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Dimensions of a class of nonautonomous carpets and measures
on R2

Yifei Gu, Chuanyan Hou, and Jun Jie Miao

Abstract. For each integer k > 0, let nk andmk be integers such that nk � 2; mk � 2, and let
Dk be a subset of ¹0; : : : ; nk � 1º � ¹0; : : : ;mk � 1º. For each w D .i; j / 2 Dk , we define an
affine transformation on R2 by

ˆw.x/ D Tk.x C w/; w 2 Dk ;

where Tk D diag.n�1
k
; m�1
k
/. The non-empty compact set

E D

1\
kD1

[
.w1w2:::wk/2

Qk
iD1Di

ˆw1 ıˆw2 ı � � � ıˆwk

is called a nonautonomous carpet.
In the paper, we provide the lower, packing, box-counting and Assouad dimensions of the

nonautonomous carpets E. We also explore the dimension properties of nonautonomous meas-
ures � supported on E, and we provide Hausdorff, packing and entropy dimension formulas
of �.

1. Introduction

1.1. Dimensions of measures

In the dimension theory of fractal geometry and dynamical systems, the dimensions
of invariant measures are important objects to investigate, and the most frequently
used dimensions are Hausdorff, packing and entropy dimensions.

Let � be a finite Borel measure on Rd . The Hausdorff and packing dimensions of
�, respectively, are defined as

dimH � D inf¹dimHA W �.A
c/ D 0º;

dimP � D inf¹dimPA W �.A
c/ D 0º:
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The lower and upper local dimensions of � are given by

dimloc �.x/ D lim inf
r!0

log�
�
B.x; r/

�
log r

; dimloc �.x/ D lim sup
r!0

log�
�
B.x; r/

�
log r

;

and we say that the local dimension exists at x if these are equal, writing dimloc �.x/

for the common value. Let Mn be the partition of Rd into grid boxes

dY
iD1

Œ2�nji ; 2
�n.ji C 1/�

with integers ji . The lower and upper entropy dimensions of �, respectively, are
defined as

dime � D lim inf
n!1

Hn.�/

log 2n
; dime � D lim sup

n!1

Hn.�/

log 2n
;

where
Hn.�/ D �

X
Q2Mn

�.Q/ log�.Q/:

If these are equal, we refer to the common value as the entropy dimension of �. We
refer the readers to [10, 13] for the background reading.

The following well-known theorem of Young [40] shows the connection of these
dimensions.

Theorem 1.1. Let � be a probability measure on Rd . Suppose that the local dimen-
sion

dimloc �.x/ D ˛; �-a.e. x 2 Rd :

Then dime � D dimH � D ˛.

In 2002, Fan, Lau and Rao improved the conclusion of the theorem to dime � D

dimP � D dimH � D ˛, see [13]. Determination of the dimensions of fractal sets is a
challenging problem, see [2, 8, 11, 12, 14, 19, 21, 25, 36, 38] for various studies on the
dimension theory of fractal sets. In particular, for self-affine sets with grid structure,
which are often called non-typical self-affine sets such as Bedford–McMullen carpets,
Gatzouras–Lalley sets, Barański sets, see [2,3,5,26,29,33], one strategy is to compute
the Hausdorff dimensions of measures supported on the fractal set via local dimen-
sions, and the supreme dimension of measures often gives the Hausdorff dimension
of the set, that is

dimHE D sup¹dimH � W � is a Borel probability measure supported on Eº:
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Since the lower and upper local dimensions often give the Hausdorff and packing
dimensions of measures (see Lemma 4.4 in Section 4), it is important to investig-
ate the local dimensions and the dimension of measures in the dimension theory of
fractal sets. In many cases, people found that local dimensions exist and equal a con-
stant almost surely, that is to say, in these studies the Hausdorff, packing and entropy
dimensions of measures are identical, see [13]. However, there are fractal measures
whose local dimensions do not necessarily exist, and it is an interesting question to
investigate the dimension theory of such measures.

1.2. Self-affine sets

First, we review a class of non-typical self-affine sets, and we refer the readers to
[10–12] for the study of typical self-affine sets.

Given integersm and n such that n > m� 2, let D be a subset of ¹0; : : : ; n� 1º �
¹0; : : : ; m � 1º. For each w 2 D , we define an affine transformation ˆw on R2 by

ˆw.x/ D T .x C w/; (1.1)

where T D diag.n�1;m�1/. Then ¹ˆwºw2D forms a self-affine iterated function sys-
tem (IFS). By the well-known theorem of Hutchinson, see [10,24], this self-affine IFS
has a unique self-affine attractor, that is a unique non-empty compact setE �R2 such
that

E D

m[
iD1

ˆi .E/:

The self-affine set E is also called a Bedford–McMullen set or a Bedford–McMullen
carpet [5, 33].

Various dimensions of Bedford–McMullen carpets have been investigated, see [5,
15,32,33], and these sets are often used as good examples for the following dimension
inequalities

dimLE � dimHE � dimBE � dimAE; (1.2)

where E � Rd is compact, and where dimL and dimA denote lower dimension and
Assouad dimension, respectively, see Section 5 for the definitions. Note that the lower
dimension is only a lower bound to the Hausdorff dimension with additional assump-
tions such as the set E is closed, and we refer readers to [16] for details of Assouad
type dimensions. Since Bedford–McMullen carpets are a class of simplest self-affine
sets, they are frequently used as a testing ground on questions and conjectures of
fractals, and we refer readers to [1, 17, 22, 23, 27, 30, 31, 34] for various studies on
Bedford–McMullen carpets.

There are many different generalisations for Bedford–McMullen carpets, see [3,4,
14,15,17,26,29]. In [26], Kenyon and Peres studied the self-affine spongeE, which is
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a generalization of Bedford–McMullen carpets in Rd , and they found the Hausdorff
dimensions of self-affine measures by using ergodic property to show that the local
dimension exists. Moreover, they proved that there exists a unique ergodic self-affine
measure of full Hausdorff dimension. The research on the generalisations of Bedford–
McMullen carpets is also an active area, and we refer readers to [8, 17, 18, 28, 37] for
the related studies on different generalizations and the references therein.

In this paper, we study a class of fractals, named nonautonomous carpets (see Sub-
section 1.3), which may also be regarded as a generalisation of Bedford–McMullen
carpets. Since we apply different affine IFSs at the different levels in the iterating
process, such sets do not have dynamical properties any more. Therefore, the tools of
ergodic theory cannot be invoked, which causes that the local dimensions of meas-
ures supported on these sets do not necessarily exist, and this leads to the difficulties
to determine their dimensions of the sets and measures.

1.3. Nonautonomous carpets

Given a sequence ¹.nk;mk/º1kD1, wheremk and nk are integers such that nk � 2 and
mk � 2. For each integer k, let Dk be a subset of ¹0; : : : ; nk � 1º � ¹0; : : : ;mk � 1º.
We write rk D card.Dk/ and always assume that rk � 2. The set of all finite sequences
with length k and the set of infinite sequences are denoted by

†k D

kY
jD1

Dj ; †kl D

kY
jDlC1

Dj ; †1 D

1Y
jD1

Dj :

For w D w1 : : : wk 2 †k , v D v1 : : : vl 2 †kClk
, write

w � v D w1 : : : wkv1 : : : vl 2 †kCl :

We write wjk D .w1 : : : wk/ for the curtailment after k terms of the infinite sequence
w D .w1w2 : : :/ 2 †

1. We write w � v if w is a curtailment of v. We call the set
Œw� D ¹v 2 †1 W w � vº the cylinder of w, where w 2 †�. If w D ;, its cylinder is
Œw� D †1.

Given an integer k > 0 for each w D .i; j / 2 Dk , we define an affine transform-
ation on R2 by

ˆw.x/ D Tk.x C w/; w 2 Dk; (1.3)

where Tk D diag.n�1
k
; m�1

k
/. For each w D .w1w2 : : : wk/ 2 †k , we write

ˆw D ˆw1 ıˆw2 ı � � � ıˆwk :

Suppose that J D Œ0; 1�2 � R2. For each integer k > 0, let ¹ˆwºw2Dk be the
self-affine IFS as in (1.3). For each w 2 †k , the set Jw is a geometrical affine copy
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to J , i.e., there exists an affine mapping ˆw W R2 ! R2 such that Jw D ˆw.J /. The
non-empty compact set

E D

1\
kD1

[
w2†k

Jw (1.4)

is called a nonautonomous carpet or self-affine Moran set ¹.nk;mk;Dk/º
1
kD1

. For all
w 2 †k , the elements Jw are called k-th-level basic sets of E, see Figure 1 for the
first three levels.

Note that this may also be regarded as a generalization of Moran fractals where
only similarity contractions are used in the construction, see [35, 39]. In [20], the
authors studied a special case of these sets where they require that nk � mk for all
k > 0, and they provided the Assouad, packing and box-counting dimensions of the
sets. They also obtained the Hausdorff dimension formula under some strong tech-
nique assumptions. In this paper, we are interested in investigating the dimension
properties of measures supported on nonautonomous sets, and we also provide the
Assouad, packing and box-counting dimension formulas of sets which extend the con-
clusions in [20]. Furthermore, we study the lower dimension of the nonautonomous
set which has not been studied, and this conclusion completes the dimension formu-
las in inequality (1.2). All these studies strongly rely on the fixed translations at each
level, which gives the fine grid structure, and this is different to the classic Moran sets
where the translations are very flexible in the Moran structure. Recently, Gu and Miao
in [21] have studied a class of sets, called nonautonomous iterated functions systems
and nonautonomous fractals, where they replaced the similarities by affine contrac-
tions and removed the separation assumption in the Moran construction. Like typical
self-affine fractals, they obtained various almost sure results on dimensions.

Let … W †1 ! R2 be the projection given by

….w/ D
1X
kD1

diag
� kY
hD1

n�1h ;

kY
hD1

m�1h

�
wk :

Then the nonautonomous carpet E is the image of …, i.e., E D ….†1/. Note that
the range restriction of … to E is surjective, i.e., … W †1 ! E is surjective.

Let Pk denote the collection of all probability vectors on Dk , and P D
Q1
kD1Pk .

Given p D .pk/1kD1 2 P , where pk D .pk.ij //.i;j /2Dk 2 Pk is a probability vector.
For each w D w1w2 : : : wk 2 †k , we write

�p
�
Œw�
�
D pw D p1.w1/p2.w2/ � � �pk.wk/: (1.5)

Note that equation (1.5) uniquely determines a Borel probability measure on †1 by
Kolmogorov’s existence theorem, see [7], and �p is the distribution of a sequence of
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Figure 1. Nonautonomous carpet constructed to Level 3, where D1 D ¹.0; 0/; .2; 0/; .2; 1/º,
D2 D ¹.0; 0/; .0; 2/; .0; 3/; .1; 2/º and D3 D ¹.0; 2/; .1; 0/; .1; 2/; .3; 2/º:

independent Dk-valued random vectors Xk which have distributions pk . It is clear
that

�p.A/ D �p.…
�1A/ (1.6)

is a Borel probability measure on E, and we call it a nonautonomous measure on E.
For each k > 0, we write that, for w D .i; j / 2 Dk ,

qk.w/ D qk.j / D
X

.i;j /2Dk

pk.i; j /; bqk.w/ Dbqk.i/ D X
.i;j /2Dk

pk.i; j /:

Note that .qk.j //
mk�1
jD0 and .bqk.i///nk�1iD0 are also probability vectors, where qk.j /

is the measure distributed on j -th row, andbqk.i/ is the measure distributed on i -th
column.

For each ı > 0, let k D k.ı/ be the unique integer satisfying

1

m1

1

m2
� � �

1

mk
� ı <

1

m1

1

m2
� � �

1

mk�1
: (1.7)
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Note that if there is no integer satisfying the above equation, we always set k D 1. For
each given integer k, let l D l.k/ be the unique integer satisfying

1

n1

1

n2
� � �

1

nl
�

1

m1

1

m2
� � �

1

mk
<
1

n1

1

n2
� � �

1

nl�1
: (1.8)

We sometimes write l.ı/ for l.k/ if kD k.ı/ is given by (1.7). If there is no ambiguity
in the context, we just write l instead of l.k/ for simplicity.

There are certain sets essential to the arguments of the paper which are called
approximate squares. Such analogous sets were defined in [3, 29, 33]. In this paper,
we use such sets repeatedly in calculations involving dimensions. For each ı > 0 and
every wD w1w2 : : :wn : : : 2 †1, where wn D .in; jn/, we define the ı-approximate
square containing w by

U.ı;w/ D
®
v D v1v2 : : : vn : : : 2 †1 W in D i 0n; n D 1; : : : ; l.ı/;

jn D j
0
n; n D 1; : : : ; k.ı/; vn D .i

0
n; j
0
n/
¯
;

and we write Uı for the collection of all such sets, i.e.,

Uı D
®
U.ı;w/ W w 2 †1

¯
:

We write
�ı D

®
….U / W U 2 Uı

¯
: (1.9)

For simplicity, we also call the elements S of �ı the ı-approximate squares if there is
no ambiguity. The measure distributed on approximate squares is essential in finding
the dimensions of sets and measure.

Let �p and �p be the measures given by (1.5) and (1.6). Given ı > 0, for each
U.ı;w/ 2 Uı , we have that

�p
�
U.ı;w/

�
D

²
p1.w1/ � � �pl.wl/qlC1.wlC1/ � � � qk.wk/; l � k;

p1.w1/ � � �pk.wk/bqkC1.wkC1/ � � �bql.wl/; l > k:
(1.10)

where k D k.ı/ and l D l.ı/ are given by (1.7) and (1.8). For each S.ı;x/ 2 �ı where
x 2 S.ı;x/\E, there exists w 2†1 such that….w/D x and….U.ı;x//D S.ı;x/.
Then

�p
�
S.ı; x/

�
D �p

�
U.ı;w/

�
: (1.11)

Approximate squares are an essential tool in studying non-typical self-affine
fractals, see [3, 5, 17, 29, 33], and we may also apply this tool to study the dimen-
sions of the nonautonomous carpets and nonautonomous measures.
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2. Main Results

In this section, we state our main conclusions. Let

NC D sup¹nk; mk W k D 1; 2; : : :º: (2.1)

We always assume thatNC is finite in the paper. Given p 2P , for each integer k > 0,
the k-th entropy is defined as

Hk.p/ D

8̂̂̂<̂
ˆ̂:
�

lP
iD1

P
w2Di

pi .w/ logpi .w/ �
kP

iDlC1

P
w2Di

pi .w/ log qi .w/; l � kI

�

kP
iD1

P
w2Di

pi .w/ logpi .w/ �
lP

iDkC1

P
w2Di

pi .w/ logbqi .w/; l > k;

(2.2)
where l D l.k/ is given by (1.8).

First, we give formulas of the upper and lower entropy dimensions by using k-th
entropy.

Theorem 2.1. Let E be the nonautonomous carpet defined by (1.4) with NC <1.
Given p 2 P , let �p be the nonautonomous measure defined by (1.6). Then

dime�p D lim sup
k!1

Hk.p/Pk
iD1 logmi

I

dime�p D lim inf
k!1

Hk.p/Pk
iD1 logmi

:

To study the Hausdorff dimension of the nonautonomous measures, it often
requires certain separation conditions. We introduce two such conditions from geo-
metric and measure aspects.

Given k > 0, the set Dk is centred if i … ¹0; N � 1º and j … ¹0; M � 1º for
every .i; j / 2Dk . That Dk is centred implies that the rectangles corresponding to the
affine mappings at k-th level do not connect to the boundary of square Œ0; 1�2. We say
nonautonomous carpet E satisfies the frequency separation condition (FSC) if there
exists c > 0 such that

lim
n!1

card¹k W Dk is centred for k D 1; : : : ; nº
n

D c:

Given p 2 P , we say the nonautonomous measure �p satisfies the measure separ-
ation condition (MSC) if there exists a constant 0 < C < 1 such that for each k > 0,

max
®
qk.0/; qk.mk � 1/;bqk.0/;bqk.nk � 1/¯ < C:
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This condition guarantees that the measure is not supported only on one of the four
sides of the square Œ0; 1�2, and it implies that the measure on the sides of approx-
imate squares is zero. If we do not assume the strong separation condition on the
nonautonomous carpets, this condition is important for the proof of Hausdorff and
packing dimensions of measures supported on the sets.

Next, we state that the dimension formulas hold under either of FSC and MCS.

Theorem 2.2. Let E be the nonautonomous carpet defined by (1.4) with NC <1.
Given p 2 P , let �p be the nonautonomous measure defined by (1.6). Suppose that
either E satisfies FSC or �p satisfies MSC. Then

dimH �p D lim inf
k!1

Hk.p/Pk
iD1 logmi

I

dimP �p D lim sup
k!1

Hk.p/Pk
iD1 logmi

:

In Section 4, the FSC is replaced by a weaker condition, called boundary sep-
aration condition, see Theorem 4.1, and the Hausdorff and packing dimensions of
measures are studies under the weak condition. Such geometric separation conditions
are also useful to study the dimensions of sets.

It would be ideal that the supreme dimension of nonautonomous measures equals
the dimension of the sets, but we only obtain the equality under geometric separation
conditions in the following special case, see Corollary 4.2 as well.

Corollary 2.3. Let E be the nonautonomous carpet defined by (1.4) with NC <1.
Suppose that E satisfies FSC, and for all k > 0, nk � mk , and rk.j / D ck for all j
such that rk.j / ¤ 0. Then there exists p 2 P such that

dimH �p D max¹dimH �p0 W p0 2 P º D dimHEI

dimP �p D max¹dimP �p0 W p0 2 P º D dimPE:

Next, we state our conclusions on the dimension of nonautonomous carpets. For
each integer k > 0, we write

rk.j / D card¹i W .i; j / 2 Dk for each j º;

rC
k
D max¹rk.j / W j D 0; 1; : : : ; mk � 1º;

r�k D min¹rk.j / W rk.j / ¤ 0; j D 0; 1; : : : ; mk � 1º;

sk D card¹j W .i; j / 2 Dk for some iº:

These count the rectangles from horizontal direction at k-th level, simply to say, rk.j /
is the number of rectangles in j -th row, rC

k
is the largest number of rectangles in these
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rows, r�
k

is the smallest number of rectangles in these rows, and sk is the number of
non-empty rows, see Figure 1.

Since it may happen that mk � nk in our setting, we have to count the rectangles
from vertical direction at each level as well. Similarly, for each integer k > 0, we write

brk.i/ D card¹j W .i; j / 2 Dk for each iº;brC
k
D max¹brk.i/ W i D 0; 1; : : : ; nk � 1º;br �k D min¹brk.i/ Wbrk.i/ ¤ 0; i D 0; 1; : : : ; nk � 1º;bsk D card¹i W .i; j / 2 Dk for some j º;

wherebrk.i/ is the number of rectangles in i -th column,brC
k

is the largest number of
rectangles in these columns,br �

k
is the smallest number of rectangles in these columns,

andbsk is the number of non-empty columns, see Figure 1.
For each integer k > 0, let l D l.k/ be given by (1.8), and we write

Nl;k.E/ D

²
r1 � � � rlslC1 � � � sk; l � k;

r1 � � � rkskC1 � � � sl ; l > k:
(2.3)

We write

d� D lim sup
k!1

Nl;k.E/

logm1 � � �mk
; d� D lim inf

k!1

Nl;k.E/

logm1 � � �mk
: (2.4)

The box dimension and packing dimension ofE are given by d� and d�, respectively.

Theorem 2.4. Let E be the nonautonomous carpet defined by (1.4) with NC <1.
The packing dimension, upper box dimension and lower box dimension ofE are given
by

dimPE D dimBE D d
�; dimBE D d�:

The proof of the theorem is similar to the one of [20, Theorem 2.1], and we omit
it.

Finally, we state the conclusions on lower and Assouad dimensions for
nonautonomous carpets, see Section 5 for the definitions and [17] for details. For
integers k and k0 such that k0 > k > 1, let l D l.k/ and l 0 D l 0.k0/ be given by (1.8),
and we have that l 0 > l . Hence, there are 6 different permutations for k0; k; l 0 and
l . To obtain the lower dimension formula, we have to find the smallest number of
approximate squares with side length 1

m1

1
m2
� � �

1
mk0

covering the approximate square

with side length 1
m1

1
m2
� � �

1
mk

, and this number is given by the following formula
according to the permutations of k0; k; l 0 and l ,



Dimensions of a class of nonautonomous carpets and measures on R2 11

N�k;k0.E/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

r�
lC1
� � � r�

l 0
skC1 � � � sk0 ; l < l 0 � k < k0;

r�
lC1
� � � r�

k
rkC1 � � � rl 0sl 0C1 � � � sk0 ; l � k < l 0 � k0;

r�
lC1
� � � r�

k
rkC1 � � � rk0bsk0C1 � � �bsl 0 ; l � k < k0 � l 0;br �

kC1
� � �br �

l
rlC1 � � � rl 0sl 0C1 : : : sk0 ; k � l < l 0 � k0;br �

kC1
� � �br �

l
rlC1 � � � rk0bsk0C1 � � �bsl 0 ; k � l < k0 � l 0;br �

kC1
� � �br �

k0
bslC1 � � �bsl 0 ; k < k0 � l < l 0:

(2.5)

Similarly, to obtain the Assouad dimension, we must find the greatest number of
approximate squares with side length 1

m1

1
m2
� � �

1
mk0

covering the approximate square

with side length 1
m1

1
m2
� � �

1
mk

, and this number is given by the following formula,

NC
k;k0

.E/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

rC
lC1
� � � rC

l 0
skC1 � � � sk0 ; l < l 0 � k < k0;

rC
lC1
� � � rC

k
rkC1 � � � rl 0sl 0C1 � � � sk0 ; l � k < l 0 � k0;

rC
lC1
� � � rC

k
rkC1 � � � rk0bsk0C1 � � �bsl 0 ; l � k < k0 � l 0;brC

kC1
� � �brC

l
rlC1 � � � rl 0sl 0C1 � � � sk0 ; k � l < l 0 � k0;brC

kC1
� � �brC

l
rlC1 � � � rk0bsk0C1 � � �bsl 0 ; k � l < k0 � l 0;brC

kC1
� � �brC

k0
bslC1 � � �bsl 0 ; k < k0 � l < l 0:

(2.6)

The following theorem shows that the lower and Assouad dimension of E are
given by different limits involving N�

k;k0
.E/ and NC

k;k0
.E/.

Theorem 2.5. Let E be the nonautonomous carpet defined by (1.4) with NC <1.
The lower dimension and the Assouad dimension of E are given by

dimLE D lim
m!1

inf
k

² logN�
k;kCm

.E/

logmkC1 � � �mkCm

³
I

dimAE D lim
m!1

sup
k

² logNC
k;kCm

.E/

logmkC1 � � �mkCm

³
:

3. Entropy dimensions of nonautonomous measures

To prove the entropy dimension, we need the following well-known inequality.

Lemma 3.1. The function f W Œ0;1/! R defined by

f .x/ D

²
0 if x D 0;
�x log x if x ¤ 0

is strictly concave, and for all x1; : : : ; xN � 0,

f

� NX
iD1

xi

�
�

NX
iD1

f .xi / � f

� NX
iD1

xi

�
C

� NX
iD1

xi

�
logN:
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Let f be the function defined in Lemma 3.1. The lower and upper entropy dimen-
sion may be rewritten as

dime�p D lim inf
n!1

P
Q2Mn

f
�
�p.Q/

�
log 2�n

I

dime�p D lim sup
n!1

P
Q2Mn

f
�
�p.Q/

�
log 2�n

:

Proof of Theorem 2.1. For each ı > 0, let n be the integer such that 2�n � ı < 2�nC1.
Then for eachQ 2Mn, it intersects at most C1D 4.NC/3 approximate squares of �ı ,
and for each S 2 �ı , it intersects at most 32 cubes in Mn. Therefore, by Lemma 3.1,
it follows that for each Q 2Mn,

f
�
�p.Q/

�
�

X
S2�ı

f
�
�p.S \Q/

�
� f

�
�p.Q/

�
C .logC1/�p.Q/ (3.1)

and for each S 2 �ı ,

f
�
�p.S/

�
�

X
Q2Mn

f
�
�p.S \Q/

�
� f

�
�p.S/

�
C .2 log 3/�p.S/: (3.2)

Summing up (3.2) and (3.1) respectively, we obtain thatX
Q2Mn

f
�
�p.Q/

�
�

X
Q2Mn

X
S2�ı

f
�
�p.S \Q/

�
�

X
Q2Mn

f
�
�p.Q/

�
C logC1

and X
S2�ı

f
�
�p.S/

�
�

X
S2�ı

X
Q2Mn

f
�
�p.Q \ S/

�
�

X
S2�ı

f
�
�p.S/

�
C 2 log 3:

It follows thatˇ̌̌X
S2�ı

f
�
�p.S/

�
�

X
Q2Mn

f
�
�p.Q/

�ˇ̌̌
� 2 log 3C logC1: (3.3)

Let l D l.ı/ and k D k.ı/ be given by (1.8) and (1.7). For l � k, by induction, it
follows that
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X
S2�ı

f
�
�p.S/

�
D

X
U.ı;w/2Uı

p1.w1/ � � �pl.wl/qlC1.wlC1/ � � � qk.wk/

� logp1.w1/ � � �pl.wl/qlC1.wlC1/ � � � qk.wk/

D

X
w2†k

p1.w1/ � � �pl.wl/qlC1.wlC1/ � � � qk.wk/ logp1.w1/ � � �pl.wl/

C

X
w2†k

p1.w1/ � � �pl.wl/qlC1.wlC1/ � � � qk.wk/ log qlC1.wlC1/ � � � qk.wk/

D

lX
iD1

X
w2Di

pi .w/ logpi .w/C
kX

iDlC1

X
w2Di

pi .w/ log qi .w/:

For l > k, similarly, we have thatX
S2�ı

f
�
�p.S/

�
D

X
U.ı;w/2Uı

p1.w1/ � � �pk.wk/bqkC1.wkC1/ � � �bql.wl/
� logp1.w1/ � � �pk.wk/bqkC1.wkC1/ � � �bql.wl/

D

kX
iD1

X
w2Di

pi .w/ logpi .w/C
lX

iDkC1

X
w2Di

pi .w/ logbqi .w/:
Hence, by (2.2), we obtain thatX

S2�ı

f
�
�p.S/

�
D �Hk.p/:

Combining this with (3.3), we have that

dime�p D lim sup
n!1

P
Q2Mn

f
�
�p.Q/

�
log 2�n

D lim sup
ı!0

P
S2�ı

f
�
�p.S/

�
log ı

D lim sup
k!1

Hk.p/Pk
iD1 logmi

:

By the same argument, we have that

dime�p D lim inf
n!1

P
Q2Mn

f
�
�p.Q/

�
log 2�n

D lim inf
k!1

Hk.p/Pk
iD1 logmi

;

which completes the proof.
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4. Hausdorff and packing dimensions of nonautonomous measures

In this section, we study the Hausdorff and packing dimensions of nonautonomous
measures under a weak condition.

Given k > 0, the set Dk is left (right, bottom, top) empty if i ¤ 0 .i ¤ nk � 1,
j ¤ 0, j ¤ mk � 1/. We say E is left separated if

lim
n!1

card¹k W Dk is left empty for k D 1; : : : ; nº
n

D cL > 0:

Similarly, we may define E is right separated, top separated and bottom separated
where the limits are denoted by cR; cT ; cB , respectively. If E is left, right, bottom and
top separated, we say E satisfies the boundary separation condition (BSC).

Since BSC is weaker than FSC, we prove the dimension formulas of nonautonom-
ous measures under the assumption of the BSC.

Theorem 4.1. Let E be the nonautonomous carpet defined by (1.4) with NC <1.
Given p 2 P , let �p be the nonautonomous measure defined by (1.6). Suppose that
either E satisfies BSC or �p satisfies MSC . Then

dimH �p D lim inf
k!1

Hk.p/Pk
iD1 logmi

I

dimP �p D lim sup
k!1

Hk.p/Pk
iD1 logmi

:

Corollary 4.2. Let E be an arbitrary nonautonomous carpet defined by (1.4). Sup-
pose that E satisfies BSC, and for all k > 0, nk � mk , and rk.j / D ck for all j such
that rk.j / ¤ 0. Then there exists p 2 P such that

dimH �p D max¹dimH �p0 W p0 2 P º D dimHEI

dimP �p D max¹dimP �p0 W p0 2 P º D dimPE:

To study the dimensions of nonautonomous measures, we need a version of the
law of large numbers. For the readers’ convenience, we cite it here, see, for example,
[6, Corollary A.8] for details.

Theorem 4.3. Let ¹Xnº1nD1 be a sequence of random variables which are bounded
in L2 and such that

E.XnjX1; : : : ; Xn�1/ D 0;

for all n � 1: Then the sequence 1
n

Pn
iD1Xi converges to 0 almost surely and in L2.

To estimate the Hausdorff dimension, we need the following well-known fact,
which is often called Frostman’s Lemma, see [9].
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Lemma 4.4. Let � be a finite Borel measure on Rd .

(1) If lim infr!0
log�.B.x;r/

log r � s for �-almost every x, then dimH � � s:

(2) If lim infr!0
log�.B.x;r/

log r � s for �-almost every x, then dimH � � s:

(3) If lim supr!0
log�.B.x;r/

log r � s for �-almost every x, then dimP � � s:

(4) If lim supr!0
log�.B.x;r/

log r � s for �-almost every x, then dimP � � s:

Given an integer k > 0, let ı D .m1 � � �mk/�1, and we write U.k;w/ D U.ı;w/
and Sk.w/ D ….U.k;w// for simplicity in the rest of this section.

Proof of Theorem 4.1. First, we show that the conclusion holds under the assumption
of the BSC. Given w D w1w2 : : : wk : : : 2 †1, since .logpk.wk//k2N is a sequence
of independent random variables, their variances are uniformly bounded by

Var
�
logpk.wk/

�
� .NC/2 max

x2Œ0:1�
x log2 x:

By Theorem 4.3, we have

�

NX
kD1

logpk.wk/ D
NX
kD1

X
w2Dk

pk.w/ logpk.w/C o.N /;

almost surely.
Similarly, the following equalities hold almost surely:

�

NX
kD1

log qk.wk/ D
NX
kD1

X
w2Dk

pk.w/ log qk.w/C o.N /I

�

NX
kD1

logbqk.wk/ D NX
kD1

X
w2Dk

pk.w/ logbqk.w/C o.N /:
For each integer k > 0, recall that U.k;w/ D U.ı;w/ and Sk.w/ D ….U.k;w//

where ı D .m1 � � �mk/�1. By (1.10), we have that for k � l ,

log �p
�
U.k;w/

�
D

lX
iD1

pi .wi /C

kX
iDlC1

qi .wi /

D

lX
iD1

X
w2Dk

pk.w/ logpk.w/

C

kX
iDlC1

X
w2Dk

pk.w/ log qk.w/C o.k/;
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and for k < l ,

log �p
�
U.k;w/

�
D

kX
iD1

pi .wi /C

lX
iDkC1

qi .wi /

D

kX
iD1

X
w2Dk

pk.w/ logpk.w/

C

lX
iDkC1

X
w2Dk

pk.w/ logbqk.w/C o.k/;
almost surely. Hence, by (1.11) and (2.2), it follows that

log�p
�
Sk.w/

�
D log �p

�
U.k;w/

�
D �Hk.p/C o.k/; (4.1)

almost surely.
Fix " > 0, and let � D 2"

1�"
. It is clear that � ! 0 as " tends to 0. Since E satisfies

the separation condition, there exists K0 > 0 such that for k > K0,

card¹h W Dh is left empty for .1 � �/k < h < kº � 1; (4.2)

card¹h W Dh is right empty for .1 � �/k < h < kº � 1;

card¹h W Dh is top empty for .1 � �/k < h < kº � 1;

card¹h W Dh is bottom empty for .1 � �/k < h < kº � 1:

For sufficiently small � > 0, let k be the integer such that

kY
iD1

mi � � <

k�1Y
iD1

mi � .N
C/�1

kY
iD1

mi :

Let l D l.k/ be given by (1.8). Setting

k0 D k C 1; k00 D min
®
.1 � �/k; k

�
.1 � �/2l

�¯
;

where k..1� �/2l/ denotes the largest integer ˇ such that l.ˇ/ � .1� �/2l . Then, by
(4.2), we have that

card¹h W Dh is left for l 00.k00/ < h < .1 � �/lº � 1;

card¹h W Dh is right for l 00.k00/ < h < .1 � �/lº � 1;

card¹h W Dh is top empty for k00 < h < kº � 1;

card¹h W Dh is bottom empty for k00 < h < kº � 1:

Next, we show that the distance from ….w/ to the each side of Sk00.w/ is greater
than �. We first consider the distance from ….w/ to the left side of Sk00.w/. Let l0 an
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integer satisfy l 00.k00/ < l0 < .1 � �/l . Then the distance from ….w/ to the left side
of Sk00.w/ is no less than .n1 � � �nl0/

�1. Since l is sufficiently large, �l � log.NC/2

log2 , it
is clear that

.n1 � � �nl0/
�1
� 2�l.n1 � � �nl/

�1
� .NC/2.n1 � � �nl/

�1
� �:

Hence, the distance from ….w/ to the left side of Sk00.w/ is greater than �. For the
distance from ….w/ to the bottom side of Sk00.w/. Similarly, we may find an integer
k0 k

00 < k0 < k such that Dk0 is bottom empty. Then the distance from ….w/ to the
bottom side of Sk00.w/ is no less than .m1 � � �mk0/

�1, which is greater than �.
Similarly, the distances from ….w/ to the top and right sides of Sk00.w/ are

greater than � as well. This implies that B.….w/; �/ � Sk00.w/: From the inequal-
ities .m1 � � �mk0/�1 < .m1 � � �mk/�1 � �, we have Sk0.w/ � B.….w/; �/:

Therefore, we obtain that

Sk0.w/ � B
�
….w/; �

�
� Sk00.w/: (4.3)

By (4.1), immediately, we have that

lim inf
k!1

Hk0.p/C o.k/Pk
iD1 logmi

� lim inf
�!0

log�p
�
B
�
….w/; �

��
log �

� lim inf
k!1

Hk00.p/C o.k/Pk
iD1 logmi

;

almost surely. Note that

Hk0.p/! Hk.p/; Hk00.p/! Hk.p/

as " tends to 0, they imply that

lim inf
�!0

log�p
�
B
�
….w/; �

��
log �

D lim inf
k!1

Hk.p/Pk
iD1 logmi

;

almost surely. By Lemma 4.4, it follows that

dimH �p D lim inf
k!1

Hk.p/Pk
iD1 logmi

:

Similarly, by (4.3) and (4.1), we have that

lim sup
k!1

Hk0.p/C o.k/Pk
iD1 logmi

� lim sup
�!0

log�p
�
B
�
….w/; �

��
log �

� lim sup
k!1

Hk00.p/C o.k/Pk
iD1 logmi

:

By Lemma 4.4, we have that

dimP �p D lim sup
k!1

Hk.p/Pk
iD1 logmi

:
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Next, we prove that the conclusion holds for MSC. For each integer k > 0, we
write

Ak D
®
x D ….w/ 2 E W B

�
x; .m1 � � �mk/

�1e�
p
k
�
\E � Sk.w/

¯
:

Let Lk be the collection of x 2 E such that the distance from x to the bot-
tom side of Sk.w/ is less than .m1 � � � mk/

�1e�
p
k , where x D ….w/ and w D

.i1; j1/ : : : .ik; jk/ : : : 2†
1. It is clear that jkC1 D � � � D jkCŒ

p
k= logNC� D 0. Hence,

the measure of Lk is bounded by

�p.Lk/ � qkC1.0/ � � � qkCŒ
p
k= logNC�.0/ � C

p
k

1 ;

where C1 D C 1=.logNCC1/ < 1. We apply the similar argument to other three sides
and obtain that

1X
kD1

�p.A
c
k/ < 4

1X
kD1

C
p
k

1 <1:

By Borel–Cantelli Lemma, it follows that

�p.A
c
k i:o:/ D 0:

Therefore, for �p-almost all x, we have that

�p
�
B
�
x; .m1 � � �mk/

�1e�
p
k
��
� �p

�
Sk.w/

�
;

for sufficiently large k. For each � > 0, there exists a unique integer k such that

.m1 � � �mkC1/
�1e�

p
kC1
� � < .m1 � � �mk/

�1e�
p
k;

which implies that �p.B.x; �// � �p.Sk.x//. Therefore, we have that

lim inf
�!0

log�p
�
B.x; �/

�
log �

� lim inf
k!1

log�p
�
Sk.w/

�
�
Pk
iD1 logmi

D lim inf
k!1

Hk.p/Pk
iD1 logmi

:

On the other hand, for each � > 0, let k be the integer such that

kY
iD1

mi < � �

k�1Y
iD1

mi :

Then for all x 2E, choose w 2…�1.x/, and we have Sk.w/�B.x;�/, which implies
�p.B.x; �// � �p.Sk.x//. Therefore, by (4.1), we have that

lim inf
�!0

log�p
�
B.x; �/

�
log �

� lim inf
k!1

log�p
�
Sk.w/

�
�
Pk
iD1 logmi

D lim inf
k!1

Hk.p/Pk
iD1 logmi

:
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It follows that

lim inf
�!0

log�p
�
B.x; �/

�
log �

D lim inf
k!1

Hk.p/Pk
iD1 logmi

:

almost surely. By Lemma 4.4, the Hausdorff dimension of �p is given by

dimH �p D lim inf
k!1

Hk.p/Pk
iD1 logmi

:

Similarly, for �p-almost all x, we have that

lim sup
r!0

log�p
�
B.x; �/

�
log �

D lim sup
k!1

Hk.p/Pk
iD1 logmi

;

and by Lemma 4.4, the packing dimension of �p is given by

dimP �p D lim sup
k!1

Hk.p/Pk
iD1 logmi

:

Proof of Corollary 4.2. For each k > 0, let pk.w/D 1
rk

for allw 2Dk . Since rk.j /D
ck for all j such that rk.j /¤ 0, we have rk D cksk , and it implies qk.w/D 1

sk
. Recall

thatU.k;w/DU.ı;w/ and Sk.w/D….U.k;w//where ıD .m1 � � �mk/�1, by (1.10),
we have that

log�p
�
Sk.w/

�
D log �p

�
U.k;w/

�
D

lX
iD1

logpk.w/C
kX

kDlC1

log qk.w/

D �

lX
iD1

log rk �
kX

kDlC1

log sk;

for all w 2 †1 and k > 0. By the same argument in Theorem 2.2, we have that

lim inf
�!0

log�p
�
B.x; �/

�
log �

D lim inf
k!1

Pl
iD1 log rk C

Pk
kDlC1 log skPk

iD1 logmi
:

for all x 2 E. Then by [9, Proposition 2.3],

dimHE D dimH �p D lim inf
k!1

Pl
iD1 log rk C

Pk
kDlC1 log skPk

iD1 logmi
:

Since dimH E D sup¹dimH �I for all Borel � on E such that 0 < �.E/ < 1º, we
have that

dimH �p D max¹dimH �p0 W p0 2 P º D dimHE:
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Similarly, we have that

dimPE D dimP �p D lim sup
k!1

Pl
iD1 log rk C

Pk
kDlC1 log skPk

iD1 logmi
;

and this implies that

dimP �p D max¹dimP �p0 W p0 2 P º D dimPE:

Proof of Theorem 2.2. Since E satisfies the frequency separation condition, there
exists c > 0 such that

lim
n!1

card¹k W Dk is centred for k D 1; : : : ; nº
n

D c:

It is clear that if Dk is centred, then Dk is left, right, top and bottom separated and
cL D cR D cT D cB D c, that is, FSC implies BSC. Hence, E satisfies boundary
separation condition, and by Theorem 4.1, the conclusion holds.

Proof of Corollary 2.3. Since FSC implies BSC, by Corollary 4.2, the conclusion
holds.

5. Lower and Assouad dimensions of nonautonomous carpets

In this section, we give the proofs for the lower and the Assouad dimension of
nonautonomous carpets.

First, we show the connection between approximate squares and balls which is
fundamental to our proofs. For simplicity, let

Rk D .m1 � � �mk/
�1;

and we write �k for the collection of Rk-approximate squares,

�k D �Rk ;

where �Rk is given by (1.9).

Lemma 5.1. Given an integer k > 0, for every approximate square S 2 �k , there
exists x 2 S such that B.x; .NC/�3Rk/ \E � S .

Proof. Given k > 0, let l D l.k/ be given by (1.8). Without loss of generality, we
assume that l � k ( if l > k, the conclusion follows by exchanging the x and y axes).
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Given S 2 �k , there exist y 2 S and an approximate square U.w/ such that S D
S.y/D….U.w// for some wDw1w2 : : :D .i1; j1/.i2; j2/ : : :, where y D….w/ 2E
and

U.w/ D
®
v D v1v2 : : : vn : : : W i 0n D in; n D 1; : : : ; l;

j 0n D jn; n D 1; : : : ; k; vn D .i
0
n; j
0
n/
¯
:

We write

@U.w/ D
®
v 2 U.w/ W i 0lC1 D i

0
lC2 D 0 or i 0lC1 D nlC1 � 1; i

0
lC2 D nlC2 � 1;

j 0kC1 D j
0
kC2 D 0 or j 0kC1 D m

0
kC1 � 1; j

0
kC2 D mkC2 � 1;

vn D .i
0
n; j
0
n/
¯
;

geometrically, it means that @U.w/ containing all the rectangles going down 2 levels
from U.w/ and connecting to the side of U.w/, and all the elements in U.w/ whose
distances to boundary of U.w/ are less than .NC/�3Rk are contained in @U.w/.

The conclusion immediately follows if there exists an element v 2 U.w/ such
that the distance from ….v/ to the side of S greater than .NC/�3Rk . Precisely, if
there exists v 2 U.w/ such that v … @U.w/, then by taking x D ….v/, we have that
B.x; .NC/�3Rk/\E � S . Therefore, the key is to consider the approximate squares
S empty in the middle, that is, the distance from ….v/ to the side of S is less than or
equal to .NC/�3Rk for all v 2 U.w/.

SinceNC D supk¹nk;mkº, it is sufficient to assume that U n@U D; and @U ¤;.
Hence, it is clear that vD v1v2 : : : 2 @U for all v 2U . Recall that i 0nD in; nD 1; : : : ; l
and j 0n D jn; n D 1; : : : ; k; vn D .i

0
n; j
0
n/ for all v D v1v2 : : : 2 @U .

First, we show the conclusion holds if there exists v 2 @U that satisfies one of the
following six cases:

(1) i 0
lC1
D i 0

lC2
D 0, and j 0

kC1
… ¹0;mkC1 � 1º.

(2) i 0
lC1
D i 0

lC2
D 0, j 0

kC1
D 0 and j 0

kC2
¤ 0.

(3) i 0
lC1
D i 0

lC2
D 0, j 0

kC1
D mkC1 � 1 and j 0

kC2
¤ mkC2 � 1.

(4) i 0
lC1
D nlC1 � 1; i

0
lC2
D nlC2 � 1 and j 0

kC1
… ¹0;mkC1 � 1º.

(5) i 0
lC1
D nlC1 � 1; i

0
lC2
D nlC2 � 1, j 0

kC1
D 0 and j 0

kC2
¤ 0.

(6) i 0
lC1
D nlC1 � 1; i

0
lC2
D nlC2 � 1, j 0

kC1
DmkC1 � 1 and j 0

kC2
¤mkC2 � 1.

Suppose that v satisfies one of (1)–(3). Let x D ….v/. The distance from x to the
top and bottom sides are more than .NC/�3Rk . Since U n@U D ;, if k � l C 1, we
have that �

nlC1 � 1; jlC1.S/
�
… DlC1;

and if k D l , we have that br l.nlC1 � 1/ D 0:
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This implies that the intersection of B.x; .NC/�3Rk/ and the approximate square on
the left of S is empty, and it immediately follows that

B
�
x; .NC/�3Rk

�
\E � S:

Hence, the conclusion holds. The proofs for (4)–(6) are identical.
Otherwise, if there is no element v 2 @U satisfying (1)–(6), then every v D

v1v2 : : : vn : : : 2 @U satisfies either j 0
kC1
D j 0

kC2
D 0 or j 0

kC1
D mkC1 � 1, j 0

kC2
D

mkC2 � 1. SinceU n@U D;, the identity j 0
kC1
D j 0

kC2
D 0 implies that rkC1.mkC1 �

1/ D 0, and j 0
kC1
D mkC1 � 1, j 0

kC2
D mkC2 � 1 implies that rkC1.0/ D 0. Next,

we show the conclusion holds if there exists v 2 @U satisfying one of the following
six cases:

(7) j 0
kC1
D j 0

kC2
D 0, i 0

lC1
… ¹0; nlC1 � 1º.

(8) j 0
kC1
D j 0

kC2
D 0, i 0

lC1
D 0, i 0

lC2
¤ 0.

(9) j 0
kC1
D j 0

kC2
D 0, i 0

lC1
D nlC1, i 0

lC2
¤ nlC2.

(10) j 0
kC1
D mkC1 � 1; j

0
kC2
D mkC2 � 1, i 0

lC1
… ¹0; nlC1 � 1º.

(11) j 0
kC1
D mkC1 � 1; j

0
kC2
D mkC2 � 1, i 0

lC1
D 0, i 0

lC2
¤ 0.

(12) j 0
kC1
D mkC1 � 1; j

0
kC2
D mkC2 � 1, i 0

lC1
D nlC1, i 0

lC2
¤ nlC2.

Suppose that v satisfies one of (7)–(9). Let x D ….v/. The distance from x to the
left and right sides are more than .NC/�3Rk . Since rkC1.mkC1 � 1/ D 0, the inter-
section of B.x; .NC/�3Rk/ and approximate squares above S is empty. It implies
that

B
�
x; .NC/�3Rk

�
\E � S;

and the conclusion holds. The proofs for (10)–(12) are similar.
Finally, suppose that there is no v 2 @U satisfying any of (1)–(12), which implies

that for each v D v1v2 : : : vn : : : 2 @U; vn D .i 0n; j 0n/. Then there exists v 2 @U satis-
fying one of the following case:

(13) i 0
lC1
D i 0

lC2
D 0, j 0

kC1
D j 0

kC2
D 0.

(14) i 0
lC1
D i 0

lC2
D 0, j 0

kC1
D mkC1 � 1; j

0
kC2
D mkC2 � 1.

(15) i 0
lC1
D nlC1 � 1; i

0
lC2
D nlC2 � 1, j 0

kC1
D j 0

kC2
D 0.

(16) i 0
lC1
D nlC1 � 1; i

0
lC2
D nlC2 � 1, j 0

kC1
D mkC1 � 1; j

0
kC2
D mkC2 � 1.

Suppose that v satisfies (13). Let x D ….v/. Since rkC1.mkC1 � 1/ D 0, the inter-
section of B.x; .NC/�3Rk/ and any approximate square above S is empty. Since
v does not satisfy (7), we have that .nlC1 � 1; jlC1.S// … DlC1 if k � l C 1, andbr l.nlC1 � 1/ D 0 if k D l . Hence, the intersection of B.x; .NC/�3Rk/ and the
approximate square on the left of S is empty. It follows that

B
�
x; .NC/�3Rk

�
\E � S;
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and the conclusion holds. The proofs for (14)–(16) are similar.

The following three lemmas are the key ingredients for the proof of lower dimen-
sions. For each integer k > 0, we write �k D �ı and Uk DUı for ı D .m1 � � �mk/�1.
For all integers k0 > k > 0, we write

��k;k0.E/ D min
S2�k

�k;k0.S/; �C
k;k0

.E/ D max
S2�k

card¹S 0 2 �k0 W S
0
� Sº;

�k;k0.S/ D card¹S 0 2 �k0 W S
0
� Sº:

The next lemma shows that ��
k;k0

.E/ is bounded by the number N�
k;k0

.E/.

Lemma 5.2. For all integers k0 > k � 1, let N�
k;k0

.E/ be given by (2.5). Then

��k;k0.E/ D N
�
k;k0.E/:

Proof. Fix k and k0, let l D l.k/ and l 0 D l 0.k0/ be given by (1.8). For each S.x/ 2 �k
where x 2 S.x/ \ E, there exists a unique U.w/ 2 Uk , such that S.x/ D ….U.w//
and xD….w/. For each S 0.x0/2 �k0 such that S 0.x0/�S.x/, let wDw1w2 : : :wn : : :
and w0 D w01w

0
2 : : :w

0
n : : : be infinite sequences such that….w/D x and….w0/D x0,

where wn D .in; jn/; w0n D .i
0
n; j
0
n/ 2 Dn, and we have that

in D i
0
n; n D 1; : : : ; l;

jn D j
0
n; n D 1; : : : ; k:

Computing �k;k0.S.x// is equivalent to counting the number of sequences w0 such
that ….w0/ 2 �k0 satisfying the above property. Therefore, it is divided into six cases:
l < l 0 � k < k0, l � k < l 0 � k0, l � k < k0 � l 0, k � l < l 0 � k0, k � l < k0 � l 0

and k < k0 � l < l 0. We only prove the first three cases, and the other three cases are
the same by interchanging the directions.
(1) For l < l 0 � k < k0. We have that

card
®
i 0n W .i

0
n; jn/ 2 Dn

¯
D rn.jn/ � r

�
n ; for n D l C 1; : : : ; l 0;

and

card
®
j 0n W .i

0
n; j
0
n/ 2 Dn; for some i 0n

¯
D sn; for n D k C 1; : : : ; k0:

Therefore,

�k;k0
�
S.x/

�
D rlC1.jlC1/ � � � rl 0.jl 0/skC1 � � � sk0

� r�lC1 � � � r
�
l 0 skC1 � � � sk0 D N

�
k;k0.E/:

Since it holds for all x 2 E, we have that

��k;k0.E/ � N
�
k;k0.E/:
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On the other hand, we choose wD w1w2 : : :wn : : : 2†1, where wn D .in; jn/ 2
Dn such that rn.jn/D r�n for nD 1; 2; 3; : : : Let x D….w/ and S.x/D….U.ı;w//.
Then, we have that

��k;k0.E/ � �k;k0
�
S.x/

�
D r�lC1 � � � r

�
l 0 skC1 � � � sk0 D N

�
k;k0.E/:

Hence, for l < l 0 � k < k0, it is true that ��
k;k0

.E/ D N�
k;k0

.E/:

(2) For l � k < l 0 � k0, we have that

card
®
in W .in; jn/ 2 Dn

¯
D rn.jn/ � r

�
n ; for n D l C 1; : : : ; k;

card
®
.in; jn/ W .in; jn/ 2 Dn

¯
D rn; for n D k C 1; : : : ; l 0;

and

card
®
jn W .ein; jn/ 2 Dn for some ein¯ D sn; for n D l 0 C 1; : : : ; k0:

Therefore, we have that

�k;k0
�
S.x/

�
D rlC1.jlC1/ � � � rk.jk/rkC1 � � � rl 0sl 0C1 � � � sk0

� r�lC1 � � � r
�
k rkC1 � � � rl 0sl 0C1 � � � sk0 D N

�
k;k0.E/

Since it holds for all x 2 E, we have that

��k;k0.E/ � N
�
k;k0.E/:

On the other hand, we choose wD w1w2 : : :wn : : : 2†1, where wn D .in; jn/ 2
Dn such that rn.jn/D r�n for nD 1; 2; 3; : : : Let x D….w/ and S.x/D….U.ı;w//.
Then, we have that

�k;k0
�
S.x/

�
D r�lC1 � � � r

�
k rkC1 � � � rl 0sl 0C1 � � � sk0 D N

�
k;k0.E/:

It follows that
��k;k0.E/ � �k;k0

�
S.x/

�
D N�k;k0.E/:

Hence, for l � k < l 0 � k0, it is true that ��
k;k0

.E/ D N�
k;k0

.E/:

(3) For l � k < k0 � l 0, we have that

card
®
in W .in; jn/ 2 Dn

¯
D rn.jn/ � r

�
n ; for n D l C 1; : : : ; k;

card
®
.in; jn/ W .in; jn/ 2 Dn

¯
D rn; for n D k C 1; : : : ; k0;

and

card
®
in W .in; ejn/ 2 Dn for some ejn¯ Dbsn; for n D k0 C 1; : : : ; l 0:
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Therefore, we have that

�k;k0.S.x// D rlC1.jlC1/ � � � rk.jk/rkC1 � � � rk0bsk0C1 � � �bsl 0
� r�lC1 � � � r

�
k rkC1 � � � rk0bsk0C1 � � �bsl 0 D N�k;k0.E/:

Since it holds for all x 2 E, we have that

��k;k0.E/ � N
�
k;k0.E/:

On the other hand, we choose an infinite sequence w D w1w2 : : : wn : : : 2 †1,
where wn D .in; jn/ 2 Dn such that rn.jn/ D r�n for n D 1; 2; 3; : : : Let x D ….w/
and S.x/ D ….U.ı;w//. Then, we have that

��k;k0.E/ � �k;k0
�
S.x/

�
D r�lC1 � � � r

�
k rkC1 � � � rk0bsk0C1 � � �bsl 0 D N�k;k0.E/:

Hence, for l � k < k0 � l 0, it is true that ��
k;k0

.E/ D N�
k;k0

.E/: Therefore, the
conclusion holds.

Lemma 5.3. Given ˇ > 0, there exists a constant C such that

N�k;k0.E/ > C

�
Rk

Rk0

�ˇ
; for all 1 � k � k0;

if and only if there exists a constant C 0 such that infx2E Nr.B.x;R/\E/ > C 0
�
R
r

�ˇ
for all 0 < r < R < 1

NC
.

Proof. For all reals r; R satisfying 0 < r < R < 1
NC

, there exist integers k; k0 such
that

Rk0 � r < Rk0�1; Rk � R < Rk�1:

Immediately, we have that

.NC/�ˇ
�
R

r

�ˇ
�

�
Rk

Rk0

�ˇ
� .NC/ˇ

�
R

r

�ˇ
: (5.1)

First, assume that N�
k;k0

.E/ > C
�
Rk
Rk0

�ˇ for every 1 � k � k0. Arbitrarily, choose
x 2 E. The ball B.x; 2R/ contains at least one approximate square in �k , and any set
with diameter no more than r intersects at most .NC C 1/3 approximate squares in
�k0 . Hence, for all 0 < r < R < 1

NC
, by Lemma 5.2 and (5.1), we have that

Nr
�
B.x; 2R/ \E

�
� .NC C 1/�3N�k;k0.E/

> .NC C 1/�3C

�
Rk

Rk0

�ˇ
� .NC C 1/�3C.C1N

C/�ˇ
�
2R

r

�ˇ
:
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By taking C 0 D .NC C 1/�3C.2NC/�ˇ , we have that

inf
x2E

Nr
�
B.x;R/ \E

�
> C 0

�
R

r

�ˇ
;

for all 0 < r < R < 1
NC

. Next, assume that infx2E Nr.B.x;R/\E/ > C 0.Rr /
ˇ holds

for any 0 < r < R < 1
NC

. Therefore, by Lemma 5.2 and (5.1), for all 1 � k � k0 and
S 2 �k , if Rk

Rk0
> 2.NC/3, we have that

�k;k0.S/ � N2Rk0
�
B
�
x; .NC/�3Rk

�
\E

�
> C 02�ˇ .NC/�3ˇ

�
Rk

Rk0

�ˇ
;

and if Rk
Rk0
� 2.NC/3, we have that

�k;k0.S/ � 1 >
2�ˇ .NC/�3ˇ

2

�
Rk

Rk0

�ˇ
:

By taking C D min
®
C 02�ˇ .NC/�3ˇ ; 2

�ˇ.NC/�3ˇ

2

¯
, we have that

N�k;k0.E/ > C

�
Rk

Rk0

�ˇ
for all 1 � k � k0. The desired conclusion then follows.

We write that
‰k;k0.�/ D N

�
k;k0.E/.mkC1 � � �mk0/

�� :

Clearly, the function ‰k;k0.�/ is decreasing in � . For all k < k0, we write �k;k0 for the
unique solution ‰k;k0.�/ D 1, and it is clear that

�k;k0 D
logN�

k;k0
.E/

logmkC1 � � �mk0
: (5.2)

For all integers k00 > k0 > k > 1, by Lemma 5.2, we have that

N�k;k00.E/ � N
�
k;k0.E/N

�
k0;k00.E/:

Immediately, it follows that

‰k;k00.�/ � ‰k;k0.�/‰k0;k00.�/: (5.3)

Lemma 5.4. The sequence ¹infk �k;kCmº1mD1 is convergent.
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Proof. For each integer m > 0, we write �m D infk �k;kCm: Since �m � �k;kCm, it is
clear that for all integers i > 0 and k > 0,

‰kCim;kC.iC1/m.�m/ � 1:

Fix an integer m > 0. For each � < �m, for all integers k > 0, p > 0 and n > 0 such
that 0 � n � m � 1, by (5.3), we obtain that

‰k;kCpmCn.�/ �

�p�1Y
iD0

‰kCim;kC.iC1/m.�/

�
�‰kCpm;kCpmCn.�/

D

�p�1Y
iD0

‰kCim;kC.iC1/m.�m/
�
mkCimC1 � � �mkC.iC1/m

��m���
�‰kCpm;kCpmCn.�n/

�
mkCpmC1 � � �mkCpmCn

��n��
� 2p.�m��/ min

®
2n.�n��/; .NC/n.�n��/

¯
:

Since � < �m, there exists an integer K0 such that for all p � K0,

‰k;kCpmCn.�/ � 1:

Hence, for all integers p � K0, k � 0 and n such that 0 � n � m � 1, we have that
�k;kCpmCn � �; and this implies that �pmCn � �: Therefore, for all integers n such
that 0� n�m� 1, we have that lim infp!1 �pmCn � �: Since it holds for all � < �m,
we obtain that

lim inf
m!1

�m � lim sup
m!1

�m:

Therefore, ¹�mº is convergent, and the conclusion holds.

To prove the formula for the Assouad dimension, we need the following three
lemmas. Since the Assouad dimension is the dual of the lower dimension, the proofs
of these lemmas are similar to the lemmas used for the lower dimensions, and we skip
them.

Lemma 5.5. For all integers k0 > k � 1, we have that

�C
k;k0

.E/ D NC
k;k0

.E/:

Lemma 5.6. Given ˇ > 0, there exists a constant C such that

NC
k;k0

.E/ < C

�
Rk

Rk0

�ˇ
for all 1 � k � k0;

if and only if there exists a constant C 0 such that

sup
x2E

Nr
�
B.x;R/ \E

�
< C 0

�
R

r

�ˇ
for all 0 < r < R <

1

NC
:
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We write that

�k;k0.ˇ/ D N
C

k;k0
.E/.mkC1 � � �mk0/

�ˇ ;

and we write ˇk;k0 for the unique solution �k;k0.ˇ/ D 1.

Lemma 5.7. The sequence ¹supk ˇk;kCmº
1
mD1 is convergent.

Now, we are ready to prove the lower and Assouad dimension for nonautonomous
carpets.

Proof of Theorem 2.5. By (5.2) and Lemma 5.4, we write that

�� D lim
m!1

inf
k
�k;kCm D lim

m!1
inf
k

logN�
k;kCm

.E/

logmkC1 � � �mkCm
: (5.4)

To prove that �� is the upper bound for the lower dimension of E, we choose a sub-
sequence ¹.kn; k0n/º

1
nD1 such that limn!1 k

0
n � kn D 1 and limn!1 �kn;k0n D ��:

For all � > ��, there exists an integer K 0 > 0 such that, for all n > K 0,

� > �kn;k0n :

Combining with (5.2), we obtain that

N�
kn;k

0
n
.E/ D

�
Rkn
Rk0n

��
kn;k
0
n

�

�
Rkn
Rk0n

��
:

For all " > 0, by the definition of lower dimension, there exists C" such that

inf
x2E

Nr
�
B.x;R/ \E

�
� C"

�
R

r

�dimLE�"

:

By Lemma 5.3, this is equivalent to

N�
kn;k

0
n
.E/ � C"

�
Rkn
Rk0n

�dimLE�"

;

for all n > 0. Immediately, we obtain that�
Rkn
Rk0n

��
� C"

�
Rkn
Rk0n

�dimLE�"

;

and it implies that

� � dimLE � "C
logC"

logRkn � logRk0n
:
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by taking n tend to1, we have that � � dimLE � ". Since " is arbitrarily chosen, we
obtain that

dimLE � �;

for all � > ��. Thus, the inequality dimLE � �� holds.
Next, we prove that �� is the lower bound. The conclusion holds for �� D 0, and

we only consider that �� > 0.
Arbitrarily choose 0 < � < ��, by (5.4), there exists an integer K 00 > 0 such that,

for all m > K 00, we have that � < �k;kCm, for all integers k > 0. Combining with
(5.2), it follows that for all k0 � k > K 00,

N�k;k0.E/ D .mkC1 � � �mk0/
�k;k0 D

�
Rk

Rk0

��k;k0
>

�
Rk

Rk0

��
:

For all k0 � k � K 00, since � > 0, we obtain that

N�k;k0.E/ �

�
Rk

Rk0

����
�

�
Rk

Rk0

��
.NC/�K

00� :

Let C� D .NC/�K
00� , we have

N�k;k0.E/ � C�

�
Rk

Rk0

��
;

for all � > ��. By Lemma 5.3, dimL E � ��. Hence, the lower dimension formula
holds.

The proof for Assouad dimension is similar to the lower dimensions, where
Lemma 5.2, Lemma 5.3 and Lemma 5.4 are replaced by Lemma 5.5, Lemma 5.6
and Lemma 5.7 and we omit it.
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