space X , an infinite countable group � and consider the space A.�/ of
actions of � on X , which we see as a closed subset of Homeo.X/� , hence a Polish space.

4.1. Some Gı subsets of A.�/

The following is well known.

Proposition 4.1. The space Min.�/ of all minimal Cantor actions of � is a Gı subset
of A.�/.

Proof. An action ˛ is minimal iff for every nonempty clopen A there exists 
1; : : : ; 
n
such that

S
i ˛.
i /A D X . For fixed A, this is an open condition on ˛.

Hence, Min.�/ is a Polish space in its own right.

Proposition 4.2. The space Free.�/ of all free actions is a Gı subset of A.�/.

Proof. Assume that ˛ is a free action, and fix 
 2 � n ¹1º. Then for every x 2 X there
exists a clopen U containing x and such that ˛.
/U \U D ;. Hence, one can find finitely
many clopen subsets A1; : : : ; An such that

S
i Ai D X and ˛.
/Ai \ Ai D ; for all i .

Conversely, any ˛ satisfying the condition in the previous paragraph is free. Thus

Free.�/ D
\


2�n¹1º

[
A

¹˛ W 8A 2 A ˛.
/A \ A D ;º

(in the line above A runs over the set of all clopen partitions of X ).

Note that Proposition 3.4 shows, in particular, that for any � there exists a free minimal
action of � on the Cantor space, a well-known fact (see, e.g., [19]). We are particularly
interested in generic properties (in the sense of Baire category) in Min.�/.

Lemma 4.3. Assume that .˛n/ 2 A.�/N converges to some ˛ 2 A.�/, and �n 2M.˛n/

for all n. Let � be a cluster point of .�n/n. Then � 2M.˛/.
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Proof. We might as well assume that .�n/n converges to �. Fix A 2 Clopen.X/ and

 2 � . There exists N such that for any n � N one has ˛n.
/A D ˛.
/A. Hence,

8n � N �n.A/ D �n.˛n.
/A/ D �n.˛.
/A/:

Letting n go to1, we obtain �.A/ D �.˛.
/A/.

Proposition 4.4. The set A�.�/ of all actions which admit an invariant probability
measure is closed in A.�/.

The set A�1 of all uniquely ergodic actions of � is a Gı subset of A.�/.

Proof. The first fact is an immediate consequence of the previous lemma allied to the
compactness of the space of Borel probability measures on X .

To see why the second fact holds, fix a clopen A and " > 0. Then it follows from the
previous lemma that

�A;" D ¹˛ W 9�1; �2 2M.˛/j�1.A/ � �2.A/j � "º

is closed in A.�/. Hence,

†A D ¹˛ W 8�1; �2 2M.˛/�1.A/ D �2.A/º

is Gı in A.�/. Considering the intersection of all †.A/ as A ranges over clopen subsets
of X , we obtain the desired conclusion.

Proposition 4.5. The following subsets of A.�/ are all Gı :

• Actions with the dynamical comparison property.

• Actions such that T .˛/ is almost unperforated.

• Actions such that T .˛/ is unperforated.

• Actions such that T .˛/ is cancellative.

• Actions such that � is a partial order on T .˛/.

Proof. Let us only prove the first fact, the others being similar. Fix A;B 2 Clopen.X/. By
Lemma 4.3, the set †.A; B/ D ¹˛ W 9� 2M.˛/ �.A/ � �.B/º is closed in A.�/. The
set �.A;B/ D ¹˛ W ŒA� � ŒB� in T .˛/º is open in A.�/. The set of all actions of � with
the dynamical comparison property is equal to\

A;B2Clopen.X/

.†.A;B/ [�.A;B//I

hence, it is a Gı subset of A.�/ (since the union of a closed and an open set is Gı , and
there are only countably many clopen subsets in X ).
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4.2. Conjugacy classes in Min.�/

Below we will repeatedly make use of the well-known and easily verified fact that if ˛; ˇ
are two Cantor actions and ˛ is a factor of ˇ, then ˛ belongs to the closure of the conjugacy
class of ˇ.

Proposition 4.6. There exist actions with dense conjugacy classes in A.�/ and Min.�/.

Proof. The case of A.�/ is well known: Let .˛n/n enumerate a dense subset of A.�/,
then consider the product action ˛. It is again a Cantor action, and each ˛n is a factor of ˛.
In particular, each ˛n is contained in the closure of the conjugacy class of ˛, which is thus
dense in A.�/.

The case of Min.�/ is similar; enumerate a dense subset .˛n/n of Min.�/ and let ˛ be
any minimal component of the product action. Then ˛ is a minimal Cantor action which
maps into every ˛n, so by minimality each ˛n is a factor of ˛.

The existence of dense conjugacy classes implies that every Baire-measurable, con-
jugacy invariant subset of Min.�/ is either meager or comeager (the so-called 0-1
topological law, see [22]).

4.3. Generic properties in Min.�/

For Z, there exists a generic conjugacy class (the universal odometer [20]). What about
other groups? I do not know the answer to this question even for Z2.

Proposition 3.4 immediately implies the following.

Proposition 4.7. A generic element ˛ of Min.�/ is such that:

(1) ˛ is free.

(2) T .˛/ is unperforated (hence T .˛/ has dynamical comparison).

(3) The algebraic order on T .˛/ is a partial ordering.

The fact that a generic minimal Cantor action of an amenable group has the dynam-
ical comparison property also follows from [8] and the relation between almost finite-
ness and dynamical comparison (see [25, Theorem 6.1]). Conversely, using the previous
proposition one recovers [8, Theorem 4.2] by applying [25, Theorem 6.1].

5. Weakenings of dynamical comparison

This work was in part motivated by the following question: Given a minimal action ˛ of
a countable amenable group on the Cantor space, does there exist a minimal Z-action ˇ
such that M.˛/DM.ˇ/? Of course, if ˛ is orbit equivalent to a Z-action then the previous
question has an affirmative answer.
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The criterion established in [32] (which slightly simplifies a condition obtained
in [21]) shows that there exists such an action ˇ as soon as M.˛/ is such that for
any A; B 2 Clopen.X/ such that �.A/ < �.B/ for every � 2 M.˛/, there exists C 2
Clopen.X/ such that �.A/ D �.C/ for all � 2M.˛/ and C is contained in B . This is a
weakening of dynamical comparison.

Definition 5.1. Let ˛ be a minimal action of � on a Cantor space X . Denote byK.˛/ the
group ¹g 2 Homeo.X/ W 8� 2M.˛/ g�� D �º.

We say that ˛ has the measured comparison property if the action K.˛/ Õ X has
dynamical comparison.

Here, we are departing from our earlier conventions, since K.˛/ is not countable,
and we only defined comparison for countable groups (this played a part in some argu-
ments, when we are using an enumeration of �). However, whenever X is metrizable,
Homeo.X/ is separable, whence K.˛/ admits a countable dense subgroup ƒ. Then
M.K.˛// D M.ƒ Õ X/ (D M.˛/), T .K.˛// D T .ƒ Õ X/, so all our earlier results
apply equally well to any subgroup of Homeo.X/.

Lemma 5.2. Let ˛ be a minimal action of an amenable group on the Cantor space X .
Then there exists a Z-action ˇ such that M.˛/ DM.ˇ/ iff ˛ has measured comparison.

Proof. Implication from left to right is immediate, since Z-actions have dynamical
comparison, which implies measured comparison.

Conversely, assume that ˛ has measured comparison and let A; B 2 Clopen.X/
be such that �.A/ < �.B/ for all � 2 M.˛/. Since M.˛/ D M.K.˛//, there exists
g 2 JK.˛/K D K.˛/ such that gA � B , so the criterion of [32] is satisfied.

So the various characterizations obtained in Section 2 have counterparts for mea-
sured comparison. Unfortunately, this does not seem to lead to new examples of minimal
actions with measured comparison, because it seems difficult to say anything meaningful
about the group K.˛/. The same is true of another, intermediate weakening of dynamical
comparison which we briefly discuss now.

Definition 5.3. Let ˛W� Õ X be an action of a countable group � on the Cantor space.
The full group of ˛ is the group

Œ˛� D ¹g 2 Homeo.X/ W 8x 2 X 9
 2 � g.x/ D ˛.
/xº:

Definition 5.4. The action ˛ has orbital comparison if Œ˛� Õ X has dynamical compar-
ison.

Since M.˛/ DM.Œ˛�/ DM.K.˛//, dynamical comparison implies orbital compar-
ison, which implies measured comparison. None of the converse implications is clear. If
an action ˛ is orbit equivalent to a Z-action, then it must satisfy orbital comparison.
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By the same argument as in the proof of Lemma 3.5 in [16], orbital comparison does
imply that Œ˛� D K.˛/. Even in the case where there are no invariant measures, I do
not know of any example where this equality does not hold (it follows from dynamical
comparison, and I do not know examples where dynamical comparison fails for minimal
Cantor actions).

Question 5.5. Let ˛W� Õ X be a minimal action on the Cantor space. Is the full group
Œ˛� dense in K.˛/ D ¹g 2 Homeo.X/ W 8� 2M.˛/ g�� D �º?

Note that, if M.˛/ is empty, one has K.˛/ D Homeo.X/, and it seems unlikely that
emptiness of M.˛/ is enough to guarantee that Œ˛� is dense in Homeo.X/ (though there
certainly are examples where J˛K is not dense, like the action of a nonabelian free group
on its boundary).

6. Concluding remarks and questions

We collect a few questions that came up in the paper; we mostly focus on the case of
minimal actions.

6.1. On the clopen type semigroup

Even though dynamical comparison has so far mostly been studied for actions of amenable
groups, the notion makes sense in general, and I do not even know the answer to the
following question.

Question 6.1. Does any minimal action of a countable group on the Cantor space satisfy
the dynamical comparison property?

We noted early on in the paper that cancellativity of T .˛/ is an important condition,
which is not always satisfied even by free, topologically transitive Z-actions. However, in
the minimal case, when the action admits an invariant measure and has dynamical com-
parison then T .˛/ is cancellative (see Proposition 2.20). The argument for that is rather
indirect as it goes through the fact that dynamical comparison is equivalent to weak com-
parability in this context, and a simple, conical, stably finite refinement monoid with weak
comparability is cancellative by a theorem of Ara and Pardo.

Question 6.2. Is it true that T .˛/ is cancellative for any minimal Cantor action of a
countable amenable group?

By [4, Corollary 1.9], to obtain a positive answer it would be enough to prove that
T .˛/ is strictly cancellative, that is, that aC b < aC c ) b < c.

In the case of Z, cancellativity for minimal actions is easy to establish thanks to the
existence of a dense locally finite subgroup of J˛K. Even for Z2 I do not know a simple
proof of cancellativity for minimal actions.
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Question 6.3. Let ˛ be a minimal action of a countable group on the Cantor space, and
let A, B be two clopen sets such that ŒA� D ŒB� in T .˛/. Must there exist g 2 J˛K such
that gA D B?

For amenable groups, a positive answer to Question 6.1 implies a positive answer
to Question 6.2, and a positive answer to Question 6.2 implies a positive answer to
Question 6.3.

6.2. On the space of actions

We fix a countable group � and denote again by Min.�/ the set of all minimal actions
of � on the Cantor space X , with its usual Polish topology.

Question 6.4. For which groups � is there a generic conjugacy class in Min.�/?

It seems that, in order to make progress on this question, it would be useful to deter-
mine the closure of Min.�/ inside the space of actions A.�/. When � D Z this is
understood: By [5, Theorem 5.9], the closure of the set of minimal homeomorphisms in
Homeo.X/ is the set of all homeomorphisms g such that for any nontrivial clopen set U
both gU n U and U n gU are nonempty.

Question 6.5. What is the closure of Min.�/ inside A.�/? Can one give a description
similar to the case � D Z?

It seems very unlikely that such a description is possible in general.

Question 6.6. Let � be a countable, amenable group. Is unique ergodicity generic in
Min.�/? More generally, can one say anything meaningful about the set of invariant Borel
probability measures of a generic minimal action?

We at least know that the set of all uniquely ergodic actions is Gı , and is nonempty
when � is amenable. To see that it is nonempty, one can use a generalization of the Jewett–
Krieger theorem to amenable groups, due to Rosenthal, or one can apply a more general
theorem of Frej–Huczek [13].

In the non-amenable case, it seems that we know even less.

Question 6.7. Does every countable group admit a strictly ergodic action on the Cantor
space?

Elek [11] recently proved that every countable group admits a free, minimal action on
the Cantor space which preserves a Borel probability measure.
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A. A variation on an argument of Krieger

We now describe an argument that completes the proof of Proposition 2.25. We fix a
metrizable 0-dimensional compact space X .

Definition A.1 (Krieger [26]). Let G be a subgroup of Homeo.X/.
Given g 2 Homeo.X/ and a subalgebra A � BX which is g-invariant, we denote by

gjA the automorphism of A induced by g, and by GjA D ¹gjA W g 2 Gº. We say that
.A; G/ is a unit system if:

• A is a subalgebra of Clopen.X/.

• G leaves A invariant and G D ŒG;A�.

• The mapping g 7! gjA is an isomorphism from G to Aut.A/.

(Note that it follows from these conditions that ¹x 2 X W g.x/ D xº belongs to A.)

Definition A.2. We say that a unit system .A; �/ is compatible with a full group G if for
any A 2 A and any 
 2 � there exists g 2 G such that 
A D gA.

The main tool for our construction is an adaptation to our context of [26, Lemma 3.4],
and the proof is essentially the same as Krieger’s; we describe the argument for the reader’s
convenience (our formulation here is quite close to the one used for another variation on
Krieger’s theorem given in [33]).

Lemma A.3. Fix a full group G � Homeo.X/. Assume that we are given finite unit sys-
tems .A; �/, .C ; ƒ/ compatible with G, along with an isomorphism ˆWA! C with the
following properties:

(1) For all A 2 A, there exists g 2 G such that ˆ.A/ D g.A/.

(2) ƒjC D ˆ�jAˆ�1.

Then, for every G-compatible finite unit system .A0; �0/ refining .A; �/, there exist a
G-compatible finite unit system .C 0; ƒ0/ and an isomorphism ‰WA0 ! C 0 that extends ˆ
and such that the conditions above are still satisfied.

Proof. For every orbit � of the action of� on atoms of A, we choose a representative A�.
For everyA 2 �,A¤A�, we denote by ı.�;A/ the element of� that induces on the atoms
of A the transposition exchangingA andA�; we define similarly �.�;A/ the element ofƒ
inducing the transposition that maps ˆ.A/ to ˆ.A�/.

For each �, we can write

ˆ.A�/ D
G

B2atoms.A0/WB�A�

B 0;

with B 0 in the G-orbit of B , for each atom B of A0.
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We then define a finite Boolean algebra C 0 by setting as its atoms all B 0 for B an
atom of A0 contained in an A�, as well as all �.�;A/.B 0/ for A 2 A�. Then we obtain the
desired ‰WA0 ! C 0 as follows: First, we set ‰.B/ D B 0 for all atoms B of A0 contained
in an A�, and whenever A is an atom of A belonging to some �, A ¤ A�, and B is an
atom of A0 contained in A, we set ‰.B/ D �.�;A/‰ı.�; A/.B/.

We now need to describe the group ƒ0. In the remainder of this proof, the letter � will
always stand for an orbit of the action of� on the atoms of A0, and the letter � for an orbit
of the action of�0 on the atoms of A0. By definition, for all � there exists a unique � such
that � � �.

We begin by picking, for each � , an atom E� of A0 contained in � . Then for each
orbit � we pick some �.�/ such that �.�/ � �.

We can find for all �; � such that � � � some g.�; �/ 2 G which maps ‰.E�.�// onto
‰.E� / and is the identity elsewhere. For all E 2 � , E ¤ E� we denote by �.�; E/ the
element of ƒ which induces on the atoms of C the transposition that maps ‰.E� / onto
‰.E/. Then our desired groupƒ0 is the group generated by ¹g.�; �/ W � � �º [ ¹�.�;E/ W
E 2 �;E ¤ E�º.

By construction, .C 0; ƒ0/ is a unit system, and the action of ƒ0 on the atoms of C 0

coincides with that of all permutations of the atoms of C 0 which stabilize all ‰.�/. Thus
‰ carries �0-orbits onto ƒ0-orbits, and we have as desired ƒ0

jC 0
D ‰�jA0‰

�1.

Now, we fix a full group H , and an ample group ƒ such that for any U; V 2

Clopen.X/, one has

.9h 2 H hU D V /, .9� 2 ƒ �U D V /:

This condition amounts to stating that H D ƒ; equivalently, H is ƒ-compatible and ƒ is
H -compatible.

Proposition A.4. There exists g 2 Homeo.X/ such that:

• For every clopenU , there exists h2H such that gUDhU (equivalently, gHg�1DH ).

• gƒg�1 � H .

Applying this result to H D J˛K completes the proof of Theorem 2.25.

Proof. We begin by fixing a refining sequence of finite unit systems .An; ƒn/ such thatS
An D Clopen.X/ and

S
ƒn D ƒ (see [26] or [33]).

Applying Lemma A.3 (with the role of the full group G being played by H at even
steps, and by ƒ at odd steps), we can build by induction sequences of finite unit sys-
tems .Cn;�n/ and .Dn;†n/, along with isomorphisms ˆnWCn!Dn with the following
properties:

(1) For all n .CnC1; �nC1/ refines .Cn; �n/ and .DnC1; †nC1/ refines .Dn; †n/.

(2) For all n �n � ƒ and .C2n; �2n/ refines .An; ƒn/.
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(3) For all n †n � H and D2nC1 refines An.

(4) For all n, for all A 2 Cn, there exists h 2 H such that ˆ.A/ D hA.

(5) For all n, †njDn
D ˆn�njCnˆ

�1
n .

This construction produces an automorphism ˆ D
S
ˆn of Clopen.X/, and by

Stone duality there exists g 2 Homeo.X/ such that gA D ˆ.A/ for every clopen A. In
particular, g is H -compatible, so gHg�1 D H .

We also built an ample subgroup † D
S
†n which is contained in H , and such that

gƒg�1 D †. The proof is complete.

B. Glossary

For the reader’s convenience, we repeat below (in alphabetical order) the definitions of
the monoid-theoretical notions that came up during the paper. Below T is a commutative
monoid with operation denoted by C and neutral element 0; we recall that a � b means
that there is some c such that b D aC c.

• T is almost unperforated if

8x; y 2 T 8n 2 N ..nC 1/x � ny/) .x � y/:

• T is cancellative if

8x; y; z 2 T .x C y D x C z/) y D z:

• T is conical if

8u; v 2 T .uC v D 0/) .u D v D 0/:

This property is satisfied by every T .˛/.

• An element x 2 T is directly finite if

8y 2 T .y C x D x/) y D 0:

• An element x 2 T is an order unit if

8y 2 T 9n 2 N y � nx:

The type of a clopen subset A is an order unit in T .˛/ iff translates of A cover the
whole space.

• T is a refinement monoid if whenever .ai /1�i�n and .bj /1�j�m are elements of T
such that

Pn
iD1 ai D

Pm
jD1 bj there exist elements .ci;j / of T such that ai DPm

jD1 ci;j for all i and bj D
Pn
iD1 ci;j for all j .

Every T .˛/ is a refinement monoid.
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• T is simple if every nonzero element of T is an order unit. This condition is satisfied
in T .˛/ iff ˛ is minimal.

• T is stably finite if every element of T is directly finite.

• T is unperforated if

8x; y 2 T 8n 2 N n ¹0º nx D ny ) x D y:

• Assume that T is simple and conical, and let x be a nonzero element of T . One says
that T has the weak comparability property if

8a ¤ 0 9k 2 N� 8b kb � x) b � a

(this definition does not depend on the choice of x since we assume that every nonzero
element is an order unit).
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