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Abel universal functions: boundary behaviour
and Taylor polynomials

Stéphane Charpentier, Myrto Manolaki and Konstantinos Maronikolakis

Abstract. A holomorphic function f on the unit disc D belongs to the class UA.D/
of Abel universal functions if the family ¹fr W 0 � r < 1º of its dilates fr .z/ WD
f .rz/ is dense in the space of continuous functions on K, for any proper compact
subset K of the unit circle. It has been recently shown that UA.D/ is a dense Gı
subset of the space of holomorphic functions on D endowed with the topology of
local uniform convergence. In this paper, we develop further the theory of universal
radial approximation by investigating the boundary behaviour of functions in UA.D/
(local growth, existence of Picard points and asymptotic values) and the convergence
properties of their Taylor polynomials outside D.

1. Introduction

Let H.D/ be the space of holomorphic functions on the unit disc D endowed with the
topology of local uniform convergence. It is known that most functions in H.D/ have
maximal cluster sets along any radius. More specifically, Kierst and Szpilrajn in [33]
showed that the set of all functions f in H.D/ with the property that, for any � in the
unit circle T and any w 2 C, there exists a sequence .rn/ in Œ0; 1/ converging to 1 such
that limn!1 f .rn�/ D w, is residual in H.D/ (that is, it contains a dense Gı set). An
analogue of this result holds if we replace radii by paths with endpoints on the unit circle.
The existence of such functions was established (among more general results) in [10], and
the residuality in [8] (see also [6, 7, 9] for properties of such functions). Another variant
of the result of Kierst and Szpilrajn was shown by Bayart in [4], who proved that the set
of all functions f in H.D/ with the property that, for any measurable function ' on T ,
there exists a sequence .rn/ in Œ0; 1/ tending to 1 such that f .rn�/! '.�/ as n!1 for
a.e. � in T , is residual in H.D/.

In this paper, we will focus on a class of functions in H.D/ that possess an even more
chaotic boundary behaviour:

Definition (Abel universal function). A function f in H.D/ is called Abel universal if it
satisfies the following property: for every compact set K ¨ T and for every continuous
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function ' on K, there exists a sequence .rn/ in Œ0; 1/ tending to 1 such that

sup
�2K

jf .rn�/ � '.�/j ! 0 as n!1.

The class of Abel universal functions will be denoted by UA.D/.

In [12], it was shown that UA.D/ is a dense Gı subset of H.D/, which unifies the
results in [33], [10], [8] and [4] that we mentioned before. In higher dimensions, the
situation is more delicate. Indeed, in [28], it was shown that no holomorphic function
on the unit ball B of CN (N � 2) can be unbounded along every path with endpoint
on @B . More recently, Globevnik, to address a conjecture in complex geometry from 1977,
constructed a holomorphic function on B which is unbounded along any path of finite
length with endpoint on @B (see [27]). It turns out that, if we restrict to paths of finite
length, we can replace unbounded by dense and get an analogue of the result in [8] that
we mentioned before for several complex variables (see [14]).

There is a growing literature about properties and variants of Abel universal functions
[12, 14, 15, 17, 36, 40], but there is still much scope for investigation. Our objective is to
study two different, but intimately connected, aspects of Abel universal functions: i) their
behaviour as we approach the boundary through certain regions in D, and ii) the behaviour
of their Taylor polynomials outside D.

It is easy to see that a function f in H.D/ is Abel universal if and only if the family
¹fr W 0 � r < 1º of its dilates

fr .z/ WD f .rz/; z 2 D;

is dense in the space C.K/ of complex-valued continuous functions on K, for any com-
pact set K ¨ T . Dilation is one of the most standard techniques used in the study of the
boundary behaviour of functions in H.D/, since it enables us to move from the unknown
territory of the boundary to a region in D, where our function is well defined and nicely
behaved. For a comprehensive overview of dilation theory over the past century, we refer
the reader to the recent survey of Mashreghi [37]. The other standard technique for study-
ing the boundary behaviour of functions in H.D/ involves considering the partial sums
of their Taylor expansion, which also behave nicely in D, since they converge locally uni-
formly to our function. Thus, the class UA.D/ of Abel universal functions is the natural
analogue of the well-studied class UT .D/ of universal Taylor series. We say that a func-
tion f in H.D/ belongs to UT .D/ if, for every compact set K � C nD with connected
complement, the set ¹Sn.f / W n 2 Nº of the partial sums of its Taylor expansion about
0 is dense in the space of functions in C.K/ that are holomorphic in the interior of K.
In 1996, Nestoridis showed that UT .D/ is a dense Gı subset of H.D/, see [44]. Since
then, various properties of universal Taylor series have been intensively studied, such as
growth [22,38,39], gap structure of the Taylor expansion [26,42], and boundary behaviour
[19, 20, 22, 24]. For a detailed account of several interesting boundary properties of func-
tions in UT .D/ and the significance of the role of potential theory in their proofs, we refer
to the survey of Gardiner [21]. We mention below three motivating results, which show
that universal Taylor series have an extremely wild boundary behaviour. Let f 2 UT .D/.
Then:
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(a) f satisfies a Picard-type property near each boundary point; that is, for every region
of the formD�;r WD ¹z 2D W jz � �j< rº, where r > 0 and � 2T , the image f .D�;r /
is the entire complex plane C except possibly a point, see Corollary 2 in [22].

(b) For a.e. � in T and any open triangle T� in D which has vertex at � and is symmetric
about the radius Œ0; ��, the image f .T� / is dense in C. In particular, f cannot have
nontangential limits at a boundary set of positive measure, see Theorem 2 in [20].

(c) There is a residual subset Z of T such that the image ¹f .r�/ W 0 � r < 1º is dense
in C for every � 2 Z, see Corollary 3 in [20].

We note that in part (c) (which follows from part (b)), the set Z cannot be replaced
by T . Indeed, in [18] it is shown that given any closed and nowhere dense subset E of T ,
there is a function in UT .D/ that has finite radial limits on E. This shows that UT .D/
is not contained in UA.D/. The converse is also true, since all functions in UT .D/ have
Ostrowski gaps [26, 42], which is not the case for all functions in UA.D/, see [12]. It is
worth mentioning that the existence of Ostrowski gaps played a significant role in showing
that universal Taylor series have the Picard-type property (a). Thus, it is natural to ask if
this property holds for Abel universal functions.

In Section 3, we show that the classes UT .D/ and UA.D/, although not strongly
correlated, have similar boundary behaviour. In particular, we prove that such functions
can have arbitrary growth on each closed set A � D such that A \ T is a singleton (see
Theorem 3.9). We also show that this result, which is the dilation-analogue of Proposi-
tion 6 in [20], fails if A contains two paths in D with two different endpoints on T (see
Proposition 3.12). As an application, we deduce that all functions in UA.D/ satisfy the
Picard-type property (a) near each boundary point. Interestingly, we note that this property,
as well as many other boundary properties of Abel universal functions (see Corollary 3.6),
can be deduced using results about Valiron functions [3] and the MacLane class [29, 35].
For example, one such boundary property is that all functions in UA.D/ admit1 as an
asymptotic value. Finally, we discuss their angular boundary behaviour (see Corollary 3.8)
and conclude the section with some open questions.

As we saw before, the chaotic behaviour of the Taylor polynomials of functions in
UT .D/ outside D endows them with an extremely wild boundary behaviour. In Section 4,
we study the dual question: does the wild boundary behaviour of functions in UA.D/
cause a chaotic behaviour of their Taylor polynomials outside the disc of convergence?
Since the intersection UT .D/ \UA.D/ is residual in H.D/, it is tempting to think that
the partial sums Sn.f / of the Taylor expansion of a function f in UA.D/ will have a
similar behaviour outside D (or at least on T ) with the ones of functions in UT .D/; that
is, for each � in C nD (or in T ), the set ¹Sn.f /.�/ W n 2 Nº will be dense in C. We note
that if f is a function in H.D/ which has a maximal cluster set along the radius through
some point � 2 T , we can apply the formula

f .r�/ D

1X
kD0

rk.1 � r/ Sk.f /.�/; r 2 Œ0; 1/;

to deduce that the set ¹Sn.f /.�/ W n 2 Nº is unbounded. It turns out that for certain
Abel universal functions, we cannot replace unbounded by dense. Indeed, as it was shown
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in [17], there are Abel universal functions f such that ¹Sn.f /.1/ W n 2 Nº is not dense.
In fact, we will prove the following much stronger result.

Theorem 1.1 (Theorem 4.13, Corollary 4.8, Corollary 4.12).
(a) Given any countable set E in T , there exists f 2 UA.D/ such that Sn.f /.�/!1

as n!1 for each � 2 E.

(b) There exists f 2 UA.D/ such that Sn.f /.�/!1 as n!1 for a.e. � 2 @D (with
respect to the arc length measure) and Sn.f /.�/!1 as n!1 for a.e. � 2 C nD
(with respect to the 2-dimensional Lebesgue measure).

(c) There exists f 2 UA.D/ such that .Sn.f //n converges to1 locally in capacity on
C nD; that is, for every compact set K in C nD and M > 0, we have

lim
n!1

cap.¹z 2 K W jSn.f /.z/j �M º/ D 0:

We note that the set of all such functions is of first Baire category, and that the proofs
of (a) and (b) are constructive. For part (c), we show that there exists f 2UA.D/ without
Hadamard–Ostrowski gaps, which improves the result in [12] about Ostrowski gaps.

Finally, in Section 5, we discuss similar questions about the functions mentioned in the
first paragraph (see Definition 5.1). In addition, we propose some further developments in
connection with classical function spaces.

2. Notation and main definitions

In this section, we introduce the notation and main definitions that will be frequently
used throughout this paper. Let us start with the standard ones. First, we will denote by
N WD ¹0; 1; 2; : : :º the set of non-negative integers. If P is a polynomial, then deg.P /
will stand for the degree of P . The disc and the circle of centre a and radius r will be
respectively denoted byD.a; r/ and C.a; r/. If f is a function defined on D and r 2 Œ0; 1/,
then fr will denote the dilate of f defined by fr .z/D f .rz/, z 2D. Also, given any r 2R
and any set A in C, we write rA D ¹rz W z 2 Aº. For a power series f .z/ D

P
k akz

k

and n 2 N, the notation Sn.f / will be used to denote the n-th partial sums of f ; that is,
Sn.f /.z/ WD

Pn
kD0 akz

k ; z 2 C.
We will use the notationm to denote the arclength measure on the unit circle T , and �

for the Lebesgue measure in C (identified with R2). For a compact setK in C, we denote
by C.K/ the Banach space consisting of all functions continuous on K, endowed with
the supremum norm k � kK . The notation A.K/ will be used for the algebra of K; that is,
the set of all functions in C.K/ that are holomorphic in the interior Kı of K. If K is the
closed unit disc, we simply write A.D/ to denote the classical disc algebra.

Let us recall the definition of Abel universal functions.

Definition 2.1. Let � be an increasing sequence .rn/n in Œ0; 1/ such that rn ! 1. We
denote by UA.D; �/ the set of all functions f 2 H.D/ that satisfy the following prop-
erty: for any compact set K ¨ T and any function ' 2 C.K/, there exists an increasing
sequence .nk/k in N such that

kfrnk � 'kK ! 0 as k !1:
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From this point on, � will be assumed to be as in Definition 2.1. We recall that for
any �, the set UA.D; �/ is a dense Gı subset of H.D/, see [12]. Moreover, it is easily
seen that the set

UA.D/ WD
[
�

UA.D; �/;

where the union runs over all increasing sequences � 2 Œ0; 1/ that converge to 1, coincides
with the set of functions f 2 H.D/ that satisfy the following property: for any " > 0, any
compact set K ¨ T and any function ' 2 C.K/, there exists r 2 Œ0; 1/ such that

kfr � 'kK � ":

As in [17], the terminology Abel universal function will refer to the elements of UA.D/.

Finally, let us set some technical notations that will be repeatedly used in several
proofs.
• ."n/n will be a sequence of positive real numbers decreasing to 0with

P1
nD1 "n � 1=2;

• .'n/n will be an enumeration of the polynomials with coefficients in QC iQ;
• .Kn/n will be a sequence of proper compact arcs in T such that, for any compact

set K ¨ T , there exists n 2 N such that K � Kn;
• ˛; ˇWN ! N will be two functions such that for any l; m 2 N, there exist infinitely

many n 2 N for which .˛.n/; ˇ.n// D .l; m/.

3. Growth and boundary behaviour of Abel universal functions

The purpose of this section is to exhibit properties of Abel universal functions in terms of
notions that are classical in function theory: the maximum modulus function, asymptotic
values, normality and Picard’s property. Our first result will be derived from known results
that we shall briefly present together with the necessary definitions.

The maximum modulus function

M.r; f / WD max¹jf .z/j W jzj D rº; for r 2 Œ0; 1/ and f 2 H.D/,

is commonly used to describe the growth of holomorphic functions. The next definition is
that of asymptotic value, as it was introduced by Valiron [49], see also [35].

Definition 3.1. A function f 2 H.D/ admits an asymptotic value ˛ 2 C [ ¹1º if there
exists a path  W Œ0; 1/! D with j.r/j ! 1 as r ! 1 such that f ı .r/! ˛ as r ! 1.

We say that f admits an asymptotic value ˛ 2C [ ¹1º at a point � 2T if there exists
a path  W Œ0; 1/! D with .r/! � as r ! 1 such that f ı .r/! ˛ as r ! 1.

Interestingly, the existence of asymptotic values for unbounded holomorphic functions
can be related to their behaviour along spirals, where by spiral we mean a subset of D of
the form ¹r.t/ei�.t/ W t 2 .0;C1/º, with r.t/! 1 and �.t/!C1 or �1 as t !C1.
Indeed, a result by Valiron [50] asserts that an unbounded holomorphic function in D that
is bounded on a spiral must admit 1 as an asymptotic value . These functions, that we
will refer to as Valiron functions, like in [3], have been thoroughly studied, for example
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in [3, 41, 51]. Note that by [35], p. 71, there exist functions in H.D/ that are unbounded
near each point of T but that do not admit1 as an asymptotic value. By Valiron’s result,
they are of course bounded on no spirals in D.

A link between the rate of growth of the maximum modulus function and the asymp-
totic values of functions holomorphic in D can be made in studying the MacLane class A

of all functions in H.D/ admitting an asymptotic value at any point of a dense subset
of T , see [35]. This link is specified by the following result.

Theorem 3.2 (Hornblower, [29]). If f 2 H.D/ satisfies the conditionZ 1

0

logC logCM.r; f / dr <1;

then f belongs to A.

It is not difficult to see [3] that Valiron functions cannot belong to the MacLane
class A. Therefore, if f 2 H.D/ is a Valiron function, thenZ 1

0

logC logCM.r; f / dr D1:

To state our results, we need to introduce some definitions.

Definition 3.3. Let f be holomorphic in D. Then f is said to be normal if the family
¹f ı ' W ' automorphism of D onto itselfº is normal.

By Marty’s normality criterion (see Theorem 17 on p. 226 of [1]), a function f 2H.D/
is normal if and only if

sup
z2D

.1 � jzj2/f #.z/ <1;

where f # denotes the spherical derivative of f , defined by

f #.z/ D
jf 0.z/j

1C jf .z/j2
�

We refer to Section 9.1 of [46] for some classical results about normal functions. By a con-
formal mapping, the above definition can be extended to any simply connected domain:
given a simply connected domain D � C, a function f 2 H.D/ is normal if the family
¹f ı ' W ' automorphism of D onto itselfº is normal.

By Montel’s theorem, a holomorphic function in a domain D that omits two values
in C is normal in D. Therefore, a function f that is normal at no boundary point � 2 T
will omit at most one value in C in each set of the form D.�; r/ \ D, 0 < r < 1. This
leads to the following definition.

Definition 3.4. Let f be a holomorphic function in D and � in T . We say that � is a
Picard point of f if, for each r > 0, the set f .D.�; r/\D/ is the whole complex plane C
except at most one point.

Observe that if � 2 T is a Picard point of f , then the following seemingly stronger
condition holds: f assumes every complex value except possibly one infinitely often in
D.�; r/ \D for every r > 0.



Abel universal functions: boundary behaviour and Taylor polynomials 7

In [3], the authors remark that a Valiron function is normal at no point � 2 T , and
thus that every point in T is a Picard point of such a function. This also implies that
any Valiron function that does not vanish in D admits 0 as an asymptotic value, see [3],
p. 817. The quite nice Theorems 1.2 and 1.3 in [3] allow us to infer that a large category
of unbounded functions in H.D/ enjoys a wild boundary behaviour with respect to the
notions introduced above. For a subsetE of D, we denote byENT the set of all � 2 T with
the property that there exists a sequence .zn/n in E with zn ! � nontangentially.

Theorem 3.5 (Barth and Rippon, [3]). Let f 2H.D/ be bounded on a non-empty sub-
set E of D. Then:
(a) If f is unbounded in D and m.T n ENT/ D 0, then f admits1 as an asymptotic

value.

(b) If f is unbounded near each point of T and T nENT is nowhere dense in T , then

(i) f is normal at no point of T ;
(ii) every point of T is a Picard point for f .

This theorem is very helpful for our purpose, which is to describe the boundary beha-
viour of Abel universal functions. Indeed, it is easily seen, by the definition, that for any
f 2 UA.D; �/, there exists E � D on which f is bounded and such that ENT D T . In
addition, it is clear that Abel universal functions cannot belong to the MacLane class A,
since the image of any path in D with endpoint in T by any function in UA.D/ is dense
in C, see [12]. Thus, by combining the above, we can deduce the following corollary.

Corollary 3.6. Any function f 2 UA.D; �/ satisfies the following properties:

(a)
R 1
0

logC logCM.r; f /dr D1;
(b) f admits1 as an asymptotic value;
(c) f is normal at no point of T ;
(d) every point of T is a Picard point for f .

Remark 3.7. (i) Another proof of part (a) can be derived from ideas originally contained
in [38, 39], see Corollary 2.10 in [12].

(ii) Part (d) tells us that for any � 2 T and any 0 < r < 1, the set f .D.�; r/ \ D/
is the whole complex plane C except at most one point. This result is optimal in the
sense that for any a 2 C there exists f 2UA.D; �/ such that a … f .D/. This comes from
the following result in [15]: ef is Abel universal whenever f is, hence there are Abel
universal functions that do not vanish in D. It is obvious that, for any a 2 C, f C a is
Abel universal if f is.

(iii) For any a 2 C, there exists f 2 UA.D; �/ for which a is an asymptotic value.
This is a consequence of the fact that for any function f 2 UA.D; �/ that does not vanish
in D, and for any a 2 C, the function aC 1=f is always Abel universal (see [15]).

(iv) Properties (a), (b) and (d) are also valid for the class of universal Taylor series.

Finally, we can use [25] to show that Abel universal functions have chaotic angular
behaviour. Let us recall that the Stolz angle S� .˛/ with vertex � 2 T and opening ˛ > 1
is defined by

S� .˛/ WD ¹z 2 D W jz � �j < ˛.1 � jzj/º:
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In the next result, we use � to denote the Lebesgue measure on R3. We recall that the
notation � stands for the Lebesgue measure in R2.

Corollary 3.8. Let f 2UA.D; �/. Then, form-a.e. point � 2 T and for every Stolz angle
S D S� .˛/ with vertex at �,

(a) for � -almost every .w; r/ 2 C � .0;1/,Z
S\f �1.C.w;r//

jf 0.z/j jdzj D 1I

(b) for every .w; r/ 2 C � .0;1/,Z
S\f �1.D.w;r//

jf 0j2 d� D1:

The integral in part (a) of Corollary 3.8 measures the total arc length of the image of
S \ f �1.C.w; r// under f , taking into account multiplicities. Thus, although this image
is contained in the circle C.w; r/, this integral condition tells us that its length, counting
multiplicities, is infinite for almost every choice of .w; r/ 2 C � .0;1/. Similarly, the
integral condition in part (b) of Corollary 3.8 tells us that the total area of the image
of S \ f �1.D.w; r// under f , counting multiplicities, is infinite for every choice of
.w; r/ 2 C � .0;1/.

Proof of Corollary 3.8. Part (a) follows immediately from combining the fact that Abel
universal functions do not have nontangential limit at any point of T together with The-
orem 1 in [25]. Part (b) follows from part (a) and the co-area formula (see p. 3 in [25]).

It is natural to ask whether an analogue of condition (a) in Corollary 3.6 would hold
if we restrict to a smaller boundary region near a point in T . For a set A � D such that
NA \ T ¤ ;, let MA.f; r/ WD sup¹jf .z/j W z 2 A; jzj D rº be the maximum modulus

function of f restricted to A. Condition (a) in Corollary 3.6 tells us that MD.f; r/ grows
rather fast to 1 as r ! 1 for any Abel universal function f . One can expect that the
smaller NA \ T is, the weaker the constraints are on the rate of growth of MA.f; r/. The
next two results give some interesting information in this direction. The first one shows
that, given any set A � D such that A \ T is a singleton, there exists an Abel universal
function whose maximum modulus function restricted toA has an arbitrary rate of growth.

Theorem 3.9. Let wW Œ0; 1/! Œ1;1/ be a continuous and increasing function such that
w.r/! 1 as r ! 1. For any A � D with A \ T containing exactly one point, there
exists f 2 UA.D; �/ such that jf .z/j � w.jzj/ for any z 2 A.

Proof. Let ."n/n, .'n/n, .Kn/n, ˛ and ˇ be as in Section 2. Without loss of generality,
we may and shall assume that A \ T D ¹1º and that for any 0 � r < 1, the set rD [ A
is compact and has connected complement. Then for any closed arc I in T , the set rD [
A [ I is also compact and has connected complement.

We define by induction a sequence .Pn/n of polynomials and two increasing sequences
.un/n and .vn/n in N, as follows. We set P0 � 0 and u0 D v0 D 0. For the inductive step,
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let us assume that .u0; v0; P0/; : : : ; .un�1; vn�1; Pn�1/ have been built. Since w.r/!1
as r ! 1 and w � 1, we can choose un > un�1 such that

(3.1)
ˇ̌̌
zun

�
'˛.n/.1/ �

n�1X
kD0

Pk.1/
�ˇ̌̌
� "nw.jzj/; z 2 A;

and

(3.2)
ˇ̌̌
zun

�
'˛.n/.1/ �

n�1X
kD0

Pk.1/
�ˇ̌̌
� "n; z 2 rvn�1D:

Then we set

qn.z/ WD

´
z�un

�
'˛.n/.z/ �

Pn�1
kD0 Pk.z/

�
if z 2 Kˇ.n/;

'˛.n/.1/ �
Pn�1
kD0 Pk.1/ if z 2 A [ rvn�1D:

From the hypothesis on A, we can apply Mergelyan’s theorem to choose a polynomial P �n
such that for any z 2 A [ rvn�1D [Kˇ.n/,

(3.3) jP �n .z/ � qn.z/j � "n:

By uniform continuity of P �n .z/ � z
�un

�
'˛.n/.z/ �

Pn�1
kD0 Pk.z/

�
, we may choose vn >

vn�1 such that for any z 2 Kˇ.n/,

(3.4)
ˇ̌̌
P �n .rvnz/ � .rvnz/

�un
�
'˛.n/.rvnz/ �

n�1X
kD0

Pk.rvnz/
�
� .P �n .z/ � qn.z//

ˇ̌̌
� "n:

Then, we define Pn.z/DzunP �n .z/, and set f WD
P
n�0 Pn. Note that by (3.1) and (3.3),

for any n � 0 and any z 2 A,

jPn.z/j D jz
unP �n .z/j � jz

un.P �n .z/ � qn.z//j C
ˇ̌̌
zun

�
'˛.n/.1/ �

n�1X
kD0

Pk.1/
�ˇ̌̌

� "n C "nw.jzj/ � 2"nw.jzj/:

Similarly, by (3.2) and (3.3), we get for any given k 2 N and n > k, and any jzj � rvk ,

(3.5) jPn.z/j � 2"n:

This shows that f 2H.D/ and jf .z/j �w.jzj/ for any z 2A (recall that
P1
nD1 "n � 1=2).

It remains to check that f 2UA.D; �/. Let us fix n;m 2 N and .lk/k increasing such
that ˛.lk/ D n and ˇ.lk/ D m for any k 2 N. By (3.4), (3.3) and (3.5), we get for any
k 2 N and z 2 Km,

jf .rvlk
z/ � 'n.rvlk

z/j D
ˇ̌̌
Plk .rvlk

z/ �
�
'n.rvlk

z/ �

lk�1X
iD0

Pi .rvlk
z/
�
C

X
i�lkC1

Pi .rvlk
z/
ˇ̌̌

� "lkCjP
�
lk
.z/ � qlk .z/jC

X
i�lkC1

jPi .rvlk
z/j � 2"lkC2

X
i�lkC1

"i ;
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which goes to 0 as k !1. Since 'n.rvlk z/! 'n.z/ as k !1 uniformly on Km, we
deduce that f 2 UA.D; �/.

Applying Theorem 3.9 with AD .0; 1/ and w.r/D .1� r/�1=2, r 2 .0; 1/, we get the
existence of f 2 UA.D; �/ such that

jf .r/j �
1

p
1 � r

; r 2 .0; 1/:

This implies .1 � r/jf .r/j � .1 � r/1=2, r 2 .0; 1/, hence .1 � r/f .r/! 0 as r ! 1,
which shows that the function .1 � z/f .z/ does not belong to UA.D/. We note that for
the same function, no antiderivative is Abel universal. Since UA.D/D

S
�UA.D; �/, this

implies the following.

Corollary 3.10. The sets UA.D; �/ and UA.D/ are not closed under multiplication by
polynomials or under antiderivation.

Remark 3.11. (i) Theorem 3.9 and Corollary 3.10 hold for universal Taylor series as well,
see Proposition 6 in [20].

(ii) We also mention that it is proven in [17] that UA.D; �/ is not closed under deriva-
tion either. The corresponding question remains open for universal Taylor series.

Our next result shows that Theorem 3.9 fails whenever A contains two paths with two
different endpoints in T .

Proposition 3.12. Let 1; 2W Œ0; 1/ ! D be two disjoint paths with 1.r/ ! �1 and
2.r/ ! �2 2 T as r ! 1, for some �1 ¤ �2 in T . Let also h be a positive harmonic
function on D. Then there is no f 2 UA.D; �/ such that jf j � eh on 1 [ 2.

Proof. The proof for arbitrary paths 1 and 2 is essentially the same as that in the case
where 1 and 2 are two radii. Let us then assume that i D ¹r�i W 0 � r < 1º, i D 1; 2.
For the sake of contradiction, suppose that there exists f 2UA.D; �/ such that jf .r�i /j �
eh.r�i / for any 0 < r < 1, i D 1;2. Let I denote a closed subarc of T having �1 and �2 as its
endpoints. Since f 2UA.D; �/, there exists an increasing sequence .�n/n of integers such
that jf .r�n�/j � 1. Hence log jf .r�n�/j � 0 for every � 2 I and n 2 N. Thus, since h is
positive, the function s WD log jf j � h is negative on r�nI for any n2N and by assumption
it is also non-positive on 1 [ 2. Note that s is subharmonic in D, so by the maximum
principle, s � 0 on

®
r� W 0 � r � r�n and � 2 I

¯
. Since r�n ! 1 as n!1, we get that

s� 0 and thus jf j � eh on the sector ¹r� W 0 � r < 1 and � 2 I º. But, by Fatou’s theorem,
positive harmonic functions on D have (finite) radial limits almost everywhere on T ,
which contradicts the fact that f 2 UA.D; �/.

Using the previous proposition, we can give an alternative proof of the local Picard-
type property of Abel universal functions.

An alternative proof of Corollary 3.6 (d). For the sake of contradiction, assume that there
exists a function f 2 UA.D; �/ that omits two values on D.�; r/ \ D for some � 2 T
and r > 0. Without loss of generality, we can assume that it omits the values 0 and 1 on
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D.�; r/ \D. Using Schottky’s theorem, as in the proof of Corollary 2 in [22], we deduce
that

jf .z/j � ec=.1�jzj/ for z 2 D.�; r=3/ \D,

where c is a positive constant. Let

P.z; �/ D
1 � jzj2

j� � zj2
, z 2 D; � 2 T ;

denote the Poisson kernel, and fix �1; �2 2D.�; r=3/\T , �1 ¤ �2. Then, for i D 1; 2 and
0 � s < 1, we have

P.s �i ; �i / D
1 � js �i j

2

j�i � s �i j2
D

1 � s2

.1 � s/2
D
1C s

1 � s
�

1

1 � s
�

We conclude that P.z; �i / � .1 � jzj/�1 for z 2 Œ0; �i /; i D 1; 2, and thus, if we set

h.z/ D c.P.z; �1/C P.z; �2//; z 2 D;

we have h.z/ � .1 � jzj/�1 for z 2 Œ0; �1/ [ Œ0; �2/. Then

jf .z/j � ec=.1�jzj/ � eh.z/; z 2 .Œ0; �1/ [ Œ0; �2// \D.�; r=3/:

Since h is a positive harmonic function on D, this contradicts Proposition 3.12.

We conclude this section by three open questions that naturally arise from the previous
results.

Questions 3.13. (i) Is condition (a) in Corollary 3.6 sharp for Abel universal functions, in
the sense that given any increasing function wW Œ0; 1/! Œ1;1/ that satisfies the conditionR 1
0

logC logCw.r/dr D1, there exists f 2 UA.D; �/ such that M.r; f / � w.r/?
(ii) To prove the local Picard property for universal Taylor series, Gardiner and Khav-

inson used their Ostrowski gap structure to show that they have very strong growth prop-
erties at every boundary point (see Theorem 1 in [22]). In particular, they showed that if
 W Œ0; 1/! .0;1/ is an increasing function such that

R 1
0

logC logC  .t/dt <1, and f
is a function in H.D/ that satisfies jf .z/j �  .jzj/ on D.�; r/ \ D for some � 2 T and
r > 0, then f 62 UT . Is this true if we replace UT by UA?

(iii) Functions satisfying the assumptions of Theorem 3.5 may not be Valiron func-
tions. Yet, is every Abel universal function a Valiron function?

4. Taylor expansion of Abel universal functions

In this section, we investigate properties of the Taylor polynomials of Abel universal func-
tions. Specifically, we will focus on their possible gap structures and the behaviour of their
Taylor partial sums outside D. Our general aim is to understand to what extent being an
Abel universal function affects the Taylor expansion with respect to these aspects, and
vice-versa. Before giving motivations and stating our results, we shall recall the defini-
tions of three notions of gaps structure.
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Definition 4.1. Let f .z/ D
P1
kD0 akz

k be a power series with radius of convergence 1.
We say that

(a) f possesses Hadamard gaps if there is a sequence .nk/k in N with infk nkC1=nk >1
such that aj D 0 whenever j ¤ nk for all k 2 N;

(b) f possesses Hadamard–Ostrowski gaps if there are sequences .pk/k and .qk/k in N
with 1 � p1 < q1 � p2 < q2 � � � � and infk qk=pk > 1 such that

lim sup
k2I;k!1

jakj
1=k < 1;

where I D
S1
kD0¹pk C 1; pk C 2; : : : ; qkº;

(c) f possesses Ostrowski gaps if there are sequences .pk/k and .qk/k in N with 1 �
p1 < q1 � p2 < q2 � � � � and qk=pk !1 such that

lim sup
k2I;k!1

jakj
1=k
D 0;

where I D
S1
kD0¹pk C 1; pk C 2; : : : ; qkº.

It is clear that if f has Ostrowski gaps, then it has Hadamard–Ostrowski gaps. These
definitions were motivated by the work of Ostrowski, who showed that there are intimate
connections between the gap structure of a Taylor series and the behaviour of its partial
sums outside the disc of convergence. It is interesting for our purposes to mention that the
existence of Hadamard gaps is related to the notion of normality, Picard’s property and
the MacLane class, encountered in Section 3. The following theorem, a compilation of
different results, makes this link explicit.

Theorem 4.2. Suppose that f .z/ D
P
k akz

k has Hadamard gaps.

(a) (Hwang, [30]). If lim supk jakj D 1, then f assumes every complex value infinitely
often in each sector of the form ¹z 2 D W ˛ < arg z < ˇº, where 0 � ˛ < ˇ � 2� .

(b) (Sons and Campbell, [48]). If lim supk jakj D 1, then f is not normal in D.

(c) (Murai, [43]). The function f belongs to the Maclane class A.

Remark 4.3. In part (c), the contribution of Murai was to show that if f has Hadamard
gaps and unbounded Taylor coefficients, then f admits the asymptotic value1 at every
point of T . In the case where the coefficients are bounded, the conclusion follows from
an older result of Paley, see [52].

Assertions (a) and (b) in Theorem 4.2, in comparison with assertions (c) and (d) in
Corollary 3.6, may suggest that Abel universal functions could be found among Hadamard
lacunary series. However, part (c) of Theorem 4.2 rules out this possibility, since Abel
universal functions do not belong to the Maclane class A:

Corollary 4.4. There is no Abel universal function with Hadamard gaps.

In contrast, since the existence of Ostrowski gaps is a more flexible constraint, it is
not difficult to construct an Abel universal function that has Ostrowski gaps (we refer
the reader to [16], where an ad hoc construction of universal functions in H.D/ with
large Ostrowski-type gaps is displayed). This can also be derived from the fact that every
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universal Taylor series possesses Ostrowski gaps [26, 42], the fact that both classes of
Abel universal functions and universal Taylor series are residual in H.D/, and the Baire
category theorem. Nevertheless, it is shown in [12] that there exist Abel universal func-
tions without Ostrowski gaps. This is not really surprising either, since the existence of
Ostrowski gaps for universal Taylor series comes from the approximation properties of
their Taylor partial sums on sets that are non-thin at1 (see [42] for details), while Abel
universal functions are defined only by properties inside D near points of T . This remark
is a motivation to ask whether there are Abel universal functions without Hadamard–
Ostrowski gaps.

Our first result gives an affirmative answer. It even tells us that, given any prescribed
function g 2 H.D/, we can find an Abel universal function whose Taylor coefficients are
larger in modulus than those of g.

Theorem 4.5. For any sequence .k/k of positive real numbers such that lim supk
1=k

k
�1,

there exists a function f .z/ D
P1
kD0 akz

k in UA.D; �/ with jakj � k for every k large
enough. In particular, there exist Abel universal functions without Hadamard–Ostrowski
gaps.

For the proof of Theorem 4.5, we will need the following simple lemma, whose veri-
fication is left to the reader.

Lemma 4.6. If .k/k is as in the previous theorem, then for any 0 < r < 1, the seriesP
j�n

P
k�j kr

k tends to 0 as n!1.

Proof of Theorem 4.5. Let � D .rn/n. Let us fix a sequence .Rn/n in Œ0; 1/ such that 0 <
Rn < rn < RnC1 < rnC1 < 1, n 2 N. We build by induction sequences .Pn/n and .Qn/n
of polynomials and an increasing sequence .un/n of integers. We set P0 � Q0 � 0 and
u0 D 0, and once we have built P0; : : : ;Pn�1,Q0; : : : ;Qn�1 and u0; : : : ;un�1, we choose
un > deg.Pn�1/ and apply Mergelyan’s theorem to get Pn.z/ D

P
i�un

ai;nz
i so that the

following hold:

(a) max
®P

i�un
ir

i
nC1;

P
j�un

P
i�j ir

i
n; .rn=RnC1/

un=.1 � rn=RnC1/
¯
� "n;

(b) supjzj�Rn jPn.z/j � "n;

(c) supz2Kˇ.n/
ˇ̌
Pn.rnz/ �

�
'˛.n/.z/ �

P
0�j�n�1.Pj CQj /.rnz/

�ˇ̌
� "n:

Note that (a) is possible because of Lemma 4.6. Then we define

Qn.z/ D

deg.Pn/X
iDdeg.Pn�1/C1

bi;n z
i

so that:
(d) bi;n D i for any i D deg.Pn�1/C 1; : : : ; un � 1;
(e) for any i D un; : : : ;deg.Pn/, bi;nD0 if j<.ai;n/j�i and bi;nD2i if j<.ai;n/j�i .

Observe that for any n and any i , we have 0� bi;n � 2i and that, if we set ai;nD 0 for
any i D deg.Pn�1/C 1; : : : ; un � 1, then jai;n C bi;nj � j<.ai;n C bi;n/j � i . Using (b)
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and (e), we get that the function f .z/ D
P
n�0.Pn CQn/.z/ D

P
k akz

k is in H.D/
and, by the previous, that jakj � k for any k.

The proof will be completed once we have proven that f 2 UA.D; �/. Let us fix
n;m 2 N and let .nl /l � N be such that for any l 2 N, ˛.nl / D n and ˇ.nl / D m.
By (c), for z 2 Km we have

jf .rnl z/ � 'n.z/j � "nl C jQnl .rnl z/j C
ˇ̌̌ X
j�nlC1

Pj .rnl z/CQj .rnl z/
ˇ̌̌
:

Moreover, it follows from (d), (e) and (a) that

jQnl .rnl z/j �
X

i�unl�1

2i r
i
nl
� 2"nl�1:

Now, let us observe that by (b) and Cauchy’s inequalities, we have jai;j j � "jR�ij for any
j � nl C 1 and any i 2 N, whence by (a) and (e), for any z 2 Km,ˇ̌̌ X

j�nlC1

.Pj .rnl z/CQj .rnl z//
ˇ̌̌
�

X
j�nlC1

X
i�uj

"j

�rnl
Rj

�i
C

X
j�nlC1

X
i�uj�1

bi;j r
i
nl

�

X
j�nlC1

"j
.rnl=RnlC1/

unl

1 � rnl=RnlC1
C 2

X
j�unl

X
i�j

ir
i
nl
�

� X
j�nlC1

"j

�
C 2"nl :

Altogether we get
sup
z2Km

jf .rnl z/ � 'n.z/j ! 0 as l ! 0;

and so f 2 UA.D; �/.

As recalled in the introduction, the partial sums of the Taylor expansion at 0 of any
Abel universal function must be unbounded at any point in T . We will now show that for
some Abel universal functions, the partial sums of their Taylor expansion even go to1
almost everywhere outside D. This confirms that being Abel universal does not impose on
the Taylor polynomials any oscillatory behaviour (at least on a large subset of C nD).

We shall now see that Theorem 4.5 implies that for some Abel universal functions f ,
the sequence of partial sums .Sn.f //n converges to1 locally in capacity in C nD. This
will be a consequence of a result of Kalmes, Müller and Nieß that we will state below.
We recall that a sequence .fn/n of Borel-measurable functions on a set U � C converges
to1 in capacity if, for every M > 0, we have

lim
n!1

cap.¹z 2 U W jfn.z/j �M º/ D 0:

Moreover, if U is open, we say that .fn/n converges to 1 locally in capacity if it con-
verges to1 in capacity on any compact subset of U .

Theorem 4.7 (Theorem 1.4 in [32]). Let f .z/ D
P
k akz

k be a Taylor series with radius
of convergence 1 and without Hadamard–Ostrowski gaps. Then .Sn.f //n converges to1
locally in capacity in C nD.
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We deduce from Theorems 4.5 and 4.7 the following result.

Corollary 4.8. There exists f 2 UA.D; �/ such that .Sn.f //n converges to 1 locally
in capacity in C n D. In particular, some subsequence of .Sn.f //n converges pointwise
to1 in C nD, outside a set of capacity 0.

Furthermore, one can state a measure-theoretical version of the previous corollary
using ideas of Kahane and Melas [31]. Indeed, the proof of Theorem 2 in [31] shows
that given any f 2 H.D/, there exists a function g in the Wiener algebra W , the set
of power series that are absolutely convergent in D, such that Sn.f C g/.z/! 1 for
�-a.e. z 2 C n D. Since W � A.D/ and since f C g obviously belongs to UA.D; �/
whenever f 2UA.D; �/ and g 2 A.D/, we immediately get the following complement of
Corollary 4.8.

Proposition 4.9. For any f 2 UA.D; �/ there exists g 2 W such that Sn.f C g/!1
�-a.e. in C nD, while f C g 2 UA.D; �/.

So far, we have proven that, contrary to what happens for universal Taylor series,
being Abel universal has no effect on the gap structures of its Taylor coefficients and no
influence on the behaviour of its Taylor partial sums on large subsets of C nD. It remains
to see if this is still the case on the boundary T of D, where the most erratic behaviour of
the partial sums could be expected. The next result gives an affirmative answer. We recall
that m stands for the arclength measure on T .

Theorem 4.10. There exists f 2 UA.D; �/ such that Sn.f /!1 m-a.e. on T .

Proof. Let �D .rn/n. We fix a sequence .Rn/n in .0;1/ such thatRn < rn <RnC1 < rnC1
for any n 2 N. We will build f by induction as a sum

P
n.Pn CQn/, where Pn and Qn

are two polynomials that will take the following forms:

Pn D

deg.Pn/X
kDun

ak;n z
k ; Qn D

deg.Pn/X
kDun

bk;n z
k ;

where .un/n is an increasing sequence of integers satisfying some additional growth con-
dition that will also be defined by induction. At each step n, we first define un, then
comes Pn, and third we choose Qn. To start with, we set P0 � Q0 � 0 and u0 D 0. For
the inductive step, let us assume that .u0; P0; Q0/; : : : ; .un�1; Pn�1; Qn�1/ have been
built. We shall define un, Pn and Qn as follows.

We choose un 2 N such that the following conditions are satisfied:
(a) un � max¹2; deg.Pn�1/C 1º;
(b)

P
j�un

P
k�j k

4rkn � "n;
(c) .rn=RnC1/un � 1 � rn=RnC1.

Note that (b) is possible since
P
j�n

P
k�j k

4rk ! 0 as n!1 for any r 2 .0; 1/,
by Lemma 4.6. Then, we apply Mergelyan’s theorem to define Pn.z/D

P
k�un

ak;nz
k as

a polynomial so that
(d) supjzj�Rn jPn.z/j � "n;

(e) supz2Kˇ.n/
ˇ̌
Pn.rnz/ �

�
'˛.n/.z/ �

P
0�j�n�1.Pj CQj /.rnz/

�ˇ̌
� "n:
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It remains to define Qn, which is the most important step of the construction.
To proceed, we will build by a finite induction deg.Pn/ � un C 2 complex numbers

bun�1;n, bun;n; : : : ; bdeg.Pn/;n. First we set bun�1;n D 0. Let us then assume that bun�1;n,
bun;n; : : : ; bl�1;n have been chosen for some l 2 ¹un; : : : ; deg.Pn/º. To define bl;n we
proceed as follows.

For any complex number c, we set

Gl .c/ D
°
w 2 T W

ˇ̌̌ n�1X
jD0

.Pj CQj /.w/C

l�1X
kDun

.ak;n C bk;n/w
k
C al;nw

l
C cwl

ˇ̌̌
� l

±
:

We observe that Gn.c/ \ Gn.c0/ ¤ ; implies that jc � c0j � 2l . Observe also that
there exists an integer sl � l2 and c1; : : : ; csl in the discD.0; l4/ such that jcj � ckj > 2l
for any j ¤ k (recall that l � un � 2). Therefore the setsGl .c1/; : : : ;Gl .csl / are pairwise
disjoint closed subsets of T , which implies that, for some il 2 ¹1; : : : ; csl º,

m.Gl .cil // �
m.T /

sl
�
2�

l2
�

We set bl;n D cil to conclude this finite induction and

Qn D

deg.Pn/X
kDun�1

bk;n z
k
D

deg.Pn/X
kDun

bk;n z
k

to conclude the whole induction.
Now we have to check that the power series f D

P
n.Pn CQn/ satisfies the desired

properties. First note by (d) that the series
P
n Pn defines a function in H.D/. Moreover,

the construction ensures that for every n and every k we have jbk;nj � k4 and so
P
nQn

also belongs to H.D/. Thus f is well-defined and belongs to H.D/.
Let us prove that for m-a.e. z 2 T , SN .f /.z/!1 as N !1. Set

I D
[
n�1

¹un; un C 1; : : : ; deg.Pn/º:

The construction of the bk;n gives us that for any k 2 I and any z 2 T n Gk.bk;n/, we
have jSk.f /.z/j � k, where n is such that un � k � deg.Pn/. Since

P
k m.Gk.bk;n// �P

k 2�=k
2 < 1, by the Borel–Cantelli lemma, m-a.e. z 2 T belong to all but finitely

many sets T nGk.bk;n/. Thus form-a.e. z 2T , SN .f /.z/!1 asN !1,N 2 I . Now,
for every n� 1 and everyN 2 ¹deg.Pn/; : : : ;unC1º, we have SN .f /.z/D Sdeg.Pn/.f /.z/

for any z 2 T . Therefore SN .f /.z/!1 as N !1.
To finish the proof, it remains to check that f belongs to UA.D;�/. Let us fix n;m2N

and let .nl /l � N be such that for any l 2 N, ˛.nl / D n and ˇ.nl / D m. By (e) we have,
for any z 2 Km,

(4.1) jf .rnl z/ � 'n.z/j � "nl C jQnl .rnl z/j C
ˇ̌̌ X
j�nlC1

.Pj .rnl z/CQj .rnl z//
ˇ̌̌
:
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By the construction ofQn (and bk;n) and the choice of un (see (b)), we have for any z 2T ,

jQnl .rnl z/j �

deg.Pnl /X
kDunl

k4 rknl � "nl :

To deal with the third term of the right hand-side of (4.1), we derive first from (d) and
Cauchy’s inequalities that for any n � 1 and any k 2 ¹un; : : : ; deg.Pn/º, jak;nj � "nR�kn .
Then, together with the definition of the bk;n and conditions (b) and (c), we obtain, for
any z 2 Km,ˇ̌̌ X

j�nlC1

.Pj .rnl z/CQj .rnl z//
ˇ̌̌
�

X
j�nlC1

X
k�uj

"j

�rnl
Rj

�k
C

X
j�nlC1

X
k�uj

k4 rknl

�

X
j�nlC1

"j
.rnl=RnlC1/

unl

1 � rnl=RnlC1
C

X
j�unl

X
k�j

k4 rknl �
X

j�nlC1

"j C "nl :

Altogether we get

sup
z2Km

jf .rnl z/ � 'n.z/j ! 0 as l !1;

and so f 2 UA.D; �/.

Remark 4.11. The previous result allows us to see that Abel’s limit theorem strongly
fails if we replace the assumption “Sn.f /.�/ converges in C" by “Sn.f /.�/!1", in
the sense that not only f .r�/ may not tend to1, but f .Œ0; �// can even be dense in C.

Combining Proposition 4.9 with Theorem 4.10, we get the following.

Corollary 4.12. There exists an Abel universal function f such that Sn.f /!1 �-a.e.
on C nD and Sn.f /!1 m-a.e. on T .

In Theorem 4.10, the large set of points in T at which Sn.f / tends to1 is not pre-
scribed. However, notice that given a countable set E � T and any set A of full arclength
measure in T , there exists a rotation r (about 0) such that r.E/ � A. Indeed, for any
z 2 E, the set ¹� 2 T W �z 2 Aº has clearly full measure so that

m
� \
z2E

¹� 2 T W �z 2 Aº
�
D 2�:

Thus if we let r be the rotation (multiplication) by any element of \z2E ¹� 2 T W �z 2 Aº
and we let f be an Abel universal function such that Sn.f /.z/!1 for every z in some
set A � T with full measure, then g WD f ı r also belongs to UA.D/ and Sn.g/.z/!1
for every z 2 E. Therefore we have the following consequence of Theorem 4.10.

Corollary 4.13. For any countable set E � T , there exists f 2 UA.D; �/ such that
Sn.f /.z/!1 for every z 2 E.
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The proof of this corollary is based on Theorem 4.10, that relies on the Borel–Cantelli
lemma. However, one can easily adapt the proof of Theorem 4.10 in order to get Corol-
lary 4.13 without making use of any probabilistic tool. It suffices to use instead the
following geometric lemma (the details of the construction of the desired Abel univer-
sal function are left to the reader).

Lemma 4.14. Let w1; : : : ; wl 2 C; z1; : : : ; zl 2 T and R > 0. There exists b 2 C with
jbj � 2lR such that jwm C bzmj � R for m D 1; : : : ; l .

Proof. Clearly, if jwmj � R for m D 1; : : : ; l , then we can select b D 0 and so we may
assume that at least one of the numbers w1; : : : ; wl belongs to D.0; R/. Without loss of
generality, we assume that jw1j < R. Now, if jwmj � 3R for m D 2; : : : ; l , then we can
select b D 2R. Thus, we may assume that at least one of the numbers w2; : : : ; wl belongs
toD.0;3R/. Continuing in this way, we notice that the worst case is when the discD.0;R/
and each annulus ¹z 2 C W .2n � 1/R � jzj < .2nC 1/Rº for n D 1; : : : ; l � 1 contain
exactly one of w1; : : : ; wl . In this case, we can select b D 2lR.

Remark 4.15. Note that the sets of functions in UA.D; �/ with the properties described
in the results of this section are dense in H.D/, since they are invariant under addition
with a polynomial. However, they are of first category in H.D/ because they all consist
of functions that are not universal Taylor series. (Recall that a subset F of a topological
space X is said to be of first category in X if F can be written as a countable union of
subsets which are nowhere dense in X .)

The following questions remain open.

Questions 4.16. (i) Is it true that for any Abel universal function f , there exists z 2 T
such that ¹Sn.f /.z/ W n 2 Nº is dense in C?

(ii) In the opposite direction, does there exist an Abel universal function f such that
Sn.f /!1 everywhere on T?

(iii) If the answer in (ii) is negative, in Corollary 4.13, can we replace countable by
first category?

5. Further developments

In this final section, we will focus on extensions of the results obtained in the previous
parts to other types of universal functions that are naturally related to Abel universal func-
tions. We mentioned in the introduction three such classes of functions in H.D/ with a
wild boundary behaviour. Let us recall the definitions. For f 2 H.D/ and  W Œ0; 1/! D a
path in D with .r/! � as r ! 1 for some � 2 T , the cluster set C .f / of f along  is
defined by

C .f / D
®
w 2 C [ ¹1º W w D lim

n!1
f ..rn// for some .rn/n in Œ0; 1/ with rn ! 1

¯
:

We will also denote by r� WD ¹r� W r 2 Œ0; 1/º the radius through � and by Cr� .f / the
radial cluster set through the radius r� . Finally, we say that a cluster set is maximal if it is
equal to C [ ¹1º.
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Definition 5.1. The sets UR.D/, U�.D/ and Uae.D/ consist of all functions f in H.D/
that satisfy the following properties, respectively:

(a) Cr� .f / is maximal for any � 2 T ;
(b) C .f / is maximal for any path  in D with an endpoint in T ;
(c) for everym-measurable function ' on T , there exists a sequence .rn/n in Œ0; 1/ such

that frn.�/! '.�/ for m-a.e. � 2 T .

We recall that UR.D/, U�.D/ and Uae.D/ were proved to be residual in [33], [8]
and [4], respectively (see also [10] for the establishment of the existence of functions in
U�.D/). It is easy to see that we have the following inclusions:

UA.D/ � U�.D/ � UR.D/ and UA.D/ � Uae.D/:

It was proved in [17] that the inclusion UA.D/ � U�.D/ is strict.
It is natural to wonder whether all functions in these three classes satisfy the same wild

boundary properties with Abel universal functions. On the one hand, it is clear that the set
U�.D/ and the MacLane class do not intersect. Thus functions in UA.D/ must grow
fast near T (see Theorem 3.2). On the other hand, Bayart [4] in fact proved that given any
growth functionwW Œ0;1/! Œ1;1/withw.r/!1 as r! 1, there exists f 2Uae.D/ such
that M.r; f / � w.r/. We also point out that, so far, it is not clear whether UR.D/ may
intersect the MacLane class or not. Thus we cannot use Theorem 3.2 to make conclusions
about the minimal growth ofM.r;f / for functions f in UR.D/. Moreover, one can easily
check that the functions in UR.D/ satisfy the assumptions of Theorem 3.5 (a) and (b) and
that the functions in Uae.D/ satisfy the assumptions of Theorem 3.5 (a), but it is not
clear if they satisfy the assumptions of (b). Thus, we do not have any information about
a Picard-type property that functions in Uae.D/ may satisfy. However we can derive the
following result, using tools from potential theory, as in Corollary 6 of [23].

Theorem 5.2. Let f 2H.D/ be such that ¹f .rw/ W 0� r < 1º is unbounded for a.e.w2T .
Then for all � 2T and r > 0, the set f .D�;r / has polar complement, whereD�;r D¹z 2D W
jz � �j < rº. In particular, this holds if f 2 Uae.D/.

Proof. For the sake of contradiction, assume that there is � 2 T and r > 0 such that
f .D�;r / has non-polar complement. Then, by Myrberg’s theorem (see Theorem 5.3.8
in [2]), there is a positive harmonic function h on f .D�;r / such that log jzj � h.z/ there.
Thus, log jf j is majorized by the positive harmonic function h ı f on D�;r , and so (by
Fatou’s theorem) it is nontangentially bounded above at a.e. point in @D�;r \ T , which
leads to a contradiction.

All the previous results can be summarized in the following table, where we use the
notation I.f / WD

R 1
0

logC logCM.r; f /dr .

UA.D/ U�.D/ UR.D/ Uae.D/

Growth I.f / D1 I.f / D1 ? arbitrarily slow
Asymp. values 1 1 1 1

Normality At no � 2 T At no � 2 T At no � 2 T ?

Picard points Every � 2 T Every � 2 T Every � 2 T ?
(Theorem 5.2)
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Question 5.3. Is it possible to complete the above table?

Another interesting generalisation of UA.D; �/ is given by restricting the universal
approximation to a fixed compact subset of T . More precisely:

Definition 5.4. Let � D .rn/n be a sequence in Œ0; 1/ such that rn! 1, and letK ¨ T be
a compact set. We denote by UK

A .D; �/ the set of all functions f 2 H.D/ for which the
family of dilates ¹frn W n 2 Nº is dense in C.K/.

When K ¨ T is a non-trivial compact arc, the functions in UK
A .D; �/ have sim-

ilar behaviour with the functions in UA.D; �/ near points of K, even if the two classes
are different (obviously, UA.D; �/ � UK

A .D; �/). In particular, the results of this paper
that hold for classical Abel universal functions carry over to the elements of the class
UK
A .D; �/, up to superficial modifications depending on K. The most interesting case

concerns compact sets K that allow functions in UK
A .D; �/ to belong to classical func-

tion subspaces of H.D/. This case was examined in [36], where it was proved that if
m.K/ D 0, then UK

A .D; �/ \ H
p is a dense Gı subset of the Hardy space Hp of the

unit disc, for 1 � p <1. Similar results were obtained for the Bergman and the Dirichlet
spaces.

It would be interesting to examine which properties such Abel universal functions
in Hp satisfy, related to their boundary behaviour and the behaviour of their Taylor
expansion. For example, since functions in the Hardy space belong to the MacLane class,
Corollary 3.6(a) fails for any function in UK

A .D; �/ \ H
p (for m.K/ D 0). Neverthe-

less, one may wonder whether functions of this class still have a typical minimal growth.
Moreover, it is known that the set of all functions inHp with the property that every � 2T
is a Picard point is residual [11]. Thus, it natural to ask whether every � 2 K is a Picard
point for every function in UK

A .D; �/ \H
p . Furthermore, regarding the results of Sec-

tion 4, the following question arises: given K � T with m.K/ D 0, do the Taylor partial
sums of the functions of UK

A .D; �/ \H
p behave chaotically on K? We know that this

is the case for most functions in UK
A .D; �/ \H

p (see [5]). We note that in the opposite
direction, it is known that if K is finite, there exists a function f in the disc algebra A.D/
whose Taylor partial sums are universal on K (see [45] for a precise statement). Simil-
arly, under different sufficient conditions onK, it is also known that UK

A .D; �/
T
Ap ¤ ;

and UK
A .D; �/

T
D ¤ ;, where Ap is the Bergman space for 1 � p <1 and D is the

Dirichlet space (see [36]). The analogues of the above questions can be asked for these
spaces.

To finish let us focus on the Bloch space B, another classical Banach space of ana-
lytic functions, of particular interest for the study of univalent functions. We recall that a
function f 2 H.D/ belongs to the Bloch space B if

kf kB WD sup
z2D

.1 � jzj2/ jf 0.z/j <1:

We introduce the following definition.

Definition 5.5. Let K be a subset of T . We denote by UK
R .D/ the set of all functions

f 2 H.D/ for which the set Cr� .f / is maximal for any � 2 K.
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Observe that UK
A .D �/ �UK

R .D/ for any � andK � T . The first part of the next the-
orem shows the contrast between the Bloch space and the other classical spaces mentioned
above.

Theorem 5.6. We have the following:
(a) UR.D/ \B D ;.

(b) U
TnE
R .D/ \B ¤ ;, for some E in T with m.E/ D 0.

Proof. (a) is a consequence of Theorem 3.5(b) and the fact that each function in B is
normal (see p. 71 in [47]).

(b) It is known that there is a function f in B that has radial limits at no point of T . For
example, one can consider the function f .z/ D

P1
nD1 z

2n , which is in B as a Hadamard
lacunary series with bounded coefficients. By the Tauberian theorem of Hardy and Little-
wood (which states that if a Hadamard lacunary power series has a radial limit at a point,
then the power series converges at that point), f has no radial limits. We will now make
use of a stronger version of Plessner’s theorem for functions in the Bloch space. More
precisely, Corollary 6.15 in [47] tells us that for any function g 2 B we have that for
m-a.e. � 2 T , either g has a finite nontangential limit at �, or the cluster set of g along r�
is maximal. Thus, applying this to f , we get that for some set E in T with zero arclength
measure, we have that f 2 U

TnE
R .D/ \B.

This result suggests the following question.

Question 5.7. In Theorem 5.6 (b), can we replace U
TnE
R .D/ by the smaller class Uae.D/?

More recently, some progress has been made about the existence of universal functions
in the Bloch space. Limani [34] obtained some simultaneous approximation result in the
Bloch space that allowed him to show the existence of functions in B with universal
Taylor series in the sense of Menshov. His ideas turn out to be fruitful to give a positive
answer to Question 5.7, as noted in [13], where this result is further extended to several
complex variables.
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