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Zero fibers of quaternionic quotient singularities

Lien Cartaya and Stephen Griffeth

Abstract. We propose a generalization of Haiman’s conjecture on the diagonal coin-
variant rings of real reflection groups to the context of irreducible quaternionic reflec-
tion groups (also known as symplectic reflection groups). For a reflection group W
acting on a quaternionic vector space V , by regarding V as a complex vector space,
we consider the scheme-theoretic fiber over zero of the quotient map � WV ! V=W .
For W an irreducible reflection group of (quaternionic) rank at least 6, we show
that the ring of functions on this fiber admits a .g C 1/n-dimensional quotient aris-
ing from an irreducible representation of a symplectic reflection algebra, where g D
2N=n, with N the number of reflections inW and n D dimH.V /, and we conjecture
that this holds in general. We observe that in fact the degree of the zero fiber is pre-
cisely gC 1 for the rank one groups (corresponding to the Kleinian singularities). In
an appendix, we give a proof that three variants of the Coxeter number, including g,
are integers.

1. Introduction

The main purpose of the present paper is to generalize the conjecture of Haiman (see
[14, 20–22]) on the diagonal coinvariant rings of real reflection groups to the class of
quaternionic reflection groups. We believe that this is the broadest class of groups (at
least in characteristic 0) for which the phenomenon observed by Haiman persists. As evi-
dence for this generalized conjecture, we prove that it holds for all irreducible quaternionic
reflection groups of rank at least 6.

1.1. Historical background

Work on this circle of ideas began with Haiman’s foundational papers [20–22], where
he proved that the dimension of the diagonal coinvariant ring of the symmetric group Sn
is .n C 1/n�1. Haiman’s conjecture is that, for an irreducible real reflection group with
Coxeter number h and rank n, there exists an .hC 1/n-dimensional quotient ring of the
diagonal coinvariant ring. Gordon proved Haiman’s conjecture in [14] by exhibiting a
certain non-commutative deformation of a quotient of the diagonal coinvariant ring, and
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together with the second author extended this result to complex reflection groups in [15].
After the appearance of [15], there was no further progress on the problem of understand-
ing the diagonal coinvariant rings of general reflection groups for many years. But two
recent discoveries suggest that there is much more to be learned.

First, in [19], one of us observed that the lower bound .hC 1/n of [15] may be fur-
ther improved to .g C 1/n, where for an irreducible complex reflection group of rank n
containing N reflections the number g introduced in [19] is

g D 2N=n:

We recall that the Coxeter number h is

h D
N CN �

n
,

with N � the number of reflecting hyperplanes, so g � h with equality precisely when
every reflection in W has order 2 (which occurs in particular when W is real).

The second discovery (in [1]) is the observation that a refinement of the strategies
employed in [14,15,19] (see also [17,33]) explains at least some of the difference between
the dimension of the diagonal coinvariant ring and the lower bound .hC 1/n. These two
discoveries together showed that the representation theory of non-commutative deforma-
tions of the quotient map V ! V=W knows far more about the structure of this map
than we had previously presumed: firstly, because there always exists an irreducible rep-
resentation L of a suitable deformation of V ! V=W with dim.L/ very close to the
dimension of the diagonal coinvariant ring, and secondly because the difference between
the dimensions seems to be accounted for by other irreducible representations. But the
reasons for the extent of this knowledge remain mysterious; we know of no a priori reason
for these phenomena. Our observation here is then that the natural generality for this mys-
terious connection is the class of quaternionic reflection groups, for which the relevant
non-commutative deformations are certain representations of the corresponding symplec-
tic reflection algebra.

1.2. Tools

In all the papers since [14], the strategy for obtaining these lower bounds is to find an
irreducible representation L of the symplectic reflection algebra (a deformation of the
ring CŒV � ÌW ) with the property that the space of W -invariants in L is one-dimensional
(actually, beginning with Gordon, it has been traditional to look for representations in
which the determinant representation of W occurs exactly once, but upon twisting by
the inverse of the determinant this amounts to the same thing). The dimension of L then
gives the desired lower bound (which turns out, in all the cases in which we can explicitly
compute the correct answer, to be either correct or mysteriously close to the truth). This is
what we will do here, after formalizing this strategy in Section 2.9.

The tactics in each case tend to be quite subtle, due to the difficulty of calculating
explicit character formulas for finite-dimensional representations of the relevant defor-
mations. In particular, the principal tool applied in [14] was the Heckman–Opdam shift
functor; in [15] it was Rouquier’s theorem [31] on the uniqueness of highest weight cov-
ers; [19] used Rouquier’s theorem together with the work [4] of Berest and Chalykh on
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quasi-invariants; and [1] used the representation-valued orthogonal polynomials intro-
duced in [16] together with the results of [17], [18] and [12]. In this paper, our main
technical input is Crawley–Boevey and Holland’s study [8] of the representation theory
of what are nowadays called rank one symplectic reflection algebras. In the end, that part
of [8] that we use boils down to a detailed understanding of how certain reflection functors
relate representations of these algebras at different values of the deformation parameter to
one another, and so part of what we do here might be thought of as directly analogous to
Gordon’s reliance on shift functors. In the remainder of this introduction, we give precise
definitions and statements of our results.

1.3. The zero fiber ring

Let F be a field, let V be a finite-dimensional F -vector space, and let W �GL.V / be a
finite group. The ring of functions on the scheme V=W is, by definition, the ringF ŒV �W of
W -invariants in the ring F ŒV � of polynomial functions on V , and the inclusion F ŒV �W ,!

F ŒV � corresponds to the projection � WV ! V=W . The most interesting fiber of this pro-
jection is the fiber ��1.0/ over 0, which we call the zero-fiber. It is the subscheme of V
corresponding to the quotient F Œ��1.0/�DF ŒV �=I of F ŒV �, where I is the ideal of F ŒV �
generated by all f � f .0/ for f 2F ŒV �W . When W is a reflection group acting in V , it
has been traditional to call this ring the coinvariant ring of W , which conflicts with the
use of the terminology coinvariant for the largest quotient object on which the group acts
trivially. Therefore we take this opportunity to refer to this ring in the more general context
of an arbitrary linear group as the zero-fiber ring. This terminology also has the advantage
of describing somewhat more vividly what the ring actually is. In the context of a repre-
sentation of a reductive group, Hilbert [23] studied the analogous object (nowadays called
the nullcone of the representation).

The degree ı D ı.W / of the zero-fiber is the dimension of the zero-fiber ring. It is
a very interesting and subtle invariant of the linear group W . When the base field is of
characteristic zero, it is not hard to see (Proposition 2.2) that we have the bounds

(1.1) d � ı.W / �

�
nC d � 1

d � 1

�
; where d D jW j and n D dim.V /.

These bounds are moreover sharp in the sense that for given d and n, there is a group W
of order d acting on a vector space of dimension n that achieves each of them. Namely,
the lower bound is achieved precisely when W is a reflection group, and the upper bound
is achieved exactly when W is a group of scalar matrices. Thus there is nothing more
to say without singling out some class of groups with more structure. Here we propose
that a particularly interesting class of groups to study is the class of quaternionic reflec-
tion groups. See, for instance, [29] (finite subgroups of the quaternions) and [13] (finite
subgroups of SL3.C/) for earlier studies of this problem for certain classes of groups.

1.4. Quaternionic reflection groups

We consider the division rings R � C � H of real numbers, complex numbers, and
quaternions (see Section 2.1 for our conventions). Let D be one of R, C, or H, let V
be a finite-dimensional right D-vector space, and let W � GLD.V / be a finite group
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of D-linear transformations of V . A reflection in W is an element r 2 W such that
codimD.fixV .r// D 1. The group W is a reflection group if it is generated by the set R
of reflections it contains. If D D R or C and W is a reflection group acting in the vector
space V , then W ˝ 1 is a reflection group acting in V ˝D H. Thus each real or com-
plex reflection group may be regarded as a quaternionic reflection group via extension
of scalars. We will refer to quaternionic reflection groups (including those that arise via
extension of scalars from real or complex reflection groups) alternatively as symplectic
reflection groups; in the next paragraph, we briefly explain the reason for this terminol-
ogy. For now, we note that according to Cohen [7], the irreducible quaternionic reflection
groups that do not arise from complex groups may be usefully divided into two classes,
the complex-primitive and complex-imprimitive groups. There are three infinite families
of imprimitive groups, two of which exist only in quaternionic rank two, and a primitive
group is one of a finite list of exceptional groups, all of rank at most five. In this paper,
we are concerned mainly with the infinite family that exists in arbitrarily large dimension
of irreducible imprimitive groups, which are certain normal subgroups of wreath products
of the symmetric group with finite subgroups of H�. We state here the consequence of
Cohen’s classification that we will need:

Theorem 1.1 (Cohen, [7]). An irreducible quaternionic reflection group that is not ob-
tained by extension of scalars from a complex reflection group is (up to conjugacy) either
a member of the infinite family Wn.�; �/ defined in Section 2.5, or of rank at most 5.
Moreover, every irreducible imprimitive quaternionic reflection group of rank at least 3
belongs (up to conjugacy) to the infinite family Wn.�;�/.

LetW be a quaternionic reflection group acting on the H-vector space V . A Hermitian
form on V is a function .�; �/WV � V ! H such that

.v1; v2/ D .v2; v1/ and .v1; v2aC v3b/ D .v1; v2/aC .v1; v3/b

for all v1; v2; v3 2 V and all a; b 2 H.
A Hermitian form . �; �/ on V is positive definite if .v; v/ > 0 for all non-zero v2V . By

the usual averaging argument, there exists a W -invariant positive-definite Hermitian form
. �; �/W V � V ! H. Now H is the (right) C-vector space with basis 1; j . The form . �; �/

may therefore be written uniquely as

.v1; v2/ D hv1; v2i
0
C j hv1; v2i

for certain C-valued functions h �; � i and h �; � i0. One checks that, in fact, h �; � i is aW -invari-
ant non-degenerate C-bilinear alternating form on the C-vector space V , and that h �; � i0

is a W -invariant positive definite Hermitian form on the C-vector space V , which are
moreover related by the formula

hv1; v2i
0
D hv1; v2 j i:

Thus each quaternionic reflection groupW produces, upon restriction of scalars to C�H,
a symplectic C-vector space V on which W acts by symplectic transformations, and such
that the resulting group is generated by elements with fixed-space of complex codimen-
sion 2 (these are sometimes known as symplectic reflections). It is this C-vector space V
together with the quotient map � WV ! V=W that we will study.
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1.5. Results and conjectures on the zero-fiber ring of a quaternionic reflection
group

The following theorem is our main result.

Theorem 1.2. LetW be either an irreducible imprimitive quaternionic reflection group of
rank at least 3 or the quaternionification of an irreducible complex reflection group, acting
in either case on an n-dimensional H-vector space V . Suppose W contains N reflections
and let gD 2N=n. Then there exists a quotient of the zero-fiber ring of complex dimension
.g C 1/n. Moreover, if W is a quaternionic group of rank 1, then the zero fiber ring is of
complex dimension exactly g C 1 D 2 jW j � 1.

We remark that in caseW is the quaternionification of a complex reflection group, the
theorem follows from the results of [19]. Therefore Theorem 1.1 reduces us to studying
the case of the groups Wn.�;�/. The assertions in the abstract follow from Theorem 1.2
by a second application of Theorem 1.1. Of course, a more satisfying explanation (for
instance generalizing what is done in [19]) would be very desirable. We state our hope
as a conjecture (which is a quaternionic version of the conjecture of Haiman [20] on the
diagonal coinvariant rings of real reflection groups; in the appendix, we prove that the
number g appearing here is an integer):

Conjecture 1.3. Let W be an irreducible quaternionic reflection group containing N
reflections and acting in the n-dimensional quaternionic vector space V . Put g D 2N=n.
Then there is a .g C 1/n-dimensional quotient ring of the zero-fiber ring of W .

We remark that by considering quotients by maximal degree elements, the existence
of such a quotient ring is equivalent to the inequality

ı.W / � .g C 1/n:

The results of [11] imply that the quotients we construct here arise from irreducible
representations that exist at generic points in a certain hyperplane in the parameter space
for the symplectic reflection algebra; the same phenomenon occurs for the representations
constructed in [19]. So one might optimistically conjecture that this happens for general
quaternionic reflection groups. One might additionally hope that these representations
produce an extension of some of the constructions from [2] to the case of quaternionic
reflection groups.

There is another phenomenon which we would like to understand: for W a com-
plex reflection group, the space of semi-invariants for the determinant representation in
the non-commutative fiber constructed in [15] is of dimension equal to the W -Catalan
number. These numbers were first introduced in [5], who conjectured part of the result
later proved by [15]; surprisingly, this same dimension occurs also for the larger non-
commutative fiber from [19]. In these cases, there is an additional internal grading on the
representations involved, and both the dimensions and their q-analogs factor nicely. In
Section 3.10, we observe a similar phenomenon for the (ungraded) dimensions of certain
spaces of semi-invariants. It would be interesting to investigate if this phenomenon per-
sists for other classes of quaternionic reflection groups, and if conjectures along the lines
of those from [32] might be formulated.
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2. Preliminaries

2.1. Quaternions

We write H for the ring of quaternions, which is the R-algebra with basis 1; i; j; k and
multiplication determined by the rules

i2 D j 2 D k2 D �1 D ijk:

The conjugate of a quaternion is written as

aC bi C cj C dk D a � bi � cj � dk for a; b; c; d 2 R,

and this defines an R-linear anti-automorphism of H. The norm jzj of z 2 H is then deter-
mined by jzj2 D zz 2 R. We write Hn for the right H-vector space of column vectors of
length n with entries in H, and thus identify EndH.Hn/ with the matrix ring Matn�n.H/
of n by n matrices with entries in H, acting on Hn by left multiplication. We will write
GLn.H/ for the group of invertible elements of this matrix ring, and define the quater-
nionic unitary group

Un.H/ D ¹g 2 GLn.H/ j gT
D g�1º;

where for a matrix g we write g for the matrix obtained by conjugating all the entries of g
and gT for its transpose. In particular, the group U1.H/�H� is the group of quaternions of
norm 1, and contains each finite subgroup � of H�. In general, the group Un.H/ consists
of the elements of GLn.H/ preserving the positive definite Hermitian form

.x; y/ D

nX
pD1

xp yp; where x; y 2 Hn.

2.2. Quaternionic reflection groups

Each finite subgroup W of GLn.H/ is conjugate to a finite subgroup of the unitary group
Un.H/. Given a finite subgroup W � Un.H/, we write

R D ¹r 2W j dimH.fix.r// D n � 1º

for the set of reflections it contains. The group W is a quaternionic reflection group if it
is generated by R. For instance, each complex reflection group produces a quaternionic
reflection group via extension of scalars. As mentioned in the introduction, Cohen [7] has
classified the irreducible quaternionic reflection groups. Given an irreducible quaternionic
reflection group we define N D jRj and g D 2N=n, an analog of the Coxeter number
of W (for the quaternionification of a complex reflection group with reflections of order
greater than two, g is strictly larger than the usual Coxeter number h). See the appendix
for a proof that three variants of the Coxeter number, including g, are all integers.

2.3. The finite subgroups of H� and their McKay graphs

Let � be a non-trivial finite subgroup of H�. Identifying H with C2, the group � is iden-
tified with a finite subgroup of SL2.C/. Its McKay graph is the graph whose vertex set I
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is the set of isomorphism classes of irreducible C�-modules, with d edges connecting i
and j if j appears with multiplicity d in i ˝C2 (equivalently, if i appears with multiplic-
ity d in j ˝C2). McKay (see for example [27] and the announcement [28]) observed that
the graphs arising in this fashion are precisely the affine Dynkin diagrams of type ADE:
the cyclic subgroups produce type A, the binary dihedral groups produce type D, and the
binary Platonic groups produce type E. Writing K.C�/ for the Grothendieck group of
the category of finite-dimensional C� modules, we then have

K.C�/ Š ZI ;

identifying K.C�/ with the root lattice ZI associated with the Dynkin diagram of � .
Thus given a C�-module M , its character is the class ch.M/ 2 ZI�0 � ZI of M in the
Grothendieck group, which we may also visualize as a labeling of the Dynkin diagram by
non-negative integers. In particular, the character of the regular representation of � is the
fundamental imaginary root ı, that is, ch.C�/ D ı.

2.4. The root system

In accordance with our identification of ZI with the root lattice, we will sometimes
write ˛i for the simple root associated with the i th vertex of I , which has coefficient 1
on i and 0 on each j ¤ i . With this convention,

ı D
X
i2I

ni ˛i ;

where ni D dimC.i/. The root system associated with the Dynkin diagram may then be
described as follows: the roots are those elements of the form nı C ˛, where n 2 Z and ˛
is a root of the finite root system associated with the Dynkin diagram obtained by deleting
the vertex 0 corresponding to the trivial representation of � . Thus we will write ˛0 for
the simple root corresponding to the vertex of the trivial representation of � . The positive
roots are those of the form nıC ˛, where n� 0, ˛ is a finite root, and ˛ is positive if nD 0.

2.5. The groups Wn.�; �/

We now fix a positive integer n, a finite subgroup � of H�, and a normal subgroup� � �
such that �=� is abelian. We will define a certain subgroupWn.�;�/�Un.H/ associated
with these data. Given 
 2� and an integer 1�p � n, we write 
 .p/ for the diagonal n� n
matrix with 
 in position .p; p/ and with 1 in every other diagonal position. We identify
the symmetric group Sn with the subgroup of Un.H/ consisting of permutation matrices
(those with exactly one 1 in each row and each column, and 0’s in the other positions).

Next we put

Wn.�/ D ¹

.1/
1 


.2/
2 � � � 


.n/
n w j 
1; 
2; : : : ; 
n 2 �; w 2 Snº � Un.H/:

Thus for nD1, we have W1.�/D� , and for �D¹1º, we have Wn.�/D Sn. In general,
Wn.�/ consists of matrices with exactly one non-zero entry in each row and each column,
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and so that the non-zero entries are elements of � . As an abstract group,Wn.�/Š�nÌSn.
Finally, we define

Wn.�;�/ D ¹

.1/
1 


.2/
2 � � � 


.n/
n w 2 Wn.�/ j 
1
2 � � � 
n 2 �º:

We note that in the definition ofWn.�;�/, the order of the factors in the product 
1
2 � � �
n
is irrelevant since �=� is abelian (this product defines a homomorphism from Wn.�/

to �=�, with kernel Wn.�;�/). Thus Wn.�;�/ consists of n by n quaternionic matrices
with exactly one non-zero entry in each row and each column, and so that the non-zero
entries are elements of � with product in�. When nD 1we haveW1.�;�/DW1.�/D�,
so we only obtain a new group for n > 1.

2.6. Reflections and some numerology for Wn.�; �/

Each group Wn.�;�/ is generated by the set R of reflections it contains. For Wn.�/, this
set R consists of two sorts of elements:
(a) For each 
 2� and each pair 1 � p < q � n of integers, the element


 .p/.pq/.
 .p//�1;

where .pq/ is the transposition matrix interchanging the pth and qth canonical basis
vectors of Hn and leaving the others fixed, and

(b) for each 
 2� n ¹1º and each integer 1 � p � n, the element 
 .p/.
One checks that these are indeed the reflections in Wn.�/ by observing that the fixed

space of an element of the form 

.1/
1 


.2/
2 � � � 


.p/
p .12 � � �p/ is the set

x1 D 
1xp; x2 D 
2
1xp; : : : xp�1 D 
p�1
p�2 � � � 
1xp

(of codimension p � 1) if 
p 
p�1 � � � 
1 D 1, and is the set x1 D x2 D � � � D xp D 0 (of
codimension p) otherwise, and then writing an arbitrary element as a product of conju-
gates of such an element in such a way that the resulting cycles are disjoint (this is the
analog of cycle decomposition for Wn.�/). Therefore, Wn.�/ contains

N D

�
n

2

�
j�j C n.j�j � 1/

reflections. Of these, the reflections that belong to Wn.�; �/ are all those of type (a),
together with the reflections of type (b) such that 
 2�. Hence Wn.�;�/ contains

(2.1) N D

�
n

2

�
j�j C n.j�j � 1/

reflections, and in particular, we have

(2.2) g D 2N=n D .n � 1/ j�j C 2.j�j � 1/:
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2.7. Semi-direct product algebra

Let F be a field and let A be an F -algebra equipped with an action by automorphisms
of a group G. The semi-direct product algebra (or twisted group ring or smash product
algebra) A ÌG is

A˝F FG; with multiplication given by .a1 ˝ g1/.a2 ˝ g2/ D a1g1.a2/˝ g1g2

for a1; a2 2 A and g1; g2 2 G. For instance, given a field F , an F -vector space V , and a
linear groupW �GL.V /, the groupW acts by automorphisms on the tensor algebra T .V /
of V , as well as on various related algebras such as the algebra F ŒV �, so we may form the
associated semi-direct product algebras.

2.8. Deformations

In this subsection and the next two, we will work with an arbitrary field F , a finite-
dimensional F -vector space V , and a finite subgroup W � GL.V /. Our applications will
all involve F D C, but here we present the simple facts we will need in their natural
generality.

Let A be a (unital, associative) F -algebra. A (non-negative, increasing, exhaustive)
filtration on A is a sequence .A�d /d2Z�0 of subspaces of A indexed by non-negative
integers d 2 Z�0 such that

1 2 A�0; A�d � A�e if d � e, A�dA�e � A�dCe and A D

1[
dD0

A�d :

The associated graded algebra of A with respect to this filtration is

gr.A/ D
1M
dD0

A�d=A�d�1;

where A��1 D 0. The multiplication is induced by the multiplication of A.
A deformation of F ŒV � ÌW is a filtered F -algebra A equipped with an isomorphism

of graded F -algebras �WF ŒV �ÌW ! gr.A/. We note that upon restricting to the degree 0
subalgebras, the map � induces an isomorphism from FW to A�0, so in particular, FW
may be identified with the subalgebra of degree 0 elements of A. Assuming that the order
of W is invertible in F , the spherical subalgebra of a deformation A of F ŒV � ÌW is the
idempotent slice subalgebra eAe, where

e D
1

jW j

X
w2W

w

is the symmetrizing idempotent. If we think of the inclusion F ŒV �W Š e.F ŒV � ÌW /e �
F ŒV � ÌW as being a non-commutative version of the quotient map V ! V=W , then the
inclusion eAe � A should likewise be regarded as a non-commutative version of this quo-
tient map. Taking this philosophy seriously leads to the definitions in the next paragraph.
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2.9. Non-commutative points and fibers

Assuming as above that the order jW j of W is invertible in F , a non-commutative point
of V=W is a one-dimensional representation of eAe for some deformationA ofF ŒV �ÌW .
A non-commutative fiber of V ! V=W is a representation M of some deformation A of
F ŒV � ÌW with the properties

(a) dimF .M
W / D 1, and

(b) M is generated by MW as an A-module.
Given a non-commutative fiber M , we define a filtration M�d on M by

M�d D A�dMW :

Each non-commutative point N produces a non-commutative fiberM D Ae˝eAe N ,
and conversely, each non-commutative fiber M produces a non-commutative point N D
eM Š MW . It seems likely that the classification problem for non-commutative points
and fibers will be very interesting and challenging (for instance, by analogy with the same
problem for finite W -algebras; see, e.g., [26]).

The next lemma explains the utility of non-commutative fibers in the context of the
zero-fiber ring. It is a version of Lemma 3.1 from [19].

Lemma 2.1. Let M be a non-commutative fiber. Then F ŒV �W>0 acts by zero on gr.M/,
which is therefore a quotient of F Œ��1.0/�. In particular, the degree of the zero fiber is at
least the dimension of M .

Proof. First we observe that, sinceMW generatesM as an A-module, the filtrationM�d

is exhaustive, and hence the dimension of gr.M/ is equal to the dimension of M . By
construction, gr.M/ is generated as a F ŒV �-module by its degree 0 subspace: given m 2
grd .M/ DM�d=M�d�1, there are a 2 A�d and m0 2MW with m D am0, implying

m D am0 2 .F ŒV � ÌW /gr0.M/ D F ŒV �gr0.M/:

Next, observe that the unique occurrence of the trivial representation of W in gr.M/ lies
in degree 0. This implies that each positive degree W -invariant polynomial acts by 0 on
the degree 0 part of gr.M/ and hence on all of gr.M/. Hence gr.M/ is a quotient of the
zero-fiber ring F Œ��1.0/�.

2.10. The naive bounds

Here we use the notion of non-commutative fiber to prove the lower bound (1.1) mentioned
in the introduction (although the only fibers we actually use at this point are commutative).

Proposition 2.2. Let F be a field and let V be an n-dimensional F -vector space. Suppose
W � GL.V / is a linear group of order d . Then the degree ı.W / of the zero fiber of W
satisfies d � ı.W /, and if the characteristic of F is zero, we also have

ı.W / �

�
nC d � 1

d � 1

�
:
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Furthermore, if the characteristic of F is 0, then the lower bound is achieved precisely
when W generated by reflections, and the upper bound is achieved precisely when W is a
group of scalar matrices.

Proof. First we prove the lower bound. By extension of scalars, we may assume F is an
infinite field, and hence that there exists some v 2V such that the orbit Wv contains jW j
points (since the base field is infinite, V is not a finite union of proper subspaces). The
coordinate ring of this orbit is a non-commutative fiber of dimension jW j, so Lemma 2.1
gives the bound we want.

Next we prove the upper bound. Given x 2V �, we consider the polynomial

f .t/ D
Y
w2W

.t � w.x// 2 F ŒV �Œt �:

We expand
f D td C ad�1t

d�1
C � � � C a0;

with aj 2 F ŒV �W>0 positive degree W -invariants. Substituting x for t shows that xd is in
the ideal generated by the positive degree invariants, and since the characteristic of F is
zero, all polynomials of degree at least d are contained in this ideal. This proves the upper
bound.

It is straightforward to check that the upper bound is achieved by a group of scalar
matrices. Conversely, if the upper bound is achieved, then for each x 2 V �, the corre-
sponding polynomial f .t/ is of the form f .t/ D td C a0, whence xd D �a0 2 F ŒV �W .
This implies that xd Dw.x/d , so that x andw.x/ are linear functions with the same set of
zeros. Thus they are proportional. Since x 2V � is arbitrary, w preserves every line in V �

and therefore acts as a scalar. Since w was arbitrary, W is a group of scalar matrices.
If W is a reflection group and the characteristic of F is 0, then by Theorem 2 in

Section 5 of Chapter 5 in [6], the lower bound is achieved. Conversely, if the lower bound
is achieved, then we may choose homogeneous f1; : : : ; fd 2F ŒV � such that their images
are a basis of the zero-fiber ring. By Nakayama’s lemma, these generate the F ŒV �W -
module F ŒV �, and a fortiori, the F.V /W -vector space F.V /. By Galois theory, F.V / is
d -dimensional, so f1; : : : ; fd are F.V /W -linearly independent. It follows that F ŒV � is a
rank d free F ŒV �W -module. By Theorem 4 in Section 5 of [6],W is a reflection group.

2.11. Normal subgroups

Next suppose W C N � GL.V / is a pair consisting of two finite linear groups, with W
normal in N ; we have in mind here the pair Wn.�;�/ C Wn.�/. The group N then sta-
bilizes the set of positive-degreeW -invariants in F ŒV �, and hence acts by automorphisms
on the zero-fiber ring F Œ��1.0/� for W . We have the following analog of the previous
lemma.

Lemma 2.3. Let A be a deformation of F ŒV � Ì N and let M be an A-module with the
properties

(a) dimF .M
W / D 1, and

(b) M is generated by MW as an A-module.
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Then F ŒV �W>0 acts by zero on gr.M/, which is therefore a quotient of F Œ��1.0/�. In
particular, the degree of the zero fiber is at least the dimension of M .

Proof. The proof is the same as Lemma 2.1, once we observe that

.F ŒV � ÌN/gr0.M/ D F ŒV �gr0.M/;

since N acts by some linear character on gr0.M/ DMW .

2.12. The symplectic reflection algebra of rank 1

Here we define the deformation of CŒx; y� Ì � introduced in [8], also known as the
symplectic reflection algebra (as introduced in more generality in [10]) of � . Thus let
� � SL2.C/ be a finite subgroup, and choose linear functions x and y on V D C2 with
hx; yi D 1, where h �; � i is the symplectic form on V � that is dual to the standard symplec-
tic form on V . We have CŒV � D CŒx; y�. We write I for an index set for the irreducible
C�-modules (thus if � is non-trivial as above then I is the set of vertices of the Dynkin
diagram of �), and for i 2 I , let ei 2Z.C�/ be the corresponding central primitive idem-
potent. We let c D .ci /i2I 2 CI be a collection of complex numbers indexed by I and
put

Hc.�; V / D Chx; yi Ì �=
�
xy � yx D

P
i2I ci ei

�
;

where Chx; yi is the tensor algebra of V �, on which � acts by automorphisms. The PBW
theorem (see, e.g., Theorem 2.1 in [17]) forHc.�;V / states that the monomials xayb
 for
a; b 2 Z�0 and 
 2� are a C-basis of Hc.�; V /. Equipping Hc.�; V / with the filtration
for which x and y have degree 1 and elements of � have degree 0, the PBW theorem
implies thatHc.�;V / is a deformation of CŒx; y�Ì � . If � D ¹1º is the trivial group, then
Hc.�; V / is the Weyl algebra of rank 1.

2.13. A deformation of CŒV �n� Ì Wn.�/

We have V �nDHn, which we regard as a C-vector space on whichWn.�/ acts C-linearly
by restriction of scalars. Fixing a parameter c as above, we form the tensor product algebra
Hc.�; V /

˝n. This algebra is equipped with the permutation action of Sn on the tensor
factors, and we form the semi-direct product algebra

Hc.�; V /
˝n Ì Sn:

The tensor product filtration on Hc.�; V /˝n extends to a filtration on Hc.�; V /˝n Ì Sn
by placing Sn in degree 0, and with this filtration, the algebra Hc.�; V /˝n Ì Sn is a
deformation of CŒV �n� ÌWn.�/. It is a special case of the symplectic reflection algebra
of type Wn.�/ (see Definition 2.1 and the beginning of Section 3 of [11]).

2.14. Representations

Given an Hc.�; V /-module M and a CSn-module N , the vector space M˝n ˝ N is a
Hc.�; V /

˝n Ì Sn-module.
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Lemma 2.4. If M and N are irreducible finite-dimensional modules for Hc.�; V / and
CSn, respectively, thenM˝n˝N is an irreducible finite-dimensionalHc.�;V /˝n Ì Sn-
module.

Proof. The proof of this is very nearly standard, but we indicate it briefly here for the
reader’s convenience. It suffices to show that the canonical map

Hc.�; V /
˝n Ì Sn �! EndC.M

˝n
˝N/

is surjective. But this follows from the surjectivity of the maps Hc.�; V /! EndC.M/,
CSn ! EndC.N /, and EndC.M/˝n ˝ EndC.N /! EndC.M

˝n ˝N/, upon noting that
given w 2 Sn its action on M˝n may be achieved by some element of Hc.�; V /˝n.

2.15. Finite-dimensional representations of Hc.�; V /.

In this subsection, we assume � is non-trivial in order to apply the results of [8] (when �
is trivial, the Weyl algebraHc.�; V / has no finite-dimensional representations for c ¤ 0).
Let M be a finite-dimensional Hc.�; V /-module. As above, its character ch.M/ is the
element of the Grothendieck ringK0.C�/Š ZI represented by its class as a C�-module.

We write ˛ � c D
P
i2I cidi if ˛ D

P
i2I di˛i for the usual dot product, and we use

the notation above for the root system R associated with the Dynkin diagram of � . We
define

Rc D ¹˛ 2 R j ˛ � c D 0º

and let †c be the set of minimal positive elements of Rc . Then Corollary 3.5 and Theo-
rem 7.4 of [8] imply the following.

Theorem 2.5. Suppose � is non-trivial. The correspondenceM 7! ch.M/ defines a bijec-
tion from the set of isomorphism classes of finite-dimensional simple Hc.�; V /-modules
to the set †c .

As a corollary:

Corollary 2.6. Suppose � is non-trivial and let ˛ be a positive real root. For generic ele-
ments c of the hyperplane defined by c � ˛ D 0, there is a unique simple finite-dimensional
Hc.�; V /-module M , and we have ch.M/ D ˛.

The corollary provides a large supply of non-commutative fibers. The largest character
of such a non-commutative fiber is given by ch.M/ D ı C �, where ı is the fundamental
imaginary root and

(2.3) � D ı � ˛0

is the highest root of the finite root system associated with � . Recalling that ı D ch.C�/
and ˛0 corresponds to the trivial character, the dimension of this M is precisely

(2.4) dim.M/ D 2 j�j � 1 D g C 1:

This shows that the dimension of the zero-fiber for � is at least gC 1. In the next section,
we will observe that in fact this dimension is equal to g C 1, and also generalize the
preceding construction to the groups Wn.�;�/.
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3. Proof of the main results

3.1. Outline

Here we prove Theorem 1.2. We will begin with the case of a finite subgroup � � SL2.C/,
proving that in this case the zero fiber ring is of dimension precisely gC 1, and hence that
the non-commutative fiber we constructed above is in fact a deformation of it. We then
consider the groups Wn.�;�/ C Wn.�/.

3.2. Finite subgroups of H�

Let V D H, regarded as a right C-vector space via restriction of scalars, and let � � H�
be a finite subgroup acting on V by left multiplication. Regarding V as a C-vector space,
the quotient space V=� is known as a Kleinian singularity (or alternatively, as a du Val
singularity or simple surface singularity). The fibers of the quotient map are all reduced
of cardinality j�j except the zero-fiber. We will prove the following.

Theorem 3.1. The degree of the zero-fiber of the map V ! V=� is 2j�j � 1 D g C 1.

The theorem is of course easy to deduce from the work of McKay [29] on the graded
character of the zero-fiber ring, and also follows from assertion 1 of Theorem 10.5 in [25]
(note that in their notation, Irr.G/ is the set of non-trivial irreducible representations ofG).
We present a proof here for the reader’s convenience; our interest in this particular formu-
lation is the existence of a single irreducible non-commutative fiber with precisely the
dimension of the zero-fiber ring. Already in this case, it would be very interesting to have
an a priori explanation for the coincidence of the dimensions. Additionally, the proof
we give provides an explicit Gröbner basis for the ideal generated by the positive degree
�-invariants.

Proof. The proof is case by case. In each case, we will find a set S of polynomials in
the ideal I generated by the �-invariant polynomials of positive degree such that the
quotient of CŒx; y� by the ideal in.I / generated by the initial terms of the elements of
S is of dimension 2j�j � 1. This gives the desired upper bound on the dimension of the
zero-fiber ring, and when combined with the lower bound that follows from Lemma 2.3
and (2.4), establishes that the set S is, in each case, a Gröbner basis of I . Throughout we
use the lexicographic order on monomials, so that xayb comes before xcyd if a > c or if
a D c and b > d .

3.3. Cyclic groups

Let � be a primitive `th root of 1 and let � be the subgroup of SL2.C/ generated by the
matrix

w D

�
� 0

0 ��1

�
:

The action of w on the ring CŒx; y� of polynomial functions on C2 is given by

w � x D ��1x and w � y D �y:
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It follows that the polynomials x`, xy and y` are �-invariant. The quotient by the
ideal they generated is spanned by the monomials 1; x; : : : ; x`�1; y; y2; : : : ; y`�1, and
hence has dimension exactly 2` � 1 D 2 j�j � 1.

3.4. Binary dihedral groups BD2n

We write � for a primitive 2nth root of 1, and let

w1 D

�
� 0

0 ��1

�
and w2 D

�
0 i

i 0

�
:

We consider the polynomials

�1 D x
n
C yn; �2 D x

n
� yn; and �3 D xy:

Direct calculation shows that these are semi-invariants with

w1 � �1 D ��1; w2 � �1 D .�i/
n�1; w1 � �2 D ��2;

w2 � �2 D �.�i/
n�2; w1 � �3 D �3; and w2 � �3 D ��3:

Hence if n is even, then the polynomials

f1 D �
2
3 ; f2 D �

2
2 ; and f3 D �1�2�3

are �-invariant, while if n is odd, then the polynomials

g1 D �
2
3 ; g2 D �1�2; and g3 D �

2
2 �3

are �-invariant.
We first assume n is even, and in particular n � 2. We have

f1 D x
2y2; f2 D x

2n
� 2xnyn C y2n; and f3 D xy.x

2n
� y2n/:

Hence the polynomial

y2nC2 D y2f2 � .x
2n�2

� 2xn�2yn/f1

belongs to I . Likewise,

xy2nC1 D
1

2
.xyf2 � f3 C 2x

n�1yn�1f1/

belongs to I . The quotient by the ideal J generated by the leading terms of the set

S D ¹f1; f2; y
2nC2; xy2nC1º

is spanned by

¹1; x; : : : ; x2n�1; y; y2; : : : ; y2nC1; xy; x2y; : : : ; x2n�1y; xy2; : : : ; xy2nº

and is hence of dimension at most

2nC .2nC 1/C 2n � 1C 2n � 1 D 8n � 1 D 2 j�j � 1:
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Next we assume n is odd. The invariant polynomials here are

g1 D x
2y2; g2 D x

2n
� y2n; and g3 D xy .x

2n
� 2xny2 C y2n/:

Since
y2nC2 D x2n�2g1 � y

2g2

we have y2nC2 2 I . And since

xy2nC1 D
1

2
.g3 � 2x

n�1yn�1g1 � xyg2/;

we have xy2nC1 2 I . Thus again the desired dimension is bounded by 8n� 1D 2j�j � 1.

3.5. The binary tetrahedral group

Here we follow [9], starting on page 8, and consider the binary tetrahedral group � gen-
erated by the matrices

w1 D

�
i 0

0 �i

�
; w2 D

�
0 i

i 0

�
; and w3 D

1

1 � i

�
1 i

1 �i

�
:

Direct calculation shows that

�1D xy.x
4
� y4/; �2D x

4
C 2
p
�3x2y2C y4; and �3D x

4
� 2
p
�3x2y2C y4

are semi-invariants for � , and then that

f1 D �1 D xy.x
4
� y4/;

f2 D �2�3 D x
8
C 14x4y4 C y8;

f3 D
1

2
.�32 C �

3
3/ D x

12
� 33x8y4 � 33x4y8 C y12

are invariants for � .
We define

g1 D yf2 � x
3f1 D 15x

4y5 C y9 and g2 D xg1 � 15y
4f1 D xy

9;

so that g1; g2 2 I , and then put

h D f3 C .47y
4
� x4/f2 D 624x

4y8 C 48y12:

Finally, defining
g3 D 5h � 208y

3g1 D 32y
12
2 I;

we have obtained the desired set

S D ¹f1; f2; g1; g2; g3º

whose initial terms
¹x5y; x8; x4y5; xy9; y12º

generate an ideal of codimension 47 D 2 j�j � 1.
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3.6. The binary octahedral group

Here we follow [9], starting on page 9, and consider the binary octahedral group � gener-
ated by the matrices

w1 D

�
e2�i=8 0

0 e�2�i=8

�
; w2 D

�
0 i

i 0

�
; and w3 D

1

1 � i

�
1 i

1 �i

�
:

Since the binary tetrahedral group is a normal subgroup of � , it is not surprising that its
invariants

�1Dxy.x
4
�y4/; �2Dx

8
C14x4y4Cy8 and �3Dx

12
�33x8y4�33x4y8Cy12

are semi-invariants for � . Direct calculation then shows that

f1 D �
2
1 D x

10y2 � 2x6y6 C x2y10;

f2 D �2 D x
8
C 14x4y4 C y8;

f3 D �1�3 D x
17y � 34x13y5 C 34x5y13 � xy17

are � invariants.
We define

g1 D
1

16
.x2y2f2 � f1/ D x

6y6 2 I;

and then

g2 D y
6f2 � x

2g2 D 14x
4y10 C y14 2 I

g3 D x
2y6 .x8 C 14x4y4 C y8/ � .x4 C 14y4/g2 D x

2y14 2 I:

Next we observe that, working modulo g2 D x6y6, we have

y10.x8 C 14x4 C y8/ D 14x4y14 C y18

and, still working modulo g2 D x6y6,

14x4y14 C y18 � 14x2y4f1 D y
18
2 I:

Thus we define g4 D y18 2 I . Finally, we observe that

g5 D .7x
9y � 336x5y5 C 41xy9/f2 C 4656x

3y3g2 � 7f3 D 48xy
17
2 I:

Hence the set
S D ¹f2; g1; g2; g3; g4; g5º

is contained in I , with initial terms the set

¹x8; x6y6; x4y10; x2y14; xy17; y18º:

It follows that the degree of the zero fiber here is at most 95 D 2 j�j � 1.
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3.7. The binary icosahedral group

Here we follow [9], starting on page 9. We take � D e2�i=5 a primitive 5th root of unity,
and let � to be the group generated by

w1D

�
e2�i=10 0

0 e�2�i=10

�
; w2D

�
0 i

i 0

�
; and w3D

1
p
5

�
� � �4 �2 � �3

�2 � �3 �� C �4

�
:

This group is perfect, so its semi-invariants are invariants, and as in [9] we observe that
the polynomials

f1 D xy.x
10
C 11x5y5 � y10/;

f2 D �.x
20
C y20/C 228.x15y5 � x5y15/ � 494x10y10;

f3 D x
30
C y30 C 522.x25y5 � x5y25/ � 10005.x20y10 C x10y20/

are semi-invariants (and hence invariants). We put

g1 D .x
9
� 239x4y5/f1 C yf2 D �3124x

10y11 C 11x5y16 � y21 2 I

and

g2 D .x
10
� 239x5y5 C 3124y10/f1 C xyf2 D 34375x

6y16 � 3125xy21 2 I:

Next we set

g3 D
1

140
.31242 .y6f2 C x

9y5f1/C .3124 � 239x
5
� 1543751y5/g1/

D �16020500x5y21 � 58683y26

and then
g4 D

�1

52081300000
.16020500y5g2 C 34375xg3/ D xy

26:

Finally, we set

h1 D f3 C x
10f2 � .750x

14y4 � 18749x9y9/f1

D 206761x15y15 � 28755x10y20 � 522x5y25 C y30 2 I;

h2 D 3124h1C206761x
5y4g1 D �87556200x

10y20�1837490x5y25C3124y302I;

and observe that modulo g2 and g3, the polynomial h is a non-zero multiple of g5 D y30,
which is therefore in I . Thus the set

S D ¹f1; f2; g1; g2; g3; g4; g5º

is a subset of I with leading terms

¹x11y; x20; x10y11; x6y16; x5y21; xy26; y30º:

It follows as above that the dimension of the zero fiber is at most 239 D 2 j�j � 1. This
completes the proof of Theorem 3.1, and hence Theorem 1.2 in case n D 1.
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3.8. Spaces of semi-invariants

We begin with a very general lemma, whose proof follows easily from Clifford theory.

Lemma 3.2. Let G be a finite group, let N C G be a normal subgroup such that G=N
is abelian, let �WG ! C� be a linear character, and let M be an irreducible CG-module
such that the restriction ofM toN contains a summand isomorphic to the restriction of �
to N . Then M is one-dimensional, and hence given by a linear character  WG ! C�
with restriction to N equal to � restricted to N .

Proof. By Clifford theory (Theorem 6.2 of [24]), the restriction of M to N is a sum of
conjugates of � restricted toN . But since � is a character ofG, it is conjugation-invariant,
so the restriction of M to N is a sum of copies of �jN , implying that N acts via � on M .
Hence N acts trivially on M ˝ ��1, which is therefore an irreducible G=N module.
Since G=N is abelian, it follows that M is one-dimensional.

Now fix a pair .�; �/ consisting of a linear character � of � and a linear character �
of Sn. This pair determines a linear character .�; �/ of Wn.�/ by the rule

.�; �/.

.1/
1 � � � 


.n/
n w/ D �.w/ �

nY
iD1

�.
i /;

and hence upon restriction to Wn.�; �/, a linear character of Wn.�; �/. Different pairs
.�; �/ define different characters of Wn.�/, and since Wn.�/ is generated by Sn and
� Š �.1/, all linear characters of Wn.�/ are of this form. Two pairs .�; �/ and .�0; �0/
restrict to the same character of Wn.�; �/ if and only if � D �0 and the restrictions of �
and �0 to � are equal. Moreover:

Proposition 3.3. If n � 3, then every linear character of Wn.�;�/ is the restriction of a
character of Wn.�/.

Proof. Since n � 3, the transposition .12/ is conjugate in Wn.�;�/ to


 .1/.12/.
�1/.1/ D 
 .1/.
�1/.3/.12/.
 .1/.
�1/.3//�1 for every 
 2� .

Since both these elements are involutions, if  is a linear character of Wn.�;�/, then

 ..12//D  .
 .1/.12/.
�1/.1//; H)  .
 .1/.
�1/.2//D  .
 .1/.12/.
�1/.1/.12//D 1:

Noting that we may write the commutator Œ
; ��.1/ as

.
�
�1��1/.1/ D .
�/.1/..
�/�1//.2/.
�1/.1/
 .2/.��1/.1/�.2/;

this implies
 .Œ
; ��.1// D 1 for all 
; � 2 � .

Thus the restriction of  to � Š �.1/ defines a character of � whose kernel contains
Œ� W ��. Every such character is the restriction of some character of � . Writing �W�! C�
for this character and � for the restriction of  to Sn gives a pair .�; �/ such that the
corresponding character of Wn.�/ agrees with  on (all conjugates of) Sn and �.1/,
hence restricts to  .
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The following lemma is the key input in order to apply Lemmas 2.1 and 2.3. In what
follows, for a finite group G, an isomorphism class � of simple representations of CG,
and a CG-module M , we write M� for the sum of all submodules of M of type �, and
we write G_ for the group of linear characters of G.

Lemma 3.4. With notation as above, given a C�-module L, the space of .�; �/-relative
invariants for the action of Wn.�;�/ on L˝n ˝ det is

.L˝n ˝ det/.�;�/ D

8̂̂̂̂
<̂
ˆ̂̂:

L
 2�_

 j�D�

ƒn.L / if � D triv,

L
 2�_

 j�D�

Symn.L / if � D det.

Proof. We put

��n� D ¹.
1; : : : ; 
n/ 2 �
�n
j 
1
2 � � � 
n D 1 mod �º;

which is a normal subgroup of ��n. For a representationL of � , we compute theWn.�;�/
.�; �/-semi-invariants in L˝n ˝ det as follows: first we compute the ��n� �-semi-invari-
ants in L˝n, and then take Sn invariants or anti-invariants as appropriate. Suppose that

L D

mM
jD1

Lj

with each Lj an irreducible �-submodule of L. Now as aG D ��n-module, L˝n decom-
poses as

L D
M

1�i1; i2;:::; in�m

Li1 ˝ Li2 ˝ � � � ˝ Lin :

By applying Lemma 3.2 with N D ��n� , M D Li1 ˝ � � � ˝ Lin , and the character of G
induced by �, the only summands that contribute to the semi-invariants we are after must
have all Lij one-dimensional. Let �j be the linear character corresponding to Lij . Assum-
ing that `1 ˝ � � � ˝ `n 2M is a �-semi-invariant, we obtain that, for all 
 2� ,

`1 ˝ � � � ˝ `n D 

.1/.
�1/.2/ � `1 ˝ `2 ˝ � � � ˝ `n D �1.
/�2.


�1/`1 ˝ `2 ˝ � � � ˝ `n;

implying �1 D �2. Similarly, �i D �j for all i; j . Likewise, for 
 2� we have

�.
/`1 ˝ � � � ˝ `n D 

.1/
� `1 ˝ � � � ˝ `n D �1.
/`1 ˝ � � � ˝ `n;

implying that � and �1 have the same restriction to �. Finally, by taking Sn-invariants or
anti-invariants, as the case may be, we obtain the result.

3.9. Proof of Theorem 1.2

We have already proved the last assertions of the theorem, dealing with the rank one
groups. The remainder of the theorem is a consequence of the more precise version below.
We note that in order to apply the results of [8], we must assume � is non-trivial, so our
proof does not apply to the case W D Sn. The next lemma is the main technical input
needed for the proof. We recall the definition of the highest root � from (2.3).
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Lemma 3.5. Fix � a non-trivial finite subgroup of H� and n 2 Z>0.

(a) There exist c 2CI and L2 Irr.Hc.�;C2// such that

dimC.L/ D .nC 1/ j�j � 1 and ch.L/ D nı C �:

(b) Suppose � is non-cyclic. Let � < � be a proper normal subgroup with abelian
quotient, and let J be the subset of I corresponding to linear characters of �=�.
Then there exist c 2CI and L2 .Hc.�;C2// such that

dimC.L/ D .n � 1/ j�j C 2 j�j � 1 and ch.L/ D .n � 1/ı C ˛;

where ˛ is a positive finite root, with the property that ˛i D 1 for exactly one i 2 J
and j̨ D 0 for all other j 2J .

Proof. For part (a), since nı C � is a positive root, Corollary 2.6 implies that there are
c 2CI and L 2 Irr.Hc.�;C2// such that ch.L/ D nı C �. By a direct calculation, the
dimension of this module is as claimed.

For part (b), we must argue case by case. If j� W �j D 2, since .n � 1/ı C � is a
positive root, by Corollary 2.6 there are c 2CI and L2 Irr.Hc.�;C2// such that ch.L/D
.n � 1/ı C �. A direct calculation again shows dimC.L/ is as claimed. Moreover, since
�=� has exactly two linear characters, �i D 1 for exactly one i corresponding to a non-
trivial linear character of �=� (the only one).

The remaining cases are the commutator subgroup � of index 3 in the binary tetrahe-
dral group (of type E.1/6 ), and the commutator subgroup (which is of order n, or equiv-
alently index 4) of the binary dihedral group of order 4n. We now complete the proof
of the lemma by specifying, in each case, a particular finite root ˛ D

P
ki˛i such that

ki D 1 for precisely one vertex i corresponding to a non-trivial character of �=� (so
that ki D 0 for all other i corresponding to linear characters), and such that for L with
ch.L/ D .n� 1/ı C ˛, the dimension of L is as claimed (again by a direct computation).
For the reader’s convenience, we also label the Dynkin diagram with the integers ni giving
the coefficients of ı on the simple roots:

ı for type E.1/6
1 2 3 2 1

2

1

and ˛ is
1 2 2 1 0

1

0

ı for type D.1/nC2
1 2 2

. . .
2 1

1 1

and ˛ is
1 1 1

. . .
1 0

0 0

Theorem 3.6. Let n � 2 be an integer, let � � H� be a non-trivial finite subgroup, and
let � � � be a normal subgroup such that �=� is abelian. Then the zero-fiber ring of
Wn.�;�/ admits a .g C 1/n-dimensional quotient ring, where

g D .n � 1/ j�j C 2.j�j � 1/:
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Proof. We begin with the case Wn.�/. Using Lemma 3.5, we choose a parameter c 2 CI
such that there is an irreducible Hc.�; V /-module L with character ch.L/ D nı C �

and dimension g C 1. By Lemma 2.4, the representation L˝n˝ det of Hc.�; V /˝nÌSn
is irreducible. By Lemma 3.4, the space of Wn.�/-invariants in this representation is
one-dimensional, so it is a non-commutative fiber. By Lemma 2.1, its associated graded
module is a quotient ring of the zero-fiber ring, and since its dimension is

dimC.L
˝n
˝ det/ D dim.L/n D .nj�j C j�j � 1/n D .g C 1/n;

we have completed the proof in this case.
Now we handle the case ofWn.�;�/ for�¤ � . We may assume � is not cyclic, since

in that case the results of [19] apply (except for the groupW2.�; ¹1º/ D G.2; 2; 2/, which
is not irreducible, but one can check the theorem directly in that case). By Lemma 3.5, we
can choose c 2 CI and L2 Irr.Hc.�;C2// with dimC.L/ D g C 1 and dim.L�/ � n for
all �2 .�=�/_, with equality for exactly one such �2.�=�/_. By Lemma 3.4,

.L˝n ˝ det/Wn.�;�/ Š
M
�2�_

�j�D1

ƒnL� Š C:

By Lemma 2.4 and Lemma 2.3, we have completed the proof.

We have searched for a maximum-dimensional representation to which Lemma 2.3
applies; it seems miraculous to us that such a representation turns out to be of dimension
exactly .g C 1/n.

3.10. Catalan numbers for Wn.�; �/?

As mentioned in the introduction, it is natural to wonder if there are reasonable product
formulas for the dimensions of the spaces of .�;det/ semi-invariants appearing in our non-
commutative fibers, as happens for complex reflection groups. Even though the statement
of Lemma 3.4 seems a priori discouraging, as it contains direct sums, one may observe
by a case-by-case analysis that in fact the dimension always factors into a product of n
linear functions of n divided by nŠ. We have collected the results of this straightforward
calculation in the next table. We note that they very nearly do not depend on the pair
.�;�/ except through the index j�=�j (though presumably their graded versions do).

The pair .�;�/ and the conditions on � The dimension of .L˝n ˝ det/.�;det/

� D �; � ¤ 1 2n.2n�1/.2n�2/���.nC2/.nC1/
nŠ

� D �; � D 1 .2n�1/.2n�2/���.nC1/n
nŠ

j� W �j D 2; �j� ¤ 1
.4n�2/.2n�2/.2n�3/���.nC1/n

nŠ

j� W �j D 2; �j� D 1
.3n�2/.2n�2/.2n�3/���.nC1/n

nŠ

� of type E.1/6 ; j� W �j D 3 .4n�3/.2n�2/.2n�3/���.nC1/n
nŠ

� of type D.1/
mC2; j� W �j D 4

.5n�4/.2n�2/.2n�3/���.nC1/n
nŠ
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The results for .�; triv/ semi-invariants in the cases not covered above are less inter-
esting, but we present them here:

The pair .�;�/ and the conditions on � The dimension of .L˝n ˝ det/.�;triv/

� D �; � ¤ 1 nC 1

j� W �j D 2; �j� ¤ 1 2

A. Appendix: some numerology for quaternionic groups

A.1. Variants of the Coxeter number

Let V be an n-dimensional H-vector space equipped with a positive definite Hermitian
form . �; �/. We assume given a finite groupW of unitary transformations of H such that V
is irreducible (as an H-linear representation of W ). Let

R D ¹r 2W j codim.fix.r// D 1º

be the set of reflections in W . Note that we do not require here that R generates W (or
even that R ¤ ;).

We write
A D ¹fix.r/ j r 2 Rº

for the arrangement of reflecting hyperplanes for elements of R, and define N D jRj and
N � D jAj. Finally, we define

g D
2N

n
, h D

N CN �

n
, and k D

2N �

n
�

Evidently, we have g C k D 2h and g � h � k, with both equalities occurring precisely
when every r 2R has order 2 (thus in particular when the W -module V has an R-form).
WhenW is a complex reflection group, it is traditional to refer to h as the Coxeter number
of W . In this appendix we will prove:

Theorem A.1. The numbers g, h, and k are all integers.

A.2. Proof of Theorem A.1

We will prove the theorem after establishing a number of preparatory results. First, we
prove that h is an integer.

Lemma A.2. h is an integer.

Proof. Let
z D

X
r2R

1 � r 2Z.CW /:

Case 1. In the case when V 2 Irr CW is irreducible over C, it follows from Schur’s
lemma that z acts on V by scalar cV 2 C. Moreover, since z is an integer-linear combina-
tion of class sums, cV is an algebraic integer.
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By definition of cV ,

2ncV D trV .z/ D
X
r2R

trV .1 � r/ D
X
H2A

X
r2WH

trV .1 � r/;

where
WH D ¹r 2 W j r.p/ D p; 8p 2 H º:

Let H? be the orthogonal complement of H in V , so that V D H ˚H?. Noting that,
for r 2WH , 1 � r acts by zero on H while

P
r 2WH

r acts by zero on H?,

2ncV D
X
H2A

X
r2WH

trH?.1/ D
X
H2A

X
r2WH

2 D
X
H2A

2 jWH j D 2.N CN
�/:

This implies that h D cV is an algebraic integer; since it is evidently a rational number it
is an integer.

Case 2. If V is not irreducible as a CW -module, then it is of the form V D V0 ˝C H
for some irreducible CW -module V0, and the same argument applies. This shows that h
is an integer in either case.

Next we prove that k is an integer (which, together with the preceding, shows that g
is an integer). This follows the proof of Corollary 6.98 of [30], modified in order to apply
to the quaternionic case and in order to avoid their appeal to the theorem that parabolic
subgroups of reflection groups are reflection groups (this is known thanks to [3] for quater-
nionic groups, but via a case-by-case check). Fix H 2 A and set

AH
D ¹H \KjK 2 A n ¹H ºº:

In order to prove that k 2 Z, we will in fact show that

jAH
j D N � C 1 � k:

For each H 2A, we fix ˛H 2V such that
(1) H D ¹v 2 V j .˛H ; v/ D 0º,
(2) .˛H ; ˛H / D 1.

Thus ˛H is well-defined up to multiplication by a quaternion of norm 1. We will consider
the function f WV ! V defined by

v 7!
X
H2A

˛H .˛H ; v/:

Lemma A.3. The function f satisfies f .v/ D k
2
v; 8v 2 V .

Proof. Case 1. In the case when V 2 Irr CW is irreducible over C, it follows from Schur’s
lemma that f acts on V by a scalar c 2C. By fixing an orthonormal H-basis e1; : : : ; en
of V and computing

Pn
iD1.ei ; f .ei //, one finds that this scalar is k=2.

Case 2. In this case, V D V0 ˝C H for an irreducible CW -module V0, and the same
argument applies upon working in V0.
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Corollary A.4. For H 2 A, we have

2
X
K2A

j.˛K ; ˛H /j
2
D k:

Proof. This follows from

k

2
D .˛H ; f .˛H // D

X
K2A

.˛H ; ˛K.˛K ; ˛H //:

Lemma A.5. For X 2 AH ,

j¹K 2 A jX � Kºj D 2
X
X�K
K2A

j.˛K ; ˛H /j
2:

Proof. Let
WX D ¹w 2 W j w.x/ D x for all x 2Xº

be the subgroup of W that fixes X pointwise. Thus WX acts on the orthogonal com-
plement X?, and the reflecting hyperplanes for WX acting on X? are precisely those
intersections K \X? for which K 2 A satisfies X � K.

Case 1. We assume first that WX acts H-reducibly on X?. Thus X? is the direct sum
of two one-dimensional WX -stable subspaces, and for each K 2 A with K � X , we must
have ˛K in one of these subspaces or the other. It follows that there are exactly twoK 2A

with X � K (one of which is H ) and we have .˛H ; ˛K/ D 0. This establishes the lemma
in this case.

Case 2. Now assume WX acts H-irreducibly on X?. In this case, we may apply the
previous corollary, which proves the lemma in this case.

Proof of Theorem A.1. By Lemma A.2, h 2 Z. We next prove that k is an integer. We may
assume A ¤ ;; we fix H 2A.

By making use of the preceding results we calculate as follows:

k D 2
X
K2A

j.˛K ; ˛H /j
2
D 2C 2

X
K2An¹Hº

j.˛K ; ˛H /j
2

D 2C
X
X2AH

�
� 1C

X
X�K
K2A

j.˛K ; ˛H /j
2
�
D 2 � 2 jAH

j C

X
X2AH

j¹K 2 AjX � Kºj

D 2 � 2 jAH
j C jAH

j C

X
X2AH

j¹K 2 AjK \H D Xºj D 2 � jAH
j C jAj � 1

D 1CN � � jAH
j:
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