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Nikodym sets and maximal functions
associated with spheres

Alan Chang, Georgios Dosidis and Jongchon Kim

Abstract. We study spherical analogues of Nikodym sets and related maximal func-
tions. In particular, we prove sharp Lp-estimates for Nikodym maximal functions
associated with spheres. As a corollary, any Nikodym set for spheres must have full
Hausdorff dimension. In addition, we consider a class of maximal functions which
contains the spherical maximal function as a special case. We show thatLp-estimates
for these maximal functions can be deduced from local smoothing estimates for the
wave equation relative to fractal measures.

1. Introduction

A set A � Rn of zero Lebesgue measure is a Nikodym set for spheres (respectively,
unit spheres) if for every y in a set of positive Lebesgue measure, there exists a sphere
(respectively, unit sphere) S containing y such thatA\S has positive .n�1/-dimensional
Hausdorff measure. The existence of these sets was first proven in two dimensions in [6].
We extend the construction to all dimensions. (See Theorem 1.1.)

Associated to these Nikodym sets are the following Nikodym maximal operators:

N ıf .x/ D sup
u2Sn�1

1

jSı.0/j

ˇ̌̌ Z
Sı .0/

f .x C uC y/ dy
ˇ̌̌
;(1.1)

�ıf .x/ D sup
u2Sn�1

sup
1�t�2

1

jSı.0/j

ˇ̌̌ Z
Sı .0/

f .x C t .uC y// dy
ˇ̌̌
;(1.2)

where Sı.0/ denotes the ı-neighborhood of the unit sphere Sn�1. N ıf .x/ is the supre-
mum of averages of f on the ı-neighborhoods of every unit sphere passing through x,
while for �ı we allow the radius to vary. We show that these operators are bounded
on Lp.Rn/; furthermore, we show that in our bounds, the dependence on ı is sharp for
every p and n. (See Theorems 1.2 and 1.5.) As a corollary, we conclude that all Nikodym
sets for spheres have full Hausdorff dimension. (See Theorem 1.4.)
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Restricting the set of translation to a compact T � Rn, we also study the uncentered
spherical maximal operators:

NTf .x/ D sup
u2T

ˇ̌̌ Z
Sn�1

f .x C uC y/ d�.y/
ˇ̌̌
;(1.3)

�Tf .x/ D sup
u2T

sup
t>0

ˇ̌̌ Z
Sn�1

f .x C t .uC y// d�.y/
ˇ̌̌
;(1.4)

where d� denotes the normalized surface measure on the sphere. These operators are
initially defined for continuous functions with compact support. If T D Sn�1, then the
existence of Nikodym sets for unit spheres implies that these operators are not bounded
on Lp.Rn/ for any finite p. On the other hand, if T D ¹0º, �T is the classical spherical
maximal function, which is known to be bounded for some range of p; see Section 1.2.
We show that if the upper Minkowski dimension of T is strictly less that n � 1, then NT

and �T are bounded on Lp.Rn/ for some range of p. (See Theorems 1.7 and 1.10.)

1.1. Nikodym maximal functions associated with spheres

We start with a brief overview of the classical Nikodym sets and Nikodym maximal func-
tions. A Nikodym set (for lines) is a set A � Rn of zero Lebesgue measure such that for
every x 2Rn, there is a line ` through x such that A\ ` contains a unit line segment. The
existence of Nikodym sets was discovered by Nikodym [22]. Nikodym sets are closely
related to Kakeya sets (a.k.a. Besicovitch sets), which are sets in Rn which contain a unit
line segment in every direction. Kakeya sets of zero Lebesgue measure were discovered
by Besicovitch [2].

In the seminal paper [8], Córdoba introduced the Nikodym maximal function

(1.5) x 7! sup
�3x

1

j�ı j

ˇ̌̌ Z
�ı
f
ˇ̌̌
;

where the supremum is taken over all unit line segments � centered at x, and �ı denotes
the ı-neighborhood of � . Lower bounds on the dimension of Nikodym sets can be obtained
from Lp-bounds for the Nikodym maximal function. See, e.g., [19] for more on Kakeya
and Nikodym sets and the interplay between geometric measure theory and Fourier anal-
ysis.

The operators N ı and �ı defined above in (1.1) and (1.2) are analogues of (1.5), with
spheres instead of lines. We now discuss the existence of Nikodym sets for spheres.

By adapting a construction of Cunningham [9], Héra and Laczkovich showed in [15]
that a sufficiently short circular arc can be moved (via rigid motions) to any position in
the plane within a region of arbitrarily small area; this can be considered the analogue of
the Kakeya needle problem for circular arcs.

The results in [15] were extended by Csörnyei and the first author, who showed that
if one removes a neighborhood of two diametrically opposite points from a circle, the
resulting set can be moved to any other position in arbitrarily small area, see Corollary 1.3
in [6]. In fact, they studied a Kakeya needle problem variant for all rectifiable sets, not just
circles. See Theorem 1.2 in [6].
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Our first result is a higher-dimensional analogue of Theorem 6.9 in [6], specialized to
spheres.

Theorem 1.1 (Existence of Nikodym sets for unit spheres). There exists a set A � Rn

such that:
(1) A has Lebesgue measure zero.

(2) For all y 2 Rn, there are a point py 2 Rn and an .n � 1/-plane Vy containing 0
such that y 2 py C Sn�1 and py C .Sn�1 n Vy/ � A.

Also, the mappings y 7! py and y 7! Vy are Borel.

The setA from Theorem 1.1 contains, for every y 2Rn, a unit .n� 1/-sphere contain-
ing y up to a great .n � 2/-sphere. It is a prototypical Nikodym set for unit spheres. The
proof of Theorem 1.1 closely follows the proof in [6] for the case n D 2, but we include
an outline in Appendix A for the sake of completeness.

Due to the existence of a Nikodym set for unit spheres, for any finite p, the Lp-
operator norm of the maximal function N ı (see (1.1)) cannot be bounded uniformly in ı
as ı ! 0. The following theorem determines the Lp-operator norm kN ıkLp!Lp up to a
factor of ı�" for an arbitrarily small " > 0. Here and in the following, we denote byA.B

and A / B the inequalities A � CB and A � C" ı�"B for any " 2 .0; 1=2/, respectively,
for some absolute constants C;C" > 0.

Theorem 1.2.
(i) When n D 2,

kN ı
kLp.R2/!Lp.R2/ /

²
ı1�2=p; 1 � p � 2;

1; 2 � p � 1:

When n D 3,

kN ı
kLp.R3/!Lp.R3/ /

8<: ı3=2�5=.2p/; 1 � p � 3=2;

ı1=2�1=p; 3=2 � p � 2;

1; 2 � p � 1:

When n � 4,

kN ı
kLp.Rn/!Lp.Rn/ /

8<: ı2�3=p; 1 � p � 4=3;

ı1=2�1=p; 4=3 � p � 2

1; 2 � p � 1:

(ii) The powers of ı in part (i) are sharp for all n � 2 and all 1 � p � 1.

Part (i) of Theorem 1.2 is proved in Section 2, while part (ii) follows from Proposi-
tion 5.1. The proof of the upper bounds relies on geometric estimates on the intersections
of ı-annuli of unit spheres; see Appendix B.1.

Remark 1.3. In Theorem 1.2, the sharp bound ı1=2�1=p holds for n=.n� 1/ � p � 2 for
dimensions n D 2; 3; 4. From this observation, one might conjecture that this pattern con-
tinues in dimensions n � 5, but that is false. This is related to the following phenomenon
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in Rn for n � 4: the sets

A WD
1
p
2

S1 � ¹0ºn�2 and B WD ¹.0; 0/º �
1
p
2

Sn�3

have the property that every unit sphere centered at a point in A contains all of the set B .
This is explained in more detail in Proposition 5.1 and Remark 5.2.

Although a Nikodym set for unit spheres can be small in the sense of Lebesgue mea-
sure, it must be large in the sense of Hausdorff dimension. Indeed, by a standard argument
(see, e.g., Lemma 11.9 in [35] or Theorem 22.9 in [19]), Theorem 1.2(i) for the case pD 2
implies that the Hausdorff dimension of any Nikodym set for unit spheres in Rn must be n.
In fact, we show the same is true for Nikodym sets for spheres (not necessarily associated
with unit spheres):

Theorem 1.4. Any Nikodym set for spheres in Rn must have the Hausdorff dimension n.

To prove Theorem 1.4, we need to consider a larger maximal function �ı (see (1.2)),
where each average is taken over the ‚.ı/-neighborhood of every sphere through x of
radius t 2 Œ1; 2�. Again, by the standard argument mentioned above, an estimate

k�ıkLp.Rn/!Lp.Rn/ / 1

for some p <1 implies Theorem 1.4. Thus, Theorem 1.4 is a consequence of the follow-
ing sharp estimates for the Lp-operator norm of �ı .

Theorem 1.5.
(i) When n D 2,

k�ıkLp.R2/!Lp.R2/ /
²
ı1=2�3=.2p/; 1 � p � 3;

1; 3 � p � 1:

When n � 3,

k�ıkLp.Rn/!Lp.Rn/ /
²
ı1�2=p; 1 � p � 2;

1; 2 � p � 1:

(ii) The powers of ı in part (i) are sharp for all n � 2 and all 1 � p � 1.

Part (i) of Theorem 1.5 is proved in Section 3, while part (ii) follows from Propo-
sition 5.3. In fact, we prove a more general result for maximal operators obtained by
replacing the supremum over u 2 Sn�1 in the definition of �ı by the supremum over
u2T for compact sets T � Rn with finite .n � 1/-dimensional upper Minkowski con-
tent (see (1.9) for a definition). The same holds for the case of N ı and Theorem 1.2; see
Remark 2.7.

We sketch the proof of theL3.R2/-estimate for �ı . By duality, it suffices to get a good
bound on k

P
i 1C ıi
kL3=2.R2/ for a certain collection of circles ¹Ciº of radius comparable

to 1, where C ıi denotes the ı-neighborhood of Ci . Under the identification of a circle
¹x 2 R2 W jx � yj D tº with the point .y; t/ 2 R2 � .0;1/, we show that the collection
of circles satisfies the following condition:

(1.6) #¹i W Ci 2 Bº . ı�2 r for any ball B � R3 of radius r � ı
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(see Lemma 3.3). TheL3=2 estimate is then covered by a recent result of Pramanik–Yang–
Zahl (Theorem 1.7 in [24]). See Proposition 3.5 for a slightly more general version of their
result specialized to circles to be used for the proof, and see Theorem 1.13 for a version
of Proposition 3.5 in terms of the wave equation.

We note that the maximal function studied by Kolasa and Wolff [16, 31],

(1.7) W ıf .t/ D sup
x2Rn

1

jSı.0/j

Z
Sı .0/

jf .x � ty/j dy; t 2 Œ1; 2�;

satisfies the bound kW ıkLp.Rn/!Lp.Œ1;2�/ / 1 precisely when k�ıkLp.Rn/!Lp.Rn/ / 1.
This is not a coincidence. It has to do with the fact that a duality argument forW ı also pro-
duces a “one-dimensional" set of circles ¹Ciº in the sense that it satisfies (1.6) with ı�1r
in place of ı�2r .1 In Section 3.3, we discuss a general maximal theorem associated with
spheres which covers both W ı and �ı under the same framework. Regarding Wolff’s
L3-bound for W ı for the case n D 2 from [31], see also [24, 26, 34, 36, 37] for different
proofs and extensions to more general curves.

1.2. Uncentered spherical maximal functions

For a compact set T � Rn, recall the definition of �T given in (1.4). When T D ¹0º, �T
is the (classical) spherical maximal function,

Sf .x/ D sup
t>0

ˇ̌̌ Z
Sn�1

f .x C ty/ d�.y/
ˇ̌̌
;(1.8)

which is known to be bounded on Lp.Rn/ if and only if p > n=.n � 1/, thanks to the
seminal works of Stein [29] (when n � 3) and Bourgain [3] (when n D 2). For n D 2,
the same bound holds for the case T D ¹uº for any u 2 S1, which is a consequence of
Sogge’s generalization [27] of Bourgain’s circular maximal theorem.

If T D Sn�1, �T is not bounded on Lp.Rn/ for any p <1 due to the existence of
Nikodym sets for unit spheres. In fact, for the same reason, the maximal function NT

(see (1.3)), defined without the supremum over t > 0, is unbounded on Lp.Rn/ for
any p <1.

Some positive results can be obtained for both NT and �T when T is in between these
two extreme cases, with the range of boundedness dependent on the dimension of T . In
particular, we show that NT and �T are bounded on Lp for some finite p if there exists
some 0 � s < n � 1 such that T has finite s-dimensional upper Minkowski content, i.e.,

(1.9) N.T; ı/ . ı�s; for all ı 2 .0; 1=2/;

where N.T; ı/ denotes the ı-covering number, the minimal number of balls of radius ı
needed to cover T .

Remark 1.6. The condition (1.9) implies that T has upper Minkowski dimension at
most s. Conversely, if the upper Minkowski dimension of T is d , then (1.9) holds for
all s < d . See, e.g., Chapter 5 of [18] for the definitions of upper Minkowski dimension
and content. We do not need them in this paper.

1The “one" in “one-dimensional" refers to the exponent of r in (1.6).
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Theorem 1.7. Let n � 2 and 0 � s < n � 1. Suppose that T � Rn is a compact set with
finite s-dimensional upper Minkowski content (see (1.9)). Then NT is bounded onLp.Rn/

(i) when n D 2 and
p > 1C s;

(ii) when n D 3 and

p > 1Cmin
� s
2

, 1

3 � s
, 5 � 2s
9 � 4s

�
;

(iii) when n � 4 and

p > 1Cmin
� s

n � 1
, 1

n � s
, n � s

3.n � s/ � 2

�
:

We prove Theorem 1.7 in Section 4.2. The following proposition, proved in Sec-
tion 5.3, contains necessary conditions for the boundedness of NT .

Proposition 1.8. Let n � 2 and 0 � s < n � 1. Suppose that NT is bounded on Lp.Rn/
for all compact sets T satisfying (1.9). Then

p � 1C

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

s

n � 1
, 0 � s � 1;

max
� 1

n � 1
, s

2n � 3
, 3 � 2.n � s/

�
; 1 < s � 2;

max
� 2

2n � 3
, s C 1 � dse
nC 1 � dse

, 1

n � bsc C 1
; 3 � 2.n � s/

�
; 2 < s < n � 1:

Remark 1.9. For the range 1 < s � 2, the term 3 � 2.n � s/ is negative for n � 4 and is
relevant only for n D 3.

We note that the range of boundedness in Theorem 1.7 does not match with the nec-
essary conditions of Proposition 1.8 in general, but they do agree for the range 0 � s � 1
up to the endpoint. In particular, the bound for n D 2 in Theorem 1.7 is essentially sharp.
In Figure 1, we graph the two ranges in the case n D 5 as an example.

In the case of �T , which also includes dilations, we have the following bounds.

Theorem 1.10. Let n � 2 and 0 � s < n� 1. Suppose that T � Rn is a compact set with
finite s-dimensional upper Minkowski content (see (1.9)). Then �T is bounded on Lp.Rn/
for

p >

8<: 2Cmin
�
1;max

�
s;
4s � 2

2 � s

��
; n D 2;

1C Œn � 1 � s Cmax.0;min.1; .2s � nC 3/=4//��1 ; n � 3:

We prove Theorem 1.10 in Section 4.4. We examine the lower bounds for p given in
Theorem 1.10 in two extreme cases:

(1) For s D 0, the lower bound for p is n=.n � 1/. This matches the critical exponent
for the boundedness of the spherical maximal function S (defined in (1.8)).

(2) In the limit s ! n � 1, the lower bound for p converges to 3 for n D 2 and 2 for
n � 3. This matches the critical exponents in Theorem 1.5.
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Figure 1. Range of boundedness of NT in the case n D 5. The blue and red lines indicate the
boundaries of sufficient and necessary conditions, respectively.

We also obtain, in Section 5.4, the following necessary conditions for �T to bounded
on Lp.Rn/.

Proposition 1.11. Let n � 2 and 0 � s < n� 1. Suppose that �T is bounded on Lp.Rn/
for all compact sets T with finite s-dimensional upper Minkowski content. Then

p � 1C

8̂̂<̂
:̂

max
� 1 � .dse � s/=2
n � .dse C 2/=2

, 1

n � bsc=2

�
; s � 2;

max
�1C s � dse

n � dse
, 1

n � bsc

�
; s � 2:

In general, the sufficient conditions in Theorem 1.10 for the Lp-boundedness of �T
do not match the necessary conditions in Proposition 1.11, but there are a few cases where
they do match (modulo the endpoint). The sufficient conditions are sharp modulo endpoint
for nD 2 and 0� s �

p
3� 1 and for nD 3 and s D 1. Another case when the two bounds

match is when s is an integer greater than or equal to .nC 1/=2. This can be observed in
Figure 2 when s D 3, where we graph the range of boundedness for �T when n D 5.

The boundedness of the spherical maximal function S (defined in (1.8)) implies that
there is no set of Lebesgue measure zero in Rn containing a sphere centered at every point
in Rn. This was proven independently for n D 2 by Marstrand [17]. This is in contrast
to the existence of Nikodym sets for spheres. Similarly, Theorem 1.10 has the following
geometric consequence. We refer the reader to Section 3.5 in Chapter XI of [30] for the
implication.

Corollary 1.12. Let n� 2, letA�Rn be a set of Lebesgue measure zero, and let T �Rn

be a compact set with finite s-dimensional upper Minkowski content for some 0 � s <
n � 1. Then for almost every y 2 Rn, the .n � 1/-dimensional Hausdorff measure of the
set A \ .y C t .uC Sn�1// is zero for every t > 0 and every u 2 T .

Corollary 1.12 is sharp in the sense that it fails to hold for T D Sn�1 satisfying (1.9)
for s D n � 1 due to the existence of Nikodym sets for spheres. Indeed, for a set A and



A. Chang, G. Dosidis and J. Kim 8

0 3
4

1 12
7

2 8
3

3 7
2

4
1

1.25

1.5

1.75

2

s

p

Figure 2. Range of boundedness of �T in the case n D 5. The blue and red lines indicate the
boundaries of sufficient and necessary conditions, respectively.

a map y 7! py as in Theorem 1.1, the set A \ .y C uy C Sn�1/ has positive .n � 1/-
dimensional Hausdorff measure where uy D py � y 2 Sn�1.

Although Corollary 1.12 follows from Theorem 1.10, it does not require the full
strength of it. Indeed, it is possible to obtain Lp-bounds for a smaller range of expo-
nents p by using the local smoothing estimates for the wave equation, which is enough to
deduce Corollary 1.12. We learned this observation from the authors of [12]. There is a
related result due to Wolff [34] and Oberlin [23] (see also [20]): a Borel set containing a
set of spheres of Hausdorff dimension larger than 1 (as a subset of Rn � RC) must have
positive Lebesgue measure.

Next, we discuss the proof of Theorem 1.10. It is well known by the work [21] that
bounds for the circular maximal function S can be deduced from local smoothing esti-
mates for the wave equation. For the case of �T , we observe a similar connection between
Lp-bounds and fractal local smoothing estimates for the wave equation. To describe frac-
tal local smoothing estimates, we fix some notation. For each 0 < ˛ � nC 1, we denote
by C.˛/ the class of non-negative Borel measures � supported on Rn � Œ1; 2� such that

(1.10) �.Br / � r
˛;

for any ball Br � RnC1 of radius r for any 0 < r � 1.
Suppose that u.x; t/ is the solution to the wave equation with initial data u. �; 0/ D f

and @tu. �; 0/ D 0. A version of fractal local smoothing estimates for the wave equation
is concerned with the ratio between kukLq.Rn�Œ1;2�;�/ and the Lp.Rn/ norm of f whose
Fourier transform is supported on the annulus ¹� 2Rn W j�j � ı�1º for ı 2 .0; 1/. Even
when � is a constant multiple of the Lebesgue measure, this is a difficult open problem
for n � 3, which was settled for the case n D 2 by Guth–Wang–Zhang [11]. We refer
the reader to Section 1 in [11] for earlier results for n D 2 and partial results in higher
dimensions. For fractal measures, the problem has been studied in [7, 10, 13, 14, 32] for
the case p D 2, and sharp results are known for n D 2; 3. For the case p > 2, Ham–Ko–
Lee [12] obtained some sharp estimates and used them to prove Lp-improving estimates
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for the circular maximal function relative to a class of fractal measures as a corollary. To
be precise, the class of measures considered in [12] is different from C.˛/ in that (1.10)
is required for every r > 0, but this does not really change the problem since the local
problem on B1 � Œ1; 2� is equivalent to the global problem on Rn � Œ1; 2� for estimating
u.x; t/; see, e.g., Lemma 2.6 in [12]. We use results obtained in the papers [7, 12] for the
proof of Theorem 1.10, which is summarized in Theorem 4.11.

For the nD 2 case, we need an additional ingredient: Proposition 3.5 (cf. Theorem 1.7
in [24]) discussed earlier. We reformulate the result in terms of the wave equation and
spherical means.

Theorem 1.13. Let nD 2 and � 2C.˛/ for ˛ D 1. Suppose that u.x; t/ is the solution to
the wave equation with initial data u. �; 0/D f and @tu. �; 0/D 0. If the Fourier transform
of f is supported on ¹� 2 R2 W j�j � ı�1º for some ı 2 .0; 1=2/, then

(1.11) kukL3.�/ / ı�1=2 kf kL3.R2/:

Moreover, if p > 3 and � 2C.˛/ for some ˛ > 1, then

(1.12) kAvgf kLp.�/ . kf kLp.R2/

for f 2Lp.R2/, where Avg f .x; t/ denotes the average of f over the sphere of radius t
centered at x.

The estimate (1.11) can be stated in terms of the inhomogeneous Sobolev norm:

kukL3.�/ . kf k3;1=2C";

for any " > 0. It implies a version of Wolff’s circular maximal theorem

kukL3t .Œ1;2�;L1x .R2// . kf k3;1=2C";

from equation (2) in [31] by a linearlization argument; see [12].
In [12], it was conjectured that (1.12) holds for any p > 4 � ˛ when 1 < ˛ � 2,

which was proved for ˛ � 3 �
p
3. This conjecture would imply Lp.R2/-estimates for

the maximal function �T for compact T �R2 with finite s-dimensional upper Minkowski
content for every 0 � s < 1 and p > 2 C s, which would be sharp except possibly for
endpoint.

Organization of the article

We organize the paper as follows. We study the maximal functions N ı and �ı and prove
Theorem 1.2(i) and Theorem 1.5(i) in Section 2 and Section 3, respectively. We prove
Theorem 1.7 and Theorem 1.10 in Section 4. Section 4.4 contains a discussion on a
geometric approach to fractal local smoothing estimates and the proof of Theorem 1.13.
We prove lower bounds for maximal functions considered in this paper in Section 5. In
Appendix A, we sketch the proof of Theorem 1.1, and in Appendix B, we prove volume
bounds for the intersection of annuli used to study N ı and �ı .
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2. The Nikodym maximal function N ı associated with unit spheres

In this section, we prove Theorem 1.2(i). It suffices to show that

kN ı
kL1!L1 . ı�1 .n � 2/;(2.1)

kN ı
kL1!L1 � 1 .n � 2/;(2.2)

kN ı
kL2!L2 . .log.1=ı//1=2 .n � 2/;(2.3)

kN ı
kL3=2!L3=2 . ı�1=6.log.1=ı//1=3 .n � 3/;(2.4)

kN ı
kL4=3!L4=3 . ı�1=4.log.1=ı//1=4 .n � 4/:(2.5)

The bounds (2.1) and (2.2) are straightforward, so it suffices to prove the remaining three
bounds.

2.1. Reduction to geometric estimates

In this subsection, we reduce Theorem 1.2(i) to the following geometric lemma.

Lemma 2.1. There exists an absolute constant cdiam > 0 such that the following is true.
Let n � 2, ı 2 .0; 1=2/. Let ¹Siºi2I be a collection of unit spheres in Rn whose centers
lie in a set of diameter at most cdiam. Suppose that for each i , there exists !i 2 Si such
that ¹!iºi2I is a ı-separated subset. Then we have the following estimates.

For n � 2,

ın
X
j2I

jSıi \ S
ı
j j . ı2 log.1=ı/ for each i 2 I :(2SPH)

Furthermore, for n � 3,

ı2n
X
j;k2I

jSıi \ S
ı
j \ S

ı
k j . ı5=2 log.1=ı/ for each i 2 I :(3SPH)

Furthermore, for n � 4,

ı3n
X

j;k;`2I

jSıi \ S
ı
j \ S

ı
k \ S

ı
` j . ı3 log.1=ı/ for each i 2 I :(4SPH)

Remark 2.2. Since #I . ı�n, we can view (2SPH) as a bound on the average size of
jSıi \ S

ı
j j, taken over all j . (Recall i is fixed.) Thus, ignoring logarithmic factors, (2SPH)

says that in the worst case configuration, the “typical” jSıi \ S
ı
j j is at most of size ı2.

Similarly, we can view the left-hand sides of (3SPH) and (4SPH) as averages (taken over
all j; k and over j; k; `, respectively). In the worst case configuration, the typical volume
of the intersection is at most of size ı5=2 and ı3, respectively.

Remark 2.3. With the same assumptions as in Lemma 2.1, we have the following esti-
mate for all dimensions n � 4 and all m � 4:

ı.m�1/n
X

j1;:::;jm�12I

jSıi \ S
ı
j1
\ � � � \ Sıjm�1 j . ı3 log.1=ı/ for each i 2 I :(mSPH)
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This follows immediately from the trivial bound

jSıi \ S
ı
j1
\ � � � \ Sıjm�1 j � jS

ı
i \ S

ı
j1
\ Sıj2 \ S

ı
j3
j;

the estimate (4SPH), and #Im�4 . .ı�n/m�4. The power of 3 in (mSPH) cannot be
improved; this is related to Remark 1.3 and Remark 5.2. (The estimate (mSPH) is not
needed to prove Theorem 1.2(i).)

To prove the reduction, we will need the following standard duality argument (see,
e.g., Proposition 22.4 in [19]). For the convenience of the reader, we include a proof.

Lemma 2.4 (Duality). Let 1� p;q �1. Let ¹!iº be a maximal ı-separated set of points
in Rn. Then

kN ı
kLp.Rn/!Lq.Rn/ . ın�1 sup




X
i

ai 1SO.ı/i





Lp
0
.Rn/

;

where the supremum is taken over all choices of unit spheres Si 3 !i and ai � 0 such that
ın
P
i a
q0

i D 1. The implied constant in O.ı/ is absolute.

Proof. Let f 2Lp.Rn/. We make the following observation: if jx � x0j � ı and S is
any unit sphere containing x, then there exists a unit sphere S 0 containing x0 such that
Sı � .S 0/2ı . Thus,

if jx � x0j � ı; then N ıf .x/ . N O.ı/f .x0/:(2.6)

Combining this with duality of `q spaces and Hölder’s inequality,

kN ıf kLq.Rn/

(2.6)
.
�X

i

ınN O.ı/f .!i /
q
�1=q
D sup

X
i

ınai N
O.ı/f .!i /

. ın�1 sup
X
i

ai

Z
Rn

jf j 1
S
O.ı/
i

� ın�1 sup



X

i

ai 1SO.ı/i





Lp
0
.Rn/
kf kLp.Rn/;

where the supremum is taken over all choices of unit spheres Si 3 !i and ai � 0 such that
ın
P
i a
q0

i D 1.

Proof that (2SPH) implies (2.3). Let ¹!iºi2I be a maximal ı-separated set of points in Rn.
For each i , let Si be a unit sphere containing !i , and let ai � 0 be such that

ın
X
i2I

a
q0

i D 1:(2.7)

By Lemma 2.4, it is enough to show


X
i2I

ai 1Sıi




2
L2.Rn/

. ı2�2n log.1=ı/:(2.8)
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We partition Rn D
S
m Pm such that each Pm has diameter at most cdiam and the

2-neighborhoods of Pm have bounded overlap (depending only on n). We let Im be the
set of i 2 I such that the center of Si is in Pm. Bounded overlap implies that

(2.9) #
°
m W

X
i2Im

ai 1Sıi
.x/ ¤ 0

±
.n 1 for each x 2Rn:

This gives


X
i2I

ai 1Sıi




2
L2.Rn/

(2.9)
.
X
m




 X
i2Im

ai 1Sıi




2
L2.Rn/

D

X
m

X
i;j2Im

ai jS
ı
i \ S

ı
j j
1=2aj jS

ı
i \ S

ı
j j
1=2
�

X
m

X
i;j2Im

a2i jS
ı
i \ S

ı
j j

(2SPH)
. ı2�n log.1=ı/

X
m

X
i2Im

a2i

(2.7)
D ı2�2n log.1=ı/;

where we used Cauchy–Schwarz in the middle inequality. This proves (2.8).

The proofs that (3SPH) implies (2.4) and that (4SPH) implies (2.5) are similar to the
proof above. In place of Cauchy–Schwarz, we apply Hölder to get


X

i

ai 1Sıi




3
3
�

X
i;j;k

a3i jS
ı
i \ S

ı
j \ S

ı
k j;


X

i

ai 1Sıi




4
4
�

X
i;j;k;`

a4i jS
ı
i \ S

ı
j \ S

ı
k \ S

ı
` j:

We prove (2SPH), (3SPH) and (4SPH) in the next three subsections.

2.2. Two spheres

In our proof of Lemma 2.1, we frequently use the estimate below. In applications of this
estimate, xj is the center of a unit sphere containing !j .

Lemma 2.5 (Weighted counting estimate). Let n � 2. Let ¹!j º � Rn be a ı-separated
set. For each j , let xj 2 Rn be a point satisfying j!j � xj j D 1. Then for any a 2 Rn and
any 0 � P � Q � 1,

X
j

P�ja�xj j�Q

.ja � xj j C ı/
˛ .˛;n

8̂<̂
:
ı�nQ˛C1 if ˛ > �1;
ı�n log Q

PCı
if ˛ D �1;

ı�n.P C ı/˛C1 if ˛ < �1:
(2.10)

Proof. First we note the following: if ı � � � 1 and ja � xj j . �, then !j must be in the
O.�/-neighborhood of the unit sphere Sn�1 C a. Since ¹!j º is ı-separated,

#¹j W ja � xj j � �º . ı�n�:(2.11)
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Thus,X
j

P�ja�xj j�Q

.ja � xj j C ı/
˛ .

X
`2Z

PCı.2`.Q

X
j

ja�xj jCı�2
`

2`˛ . ı�n
X
`2Z

PCı.2`.Q

2`.˛C1/;

and the result follows.

With Lemma 2.5 and an elementary estimate on the intersection of two spheres (see
Lemma B.1), we can easily deduce (2SPH).

Proof of (2SPH). Let xj denote the center of Sj , so that jxj � !j j D 1. By choosing
cdiam � 1=2 (say), we can apply the volume bound for the intersection from Lemma B.1.
This gives X

j

jSıi \ S
ı
j j

(B.3)
.
X
j

ı2

jxi � xj j C ı

(2.10)
. ı2 ı�n log.1=ı/;

which completes the proof.

Remark 2.6. A Fourier analytic proof of the L2 bound (2.3) is given in Theorem 4.7.

2.3. Three spheres

Before proving (3SPH), we provide some informal remarks and motivation. To prove
(3SPH), we will use estimates on the intersection of three unit spheres, Lemma B.2. In
the proof in the previous section, we avoided external tangencies between two spheres by
making cdiam small. However, for three spheres in R3, there is a “tangential” configuration
that cannot be avoided, even if we make cdiam small: Roughly speaking, if we have three
well-separated points a; b; c 2 R3 that lie on a unit circle, then Sı.a/\ Sı.b/\ Sı.c/ is
approximately a “tube” of dimensions ı � ı � ı1=2.

On the other hand, if a, b and c lie on a circle of radius bounded away from 1, then
the three spheres intersect transversely and the volume is O.ı3/. In Lemma B.2, there are
different estimates depending on this circumradius.

If we choose all our unit spheres ¹Siºi2I so that their centers lie on a fixed unit circle,
then the typical triple intersection is roughly ı5=2. (This is related to the “tube” example
in the proof of Proposition 5.1.) The bound (3SPH) asserts that this is essentially the worst
configuration.

Proof of (3SPH). We adopt the following notational conventions in the upcoming calcu-
lations:

• We let xj denote the center of Sj .
• We let Mijk , mijk and Rijk denote the longest side length, shortest side length, and

circumradius, respectively, of the triangle with vertices xi , xj and xk .
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We choose cdiam smaller than the constant c2 in Lemma B.2, so that we can apply
Lemma B.2 to every term in the left-hand side of (3SPH). We split the sum over j and k
into three parts:X

j;k

jSıi \ S
ı
j \ S

ı
k j .

X
j;k

jxi�xk j�jxi�xj j

jSıi \ S
ı
j \ S

ı
k j

D

X
j;k

jxi�xk j�jxi�xj j

mijk.
p
ı

C

X
j;k

jxi�xk j�jxi�xj j

mijk&
p
ı

Rijk�1=2

C

X
j;k

jxi�xk j�jxi�xj j

mijk&
p
ı

1=2�Rijk�2

(By (B.7), we do not need to consider triples with Rijk � 2.) We now bound each of the
three terms by the right-hand side of (3SPH). Note that the condition jxi � xkj � jxi � xj j
implies

Mijk � jxi � xj j;(2.12)
mijk D min.jxi � xkj; jxj � xkj/:(2.13)

For the first term, we reduce to the case of two spheres.X
j;k

jxi�xk j�jxi�xj j

mijk.
p
ı

(2.13)
�

X
j

jSıi \ S
ı
j j

X
k

jxi�xk j.
p
ı or jxj�xk j.

p
ı

1

(2.10)
. ı�nı1=2

X
j

jSıi \ S
ı
j j

(2SPH)
. ı�nı1=2ı�nı2 log.1=ı/:

For the second term, we use the volume bound for the intersection of three unit spheres
when the circumradius is bounded away from 1. This givesX

j;k
jxi�xk j�jxi�xj j

mijk&
p
ı

Rijk�1=2

(B.8)
. ı3

X
j;k

jxi�xk j�jxi�xj j

mijk&
p
ı

1

M 2
ijk
mijk

(2.12)
. ı3

X
j

jxi�xj j&
p
ı

1

jxi � xj j2

X
k

jxi�xk j�jxi�xj j

mijk&
p
ı

1

mijk

(2.13)
� ı3

X
j

jxi�xj j&
p
ı

1

jxi � xj j2

� X
kp

ı.jxi�xk j�jxi�xj j

1

jxi � xkj
C

X
kp

ı.jxj�xk j.jxi�xj j

1

jxj � xkj

�
(2.10)
. ı3ı�n log.1=ı/

X
j

jxi�xj j&
p
ı

1

jxi � xj j2

(2.10)
. ı3 ı�n log.1=ı/ı�n ı�1=2:
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For the third term, we use the remaining volume bound for the intersection of three
unit spheres. This givesX

j;k
jxi�xk j�jxi�xj j

mijk&
p
ı

1=2�Rijk�2

(B.6)
. ı5=2

X
j;k

jxi�xk j�jxi�xj j

mijk&
p
ı

1=2�Rijk�2

1

M
3=2

ijk
m
1=2

ijk

(2.12)
. ı5=2

X
j

jxi�xj j&
p
ı

1

jxi � xj j3=2

X
k

jxi�xk j�jxi�xj j

mijk&
p
ı

1

m
1=2

ijk

(2.13)
� ı5=2

X
j

jxi�xj j&
p
ı

1

jxi �xj j3=2

� X
kp

ı.jxi�xk j�jxi�xj j

1

jxi �xkj1=2
C

X
kp

ı.jxj �xk j.jxi�xj j

1

jxj � xkj1=2

�
(2.10)
. ı5=2ı�n

X
j

jxi�xj j&
p
ı

1

jxi � xj j3=2
jxi � xj j

1=2
(2.10)
. ı5=2 ı�n ı�n log.1=ı/:

This completes the proof of (3SPH).

2.4. Four spheres

We again begin with some informal remarks. Unlike in the proofs of (2SPH) and (3SPH),
here we do not need an analogue of Lemma B.1 and Lemma B.2 for four unit spheres.
If four unit spheres in R4 are centered on S2 � ¹0º � R4, then the intersection of the
ı-neighborhoods has dimensions approximately ı � ı � ı � ı1=2. However, it turns out
there is an arrangement with larger intersections.

If we place unit spheres centered on the circle 1p
2
S1 � ¹.0; 0/º � R4, then all of

these spheres contain the circle ¹.0; 0/º � 1p
2
S1. This implies that the intersection of the

ı-neighborhoods of four spheres has volume like ı3. (This is related to the “radius 1=
p
2”

example in the proof of Proposition 5.1.)
Note that, in this configuration,

Si \ Sj \ Sk D Si \ Sj \ Sk \ S` D ¹.0; 0/º �
1
p
2
S1;

so the fourth sphere does not contribute to the intersection. This suggests that the trivial
estimate

jSıi \ S
ı
j \ S

ı
k \ S

ı
` j � jS

ı
i \ S

ı
j \ S

ı
k j(2.14)

might not lose too much in some situations. Indeed, our proof begins by relabeling j; k; `
and applying (2.14), and this is why we do not need an analogue of Lemma B.2 for four
spheres.
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Proof of (4SPH). Let mijk` denote the length of the shortest edge of the tetrahedron
formed by xi ; xj ; xk ; x`. By symmetry in j; k; `, we can assume the shortest side length
is jxi � x`j or jxj � x`j. Under this assumption, we use (2.14), giving us the estimateX

j;k;`

jSıi \ S
ı
j \ S

ı
k \ S

ı
` j .

X
j;k;`

mijk`Dmin.jxi�x`j;jxj�x`j/

jSıi \ S
ı
j \ S

ı
k j:

We further split the sum into two terms, depending on whethermijk` .
p
ı ormijk` &

p
ı,

and we now bound each of these terms separately.
For the mijk` .

p
ı term, we use (3SPH):X

j;k;`
mijk`Dmin.jxi�x`j;jxj�x`j/

mijk`.
p
ı

�

X
j;k

jSıi \ S
ı
j \ S

ı
k j

X
`

min.jxi�x`j;jxj�x`j/.
p
ı

1

(2.10)
. ı�n ı1=2

X
j;k

jSıi \ S
ı
j \ S

ı
k j

(3SPH)
. ı�n ı1=2 ı5=2�2n log.1=ı/:

For the mijk` &
p
ı term, we use the n � 4 case of Lemma B.2, the fact that mijk �

mijk`, and arguments similar to those of Section 2.3:X
j;k;`

mijk`Dmin.jxi�x`j;jxj�x`j/

mijk`&
p
ı

(B.8)
. ı3

X
j;k

mijk&
p
ı

1

M 2
ijk
mijk

X
`

min.jxi�x`j;jxj�x`j/�mijk

1

(2.10)
. ı3ı�n

X
j;k

mijk&
p
ı

1

M 2
ijk

. ı3ı�n
X
j;k

jxi�xk j�jxi�xj j

mijk&
p
ı

1

M 2
ijk

(2.12)
. ı3ı�n

X
j

jxi�xj j&
p
ı

1

jxi � xj j2

X
kp

ı.jxi�xk j�jxi�xj j

1

(2.10)
. ı3 ı�nı�n

X
j

jxi�xj j&
p
ı

1

jxi � xj j

(2.10)
. ı3ı�n ı�n ı�n log.1=ı/:

This completes the proof of (4SPH).

Remark 2.7. Let T � Rn. For ı 2 .0; 1=2/, we define

N ı
T f .x/ D sup

u2T

ˇ̌̌ 1

jSı.0/j

Z
Sı .0/

f .x C uC y/ dy
ˇ̌̌
:

Note that N ı
T D N ı for T D Sn�1.



Nikodym sets and maximal functions associated with spheres 17

If T is any compact set with finite .n � 1/-dimensional upper Minkowski content
(recall (1.9)), then Theorem 1.2 (i) also holds if we replace N ı with N ı

T . To see this, we
only need to make the following changes to Lemma 2.5:

(1) In the statement of the lemma, we replace j!j � xj j D 1 with xj � !j 2 T .
(2) In the proof, if ı� �� 1 and ja� xj j. �, then!j � amust be in theO.�/-neighbor-

hood of �T . Since ¹!j º is ı-separated, the covering condition on T implies (2.11).
The rest of the proof is unchanged.

3. The Nikodym maximal function �ı associated with spheres of
varying radii

In this section, we give a proof of Theorem 1.5 (i). In fact, we will prove a slightly more
general result. For a compact set T � Rn, consider the maximal function

�ıT f .x/ D sup
u2T

sup
1�t�2

1

jSı.0/j

ˇ̌̌ Z
Sı .0/

f .x C t .uC y// dy
ˇ̌̌
:

We recall that �ı D �ıT for T D Sn�1.

Theorem 3.1. Let n� 3. Suppose that T �Rn is a compact set with finite .n� 1/-dimen-
sional upper Minkowski content (see (1.9)). Then

k�ıT f kL2.Rn/ . .log ı�1/1=2 kf kL2.Rn/:

Theorem 3.2. Let nD 2. Suppose that T �Rn is a compact set with finite .n� 1/-dimen-
sional upper Minkowski content (see (1.9)). Then for any " > 0,

k�ıT f kL3.R2/ ." ı�" kf kL3.R2/:

Note that Theorem 1.5 (i) is a consequence of interpolations between bounds from
Theorems 3.1 and 3.2 and trivial L1 and L1 bounds.

3.1. Proof of Theorem 3.1

We first note that the maximal function �ıT is local in the sense that if f is a function
supported on a ball B of radius 1, then �ıT f is supported on a ball of radius O.1/ sharing
the same center with B . Therefore, it is sufficient to bound �ıT f on a ball of radius 1.

We first generalize the counting result (2.11) to any compact T satisfying (1.9) for
s D n � 1. In what follows, we identify a sphere S.x; t/ D ¹y 2 Rn W jy � xj D tº with
the point .x; t/ 2RnC1. Accordingly, given spheres Si and Sj , jSi � Sj j denotes the usual
distance between two points in RnC1.

Lemma 3.3. Let 0� s � n. Suppose that T �Rn is a compact set such thatN.T;ı/. ı�s
for all ı 2 .0; 1=2/. Let ¹!iº be a ı-separated set of points of Rn. For each i , we let
Si D Si .xi ; ti / be a sphere, where ti 2 Œ1; 2� and xi D wi C tiui for some ui 2 T . Then

#¹ i W Si 2 B�º . ı�n�n�s

for any ball B� � RnC1 of radius ı � � � 1.
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Proof. Let .x; t/ 2 RnC1 be the center of B�. Since ti 2 Œ1; 2�, without loss of generality,
we may assume that t 2 Œ1; 2�. We claim that !i belongs to .x � tT /O.�/ if Si 2B�. Since
the volume of .x � tT /O.�/ is O.�n�s/, it may contain O.ı�n�n�s/ ı-separated set of
points !i , which completes the proof.

To verify the claim, it suffices to show that j!i � .x � tui /j D O.�/. By the triangle
inequality,

j!i � .x � tui /j � jxi � xj C jti � t j jui j:

The claim follows from the assumption Si 2B� and the compactness of T .

We are ready to prove Theorem 3.1. By the same duality argument for N ı , it suffices
to prove the following: let ¹!iº be a ı-separated subset of Rn; then

(3.1) ın�1 sup



X

i

ai 1Sıi





L2.Rn/

. log ı�1

where the supremum is taken over all choices of spheres Si D Si .xi ; ti /, where xi D
wi C tiui for some ti 2 Œ1; 2� and ui 2 T , and ai � 0 such that ın

P
i a
2
i D 1. We know

that by Lemma 3.3, any such collection of spheres satisfies the bound

(3.2) #¹ i W Si 2 B�º � A�

for A � ı�n, for any ball B� � RnC1 of radius ı � � � 1. Hence, (3.1) is a consequence
of the following.

Proposition 3.4. Let n � 3, ı 2 .0; 1=2/, and A > 0. Let ¹Siº be a collection of spheres
of radius comparable to 1 satisfying (3.2) for any ball B� � RnC1 of radius ı � � � 1.
Then 


X

i

ai 1Sıi





L2.Rn/

. ı log ı�1A1=2
�X

i

a2i

�1=2
for any ai 2 Œ0;1/.

Proof. The proof is a minor modification of the proof of the L2 bound (2.3) for N ı .
Therefore, we only indicate necessary modifications. In Section 2.2, we replace jxi � xj j
by jSi � Sj j and use Lemma 2.5 with ja � xj j replaced by jSi � Sj j.

Proposition 3.4 cannot be extended to the n D 2 case. This is due to the fact that
the volume bound jSıi \ S

ı
j j .

ı2

jSi�Sj jCı
used in the proof fails to hold for n D 2 in

general; indeed, jSıi \ S
ı
j j � ı

3=2 for two internally tangent circles Si and Sj such that
jSi � Sj j � 1.

3.2. Proof of Theorem 3.2

By the duality argument in Lemma 2.4, it suffices to prove that, for p0 D 3=2,

(3.3) ı sup



X

i

ai 1C ıi





Lp
0
.R2/

/ 1;
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where the supremum is taken over all choices of circles Ci D Ci .xi ; ti /, where xi D
wi C tiui for a ı-separated set of points ¹wiº, ti 2 Œ1; 2� and ui 2 T , and ai � 0 such that
ı2
P
i a
p0

i D 1. As in the proof of Theorem 3.1, (3.3) is a consequence of the following.

Proposition 3.5. Let n D 2, ı 2 .0; 1=2/, 0 < A < ı�O.1/. Let ¹Ciºi2I be a collection of
circles of radius comparable to 1 satisfying

(3.4) #¹ i 2 I W Ci 2 Bº � Ar=ı

for any ball B � R3 of radius ı � r � 1. Then


X
i2I

1C ıi





L3=2.R2/

� Cı�"A1=3 .ı #I /2=3;

where C depends only on " and on the O.1/ constant appearing in the upper bound of A.

To be more precise, for (3.3), we use a strong-type inequality


X
i2I

ai 1C ıi





L3=2.R2/

/ A1=3
�
ı
X
i2I

a
3=2
i

�2=3
for any ai � 0. This inequality follows from the restricted strong-type inequality in Propo-
sition 3.5 by an interpolation argument (see Lemma 4.15 for details). Applying it with
A � ı�1 gives (3.3).

Proof. Proposition 3.5 is a consequence of [24]. We provide some details. We may assume
that ¹Ciºi2I � B for a fixed ball B � R3 of radius� 1 as we may assume that the centers
of the circles ¹Ciºi2I lie in a set of diameter � 1 (cf. (2.9)). First note that if #I � A,
then (3.4) also holds with .#I /.r=ı/ on the right-hand side. Thus, it suffices to prove this
theorem when #I � A.

Fix " > 0. We define a random subset J � I by including each i 2 I independently
with probability p D ı"=A. First, by the Chernoff bound and #I � A,

P Œ#J � ı�2"p #I � �
� ep #I
ı�2"p #I

�ı�2"p#I
� exp.�ı�"/:

(In the second inequality, we assume ı is sufficiently small, depending on ".) Similarly,
by Chernoff and (3.4),

P Œ#¹ i 2J W Ci 2Bº � ı�" r=ı� �
�ep #¹ i 2 I W Ci 2Bº

ı�" r=ı

�ı�"r=ı
� exp.�ı�"/

for any ball B � R3 of radius r � ı. (In the second inequality, we assume ı is sufficiently
small, depending on ".)

As noted in Section 2 of [24] (see the part after equation (2.14)), with probability
1 �O.ı�3 exp.�ı"//, both of the following occur.

#J . ı�2"p #I;(3.5)

#¹ i 2J W Ci 2Bº . ı�" r=ı for any ball B � R3 of radius r � ı;(3.6)
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Next, by Jensen’s inequality,

E



X
i2J

1C ıi




3=2
3=2
�




E
X
i2J

1C ıi




3=2
3=2
D p3=2




X
i2I

1C ıi




3=2
3=2
;

so the event 


X
i2J

1C ıi




3=2
3=2
�
1

2
p3=2




X
i2I

1C ıi




3=2
3=2

(3.7)

occurs with probability at least

1

2
p3=2 D

1

2

�ı"
A

�3=2
:

Since A � ı�O.1/, we have

ı�3 exp.�ı"/�
�ı"
A

�3=2
:

Thus, there exists a J � I such (3.5), (3.6), and (3.7) all hold, so we can apply Theorem 1.7
in [24] (see the second remark after the theorem) to obtain

p3=2



X
i2I

1C ıi




3=2
3=2

(3.7)
.



X
i2J

1C ıi




3=2
3=2

. ı�O."/ ı #J
(3.5)
. ı�O."/pı #I;

which completes the proof.

3.3. Maximal functions associated with spheres

We discuss a class of maximal functions associated with spheres which include �ı as a
special case. Let � � Rm be a set of measure j�j . 1 for some m � 1. Suppose that for
each ! 2�, we are given a collection of spheres C.!/�Rn � Œ1;2�. Then for f WRn!R,
we define the maximal function M ı

C
f W�! R by

M ı
Cf .!/ D sup

S2C.!/

1

jSı j

ˇ̌̌ Z
Sı
f
ˇ̌̌
;

where Sı denotes the ı-neighborhood of the sphere S in Rn.
We give some concrete examples. Let� � Rn be a ball and T � Rn be a compact set

with finite .n � 1/-dimensional upper Minkowski content (see (1.9)). If we take

C.!/ D ¹.! C tu; t/ 2 RnC1 W u 2 T; t 2 Œ1; 2�º;

then M ı
C
D �ıT . When � D Œ1; 2� and

C.!/ D Rn � ¹!º;

then M ı
C

is the maximal function W ı (see (1.7)).
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We make the following assumptions on the collection ¹C.!/º!2�.

(MAX1) For any !;!0 2 � with j! � !0j � ı, M ı
C
f .!/ . M

O.ı/

C
f .!0/.

(MAX2) Let ¹!iº � � be a ı-separated set and Si 2 C.!i / for each i . Then

#¹ i W Si 2 B�º . ı�m�

for any ball B� � RnC1 of radius � 2 Œı; 1�.
Note that these assumptions are satisfied in both of the above examples. Therefore, the

following result generalizes Theorems 3.1 and 3.2 as well as results from [16, 31].

Theorem 3.6. Let ¹C.!/º!2� be a collection satisfying the assumptions (MAX1) and
(MAX2). Then, for n � 3,

kM ı
Cf kL2.�/ . .log ı�1/1=2 kf kL2.Rn/:

For n D 2,
kM ı

Cf kL3.�/ / kf kL3.Rn/:

We omit the proof since it is similar to the proof of Theorems 3.1 and 3.2.

4. The maximal functions NT and �T

In this section, we prove Theorem 1.7, Theorem 1.10 and Theorem 1.13.

4.1. Reductions using Littlewood–Paley theory

We first start by discussing a standard reduction using Littlewood–Paley theory. Let  
be a smooth function such that y is a radial function supported on ¹� W 1=2 � j�j � 2º,
0 � y � 1, and

P
j2Z

c j .�/ D 1 for any � ¤ 0, where c j .�/ D y .2�j �/. We also let
'k D

P
j�k  j , whose Fourier transform is a smooth bump function supported on ¹� W

j�j � 2kC1º. In addition, we fix a function Q whose Fourier transform is supported on
¹� W 1=4 � j�j � 4º such that  D  � Q . We set

cQ j .�/ D bQ .2�j �/; so that  j D  j � Q j :

Let �t be the measure on tSn�1 defined by b�t .�/ D b�.t�/. For t � 1, an elemen-
tary computation shows that  j � �t is O.2j / and decays rapidly away from the O.2�j /
neighborhood of tSn�1. To be specific, we have for all j � 1 and N > 0,

(4.1)
j j � �t .x/j .N 2j .1C 2j jjxj � t j/�N .N 2j .1C jxj/�N ;

j'0 � �t .x/j .N .1C jxj/�N :

In the following, we write

Avgf .x; t/ WD
Z

Sn�1
f .x C ty/ d�.y/ D f � �t .x/:
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Proposition 4.1. Let j � 1. If

(4.2)


 sup
u2T

sup
1�t�2

jAvg.f �  j /. � C tu; t/j



Lp.Rn/

. Akf kLp.Rn/

holds for some 2 � p <1 and A > 0, then

(4.3)


 sup
l2Z

sup
u2T

sup
1�t�2

jAvg.f �  j�l /. � C 2l tu; 2l t /j



Lp.Rn/

. Akf kLp.Rn/:

Let 1 < p <1. If there exists " > 0 such that

(4.4)


 sup
l2Z

sup
u2T

sup
1�t�2

jAvg.f �  j�l /. � C 2l tu; 2l t /j



Lp.Rn/

. 2�j" kf kLp.Rn/

for all j � 1, then �T is bounded on Lp.Rn/.

Proof. The proof is standard, so we just give a sketch. Using a rescaled version of (4.2),
we get 

 sup

l2Z
sup
u2T

sup
1�t�2

jAvg.f �  j�l /. � C 2l tu; 2l t /j


p
Lp.Rn/

�

X
l2Z



 sup
u2T

sup
1�t�2

jAvg.f �  j�l /. � C 2l tu; 2l t /j


p
Lp.Rn/

. Ap
X
l2Z

kf �  j�lk
p

Lp.Rn/
. Apkf k

p

Lp.Rn/
:

In the last step, we used the embedding l2 ,! lp and the Littlewood–Paley theory.
Next, we make the decomposition

(4.5)

�T f .x/ D sup
l2Z

sup
u2T

sup
1�t�2

jAvgf .x C 2l tu; 2l t /j

�

X
j�1

sup
l2Z

sup
u2T

sup
1�t�2

jAvg.f �  j�l /.x C 2l tu; 2l t /j

C sup
l2Z

sup
u2T

sup
1�t�2

jAvg.f � '�l /.x C 2l tu; 2l t /j:

Assuming (4.4), we may bound the first term in (4.5) by using the triangle inequality
and the exponential decay in j . The second term in (4.5) is bounded pointwise by the
Hardy–Littlewood maximal function of f :

(4.6) sup
l2Z

sup
u2T

sup
1�t�2

jf � '�l � �2l t .x C 2
l tu/j . MHLf .x/:

Indeed, a rescaling of (4.1) implies the pointwise estimate

j'�l � �2l t .x C 2
l tu/j . 2�ln.1C j2�lx C tuj/�N . 2�ln.1C j2�lxj/�N

for t � 1 and u 2 T as jtuj . 1. Therefore, �T is bounded on Lp .
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Here we record a weak-type estimate to be used later.

Lemma 4.2. For every j � 1,

 sup
l2Z

sup
u2T

sup
1�t�2

jAvg.f �  j�l /. � C 2l tu; 2l t /j



L1;1.Rn/

. 2j kf kL1.Rn/:

Proof. It follows from the pointwise estimate (cf. (4.6))

sup
l2Z

sup
u2T

sup
1�t�2

jf �  j�l � �2l t .x C 2
l tu/j . 2jMHLf .x/

and the fact that MHL is of weak type .1; 1/.

4.2. Proof of Theorem 1.7

We prove Theorem 1.7 in this subsection. The approach here also provides a Fourier ana-
lytic proof of the L2-bound (2.3); see Theorem 4.7 below. We note that this subsection is
independent of the remainder of this section and will not be used for the proof of Theo-
rem 1.10.

We recall the decomposition of the measure

� D � � '0 C
X
j�1

� �  j :

We note that '0 and  1 satisfy similar bounds, so Theorem 1.7 is obtained by summing
over the following frequency localized estimates Proposition 4.3 and Proposition 4.4.

Proposition 4.3. Let n � 2 and 0 � s � n.2 Suppose that T � Rn is a compact set with
finite s-dimensional upper Minkowski content (see (1.9)). Then for 1 � p � 2,

 sup

u2T

jf �  j � �.� C u/j



p

. min.2�j.n�1�.n�1Cs/=p/; 2�j.n�s�.n�sC1/=p// kf kp:

Proposition 4.4. Let n � 3 and 0 � s � n � 1. Suppose that T � Rn is a compact set
with finite s-dimensional upper Minkowski content. Then

 sup

u2T

jf �  j � �. � C u/j



p

/ 2
�j. 9�4s2 �

7�3s
p /
kf kp .n D 3; 3=2 � p � 2/;

 sup

u2T

jf �  j � �. � C u/j



p

/ 2
�j. 3n�2�3s2 � 2n�1�2sp /

kf kp .n � 4; 4=3 � p � 2/;

where A / B means A ." 2j"B for any " > 0.

For the proof of Proposition 4.3, we discretize T by using the frequency localization.

Lemma 4.5. Let Tj be the collection of centers of balls of radius 2�j covering T . Then
for p � 1, 

 sup

u2T

jf �  j � �.� C u/j


p
p

. #Tj kf �  j � �kpp :

2Unlike many other bounds in our paper, this bound is valid for 0 � s � n.



A. Chang, G. Dosidis and J. Kim 24

Proof. Let ‰j .x/ D 2jn.1 C 2j jxj/�.nC1/ so that k‰j kL1 � 1 and j Q j .x/j . ‰j .x/.
Note that if jx � x0j . 2�j , then ‰j .x/ . ‰j .x0/. Therefore, by using  j D  j � Q j ,
we obtain

(4.7)
jf �  j � �.x C u/j . jf �  j � � j �‰j .x C u0/

. Œjf �  j � � j
p
�‰j .x C u0/�

1=p;

whenever ju � u0j . 2�j . In the last inequality, we have used Hölder’s inequality.
Using (4.7), we get

sup
u2T

jf �  j � �.x C u/j
p . sup

u2Tj

jf �  j � � j
p
�‰j .x C u/:

Therefore, we have

sup
u2T

jf �  j � �.x C u/j
p .

X
u2Tj

jf �  j � � j
p
�‰j .x C u/

.
X
u2Tj

Z
jf �  j � � j

p .x � y C u/‰j .y/ dy:

Integrating the expression over x completes the proof.

Proof of Proposition 4.3. We first recall a standard estimate

(4.8) kf �  j � �kLp . 2�j.n�1/.1�1=p/ kf kLp

for 1 � p � 2. To see that, one interpolates

kf �  j � �kL1 . kf kL1 and kf �  j � �kL2 . 2�j .n�1/=2 kf kL2 ;

which follow from the pointwise estimates (cf. (4.1) and (4.13))

(4.9) j j � �.x/j . 2j .1C 2j jjxj � 1j/�N and j2 j � �.�/j . 2�j .n�1/=2:

Next, we cover T with a minimal number of balls of radius 2�j . Let Tj be the col-
lection of centers of these balls so that #Tj D N.T; 2�j / . 2sj . Then by Lemma 4.5
and (4.8), 

 sup

u2T

jf �  j � �.� C u/j



p

. .#Tj /1=p kf �  j � �kp(4.10)

. 2sj=p 2�j.n�1/.1�1=p/ kf kp:

Note that (4.10) is one of the claimed bounds.
We give the other claimed bound by using a different L1-estimate, which is better for

s > 1. The pointwise bound (4.9) shows that

j j � �.x/j . 2j .1C jxj/�N :

We use this bound to obtain

jf �  j � �.x C u/j . 2j Œjf j � .1C j � j/�N � .x C u/ . 2j Œjf j � .1C j � j/�N �.x/;
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which holds for any u 2 T because T is compact. The pointwise estimate implies

 sup
u2T

jf �  j � �.� C u/j



1

. 2j kf k1:

Interpolating this with the L2 bound from (4.10) gives the other claimed bound.

To prove Proposition 4.4, we need, for ı 2 .0; 1=2/, the ı-regular version of NT ,
defined by

N ı
T f .x/ D sup

u2T

ˇ̌̌ 1

jSı.0/j

Z
Sı .0/

f .x C uC y/ dy
ˇ̌̌
:

Note that N ı
T DN ı for T D Sn�1. We also need the following, which relates N ı

T and NT .

Lemma 4.6 (Relations between N ı
T and NT ). Let 0 < ı < 1. Given a function �, we let

�ı.x/ D ı
�n �.x=ı/:

(1) We have
N ı
T f .x/ . NT .jf j � �ı/.x/

for any integrable � � 1B2.0/ and any integrable f . Consequently,

kN ı
T kLp!Lq . kNT kLp!Lq :

(2) Conversely, if kN ı
T kL

p!Lq � A.ı/ for a non-increasing function A & 1, then

kNT .f � �ı/kLq .� A.ı/ kf kLp

for any Schwartz function � and any f 2Lp .

Lemma 4.6 seems standard; e.g., see Lemma 5.1 in [25] for a version of the second
statement for the circular maximal function. We include a proof for the sake of complete-
ness.

Proof. Note that

(4.11) ı�11Sı .0/ . ı�n 1B2ı .0/ � � . ı�11S2ı .0/:

Since � � 1B2.0/, we have �ı � �.x/ & ı�11Sı .0/.x/ by (4.11). Therefore,

N ı
T f .x/ . sup

u2T

jf j � �ı � �.x � u/ D NT .jf j � �ı/.x/:

For the second statement, we note that �ı.x/ decays rapidly away from Bı.0/. Using
a dyadic decomposition, we get

j�ı j � �.x/ .
X

ı�2kı�1

2�kN .2kı/�11
S2
kC1ı .0/

.x/C
ıN

.1C j � j/N
� �.x/:

by (4.11). Therefore,

kNT .f ��ı/kq �k sup
u2T

jf j � j�ı j � �.� �u/kq .
X

ı�2kı�1

2�kN kN 2kC1ı
T f kq C ı

N
kf kp:

Since A.2kı/ � A.ı/ for k � 0 by the assumption, the claim follows from summing over
the geometric series.
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Proof of Proposition 4.4. We use the L3=2 and L4=3 bounds from Section 2. Since T has
finite s-dimensional upper Minkowski content and s � n � 1, it follows that T has finite
.n� 1/-dimensional upper Minkowski content. By Remark 2.7 and Lemma 4.6, we obtain

 sup

u2T

jf �  j � �. � C u/j



3=2

. j 1=3 2j=6 kf k3=2 .n � 3/;

 sup
u2T

jf �  j � �. � C u/j



4=3

. j 1=4 2j=4 kf k4=3 .n � 4/:

Interpolating these with the p D 2 case of (4.10) gives the desired bounds.

We note that Theorem 1.7 and Lemma 4.6 imply bounds for kN ı
T kL

p!Lp uniform in ı
for a range of p provided that 0 � s < n � 1. For the case s D n � 1, we give a Fourier
analytic proof of the L2-bound (2.3) by using Proposition 4.3.

Theorem 4.7. Let 0 < ı < 1=2 and let T � Rn be a compact set with finite .n � 1/-
dimensional upper Minkowski content. Then

kN ı
T kLp!Lp .

´
ı�.2=p�1/ for 1 � p < 2;
.log ı�1/1=p for 2 � p � 1:

Proof. Without loss of generality, we may assume that f � 0. Let �ı.x/ D ı�n�.x=ı/,
where � is a function satisfying ��1B2.0/ with a compact Fourier support. By Lemma 4.6,
it is enough to estimate the Lp-norm of NT .f � �ı/.

We recall the decomposition � D '0 � � C
P
j�1
Q j �  j � � from Section 4.1. In

the following, we suppress the term '0 � � , as it behaves similar to Q 1 �  1 � � .

kN ı
T f kp . kNT .f � �ı/kp .

X
j�1



 sup
u2T

jf � �ı � Q j �  j � �. � C u/j



p

.
X
j�1

2j.2=p�1/ kf � �ı � Q j kp;

where the sum in j is a finite sum for 2j . ı�1 due to the frequency localization of �ı .
We have used Proposition 4.3 in the last inequality. Since kf � �ı � Q j kp . kf kp , this
yields the claim for 1 � p < 2.

For p D 2, we use Cauchy–Schwarz and Plancherel to get

kN ı
T f k2 .

X
j

kf � �ı � Q j k2 . .log ı�1/1=2
�X

j

kf � �ı � Q j k
2
2

�1=2
. .log ı�1/1=2 kf k2:

The case p > 2 follows from interpolation with the trivial L1 bound.

Remark 4.8. For n D 2 and the range 1 < p < 2, Theorem 4.7 yields slightly better
bounds than the proof in Section 2, since here, there is no logarithmic factor.



Nikodym sets and maximal functions associated with spheres 27

4.3. Spherical averages relative to fractal measures

In this section, we relate (4.2) with spherical averages relative to fractal measures. We
recall that C.˛/ is defined in (1.10).

Lemma 4.9. Let T � Rn be a compact set with finite s-dimensional upper Minkowski
content for some 0 � s < n � 1. Then (4.2) holds if

(4.12) kAvg.f �  j /kLp.�/ � Akf kLp.Rn/

holds for any � 2 C.˛/ with ˛ D n � s for some A > 0 independent of f and �.

Proof. First, we note that it suffices to prove a local estimate of the maximal function on a
unit ball. This can be seen from the decomposition f D

P
Q fQ, where fQ is supported

on a lattice unit cubeQ and then observing that the function jfQ � j � �t . � C tu/j decays
rapidly away fromO.2c"j / neighborhood ofQ for some c > 0. See, for instance, the proof
of Lemma 2.4 in [12] for details.

We use the Kolmogorov–Seliverstov–Plessner linearization, cf. Chapter XIII of [38].
For given measurable functions t WRn ! Œ1; 2� and uWRn ! T , define

Tjf .x/ WD f �  j � �t.x/.x C t .x/u.x// D Avg.f �  j /.x C t .x/u.x/; t.x//:

Then it suffices to prove that there exists a measure � 2C.˛/ for ˛ D n � s, such that

kTjf kLp.Bn1 / . kAvg.f �  j /kLp.�/;

where the implicit constant is independent of t , u and f .
Let l be a positive linear functional on Cc.Rn �R/ defined by

l.F / D

Z
F.x C t .x/u.x/; t.x// dx:

Then by the Riesz representation theorem, there exists a unique Radon measure Q� on
Rn �R such that

l.F / D

Z
F.x; t/ d Q�.x; t/:

Let � � 0 be a smooth function such that 1BnC � � � 1Bn2C for a sufficiently large absolute
constant C D CT > 0. With F.x; t/D jAvg.f � j /.x; t/jp�.x/�.t/ for a smooth cutoff
function 1Œ1;2� � � � 1Œ1=2;4�, we haveZ

Bn1

jTjf j
p
� l.F / �

Z
jAvg.f �  j /.x; t/jpd�.x; t/;

where we set d�.x; t/Dc�.x/�.t/d Q�.x; t/ for some small absolute constant cDcn;s;T >0.
It remains to verify that � 2 C.˛/ for ˛ D n � s provided that c > 0 is sufficiently

small (cf. Lemma 3.3). To see this, fix a ball BnC1r centered at .x0; t0/ 2 Rn � R and
with radius 0 < r � 1. We may further assume that 0 < r � 1=2, since any ball of radius
comparable to 1 is a union of On.1/ balls of radius 1=2. Observe that

�.BnC1r / � cj¹x 2Rn W jx C t .x/u.x/ � x0j
2
C jt .x/ � t0j

2
� r2ºj:
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We may assume that t0 � 1, since otherwise the set under consideration is empty. Note
that if jx C t .x/u.x/ � x0j2 C jt .x/ � t0j2 � r2, then by the triangle inequality and the
assumption that T is compact,

jx C t0u.x/ � x0j � jx C t .x/u.x/ � x0j C j.t.x/ � t0/u.x/j . r;

so x 2 x0 � .t0T /O.r/. Therefore,

�.BnC1r / � cjx0 � .t0T /
O.r/
j D cj.t0T /

O.r/
j . crnN.t0T;O.r// . crn�s :

This finishes the proof.

We now discuss the connection between spherical averages and the half-wave prop-
agator eit

p
�� associated with the Fourier multiplier eit j�j. By the method of stationary

phase (see, e.g., [28]), one may write

(4.13) b�.�/ D ei j�j aC.�/C e�i j�j a�.�/;
for a˙ satisfying j@ma˙.�/j . .1C j�j/�.n�1/=2�jmj for each multi-index m. Therefore,
for t 2 Œ1; 2�, we may write

(4.14) Avg.f �  j /.x; t/ D 2�j .n�1/=2
X
˙

Z
eix��˙it j�j aj;˙.t; �/ 1f � j .�/ d�;

where
aj;˙.t; �/ WD 2

j.n�1/=2 a˙.t�/
cQ j .�/�.t/ 2 C1.Rn � Œ1=4; 4�/

for a smooth bump function � supported on Œ1=2; 4�. We note that aj;˙.t; �/ is supported
on ¹.�; t/ W j�j � 2j ; t � 1º and satisfies

(4.15) j@lt@
m
� aj;˙.t; �/j .m;l 2

�jmjj

for every l � 0 and multi-index m. Since the contribution from C and � terms in (4.14)
can be handled similarly, from now on we shall ignore the contribution from the � term.

We state a version of Sogge’s local smoothing conjecture for the wave equation to be
used later. Let I � .0; 4/ be a compact interval. The conjecture asserts that

(4.16) keit
p
�� .f �  j /kLp.Rn�I/ / 2j˛.p/ kf kLp.Rn/;

where ˛.p/D .n� 1/=2� n=p for p� 2n=.n� 1/ and ˛.p/D 0 for 2�p� 2n=.n� 1/.
We will later use, in Lemma 4.15, the fact that the local smoothing estimate (4.16) holds
for some p� 2n=.n� 1/; we may take, for instance, pD 2.nC 1/=.n� 1/ for every n� 2
by the Bourgain–Demeter decoupling inequality for the cone [4]. We refer the reader to [1]
for a nice survey of the theory of Fourier integral operators and local smoothing estimates.

Proposition 4.1 and Lemma 4.9 reduce Lp-estimates for �T to estimates for spheri-
cal averages relative to fractal measures (4.12). In view of (4.14), such estimates can be
deduced from local smoothing estimates (4.16) with the Lebesgue measure on Rn � I
replaced by measures � 2 C.˛/. We recall some special cases of known results in this
direction from [7, 12].
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Theorem 4.10 (Theorem 3.1 in [7], see also Theorem 3.3 in [12]). Let n � 3, 1 < ˛ � n
and � 2C.˛/. Then

2�j.n�1/=2 keit
p
�� .f �  j /kL2.�/ / 2�j min..˛�1/=2;.nC2˛�5/=8/

kf kL2.Rn/:

We note that the bound is sharp when n D 3 or 1 < ˛ � .n � 1/=2; see [7].

Theorem 4.11 (Theorem 1.5 in [12]). Let n D 2, 1 < ˛ � 2 and � 2C.˛/. Then there
exists " D ".˛; p/ > 0 such that

2�j=2 keit
p
�� .f �  j /kLp.�/ . 2�j" kf kLp.R2/

for p > max.4 � ˛; .6 � 2˛/=˛/.

For the proof of Theorem 1.10, we additionally need the following estimates, which
are better than Theorem 4.11 for 1 < ˛ < 6=5 for n D 2, and better than Theorem 4.10
for ˛ > .nC 3/=2 for n � 3.

Proposition 4.12. Let n D 2, 1 < ˛ � 3 and � 2C.˛/. Then there exists " D ".˛; p/ > 0
such that

(4.17) kAvg.f �  j /kLp.�/ . 2�j" kf kLp.R2/

for any p > 3. Moreover, for n � 2,

(4.18) kAvg.f �  j /kL2.�/ . 2�j.˛�2/=2 kf kL2.Rn/:

Proposition 4.12 will be proved in Section 4.4 using the geometric input from Propo-
sition 3.5.

4.4. A geometric approach to fractal local smoothing estimates

In this section, we prove Proposition 4.12, Theorem 1.10 and Theorem 1.13. The proof
relies on a geometric characterization of fractal local smoothing estimates. We first recall
the following basic properties of measures in C.˛/ defined in (1.10).

Lemma 4.13 (cf. Lemmas 2.7 and 3.1 in [12]). Let � 2C.˛/,N > nC 1 and 1� q <1.
If F is a function whose Fourier transform is supported on BnC1.0; O.ı�1// for some
ı 2 .0; 1=2/, then

(4.19) kF kLq.�/ . kF kLq.��‰ı;N /;

where
‰ı;N .z/ D ı

�.nC1/.1C ı�1jzj/�N for z 2RnC1:

Moreover,

(i) k� �‰ı;N kL1 . ı˛�.nC1/.

(ii) k� �‰ı;N kL1.Rn�Œ2�1;5�2�1�c/ . ıN�.nC1/.

(iii)
R
Br
� �‰ı;N . r˛ for any ball Br � RnC1 of radius r 2 Œı; 1�.

In the above estimates, the implicit constants may depend on n;N and ˛.
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From now on, we fix ıD 2�j � 1 and write ı WD j . Note that the Fourier transform
of the function .x; t/ 7! eit

p
�� .f �  ı/.x/ is supported on a truncated cone contained

in a ball of radius � ı�1. Thus, we obtain the following corollary.

Corollary 4.14. Let � 2C.˛/ and 1 � q <1. Then

keit
p
�� .f �  ı/kLq.�/ . ı.˛�.nC1//=q keit

p
�� .f �  ı/kLq.Rn�I/:

Lemma 4.13 essentially follows from proofs of Lemmas 2.7 and 3.1 in [12]. How-
ever, our definition of the class of measures C.˛/ is slightly different from that paper in
that we only require 0 < r � 1 in the condition (1.10), which necessitates a few minor
modifications. For completeness, we sketch the proof.

Proof of Lemma 4.13. Inequality (4.19) follows from the fact that, by the Fourier local-
ization of F , we have jF jq D jF � ı jq . jF jq � j ı j for a smooth function ı satisfying
j ı.z/j .N ‰ı;N .z/.

For the bounds on � �‰ı;N , we use the dyadic decomposition

(4.20) � �‰ı;N .z/ . ı�.nC1/
1X
lD0

2�lN �.B.z; 2lı//:

In the sum over l , we consider the following parts separately: (a) ı � 2lı � 1, and (b)
2lı > 1. For part (a), we use �.B.z; r// � r˛ for r � 1, while for part (b), we use
�.B.z; r// � CrnC1 for r � 1, which follows from covering B.z; r/ by balls of radius 1.
Combining these estimates, we obtain (i). For (ii), we need to use the additional fact that if
z 2Rn � Œ2�1; 5 � 2�1�c , then �.B.z; 2lı// D 0 whenever 2lı � 2�1, since � is supported
on Rn � Œ1; 2�.

For part (iii), we consider again two cases separately: (a) ı � 2lı � 1, and (b) 2lı > 1.
Note that Z

Br

�.B.z; 2lı// dz D

Z
jB.z0; 2lı/ \ Br j d�.z

0/;

where the Lebesgue measure jB.z0; 2lı/ \ Br j is 0 unless z0 belongs to the ball of radius
r C 2lı centered at the center of Br . For part (a), we useZ

jB.z0; 2lı/ \ Br j d�.z
0/ . min.2lı; r/nC1 max.2lı; r/˛:

For part (b), we useZ
Br

�.B.z; 2lı// dz . .2lı/nC1 rnC1 � .2lı/nC1 r˛:

Summing over l in each case and applying (4.20) yields the claimed bound.

For each z D .x; t/ 2 Rn � Œ1; 2�, let zı and Sı.x; t/ denote the ı-neighborhood of
the sphere S.x; t/D ¹y 2Rn W jx � yj D tº. For 0 < ˛ � nC 1 and A > 0, let X.˛; ı;A/

be the class of ı-separated set of points X in RnC1 such that

(4.21) #.X \ Br / � Ar˛

for any ball Br � RnC1 of radius r 2 .ı; 1� and Xı � Rn � Œ1; 2�, where Xı denotes the
ı-neighborhood ofX . HereAmay depend on ı, and we may assume that 0<A. ı�.nC1/.
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Lemma 4.15. Let n � 2, 0 < ı� 1, 0 < ˛ � nC 1, and 1 � p � q � 1. Consider the
following statements:


X

z2X

1zı





Lp
0

/ ıA1=q.#X/1=q
0

; for any X 2 X.˛; ı; A/:(4.22)




X
z2X

az1zı





Lp
0

/ ıA1=q
�X
z2X

jazj
q0
�1=q0

; for any X 2 X.˛; ı; A/:(4.23)

ı.n�1/=2keit
p
�� .f �  ı/kLq.Xı / / .AınC1/1=qkf kLp.Rn/;(4.24)

for any X 2 X.˛; ı; A/:

ı.n�1/=2keit
p
�� .f �  ı/kLq.�/ / kf kLp.Rn/; for any � 2 C.˛/:(4.25)

kAvg.f �  ı/kLq.�/ / kf kLp.Rn/; for any � 2 C.˛/:(4.26)

Then (4.22)) (4.23)) (4.24)) (4.25)) (4.26).
Let 2n=.n � 1/ � pn <1 be an exponent for which the Lpn.Rn/! Lpn.Rn � I /

local smoothing estimate (4.16) holds. When ˛ >1, all the above statements are equivalent
to the following: for any .1= Qp; 1= Qq/ in the open line segment connecting .1=p; 1=q/ and
.1=pn; 1=pn/, there exists " > 0 such that

(4.27) kAvg.f �  ı/kL Qq.�/ . ı"kf kL Qp.Rn/ for any � 2 C.˛/:

Remark 4.16. For anyMDMı;n;˛;p;q>0, the chain of implications from (4.22) to (4.26)
holds under the replacement of / by / M in each inequality. Moreover, the implication
(4.25)) (4.26) holds with / replaced by . M in both inequalities.

Remark 4.17. We may take any finite pn � 2.n C 1/=.n � 1/ for the exponent pn in
Lemma 4.15 for every n � 2; see the discussion following (4.16).

Remark 4.18. Without loss of generality, we may assume that each X 2X.˛; ı; A/ is
contained in a unit ball in this section. This is because (4.22) is equivalent to its local
version concerning X 2X.˛; ı; A/ contained in a unit ball.

Before proving Lemma 4.15, we give proofs of Proposition 4.12, Theorem 1.10 and
Theorem 1.13.

Proof of Proposition 4.12. Let n D 2. We have (4.22) for p D q D 3 by Proposition 3.5
for any 1 � ˛ � 3. Fix p > 3 and pn > p such that the local smoothing estimate (4.16)
holds at the exponent pn. Then (4.17) follows from Lemma 4.15 for 1 < ˛ � 3.

Next, let n � 2. By the implication (4.25)) (4.26), (4.18) follows from

(4.28) keit
p
�� .f �  j /kL2.�/ . 2j.nC1�˛/=2 kf kL2.R2/:

Note that (4.28) is a consequence of Corollary 4.14 (and Remark 4.16) and the Plancherel
theorem.

Proof of Theorem 1.10. Let nD 2. In view of Lemma 4.15, we know that (4.17) holds for
p > min .3;max .4 � ˛; .6 � 2˛/=˛// by combining Theorem 4.11 and Proposition 4.12.
By Proposition 4.1 and Lemma 4.9, �T is bounded on Lp.R2/ for the same p-range with
˛ D 2 � s, which completes the proof for n D 2.
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Let n � 3. By Proposition 4.1, Lemma 4.9 and Lemma 4.15, the estimates from The-
orem 4.10 and Proposition 4.12 imply

 sup

l2Z
sup
u2T

sup
1�t�2

jAvg.f �  j�l /. � C 2l tu; 2l t /j



L2.Rn/

/ 2�j max..˛�2/=2;min..˛�1/=2;.nC2˛�5/=8//
kf kL2.Rn/

for ˛ D n � s. By interpolation with the weak-type estimate in Lemma 4.2, there exists
" D ".p/ > 0 such that

 sup

l2Z
sup
u2T

sup
1�t�2

jAvg.f �  j�l /. � C 2l tu; 2l t /j



Lp.Rn/

. 2�j" kf kLp.Rn/

for p > 1 C .max.n � s � 1;min.n � s; .3n � 2s � 1/=4///�1. Therefore, by Proposi-
tion 4.1, �T is bounded on Lp for the same p-range.

Proof of Theorem 1.13. We recall that the solution u can be written as

u.x; t/ D cos.t
p
��/f .x/ D

1

2
eit
p
��f .x/C

1

2
e�it

p
��f .x/:

Therefore, the inequality (1.11) is a consequence of Proposition 3.5 and Lemma 4.15.
The inequality (1.12) follows from Proposition 4.12 by summing up frequency localized
estimates (4.17).

The proof of Lemma 4.15 is fairly standard. We will use a pointwise bound for the
kernel associated with the wave propagator, which can be obtained by using (4.13);

eit
p
�� .f �  ı/.x/ D

Z
f .x � y/ ı�nK.ı�1y; ı�1t / dy;

where K satisfies

(4.29) jK.y; t/j .N .1C jyj/�.n�1/=2 .1C jjyj � t j/�N :

We note that the standard bound (4.29) follows from the decay and the oscillation of the
Fourier transform of the spherical measure; see, e.g., [28].

Proof of Lemma 4.15. (4.22)) (4.23). An interpolation argument can be used to upgrade
the restricted strong-type estimate from (4.22) to a strong-type estimate (4.23). To see that,
we first note the following trivial l1 ! L1 and lr

0

! L1 estimates:


X
z2X

az1zı





L1

. ı
X
z2X

jazj;(4.30) 


X
z2X

az1zı





L1

. sup
B1

X
z2X\B1

jazj . k¹azºklr 0 .X/ sup
B1

#.X \ B1/1=r

(4.21)
. A1=rk¹azºklr 0 .X/:(4.31)
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We choose r D q=p � 1 so that the line segment between .1; 1/ and .1=r 0; 1=1/ contains
.1=q0; 1=p0/. We first do a real interpolation between (4.22) and (4.31) to get a strong-
type lq

0
1 ! Lp

0
1 estimate, and then interpolate that estimate with (4.30). As we may take

.1=q01; 1=p
0
1/ arbitrarily close to .1=q0; 1=p0/, these interpolations imply (4.23), since we

are allowed to lose ı�".
(4.23)) (4.24). For any given 0 < "� 1, (4.29) (with N D 100n=") implies that

ı.n�1/=2 jeit
p
�� .f �  ı/.x/j ." ı�1

Z
1
Sı
1�"

.x;t/
jf j C ı10nf � .1C j � j/�10n.x/:

The term involving ı10n is harmless, and will be ignored in the following. We have

ı.n�1/q=2 keit
p
�� .f �  ı/k

q

Lq.Xı /
." ı�q

X
z2X

ınC1
� Z

1
zO.ı

1�"/ jf j
�q

D ı�q ınC1
� Z
jf j

X
z2X

az1zO.ı1�"/

�q
� ı�q ınC1 kf k

q
Lp




X
z2X

az1zO.ı1�"/




q
Lp
0

for some az � 0 satisfying
P
z2X a

q0

z D 1. Applying (4.23), we obtain (4.24).
(4.24)) (4.25). By Lemma 4.13, it suffices to prove (4.25) with � replaced by ��‰ı;N

for someN > nC 1. Note that � �‰ı;N is essentially constant on ı-balls in the sense that

� �‰ı;N .z/ � � �‰ı;N .z
0/ for jz � z0j � ı:

Therefore, we have
� �‰ı;N �

X
l2Z

2l 1Xı
l

for some ı-separated set of points Xl � RnC1. We may assume that Xl is empty when
2l . ıC for some sufficiently large C , say C D 10n, since the sum over 2l . ıC can be
handled by using a trivial inequality. Moreover, we note that Xl is empty when 2l & ı�C

by (i) of Lemma 4.13. Thus, it suffices to deal with the sum over O.log ı�1/ many l
satisfying ıC . 2l . ı�C . We may assume, by taking N � C C nC 1, that Xı

l
� Rn �

Œ2�1; 5 � 2�1� by (ii) of Lemma 4.13. Thus, there exists l for which

(4.32) keit
p
�� .f �  ı/kLq.��‰ı;N / / 2l=q keit

p
�� .f �  ı/kLq.Xı

l
/:

Note that for ı < r � 1,

ınC1#.Xl \ Br / . jXıl \ BrCı j . 2�l
Z
Xı
l
\BrCı

� �‰ı;N . 2�lr˛;

by (iii) of Lemma 4.13. Applying (4.24) with AınC1 � 2�l in (4.32) finishes the proof of
the implication.

To be precise, we have to apply a slightly more general version of (4.24) which holds
for ı-separated set of points X satisfying (4.21) such that Xı � Rn � Œ2�1; 5 � 2�1�. Note
that (4.22) can be extended to such a class of sets by scaling, which implies similar exten-
sions for (4.23) and (4.24) required.
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(4.25)) (4.26). Recall that we ignore the ‘�’ term in the sum in (4.14). In view
of (4.14), this implication would be straightforward if we are allowed to replace aj;C.t; �/

by �.t/cQ j .�/ as the term cQ j .�/ can be then absorbed into f as f � Q j . To handle
aj;C.t; �/, we may employ an argument which is used to prove the L2-boundedness of
pseudo-differential operators; see, e.g., Section 2 in Chapter VI of [30]. We give the argu-
ment in our setting for the convenience of the reader.

For � 2 R, define �j;� .x/ D F �1Œaj;C�.�; x/, so that

aj;C.t; �/ D

Z
b�j;� .�/ e�it� d�:

Note that the integral in (4.14) can now be written asZ
eit
p
�� .�j;� � f �  j / e

�it� d�:

Therefore, by (4.14), (4.25), and Minkowski’s inequality,

kAvg.f �  ı/kLq.�/ . 2�j .n�1/=2
Z
keit
p
�� .�j;� � f �  ı/kLq.�/ d�

/
Z
k�j;� � f kLp.Rn/ d� � kf kLp.Rn/

Z
k�j;�kL1.Rn/ d�:

To complete the proof, it remains to observe that k�j;�kL1.Rn/ . .1C j� j/�2, which is a
consequence of the pointwise estimate obtained by integration by parts using (4.15):

j�j;� .x/j . 2jn .1C 2j jxj/�.nC1/ .1C j� j/�2:

This finishes the proof of the chain of implications from (4.22) to (4.26).
Next, we assume that ˛ > 1. Suppose that the local smoothing estimate (4.16) is avail-

able at the exponent 2n=.n � 1/ � pn <1, i.e.,

(4.33) ı.n�1/=2 keit
p
�� .f �  ı/kLpn .Rn�Œ1;2�/ / ın=pn kf kLpn .Rn/:

By Corollary 4.14 and (4.33), we obtain

ı.n�1/=2 keit
p
�� .f �  ı/kLpn .�/ / ı.˛�1/=pn kf kLpn .Rn/:

By the implication (4.25)) (4.26), we have

(4.34) kAvg.f �  ı/kLpn .�/ / ı.˛�1/=pn kf kLpn .Rn/:

To show the equivalence of these statements, it remains to verify that (4.26)) (4.27)
) (4.22).

(4.26)) (4.27). Since ˛ > 1, an interpolation of (4.26) and (4.34) gives (4.27).
(4.27)) (4.22). By summing over dyadic ı D 2�j over j � 0, (4.27) implies

(4.35) kAvgf kL Qq.�/ . kf kL Qp.Rn/ for any � 2 C.˛/:
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It is enough to prove that (4.35) implies (4.23) since (4.23) implies (4.22). By duality, it
suffices to show that

(4.36)
�X
z2X

�1
ı

Z
zı
jf j
�q�1=q

/ A1=qkf kLp for any X 2 X.˛; ı; A/:

Firstly, observe that if z0 2 Bı.z/, then zı � .z0/3ı . Thus,�X
z2X

�1
ı

Z
zı
jf j
�q�1=q

.
�X
z2X

1

jBı.z/j

Z
Bı .z/

�1
ı

Z
z03ı
jf j
�q
dz0
�1=q

:

Let 'ı.x/ D ı�n'.x=ı/ for an integrable function ' � 1B10 . Then we have

ı�1
Z
z03ı
jf j . Avg.jf j � 'ı/.z0/

(cf. (4.11)), which implies that

(4.37)
�X
z2X

�1
ı

Z
zı
jf j
�q�1=q

. ı�.nC1/=q kAvg.jf j � 'ı/kLq.Xı /:

We claim that, for a sufficiently small absolute constant c0 > 0, the measure � given by

d� D c0.Aı
nC1/�11Xı .x; t/ dxdt

belongs to C.˛/. Indeed, for ı < r � 1, we haveZ
Br

.AınC1/�11Xı . .AınC1/�1 ınC1#.X \ BrCı/ . .r C ı/˛ . r˛:

For 0 < r < ı,Z
Br

.AınC1/�11Xı . .AınC1/�1 rnC1 . r˛ .r=ı/nC1�˛ � r˛:

For the last inequality, we used the fact that for any non-empty X , there exists a ball Bı
such that 1 � #.X \ Bı/ � Aı˛ .

We apply (4.35) with the measure �, which yields

kAvg.jf j � 'ı/kL Qq.Xı / . .AınC1/1= Qq kjf j � 'ıkL Qp . .AınC1/1= Qq kf kL Qp :

This inequality implies, by (4.37),�X
z2X

�1
ı

Z
zı
jf j
� Qq�1= Qq

. A1= Qq kf kL Qp ;

giving, in view of the reduction from (4.36), the desired inequality (4.23) for the pair of
exponents . Qp; Qq/ rather than .p; q/. However, this defect can be remedied by an interpo-
lation argument similar to the one used for the implication (4.22)) (4.23), since we may
take . Qp; Qq/ arbitrarily close to .p; q/ and we allow a loss of ı�".
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name n (dim) E (test set) Z (set of centers) ˛ ˇ 


sphere � 2 Sn�1 ¹0ºn 1 1 0

ı-ball 2 ¹.0; 0/º S1 2 0 1 � 2
p

tube 3 ¹.0; 0/º � Œ0;
p
ı� S1 � Œ0;

p
ı� 5

2 0 3
2 �

5
2p

cylindrical shell � 3 Œ0;
p
ı� � Sn�2 Œ0;

p
ı� � ¹0ºn�1 3

2
1
2

1
2 �

1
p

radius 1=
p
2 � 4 ¹.0; 0/º � 1p

2
Sn�3 1p

2
S1 � ¹0ºn�2 3 0 2 � 3

p

Table 1. Table of examples for N ı . The sets E and Z satisfy (5.1). The quantities ˛, ˇ and 
 are
defined as in (5.2). (See Figure 3 for some pictures.)

5. Lower bounds

5.1. Lower bounds for N ı

In this section, we prove Theorem 1.2(ii).

Proposition 5.1. Let 1 � p � 1 and 0 < ı < 1. Then

kN ı
kLp!Lp & max.ı1�2=p; 1/ .n D 2/;

kN ı
kLp!Lp & max.ı3=2�5=.2p/; ı1=2�1=p; 1/ .n D 3/;

kN ı
kLp!Lp & max.ı2�3=p; ı1=2�1=p; 1/ .n � 4/:

Proof. To obtain each lower bound, we will specify a pair of sets E;Z � Rn satisfying

for all z 2 Zı ; jEı \ Sı.z/j & jEı j:(5.1)

We view E as the “test set” and Z as the “set of centers.”
Suppose we have sets E and Z satisfying (5.1). Then

N ı1Eı .x/ & ı�1jEı j for all x 2Zı C Sn�1,

so

kN ı
kLp!Lp �

kN ı1Eıkp

k1Eıkp
& ı�1 jEı j1�1=p jZı C Sn�1j1=p:

Thus,

if jEı j & ı˛ and jZı C Sn�1j & ıˇ , then kN ı
kLp!Lp & ı
 ;(5.2)

where 
 D .˛ � 1/ � .˛ � ˇ/=p. The sets are given in Table 1.

Remark 5.2. When n D 4, the “radius 1=
p
2” example is also known as the Lenz con-

struction in the context of the Erdős unit distance problem. (See, e.g., Section 5.2 in [5].)
This type of example also appears in Proposition 2.1 of [16].
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z ∈ Z

S(z)

Eδ

(a) Cylindrical shell example.

z ∈ Z

S(z)

E

(b) Radius 1=
p
2 example. (The horizontal

axis represents R2, and the two remaining
axes together represent Rn�2).

Figure 3. The last two examples from Table 1.

5.2. Lower bounds for �ı

In this section, we prove Theorem 1.5(ii).

Proposition 5.3. Let p 2 Œ1;1� and 0 < ı < 1. Then

k�ıkLp!Lp & max.ı1=2�3=.2p/; 1/ .n D 2/;

k�ıkLp!Lp & max.ı1�2=p; 1/ .n � 3/:

Proof. The fact that k�ıkLp!Lp & 1 for all p 2 Œ1;1� follows from Proposition 5.1
and the fact that �ı � N ı , so we only need to consider the remaining two bounds in
Proposition 5.3.

To obtain each of these two lower bounds, we will specify a pair of sets E;Z � Rn

and a function r WZ ! Œ1; 2� satisfying

for all z 2 Z; jEı \ Sı.z; r.z//j & jEı j:(5.3)

This implies that �ı1Eı .x/ & ı�1jEı j for all x 2
S
z2Z S.z; r.z//, so

if jEı j & ı˛ and
ˇ̌̌ [
z2Z

S.z; r.z//
ˇ̌̌

& ıˇ , then k�ıkLp!Lp & ı
 ;(5.4)

where 
 D .˛ � 1/ � .˛ � ˇ/=p. The sets are given in Table 2.

5.3. Lower bounds for NT

In this section we prove Proposition 1.8. It is an immediate consequence of the following.

Lemma 5.4. Let n � 2. For each 0 � s � n � 1, let �.n; p; s/ be the set of all 
 2R
such that there exists E � Rn and a compact set T � Rn with finite s-dimensional upper
Minkowski content such that

kNT 1EıkLp

k1EıkLp
& ı
 for all ı 2 .0; 1=2/:
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name n (dim) E (test set) Z (set of centers) r.z/ ˛ ˇ 


tube 2 ¹0º � Œ0;
p
ı� Œ1; 2� � Œ0;

p
ı� z1

3
2 0 1

2 �
3
2p

radius 1=
p
2 � 3 ¹0º � 1p

2
Sn�2 Œ1; 32 � � ¹0º

n�1
q
z21 C

1
2 2 0 1 � 2

p

Table 2. Table of examples for �ı . The sets E and Z satisfy (5.3). The quantities ˛, ˇ and 
 are
defined as in (5.4).

Then �.n; p; s/ contains the following numbers:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

.n � 1/ �
1

p
.n � 1Cmin.s; 1//; 0 � s � n � 1;

n �
3

2
�
1

p

�
n �

3

2
C
1

2
min.2; s/

�
; 1 < s � n � 1;

n � dse C 1 �
1

p
.n � 2dse C s C 2/ ; 2 � s � n � 1;

n � bsc C 1 �
1

p
.n � bsc C 2/ ; 2 � s � n � 1;

1

2
�
1

p
.2C s � n/; n � 2 � s � n � 1:

Proof of Lemma 5.4. We choose T as follows:

(5.5) T D ¹0ºn�dse � Cs

where Cs � Rdse is a self-similar s-dimensional Cantor-type set; more precisely, let C1 D
Œ�1=2;1=2�, and for 0< d < 1, letCd � Œ�1=2;1=2� be the standard symmetric Cantor set
with Minkowski (and Hausdorff) dimension equal to d . (See, e.g., Section 4.10 in [18].)
Then for s > 1, let Cs D .Cs=dse/dse.

For four of the five cases in Lemma 5.4, we will specify a pair of sets E; Z � Rn

satisfying

(5.6) for all z 2 Zı ; Hn�1.Eı \ Sn�1.z// & ı�1 jEı j:

This implies NT 1Eı .x/ & ı�1jEı j for all x 2Zı � T , so

(5.7) if jEı j & ı˛ and jZı � T j & ıˇ , then
kNT 1Eıkp

k1Eıkp
& ı
 ;

where 
 D .˛ � 1/ � .˛ � ˇ/=p.
The sets are given in Table 3. These correspond to the first, second, third, and fifth

cases of Lemma 5.4, in that order. For the fourth case, we use monotonicity of �.n; p; s/
in s: since finite s-dimensional upper Minkowski content implies finite s0-dimensional
Minkowski content for all s0 > s, we have

�.n; p; s/ � �.n; p; bsc/ 3 n � bsc C 1 �
1

p
.n � bsc C 2/:
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name range of s E (test set) Z (set of centers) ˛ ˇ

ı-ball Œ0; n� 1� ¹0ºn Sn�1 n 1�min.1; s/

tube Œ1; n� 1� ¹0ºn�1 � Œ0;
p
ı� Sn�2 � Œ0;

p
ı� n� 1

2
1� 1

2
min.2; s/

rad. 1=
p
2 Œ2; n� 1� ¹0ºn�dseC1 � 1p

2
Sdse�2 1p

2
Sn�dse � ¹0ºdse�1 n� dse C 2 dse � s

cyl. shell Œn� 2; n� 1� Œ0;
p
ı�� Sn�2 Œ0;

p
ı�� ¹0ºn�1 3

2
n� 1

2
� s

Table 3. Table of examples for NT . The sets E and Z satisfy (5.6). The quantities ˛ and ˇ are
defined as in (5.7), and c > 0 is a small absolute constant.

5.4. Lower bounds for �T

In this section, we prove Proposition 1.11. It is an immediate consequence of the follow-
ing.

Lemma 5.5. Let n � 2. For each 0 � s � n � 1, let �.n; p; s/ be the set of all 
 2R
such that there exist E � Rn and a compact set T � Rn with finite s-dimensional upper
Minkowski content such that

k�T 1EıkLp

k1EıkLp
& ı
 for all ı 2 .0; 1=2/:

Then �.n; p; s/ contains the following:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�
n �
dse

2
� 1

�
�
1

p

�
n � dse C

s

2

�
; s � 2;�

n �
bsc

2
� 1

�
�
1

p

�
n �
bsc

2

�
; s � 2;

.n � dse/ �
1

p
.nC s � 2dse C 1/; s � 2;

.n � bsc/ �
1

p
.n � bsc C 1/; s � 2:

Proof. We take T as in (5.5). For the first and for the third terms in Lemma 5.5, we will
specify a pair of sets E;Z � Rn and a function r WZ ! Œ1; 2� satisfying

(5.8) for all z 2 Z; Hn�1.Eı \ Sn�1.z; r.z/// & ı�1jEı j:

This implies
�T 1Eı .x/ & ı�1jEı j for all x 2

[
z2Z

.z � r.z/T /,

so

(5.9) if jEı j & ı˛ and
ˇ̌̌ [
z2Z

.z � r.z/T /
ˇ̌̌

& ıˇ , then
k�T 1Eıkp

k1Eıkp
& ı
 ;

where 
 D .˛ � 1/ � .˛ � ˇ/=p.
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name range of s E (test set) Z (set of centers) r.z/ ˛ ˇ

“tube” s � 2 ¹0ºn�t � B t
ı1=2

.Bn�t2 n Bn�t1 /�B t
ı1=2

jzI j n � t
2

t�s
2

rad. 1=
p
2 s � 2 ¹0ºn�t � 1p

2
St�1 .Bn�t

3=2
n Bn�t1 / � B t

ı

q
jzI j2C

1
2 n� tC1 t � s

Table 4. Table of examples for �T . The sets E and Z satisfy (5.8). The quantities ˛ and ˇ are
defined as in (5.9). In both rows, Z is a set of the form ZI �ZII , and zI refers to the components
in ZI . We let t D dse.

The sets are given in Table 4. The calculation of ˇ here is less straightforward than in
the other proofs in Section 5 so far, so we provide some details for the “tube” example.
We have

z � r.z/T D .zI ; zII / � jzI j¹0º
n�dse

� Cs D ¹zI º � .zII � jzI jCs/;

so [
z2Z

.z � r.z/T / D
[

1�jzI j�2

¹zI º �
� [
jzII j�ı1=2

.zII � jzI jCs/
�

D

[
1�jzI j�2

¹zI º �
�
B
dse

ı1=2
� jzI jCs

�
:

For each zI , the set Bdse
ı1=2
� jzI jCs is the ı1=2-neighborhood of a dilate of Cs , and thus

has (dse-dimensional) Lebesgue measure� ı.dse�s/=2. Thus by Fubini,ˇ̌̌ [
z2Z

.z � r.z/T /
ˇ̌̌
� ı.dse�s/=2:

The calculation of ˇ for the radius 1=
p
2 example is similar.

For the second and for the fourth terms, we use monotonicity of � , i.e., the fact that
�.n; p; s/ � �.n; p; bsc/.

A. The Kakeya needle problem for Sn�1

Here, we sketch a proof of Theorem 1.1. We begin with the following.

Theorem A.1 (Kakeya needle problem for spheres). Let " > 0 be arbitrary. Then between
the origin and any prescribed point in Rn, there exists a polygonal path P D

Sm
iD1 Li

with each Li a line segment, and for each i there exists an .n� 1/-plane Vi containing 0,
such that ˇ̌̌[

i

[
p2Li

.p C ¹x 2 Sn�1 W dist.x; Vi / > "º/
ˇ̌̌
< ":
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The proof of Theorem A.1 is a relatively straightforward generalization of the proof of
Theorem 1.2 in [6]. Here, we provide a few details. We begin with the following two basic
estimates, which are analogues of Lemma 2.2 in [6] and Lemma 3.3 in [6], respectively.

Lemma A.2. For any polygonal path P � Rn and for an arbitrary E � Rn, we have
jP CEj . Hn�1.E/H1.P /.

Proof. If B is a ball of radius r , where r is smaller than the line segments in the polygonal
path, then for each line segment L � P , we have jLC Bj . rn�1H1.L/. Adding these
up for all line segments L and approximating E by a union of small balls, we obtain
Lemma A.2.

Lemma A.3. Let " > 0. Let L�Rn be a line segment in the direction � 2 Pn�1. Suppose
R � ¹x 2Sn�1 W jx � � j � "º. Then jLCRj � "H1.L/Hn�1.R/.

Proof. Without loss of generality, assume � D e1 D .1; 0; : : : ; 0/. Let P WRn ! R be the
orthogonal projection onto e?1 . LetRDRC[R�, whereRCD¹.x1; : : : ; xn/2R W x1�0º.
Let f WRn�1!R be given by f .y/D

p
1 � jyj2. Using the hypothesis onR, an elemen-

tary computation gives

Hn�1.RC/ D

Z
P.RC/

p
1C jrf .y/j2 dy �

1

"
Hn�1.P.RC//:

A similar inequality holds for R�. By Fubini’s theorem, we have

jLCRj � H1.L/
�
Hn�1.P.RC//CHn�1.P.R�//

�
� "H1.L/Hn�1.R/:

Proof sketch for Theorem A.1. We identify R2 as the subspace of Rn spanned by the first
two standard basis vectors. By symmetry, we may assume that the prescribed point in the
statement of Theorem A.1 is in R2. Then we follow the iterated Venetian blind construc-
tion presented in Section 4 of [6]. This produces a path P � R2 � Rn.

As noted in Remark 4.4 of [6], the construction does not depend the set until Sec-
tion 4.8 of [6]. Starting from that point, we make the following changes:
(1) For an interval I � P1, we define

EI D ¹x 2Sn�1 W there exists � 2 I such that x � � D 0º:

Here, P1 is the quotient of S1 obtained by identifying antipodal points together,
and S1 is the unit circle in R2 � Rn.

(2) We use Lemma A.2 and Lemma A.3 in place of Lemma 2.2 in [6] and Lemma 3.3
in [6], respectively.

Note that if I is an interval of the form I D P1 n B.�0; "/, then EI D ¹x 2 Sn�1 W
dist.x; V / � "0º, where V � Rn is the linear hyperplane orthogonal to �0, and "0 only
depends on ".

By considering the limit " ! 0 in the appropriate sense (see Section 6 in [6] for
details), we can show that Theorem A.1 implies the following.
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Theorem A.4 (Besicovitch set for spheres). For every path P0 in Rn and for any neigh-
borhood of P0, there is a path P in this neighborhood with the same endpoints as P0,
and there is a .n � 1/-plane Vp containing 0, such that

(A.1)
ˇ̌̌ [
p2P

.p C .Sn�1 n Vp//
ˇ̌̌
D 0:

Also, the mapping p 7! Vp is Borel.

By taking countably many translates of the set in (A.1) (again, see Section 6 in [6] for
details), we can show Theorem A.4 implies Theorem 1.1.

B. Geometric estimates for annuli

B.1. Intersection of two annuli of radius comparable to 1

Let S.a; r/ denote the sphere of radius r centered at a and let Sı.a; r/ denote its ı-neigh-
borhood. We define

d.S.a; r/; S.b; s// D ja � bj C jr � sj;

�.S.a; r/; S.b; s// D jja � bj � jr � sjj � jr C s � ja � bjj:

In Lemma 3.2 of [33], the following bound on R2 for circles is proved:

(B.1) jSı.a; r/ \ Sı.b; s/j .
ı2p

.d C ı/.�C ı/
�

Moreover, it was shown that the distance from the line through the centers and the intersec-
tion isO.

p
.�C ı/=.d C ı//. It is assumed there that the circles cannot be externally tan-

gent; i.e., jr C s � ja� bjj � 1. An inspection of the proof shows that the estimate contin-
ues to hold without the assumption if we adopt the above definition of�.S.a; r/;S.b; s//.

We may generalize the above estimate in higher dimensions.

Lemma B.1. Let n � 2, a; b 2 Rn, and r; s 2 Œ1=2; 2�. Then

(B.2) jSı.a; r/ \ Sı.b; s/j .
ı2

d C ı

��C ı
d C ı

�.n�3/=2
:

As special cases, if n � 3, or if n D 2 and r D s, then

(B.3) jSı.a; r/ \ Sı.b; s/j .
ı2

d C ı
�

Proof. The proof of (B.2) is by induction on n. When n D 2, this is just (B.1). Without
loss of generality, we may assume that the x1-axis is the line through the centers of the
spheres. It suffices to prove the inductive step

(B.4) jSı.a; r/ \ Sı.b; s/j .

s
�C ı

d C ı
jSı.a; r/ \ Sı.b; s/ \ ¹xn D 0ºj;

where jSı.a; r/ \ Sı.b; s/ \ ¹xn D 0ºj is the .n � 1/-dimensional measure of the slice
of the intersection.
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Let x0 D .x1; : : : ; xn�2/. We use the change of variable .xn�1; xn/ 7! .u cos�;u sin�/
with u 2 R and � 2 Œ0; �/. Then

jSı.a; r/ \ Sı.b; s/j D

Z �

0

“
Rn�1

1Sı .a;y/\Sı .b;s/.x
0; u cos �; u sin �/ dx0 juj dud�:

Note that

1Sı .a;r/\Sı .b;s/.x
0; u cos �; u sin �/ D 1Sı .a;r/\Sı .b;s/.x

0; u; 0/;

and it is zero unless juj D O.
p
.�C ı/=.d C ı//. This is because the distance from the

line through the centers and the intersection is O.
p
.�C ı/=.d C ı// as was observed

in [33]. This consideration proves (B.4).

B.2. Intersection of three annuli of radius 1

Lemma B.2 (Intersection of three annuli). There exist absolute constants c1; c2 > 0 so
that the following is true. Suppose n � 3. Let a1; a2; a3 2 Rn be distinct. Let M D
max.ja1 � a2j; ja2 � a3j; ja3 � a1j/, let m D min.ja1 � a2j; ja2 � a3j; ja3 � a1j/, and
let R 2 .0;1� denote the radius of the (unique) circle that passes through a1; a2; a3.
Suppose 0 < ı < 1=2 and

c1 ı
1=2
� m �M � c2:(B.5)

Then

jSı.a1/ \ S
ı.a2/ \ S

ı.a3/j .
ı5=2

M 3=2m1=2
�(B.6)

Furthermore, in two special cases, we have better bounds:
(1) If R � 2, then

Sı.a1/ \ S
ı.a2/ \ S

ı.a3/ D ;:(B.7)

(2) If R � 1=2 or n � 4, then

jSı.a1/ \ S
ı.a2/ \ S

ı.a3/j .
ı3

M 2m
�(B.8)

The implied constants depend only on the dimension n.

Remark B.3. Note that (B.7) and (B.8) give better estimates than (B.6). Thus, (B.6) is
only useful when n D 3 and 1=2 � R � 2.

Proof. Without loss of generality, we may make the following assumptions:

a1; a2; a3 2 R2 � Rn; ja1j D ja2j D ja3j D R; ja1 � a3j DM; ja2 � a3j D m;

a1 D .�M=2; .R
2
�M 2=4/1=2/ and a3 D .M=2; .R

2
�M 2=4/1=2/:
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First, we claim the following:

Sı.a1/ \ S
ı.a2/ \ S

ı.a3/

� ¹.x; y/ 2 R2 �Rn�2 W x 2S1 \ S2 \ B.a1; 1C ı/; jyj
2
2 I.x/º;

(B.9)

where

Si WD ¹x 2R2 W jhx; ai � a3ij � 2ıº for i D 1; 2;(B.10)

I.x/ WD Œ.1 � ı/2 � jx � a1j
2; .1C ı/2 � jx � a1j

2� for x 2R2:(B.11)

Suppose .x; y/ 2 Sı.a1/ \ Sı.a2/ \ Sı.a3/, with x 2R2 and y 2 Rn�2. Then

.1 � ı/2 � jx � ai j
2
C jyj2 � .1C ı/2 for i D 1; 2; 3.

By subtracting these inequalities from each other, we obtain x 2Si for i D 1; 2. Further-
more, the inequality for i D 1 implies x 2B.a1; 1C ı/ and jyj2 2 I.x/. This completes
the proof of (B.9), from which we deduce

jSı.a1/\S
ı.a2/ \ S

ı.a3/j

(B.9)
�

Z
S1\S2\B.a1;1Cı/

j¹y 2 Rn�2 W jyj2 2 I.x/ºj dx

(B.11)
. ı

Z
S1\S2\B.a1;1Cı/

..1C ı/2 � jx � a1j
2/.n�4/=2 dx:

(B.12)

Note that Si is an infinite strip of width 4ı=jai � a3j. Let � denote the angle between
the strips S1 and S2. Then by elementary geometry,

S1 \ S2 �
h
�
2ı

M
, 2ı
M

i
�

h
�

4ı

m sin �
, 4ı

m sin �

i
:

Note that � is also the angle of a3 in the triangle a1; a2; a3, so by the law of sines,

sin � D
ja1 � a2j

2R
�
M

4R
�

Thus,

S1 \ S2 �
h
�
2ı

M
, 2ı
M

i
�

h
�
16ıR

mM
, 16ıR
mM

i
:(B.13)

Now we prove (B.7). Suppose R � 2. By choosing c1 large enough in (B.5), we have
S1 \S2�B.0;R=5/. On the other hand, x2B.a1; 1C ı/ implies jx � a1j � 1C ı� 3=2,
so

jxj � ja1j � jx � a1j � R �
3

2
�
R

4
�

This shows S1 \ S2 \ B.a1; 1C ı/ D ;, which implies (B.7).
Next, we prove (B.8). We may assume R � 2. Suppose n � 4 or R � 1=2. By (B.12)

and (B.13), it suffices to show

..1C ı/2 � jx � a1j
2/.n�4/=2 . 1 for all x 2S1 \ S2 \ B.a1; 1C ı/:(B.14)



Nikodym sets and maximal functions associated with spheres 45

If n � 4, then the exponent .n� 4/=2 is non-negative, so (B.14) holds. Thus, it remains to
consider the case n D 3 and R � 1=2. If x 2S1 \ S2, then by choosing c2 small enough
in (B.5), we have jxj � 1=4, so jx � a1j � jxj C ja1j � 3=4. Thus

.1C ı/2 � jx � a1j
2
� 1 �

�3
4

�2
> 0;

so we obtain (B.14).
Finally, we prove (B.6). As noted in Remark B.3, we may suppose n D 3 and R � 2.

By (B.12), it suffices to showZ
S1\S2\B.a1;1Cı/

..1C ı/2 � jx � a1j
2/�1=2 dx .

ı3=2

M 3=2m1=2
�(B.15)

Write x D .x0; x00/ and a1 D .a01; a
00
1/. Define

v.x0/ D ..1C ı/2 � jx0 � a01j
2/1=2;

so that
x 2B.a1; 1C ı/ ” jx00 � a001j � v.x

0/:

Suppose x 2S1 \ S2. Then

jx0 � a01j � jx
0
j C ja01j �

2ı

M
C
M

2
�
1

2

if c1 is large enough and c2 is small enough in (B.5). This implies v.x0/ � 3=4, so

.1C ı/2 � jx � a1j
2
D v.x0/2 � jx00 � a001j

2 & v.x0/ � jx00 � a001j:

Thus, Z
S1\S2\B.a1;1Cı/

..1C ı/2 � jx � a1j
2/�1=2 dx

.
Z 2ı=M

�2ı=M

Z
jx00j�32ı=.mM/

jx00�a001 j�v.x
0/

.v.x0/ � jx00 � a001j/
�1=2 dx00 dx0:(B.16)

(Above, we used (B.13) and R � 2.) For a fixed x0, we split the inner integral into two
parts, depending on the sign of x00 � a001 . Each part, after a change of variables, is an
integral of the form

R
I
t�1=2 dt , where I is an interval of length at most 64ı=.mM/.

Thus,

(B.16) .
Z 2ı=M

�2ı=M

Z 64ı=.mM/

0

t�1=2 dt dx0 .
ı3=2

M 3=2m1=2
,

which proves (B.15).
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