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Nikodym sets and maximal functions
associated with spheres

Alan Chang, Georgios Dosidis and Jongchon Kim

Abstract. We study spherical analogues of Nikodym sets and related maximal func-
tions. In particular, we prove sharp L?-estimates for Nikodym maximal functions
associated with spheres. As a corollary, any Nikodym set for spheres must have full
Hausdorff dimension. In addition, we consider a class of maximal functions which
contains the spherical maximal function as a special case. We show that L7 -estimates
for these maximal functions can be deduced from local smoothing estimates for the
wave equation relative to fractal measures.

1. Introduction

A set A C R" of zero Lebesgue measure is a Nikodym set for spheres (respectively,
unit spheres) if for every y in a set of positive Lebesgue measure, there exists a sphere
(respectively, unit sphere) S containing y such that AN S has positive (n — 1)-dimensional
Hausdorff measure. The existence of these sets was first proven in two dimensions in [6].
We extend the construction to all dimensions. (See Theorem 1.1.)

Associated to these Nikodym sets are the following Nikodym maximal operators:
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where S%(0) denotes the §-neighborhood of the unit sphere S*~1. N f(x) is the supre-
mum of averages of f on the §-neighborhoods of every unit sphere passing through x,
while for §% we allow the radius to vary. We show that these operators are bounded
on L?(R"™); furthermore, we show that in our bounds, the dependence on § is sharp for
every p and n. (See Theorems 1.2 and 1.5.) As a corollary, we conclude that all Nikodym
sets for spheres have full Hausdorff dimension. (See Theorem 1.4.)
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Restricting the set of translation to a compact T C R”, we also study the uncentered
spherical maximal operators:

(13) Nrf@)=sup | | fortuty)do()]
(14) St = supsup | [ f+ 100+ ) do ().
ueT t>0 n—1

where do denotes the normalized surface measure on the sphere. These operators are
initially defined for continuous functions with compact support. If T = S™~!, then the
existence of Nikodym sets for unit spheres implies that these operators are not bounded
on L?(R") for any finite p. On the other hand, if T = {0}, St is the classical spherical
maximal function, which is known to be bounded for some range of p; see Section 1.2.
We show that if the upper Minkowski dimension of 7 is strictly less that n — 1, then N1
and St are bounded on L?(R") for some range of p. (See Theorems 1.7 and 1.10.)

1.1. Nikodym maximal functions associated with spheres

We start with a brief overview of the classical Nikodym sets and Nikodym maximal func-
tions. A Nikodym set (for lines) is a set A C R” of zero Lebesgue measure such that for
every x € R”, there is a line £ through x such that A N £ contains a unit line segment. The
existence of Nikodym sets was discovered by Nikodym [22]. Nikodym sets are closely
related to Kakeya sets (a.k.a. Besicovitch sets), which are sets in R” which contain a unit
line segment in every direction. Kakeya sets of zero Lebesgue measure were discovered
by Besicovitch [2].
In the seminal paper [8], Cérdoba introduced the Nikodym maximal function
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where the supremum is taken over all unit line segments 7 centered at x, and % denotes
the -neighborhood of 7. Lower bounds on the dimension of Nikodym sets can be obtained
from L?-bounds for the Nikodym maximal function. See, e.g., [19] for more on Kakeya
and Nikodym sets and the interplay between geometric measure theory and Fourier anal-
ysis.

The operators N % and §°% defined above in (1.1) and (1.2) are analogues of (1.5), with
spheres instead of lines. We now discuss the existence of Nikodym sets for spheres.

By adapting a construction of Cunningham [9], Héra and Laczkovich showed in [15]
that a sufficiently short circular arc can be moved (via rigid motions) to any position in
the plane within a region of arbitrarily small area; this can be considered the analogue of
the Kakeya needle problem for circular arcs.

The results in [15] were extended by Csornyei and the first author, who showed that
if one removes a neighborhood of two diametrically opposite points from a circle, the
resulting set can be moved to any other position in arbitrarily small area, see Corollary 1.3
in [6]. In fact, they studied a Kakeya needle problem variant for all rectifiable sets, not just
circles. See Theorem 1.2 in [6].
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Our first result is a higher-dimensional analogue of Theorem 6.9 in [6], specialized to
spheres.

Theorem 1.1 (Existence of Nikodym sets for unit spheres). There exists a set A C R"
such that:

(1) A has Lebesgue measure zero.
(2) For all y € R", there are a point p, € R" and an (n — 1)-plane V,, containing 0
such thaty € p, + S" Vand p, + (S""1\ V) C A.
Also, the mappings y +— py, and y > V), are Borel.

The set A from Theorem 1.1 contains, for every y € R”, a unit (n — 1)-sphere contain-
ing y up to a great (n — 2)-sphere. It is a prototypical Nikodym set for unit spheres. The
proof of Theorem 1.1 closely follows the proof in [6] for the case n = 2, but we include
an outline in Appendix A for the sake of completeness.

Due to the existence of a Nikodym set for unit spheres, for any finite p, the L”-
operator norm of the maximal function N § (see (1.1)) cannot be bounded uniformly in §
as § — 0. The following theorem determines the L?-operator norm || N Sprrr up to a
factor of 6 ¢ for an arbitrarily small ¢ > 0. Here and in the following, we denote by A < B
and A 5 B the inequalities A < CB and A < C,§~°B for any ¢ € (0, 1/2), respectively,
for some absolute constants C, C, > 0.

Theorem 1.2.
(i) Whenn =2,

1N |l Lo @2y Loy S
1

2<p<o0
Whenn = 3,
83/2—5/(2P)’ 1<p<3/2,
IV lr@sysrr@sy S 4 8Y27VP, 3/2<p=<2,
L, 2<p<oo.
When n > 4,

§273/P, 1< p<4/3,
[N NLr@my—rr@ny S § 8Y271P, 4/3<p<2
1, 2<p<=<o0.

(ii)  The powers of § in part (i) are sharp for alln > 2 and all 1 < p < oo.

Part (i) of Theorem 1.2 is proved in Section 2, while part (ii) follows from Proposi-
tion 5.1. The proof of the upper bounds relies on geometric estimates on the intersections
of §-annuli of unit spheres; see Appendix B.1.

Remark 1.3. In Theorem 1.2, the sharp bound §'/2~1/? holds for n/(n — 1) < p < 2 for
dimensions n = 2, 3, 4. From this observation, one might conjecture that this pattern con-
tinues in dimensions n > 5, but that is false. This is related to the following phenomenon



A. Chang, G. Dosidis and J. Kim 4

in R” for n > 4: the sets

L 1 n—2 — L n—3
ﬁs x {0} and B.—{(0,0)}xﬁS

have the property that every unit sphere centered at a point in A contains all of the set B.
This is explained in more detail in Proposition 5.1 and Remark 5.2.

A=

Although a Nikodym set for unit spheres can be small in the sense of Lebesgue mea-
sure, it must be large in the sense of Hausdorff dimension. Indeed, by a standard argument
(see, e.g., Lemma 11.9 in [35] or Theorem 22.9 in [19]), Theorem 1.2 (i) for the case p =2
implies that the Hausdorff dimension of any Nikodym set for unit spheres in R” must be 7.
In fact, we show the same is true for Nikodym sets for spheres (not necessarily associated
with unit spheres):

Theorem 1.4. Any Nikodym set for spheres in R"™ must have the Hausdorff dimension n.

To prove Theorem 1.4, we need to consider a larger maximal function § § (see (1.2)),
where each average is taken over the ®(§)-neighborhood of every sphere through x of
radius ¢ € [1,2]. Again, by the standard argument mentioned above, an estimate

188l r ®my—> L@y S 1

for some p < oo implies Theorem 1.4. Thus, Theorem 1.4 is a consequence of the follow-
ing sharp estimates for the L”-operator norm of §°.

Theorem 1.5.
i) Whenn =2,

51/2_3/(217)’ 1< < 3’
I o) % { § 1Ee

Whenn > 3,

1-2/p
§ < ) , 1< p= 2,
I8°llLe Rmy—>Lr@®™) = { 1. 2<p<oo.

(i1)  The powers of § in part (i) are sharp for alln > 2 and all 1 < p < oo.

Part (i) of Theorem 1.5 is proved in Section 3, while part (ii) follows from Propo-
sition 5.3. In fact, we prove a more general result for maximal operators obtained by
replacing the supremum over u € S"~! in the definition of % by the supremum over
u €T for compact sets T C R” with finite (n — 1)-dimensional upper Minkowski con-
tent (see (1.9) for a definition). The same holds for the case of N % and Theorem 1.2; see
Remark 2.7.

We sketch the proof of the L3(R?)-estimate for §°. By duality, it suffices to get a good
bound on || ); lcf | L3/2(r2) for a certain collection of circles {C;} of radius comparable

to 1, where Cf denotes the §-neighborhood of C;. Under the identification of a circle
{x € R? : |x — y| = t} with the point (y,?) € R? x (0, c0), we show that the collection
of circles satisfies the following condition:

(1.6) #{i : C; € B} <§7%r foranyball B C R? of radius r > §
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(see Lemma 3.3). The L3/2 estimate is then covered by a recent result of Pramanik—Yang—
Zahl (Theorem 1.7 in [24]). See Proposition 3.5 for a slightly more general version of their
result specialized to circles to be used for the proof, and see Theorem 1.13 for a version
of Proposition 3.5 in terms of the wave equation.

‘We note that the maximal function studied by Kolasa and Wolff [16,31],

5 1
AN W= s e [ w1
satisfies the bound ||W®||L»®n)—Lr(1,2)) S | precisely when [|S%]|Lr®n)—Lr@®n) S 1.
This is not a coincidence. It has to do with the fact that a duality argument for W¢ also pro-
duces a “one-dimensional" set of circles {C;} in the sense that it satisfies (1.6) with §~1r
in place of §2r." In Section 3.3, we discuss a general maximal theorem associated with
spheres which covers both W% and $% under the same framework. Regarding Wolff’s
L3-bound for W9 for the case n = 2 from [31], see also [24,26,34,36,37] for different
proofs and extensions to more general curves.

1.2. Uncentered spherical maximal functions

For a compact set T C R”, recall the definition of S7 given in (1.4). When T = {0}, St
is the (classical) spherical maximal function,

(18) sfw=swp | [ retmdo),

>0 Sn—l
which is known to be bounded on L?(R") if and only if p > n/(n — 1), thanks to the
seminal works of Stein [29] (when n > 3) and Bourgain [3] (when n = 2). For n = 2,
the same bound holds for the case T = {u} for any u € S', which is a consequence of
Sogge’s generalization [27] of Bourgain’s circular maximal theorem.

If T = S"!, §7 is not bounded on L?(R") for any p < oo due to the existence of
Nikodym sets for unit spheres. In fact, for the same reason, the maximal function N1
(see (1.3)), defined without the supremum over ¢ > 0, is unbounded on LZ?(R") for
any p < oo.

Some positive results can be obtained for both N7 and S7 when T is in between these
two extreme cases, with the range of boundedness dependent on the dimension of 7. In
particular, we show that N7 and St are bounded on L? for some finite p if there exists
some 0 < s < n — 1 such that T has finite s-dimensional upper Minkowski content, i.e.,

(1.9) N(T,8) <875, forall§e(0,1/2),

where N (T, §) denotes the §-covering number, the minimal number of balls of radius §
needed to cover 7.

Remark 1.6. The condition (1.9) implies that 7" has upper Minkowski dimension at
most s. Conversely, if the upper Minkowski dimension of T is d, then (1.9) holds for
all s < d. See, e.g., Chapter 5 of [18] for the definitions of upper Minkowski dimension
and content. We do not need them in this paper.

IThe “one" in “one-dimensional" refers to the exponent of r in (1.6).
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Theorem 1.7. Letn > 2 and 0 < s <n — 1. Suppose that T C R" is a compact set with
finite s-dimensional upper Minkowski content (see (1.9)). Then Nt is bounded on LP (R™)

(i) whenn =2 and

p>1+4s,
(i) whenn = 3 and
1 5-=-2
p>1+min(£, ) s),
2 3—s5 9—4s
(iii)) whenn > 4 and
1 —
p>1+min( ', ) nos )
n—1 n—s 3n—s)—2

We prove Theorem 1.7 in Section 4.2. The following proposition, proved in Sec-
tion 5.3, contains necessary conditions for the boundedness of N7.

Proposition 1.8. Letn > 2 and 0 < s < n — 1. Suppose that Nt is bounded on L? (R")
for all compact sets T satisfying (1.9). Then

s
, 0<s<l,
n—1
( ! SN WY )) l<s<2
max , »yI3—2n—19)), § = Z,
pzl+ n—1 2n—-3
2 1-— 1
max( ,s—i— [S], ,3—2(n—s)), 2<s<n-—1.
2n—3 n4+1—Js] n—|s]+1

Remark 1.9. For the range 1 < s < 2, the term 3 — 2(n — s) is negative for n > 4 and is
relevant only for n = 3.

We note that the range of boundedness in Theorem 1.7 does not match with the nec-
essary conditions of Proposition 1.8 in general, but they do agree for the range 0 < s < 1
up to the endpoint. In particular, the bound for n = 2 in Theorem 1.7 is essentially sharp.
In Figure 1, we graph the two ranges in the case n = 5 as an example.

In the case of 7, which also includes dilations, we have the following bounds.

Theorem 1.10. Letn > 2 and 0 <s <n — 1. Suppose that T C R" is a compact set with
finite s-dimensional upper Minkowski content (see (1.9)). Then St is bounded on LP (R™)

for

. 4s —2
2 4+ min (l,max (s, —)), n=2,
2—ys

1+ [n—1—s+max(0,min(1,(2s —n +3)/4)]"', n=>3.

p >

We prove Theorem 1.10 in Section 4.4. We examine the lower bounds for p given in
Theorem 1.10 in two extreme cases:

(1) For s = 0, the lower bound for p is n/(n — 1). This matches the critical exponent
for the boundedness of the spherical maximal function S (defined in (1.8)).

(2) In the limit s — n — 1, the lower bound for p converges to 3 for n = 2 and 2 for
n > 3. This matches the critical exponents in Theorem 1.5.
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Figure 1. Range of boundedness of N7 in the case n = 5. The blue and red lines indicate the
boundaries of sufficient and necessary conditions, respectively.

We also obtain, in Section 5.4, the following necessary conditions for $7 to bounded
on L?(R").

Proposition 1.11. Letn > 2 and 0 < s < n — 1. Suppose that St is bounded on L? (R")
for all compact sets T with finite s-dimensional upper Minkowski content. Then

ax(l—([ﬂ—s)/Z’ 1 ) 5
- 14 n—([s1+2)/2 n—|s|/2/° -7
p= l4+s—Ts] 1 ,
ax( n—[s] ’n—LsJ)’ =4

In general, the sufficient conditions in Theorem 1.10 for the L?-boundedness of St
do not match the necessary conditions in Proposition 1.11, but there are a few cases where
they do match (modulo the endpoint). The sufficient conditions are sharp modulo endpoint
forn =2and 0 <s < +/3— 1 and forn = 3 and s = 1. Another case when the two bounds
match is when s is an integer greater than or equal to (n 4+ 1)/2. This can be observed in
Figure 2 when s = 3, where we graph the range of boundedness for S7 whenn = 5.

The boundedness of the spherical maximal function S (defined in (1.8)) implies that
there is no set of Lebesgue measure zero in R” containing a sphere centered at every point
in R”. This was proven independently for n = 2 by Marstrand [17]. This is in contrast
to the existence of Nikodym sets for spheres. Similarly, Theorem 1.10 has the following
geometric consequence. We refer the reader to Section 3.5 in Chapter XI of [30] for the
implication.

Corollary 1.12. Letn > 2, let A C R” be a set of Lebesgue measure zero, and let T C R"
be a compact set with finite s-dimensional upper Minkowski content for some 0 < s <
n — 1. Then for almost every y € R", the (n — 1)-dimensional Hausdorff measure of the
set AN (y + t(u 4+ S™7V)) is zero for everyt > 0 and everyu € T.

Corollary 1.12 is sharp in the sense that it fails to hold for 7 = S"~! satisfying (1.9)
for s = n — 1 due to the existence of Nikodym sets for spheres. Indeed, for a set A and
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Figure 2. Range of boundedness of S in the case n = 5. The blue and red lines indicate the
boundaries of sufficient and necessary conditions, respectively.

amap y — p, as in Theorem 1.1, the set A N (y + u, + S"!) has positive (n — 1)-
dimensional Hausdorff measure where u,, = p, —y € S"~L.

Although Corollary 1.12 follows from Theorem 1.10, it does not require the full
strength of it. Indeed, it is possible to obtain L?-bounds for a smaller range of expo-
nents p by using the local smoothing estimates for the wave equation, which is enough to
deduce Corollary 1.12. We learned this observation from the authors of [12]. There is a
related result due to Wolff [34] and Oberlin [23] (see also [20]): a Borel set containing a
set of spheres of Hausdorff dimension larger than 1 (as a subset of R” x R ) must have
positive Lebesgue measure.

Next, we discuss the proof of Theorem 1.10. It is well known by the work [21] that
bounds for the circular maximal function S can be deduced from local smoothing esti-
mates for the wave equation. For the case of ST, we observe a similar connection between
L”-bounds and fractal local smoothing estimates for the wave equation. To describe frac-
tal local smoothing estimates, we fix some notation. For each 0 < « < n + 1, we denote
by €(«) the class of non-negative Borel measures v supported on R” x [1, 2] such that

(1.10) v(Br) <r¢,

for any ball B, C R"*! of radius r forany 0 < r < I.

Suppose that u(x, ) is the solution to the wave equation with initial data u(-,0) = f
and d,;u(-,0) = 0. A version of fractal local smoothing estimates for the wave equation
is concerned with the ratio between ||u||L¢®r7x[1,2],) and the L?(R") norm of f whose
Fourier transform is supported on the annulus {£ € R” : || ~ §71} for § € (0, 1). Even
when v is a constant multiple of the Lebesgue measure, this is a difficult open problem
for n > 3, which was settled for the case n = 2 by Guth—Wang—Zhang [11]. We refer
the reader to Section 1 in [11] for earlier results for n = 2 and partial results in higher
dimensions. For fractal measures, the problem has been studied in [7, 10, 13, 14, 32] for
the case p = 2, and sharp results are known for n = 2, 3. For the case p > 2, Ham—Ko—
Lee [12] obtained some sharp estimates and used them to prove L?-improving estimates
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for the circular maximal function relative to a class of fractal measures as a corollary. To
be precise, the class of measures considered in [12] is different from €(«) in that (1.10)
is required for every r > 0, but this does not really change the problem since the local
problem on By X [1, 2] is equivalent to the global problem on R” x [1, 2] for estimating
u(x,t); see, e.g., Lemma 2.6 in [12]. We use results obtained in the papers [7, 12] for the
proof of Theorem 1.10, which is summarized in Theorem 4.11.

For the n = 2 case, we need an additional ingredient: Proposition 3.5 (cf. Theorem 1.7
in [24]) discussed earlier. We reformulate the result in terms of the wave equation and
spherical means.

Theorem 1.13. Letn =2 and v € €() for o = 1. Suppose that u(x, t) is the solution to
the wave equation with initial data u(-,0) = f and d;u(-,0) = 0. If the Fourier transform
of f is supported on {§ € R? : |E| ~ 871} for some § € (0,1/2), then

(1.11) lullzsey S 872 1 fllLswe)-

Moreover, if p > 3 and v € €(a) for some a > 1, then

(1.12) I Ave fliLrwy S If e w2

for f € LP(R?), where Avg f(x,t) denotes the average of | over the sphere of radius t
centered at x.

The estimate (1.11) can be stated in terms of the inhomogeneous Sobolev norm:

lullL3ey < 113,172+

for any ¢ > 0. It implies a version of Wolff’s circular maximal theorem

lellz3qr,21,200@®2y) S 1S 113,1/2+4¢

from equation (2) in [31] by a linearlization argument; see [12].

In [12], it was conjectured that (1.12) holds for any p > 4 —« when 1 <« <2,
which was proved for & > 3 — +/3. This conjecture would imply L?(R?)-estimates for
the maximal function §7 for compact 7 C R? with finite s-dimensional upper Minkowski
content for every 0 < s < 1 and p > 2 4 s, which would be sharp except possibly for
endpoint.

Organization of the article

We organize the paper as follows. We study the maximal functions A% and 8% and prove
Theorem 1.2 (i) and Theorem 1.5(i) in Section 2 and Section 3, respectively. We prove
Theorem 1.7 and Theorem 1.10 in Section 4. Section 4.4 contains a discussion on a
geometric approach to fractal local smoothing estimates and the proof of Theorem 1.13.
We prove lower bounds for maximal functions considered in this paper in Section 5. In
Appendix A, we sketch the proof of Theorem 1.1, and in Appendix B, we prove volume
bounds for the intersection of annuli used to study A% and 9.
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2. The Nikodym maximal function A% associated with unit spheres

In this section, we prove Theorem 1.2 (i). It suffices to show that

2.1) IVl S 871 (n>2),
(2.2) N8|z roo < 1 (n >2),
2.3) IV L2mr2 S (log(1/8)"/2 (n > 2),
(2.4) 1NNl ar2s o S 876 (log(1/8))1/? (n > 3),
2.5) NN Lassspas < 674 (log(1/6)"/*4 (n > 4).

The bounds (2.1) and (2.2) are straightforward, so it suffices to prove the remaining three
bounds.

2.1. Reduction to geometric estimates
In this subsection, we reduce Theorem 1.2 (i) to the following geometric lemma.

Lemma 2.1. There exists an absolute constant Cgiam > 0 such that the following is true.
Letn > 2,6 € (0,1/2). Let {S;}ier be a collection of unit spheres in R" whose centers
lie in a set of diameter at most Cgiam. Suppose that for each i, there exists w; € S; such
that {w; }ie1 is a 8-separated subset. Then we have the following estimates.

Forn > 2,

(2SPH) 5"y S8 N SP| < 8%log(1/8) foreachiel.
jeIl
Furthermore, forn > 3,

(3SPH) 82" Y 1SP NSNSyl < 8% 1og(1/8) foreachiel.
J.kel

Furthermore, for n > 4,

(4SPH) 8 Y IS nSinSpn S| <8 1og(1/8) foreachicl.
J.k el

Remark 2.2. Since #/ < §7", we can view (2SPH) as a bound on the average size of
|Si5 ns }S |, taken over all j. (Recall i is fixed.) Thus, ignoring logarithmic factors, (2SPH)

says that in the worst case configuration, the “typical” |Si‘S N S]‘.3| is at most of size §2.
Similarly, we can view the left-hand sides of (3SPH) and (4SPH) as averages (taken over
all j, k and over j, k, £, respectively). In the worst case configuration, the typical volume
of the intersection is at most of size §°/2 and 8, respectively.

Remark 2.3. With the same assumptions as in Lemma 2.1, we have the following esti-
mate for all dimensions n > 4 and all m > 4:

(mSPH) §(m—Dn Z Nas Sfl N---NS% | <8log(1/8) foreachiel.

Jm—1
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This follows immediately from the trivial bound
) ) ) § § § )
IS/ NS; N---NSy | <18 NS; NS;, NSl

the estimate (4SPH), and #I™~* < (§7")"~*. The power of 3 in (mSPH) cannot be
improved; this is related to Remark 1.3 and Remark 5.2. (The estimate (mSPH) is not
needed to prove Theorem 1.2(i).)

To prove the reduction, we will need the following standard duality argument (see,
e.g., Proposition 22.4 in [19]). For the convenience of the reader, we include a proof.

Lemma 2.4 (Duality). Let 1 < p,q < oco. Let {w; } be a maximal §-separated set of points
in R". Then

1NV | Lo @y La@my S 8" sup H D a 106
i

Lr'@®ny’
where the supremum is taken over all choices of unit spheres S; > w; and a; > 0 such that
DY a? = 1. The implied constant in O(8) is absolute.

Proof. Let fe L?(R"). We make the following observation: if |x — x’| < § and S is
any unit sphere containing x, then there exists a unit sphere S’ containing x’ such that
§% c (8")?%. Thus,

(2.6) if [x —x’| <8, then N® F(x) S NOD 7£(x)).
Combining this with duality of £9 spaces and Holder’s inequality,

(2.6)
<

1/q
19 fllzaeny 5 (328" W O f@®) ™ = sup 3 8"a; K0P f (o)
i i

< 8" sup E ai/ | /11500 < 8" " sup H E ailgow)
- RrR” i ; i
1

L &) I e @y

where the supremum is taken over all choices of unit spheres S; > w; and a; > 0 such that
’
8” Zl a:] = 1 u

Proof that (2SPH) implies (2.3). Let {w; };c; be a maximal §-separated set of points in R”.
For each i, let S; be a unit sphere containing w;, and let a; > 0 be such that

2.7) "> af =1.

iel

By Lemma 2.4, it is enough to show

2.8) [ > aigs
iel

2
< 8272 10g(1/8).
L@ S og(1/8)
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We partition R” = | J,, P such that each P, has diameter at most cgi,m and the
2-neighborhoods of P,, have bounded overlap (depending only on n). We let /,, be the
set of i € I such that the center of S; is in P,,. Bounded overlap implies that

2.9) #{m: Y ailg(x) # 0} <, 1 foreachx e R",
iel,

This gives

2
H ;ai Lss L2(R™) Z H Z Pl 2@y

=3 3 a,-|Sf NSHMV2a;|SEnSHYV2 <" S a?|sin s
m i jely m i jely

(2SPH) ) ) 2.7 .

S 8 "og(1/8) Y ) a} = 827" log(1/6),

m iel,

where we used Cauchy—Schwarz in the middle inequality. This proves (2.8). ]

The proofs that (3SPH) implies (2.4) and that (4SPH) implies (2.5) are similar to the
proof above. In place of Cauchy—Schwarz, we apply Holder to get

” Zal S8
Hzailss <
i 114
i 1

We prove (2SPH), (3SPH) and (4SPH) in the next three subsections.

Za ISP n st nsh,

4,06 § § §
Z at1sinsinsinsy
i,j,k,L

2.2. Two spheres

In our proof of Lemma 2.1, we frequently use the estimate below. In applications of this
estimate, x; is the center of a unit sphere containing w;.

Lemma 2.5 (Weighted counting estimate). Let n > 2. Let {w;} C R" be a §-separated
set. For each j, let x; € R" be a point satisfying |w; — xj| = 1. Then for any a € R" and
any0 < P <Q <1,

§nQotl if @ >—1,
(2.10) > (la— x| +8)* Sam { §7" log 325 if @ =—1,
(P + 8t if o < —1.

j
P<la—x;|<0Q

Proof. First we note the following: if § < p < 1 and |a — x;| < p, then w; must be in the
O(p)-neighborhood of the unit sphere S"~! + a. Since {w;} is §-separated,

2.11) #(j tla—x;| < p} S57"p.
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Thus,
Y la-xl+8"s > . 2sem o 2t
J LeZ J LeZ
P<la—xj|=Q P+8352'50 |a—x;|+8~2¢ P+§s2'50
and the result follows. [

With Lemma 2.5 and an elementary estimate on the intersection of two spheres (see
Lemma B.1), we can easily deduce (2SPH).

Proof of (2SPH). Let x; denote the center of S;, so that |[x; — wj| = 1. By choosing
cdgiam < 1/2 (say), we can apply the volume bound for the intersection from Lemma B.1.
This gives

(B.3) §2 (2.10)
sinsé| < < 828" log(1/é),
PBGE D e I 0g(1/8)
i J
which completes the proof. ]

Remark 2.6. A Fourier analytic proof of the L2 bound (2.3) is given in Theorem 4.7.

2.3. Three spheres

Before proving (3SPH), we provide some informal remarks and motivation. To prove
(3SPH), we will use estimates on the intersection of three unit spheres, Lemma B.2. In
the proof in the previous section, we avoided external tangencies between two spheres by
making cgiam small. However, for three spheres in R3, there is a “tangential” configuration
that cannot be avoided, even if we make cgj,m small: Roughly speaking, if we have three
well-separated points a, b, ¢ € R? that lie on a unit circle, then S%(a) N S¥(b) N S%(c) is
approximately a “tube” of dimensions § x § x §1/2,

On the other hand, if a, b and c lie on a circle of radius bounded away from 1, then
the three spheres intersect transversely and the volume is O(8%). In Lemma B.2, there are
different estimates depending on this circumradius.

If we choose all our unit spheres {S; };c; so that their centers lie on a fixed unit circle,
then the typical triple intersection is roughly §°/2. (This is related to the “tube” example
in the proof of Proposition 5.1.) The bound (3SPH) asserts that this is essentially the worst
configuration.

Proof of (3SPH). We adopt the following notational conventions in the upcoming calcu-
lations:

* We let x; denote the center of S;.

* We let M;j, m;iji and R;;; denote the longest side length, shortest side length, and
circumradius, respectively, of the triangle with vertices x;, x; and x.
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We choose cgiam smaller than the constant ¢, in Lemma B.2, so that we can apply
Lemma B.2 to every term in the left-hand side of (3SPH). We split the sum over j and k
into three parts:

Z|S§nsfns;§|5 Z ISP N Sin s

Jsk Jik
i —xp | <|xi—x; |

- T+ o- oz

Jk Jk s
lxi=xpl<lxi—x;|  lxi—xe|<lei—x;| |xi—xel<|xi—x;]
mijxSN/8 mij 28 mij 28

Rijr=<1/2 1/2=R;jp <2

(By (B.7), we do not need to consider triples with R;;; > 2.) We now bound each of the
three terms by the right-hand side of (3SPH). Note that the condition |x; — x| < |x; — ;|
implies

(2.12) Mijk ~ |x,- —Xj|,

(2.13) mijg = min(|x; — xgl, |x; — xgl)-

For the first term, we reduce to the case of two spheres.

(2.13)
> = 2 Isins) > 1
J.k J k
i =g | < |xi —x; | |3 —xk | S /8 or |xj —xx | SV/E
mije S8
(2.10) (2SPH)
S 5Ty NSt < 5781287782 log(1/6).

J

For the second term, we use the volume bound for the intersection of three unit spheres
when the circumradius is bounded away from 1. This gives

B.8
DR D T
jk e Miemi
i —xp | <lxi —x; | i =xic | <|xi —x; |
miEz8 mij2VE
Rijp<1/2
(2.12) 1 1
S8 Y —=m X
~ iy Mijk
Ixi—x; 12 +/8 i =Xk | <|xi —x; |
miij«/g
(2.13) 1 1 1
D ] (D SR D ol
~ X —x] i — x| 1xj — xkl
x;i—x;12/8 VS |xi—xp|<xi—x;| V8| —xpc | Slxi—x;|
(2.10) 1 .1

0)
< 838" log(1/8)8"8Y/2.

< 857" log(1/8) >

~ i
Ix;i—x;12 /8
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For the third term, we use the remaining volume bound for the intersection of three
unit spheres. This gives

(B.6) 1
O
~ M2 2
Jik jik ijk "Mijk
i —xpe | <[xi —x; | —xg | < xi —x; |
mijk 28 miji2N/8
1/2<R;jp <2 1/2<R;jp <2
(2.12) 1 1
< §5/2 - - I
I e S
J ij
lxi—x; |28 |2e; —2xg | <lxi —2x; |
mij 28
(2.13) 1 1 1
< §5/2 - T - -
- Xj: |xi —x;]3/2 Xk: |xi — x| 1/2 Xk: |xj — xe|'/2
|xi—x; 125 VoS |xi—xp |<|xi—x;] VBZIxj —xp | Slxi—x; |
(2.10) 1 (2.10)
< §%/25 — xi— x|V < 828787 log(1/8).
; o pa g(1/
lxi—x;j 12 /8
This completes the proof of (3SPH). ]

2.4. Four spheres

We again begin with some informal remarks. Unlike in the proofs of (2SPH) and (3SPH),
here we do not need an analogue of Lemma B.1 and Lemma B.2 for four unit spheres.
If four unit spheres in R* are centered on S2 x {0} C R*, then the intersection of the
§-neighborhoods has dimensions approximately § x § x § x 8'/2. However, it turns out
there is an arrangement with larger intersections.

If we place unit spheres centered on the circle «/LE S1 x {(0,0)} C R*, then all of
1

7 S!. This implies that the intersection of the
§-neighborhoods of four spheres has volume like §3. (This is related to the “radius 1/~/2”
example in the proof of Proposition 5.1.)

Note that, in this configuration,

these spheres contain the circle {(0,0)} x

1
SimSjmSk=SimSjﬂSkﬁSz={(0,0)}XESI,

so the fourth sphere does not contribute to the intersection. This suggests that the trivial
estimate

(2.14) ISP nsinsinsil<isinsinsg|

might not lose too much in some situations. Indeed, our proof begins by relabeling j, k, £
and applying (2.14), and this is why we do not need an analogue of Lemma B.2 for four
spheres.
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Proof of (4SPH). Let m;;r¢ denote the length of the shortest edge of the tetrahedron
formed by x;, x;, xx, X¢. By symmetry in j, k, £, we can assume the shortest side length
is [x; — x¢| or |x; — x¢|. Under this assumption, we use (2.14), giving us the estimate

8 8 8 8 8 8 8
dYusinsinsinsf|s > 1S nsinsi.
Jokt Jk,t

myjrg=min(|x; —xg|,[x; —x¢)

We further split the sum into two terms, depending on whether m;jxs < ~/6 or m;jxe 2 Vs,
and we now bound each of these terms separately.
For the m;jre < V/§ term, we use (3SPH):

> <Y Isinsins]| > 1

Jsk,t J.k {
mijre=min(|x; —x¢|,|x; —x|) min(|x; —xg|,|x; —x¢)S/8
mijke<V8

(2.10) (3SPH)
S 5Py ISEnsinsy| < 87 81285/2 72  10g(1/6).

Jk

For the m;jry 2 NG term, we use the n > 4 case of Lemma B.2, the fact that m;;; >
m;jk¢, and arguments similar to those of Section 2.3:

(B.3) 1
< 8 T E— 1
> D
ks ik ik TR ¢
myjig=min(|x; —xg|,|x; —x¢|) mijkz‘/g min(|x; —x¢l,1x; —x¢|)<m;ji
mijieZ 8
(2.10) 1 1
3¢—n 3¢—n
s 85 S 6% > e
J.k ijk J.k ijk
mij 28 [x; —xp | <|xi—x; |
mijz 8
@) 1
< 867" _ 1
|xi—x;12/8 Vs |xi—xp | <|xi—x; |
(2.10) 1 (2.10)
S 88T Y ——— 5 88788 log(1/5).
=~ =Xl
Ixi—xj12 /8
This completes the proof of (4SPH). |

Remark 2.7. Let T C R”. For § € (0, 1/2), we define

Nﬁf(x)zsup f(x+u+y)dy|.

1
uel )ISS(O)I 5%(0)

Note that N}S = NS forT =S" 1,
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If T is any compact set with finite (n — 1)-dimensional upper Minkowski content
(recall (1.9)), then Theorem 1.2 (i) also holds if we replace N § with NT‘S. To see this, we
only need to make the following changes to Lemma 2.5:

(1) In the statement of the lemma, we replace |@w; — xj| = 1 withx; —w; € T.

(2) Inthe proof,if § < p <1land|a — x;| < p, then w; — a must be in the O (p)-neighbor-
hood of —T'. Since {w; } is §-separated, the covering condition on 7 implies (2.11).
The rest of the proof is unchanged.

3. The Nikodym maximal function S? associated with spheres of
varying radii

In this section, we give a proof of Theorem 1.5 (i). In fact, we will prove a slightly more
general result. For a compact set T C R”, consider the maximal function

1
[ (x) =sup sup ——— (x+t(u+y)dy|.
P/ = 2 0 s e

We recall that $% = S% for T = S" 1.

Theorem 3.1. Letn > 3. Suppose that T C R”" is a compact set with finite (n — 1)-dimen-
sional upper Minkowski content (see (1.9)). Then

IS8 fllL2@ny < (og8™ )Y || £ 112 @ny-

Theorem 3.2. Letn = 2. Suppose that T C R”" is a compact set with finite (n — 1)-dimen-
sional upper Minkowski content (see (1.9)). Then for any ¢ > 0,

8 —
187 fllLaw2) Se 67 ° 11 fllLaw2)-

Note that Theorem 1.5 (i) is a consequence of interpolations between bounds from
Theorems 3.1 and 3.2 and trivial L! and L™ bounds.

3.1. Proof of Theorem 3.1

We first note that the maximal function S% is local in the sense that if f is a function
supported on a ball B of radius 1, then S;i f is supported on a ball of radius O(1) sharing
the same center with B. Therefore, it is sufficient to bound § 75~ f on aball of radius 1.

We first generalize the counting result (2.11) to any compact 7 satisfying (1.9) for
s = n — 1. In what follows, we identify a sphere S(x,?) = {y € R" : |y — x| =t} with
the point (x,7) € R**1. Accordingly, given spheres S; and S;, |S; — S;| denotes the usual
distance between two points in R”*1,

Lemma 3.3. Let 0 <s <n. Suppose that T C R" is a compact set such that N(T,5) <675
for all § € (0,1/2). Let {w;} be a §-separated set of points of R". For each i, we let
S; = Si(x;, t;) be a sphere, where t; € [1,2] and x; = w; + tju; for some u; € T. Then

#{i :Sie By S87"p"
for any ball B, C R"*! of radius § < p < 1.
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Proof. Let (x,t) € R™*! be the center of B,. Since 1; € [1, 2], without loss of generality,
we may assume that ¢ € [1,2]. We claim that ; belongs to (x — tT)9®) if S; € B,,. Since
the volume of (x —tT)2® is O(p"~*), it may contain O(§~"p"~) §-separated set of
points w;, which completes the proof.
To verify the claim, it suffices to show that |w; — (x — tu;)| = O(p). By the triangle
inequality,
lwi — (x — tui)| < [x; — x| + [t —1][uil.

The claim follows from the assumption S; € B, and the compactness of 7. ]

We are ready to prove Theorem 3.1. By the same duality argument for A%, it suffices
to prove the following: let {w; } be a §-separated subset of R”; then

<logd~!
Lo S 108

3.1) 5" sup H Sailg
i

where the supremum is taken over all choices of spheres S; = S;(x;, t;), where x; =
w; + tiu; for some #; € [1,2] and u; € T, and a; > O such that §" ) _; ai2 = 1. We know
that by Lemma 3.3, any such collection of spheres satisfies the bound

(3.2) #{i :S;i € By} < Ap

for A ~ 67", for any ball B, C R”*1 of radius § < p < 1. Hence, (3.1) is a consequence
of the following.

Proposition 3.4. Letn > 3,6 € (0,1/2), and A > 0. Let {S;} be a collection of spheres
of radius comparable to 1 satisfying (3.2) for any ball B, C R"*! of radius § < p < 1.

Then
) —141/2 2
HZallsis LZ(Rn)SSIOgS A (Zai)
1

4

1/2

for any a; €0, o0).

Proof. The proof is a minor modification of the proof of the L2 bound (2.3) for N?.
Therefore, we only indicate necessary modifications. In Section 2.2, we replace |x; — ;|
by |S; — S;| and use Lemma 2.5 with |a — x;| replaced by |.S; — S;|. L]

Proposition 3.4 cannot be extended to the n = 2 case. This is due to the fact that
the volume bound |Si8 ns j§| < % used in the proof fails to hold for n = 2 in

general; indeed, |Si8 ns J§| ~ 83/2 for two internally tangent circles S; and S 7 such that
[S; —Sj| ~ 1.

3.2. Proof of Theorem 3.2

By the duality argument in Lemma 2.4, it suffices to prove that, for p’ = 3/2,

RA

L,

i

(3.3) § sup H Y ailes
i

L¥ (R?)
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where the supremum is taken over all choices of circles C; = C;(x;, t;), where x; =
w; + t;u; for a §-separated set of points {w; }, t; € [1,2] and u; € T, and a; > 0 such that
82y af’ = 1. As in the proof of Theorem 3.1, (3.3) is a consequence of the following.

Proposition 3.5. Letn =2,8 € (0,1/2),0 < A < § 9D Let {C;}ies be a collection of
circles of radius comparable to 1 satisfying

(3.4) #iel:C; e By<Ar/s

for any ball B C R3 of radius § < r < 1. Then
H Z ICf
iel

where C depends only on € and on the O(1) constant appearing in the upper bound of A.

< C§E AV (S#1)*/3,
L3/2(R2) —

To be more precise, for (3.3), we use a strong-type inequality
2/3
. < 41/3 3/2
H Za’ IC{S L32R2) A (8 Zai )
iel iel

for any a; > 0. This inequality follows from the restricted strong-type inequality in Propo-
sition 3.5 by an interpolation argument (see Lemma 4.15 for details). Applying it with
A~ 8§71 gives (3.3).

Proof. Proposition 3.5 is a consequence of [24]. We provide some details. We may assume
that {C;);e; C B for afixed ball B C R3 of radius ~ 1 as we may assume that the centers
of the circles {C;};es lie in a set of diameter ~ 1 (cf. (2.9)). First note that if #/ < A,
then (3.4) also holds with (#1)(r/8) on the right-hand side. Thus, it suffices to prove this
theorem when #1 > A.

Fix ¢ > 0. We define a random subset J C I by including each i € I independently
with probability p = §%/A. First, by the Chernoff bound and #/ > A4,

#] \S%p#l
d ) < exp(—§7%).

P#J > 82 p#l] < (———o
# = pHI] = (8—2€p#1

(In the second inequality, we assume § is sufficiently small, depending on ¢.) Similarly,
by Chernoff and (3.4),

ep#{iel :C; e B}
57¢r/s

§7¢r/§
Pl#{ieJ :Cie B} > §°r/s) 5( ) < exp(—57°)

for any ball B C R? of radius > §. (In the second inequality, we assume § is sufficiently
small, depending on ¢.)

As noted in Section 2 of [24] (see the part after equation (2.14)), with probability
1 — O(873 exp(—8¢)), both of the following occur.

(3.5) #] <5 X p#I,
(3.6) #HielJ:CieBY<86°r/§ foranyball B CR? of radiusr > §,
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Next, by Jensen’s inequality,

3/2
el e ol
ieJ ieJ

3/2

e P

3/2°

so the event
3.7) H 3
ie]

occurs with probability at least

3/2

ST ]
3/2 7 2 Z cl

3/2

3/2

Since 4 < § %M we have
861 3/2
3 exp(—6%) <« (A) .

Thus, there exists a J C I such (3.5), (3.6), and (3.7) all hold, so we can apply Theorem 1.7
in [24] (see the second remark after the theorem) to obtain
3/2 (? 7)

pEip HZlCig \» HZ cs
iel

which completes the proof. ]

2 S8 0@ g4y " < §7 0@ ps#r,

3.3. Maximal functions associated with spheres

We discuss a class of maximal functions associated with spheres which include §° as a
special case. Let 2 C R™ be a set of measure |2| < 1 for some m > 1. Suppose that for
each w € Q, we are given a collection of spheres € (w) C R” x [1,2]. Then for f:R"” — R,
we define the maximal function M.g, f:2 —> Rby

M f(w) = sup |;_8|‘[95f’

Set(w)

where S% denotes the §-neighborhood of the sphere S in R”.
We give some concrete examples. Let £ C R” be a ball and 7 C R” be a compact set
with finite (n — 1)-dimensional upper Minkowski content (see (1.9)). If we take

C(w) ={(®+tu,t) e R" ' e Tt €[1,2]},
then M¢ = 85. When Q = [1,2] and
€(w) = R" x {0},

then M is the maximal function W3 (see (1.7)).
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We make the following assumptions on the collection {€(®)}yeq-
(MAX1) Forany 0,0’ € Q with |0 — o'| < 8, Mg f(0) S MEP f(o).
(MAX2) Let {w;} C Q2 be a §-separated set and S; € € (w;) for each i. Then

#{i:Si€ B, <8

for any ball B, C R"*! of radius p € [§, 1].

Note that these assumptions are satisfied in both of the above examples. Therefore, the
following result generalizes Theorems 3.1 and 3.2 as well as results from [16,31].

Theorem 3.6. Let {€(w)}peq be a collection satisfying the assumptions (MAX]1) and
(MAX?2). Then, forn > 3,

||Méf||L2(sz) < (logs™1H)1/2 If 22 ®n)-
Forn =2,
IME fllzs@) S 1/ L@

We omit the proof since it is similar to the proof of Theorems 3.1 and 3.2.

4. The maximal functions A7 and S7

In this section, we prove Theorem 1.7, Theorem 1.10 and Theorem 1.13.

4.1. Reductions using Littlewood-Paley theory

We first start by discussing a standard reduction using Littlewood—Paley theory. Let
be a smooth function such that 1/f is a radial function supported on {§ : 1/2 < |§] < 2},

0< 1# <1, and ZJEZ w,(é) =1 for any £ # 0, where wj(é) W(Z J£). We also let
V=Y j<k ¥j» whose Fourier transform is a smooth bump function supported on {&:

|E| < 2k*1}. In addition, we fix a function ¥ whose Fourier transform is supported on
{€:1/4 < |&| <4} suchthat Y = ¥ * . We set

U 6) = @778, sothat ¥y =y * .

Let o; be the measure on S"~! defined by 6:(§) =o6(t§). For t ~ 1, an elemen-
tary computation shows that ¥; * o; is O(2/) and decays rapidly away from the O(27/)
neighborhood of tS"™ 1 To be specific, we have forall j > 1and N > 0,

lyj 00 ()] SN 271+ 27||x| =tV <y 270+ x7V,

A.1)
oo * o¢(x)] Sv (1 + XN,

In the following, we write

Avefteni= [ S+ ) o) = £ ra)
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Proposition 4.1. Let j > 1. If

(4.2) | sup sup | Ave(f * Y+ D pgmy < AlLS Loy

ueT 1<t<2

holds for some 2 < p < co and A > 0, then

43)  [supsup sup |Ave(f * ¥0)(- + 2 1w, 2' Dl oy S ANS ILrn-
leZ ueT 1<t<2

Let 1 < p < oo. If there exists ¢ > 0 such that

@4 |supsup sup [Ave(f * v ) + 210, 2' D1 gy S 2771 f oy
leZ ueT 1<t<2

forall j > 1, then St is bounded on L? (R").

Proof. The proof is standard, so we just give a sketch. Using a rescaled version of (4.2),
we get

|| supsup sup |Avg(f * ;) (- + 2ltu,2]t)| HZ,(R,,)
leZ ueT 1<t<2

=2 lsup sup | Ave(s %) (- + 2t 2017

leZ, uel 1<t<

< AP Z ”f * vlj—l”{p(Rn) < Ap”f”ip(ﬂgny
leZ

In the last step, we used the embedding /2 < [? and the Littlewood—Paley theory.
Next, we make the decomposition

St f(x) =sup sup sup |Avg f(x + 2'tu,2't)]|

1eZ ueT 1<t<2

4.5) <Y supsup sup |Ave(f * ;) (x + 2'tu, 20))

j>1 1€Z uel 1=t=2

+sup sup sup |Avg(f * ¢_;)(x + 2 ru,2'1)).
l€Z ueT 1=<t<2

Assuming (4.4), we may bound the first term in (4.5) by using the triangle inequality
and the exponential decay in j. The second term in (4.5) is bounded pointwise by the
Hardy-Littlewood maximal function of f:

4.6) supsup sup |f % @_; * 0y,(x + 2ltu)| < My f(x).
leZ ueT 1<t<2

Indeed, a rescaling of (4.1) implies the pointwise estimate
lo_s % op,(x +2' )| <277 4+ 27 x + ru) ™V <27 (1 4 27 k)N

fort ~landu € T as |tu| < 1. Therefore, St is bounded on L?. |
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Here we record a weak-type estimate to be used later.

Lemma 4.2. For every j > 1,

” sup sup sup |Avg(f * ¥;_1)(- + 2’tu,21t)|HLLoo(Rn) <2/ | f L mny-
l€Z ueT 1<t<2

Proof. Tt follows from the pointwise estimate (cf. (4.6))

sup sup sup | f x vy % o, (x + 2'10)| S 2 My £ (x)
leZ ueT 1<t<2

and the fact that My, is of weak type (1, 1). |

4.2. Proof of Theorem 1.7

We prove Theorem 1.7 in this subsection. The approach here also provides a Fourier ana-
lytic proof of the L2-bound (2.3); see Theorem 4.7 below. We note that this subsection is
independent of the remainder of this section and will not be used for the proof of Theo-
rem 1.10.

We recall the decomposition of the measure

G=O*¢0+ZO*1//]'.
Jj=1

We note that ¢o and v, satisfy similar bounds, so Theorem 1.7 is obtained by summing
over the following frequency localized estimates Proposition 4.3 and Proposition 4.4.

Proposition 4.3. Letn >2and 0 <s < n.? Suppose that T C R" is a compact set with
finite s-dimensional upper Minkowski content (see (1.9)). Then for 1 < p <2,

H Sug,w |f * Y5 % o(-+u)| ”p < min(z*j(nflf(nflﬂ)/}?)’27.i(n*sf(nfs+l)/p)) £l
ue

Proposition 4.4. Let n > 3 and 0 < s < n — 1. Suppose that T C R”" is a compact set
with finite s-dimensional upper Minkowski content. Then

9—4s __ 7-3s

[ sup 17 # v x o -+, 270N, (n=33/2<p<2),
ue

3n—2-3s _ 2n—
2

1-2s
7O fll, (n=4.4/3<p<2),

| sup | %y %o (- + ], 5277
ueT

where A < B means A S, 2/¢ B for any & > 0.
For the proof of Proposition 4.3, we discretize T by using the frequency localization.

Lemma 4.5. Let T; be the collection of centers of balls of radius 277 covering T. Then
for p>1,
['sup 1 % v %0 )ll S HT; 11 %95 %01,
ue

2Unlike many other bounds in our paper, this bound is valid for 0 < s < n.
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Proof. Let W;(x) = 2/"(1 + 2/ |x|)~@ ) so that ||W;||z1 ~ 1 and [y (x)| S ¥;(x).
Note that if |x — xo| < 27/, then ¥;(x) < W;(xo). Therefore, by using ¥; = v; * V;,
we obtain

|f * ¥ *o(x +u)| S1f *y; * 0l * W;(x +uo)

4.7
“.7) SIS * ¢y *o|p*\llj(x+u0)]1/”,

whenever [u — ug| < 27/ In the last inequality, we have used Holder’s inequality.
Using (4.7), we get

sup | [ x Y ko (x +u)|? < sup | f gy x 0|« Wj(x +u).
ueT

u€eT;

Therefore, we have

sup | f * ¥ xo(x +u)|? < Z|f*wj*0|p*l11j(x+u)

ueT uer;
< [1rswrol -y + 0B 0)dy,
u€eT;
Integrating the expression over x completes the proof. ]

Proof of Proposition 4.3. We first recall a standard estimate
(4.8) If * 9y x ollLe < 277O7DATVD | £
for 1 < p < 2. To see that, one interpolates
Lf * vy * ol SISl and |If %y x o2 S 277 D2 £,
which follow from the pointwise estimates (cf. (4.1) and (4.13))
@9) Iy xo@ SPA+2x|— 1) and |y 0@ 272,

Next, we cover T with a minimal number of balls of‘radius 2_j . Let T} be the col-
lection of centers of these balls so that #7; = N(T,27/) < 2%. Then by Lemma 4.5
and (4.8),

(4.10) [ sup 1S vy %o +wll, < G2 1S * 95 %ol
ue
< 98J/p p=j(=1)(1-1/p) ||f||p

Note that (4.10) is one of the claimed bounds.
We give the other claimed bound by using a different L !-estimate, which is better for
s > 1. The pointwise bound (4.9) shows that

[y xo(x)] S2/(1+ |xp~V.
‘We use this bound to obtain

[ xox+wl SPNS1xA+ DM +u) SP0f1+ A+ - D7V,
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which holds for any u € T because T is compact. The pointwise estimate implies

| sup |f % ¥« o (- +wl]|, 27 1/ 11
ueT

Interpolating this with the L2 bound from (4.10) gives the other claimed bound. ]

To prove Proposition 4.4, we need, for § € (0, 1/2), the §-regular version of Nr,
defined by

1
NE () = sup | s
T ver 11550 Jsi 0y

Note that JV% = N0 for T = S"!. We also need the following, which relates Nﬁ and N7 .

f(x+u+y)dy|.

Lemma 4.6 (Relations between Nﬁ and N7). Let 0 < § < 1. Given a function ¢, we let
Ps5(x) = 8" p(x/3).
(1) We have
NE L) S Nr(f | ¢5)(x)
for any integrable ¢ > 1p, () and any integrable f. Consequently,
IN2|Lr—ra S INTllLr—La.
(2) Conversely, if ||</V7‘§||Lp_>Lq < A(8) for a non-increasing function A = 1, then
[N (f * ds)llLe < AG) 1 ILr
for any Schwartz function ¢ and any fe LP.

Lemma 4.6 seems standard; e.g., see Lemma 5.1 in [25] for a version of the second
statement for the circular maximal function. We include a proof for the sake of complete-
ness.

Proof. Note that
@.11) § M gso) S 87" 1,00 %0 S 8" 1gas(g).-
Since ¢ > 1p,(0), We have @5 * 0 (x) 2 6715y (x) by (4.11). Therefore,
NP S(x) 5 sup /] % g5 * 0/(x =) = Nr(1f | % ¢3)(x).
ue

For the second statement, we note that ¢ (x) decays rapidly away from Bg(0). Using
a dyadic decomposition, we get
N
psl o) S Y 27N @) T g g (x) + TN

§<2k§<1

* 0(X).

by (4.11). Therefore,
— k+1
||<NT(f*¢8)||q§||Su¥|f|*|¢8|*a(‘_”)"q§ Yo 2NN T fllg + 8NN £ N
ue

§<2k§<1

Since A(2%8) < A(8) for k > 0 by the assumption, the claim follows from summing over
the geometric series. u
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Proof of Proposition 4.4. We use the L>/? and L*/3 bounds from Section 2. Since T has
finite s-dimensional upper Minkowski content and s < n — 1, it follows that 7" has finite
(n — 1)-dimensional upper Minkowski content. By Remark 2.7 and Lemma 4.6, we obtain

[sup 1/ = vy xoC4wllyp 522N Mo (0 23),
ue

[sup £ x vy xoC+uwllys <720 f ey @0z 9.
ue

Interpolating these with the p = 2 case of (4.10) gives the desired bounds. |

We note that Theorem 1.7 and Lemma 4.6 imply bounds for || V. 7‘5 |L2—rr uniformin §
for a range of p provided that 0 < s < n — 1. For the case s = n — 1, we give a Fourier
analytic proof of the L2-bound (2.3) by using Proposition 4.3.

Theorem 4.7. Let 0 < 6 < 1/2 and let T C R" be a compact set with finite (n — 1)-
dimensional upper Minkowski content. Then

§—@/p=1 for 1 <p <2,

NilLr—er 3
INFllLr—Lp { (log 5—1)1/17 for 2 < p < oo.

Proof. Without loss of generality, we may assume that f > 0. Let ¢5(x) = § "¢ (x/5),
where ¢ is a function satisfying ¢ > 1p, (9) with a compact Fourier support. By Lemma 4.6,
it is enough to estimate the L?-norm of N7 (f * ¢s).

We recall the decomposition 0 = @o * 0 + ;- Y * ¥ * o from Section 4.1. In
the following, we suppress the term @ * o, as it behaves similar to ¥ * ¥ * 0.

IN7Fllp S IN7Cf % 9)lp < 3 | sup If * s % ¢ vy x o -+l

j=1 U
S Y 27D f s s
j=1

where the sum in j is a finite sum for 2/ < §~! due to the frequency localization of ¢;.
We have used Proposition 4.3 in the last inequality. Since || f * ¢s * 1/;]_ lp S 11flp, this
yields the claim for 1 < p < 2.

For p = 2, we use Cauchy—Schwarz and Plancherel to get

- - 1/2
INE £l S DS %0 sl S Qogs™)Y2 (D11 # s+ 051)
J J

< (log6™)2 |1 f |-
The case p > 2 follows from interpolation with the trivial L bound. ]

Remark 4.8. For n = 2 and the range 1 < p < 2, Theorem 4.7 yields slightly better
bounds than the proof in Section 2, since here, there is no logarithmic factor.
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4.3. Spherical averages relative to fractal measures

In this section, we relate (4.2) with spherical averages relative to fractal measures. We
recall that € («) is defined in (1.10).

Lemma 4.9. Let T C R" be a compact set with finite s-dimensional upper Minkowski
content for some 0 < s < n — 1. Then (4.2) holds if

(4.12) I Ave(f * ¥i)llLrwy = Allf e @
holds for any v € €(a) witha = n — s for some A > 0 independent of f and v.

Proof. First, we note that it suffices to prove a local estimate of the maximal function on a
unit ball. This can be seen from the decomposition /= >, fo, where fo is supported
on a lattice unit cube Q and then observing that the function | fo * ¥; * 0; (- + tu)| decays
rapidly away from O(2¢%/) neighborhood of Q for some ¢ > 0. See, for instance, the proof
of Lemma 2.4 in [12] for details.

We use the Kolmogorov—Seliverstov—Plessner linearization, cf. Chapter XIII of [38].
For given measurable functions ¢: R” — [1,2] and u: R” — T, define

Tj f(x) :=f * Y * 00y (x +1(x)u(x)) = Avg(f * ;) (x +1(x)u(x), 1(x)).

Then it suffices to prove that there exists a measure v € € («) for « = n — s, such that

IT; fllLery < I AVE(S * i) llLr ),

where the implicit constant is independent of z, u and f.
Let / be a positive linear functional on C.(R” x R) defined by

I(F) =/F(x+t(x)u(x),t(x))dx.

Then by the Riesz representation theorem, there exists a unique Radon measure v on
R" x R such that

I(F) = f F(x,t)di(x,1).

Let y > 0 be a smooth function such that 1 BL = X< 1 BI. for a sufficiently large absolute
constant C = Cr > 0. With F(x,1) = | Avg(f * ;) (x,1)|? x(x)n(¢) for a smooth cutoff
function 1[12) < n < 1[1/2,4], We have

01 =10 ~ [ 1ave(s w0l v,

where we set dv(x,t)=c x(x)n(t)dv(x,t) for some small absolute constant c=c, 5,7 >0.

It remains to verify that v € €(«) for @ = n — s provided that ¢ > 0 is sufficiently
small (cf. Lemma 3.3). To see this, fix a ball B;’H centered at (xg, fp) € R” x R and
with radius 0 < r < 1. We may further assume that 0 < r < 1/2, since any ball of radius
comparable to 1 is a union of O, (1) balls of radius 1/2. Observe that

V(B < el{x € R™ ¢ x4+ 1(x)u(x) — xof* + [1(x) — 10> < r?}|.
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We may assume that #9 ~ 1, since otherwise the set under consideration is empty. Note
that if [x + #(x)u(x) — xo|?> + |t(x) — to|> < r2, then by the triangle inequality and the
assumption that 7" is compact,

|x +tou(x) — xo| < [x +1(x)u(x) —xo| + [((x) —to)u(x)| < r.
0 x € xg — (toT) 9. Therefore,
V(B! < clxo — (0T)%| = c|tT)?| £ er"N(toT. O(r)) S er" ™.
This finishes the proof. ]

We now discuss the connection between spherical averages and the half-wave prop-
agator e!’V—2 associated with the Fourier multiplier e?!é/. By the method of stationary

phase (see, e.g., [28]), one may write

(4.13) G(E) = e'la (&) + e la_(®),

for a satisfying |0™ax(§)| < (1 + |£])~®~D/2=Iml for each multi-index m. Therefore,
for ¢t € [1, 2], we may write

@14y Ave(f *y)(x.1) =27 023" [ eNEEEl o (1, 8) fH(€) dE,
+

where . L
aj(t,€) =270V 4 (t8) Y (E)n(t) € C®(R" x [1/4,4])

for a smooth bump function 7 supported on [1/2, 4]. We note that a; 4+ (¢, £) is supported
on{(&,t):|&| ~2/,t ~ 1} and satisfies

(4.15) 0407 a; < (t.6) Sy 27"V

for every / > 0 and multi-index m. Since the contribution from + and — terms in (4.14)
can be handled similarly, from now on we shall ignore the contribution from the — term.

We state a version of Sogge’s local smoothing conjecture for the wave equation to be
used later. Let I C (0, 4) be a compact interval. The conjecture asserts that

(4.16) e =2 (f * Y)lle@oxr) S 27D\ f e ®n)s

wherea(p)=m—1)/2—n/pforp>2n/(n—1)anda(p) =0for2 < p <2n/(n—1).
We will later use, in Lemma 4.15, the fact that the local smoothing estimate (4.16) holds
for some p > 2n/(n — 1); we may take, for instance, p =2(n + 1)/(n — 1) forevery n > 2
by the Bourgain—Demeter decoupling inequality for the cone [4]. We refer the reader to [1]
for a nice survey of the theory of Fourier integral operators and local smoothing estimates.

Proposition 4.1 and Lemma 4.9 reduce L?-estimates for St to estimates for spheri-
cal averages relative to fractal measures (4.12). In view of (4.14), such estimates can be
deduced from local smoothing estimates (4.16) with the Lebesgue measure on R” x [
replaced by measures v € €(«). We recall some special cases of known results in this
direction from [7, 12].
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Theorem 4.10 (Theorem 3.1 in [7], see also Theorem 3.3 in [12]). Letn >3, 1 <a <n
and v € €(a). Then

9—in=1)/2 ”eit«/—A (f * ) 9—J min((@—1)/2,(n+2a—5)/8) ||f||L2(R")~

Mezw) =
We note that the bound is sharp whenn =3 orl <o < (n —1)/2; see [7].
Theorem 4.11 (Theorem 1.5 in [12]). Letn =2, 1 < @ < 2 and v € €(«). Then there
exists ¢ = (o, p) > 0 such that
272 YA (f x ) leewy S 275 ey
for p > max(4 — «, (6 — 2u) /).

For the proof of Theorem 1.10, we additionally need the following estimates, which
are better than Theorem 4.11 for 1 < a < 6/5 for n = 2, and better than Theorem 4.10
fora > (n + 3)/2 forn > 3.

Proposition 4.12. Letn =2, 1 <« <3 and v € €(«). Then there exists ¢ = e(«, p) > 0
such that

(4.17) I Ave(f * V) llLrewy S 27781 fllLr e
for any p > 3. Moreover, forn > 2,
(4.18) lAve(f * ¥)l2wy S 2722 flla@en).

Proposition 4.12 will be proved in Section 4.4 using the geometric input from Propo-
sition 3.5.

4.4. A geometric approach to fractal local smoothing estimates

In this section, we prove Proposition 4.12, Theorem 1.10 and Theorem 1.13. The proof
relies on a geometric characterization of fractal local smoothing estimates. We first recall
the following basic properties of measures in € («) defined in (1.10).

Lemma 4.13 (cf. Lemmas 2.7 and 3.1 in [12]). Letve€(a), N >n+ land 1 <g < 0.
If F is a function whose Fourier transform is supported on B"+t1(0, O(8™")) for some
8 € (0,1/2), then

(4.19) IFllLawy S NF|lLa@sws )

where
Ws () =8 DA 487z )™V forze R
Moreover,
() v *Ws n Lo S 8% CFD,
@) v = \IIS,N||L°°(]Rnx[2fl,5.2—1]c) < §N—(n+1)
(iii) fBr v« Ws v S r® forany ball B, C R"t! of radius r €[5, 1].

In the above estimates, the implicit constants may depend on n, N and o.
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From now on, we fix § =27/ « 1 and write 5 := ¥ ;. Note that the Fourier transform

of the function (x, 1) - e’V ™2 (f % ¥5)(x) is supported on a truncated cone contained
in a ball of radius ~ § . Thus, we obtain the following corollary.

Corollary 4.14. Letv e €(x) and 1 < g < oo. Then
"2 (f % Ys)llLay S 8@/ || V=A(f % ys) | Lamrx)-

Lemma 4.13 essentially follows from proofs of Lemmas 2.7 and 3.1 in [12]. How-
ever, our definition of the class of measures €(«) is slightly different from that paper in
that we only require 0 < r < 1 in the condition (1.10), which necessitates a few minor
modifications. For completeness, we sketch the proof.

Proof of Lemma 4.13. Inequality (4.19) follows from the fact that, by the Fourier local-
ization of F, we have |F |7 = |F % y5|? < |F|? * |ys| for a smooth function yg satisfying

Vs ()| SN Ws.n(2)-
For the bounds on v * Wy », we use the dyadic decomposition

o
(4.20) v Ws y(z) S 857D N "2V y(B(2, 2'6)).

1=0
In the sum over /, we consider the following parts separately: (a) § < 2/§ < 1, and (b)
2!§ > 1. For part (a), we use v(B(z,r)) < r% for r < 1, while for part (b), we use
v(B(z,r)) < Cr™*™1 for r > 1, which follows from covering B(z, r) by balls of radius 1.
Combining these estimates, we obtain (i). For (ii), we need to use the additional fact that if
zeR"” x [271,5-271]¢, then v(B(z,2'8)) = 0 whenever 2§ < 271, since v is supported
on R”" x [1,2].

For part (iii), we consider again two cases separately: (a) § < 2/§ < 1, and (b) 2! > 1.

Note that

/ v(B(z,2!8)) dz =/|B(z/,2l5)mB,|dv(z’),
Br

where the Lebesgue measure |B(z’,2!8) N B, | is 0 unless z’ belongs to the ball of radius
r + 2!8 centered at the center of B,. For part (a), we use

/ |B(z',2'8) N B, | dv(z') < min(2'8, r)"T! max(2!8, r)®.
For part (b), we use

/ U(B(szlg)) dz < (218)n+lrn+1 < (218)n+1ra_

r

Summing over / in each case and applying (4.20) yields the claimed bound. ]

For each z = (x,1) € R” x [1,2], let z¥ and S%(x, ) denote the §-neighborhood of
the sphere S(x,t) ={y e R" . [x —y| =t}.ForO<a <n+ 1and A > 0, let X(«, 6, A)
be the class of §-separated set of points X in R”*1 such that

4.21) #(X N By) < Ar®

for any ball B, C R"*! of radius 7 € (8, 1] and X* c R” x [1,2], where X® denotes the
§-neighborhood of X . Here A may depend on §, and we may assume that 0 < 4 < §~+1D,
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Lemma4.15. Letn >2,0<8 <K 1,0<a <n+1,and1 < p < g < 0. Consider the
following statements:

(4.22) H Z 1,s L < sAVa@x)VY, forany X € X(a,§, A).
zeX
(4.23) H Sats| 5 5A1/q(2 la |q’)1/q/ forany X € X (.8, A)
: zrz Ly ~ z ’ y I) .
zeX zeX

@.24)  § D2V (f syl ey S (A" f I,
forany X € X(a,d, A).

425)  §O D2t VA(F s ylewy S I lr@ny.  foranyv € €(@).
426) [ Ave(f * V)L S I lLr@n), forany v € €(@).

Then (4.22) = (4.23) = (4.24) = (4.25) = (4.26).

Let 2n/(n — 1) < p, < 0o be an exponent for which the LP»(R") — LP»(R" x I)
local smoothing estimate (4.16) holds. When a > 1, all the above statements are equivalent
to the following: for any (1/p, 1/q) in the open line segment connecting (1/p,1/q) and
(1/ pn, 1/ pn), there exists € > 0 such that

4.27) I Ave(f * ¥s)llaqy < 8°If Lsmny foranyv € C(a).

Remark 4.16. Forany M = M5 ,, o .4 >0, the chain of implications from (4.22) to (4.26)
holds under the replacement of < by $ M in each inequality. Moreover, the implication
(4.25) = (4.26) holds with $ replaced by < M in both inequalities.

Remark 4.17. We may take any finite p, > 2(n + 1)/(n — 1) for the exponent p, in
Lemma 4.15 for every n > 2; see the discussion following (4.16).

Remark 4.18. Without loss of generality, we may assume that each X € X («, §, A) is
contained in a unit ball in this section. This is because (4.22) is equivalent to its local
version concerning X € X («, §, A) contained in a unit ball.

Before proving Lemma 4.15, we give proofs of Proposition 4.12, Theorem 1.10 and
Theorem 1.13.

Proof of Proposition 4.12. Let n = 2. We have (4.22) for p = g = 3 by Proposition 3.5
forany 1 <« < 3. Fix p > 3 and p, > p such that the local smoothing estimate (4.16)
holds at the exponent p,. Then (4.17) follows from Lemma 4.15 for I < o < 3.

Next, let n > 2. By the implication (4.25) = (4.26), (4.18) follows from

(4.28) €72 (f * Yp)llzeey < 27702 fll o me)-

Note that (4.28) is a consequence of Corollary 4.14 (and Remark 4.16) and the Plancherel
theorem. ]

Proof of Theorem 1.10. Letn = 2. In view of Lemma 4.15, we know that (4.17) holds for
p > min (3, max (4 — «, (6 — 2«) /«)) by combining Theorem 4.11 and Proposition 4.12.
By Proposition 4.1 and Lemma 4.9, St is bounded on L?(R?) for the same p-range with
o = 2 — s, which completes the proof for n = 2.
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Let n > 3. By Proposition 4.1, Lemma 4.9 and Lemma 4.15, the estimates from The-
orem 4.10 and Proposition 4.12 imply

| supsup sup | Ave(f * v+ 2 0. 2 D) o geny

leZ ueT 1<t<2
< 2—] max((¢—2)/2,min((e—1)/2,(n+2a—5)/8)) ”f”LZ(]R")

for « = n — s. By interpolation with the weak-type estimate in Lemma 4.2, there exists
& = &(p) > 0 such that

| supsup sup | Ave(f * v;—1)(- + 2" 1w, 20| Ly gy S 2771 f Loy

leZ ueT 1<t<2

for p > 1 4+ (max(n —s — 1, min(n — s, (3n — 25 — 1)/4)))~!. Therefore, by Proposi-
tion 4.1, St is bounded on L for the same p-range. |

Proof of Theorem 1.13. We recall that the solution u can be written as
u(x,r) = cos(tv—A) f(x) = ”'_Af(X) + eTIVTAf ().

Therefore, the inequality (1.11) is a consequence of Proposition 3.5 and Lemma 4.15.
The inequality (1.12) follows from Proposition 4.12 by summing up frequency localized
estimates (4.17). [

The proof of Lemma 4.15 is fairly standard. We will use a pointwise bound for the
kernel associated with the wave propagator, which can be obtained by using (4.13);

eitm(f % 1/[8)()() — / f(x _ y) S_nK(S_ly’ 5_11) dy»
where K satisfies

(4.29) K. )l Sy (L+ 1y 2@ + |1y — )™V,

We note that the standard bound (4.29) follows from the decay and the oscillation of the
Fourier transform of the spherical measure; see, e.g., [28].

Proof of Lemma 4.15. (4.22) = (4.23). An interpolation argument can be used to upgrade
the restricted strong-type estimate from (4.22) to a strong-type estimate (4.23). To see that,
we first note the following trivial /! — L' and "’ — L estimates:

430 | Y|, 58 Z laz.

L < sup Z laz| < Haz}l x sup#(X N By)Y/”
By zeXNB;

4.21)
4.31) s AV Raz e x)-



Nikodym sets and maximal functions associated with spheres 33

We choose r = ¢/ p > 1 so that the line segment between (1, 1) and (1/r’, 1/00) contains
(1/¢’,1/p"). We first do a real interpolation between (4.22) and (4.31) to get a strong-
type [91 — LP1 estimate, and then interpolate that estimate with (4.30). As we may take
(1/44.1/ p}) arbitrarily close to (1/q’, 1/ p’), these interpolations imply (4.23), since we
are allowed to lose §7°.

(4.23) = (4.24). For any given 0 < ¢ < 1, (4.29) (with N = 100n/¢) implies that
8OV VIR (f ) ()] S6 87 [ Lgoie e /14817 f % (141 D710 ).

The term involving §1°”

e AR D S B (/ Lours /1)
zeX

q
= S_q 5”-‘1‘1(/ |f| Z a2120(51—6)> < 8_11 8”"1‘1 ”f”[l]‘p Z 622120(51—5)

zeX zeX

is harmless, and will be ignored in the following. We have

q
Ly

for some a, > 0 satisfying ) ..y ag, = 1. Applying (4.23), we obtain (4.24).

(4.24)= (4.25). By Lemma 4.13, it suffices to prove (4.25) with v replaced by v * W5 x
for some N > n + 1. Note that v * Wy » is essentially constant on §-balls in the sense that

vk Wy v(z) ~vxWs y(z)) for|z—2z'| <34.

Therefore, we have

v Wsy ~ 2 Lys
leZ

for some §-separated set of points X; C R”T1. We may assume that X; is empty when
2! < §€ for some sufficiently large C, say C = 10n, since the sum over 2! < §€ can be
handled by using a trivial inequality. Moreover, we note that X; is empty when 2! > §=C
by (i) of Lemma 4.13. Thus, it suffices to deal with the sum over O(log §~') many /
satisfying §¢ < 2! < §=€. We may assume, by taking N > C + n + I, that XIS C R" x
[271,5-27! by (ii) of Lemma 4.13. Thus, there exists / for which

(4.32) 1€ Y72 (% Us)lLawnws p) B 27717 * U)oy

Note that for § < r < 1,

§HUH(X, 1 By) S X2 0 Byl S 27 / v Wy <2700
X/ NB, s

by (iii) of Lemma 4.13. Applying (4.24) with A8"*T! ~ 27 in (4.32) finishes the proof of
the implication.

To be precise, we have to apply a slightly more general version of (4.24) which holds
for §-separated set of points X satisfying (4.21) such that X% ¢ R” x [27,5-271]. Note
that (4.22) can be extended to such a class of sets by scaling, which implies similar exten-
sions for (4.23) and (4.24) required.
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(4.25) = (4.26). Recall that we ignore the ‘—’ term in the sum in (4.14). In view
of (4. 14) this implication would be straightforward if we are allowed to replace a; 4 (¢, §)

by U(l)% (&) as the term w] (§) can be then absorbed into f as f W/ To handle
aj+(t,€), we may employ an argument which is used to prove the L?-boundedness of
pseudo-differential operators; see, e.g., Section 2 in Chapter VI of [30]. We give the argu-
ment in our setting for the convenience of the reader.

For 7 € R, define 7, .(x) = ¥ ~[a; +](t, x), so that

aj 1 (1.5) = / Te(E) e dr.

Note that the integral in (4.14) can now be written as

/e”ﬂ(m,, x [y e dr.
Therefore, by (4.14), (4.25), and Minkowski’s inequality,
| Ave(f * Ya)lLoqy < 277D [ 1B (e 5 £ % Ys) o) d
S [ I x Flusn de <1 Lo [ Inielln de

To complete the proof, it remains to observe that |7 |1 sy < (1 + |t[)72, which is a
consequence of the pointwise estimate obtained by integration by parts using (4.15):

n2(0)] < 27" (1 +27 [x[)~ D (1 + [z) 2

This finishes the proof of the chain of implications from (4.22) to (4.26).
Next, we assume that o > 1. Suppose that the local smoothing estimate (4.16) is avail-
able at the exponent 2n/(n — 1) < p, < 00, i.e.,

(4.33) SOV VTR x Ys) Lo @exir2n < 877 1S Lo @,
By Corollary 4.14 and (4.33), we obtain

8OV VTR (f s Yrs) |Lon vy S 8TV f | Lon -
By the implication (4.25) = (4.26), we have

(4.34) | AVe(f * ¥s) oy S 8@ V/Pn || £l Lonwry.-

To show the equivalence of these statements, it remains to verify that (4.26) = (4.27)
= (4.22).

(4.26) = (4.27). Since @ > 1, an interpolation of (4.26) and (4.34) gives (4.27).

(4.27) = (4.22). By summing over dyadic § = 27/ over j > 0, (4.27) implies

(4.35) I Ave fllziqy S 1/ lLsgny forany v e €(a).
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It is enough to prove that (4.35) implies (4.23) since (4.23) implies (4.22). By duality, it
suffices to show that

(4.36) (Z (é /5 |f|)q)”" < AV £l forany X € X (.8, A).

zeX

Firstly, observe that if z’ € Bs(z), then z® C (/). Thus,

/ /
(;{ (% /28 |f|)q)1 q < (225):( |B(;l(z)| /B(S(Z) (é /2,33 |f|)qdz/)1 q.

Let @s(x) = 6 "¢(x/8) for an integrable function ¢ > 1p,,. Then we have

51 [ 1715 avef 1 gn)(2)

(cf. (4.11)), which implies that
1 q\1/q _
@sn (X (5 L)) 55 Ave 1 o) licrsy
zeX z

We claim that, for a sufficiently small absolute constant ¢y > 0, the measure v given by
dv = co(A8" ) M ys (x,t) dxdt

belongs to € («). Indeed, for § < r < 1, we have
i (A" M ys < (AS"TH 71" T (X N B,ys) < (r +8)* <%
For0 < r <6,
(AS"T1) "1y < (A8 TH)1pn+l < g gynti—e < po
B,

For the last inequality, we used the fact that for any non-empty X, there exists a ball Bs
such that 1 < #(X N Bs) < A§“.
We apply (4.35) with the measure v, which yields

I Ave(| 1 * @)l Lacxsy S (A8 THOYD|F1 % gsliLs < (A8 THY £l L5.

This inequality implies, by (4.37),

(G L)) s avisies,

zeX

giving, in view of the reduction from (4.36), the desired inequality (4.23) for the pair of
exponents (p, ¢) rather than (p, ¢). However, this defect can be remedied by an interpo-
lation argument similar to the one used for the implication (4.22) = (4.23), since we may
take (p, q) arbitrarily close to (p, g) and we allow a loss of 6. |
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name n (dim) E (test set) Z (setof centers) | o | B8 y
sphere >2 sn—1 {oy 1|1 0
§-ball 2 {(0,0)} St 210 1— %
tube 3 {(0,0)} x [0, /3] Stx[0,v8] |3]0]3- 2y
cylindrical shell | > 3 [0, V8] xS"72 | 0.8 x {0y~ | 3| L] 1 ;
radius 1/+/2 >4 | {(0,0)} x % sn—3 % Stx{y"2[3|0]| 2— %

Table 1. Table of examples for N 8 The sets E and Z satisfy (5.1). The quantities «, 8 and y are
defined as in (5.2). (See Figure 3 for some pictures.)

5. Lower bounds

5.1. Lower bounds for A%
In this section, we prove Theorem 1.2 (ii).

Proposition 5.1. Let 1 < p <coand 0 < § < 1. Then

1N llLrLr 2 max(8' 7277, 1) (n =2),
1N [|Lp—Lr 2 max(§3/275/@P) §1/271p 1) (n =3),
1N |Lp—rr Z max(8273/P,81/271P 1) (n = 4).

Proof. To obtain each lower bound, we will specify a pair of sets £, Z C R” satisfying
(5.1) forallz € Z8, |E*nS%(2)| = |EY).

We view E as the “test set” and Z as the “set of centers.”
Suppose we have sets E and Z satisfying (5.1). Then

N1 gs(x) 2 671 ES| forall x e Z% + 871,

)
N1
1V = WV R o ot ppivim 28 4 g,
M gsllp
Thus,
(5.2) if [E%| > 6% and | 2% + S"7'| = 88, then | NP ||rorr = 87,
where y = (0 — 1) — (¢ — B)/ p. The sets are given in Table 1. L]

Remark 5.2. When n = 4, the “radius 1/+/2” example is also known as the Lenz con-
struction in the context of the Erdds unit distance problem. (See, e.g., Section 5.2 in [5].)
This type of example also appears in Proposition 2.1 of [16].
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(a) Cylindrical shell example. (b) Radius 1/+/2 example. (The horizontal
axis represents R2, and the two remaining
axes together represent R"fz).

Figure 3. The last two examples from Table 1.

5.2. Lower bounds for ¢

In this section, we prove Theorem 1.5 (ii).

Proposition 5.3. Let p € [1,00] and 0 < § < 1. Then
188 Lo—rr 2 max(8/273/CP 1) (0 =2),
183 Lr—rr = max(8172/7, 1) (n > 3).

~

Proof. The fact that ||S®||»—z» = 1 for all p € [1, 0o] follows from Proposition 5.1
and the fact that §° > N 8, so we only need to consider the remaining two bounds in
Proposition 5.3.

To obtain each of these two lower bounds, we will specify a pair of sets £, Z C R"
and a function r: Z — [1, 2] satisfying

(5.3) forallz e Z, |ESNS%z.r(2)| = |EY|.
This implies that $%1 zs(x) = §7'|E¥| forall x € (J,o, S(z,7(z2)), so

(5.4) if |ES| > 8% and ’ U se. r(z))( > 88 then || 8% |Lrorr = 87,
zeZ
where y = (¢ — 1) — (¢ — B)/ p. The sets are given in Table 2. |

5.3. Lower bounds for N7
In this section we prove Proposition 1.8. It is an immediate consequence of the following.

Lemma 5.4. Letn > 2. Foreach 0 <s <n — 1, let I'(n, p, s) be the set of all y € R
such that there exists E C R" and a compact set T C R" with finite s-dimensional upper
Minkowski content such that

Nrl
INr1psllr o g forall § € (0,1/2).
1gsllzr
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name n (dim) ‘ E (test set) Z (set of centers) r(z) ‘ o ‘ B ‘ y ‘
tube 2 {0} x [0, /5] [1,2] x [0, V3] 71 3104~ %
radius 1/+/2 | >3 | {0} x %S"*Z (1, 3] x {0)*! gz 2|0 1-2

Table 2. Table of examples for §%. The sets E and Z satisfy (5.3). The quantities o, B and y are
defined as in (5.4).

Then T (n, p, s) contains the following numbers:

1
(n—1)— —(@m — 1+ min(s, 1)), 0<s<n-—1,
p

3 1 3 1
n————(n———i——min(Z,s)), l<s<n-1,
2 p 2 2

1
n—[s]+1——m—=2[s]+s+2), 2<s<n-—1,
p

1
n—|s]+1—-—=m—1[s] +2), 2<s=<n-—1,
p
1 1
———Q2+s5s—n), n—2<s<n-—1.
2. p
Proof of Lemma 5.4. We choose T as follows:
(5.5) T = {011 x ¢

where Cs; C R*1 is a self-similar s-dimensional Cantor-type set; more precisely, let C; =
[1/2,1/2],and for0 <d < 1,let Cy C [—1/2,1/2] be the standard symmetric Cantor set
with Minkowski (and Hausdorff) dimension equal to d. (See, e.g., Section 4.10 in [18].)
Then fors > 1,let C; = (Cs/m)m.

For four of the five cases in Lemma 5.4, we will specify a pair of sets E, Z C R"
satisfying

(5.6) forallz € 28, H#" Y(E*nS"'(2)) = 671 |EY|.
This implies N7 1gs(x) = 81| E¥| forall x e Z% — T, so
Nrl
(5.7) if |[E%| > 8% and | Z® — T| = 8%, then W > 57,
EdSllp

wherey = (¢ — 1) — (@ — B)/ p.

The sets are given in Table 3. These correspond to the first, second, third, and fifth
cases of Lemma 5.4, in that order. For the fourth case, we use monotonicity of I'(n, p, s)
in s: since finite s-dimensional upper Minkowski content implies finite s’-dimensional
Minkowski content for all s” > s, we have

I'(n,p,s) D T(n,p, LsJ)Bn—LsJ—i—l—%(n—LsJ—i—Z). (]
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’ name ‘ range of s E (test set) Z (set of centers) o B
§-ball [0,n—1] {0} sn1 n 1 —min(1, s)
tube [1,n—1] {031 x [0, /3] $"2 x [0, /8] n—1 1— L min(2,s)
rad. 1/4/2 [2,n—1] {0y T+l ToSI1=2 | Z§n=IsT x {03171 | n—[s] + 2 [s1—s
cyl. shell [n—2,n—1] [0, /8] x S*2 [0, v/8] x {0}~ 3 n—1—s

Table 3. Table of examples for N7. The sets E and Z satisfy (5.6). The quantities & and § are
defined as in (5.7), and ¢ > 0 is a small absolute constant.

5.4. Lower bounds for St

In this section, we prove Proposition 1.11. It is an immediate consequence of the follow-

ing.

Lemma 5.5. Let n > 2. For each 0 <s <n — 1, let I'(n, p, s) be the set of all y € R
such that there exist E C R" and a compact set T C R" with finite s-dimensional upper
Minkowski content such that

ST 1gsllLr

2 8
1155 ler

Then T (n, p, s) contains the following:

[51
-4
Ls]
-]
1

(n—[s})—;(n+s—2(s]+l),

(n—Ls)) — = (n— s + 1),
P

forall § € (0,1/2).

Proof. We take T as in (5.5). For the first and for the third terms in Lemma 5.5, we will
specify a pair of sets £, Z C R” and a function r: Z — [1, 2] satisfying

(5.8)

This implies

SO

(59)  if |E®| > 8% and ‘ Je-re T)‘ > 8 then

forallz € Z,

H'YWES nS" Nz, r(2)) 2 7 EY).

Stlgs(x) = 871 E®| forallx e U(z—r(z)T),

zeZ

wherey = (@ — 1) — (¢ — B)/p.

zeZ

||ST1E5 “p
MEsllp

v
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name range of s E (test set) Z (set of centers) ‘ r(z) ‘ o ‘ B ‘
“tube” §<2 0"~ > By, | (BY™'\ BI™")x By, ), |21 | n—% | 5¢

rad. 1/+/2 §>2 {O}"ftX%S“l (Bg/;t\B¥7t)XB§ J0izrlP+5 [ n—t+1 | t—s

Table 4. Table of examples for S7. The sets E and Z satisfy (5.8). The quantities o and § are
defined as in (5.9). In both rows, Z is a set of the form Z; x Zjj, and zj refers to the components
inZy. Weletr = [s].

The sets are given in Table 4. The calculation of § here is less straightforward than in
the other proofs in Section 5 so far, so we provide some details for the “tube” example.
We have

z—r(2)T = (zr,z11) — |zt {01 X Cs = {z1} x (211 — |21] Cy),

SO

U(z—r(z)T): U {21}x< U (Z][—|Z]|Cs))

zeZ 1<|zr|<2 lzrr1<81/2
[s]
= U {zr} x (B81/2_|ZI|CS)-
1<|z7|=2

For each zj, the set Barf)z — |z7| Cy is the 81/2—neighborhood of a dilate of Cy, and thus

has ([s]-dimensional) Lebesgue measure &~ §($17)/2_ Thus by Fubini,

‘ U(Z —r(z) T)‘ ~ §([s1=8)/2

zeZ

The calculation of 8 for the radius 1/ V2 example is similar.
For the second and for the fourth terms, we use monotonicity of T, i.e., the fact that
I'(n, p,s) DT, p,|s)). ]

A. The Kakeya needle problem for S"~!

Here, we sketch a proof of Theorem 1.1. We begin with the following.

Theorem A.1 (Kakeya needle problem for spheres). Let ¢ > 0 be arbitrary. Then between
the origin and any prescribed point in R", there exists a polygonal path P = U:‘n=1 L;
with each L; a line segment, and for each i there exists an (n — 1)-plane V; containing 0,
such that

’U U (p +{x e S"1: dist(x, V;) > e})| <e.

i peL;
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The proof of Theorem A.1 is a relatively straightforward generalization of the proof of
Theorem 1.2 in [6]. Here, we provide a few details. We begin with the following two basic
estimates, which are analogues of Lemma 2.2 in [6] and Lemma 3.3 in [6], respectively.

Lemma A.2. For any polygonal path P C R" and for an arbitrary E C R", we have
|P + E| < HPUE)H(P).

Proof. If B is a ball of radius r, where r is smaller than the line segments in the polygonal
path, then for each line segment L C P, we have |L + B| < r" 1 J#!(L). Adding these
up for all line segments L and approximating E by a union of small balls, we obtain
Lemma A.2. ]

Lemma A.3. Let s > 0. Let L C R" be a line segment in the direction 6 € P"~'. Suppose
RcC{xeS":|x-0| <ée) Then|L + R| < sH'(L)H" (R).

Proof. Without loss of generality, assume 6 = e; = (1,0,...,0). Let P:R" — R be the
orthogonal projection onto ei-. Let R= R U R~, where Rt ={(x1,...,x,) € R:x1>0}.
Let f:R""! — R be given by f(y) = /1 — |y|2. Using the hypothesis on R, an elemen-
tary computation gives

1
H" (R = / JIFIVI DR dy = ~ 31 (P(RY)).
P(RT) &

A similar inequality holds for R™. By Fubini’s theorem, we have
|IL+R| < J"(L) (H" " (P(RT)) + H" " (P(RY))) <eHX"(L)H"'(R). m

Proof sketch for Theorem A.1. We identify R? as the subspace of R” spanned by the first
two standard basis vectors. By symmetry, we may assume that the prescribed point in the
statement of Theorem A.1 is in R2. Then we follow the iterated Venetian blind construc-
tion presented in Section 4 of [6]. This produces a path P C R? C R”".

As noted in Remark 4.4 of [6], the construction does not depend the set until Sec-
tion 4.8 of [6]. Starting from that point, we make the following changes:

(1) For an interval I C P!, we define
E; = {xeS" ! : there exists § € I such that x - 6 = 0}.

Here, P! is the quotient of S! obtained by identifying antipodal points together,
and S! is the unit circle in R? C R”.
(2) We use Lemma A.2 and Lemma A.3 in place of Lemma 2.2 in [6] and Lemma 3.3
in [6], respectively.
Note that if / is an interval of the form I = P!\ B(y, ¢), then E; = {x € S"7! :

dist(x, V) > ¢}, where V C R” is the linear hyperplane orthogonal to 6y, and &’ only
depends on €. ]

By considering the limit ¢ — 0 in the appropriate sense (see Section 6 in [6] for
details), we can show that Theorem A.1 implies the following.
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Theorem A.4 (Besicovitch set for spheres). For every path Py in R" and for any neigh-
borhood of Py, there is a path P in this neighborhood with the same endpoints as Py,
and there is a (n — 1)-plane V), containing 0, such that

(A1) U@+ 6\ V| =0.
pEP
Also, the mapping p — V), is Borel.

By taking countably many translates of the set in (A.1) (again, see Section 6 in [6] for
details), we can show Theorem A.4 implies Theorem 1.1.

B. Geometric estimates for annuli

B.1. Intersection of two annuli of radius comparable to 1

Let S(a, r) denote the sphere of radius r centered at a and let S% (a, r) denote its §-neigh-
borhood. We define

d(S(a,r),S(b,s)) =la—>b|+ |r—s|,
A(S(a.r),Sb,s)) = |la=b|—|r—=s||-|r +s—la—D||
In Lemma 3.2 of [33], the following bound on R2 for circles is proved:

2
(B.1) 1S%(a.r) N S (b, s)| < 8 .

Jd + 8)(A +35)

Moreover, it was shown that the distance from the line through the centers and the intersec-

tionis O(+/(A + 8)/(d + §)). Itis assumed there that the circles cannot be externally tan-

gent; i.e., |r + s — |a — b|| ~ 1. An inspection of the proof shows that the estimate contin-

ues to hold without the assumption if we adopt the above definition of A(S(a, r), S(b,s)).
We may generalize the above estimate in higher dimensions.

Lemma B.1. Letn >2,a,b € R, andr,s € [1/2,2]. Then

82 A+ 8\(n-3)2
B.2 S¥a,ryn S, s)| < — :
®-2 S%@n0s' 0.0 S 75 (755)
As special cases, if n > 3, orif n =2 andr = s, then
82
(B.3) |55(a,r)ms5(b,s)|§d+8-

Proof. The proof of (B.2) is by induction on n. When n = 2, this is just (B.1). Without
loss of generality, we may assume that the x;-axis is the line through the centers of the
spheres. It suffices to prove the inductive step

A
1S r) N 85 (b.5) 1y = O],

(B.4) 188, r) N S8(b,s)| .

A

where |S%(a, r) N S8 (b, s) N {x, = 0}] is the (n — 1)-dimensional measure of the slice
of the intersection.
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Let x’ = (x1,...,Xy—2). We use the change of variable (x,,—1,x,) > (1 cos6,usin6)
withu € R and 6 € [0, 7). Then

i3
1S% (@, r)n S, s)| = / // 155 (a.)ns5 (b.s) (X' u cos 0, u sin ) dx” [u] du d6.
0 Rr—1
Note that
L5 (a.ryns? (b,s) (X 1 €08 0,2 sIn 0) = Lgs (4 )55 (p,5) (X, 1, 0),

and it is zero unless |u| = O(4/(A + 8)/(d + 6)). This is because the distance from the

line through the centers and the intersection is O(y/(A + 8)/(d + §)) as was observed
in [33]. This consideration proves (B.4). [

B.2. Intersection of three annuli of radius 1

Lemma B.2 (Intersection of three annuli). There exist absolute constants c1,cz > 0 so
that the following is true. Suppose n > 3. Let ay, az,as € R" be distinct. Let M =
max(|lay — az|, |az — as|, |as — ay|), let m = min(|a; — as|, |ax — as|, |az — a1l), and
let R € (0, 00] denote the radius of the (unique) circle that passes through ay, az, as.
Suppose 0 < § < 1/2 and

(B.5) 182 <m <M <o,
Then
) § § 85/2
(B.6) |S%(a1) N §%(az2) N S%(as)| < R
Furthermore, in two special cases, we have better bounds:
(1) If R > 2, then
(B.7) S%(a) N S%ar) N S¥(az) = 0.
(2) If R<1/20rn > 4, then
3
(B.8) 18%(a1) N 8% (az) N $%(a3)] <
MZm

The implied constants depend only on the dimension n.

Remark B.3. Note that (B.7) and (B.8) give better estimates than (B.6). Thus, (B.6) is
only useful whenn =3and 1/2 < R <2.

Proof. Without loss of generality, we may make the following assumptions:

alsa27a3€R2CRn» |a1|:|a2|:|a3|:Rs |a1_a3|:M»|a2_a3|:mv
ar = (=M/2,(R> = M?/$)'?) and a3 = (M/2,(R*> — M?/4)"/?).
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First, we claim the following:

S%(ar) N S%(az) N S%(as)

B9 C{(x,y) eRZxR"2:xeS; NS>N B(ay,1+38),|y]? € I(x)},
where

(B.10) S; i={xeR?:|(x,a; —a3)| <28} fori =1,2,

(B.11) I(x) :=[(1=8)%—|x —a1*>.(1+8)?—|x —a;|?] forxeR2

Suppose (x, y) € S%(a;) N S%(az) N $¥(a3), with x e R? and y € R*72. Then
A=8*<|x—ai)P+y?<(1+87?* fori =1,2,3.

By subtracting these inequalities from each other, we obtain x € S; fori = 1, 2. Further-
more, the inequality for i = 1 implies x € B(ay, 1 + 8) and |y|? € I(x). This completes
the proof of (B.9), from which we deduce

15%(a1)NS? (az) N % (a3))|

(B.9)
< [y € R 21|y € ()| dx
(B.12) [slnsan(al,Hé)
(B.11)
<8 (148 =[x —ai )"/ dx,

S1NS>2NB(ay,1+6)

Note that S; is an infinite strip of width 46/|a; — a3|. Let 6 denote the angle between
the strips S; and S,. Then by elementary geometry,

T B

Note that 6 is also the angle of a3 in the triangle a1, a», asz, so by the law of sines,

- b
msind msinf

m-al M

sinf = > .
2R 4R
Thus,
28 26 166R 166R
(B.13) Slﬂszc[—ﬁ’ﬁ]X[—m—M’m—M]-

Now we prove (B.7). Suppose R > 2. By choosing ¢; large enough in (B.5), we have
S1 N S, C B(0, R/5). On the other hand, x € B(ay, 1 + §) implies |x —a;| <146 <3/2,
o)

3 R
lx| > la1| — |x —ai] ZR—EZ T

This shows S1 N S2 N B(ay, 1 4+ §) = @, which implies (B.7).

Next, we prove (B.8). We may assume R < 2. Supposen > 4 or R < 1/2. By (B.12)
and (B.13), it suffices to show

B.14) (148> —|x—a1P)®H2 <1 forallxeS; NS, N Bay, 1+ 5).
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If n > 4, then the exponent (n — 4)/2 is non-negative, so (B.14) holds. Thus, it remains to
consider the case n = 3 and R < 1/2.If x € §; NS>, then by choosing ¢, small enough
in (B.5), we have |x| < 1/4,s0 |x —ay| < |x| + |a1] < 3/4. Thus

3,2
2 .2 (2
(1+96) [x —ay|” =1 (4) > 0,

so we obtain (B.14).
Finally, we prove (B.6). As noted in Remark B.3, we may suppose n = 3 and R < 2.
By (B.12), it suffices to show

83/2

(1+8)*—|x —a1|>)"V?dx < R

(B.15) /
S1NS>NB(ai,1+8)

Write x = (x’, x”) and a; = (a},a). Define
o) = (148 = ¥ —ay )2,
so that
x€B(a1,1+8) < [x" —df| <vXx).
Suppose x € S; N S,. Then

26
x'—ay| <X+ |d}] < =
' —ail < I+ la] < o0+

=

M
2

N =

if ¢y is large enough and ¢5 is small enough in (B.5). This implies v(x’) > 3/4, so

(1487 — x — a1 > = v(@)? — | = a{* 2 v(x') — |x" — .

Thus,
/ ((1+ 8 — | — a1 )" dx
S1NS>NB(ay,1+6)
28/ M ;
< N " —1/2 " l
(B.16) N/_WM ﬁx,,lsm/(mM) (w(x) = |x" —aj)” " dx" dx'.

[x"—af|<v(x")

(Above, we used (B.13) and R < 2.) For a fixed x’, we split the inner integral into two
parts, depending on the sign of x” — a}. Each part, after a change of variables, is an
integral of the form [; t~Y2 dt, where I is an interval of length at most 6438/(mM).
Thus,

28/M  648/(mM) 2 §3/2
B.16) < T2 dtdx < ————
(B.16) /—28/M[) M32ml/2

which proves (B.15). [ ]
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